Curvature combs and harmonized paths in METAPOST

Linus Romer

July 15, 2023
Introduction

Popular in font design software:

- curvature combs
- harmonization

⇒ Implementation in METAPOST
Introduction

How I got into it:

- I designed typefaces with \textsc{metafont} (e.g. \textit{Funtauna}) and in FontForge (e.g. \textit{Miama Nueva})
- ⇒ conversion tool mf2outline
- ⇒ some tool implementations in FontForge (e.g. \textit{Harmonize}, \textit{Balance})
Curvature

\[\text{curvature} = \frac{1}{\text{radius of osculating circle}} \]
Curvature along a curve
Curvature along a curve

1/2.6

2.6
Curvature along a curve

1/2.9

2.9
Curvature along a curve

\[
\frac{1}{3.4}
\]

3.4
Curvature along a curve

Curvature comb and harmonized paths in \textsc{metaPost}

Linus Romer

Introduction

Curvature comb

Harmonize paths

Examples of harmonization

Math of harmonization

Harmonization macro

History

Other algorithms
Curvature along a curve

Curvature comb
Harmonize paths
Examples of harmonization
Math of harmonization
Harmonization macro
History
Other algorithms
Curvature along a curve

\[\frac{1}{3.8} \]
Curvature along a curve

1/3.2

3.2
Curvature along a curve

1/2.5

2.5
Curvature along a curve

Curvature combs and harmonized paths in METAPOST

Linus Romer

Introduction
Curvature comb
Harmonize paths
Examples of harmonization
Math of harmonization
Harmonization macro
History
Other algorithms
Curvature along a curve

1/1.4

1.4
Curvature along a curve

1/1.3
Curvature combs and harmonized paths in METAPOST

Linus Romer

Introduction
Curvature comb
Harmonize paths
Examples of harmonization
Math of harmonization
Harmonization macro
History
Other algorithms

Curvature comb
Curvature combs and harmonized paths in METAPOST

Linus Romer

Introduction
Curvature comb
Harmonize paths
Examples of harmonization
Math of harmonization
Harmonization macro
History
Other algorithms

Curvature comb
Curvature combs and harmonized paths in METAPOST

Linus Romer

Introduction
Curvature comb
Harmonize paths
Examples of harmonization
Math of harmonization
Harmonization macro
History
Other algorithms
Cross product macro

```latex
primarydef w crossprod z =
  (xpart w * ypart z - ypart w * xpart z)
enddef;
```

\[\vec{w} \times \vec{z} \]
Macro for initial curvature

\texttt{vardef curv expr p =
\hspace{1cm} \texttt{curv } p
\hspace{1cm} t = 0
\hspace{1cm} \texttt{curv } p
\hspace{1cm} t = 1
\texttt{enddef;}

• \texttt{curv } t \texttt{ of } p \texttt{ would be a bad idea for integer } t \texttt{'s!}
Curvature combs and harmonized paths in METAPOST

Math of curvature

Cubic Bézier curve:

\[
\begin{pmatrix}
 x(t) \\
 y(t)
\end{pmatrix}
= t^3 (3\vec{Q} - \vec{P} + \vec{S} - 3\vec{R}) + 3t^2 (\vec{P} - 2\vec{Q} + \vec{R}) + 3t(\vec{Q} - \vec{P}) + \vec{P}
\]

The initial derivatives are then:

\[
\begin{pmatrix}
 \dot{x}(0) \\
 \dot{y}(0)
\end{pmatrix}
= 3 (\vec{Q} - \vec{P}) =: \vec{v}
\]

\[
\begin{pmatrix}
 \ddot{x}(0) \\
 \ddot{y}(0)
\end{pmatrix}
= 6 (\vec{P} - 2\vec{Q} + \vec{R}) =: \vec{w}
\]
Math of curvature

initial curvature = \frac{\left(\frac{\ddot{x}(0)}{\dot{y}(0)}\right) \times \left(\frac{\ddot{y}(0)}{\dot{x}(0)}\right)}{\left|\left(\frac{\dot{x}(0)}{\dot{y}(0)}\right)\right|^3} = \frac{3\ddot{v} \times 6\ddot{w}}{(3l)^3}

= \frac{2\ddot{v} \times \ddot{w}}{3 \cdot l^3} = \frac{2}{3l} \cdot \left(\frac{1}{l} \ddot{v} \times \frac{1}{l} \ddot{w}\right)

• divisions by \(l\): prevent arithmetic overflow
• special case \(|(\ddot{x}(0))| = 0\) not handled here: \(\Rightarrow\) curvature probably \(\pm \infty\)
Macro for the initial curvature

\[\mathbf{\hat{v}} = \mathbf{Q} - \mathbf{P} \]
\[\mathbf{\hat{w}} = \mathbf{P} - 2\mathbf{Q} + \mathbf{R} \]
\[\text{initial curvature} = \frac{2}{3l} \cdot \left(\frac{1}{l} \mathbf{\hat{v}} \times \frac{1}{l} \mathbf{\hat{w}} \right) \quad \text{with } l = |\mathbf{\hat{v}}| \]

```
vardef curv expr p =
  save v,w,l; pair v,w;
  v = direction 0 of p;
  l = length v; v := v/l;
  w = (point 0 of p - 2*postcontrol 0 of p + precontrol 1 of p)/l;
  2/3*(v crossprod w)/l*(v rotated -90)
enddef;
```
Macro for the curvature comb

- subdivide each segment into 50 subpaths q
- Each part of the comb is made of two subsequent “curvature” vectors \hat{k}, \hat{c} (scaled by a constant factor s)
- color depends on the average length of \hat{k} and \hat{c}
Macro for the curvature comb

```metapost
vardef comb(expr p,s) =
  save q,c,k; path q; pair c,k;
  for n = 0 upto length(p)-1:
    c := s * curv subpath(n,n+1) of p;
    for i = 1 upto 50:
      k := c;
      c := s * curv subpath(n+i/50,n+i/50 if i<25: +1 fi) of p;
      q := subpath(n+(i-1)/50,n+i/50) of p;
      fill q -- point 1 of q + c
      -- point 0 of q + k
      -- cycle withcolor (1,1/(1+.1*.5[length c,length k]),0);
    endfor
  endfor
enddef;
```
Macro for the curvature comb

The condition \(\text{if } i < 25: +1 \text{ fi} \) makes the subpath for the calculation of the curvature as large as possible to be more accurate:

\[
c := s \times \text{curv subpath}(n+i/50, n \text{ if } i < 25: +1 \text{ fi}) \text{ of } p;
\]
Macro for the curvature comb

- curvature 0 → yellow
- curvature ±∞ → red
- done by changing the green value between 1 and 0
- increase the \(.1 \) to make curvature more red

\[
(1, 1/(1+ \cdot .1 \cdot .5[\text{length } c, \text{length } k]), 0)
\]
Harmonize paths

\[z_0 \{ \text{left} \} .. z_1 .. z_2 \{ \text{right} \} \]
Harmonize paths

\[z_0 \{ \text{left} \} \ldots z_1 \ldots z_2 \{ \text{right} \} \]
direction in z_1 was chosen to have continuous mock curvature [Hobby, 1986]
Curvature combs and harmonized paths in METAPOST

Linus Romer

Introduction
Curvature comb
Harmonize paths
Examples of harmonization
Math of harmonization
Harmonization macro
History
Other algorithms

Harmonize paths

\[z_0 \text{left} \ldots z_1 \text{down} \ldots z_2 \text{right} \]
harmonize z₀{left} .. z₁{down} .. z₂{right}
Examples of harmonization

Harmonized paths do not necessarily look better...

...but they might!

not harmonized

harmonized
Examples of harmonization

(130,90)
-- (130,75){down}
.. (60,0){left}
.. (0,50){up}
.. (25,80){right}
.. (45,60){down}
.. (30,30){down}
.. (60,10){right}
.. (95,75){up}
-- (95,90)
-- cycle

not harmonized
Examples of harmonization

harmonized
Examples of harmonization

not harmonized
Examples of harmonization
Examples of harmonization
Examples of harmonization

Harmonized paths tend to be more rounded.

not harmonized

harmonized
Curvature comb and harmonized paths in METAPOST

Linus Romer

Introduction
Curvature comb
Harmonize paths
Examples of harmonization
Math of harmonization
Harmonization macro
History
Other algorithms

Examples of harmonization

\[(0,0)\{\text{right}\}
\ldots (30,20)\{\text{up}\}
\ldots (5,50)\{\text{left}\}
\ldots (-20,25)\{\text{down}\}
\ldots \text{cycle}\]

not harmonized
Examples of harmonization
Examples of harmonization

not harmonized
Examples of harmonization

harmonized
Examples of harmonization
Assume two adjoint cubic Bézier curves:

- same direction in their joint
- no zero-handles
- no inflection point in their joint

Without loss of generalization:
Math of harmonization (generic case)

Goal: Move the joining node between its control points such that the curvature becomes continuous.
Math of harmonization (generic case)

\[\vec{v} = \hat{Q} - \hat{P} = \begin{pmatrix} -g \\ 0 \end{pmatrix} \quad \vec{w} = \hat{P} - 2\hat{Q} + \hat{R} = \begin{pmatrix} g + \ldots \\ d \end{pmatrix} \]

curvature in \(P \) to the left heading right = \(-\frac{2}{3|\vec{v}|^3} \cdot \frac{\vec{v} \times \vec{w}}{-gd}\)

\[g \geq 0 \quad \frac{2d}{3g^2} \]
Math of harmonization (generic case)

Analogous:

\[
\text{curvature in } P \text{ to the right heading right } \geq \frac{2l}{3(i - g)^2}
\]
Math of harmonization (generic case)

Equal curvatures in \((g, 0)\):

\[
\frac{2d}{3g^2} = \frac{2l}{3(i-g)^2} \quad \Leftrightarrow \quad g = \begin{cases}
\frac{d \pm \sqrt{dl}}{d-l} \cdot i & \text{if } d \neq l, \\
\frac{i}{2} & \text{else.}
\end{cases}
\]
Math of harmonization (generic case)

\[g = \begin{cases}
 \frac{d \pm \sqrt{dl}}{d - l} \cdot i & \text{if } d \neq l, \\
 \frac{i}{2} & \text{else.}
\end{cases} \]

Geometric mean \(\sqrt{dl} \) \(\Rightarrow \) new joining knot is between its control points
Math of harmonization (generic case)

- The curvatures at the other ends will not change!
- ⇒ global solution = sum of local solutions
Math of harmonization (generic case)

- The curvatures at the other ends will not change!
- ⇒ global solution = sum of local solutions
Math of harmonization (generic case)

Example of a global solution for a continuous curvature:

not harmonized
Math of harmonization (generic case)

Example of a global solution for a continuous curvature:
Math of harmonization (special case I)

- If either d or l is zero, $g = \frac{d - \sqrt{d^2 - dl}}{d - l} \cdot i$ becomes either 0 or i
- ⇒ joining knot will become collocated with one of its control points
- ⇒ curvature might become infinitely large!
Math of harmonization (special case II)

Assume two adjoint cubic Bézier curves:

- same direction in their joint
- no zero-handles
- inflection point in their joint
Math of harmonization (special case II)

Inflection point

\[\Rightarrow \text{curvatures } \frac{2d}{3g^2} \text{ and } \frac{2l}{3(i-g)^2} \text{ must have different signs!} \]

\[\Rightarrow d = l = 0 \text{ for curvature-continuous solutions} \]
Math of harmonization (special case II)

⇒ All control points must lie on one line for curvature-continuous solutions:
Further conditions (like preservation of area) could be satisfied by additionally moving the control points of the joining knot:
Math of harmonization (special case II)

Rounding problem on grid:

curvature not continuous
Math of harmonization (special case II)

Rounding problem on grid:

curvature continuous
Math of harmonization (special case II)

Rounding problem on grid:

additional inflection point
Math of harmonization (special case II)

Problems of a curvature continuous solution for a joining knot with an inflection:

- rounding errors may introduce new inflection points (wobbly curve)
- off-curve points are changed \Rightarrow different behaviour than before
Math of harmonization (special case II)

These problems are solved, if we only guarantee the *absolute value* of the curvature to be continuous in this case.
Math of harmonization (special case II)

This is just the former solution mirrored.
Definition: *harmonization* is the act of setting

\[g_{\text{new}} = \begin{cases}
g_{\text{old}} & \text{if } d = 0 \text{ or } l = 0, \\
\frac{i}{2} & \text{else if } |d| = |l|, \\
\frac{|d| - \sqrt{|dl|}}{|d| - |l|} \cdot i & \text{else}
\end{cases} \]
Harmonization macro

- **Iterating through the joining knots of a path p:**
 - check if the joint is smooth
 - calculate new position g_{new} between control points and store it as a new point in an array
- **If cyclic:** Last point = first new point
- return a path made of the new joining knots and old control points
Harmonization macro

```plaintext
vardef harmonize expr p =
  save t,u,d,l,n,q; pair t,u,q[];
  n = length p;
  for j = if cycle p: 0 else: 1 fi upto n-1:
    q[j] = point j of p;
    t := unitvector(direction j of p);
    u := unitvector(point j of p - precontrol j of p);
    if eps > abs((u dotprod t) - 1):
      ...
```
Curvature combs and harmonized paths in \textsc{metapost}

Linus Romer

Introduction
Curvature comb
Harmonize paths
Examples of harmonization
Math of harmonization
Harmonization macro
History
Other algorithms

Harmonization macro

\begin{verbatim}
...
 l := abs(t crossprod (precontrol j+1 of p - point j of p));
 d := abs(t crossprod (postcontrol j-1 of p - point j of p));
 if not ((l = 0) or (d = 0)):
 q[j] := if (d = l):
 .5
 else:
 ((d-sqrt(d*l))/(d-l))
 fi
 [precontrol j of p,postcontrol j of p];
 fi
fi
endfor
\end{verbatim}
... if not cycle p:
 q[0] = point 0 of p;
 q[n] = point n of p;
fi
q[0]
for j = 0 upto n-1:
 .. controls postcontrol j of p
 and precontrol j+1 of p .. if (j = n-1)
 and (cycle p): cycle else: q[j+1] fi
endfor
enddef;
History of Harmonization

• 1990: Robert L. Roach and John R. Forrest publish an algorithm to reach curvature continuity for cubic bézier curves [Roach, 1990]
• the algorithm is equivalent to the presented algorithm, but depends on an intersection point D, which may not exist
History of Harmonization

• 1990: Robert L. Roach and John R. Forrest publish an algorithm to reach curvature continuity for cubic bézier curves [Roach, 1990]
• the algorithm is equivalent to the presented algorithm, but depends on an intersection point D, which may not exist
History of Harmonization

- the Roach-algorithm is equivalent to the presented algorithm, but depends on an intersection point D, which may not exist
History of Harmonization

- The *supertool* plugin for the Glyphs app uses a slightly modified Roach-algorithm
- The Green harmony plugin for Glyphs app uses the Roach-algorithm
History of Harmonization

• 2010: The *Font Remix Tools 1.6* (plugin for Fontlab and Glyphs) by *Just Another Foundry* introduces a «Harmonizer» (closed source)
• The here defined *harmonization* algorithm seems to be different
History of Harmonization

- 2017: Fontlab VI introduces «harmonize» (closed source)
- The here defined harmonization algorithm may differ (acts similar)
History of Harmonization

- 2019: plug-ins *harmonize-tunnify-inflection* and *curvatura* for FontForge implement the presented harmonization algorithm
- 2022: the presented harmonization algorithm becomes part of FontForge itself

Curvature combs and harmonized paths in METAPOST

Linus Romer

Introduction

Curvature comb

Harmonize paths

Examples of harmonization

Math of harmonization

Harmonization macro

History

Other algorithms
Smoothing out paths even more

Disadvantage of harmonization:
Harmonized paths normally no longer interpolate the points they were originally meant to!
Smoothing out paths even more

Moving the control points open more possibilities: Also the change of curvature can be made continuous («supersmooth»)
Smoothing out paths even more

Bad idea:

- supersmoothness may introduce new inflection points
- hard to globalize for more than two segments
References I

Hobby, J. D. (1986).
Smooth, easy to compute interpolating splines. *Discrete & computational geometry, 1*(2):123–140.

Roach, R. L. (1990).
Curvature continuity of cubic bezier curves in the solid modeling aerospace research tools design software. interim report, NASA Langley Research Center.