
TUG2023 program

Friday,
July 14

08:00 registration

08:30 Boris Veytsman, TEX Users Group Welcome

08:45 Ulrike & Gert Fischer, Carla Maggi,
Paulo Cereda, samcarter

Behind the scenes of the Great TikZlings Christmas
Extravaganza

09:15 Oliver Kopp, JabRef e.V. JabRef as BibTEX-based literature management software

09:45 Jan Šustek On generating documented source code by blocks in TEX

10:15 Barbara Beeton, TUGboat What every LATEX newbie should know

10:45 break & registration

11:15 Martin Ruckert, Munich University of
Applied Sciences

News from the HINT project

11:45 Dennis Müller, FAU Erlangen-Nürnberg An HTML/CSS schema for TEX whatsits

12:15 Patrick Gundlach, speedata GmbH News from boxes and glue: How do the TEX algorithms help
in developing a new typesetting engine?

12:45 lunch

14:00 Joseph Wright, samcarter Beamer news

14:15 samcarter The tcolorbox inner beamer theme

14:30 Boris Veytsman, Chan Zuckerberg
Initiative, George Mason Univ., TUG

The update of the nostarch class

15:00 Ben Davies, Overleaf Bumpy road towards a good LATEX visual editor

15:30 Didier Verna, EPITA Research Lab Interactive and real-time typesetting for demonstration
and experimentation

16:00 break

16:30 Eberhard W. Lisse, Omadhina Internet
Services Ltd

Introduction to Typst

17:00 Jakub Máca, Petr Sojka, Ondřej Sojka Universal syllabic pattern generation

Saturday,
July 15

08:30 Henning Hraban Ramm Architectural guides for Bonn — book production
with ConTEXt

09:00 Thomas Schmitz, Bonn University Producing different forms of output from XML via ConTEXt

09:30 Vı́t Novotný Markdown 3: What’s new, what’s next?

10:00 Rishi T, Apu V, Hàn Thé̂ Thành, Jan
Vaněk, STM Document Engineering

Primo — The new sustainable solution for publishing

10:30 break

11:00 Ross Moore, Macquarie University Tagged PDF, derived HTML and aspects of accessibility

11:30 Ulrike Fischer, LATEX Project Automated tagging of LATEX documents — what is possible
today?

12:00 Joseph Wright, LATEX Project Supporting backends in expl3

12:30 Frank Mittelbach, LATEX Project The LATEX Companion, 3rd edition — Anecdotes and
lessons learned

13:00 lunch

14:00 Jim Hefferon, St Michael’s College Using Asymptote like MetaPost

14:30 Linus Romer Curvature combs and harmonized paths in MetaPost

15:00 Rajeesh KV Metafont, MetaPost and a complex-script typeface

15:30 Victor Sannier, GUTenberg Association A METAFONT for rustic capitals

16:00 break

16:30 Ulrik Vieth An updated survey of OpenType math fonts

17:15 Mikael Sundqvist, Lund University Extending OpenType math, making choices

17:45 Tom Hejda, Overleaf TEX Live and Overleaf revisited

Sunday,
July 16

08:30 Island of TEX Living in containers — on TEX Live in a docker setting

09:00 Joseph Wright Further adventures in Unicode-land: Refining case changing

09:30 Oliver Kopp The LATEX template generator:
How micro-templates reduce template maintenance effort

10:00 Island of TEX The Island of TEX 2023 — sailing the smooth seas of ideas

10:30 break

11:00 Frank Mittelbach 38 years with LATEX — A personal picture story

12:00 am Boris Veytsman Closing

≈ 12:15 pm lunch

TUG 2023 —Excursions

Guided walks

Thursday, July 13 15:00 h Lobby Hotel Leoninum
Monday, July 17 9:30 h Lobby Hotel Leoninum

About three hours through the historical
centre of Bonn. We’ll never be far from the
hotel.

Banquet

Date Saturday, July 15
Start 18:45 h Lobby Hotel Leoninum

station Hauptbahnhof, tram 16 or 66 to Heussallee/Museumsmeile
Return around 22:30 h by tram or walk

The banquet will take place in the
two banquet rooms of Konrad’s restaurant
(www.konrads-bonn.de) on the 17th floor of
the Marriott Hotel, Platz der Vereinten Na-
tionen 4, in the former government district
south of the city centre. It‘s situated near the
river bank and offers a splendid view of the
city in the north, the Venusberg in the west
and the Seven Hills south and east.

When you signed up for the banquet you
paid for a three course menu plus “amuse
bouche”. Water will be included. The other
drinks will be on the individual participants.
If you didn’t let us know your choice for the
main course, we put you down for “meat”.

The banquet will start on the terrace of
the restaurant with an apéritif for those who
want one towards 19:30 h. Dinner will begin
around 8 and should last about two and a half
hours.

Travel arrangements: We’ll have group
tickets for the tram (Lines 16 or 66). We meet
at the lobby of the Leoninum at 18:45 h (sharp
please) and walk the short distance to the
stop Hauptbahnhof (underground entrance
Thomas-Mann-Straße/Noeggerathstraße). If
it’s more convenient for you, you might
join us there. Just in case you miss us:
The trains (Lines 16 or 66) run very fre-
quently (directions Ramersdorf, Bad Honnef
or Bad Godesberg). The destination stop is
Heussallee/Museumsmeile. From there it’s a
five minute walk to the restaurant.

For the return journey there will be an
option to taking the tram: if some of you feel
like it, they might spend an hour of a (hope-
fully) pleasant summer night by walking back
along the river. You’ll decide then.

Excursion to the Seven Hills (Drachenfels and Königswinter)

Date Sunday, July 16
Start 13:30 h Lobby Hotel Leoninum

13:50 h station Hauptbahnhof, tram 66 to Königswinter/Bad Honnef
Return 17.20 h by boat from landing stage of Bonner Personen Schiffahrt
Arrival around 18.15 h

WeStart meet in the lobby of Hotel Leoninum
at 13:30 h sharp to walk less than 10 minutes
to the underground tram stop Hauptbahn-
hof (Entrance: Thomas-Mann-Straße. Those
staying in other hotels may come there di-
rectly.).

Departure of line 66 tram (direction
Königswinter/Bad Honnef): 13:50 h, track
U4a.

ArrivalKönigswinter at stop Königswinter Fähre:
14:16 h. It is located on the riverside prom-
enade of Königswinter — once a hotspot of

weekend tourism. Today things are much qui-
eter, but depending on the weather occasional
queuing can’t be ruled out. The stop is next
to the landing stage of the boat which will
take us back to Bonn later in the afternoon.

From Cog railwayhere it’s a leisurely ten-minute walk
to the valley station of the historic cog railway
that leads up to the Drachenfels. If the tram
arrives on time we might make the one leav-
ing at 14:30 h, but there is no need to hurry.
The next ride is at 14:45 h. And even the

TUG 2023 ❊ 2

TUG 2023 — Excursions

one at 15:00 h will leave you plenty of time to
explore the Drachenfels.

Since everybody will have their personal
(return) ticket there is no need for the group
to stay together and you are invited to look
around at your own discretion —provided you
are back at the riverside at 17:20 h at the lat-
est. The boat won’t wait!

TheDrachenfels cog railway will take eight minutes
to the summit with a short stop at its middle
station. I suggest that you go straight to the
top. Here you’ll find a stunning viewing plat-
form with, weather permitting, a view as far
as Cologne Cathedral. There is a self-service
cafeteria (for more attractive options see be-
low). The short but fairly steep climb to the
castle ruins starts behind the restaurant. If
you find this too strenuous, don’t worry. The
view from up there isn’t any better than the
one from the terrace.

What you might not want to miss is the
dragon machine (also behind the cafeteria). If
you feed it a Euro, a little puppet dragon will
appear and give you his version of not hav-
ing been slain by Siegfried. Unfortunately he
only speaks German. The machine is about a
hundred years old and a quaint reminder of a
world without virtual reality and AI. Smaug
would be appalled!

Since there are interesting things to be
discovered on the way back I suggest that
you don’t spend too much time on the sum-
mit but explore the surroundings of the mid-
dle station of the cog railway. You can reach
it within three or four minutes with the rail-
way or you can take the footpath through the
woods which starts to the left of the cafete-
ria. It’s a pleasant if somewhat steep walk of
about 10 to 15 minutes.

At the middle station there are three pos-
sibilities. You probably won’t have time to go
for all of them.
A) is Schloss Drachenburg — a 19th century

millionaire’s dream of the Middle Ages.
All fake but quite impressive. It has been
restored fairly recently and is full of mu-
rals and furniture of a less than mod-
ern taste. The outer castle has a mu-
seum on the history of the Seven Hills as
Germany’s first nature reserve. And of
course there is yet another view from the
gardens. The entrance fee is 9 EUR.

B) is the Dragon World a five minute walk
below the middle station. One of the
mainstays of a long gone age of Drachen-
fels tourism it consists of three elements.
No. 1 is the one you want to see. It’s

the Nibelungenhalle. A kind of temple, it
was inaugurated in 1913 commemorating
Richard Wagner’s 100th birthday. It has
murals depicting scenes from the mae-
stro’s most famous work “The Ring of the
Nibelungs”. Together with the somewhat
oppressive architecture it uncannily fore-
shadows the aesthetic which would be-
come state of the art 20 years later un-
der Hitler. Not nice but highly instruc-
tive. The (mini) tour then leads to no. 2,
the Dragon’s Lair, which sports a 13m
long stone dragon — created in 1933 on
the occasion of the 50th anniversary of
Wagner’s death. A place of horror in
my childhood, it is a most sorry sight to-
day. The dragon’s head has fallen off and
apparently the lady who owns the place
hasn’t got the money to stick it on again.
Item no. 3 is a tiny reptile zoo. The kids
love it, but you might just as well skip it.
Entrance fee: 8 EUR.

C) Half way between the middle station and
the Dragon World there is a nice shady
beer garden and opposite (a little hidden)
a small inn (Felder’s) with a sunny ter-
race overlooking the river. Just in case
you need a rest.
To return to Königswinter it’s probably

more comfortable to walk back to the mid-
dle station and take the train (every fifteen
minutes). It’s also possible to walk, but the
bottom part of the path is not nearly as nice
as its upper half. It will get you to the valley
station of the cog railway within a quarter of
an hour. From there it’s 10 more minutes to
the riverbank where it all started. You know
the way.

Our Boatboat will leave from the landing
stage of Bonner Personen Schiffahrt (bps) at
17:20 h. It is usually a few minutes late, but
don’t bank on it! If you reach the river with
time to spare: there are quite a few cafés and
ice cream parlours along the promenade. One
of them (Alte Liebe) is on a boat next to the
landing from which we’ll be going back.

The trip back (you’ll get your ticket from
me when you are boarding) with two short in-
termediate stops will take about 40 minutes
and end below Alter Zoll in the middle of
Bonn.

If Helpyou should get lost or experience any
other catastrophe:
just give me a ring (0049 1522 5119080) —and
to put it in the words of Albus Dumbledore:
“Help shall always be given to those who ask
for it.” Simple questions are allowed too.

TUG 2023 ❊ 3

What every LATEX newbie should know

Barbara Beeton

LATEX has a reputation for producing excellent results,
but at the cost of a steep learning curve. That’s true,
but by understanding a few basic principles, and
learning how to avoid some techniques that may seem
obvious but often lead one into the weeds, it’s possible
to avoid some of that pain.

Among the concepts to be covered are these:
Why is \\ not a good way to end paragraphs?
Why use \newcommand rather than \def?
Why do some spaces in your input cause problems?
How to use style changes effectively, and limit them
to exactly where you want them.
Very few packages will be discussed, but the

concepts covered should be compatible with whatever
packages you choose to employ. regardless of your field
of interest.

This talk is based on years of looking at good
and bad document input and output, answering
questions from problem-plagued authors, and trying to
write documentation that can be understood on first
reading.

Automated tagging of LATEX documents — what
is possible today?

Ulrike Fischer

With the summer 2023 release of the LATEX format it
is now possible to create tagged PDF in an automated
way from many “Lamport documents”: documents
using the commands described in the LATEX manual
from Leslie Lamport.

In this talk I will show what is possible and what
still needs manual intervention. I will also describe
some of the challenges we faced on the technical side
and when designing the mapping between LATEX
structures and the set of PDF tags.

Behind the scenes of the Great TikZlings
Christmas Extravaganza

Ulrike & Gert Fischer, Carla Maggi, Paulo Cereda,
samcarter

The Great TikZlings Christmas Extravaganza is a
yearly video series that utilises LATEX to produce
animated films. They usually consist of several short
video sequences which feature various characters
from the TikZlings ecosystem accompanied by music.
An overview of previous videos can be found at
https://github.com/TikZlings.

In this talk, we will offer a look behind the scenes
of the Extravaganza and explain the process of how
we turn rough sketches of scenes first into PDFs with
LATEX and subsequently convert those into videos and
combine them with music.

News from boxes and glue: How do the TEX
algorithms help in developing a new typesetting
engine?

Patrick Gundlach

In this presentation I will talk about the experience
of the last two years with boxes and glue. The library

has not yet reached its final state, but a lot has al-
ready been typeset with it. I will show what kind of
experiences I have made with the TEX algorithms,
which data structures are suitable for text typeset-
ting and how PDF specialties like interaction and
accessibility can be integrated.

About boxes and glue: boxes and glue is a library
written in the Go programming language that includes
many of TEX’s algorithms, such as the optimum
fit paragraph breaking algorithm, the hyphenation
algorithm, and the basic structure with nodes and
node lists to assemble boxes. It was originally written
as a replacement for LuaTEX to create documents with
the speedata Publisher.

Using Asymptote like MetaPost

Jim Hefferon

Asymptote is a descriptive vector graphics language
for technical drawing that fits very well with TEX
and friends. One appealing thing is that it is in part
based on algorithms from Metafont and MetaPost,
but it extends those to three dimensions. I’ll cover a
number of workflow aspects that a beginner to this
system who is coming from MetaPost might like to
use, notably using a single source file to output many
related graphics.

TEX Live and Overleaf revisited

Tom Hejda

Overleaf makes an annual deployment of TEX Live,
and we are wondering whether there is an opportunity
for both Overleaf and the TEX Live maintainers and
LATEX developers to benefit from our deployments and
related testings. We already gave a presentation on
this in 2020, and would like to follow up with more
recent changes. An open discussion on the topic will
follow a brief presentation.

Living in containers — on TEX Live in a
docker setting

Island of TEX

Over the course of the last year(s), the Island of
TEX has received quite some interest in its Docker
containers. This talk gives a brief overview about our
container infrastructure for TEX Live and ConTEXt,
including some examples on using our containers
in production environments. Last but not least, we
will elaborate on some interesting (mostly still open)
problems connected to containerizing TEX Live.

The Island of TEX 2023 — sailing the smooth
seas of ideas

Island of TEX

The Island of TEX always valued community over
development pace. This year, we are proud that
we could convince our inner sloths to produce a
long-awaited new albatross release and a new website
for our community. On the technical side, we improved
our build infrastructure and started welcoming TEX
packages. But in the end, this year was primarily
about collecting ideas so stay tuned for our talk and
call for action.

TUG 2023 ❊ 4

JabRef as BIBTEX-based literature
management software

Oliver Kopp

JabRef is a literature management software completely
based on the BibTEX format. This talk provides an
overview of JabRef by first introducing the basic
concept of JabRef. After that, highlights of JabRef
will be demonstrated: Integrated web search, grouping
of entries, import and export of other formats, and the
quality assurance of entries. The integration of PDFs
will be demonstrated: Both the linking of PDFs and
the integration of BibTEX data into PDFs using XMP

metadata.

The LATEX template generator:
How micro-templates reduce template
maintenance effort

Oliver Kopp

Scientific findings are published by different publishers.
These provide different templates. These differ in the
documentation and packages provided. For example,
microtype or hyperref are mostly not included or not
configured properly. Furthermore, there is a demand
for minimal examples in the body of the paper. For
instance, how to typeset a listing with line numbers
and hyperlink to that line number. These minimal
examples should appear in any paper template. If the
minimal example is updated, how can various paper
templates be updated automatically? The “LATEX
Template Generator” is one answer to this question.
It uses “micro-templates” to create full-fledged paper
templates containing the same configurations for
popular packages. Thus, it reduces the maintenance
effort of LATEX templates.

Introduction to Typst

Eberhard W. Lisse

typst is a new markup-based typesetting system that
is designed to be as powerful as LATEX while being
much easier to learn and use. It flows from a Master’s
thesis at the Technical Unversity Berlin, is written
in Rust, and has a domain-specific language that is
much easier to master than TEX or LATEX. It produces
quite reasonable output, and especially for shorter
documents it is extremely fast, though it remains a
work in progress. It can be obtained from Github at
https://github.com/typst/typst.

I am a long time user of LATEX, in particular
with LYX and while not a programmer but rather
an obstetrician/gynecologist, I’m computer-literate
enough to generate and use templates with perl and
bash. This will be an introductory presentation,
showing the comparison of some simple texts in LATEX
and typst.

Universal syllabic pattern generation

Jakub Máca, Petr Sojka, Ondřej Sojka

Space- and time-effective segmentation (hyphenation)
of natural languages remain at the core of every
document rendering system, be it TEX, web browser,
or mobile operating system. In most languages,

segmentation mimicking syllabic pronunciation is a
pragmatic preference today.

As language switching is often not marked in
rendered texts, the typesetting engine needs universal
syllabic segmentation. In this article, we show the
feasibility of this idea by offering a prototypical
solution to two main problems: A) no wide character
(https://en.wikipedia.org/wiki/Wide_character)
support in tools like Patgen or TEX hyphenation, i.e.
internal Unicode support is missing; B) A Patgen
generation process for multiple languages at once.

For A), we have created a version of Patgen that
uses the Judy array (https://en.wikipedia.org/
wiki/Judy_array data structure and compared its
effectiveness with the trie implementation. For B),
we have applied it to generating universal syllabic
patterns from wordlists of a dozen syllabic, as opposed
to etymology-based, languages.

We show that A) bringing wide character support
into the hyphenation part of TEX suite of programs
is possible by using Judy arrays, and B) developing
universal, up-to-date, high-coverage, and highly
generalized universal syllabic segmentation patterns is
possible, with high impact on virtually all typesetting
engines, including web page renderers.

38 years with LATEX — A personal picture story

Frank Mittelbach

As the title indicates, this is part of the story of LATEX
in pictures, as seen from my eyes. It shows many
highlights throughout the years and puts faces to
names — some of which are in the audience but many
not. It is based on what was available in my photo
archive and certainly biased, but I nevertheless hope it
is of some interest.

The LATEX Companion, 3rd edition — Anecdotes
and lessons learned

Frank Mittelbach

During the last five years a lot of work went into
producing a new edition of The LATEX Companion. In
this talk I will talk about some aspects of that work,
the unique challenges and some of the lessons learned
during that endeavour.

Tagged PDF, derived HTML and aspects
of accessibility

Ross Moore

From a well-tagged document, conforming to the
PDF/UA standard, an HTML version can be derived.
With due care being taken when coding technical
information, inherent semantics can be carried through
the processing and exhibited within the resulting web
page. This can be done in accordance with WCAG and
ARIA recommendations for making information more
readily available to persons with disabilities.

In a pre-prepared video, we’ll see in some detail
how this can be done, for sequences of authors/
panelists and their affiliations presented using
footnotes in the visual PDF view.

TUG 2023 ❊ 5

An HTML/CSS schema for TEX whatsits

Dennis Müller

I present a schema for translating TEX whatsits to
HTML/CSS. This translation can serve as a basis for
(very) low-level TEX-to-HTML converters, and is in
fact used by the RusTEX system for that purpose.
Notably, the schema is accurate enough to yield
surprisingly decent (and surprisingly often, exactly
right) results on surprisingly many “high-level” LATEX
macros, which makes it adequate to use in lieu of (and
often even instead of) dedicated support for macros
and packages.

Markdown 3: What’s new, what’s next?

Vı́t Novotný

Plain TEX, expl3, and Lua provide a common pro-
gramming environment across different TEX formats.
Similarly, the Markdown package for TEX has provided
an extensible and format-agnostic markup language
for the past seven years. In this talk, I will present the
third major release of the Markdown package and the
changes it brings compared to version 2.10.0, which I
presented at TUG 2021.

In my talk, I will target the three major stakehold-
ers of the Markdown package:

1. Writers will learn about the new elements,
which they can type in their Markdown documents.

2. Coders will learn how they can extend Mark-
down with new elements and how they can style
Markdown documents in different TEX formats.

3. Developers will learn about the implementation
details of the Markdown package and will have a
chance to discuss plans for the future governance and
development of the Markdown package.

Bumpy road towards a good LATEX visual editor

Ben Davies

Overleaf has both a pure Source mode and a Visual
(“Rich Text”) editor. We recently redesigned
the Visual editor, and we will demo the current
configuration. Then, benefits, drawbacks, and specific
issues this editor duality poses will be presented,
together with some takeaways we have learned on the
way.

Metafont, MetaPost and a complex-script
typeface

Rajeesh KV

Malayalam is an Indic script with abundant shape-
shifting characters. We explore a reusable component-
based design for Malayalam fonts, and develop them
using Metafont/MetaPost to assemble the characters.
We discuss the paradigm shift from GUI design tools
to ‘code-based’ design of shapes and glyphs, even by
non-coders, and the progress our small team has made.
The advantages and challenges of using Metafont/
MetaPost to develop a complex-script OpenType font
are discussed.

Architectural guides for Bonn — book
production with ConTEXt

Henning Hraban Ramm

As one of three associates of Dreiviertelhaus publishers
and as a professional typesetter and printing engineer,
I’m responsible for all technical and design aspects of
our books. One series is about modernist buildings in
Bonn, and I’ll show you how the page layout is done,
including double page floats with inset captions and
OpenStreetMap cartography. I’ll also show examples
from different layouts.

Primo — The new sustainable solution for
publishing

Rishi T, Apu V, Hàn Thé̂ Thành, Jan Vaněk

Primo is a cutting-edge, cloud-based authoring,
submission, and proofing framework that provides
a sustainable solution for academic publishing. It
combines the advantages of XML-based workflows
that facilitate controlled authoring and/or editing in
accordance with specific DTDs and house styles, with
the visually appealing and mathematically precise
typesetting language of TEX, enabling the creation of
high-quality PDFs and mathematical images (offering
an alternative to MathML coding).

By speaking the widely accepted communicating
lingua of mathematics and science (i.e., TEX), and
utilizing the XML/MathML format for archiving,
Primo has the potential to revolutionize the publishing
industry. This tool caters to both the author and the
publisher, bringing their needs together with enhanced
participation of authors in the publishing process.
The three main modules of Primo include Authoring,
Submission/Reviewing, and Proofing, all of which are
equipped with usability checks during submission,
a collaborative editing feature, a WYSIWYG math
editing tool, and publisher/journal-based PDF

manuscript rendering. With Primo, authors can be
assured that their work will be published with the
highest level of precision and quality.

Curvature combs and harmonized paths
in MetaPost

Linus Romer

Most font editors offer curvature-related tools.
One of these tools is the visualization of curvature
via curvature combs. Another tool is the so-called
harmonization, which makes the curvature continuous
along paths. An implementation of both tools in
MetaPost will be presented. Curvature-optimized
paths already play a significant role in METAFONT and
MetaPost and therefore some example MetaPost paths
will be examined for their curvature behavior.

TUG 2023 ❊ 6

News from the HINT project

Martin Ruckert

The HINT file format was presented at TUG 2019 and
at TUG 2020, the first usable viewer for HINT files was
presented. The HiTEX engine became part of TEX Live
in 2022. This presentation will explore the changes
that have taken place since then and what to expect in
the future. The talk will focus on

demonstrating the more recent versions of the
HINT file viewer and their improvements in glyph
rendering.
demonstrating the use of links, labels, and outlines,
explaining the capabilities of the HINT file format
to convert pages to plain text for searching or
text-to-speech processing,
and presenting hints on how to design TEX macros
for variable page sizes.

The tcolorbox inner beamer theme

samcarter

The tcolorbox inner beamer theme is a new theme
for the beamer class. It replaces normal beamer
blocks with tcolorboxes of the same look and feel.
This allows users to easily modify the appearance of
blocks. In this short talk, I will give a short overview
of the theme and show some examples of how one can
customise blocks.

A METAFONT for rustic capitals

Victor Sannier

I will present a typeface that I have designed using
the METAFONT system, inspired by the rustic capitals
used in the early centuries of our era for public
inscriptions on walls, such as those found in Pompeii,
and in many books and official documents written in
Latin.

Producing different forms of output from XML

via ConTEXt

Thomas Schmitz

This talk will showcase ConTEXt’s capabilities of
processing XML. It will demonstrate how one can
produce different forms of PDF output (such as slides,
lecture notes, handouts, or bibliographies) from a
single XML file. We will explore how we can make
use of ConTEXt and its integrated Lua interpreter to
modify our PDF output.

Extending OpenType math, making choices

Mikael Sundqvist

In the past year and a half, Hans Hagen and I have
been reviewing the typesetting of mathematics in
ConTEXt LMTX. This system primarily utilizes
OpenType math fonts, and during our work, we have
encountered inconsistencies both within fonts and
across different fonts.

Microsoft was the first to introduce OpenType
math with Cambria Math in Office 2007. They have
also outlined what comes closest to a standard for
OpenType math, although some details are missing
or debatable. Subsequently, several OpenType math
fonts were created by converting and extending
older TEX fonts. These fonts often inherited a more
traditional “TEXy” behavior, sometimes differing
from the behavior of Cambria. As a result, achieving
consistent and visually appealing output with different
types of OpenType math fonts has been challenging.
Throughout our work, we have had to make choices
that, in hindsight, could or should have been made
much earlier.

In this brief talk, we will discuss some of these
choices, including italic corrections, handling of
zero dimension glyphs, extensibles, rules, different
kern types, accents (both top and bottom), and
font parameters. Our discussion will be illustrated
with visual examples, to keep it accessible and less
technical.

On generating documented source code by
blocks in TEX

Jan Šustek

In this talk I will focus on literate programming in
TEX — writing source code and its documentation in a
single file. Firstly I will show an easy modification of
OpTEX macros to allow literate programming. Then
I will modify the macros to build the source code
by nested blocks which can be built consecutively
in the whole document — quite similar to the file
tex.web, but implemented completely in TEX. Such
documentation is more comprehensible to the reader.

With a few more macros or hooks, one can apply
this method in the following real situations.

Cross references make goto jumps easy in program-
ming languages with line numbers.
The abovementioned blocks can imitate subpro-
grams with arguments in programming languages
where they are not allowed.
TEX macros can define a metalanguage and gener-
ate the source code in two different programming
languages simultaneously.

Without the TEX methods the solutions would be more
complicated.

TUG 2023 ❊ 7

Interactive and real-time typesetting for
demonstration and experimentation

Didier Verna

In general, typesetting experimentation is not a
very practical thing to do. WYSIWYG typesetting
systems are very reactive but do not offer highly
configurable algorithms, and TEX, with its separate
development / compilation / visualization phases,
is not as interactive as its WYSIWYG competitors.
Being able to experiment with typesetting algorithms
interactively and in real-time is nevertheless desirable,
for instance for demonstration purposes, or for rapid
prototyping and debugging of new ideas.

We present ETAP (Experimental Typesetting Al-
gorithms Platform), a tool written to ease typesetting
experimentation and demonstration. ETAP currently
provides several paragraph justification algorithms,
all with many configuration options such as kerning,
ligatures, flexible spaces, sloppiness, hyphenation, etc.
The resulting paragraph is displayed with many visual
hints as well, such as paragraph, character, and line
boxes, baselines, over/underfullness hints, hyphenation
clues, etc. All these parameters, along with the desired
paragraph width, are adjustable interactively through
a GUI, and the resulting paragraph is displayed and
updated in real-time.

But ETAP can also be used without, or in
conjunction with the GUI, as a scriptable application.
In particular, it is able to generate all sorts of
statistical reports or charts on the behavior of the
various algorithms, for instance, the number of over/
underfull boxes per paragraph width, the average
compression or stretch ratio per line, whatever else
you want. This allows you to quickly demonstrate or
evaluate the comparative behavior or merits of the
provided algorithms, or whichever you may want to
add to the pool.

The update of the nostarch class

Boris Veytsman

I wrote the nostarch class for No Starch Press more
than a decade and half ago. It accommodated many
specific features of No Starch books: the special
formatting for the first paragraph in a chapter, the
characteristic artwork at chapter starts, etc. Since then
it has been used and modified by the publishing team
(with special thanks to Alex Freed for many fixes).

The wide adoption of Overleaf by many authors
has increased the number of LATEX submissions,
thus creating a demand for a rewrite. The main
goal of the update is to minimize the need for
manual adjustments, while implementing the current
design requirements of the publisher. Some of these
requirements are rather unusual: the rules of url
breaking, the variable width of captions for figures and
tables, etc. In this talk I discuss the challenges and
solutions of the redesign.

An updated survey of OpenType math fonts

Ulrik Vieth

OpenType math fonts have been around for 15 years
now. In recent years, more and more OpenType
math fonts have been added. In this talk, we will
review some of the recent additions, such as Libertinus
Math, Garamond Math, Erewhon Math, XCharter,
KpMath, New Computer Modern, Concrete Math,
Euler Math, comparing them to the previous repertoire
of OpenType math fonts such as Latin Modern and
TEX Gyre.

Supporting backends in expl3

Joseph Wright

The backend in TEX is responsible for the parts of
producing output that TEX doesn’t know about,
for example colour, image inclusion and hyperlink
creation. Each backend has its own syntax and range
of supported concepts, so at the macro level there
needs to be the appropriate code to ‘talk’ to the
backend. In expl3, we have developed a consistent set
of backend support files, based on the experience of
(LA)TEX developers over 30+ years of working with
these backends. Here, I will look at the history of
backend abstraction and the model used in expl3.

Beamer news

Joseph Wright, samcarter

The beamer class is used by many users all around
the world to create slides for their presentations. This
talk will present some changes and new features, which
were added over the last few years and which might be
interesting to know for beamer users.

Further adventures in Unicode-land:
Refining case changing

Joseph Wright

Getting text processing right for Unicode in TEX is
a challenge, particularly where one wants to support
the full range in pdfTEX. Over the past few years, I
have worked on one aspect: case changing. Code to
carry out the Unicode case changing algorithm was
integrated into the LATEX kernel a couple of years ago.
Since then, we have been refining the details, adding
more power and discovering new issues. Here, I’ll look
at what we’ve done to get the code working smoothly,
and look forward to what might still be improved.

TUG 2023 ❊ 8

TUGboat, Volume 0 (9999), No. 0 draft: June 16, 2023 22:16 901

What every (LA)TEX newbie should know

Barbara Beeton

Abstract

LATEX has a reputation for producing excellent re-
sults, but at the cost of a steep learning curve. That’s
true, but by understanding a few basic principles,
and learning how to avoid some techniques that may
seem obvious but often lead one into the weeds, it’s
possible to avoid some of that pain.

This presenttion is based on years of looking at
good and bad document input and output, answering
questions from problem-plagued authors, and trying
to write documentation that can be understood on
first reading.

Another source of material is the collection of
questions and answers provided by the TEX segment
of StackExchange. Many newbie questions appear
over and over again. Good “duplicate” answers for
these have been identified, and links are collected
as “Often referenced questions”, found at https:

//tex.meta.stackexchange.com/q/2419.

Conventions

In order to avoid overfull lines, error and warning
messages shown here will be broken to fit the narrow
columns of this article style. Many error messages
output by LATEX will consist of several lines, the first
being the message, and the next showing the number
of the line on which the error is identified along with
the content of that line, up through the error text. A
following line, indented so that it, with the numbered
line, completes the line as it appears in the input.

Although this presentation will mostly deal with
details, please remember that the basic concept of
LATEX is to separate content from structure.

Another applicable concept, one that is often
misconstrued in the (LA)TEX community is that of
“template”. When that term is used here, it means
a source file that is an “outline” beginning with
\documentclass and containing a minimum of basic
structural commands into which text and additional
definitions can be inserted as appropriate.

Basic structure:
Commands, modes and scope

Instructions are communicated to (LA)TEX by means
of commands, or “control sequences”, which by de-
fault begin with a backslash (\). There are two vari-
eties: those which consist of the backslash followed
by one character (“control symbol”), and multi-letter
commands (“control words”) in which only letters
(upper- or lowercase) are permitted (no digits or spe-

cial characters). A control word will be terminated
by a space or any other non-letter. But a space after
a control symbol will appear as a space in the output.

A user can define new commands, or assign new
meanings to existing commands. It’s advisable to
use \newcommand when creating a new definition; this
checks to make sure that the command name hasn’t
been used before, and complains if it has. If it’s nec-
essary to redefine a command that already exists, the
recommended way is to use \renewcommand—but
be sure you know what you’re doing. For example, re-
defining \par is chancy, as LATEX uses this “under the
covers” for many different formatting adjustments,
and it’s very easy to mess things up. Single-letter
commands are also bad candidates for (re)definition
by users, as many of them are predefined as accents
or forms of letters not usual in English text; redefin-
ing \i, for example, can give a nasty surprise if there
is the name of a Turkish author in your bibliography.
But single-digit commands are not predefined in core
LATEX, so are available for ad hoc use.

TEX, and therefore LATEX, functions in several
distinct modes:

• horizontal— text,

• vertical—beginning of job and between para-
graphs,

• math—two varieties: in-text and display.

Starting to input ordinary text is one way to enter
horizontal mode. A blank line or explicit \par will
transition from horizontal to vertical mode. Some
operations are limited to a particular mode, or are
most effective and predictable within such a mode.
For example, it’s best to specify \vspace and most
floats while in vertical mode.

Along with modes, there is the concept of scope,
making it possible to localize definitions and opera-
tions.

Math mode is one instance of scope; certain
characters and operations are valid only within math,
and others are invalid there. Within text, math
usually begins and ends with $, and these must
be matched. Display math breaks the flow of text;
closing a display returns to text mode unless followed
by a blank line or \par. More about math later.

Another way of delimiting scope is to wrap it
in braces: {...}. Within this scope, the mean-
ing of a command may be changed for temporary
effect; the definition in effect before the opening
brace will be restored as soon as the closing brace
is digested. Instead of a brace pair, the commands
\begingroup. . . \endgroup have the same effect.

In LATEX, closed environments can be defined,
inside which the conditions may be quite different

What every (LA)TEX newbie should know

TUG 2023 ❊ 9

902 draft: June 16, 2023 22:16 TUGboat, Volume 0 (9999), No. 0

than in the surrounding material. Such environments
begin with \begin{⟨env-name⟩} and end \end{⟨env-
name⟩}. One example is the theorem environment,
inside which text is italic. If the environment name
at the \end doesn’t match the one used at \begin,
an error will be reported:

! LaTeX Error: \begin{...} on input line ...

ended by \end{...}.

How to end a paragraph: Not with \\

\\ does end a line. It is the designated command to
end lines in tables, poetry, multi-line math environ-
ments, and some other situations. But it does not
end a paragraph. A paragraph is ended by a blank
line or an explicit \par.

Trying to end a paragraph with \\ can result
is some confusing warnings and error messages. For
example, \\ on a line by itself will result in this
warning:

Underfull \hbox (badness 10000)

in paragraph at lines ...

Furthermore, if the \\ is preceded by a (typed) space,
in addition to the above warning, there may be an
extra, unwanted, blank line in the output.

If extra vertical space is wanted after a line bro-
ken with \\, it can be added by inserting an optional
dimension, wrapped in brackets: \\[⟨dimen⟩]. If
such a bracketed expression is really meant to be
typeset, it must be preceded by \relax.

Spaces. spurious and otherwise unwanted

A goal of high-quality typesetting is even spacing in
text. This is really possible only with ragged-right
setting, but even margins are usually preferred, so
TEX is designed to optimize spacing in that context.

By default, multiple consecutive spaces are inter-
preted as a single space. Also, a slightly wider space
is left at the end of a sentence, making it easy to tell
where the sentence ends. (In French typography, or
in the presence of \frenchspacing, all spaces are
treated the same.) When other unequal spacing is
observed in a line, something is fishy.

A sentence is presumed to end with a period or
similar punctuation. But abbreviations also end with
periods, and abbreviations occur frequently in aca-
demic documents, and the wider space isn’t wanted
there. To indicate an ordinary space, insert a back-
slash after the period, as in e.g.\ this or that,
or, if the line should not break after the abbreviation,
insert an unbreakable space, as in Dr.~Knuth.

A similar, but reverse, situation can occur when
an uppercase letter is followed by a period. This is
assumed to be the initial of a name; it usually is, and

an ordinary interword space is set. But sometimes
the uppercase letter is at the end of an acronym,
and that ends a sentence. In such a case, add \@

before the period, and it will restore the wider end-
of-sentence space.

But sometimes wider spaces appear in text where
they are not expected. This is often caused by spaces
inadvertently included in definitions. The end-of-line
(here called EOL) is interpreted as a space. (Differ-
ent operating systems define an EOL differently, but
that is taken care of by the TEX engine.) A neatly
laid-out definition may be the culprit:

\newcommand{\abc}{

\emph{abc def}

}

will output unwanted spaces abc def when used.
This can be avoided by placing a % sign at the ends
of the lines that cause the problem:

\newcommand{\ABC}{%

\emph{abc def}%

}

Then using that command abc def will not have the
unwanted spaces.

It isn’t necessary to use the % sign after a con-
trol word; remember that a space there just ends
the command and is then discarded. But there are
places where adding a % can cause trouble. After
defining any numeric value, TEX will keep looking for
anything else that can be interpreted as numeric, so
if a line ends with \xyz=123, no % should be added.
Or, if setting a dimension, say \parindent=2pc, TEX
will keep looking for plus or minus; a better “stop-
per” is an empty token, {}. (If “plus” or “minus”
is there and happens to be actual text, a confusing
error message will be produced, but that is rare, and
beyond the scope of this presentation.)

There are some other, more obscure situations
where unwanted spaces can show up. One is when
multiple index entries are inserted in the same place
in a file. Often, these are placed on separate lines,
and the EOL principle takes effect. Since the multiple
spaces aren’t consecutive, they remain in the output.
Add % signs judiciously, remembering to keep one
intentional space.

I learned just recently of a really obscure and
surprising space. It occurs, like this, in the middle of
a w or d, and is caused by the application of a small
frame around the colored element by the tcolorbox.
This must be suppressed explicily, like this:

\usepackage{tcolorbox}

\newcommand{\pink}[1]{{\fboxsep=0pt

\colorbox{red!20}{#1}}}

Barbara Beeton

TUG 2023 ❊ 10

TUGboat, Volume 0 (9999), No. 0 draft: June 16, 2023 22:16 903

The resulting word is colorized with no unwanted
spaces. While this is really beyond the scope of this
presentation, it’s something that one should be aware
of. If it happens, seek expert assistance.

Font changes

Font changes are a time-honored method of commu-
nicating shades of meaning or pointing out distinct
or particularly important concepts. Many such in-
stances are built into document classes and packages;
for example, theorems are set in an italic font, sec-
tion headings in bold, and some journals set figure
captions in sans serif to distinguish them from the
main text.

LATEX provides two distinct methods for mak-
ing font changes. Commands of one class take an
argument and limit the persistence of the change to
the content of that argument; these have the form
of \textbf{...} for bold, \textit{...} for italic,
etc. The other class sets the font style so that it will
not change until another explicit change is made, or
it is limited by the scope of an environment; some ex-
amples are {\itshape...}, {\bfseries...}, and
{\sffamily...}. These command names are best
looked up in a good user guide.

Several font-changing commands do different
things depending on the context. \emph{...} will
switch to italic if the current text is upright, or to
upright if the current text is italic. Within math,
\text{...} will set a text string in the same style
as the surrounding text; thus, within a theorem,
\text{...} will be set in italic. If this string should
always be upright, like function words, \textup{...}
should be used instead.

Basic TEX defined two-letter names for most font
styles. All of these are of the persistent type. They
should be avoided with LATEX, as some of the LATEX
forms provide improvements, such as automatic appli-
cation of the italic correction, which would otherwise
have to be input explicitly.

Math

Math is always a closed environment. If started, it
must be ended explicitly and unambiguously. Within
text, math begins and ends with $; there must there-
fore be an even number of $ signs in a document.
LATEX also provides \(...\) for in-text math, but
most users stick with the $. Many different display
environments are defined by the packages amsmath
and mathtools, and it is worthwhile to learn them by
reading the user guides. (mathtools loads amsmath,
so it’s not necessary to load amsmath separately.)

Within math, all input spaces are meaningless
to (LA)TEX; they can be entered in the source file as

useful to make it readable to a human. Blank lines,
however, are considered errors. This was a decision
in the design of TEX to make it easy to detect an
unterminated math element, because math should
not span a paragraph break. In both in-text math
and displays, the error message will be

! Missing $ inserted.

If a blank line occurs in a multi-line display environ-
ment from amsmath, the first error message will be

! Paragraph ended before ⟨env-name⟩
was complete.

<to be read again>

This will be followed by many more error messages,
all caused by the first. These will be confusing and
misleading. Always fix the problem identified by the
first error and ignore the rest; they will disappear
once the first error is fixed, here, the blank line is
removed.

If the appearance of a blank line is wanted for
readaility, begin it with a % sign. It’s also bad form
to leave a blank line before display math; a display
is usually a continuation of the preceding paragraph,
and avoiding a paragraph break also avoids a possible
page break before the display.

As in other environments, the \end name must
exactly match the name specified at \begin. A
“shorthand” for a single-line, unnumbered display is
\[...\]. The environments designed for multi-line
displays should not be used for a single-line display.

Although LATEX provided eqnarray as a display
environment, don’t use it. If the display is num-
bered and the equation is long, the equation can be
overprinted by the equation number.

Tables, figures, and other floats

The number of floats, their positions on a page, and
the spacing around and between them is defined by
the document class. So if something doesn’t work
as you expect (hope for?), any potential helper will
insist on learning what document class is being used.

Input for a float must appear in the source file
while there is still enough space on the output page
to fit it in. In particular, on two-column pages, a
\begin{figure*} or \begin{table*} must occur in
the source before anything else is set on the page.
The basic float handling does not allow full-width
floats to be placed anywhere but at the top of a page;
some packages extend this capability, but those won’t
be discussed here.

Here are the defaults for the basic article class.

• Total number of floats allowed on a page with
text: 3.

What every (LA)TEX newbie should know

TUG 2023 ❊ 11

904 draft: June 16, 2023 22:16 TUGboat, Volume 0 (9999), No. 0

• Number of floats allowed at top of page: 2.
Percentage of page allowed for top-of-page floats:
70%/

• Number of floats allowed at bottom of page: 1.
Percentage of page allowed for bottom-of-page
floats: 30%/

• Minimum height of page required for text: 20%.
• Minimum height of float requiring a page by
itself: 50%.

The reference height is \textheight. That is, the
height of page headers and footers is excluded.

If an insertion is small, must be placed pre-
cisely and fits in that location, don’t use a float.
\includegraphics or one of several available table
structures should be used directly, often wrapped
in \begin{center} ... \end{center}/ (Within a
float, use \centering instead.)

The wrapfig package supports cut-in inserts at
the sides of a page or column. Refer to the documen-
tation for details.

By tradition, captions are applied at the top
of tables and the bottom of figures. If an insertion
is not a float, the usual \caption can’t be used.
Instead, \usepackage{caption} and the command
\captionof.

The document class and preamble

When embarking on a new document, the first thing
is to choose the document class. If the goal is publi-
cation in a particular journal, check the publisher’s
instructions to see what is required. Many, but not
all, popular journal classes are available from CTAN.
If the project is a thesis or dissertation, find out the
special requirements, and if your institution provides
a tailored class, obtain a copy. Try to determine
whether it is actively maintained, and if there is
local support. Read the documentation. It is the
responsibility of the document class to define the
essential structure of the intended document. If the
document you are preparing differs in essential ways
from what is supported by the document class, the
time to get help is now.

There will be features not natively supported by
the document class; for example, the choice of how
to prepare a bibliography may be left to the author.
This is why packages have been created.

Most packages are loaded in the preamble; the
one exception is \RequirePackage, which may be
specified before \documentclass, and is the place
where options should be loaded. Some authors cre-
ate a preamble that is suitable for one document,
then use the same preamble for their next document,
adding more packages as they go. And some unwit-
ting newbies “adopt” such second-hand “templates”

without understanding how they were created. Don’t
do it!

Start with a suitable document class and add
features (packages, options, and definitions) as they
become necessary. Organize the loading of packages
into logical groups (all fonts together, for example),
and be careful not to load a package more than once;
if options are needed, any loaded with a non-first
\usepackage will be ignored. Some packages auto-
matically load other packages; for example, mathtools
loads amsmath and amssymb loads amsfonts. And,
very important, pay attention to the order of package
loading: hyperref must be loaded (almost) last; the
few packages that must come after hyperref are all
well documented. Read the documentation.

Processing the job

Once the file is created, it’s time to produce output.
There are several engines to choose from: pdfLATEX,
X ELATEX, and lusLATEX. These can be run interac-
tively from the command line, or initiated from an
editor. Assuming there are no errors, how many
times the file must be processed depends on what
features it contains.

(LA)TEX is “one-way”. If any cross-references or
\cites are present, this information is written out
to an .aux file; information for a table of contents
is written to a toc file, and other tables are also
possible. The bibliography must be processed by
a separate program (and its log checked for errors)
with the reformatted bib data written ont to yet
another file. Then LATEX must be run (at least) twice
more—once to read in the .aux and other secondary
files and include the bibliography and resolved cross-
references, and the second time to resolve the correct
page numbers (which will change when the TOC and
similar bits are added at the beginning).

All this assumes that there are no errors. Errors
will be recorded in the log file. Learn where the log
file is located, and make a habit of referring to it.
Warnings, such as those for missing characters, will
also be recorded there, but not shown online:

Missing character: There is no ⟨char⟩
in font ⟨font⟩!
In the log, errors may appear with closely grouped

line numbers. If so, and the first is one that inter-
rupts the orderly processing of a scoped environment,
following errors may be spurious. So fix the first er-
ror and try processing before trying to understand
the others; often, they may just go away.

Good luck. With practice comes understanding.

Barbara Beeton

TUG 2023 ❊ 12

TUGboat, Volume 0 (9999), No. 0 draft: June 13, 2023 10:01 ? 1

News from the HINT Project

Martin Ruckert

Abstract

The HINT file format[5] was presented at TEX Users
Group 2019[4] and at TEX Users Group 2020[6], the
first usable viewer for HINT files was presented. The
HiTEX engine became part of TEX Live in 2022.
This presentation will explore the changes that have
taken place since then and what to expect in the fu-
ture. The talk will focus on

� demonstrating the more recent versions of the
HINT file viewer and the improvements in glyph
rendering;

� demonstrating the use of links, labels, and out-
lines;

� explaining the capabilities of the HINT file for-
mat to convert pages to plain text for searching
or text-to-speech processing; and

� presenting hints on how to design TEX macros
for variable page sizes.

1 Displaying Glyphs

Initially, the HINT viewer did support only .pk fonts.
These font files contain METAFONT fonts at a fixed
resolution, usually at 600 dpi. Rendering such a font
on a computer screen with a typically much lower
resolution, was done in three steps:

1. Decoding the font file header and caching it for
later use.

2. Decoding a glyph into a black and white bitmap
and caching it for later use.

3. For each pixel on screen intersecting the glyph’s
bounding box

� map the pixel center to a source point in
the glyph’s bitmap and

� compute the pixel’s gray value by linear
interpolating the black and white values
of the four pixels surrounding the source
point in the bitmap.

Since high dpi values, often above 300 dpi, are com-
mon on small mobile devices, the results were more
than acceptable on these devices. On ordinary com-
puter screens typically with dpi values below 100,
the results were insufficient. Especially the ren-
dering of thin lines would distribute the available
amount of black ink over a two pixel wide area and
the line would fade away into a blurry light-gray.

Things changed with the use of the FreeType
font rendering library[7]. This library can render
PostScript Type 1 outline fonts at any resolution de-
sired. After replacing the .pk fonts by .pfb fonts,

the viewer could render the glyphs as gray-value bit-
maps for the actual screen resolution[3]. To produce
good looking glyphs from an outline font, first the
positions of key points of the outline, for example
the points where the outline has a horizontal or ver-
tical tangent, will be rounded to the pixel grid. After
that, pixels that are only partly covered by the out-
line will be assigned gray values depending on the
amount of coverage. This will result in less blur and
consistent stroke widths. Improving the readability
especially for small font sizes.

The quality of the font rendering in the HINT

viewer was, however, still inferior to a rendering of
the same font by other programs. The reason was,
that the viewer would not map the glyph bitmap
one to one to the screen but instead would map
the bitmap to TEX’s exact glyph position – usually
not aligned to the pixel grid – using step 3 as given
above.

To improve the readability at small font sizes,
the current viewer will round the glyph position to
the pixel grid before rendering the glyph. And it
replaces the linear interpolation of pixel values by
using the gray value of the nearest source pixel. The
rounding will occur only if the font size is below a
given threshold. In principle the rounding can be
split into rounding horizontal and rounding vertical
position. While the first affects character distances,
the latter moves entire lines and is less distracting.
For a demonstration see [3].

a) no alignment b) vertical alignment

c) horizontal alignment d) full alignment

Figure 1: A cmr 10pt V with different alignment to
the pixel grid.

Further improvements are possible, but not yet
implemented. One method is oversampling, where a

TUG 2023 ❊ 13

? 2 draft: June 13, 2023 10:01 TUGboat, Volume 0 (9999), No. 0

glyph is rendered at, for example, four different hor-
izontal positions on the pixel grid. Choosing one of
these four renderings, the horizontal glyph position
must be rounded to 1/4 of the pixel size which is far
less distracting. Another method is sub-pixel ren-
dering. This method uses the fact that one white
pixel on screen actually consists of three colored
dots: red, green, and blue. So by considering them
a independent light sources, the horizontal resolu-
tion can be tripled. This improves the positioning
but leads to colored borders which some people find
distracting.

2 Links, Labels, and Outlines

People my age have learned navigating through thick
books already in primary school, if not in kindergar-
ten. These skills are more or less obsolete when it
comes to navigating through “thick” electronic doc-
uments. So good replacements are necessary. The
most obvious point to start exploring a book is its
table of content where for each section the corre-
sponding page number is listed. The HINT file for-
mat supports the concept of a home page: a position
in the document identified be the author that can be
reached in the viewer with a single key stroke, touch,
or click. The HINT document, however, has no fixed
page numbers. The pages grow and shrink with the
window size (and with the magnification factor). So
instead a table of content must use a click-able link
that brings you immediately to the section in ques-
tion. Similar links are used for the table of figures,
the index, and for all kinds of cross-references, be it
to individual parts of the text, a figure, a table, a
citation, or a displayed formula.

As an alternative to the table of content, the
HINT file format also supports “outlines”: A click-
able table of content, hierarchically organized and
displayed in a separate window. To allow optimal
use of the available space, sub levels of the hierarchy
can be hidden or expanded as needed[3].

In the mean time, the LATEX hyperref package
offers support for most of the above features.

In one respect HINT files are radically differ-
ent from books or pdf files: There are no predefined
pages. So following a link is not as simple as display-
ing a page with a given page number, but it requires
finding two good page breaks so that the target is
on the page between them. The algorithm used in
the current HINT viewer is still under development
and there are cases where the choice of page breaks
could be better.

3 Designing Macros for Variable Pages

The traditional implementation of centering text is
the \centerline macro. It expands to \hbox to
\hsize { \hfill text \hfill } which will look nice
as long as the text is shorter than \hsize. If the text
is longer, it will produce an overfull box, stick out
into the margin, and even goes over the edge of the
window. A better solution uses TEX’s line breaking
procedure[3], which requires a vertical box.

\vbox{\rightskip 0pt plus2em

\leftskip=\rightskip

\parfillskip=0pt\parindent 0pt

\spaceskip.3333em

\xspaceskip.5em\relax

This is Text Centered on the Page

}

Letting \rightskip and \leftskip stretch enough,
but not too much, so that the line breaking routine
will try to keep the lines filled but still has enough
room to produce decent lines. The inter-word-glue,
on the other hand, is prevented from stretching. (It
could be made to allow for some shrinking to gain
additional flexibility.)

The only new feature introduced in HiTEX since
2019 is the support for \vtop. This is important be-
cause writing for variable page sizes often requires
replacing a horizontal box by a vertical box to en-
able the breaking of paragraphs into lines. \vtop is
required if multiple vertical boxes need to be aligned
on the top baseline[3].

4 Searching

The user input into a search field is just a plain se-
quence of characters coded in UTF8 or some local
encoding like ISO 8859-1. The text, as represented
in a TEX document is far more complex and search-
ing requires finding a match between both represen-
tations. Even if the input consist only of ASCII
characters the HINT viewer must handle some spe-
cial cases.

If the word the user wants to find uses a liga-
ture, the match is made using the replacement char-
acters, that are retained in TEX’s ligature node. If
the word on the page is hyphenated and split across
two lines, the match must ignore extra characters in-
serted by the pre and post hyphenation lists as well
as the space that is usually separating the word at
the end of one line from the word that starts the new
line. Indeed the HINT backend provides a function,
that converts entire pages into sequences of char-
acters moving from top left to bottom right, elimi-
nating the effects of ligatures and hyphenations and
condensing various combinations of glue – inter-word

TUG 2023 ❊ 14

TUGboat, Volume 0 (9999), No. 0 draft: June 13, 2023 10:01 ? 3

glue, baseline skips, left skips, right skips, and inden-
tations to name just a few – to a single space. Kerns,
on the other hand, are completely ignored. An in-
felicity here is the definition of the LATEX macro,
which uses a glue instead of a kern between ‘A´ and
‘T´. So you have to search for “LA TEX”.

It is planed to use the page to string function
also to feed a Text-to-Speech converter.

Currently searching does not work well with
non ASCII characters, but it is planed to implement
UTF8 as the default encoding used for HiTEX and
HINT files.

5 New Viewers for Linux, MacOS, and iOS

Together with the viewers for Windows and An-
droid, the applications for Linux, MacOS, and iOS
complete the set of Viewers. The Windows appli-
cation, being the oldest and my work-horse for con-
ducting experiments, is the most complex. The ap-
plication for MacOS is the most recent and was pre-
sented at Jonathan Fines’s TEX hour[1, 3]. The
application for Linux is the most simple. It con-
sists beside the backend and the OpenGL renderer
(shared between all applications) only of a 600 line
main program[2]. This is a good starting point for
writing your own viewer.

References

[1] Jonatan Fine, Martin Ruckert, et al. Rethinking
TEX in STEM. https://texhour.github.io/

2022/09/29/rethink-tex-in-stem/, 9 2022.

[2] Martin Ruckert. Hint source repository. https:
//github.com/ruckertm/HINT.

[3] Martin Ruckert. The HiTEX video collection.
http://hint.userweb.mwn.de/hint/video/.

[4] Martin Ruckert. The design of the HINT file
format. TUGboat, 40(2):143–146, 2019.

[5] Martin Ruckert. HINT: The File Format. 2019.
ISBN 1-079-48159-1.

[6] Martin Ruckert and Gudrun Socher. The HINT
project: Status and open questions. TUGboat,
41(2):208–211, 2020.

[7] David Turner, Werner Lemberg, et al. Freetype.
http://www.freetype.org/.

⋄ Martin Ruckert
Hochschule München
Lothstrasse 64
80336 München
Germany
martin.ruckert@hm.edu

TUG 2023 ❊ 15

TUGboat, Volume 0 (9999), No. 0 draft: 2023-06-14 10:10 ? 1

An HTML/CSS Schema for TEX Primitives
– Generating High-Quality Responsive
HTML from generic TEX

Dennis Müller

This paper uses STEX3. The semantically annotated
XHTML version of this paper is available at url.

mathhub. info/ tug23css

Abstract

I present a schema for translating TEX primitives to
HTML/CSS. This translation can serve as a basis
for (very) low-level TEX-to-HTML converters, and is
in fact used by the RUSTEX system – a (somewhat
experimental) implementation of a TEX engine in
Rust, used to convert LATEX documents to XHTML–
for that purpose.

Notably, the schema is accurate enough to yield
surprisingly decent (and surprisingly often “the ex-
actly right”) results on surprisingly many “high-level”
LATEX macros, which makes it adequate to use in lieu
of (and often even instead of) dedicated support for
macros and packages.

1 Introduction

Translating LATEX documents (partially or fully) to
HTML is a difficult problem, primarily because the
two document formats address very different needs:
TEX is intended to produce statically layout docu-
ments with fixed dimensions, ultimately represent-
ing ink on paper. HTML on the other hand assumes
a variety of differently sized and scaled screens and
consequently prefers to express layouts in more ab-
stract terms, the typesetting of which are ultimately
left to the browser to interpret; ideally responsively
– i.e. we want the document layout to adapt to dif-
ferent screen sizes, ranging from 8K desktop moni-
tors to cell phone screens.

This means that there is no one “correct” way
to convert TEX to HTML– rather there is a plurality
of choices to be made; most notably, which aspects
of the static layout with fixed dimensions described
by TEX code to preserve, or discard in favour of
leaving them up to the rendering engine, explaining
the plurality of existing converters.

Naturally, many LATEX macros are somewhat
aligned with tags in HTML; for example, sectioning
macros (like \chapter, \section, etc.) correspond
to <h1>, <h2>, etc; and the \begin{itemize} and
\begin{enumerate} environments and the \item

macro correspond to , and , respec-
tively. Most converters therefore opt for the rea-
sonable strategy of mapping common LATEX macros
directly to their closest HTML relatives, with no or

minimal usage of (simple) CSS; effectively focus-
ing on preserving the document semantics of the
used constructs (e.g. “paragraph”, “section head-
ing”, “unordered list”). In many situations, this is
the natural approach to pursue, especially if we can
reasonably assume that the document sources to be
converted are sufficiently “uniform”, so that we can
provide a similarly uniform CSS style sheet to style
them, and this is largely the way existent converters
work. To name just a few:

LATEXML [6] focuses strongly on the seman-
tics, using XML as the primary output format and
heuristically determining an author’s intended se-
mantics of everything from text paragraphs (defini-
tions, examples, theorems, etc.) down to the mean-
ing of individual symbols in mathematical formu-
lae; achieving great success with ar5iv.org, host-
ing HTML documents generated from TEX sources
available on arxiv.org. TEX4ht [12] focuses on
plain HTML as output with minimal styling, going
as far as to replace the \LaTeX macro by the plain
ASCII string “LaTeX”. Pandoc [10] largely focuses
on the most important macros and environments
with analogues in all of its supported document for-
mat to convert between any two of them, e.g. TEX,
Markdown, HTML, or docx. Mathjax [5] focuses ex-
clusively on macros for mathematical formulae and
symbols, allowing to use TEX syntax in HTML docu-
ments directly, which are subsequently replaced via
JavaScript by the intended presentation.

However, the approach described above has no-
table drawbacks: Firstly, it requires special treat-
ment of LATEX macros that plain TEX would ex-
pand into primitives instead, and the amount of
LATEX macros is virtually unlimited – CTAN has
(currently) a collection of 6399 packages, tendency
growing, which get updated regularly, and authors
can add their own macros at any point. Supporting
only the former is a neverending task, and providing
direct HTML translations for the latter is impossi-
ble. This is made worse by the very real and ubiqui-
tous practice among LATEX users of copy-pasting and
reusing various macro definitions and preambles as-
sembled from stackoverflow, friends and colleagues,
and handed down for (by now literally) generations,
even in situations where (unbeknownst to them) “of-
ficial” packages with better solutions (possibly sup-
ported by HTML converters) exist.

For example, I myself have happily reused the
following macro definition for years:

\usepackage{amsmath,amssymb}

\def\forkindep{\mathrel{\raise0.2ex\hbox

{\ooalign{\hidewidth\vert\hidewidth

TUG 2023 ❊ 16

? 2 draft: 2023-06-14 10:10 TUGboat, Volume 0 (9999), No. 0

\cr\raise-0.9ex\hbox{\smile}}}}}

...neither knowing nor caring what it actually does
other than that it allowed me to typeset A |⌣C

B
(“A and B are forking-independent (or non-forking)
over C”; a concept in model theory)1 – despite there
existing a unicode symbol (0x2ADD) and a corre-
sponding LATEXmacro \forksnot in the unicode-math
package. If we want to maximise coverage, we there-
fore need a reasonable strategy for arbitrarily elab-
orate unexpected LATEX macros.

Secondly, by generating rather plain HTML, we
guarantee that the resulting presentation is neutral
and can be easily adapted by users via their own
CSS stylesheets – the “morally correct” thing to do.
However, it also severely clashes with the expecta-
tions of (casual) users that the result looks roughly
the same as the PDF does. After all, the way LATEX
documents are written by authors is optimized for a
particular layout and arrangement of document el-
ements. Subsequently discarding them in favor of
as-plain-as-possible HTML that optimizes more for
the “document semantics” of the components than
their (precise) optics yields plain looking HTML that
is immediately perceived as ugly, “not what I want”
and requires lots of massaging to achieve a simi-
lar aesthetic level as the PDF generated by pdflatex
does. And aesthetics matter – that’s why TEX was
built in the first place.

Thirdly, by focusing on supporting as many LATEX
macros as possible directly, conversion engines tend
to neglect support for primitives in multiple senses
of “support” – indeed, I found it difficult finding
any existing TEX documents of mine that “survive”
any of the existing HTML converters for a realistic
comparison, typically dying with no output or only
initial, badly formatted fragments.

The RUSTEX system is a TEX-to-HTML con-
verter born out of our needs in the STEX project [4,
8]. The stex package allows for annotating LATEX
documents (in particular mathematical formulae and
statements) with their (flexi-)formal semantics. These
documents are subsequently converted to HTML, pre-
serving both the (informal) document layouts as well
as the semantic annotations in such a way, that
knowledge management services acting on the se-
mantics can be subsequently integrated via JavaScript.
Our existing corpora of STEX documents cover a
wide range, from individual fragments (definitions,
theorem statements, remarks,...) up to research pa-

1 Possibly sourced from tex.

stackexchange.com/questions/42093/

what-is-the-latex-symbol-for-forking-independent-model-theory

– I needed and found it some time around 2013.

pers, lecture slides in beamer, and book-like lecture
notes that usually include the slides between text
fragments, all of them using a multitude of (typical
and untypical, official and custom) packages, pream-
bles and stylings.

We consequently want to translate the sources
for all these heterogeneous documents to HTML such
that 1. the results look as similar to their PDF coun-
terparts as possible, 2. the semantic annotations are
preserved as XML attributes, and 3. (most impor-
tantly) conversion succeeds for any error-free doc-
ument, regardless of packages and macros used, so
that at least the semantic annotations can be ex-
tracted, even if the presentation is occasionally (some-
what) broken.

Contribution Motivated by the above, this paper
describes RUSTEX’s rather extremal point in the de-
sign space of LATEX-to-HTML converters: The goal
is to mimic the core TEX expansion mechanism (i.e.
pdflatex) as closely as possible and map the result-
ing sequence of TEX primitives to (primarily) <div>s
with CSS attributes, while avoiding the neverending
amount of work required for the special treatment
for non-primitive TEX macros. Ideally, this allows
for achieving full error-free coverage with respect to
converting full documents, and yielding HTML that
looks reasonably close to what a user would expect.

Of course, if we only care about aesthetics, we
might as well render the generated PDF in the browser
directly. So as an addendum to the above, we should
add the desideratum that the HTML remain “rea-
sonably recognizable as HTML”: for example, plain
text in paragraphs (or horizontal boxes) should ac-
tually be represented as plain text in the resulting
HTML– in fact, as much as possible we want to leave
to the browser what a browser does best: break lines
in paragraphs, size boxes based on their contents
(where we want them to be), and arrange compo-
nents based on available (screen) space, according
to constraints imposed by our CSS schema.

RUSTEX’s git repository [11] contains a .tex-
file with test cases for (and beyond) all the follow-
ing, and the HTML generated from them for di-
rect comparison. Additionally it contains the PDF

and HTML produced from my Ph.D. dissertation [7],
which serves as a particularly good test case for sev-
eral reasons:

1. I was a typical LATEX user when I wrote it, with
no particular knowledge of TEX’s internal work-
ings, and hence unbiased by what I would nowa-
days do to avoid problems.

2. I spent a lot of effort on making it look nice by
the usual means – copy-pasting from elsewhere

TUG 2023 ❊ 17

TUGboat, Volume 0 (9999), No. 0 draft: 2023-06-14 10:10 ? 3

and using whatever package google tells me to
use to achieve the desired effect.

3. It is a 215 page document using everything from
elaborate formulas, syntax-highlighted code list-
ings, various figures and tables, and color-coded
environments (using tcolorboxes) for remarks,
theorems, examples, definitions, etc.

The HTML generated from our STEX corpora can
be found at url.mathhub.info/stex, including this
paper (see link above), which thus additionally serves
as a demonstration of the examples below (notably,
with two column mode deactivated). They also power
our course portal at courses.voll-ki.fau.de, where
students at our university can access semantically
annotated course materials and various didactic ser-
vices generated from them.

The full CSS schema can be found at 2.

Disclaimer Note that I am not arguing to eschew
dedicated support for LATEX and package macros
entirely – document semantics can be important,
for example for accessibility reasons. Additionally,
while the translation presented here is surprisingly
effective, it has clear limitations, especially on the
scale of individual characters (see section 9).

Hence, the contents of this paper should be
seen as a reasonable fallback strategy usable in con-
junction with dedicated support for macros. In-
deed, RUSTEX too currently implements (few) pack-
age macros as well, namely \url, \not and \cancel,
\underbrace and \overbrace, \marginpar, \begin{wrapfig},
and (somewhat embarrassingly) \LaTeX.

In fact, if this paper has a purpose beyond re-
porting on what I consider to be an interesting ex-
periment, it should be the following: Taking TEX
primitives seriously pays off aesthetically, can spare
a lot of work and effort, and where possible, I en-
courage developers of TEX-to-HTML converters to
take them seriously in addition to dedicated sup-
port for macros.

Furthermore, many of the techniques described
below are the result of more-or-less informed exper-
imentation; in many cases, better ways to represent
TEX primitives in HTML might exist. I appreciate
feedback and suggestions for improvements.

2 General Architecture

As mentioned, RUSTEX attempts to mimic the be-
haviour of pdflatex as closely as possible. As such,
it implements the behaviour of the primitive com-
mands available in plain TEX, eTEX and pdfTEX,
amounting to 293 + 47 commands, excluding prim-

2 github.com/slatex/RusTeX/blob/master/rustex/src/

resources/html.css

itive “register-like” commands such as \everyhbox,
\baselineskip or \linepenalty. Their precise be-
haviour has been determined from (obviously) the
bible [3] and the manuals for eTEX and pdfTEX, but
also often reverse engineered via extensive experi-
mentation.

At the start of the program, a user’s pdftexconfig.tex
and latex.ltx are located using kpsewhich and
processed first. This entails that a user needs to
have a LATEX distribution set up, but subsequently
makes sure that RUSTEX behaves as close to the local
LATEX setup as possible.

Tokens are expanded in the expected manner
down to the primitives, which cause state changes,
impact expansion, or ultimately end up fully pro-
cessed in RUSTEX’s stomach waiting to be output as
HTML. The latter primitives are the subject of this
paper.

pgf (and thus tikz) is handled via an adapted
version of the existing SVG driver and thus omitted
here. Images are inserted directly in the HTML in
Base64-encoding.

In lieu of a shipout routine, box registers for
floats (as well as \inserts such as footnotes) are oc-
casionally heuristically inspected and inserted, but
this mechanism is due for a more adequate treat-
ment and hence also omitted.

2.1 Trees and Fonts

Naturally, HTML is a tree structure of nested nodes.
Somewhat counterintuitively, so are TEX’s stomach
elements, but unfortunately at the cost of attaching
information such as the current font, font size, color,
etc. directly to the individual “character boxes”.
If we wanted to introduce a node for every
individual character, we could mimic this directly
in HTML– however, this approach is too extreme
even for my taste. Luckily, in almost every situation
where colors and fonts are changed, the changes are
achieved via LATEX macros that align with TEX’s
‘stomach tree”. For example,

\textbf{\textcolor{blue}{some} \emph{text}}

clearly entails a tree of font and color changes, which
ideally should be represented as a corresponding HTML

tree:

some

text

And indeed, all three macros (\textbf, \textcolor,
\emph) introduce TEX groups for their arguments,
assuring that these changes too reflect a tree struc-
ture.

TUG 2023 ❊ 18

? 4 draft: 2023-06-14 10:10 TUGboat, Volume 0 (9999), No. 0

Consequently, RUSTEX can (somewhat) safely
add special nodes to the stomach on font changes,
changes to the color stack, or links (as produced
by \pdfstartlink). As these are (usually) local to
the current TEX group, the stomach consequently
also keeps track of when TEX groups are opened
and closed. If such changes (i.e. their start and end
points) conflict with other stomach element’s delim-
iters (such as boxes or paragraphs), they are appro-
priately closed and subsequently reopened, e.g.:

Some paragraph \begingroup \itshape

this is italic \par

New paragraph, still italic \endgroup not

italic anymore

Some paragraph this is italic
New paragraph, still italic not italic any-

more

would yield HTML similar to:

<div class="paragraph">

Some paragraph

this is italic

</div>

<div class="paragraph">

New paragraph, still italic

not italic anymore

</div>

In general, the nodes produced by font changes
and similar commands are considered “annotations”:
If these nodes have no children, or a single child that
modifies the same CSS property, they are discarded
or replaced by their only child. If they have a sin-
gle child or are the only child of their parent node,
the corresponding style-attribute is attached to the
relevant node directly. Only in the remaining case
is an actual node produced in the output
HTML.

To deal with fonts in general, it should be noted
that most TEX fonts are freely available in a web-
compatible format (e.g. otf) online; we could con-
sequently use the actual fonts used by TEX in the
output PDF. In practice, we prefer to have adequate
Unicode characters in the HTML output, rather than
ASCII characters representing a position in a font
table. Consequently, RUSTEX instead hardcodes fonts
as pairs of 1. a map from ASCII codes to Unicode
strings and, 2. a sequence of font modifiers (e.g. bold,
italic). The former is used to produce actual charac-

ters, the latter to choose appropriate CSS attributes
as above.

Currently, RUSTEX fixes Latin Modern as the
font family used, but somewhat nonsensically ob-
tains font metrics the same way as TEX, by process-
ing the tfm-files on demand [2], providing only rough
approximations of the actual values (in HTML).

2.2 Global Document Setup

At \begin{document}, RUSTEX determines 1. the cur-
rent font and its size, 2. the page width (as deter-
mined by \pdfpagewidth) and 3. the text width (as
determined by \hsize), and attaches them as cor-
responding CSS attributes to the <body> node – the
page width determining the max-width and (⟨page
width⟩−⟨text width⟩)/2 determining the padding-left
and padding-right properties. The latter is impor-
tant to accomodate e.g. \marginpar and related
mechanisms, and is discussed more precisely in sec-
tion 5.

3 Boxes and Dimensions

Clearly, the most important primitives to get “right”
are (horizontal or vertical) boxes, produced by \hbox,
\vbox and variants (\vtop, \vcenter), as they are
the primary means that more elaborate macros use
to achieve their aims. They also serve as a good ex-
ample of the complexities involved when translating
to HTML.

Boxes have five important numerical values that
matter with respect to how they are typeset: width,
height, depth, spread and to, which we will dis-
cuss shortly.

Horizontal boxes (as produced by \hbox) – as
the name suggests – have their contents arranged
horizontally, and vertical ones vertically. This is
nicely analogous to the CSS flex model, so naturally,
we can associate boxes with CSS flex display values.
An entire document can be thought of as a single
top-level vertical box. Hence:

.hbox, .vbox, .body {

display: inline-flex;

}

.vbox, .body { flex-direction: column; }

.hbox { flex-direction: row; }

An important distinction that matters here is
that between the actual contents of the box and its
boundary. Usually, the dimensions of a box are com-
puted from the dimensions of its children – which,
conveniently, is analogous to HTML/CSS, so in the
typical case we do not need to bother with them at
all and leave those up to the rendering engine:

.hbox, .vbox, .body {

TUG 2023 ❊ 19

TUGboat, Volume 0 (9999), No. 0 draft: 2023-06-14 10:10 ? 5

width: min-content;

height: min-content;

}

Whenever possible, we avoid precisely assign-
ing dimensional values in HTML and defer to the
ones computed by the rendering engine. This is im-
portant to account for discrepancies between HTML

and TEX, e.g. regarding the precise heights of char-
acters, lines, paragraphs , etc.

However, the dimensions of a box can be changed
after the fact, using the \wd, \ht and \dp commands
(corresponding to width, height and depth, respec-
tively). If these dimensions are changed, the con-
tents and how they are layed out are not changed
at all, but the typesetting algorithm, when putting
“ink to paper”, will proceed as if the box had the
provided dimensions. This allows macros to layer
boxes on top of each other; in the (very common)
most extreme case by making boxes take up no space
at all. For example:

\setbox\myregister\hbox{some content}

\wd\myregister=0pt \ht\myregister=0pt

\dp\myregister=0pt

\box\myregister other content

This will produce a horizontal box with the content
“some content” with all dimensions being 0 from
the point of view of the output algorithm, meaning
the “other content” following the box will be put
directly on top of the box, like so:

some contentother content

Hence, we do have to occasionally consider the ac-
tual (computed or assigned) dimensions of TEX boxes
and other elements.

Regarding boxes, we attach actual values for
width/height to their HTML nodes if and only if
they have been assigned fixed values, and let

.hbox, .vbox { overflow: visible; }

We can then achieve the same effect in HTML via:

<div class="hbox" style="width:0;height:0;">

some content

</div> other content

3.1 width/height vs. to

Things get more interesting if the assigned values for
the dimensions of the box are larger than the actual
box contents – this tells us how we need to align the
contents of boxes vertically and horizontally. This,
however, is also where the to-value of a box comes
into play:

Setting (exemplary) \wd=⟨val⟩ for a horizontal
box, as mentioned, does not actually impact the way

the box content is layed out. \hbox to=⟨to-val⟩{...}
however does, while also setting the width of the
box: The to-attribute instructs TEX to arrange the
contents of the box “in line with” the box being ⟨to-
val⟩ wide,e.g.:
\hbox{some box content}

\hbox to \textwidth{some box content}

some box content
some box content

This example is deceptive in that it suggests the box
contents were evenly spread out across the ⟨to-val⟩
of the box, but this is not so. Consider:

\hbox to \textwidth{

\hbox{some}\hbox{box}\hbox{content}

}

\hbox to \textwidth{%

\hbox{some}\hbox{box}\hbox{content}%

}

someboxcontent
someboxcontent

It’s not that the individual content elements in the
box are spread out evenly; instead, they are left-
aligned and space characters (and newline charac-
ters, which are treated like spaces) behave (roughly)
as if followed by \hfil – i.e. they take up as much
space as they can in the containing \hbox. And
while subsequently, the box has a width of ⟨to-val⟩,
changing that with \wd is possible:

\setbox\myregister\hbox to \textwidth{%

\hbox{some}\hbox{box}\hbox{content}%

}\wd\myregister=0pt \box\myregister

\setbox\myregister\hbox to \textwidth{%

some box content%

}\wd\myregister=0pt \box\myregister

someboxcontentsome box content

This distinction between the three values width,
to, and “total width of the box’s children” forces us
to actually distinguish between a) the box itself (i.e.
its contents) with its (potential) to value, and b) its
“boundary box”, i.e. subsequently assigned widths
and heights. The same holds analogously for the
to value and height of a vertical box:

.hbox { text-align: left; }

.vbox { justify-content: flex-start; }

.hbox-container, .vbox-container {}

where the .hbox-container-class is used for assigned
widths and heights, and to translates to the width
of the .hbox itself. Making spaces behave as they

TUG 2023 ❊ 20

? 6 draft: 2023-06-14 10:10 TUGboat, Volume 0 (9999), No. 0

should in an \hbox forces us to style them accord-
ingly:

.space-in-hbox {

display: inline-block;

margin-left: auto;

margin-right: auto;

}

Using this class for spaces (directly) in \hboxes makes
the remaining content stretched across the full width
of the box, as in the examples above.

Notably, TEX allows for negative values in di-
mensions, which CSS does not. To capture the re-
sulting behaviour, whenever a dimension (exemplary
width) is < 0, we set the width CSS property to
0, and attach (in this case) margin-right:⟨width⟩ to
the HTML node (analogously margin-top for height).

Finally, the spread parameter can be used in-
stead of to and adds the provided dimension to the
computed width/height of the box; e.g. if \hbox{foo}
has width 15pt, then \hbox spread 15pt{foo} has
width 15 + 15 = 30pt:

Lorem ipsum dolor sit amet, consectetur adip-
iscing elit pellentesque.foo Lorem ipsum do-
lor sit amet, consectetur adipiscing elit pellen-
tesque.

Annoyingly, the only way to accomodate this
seems to be to compute the “original” value, add the
spread value, and attach that as the final width/height
to the <div> node.

3.2 Depth and Rules

So far, we have only considered width and height,
but TEX has an additional dimension for boxes that
CSS does not: depth, which measures the extent
to which a given box extends below the baseline
of the parent box. Depth is rarely important, or
rather, matters primarily when manipulating indi-
vidual characters, which CSS is currently not ca-
pable of for reasons explained later. However, no-
table not uncommon exceptions are explicitly as-
signed depth values, in particular for \vtop boxes.

To better understand depth, we should turn our
attention the the \vrule primitive, which produces
a colored box of the provided dimensions:3

Lorem ...

\vrule width 10pt height 10pt depth 10pt

Lorem ...

3 \hrule is implemented analogously, except for using
display:block instead of inline-block.

Lorem ipsum dolor sit amet, consectetur adip-
iscing elit pellentesque. Lorem ipsum dolor sit

amet, consectetur adipiscing elit pellentesque.

This creates a black box with 10pt width and
a total 20pt height, centered at the baseline of the
current line: extending 10pt above the baseline (the
height) and 10pt below (the depth).4

Such a box with the right dimensions can be
easily produced using CSS:

.vrule {

display: inline-block;

}

The individual <div>s are then provided background,
width and height (=height+depth) properties cor-
responding to the color and the dimensions of the
\vrule – in the above example5

style="background:#000000;height:20pt"

The tricky part is ensuring that the box is cor-
rectly positioned with respect to the surrounding
text (or other elements). As above, the solution
is to wrap the .vrule <div> in a .vrule-container

with the same height as the inner <div>, and adding
margin-bottom:-⟨depth⟩ to the inner .vrule. This
not only allows for moving the box the specified
amount below the baseline, but also makes sure that
the “boundary” that the rendering engine computes
for positioning elements has the relevant dimensions
as well.

If a rule has no explicitly provided width/height,
it is computed by TEX to be 0.6pt wide, and a length
fitting the current box:

\hbox{ \vrule

\vbox{ \hbox{some} \hrule \hbox{text}}

\vrule }

some
text

We can easily set the width of the \hrule with
width:100% to achieve the same effect. Unfortunately,
the same does not work with \vrule and its height
in HTML, as an artifact of when and how the heights
of boxes are computed by the rendering engine. In
those situations, we have to distinguish between para-
graphs and \hboxes: In the former case we heuris-
tically set the height to the current font size, in
the latter (since we are in a flex box), we can set

4 Note the gap between the second and third line of text,
caused by the depth ob the \vrule.

5 For simplicity’s sake, we will use the same dimensions
(in pt) in both TEX code and CSS; in actual practice, we scale
1pt in TEX to some value in px units.

TUG 2023 ❊ 21

TUGboat, Volume 0 (9999), No. 0 draft: 2023-06-14 10:10 ? 7

align-self:stretch to make the rule fit the contain-
ing box.

3.3 \vbox vs \vtop vs \vcenter

\vtop behaves like \vbox, except that where a \vbox
is vertically aligned at the bottom of the parent box’s
baseline, a \vtop is vertically aligned at the top
with the surrounding text, extending downwards.
\vcenter is vertically aligned at the center and is
only allowed in math mode:

some text \vbox{\hbox{some}\hbox{vbox}}

text \vtop{\hbox{some}\hbox{vtop}}

text $\vcenter{\hbox{some}\hbox{vcenter}}$
text

some text
some
vbox text some

vtop
text

some
vcenter

text

Internally, the three types of vertical boxes differ
precisely in their a priori depths and heights. As
long as these are not subsequently reassigned (us-
ing \ht and \dp), we can achieve the same effect
much more accurately by using the vertical-align

property, that covers the same primary intent of the
three types of vertical boxes:

.vbox{ vertical-align: bottom }

.vtop{ vertical-align: baseline }

.vcenter{ vertical-align: middle }

We now need to be careful with changing the height
of a \vtop box, however: Since the primary vertical
dimension of a \vtop corresponds to its depth (be-
low the baseline), increasing its height actually cor-
responds to moving the box contents upwards with-
out changing the amount of space it takes up below
the baseline:6

Lorem ...

\setbox\myregister\vtop{\hbox{some}\hbox{vtop}}

\ht\myregister=20pt\box\myregister

Lorem ...

Lorem ipsum dolor sit amet, consectetur adip-

iscing elit pellentesque.

some
vtop Lorem ipsum do-

lor sit amet, consectetur adipiscing elit pellen-
tesque.

This can be approximated in HTML by setting
both the margin-top and bottom CSS properties of
the .vbox-container to the value ⟨height⟩−⟨current

6 Again, note how the three lines in the paragraph are
pushed apart by the unchanged depth and new height of the
box

line height⟩: The bottom property moves the box
upwards, while the margin-top property makes sure
that the boundary box grows acordingly, instead of
the moved box overlapping with other elements.7

Conversely, if we manipulate the depth of a \vtop,
we can set the height of the .vtop HTML node itself
to ⟨depth⟩+⟨current line height⟩.

Annoyingly, it now turns out that height/depth
manipulations on \vboxes and \vtops (respectively)
do not play well with vertical-align CSS proper-
ties within paragraphs – the boxes are not correctly
aligned vertically. When explicitly setting these di-
mensions, it is therefore necessary to, as with \vrule,
introduce an intermediate HTML node with class
.vbox-height-container to achieve the effect.

4 Paragraphs

At a first glance, paragraphs in TEX seem largely
stright-forward:

.paragraph {

text-align:justify;

display: inline-block;

margin-top: auto;

}

The margin-top:auto assures that paragraphs are
vertically aligned at the bottom of \vboxes.

Any horizontal material (text, \noindent, \unhbox,...)
outside of a paragraph or an \hbox (and similar con-
structions) opens a new paragraph, and \par closes
it again.

If we were primarily interested in document se-
mantics without caring about the page layout dic-
tated by TEX, we could be done at this point. How-
ever, in TEX, paragraphs have fixed widths dictated
by several parameters and commands, including \hsize,
\leftskip, \rightskip, \hangindent and \hangafter,
and \parshape. This matters when a paragraph is
opened inside a \vbox. Consider e.g.

Lorem ipsum \vbox{Some Text} Lorem ipsum

Lorem ipsum Some Text Lorem
ipsum

The Some Text in the \vbox opens a new paragraph,
including indentation, and that paragraph has width
\hsize, regardless of its contents. The \vbox itself
then inherits the full width of the containing para-
graph.8

7 The same idea is used for \raise/\lower.
8 Here, we set \hsize to a smaller value to attempt to

demonstrate the effect without breaking the layouting of this
very document too much.

TUG 2023 ❊ 22

? 8 draft: 2023-06-14 10:10 TUGboat, Volume 0 (9999), No. 0

Approximating this behaviour (in the absence
of dedicated macro support) matters, for example
to accomodate \begin{minipage}s, tcolorbox and
similar packages. This is also one instance where
TEX is significantly more flexible than HTML/CSS:
\hangindent and \parshape do not have CSS equiv-
alents. While in principle in might be possible to
“emulate” them using empty <div> nodes with float

attributes, we currently ignore them and proceed as
if the whole paragraph were typeset according to the
rules applying to the last line; e.g. the last entry in
the \parshape list.

The relevant parameters can subsequently be
condensed into three attributes, in the simplest case
computed thusly: 1. the actual width of the text
(\hspace−(\leftskip+\rightskip)), and 2. left
and right margins (\leftskip and \rightskip),
which we translate to the CSS attributes min-width,
margin-left and margin-right, respectively.

Notably, to accomodate macros that make use
of computed dimensions of various boxes, we need to
approximate TEX’s line breaking algorithm to make
sure that the computed heights of paragraphs are
reasonably accurate.

5 Responsiveness and Relative Widths

The above suggests, that we need to hardcode the
absolute widths of both the document as a whole
(in the sense of \textwidth/\pagewidth) as well
as the widths or paragraphs and \hboxes. This is
of course undesirable in that it destroys responsive
layout in HTML. Ideally, we would prefer to use
relative widths in terms of percentages.

Regarding the document width, this is easily re-
solved: Instead of letting width:⟨text width⟩, we set
max-width:⟨text width⟩. This way, the page accomo-
dates smaller screen, but if enough screen space is
available will default to the size the document was
originally designed for.

Relative widths in general however only work as
expected if the direct parent of a node has a fixed as-
signed width, and as previously mentioned, in as far
as possible we want to defer the precise dimensions
of HTML nodes to the rendering engine. Moreover,
once we have a box width width:0, no percentage
will get us back to a non-zero value. Both problems
were solvable if CSS would allow for inheriting at-
tribute values from arbitrary ancestors, but since it
does not, we need to be more creative:

Instead of directly inheriting, we can use a cus-
tom CSS property --current-width and initialize it
as --current-width:min(100vw,⟨text width⟩);
width:var(--current-width) in the body. This achieves
the same effect as the more naive approach above,

but now allows for stating other widths in the body
of the HTML node as values relative to the --current-width
attribute.

Using this approach, all relative widths in a
document are now relative to the current document’s
initial \textwidth. This is problematic in the con-
text of STEX, where the \inputref macro largely
replaces TEX’s \input: Besides allowing for refer-
encing source files relative to a math archive (i.e.
a “library” of document snippets), which is impor-
tant for building modular libraries, when converting
to HTML \inputref simply inserts a reference to
the file, that can subsequently be dynamically in-
serted into the referencing document. This obviates
the need to both reprocess the same file for every
context in which it occurs, as well as to rebuild all
referencing files every time any of the \inputrefed
files change. Notably, such \inputrefs often occur
deeply nested, e.g. a file with a short individual defi-
nition might be \inputrefed in an \begin{itemize}
environment in a definition block in a framed beamer
slide within lecture notes. This entails that we would
like to inherit widths from the closest ancestor with
a fixed assigned width > 0 (e.g. the innermost \item
in the example above) rather than the <body>, and
update the value of --current-width accordingly, to
accomodate any document context in which the HTML

node might (dynamically) occur.
Hence, when encountering e.g. a (top-level)

\vbox with width 0.5\textwidth (e.g. a \begin{minipage}),
we would like to do:

<div class="vbox" style="--current-width:calc(

0.5 * var(--current-width));

width:var(--current-width)">...</div>

Unfortunately, CSS does not allow for self-referential
attribute updates; so we have to use an intermediary
custom attribute --temp-width and an inner
to do the following:

<div class="vbox" style="--temp-width:calc(

0.5 * var(--current-width));

width:var(--temp-width)">

<span style="display:contents;

--current-width:var(--temp-width)

">...</div>

to achieve the desired effect. While this is ugly from
an implementation point of view, it allows for vari-
able viewport widths and solves the problem with
inheriting widths through boxes of size 0.

6 Skips and Text Alignment

In section 4, we acted as if \leftskip and \rightskip
where simple dimensions – i.e. values of unit pt.

TUG 2023 ❊ 23

TUGboat, Volume 0 (9999), No. 0 draft: 2023-06-14 10:10 ? 9

Skips actually have three components: A base di-
mension, an (optional) stretch factor, and an (op-
tional) shrink factor. A skip represents a (horizon-
tal or vertical) space that is ideally ⟨base dimension⟩
wide/high, but can stretch or shrink according to the
other two components to fit the current page layout.
Stretch and shrink factors have one of four units pt,
fil, fill or filll, the latter three representing
“increasingly infinite” stretch/shrink factors.

Skips are used to introduce vertical or horizon-
tal space, using the \hskip and \vskip commands.
Focusing solely on their base dimensions for now,
both can be represented as empty <div> nodes with
corresponding margin-left or margin-bottom values,
respectively. Conveniently, this works with both
positive and negative base dimensions, and we can
use the same mechanism for \kern, which for all
practical purposes behaves like \hskip or \vskip

with zero stretch/shrink. This allows us to cover
both of the following cases:

\noindent some text \hskip20pt some text\par

\noindent some text \hskip-20pt some text

some text some text
some textsome text

If we add a strech factor, we can e.g. achieve
the following:

\noindent some text \hskip20pt plus 1filll

some text\par

some text Some text

Unfortunately, CSS has no analogue for stretch
and shrink factors. For shrink, this largely causes
no serious issues. Stretch factors however are pri-
marily used to achieve (primarily horizontal) align-
ment. Left-aligned, centered, or right-aligned con-
tent is achieved in TEX by inserting corresponding
skips; so the best we can do is to represent skips as
the CSS text-align property:

If \leftskip or \rightskip have stretch fac-
tors, we compare them and set the alignment for
the paragraph accordingly. For \hbox, we need to
inspect the contents of the box for initial and termi-
nal occurrences of relevant skips, compare them, and
derive the intended alignment depending on which
is “bigger”.

Additionally, we can add margin-left:auto to
the <div>s corresponding to skips iff they have a
stretch factor of (at least) 1fil; however, this only
works in \hboxes (not in paragraphs), and does not
necessarily behave right in conjunction with other
skips. Thankfully, text alignment seems to be the
primary regularly occuring situation where skips are

noticable and important to represent accurately in
the HTML, which this heuristical approach seems to
cover reasonably well – while discrepancies between
PDF and HTML can be easily found, they are usually
not severe.

7 Math Mode

For stomach elements in math mode, we naturally
use Presentation MathML. Translating the relevant
primitives toMathML is largely straight forward and
covered elsewhere [9], with the slight “moderniza-
tion” that we prefer CSS over MathML attributes.
Since the font used for MathML depends on the ren-
dering engine, and some of them are rather unsat-
isfactory (e.g. vanilla Firefox under Ubuntu), we
can explicitly set the font to Latin Modern Math

for a more unifying look. Skips and kerns are imple-
mented as above, but using <mspace> nodes instead
of <div>.

Regarding font sizes, we can either defer to the
rendering engine or leave that up to TEX– in which
case we need to make sure that we override the CSS

rules imposed by the rendering engine via:

msub > :nth-child(2), msup > :nth-child(2),

mfrac > * , mover > :not(:first-child),

munder > :not(:first-child) {font-size:inherit}

More pressingly however, occurrences of \hbox
or \vbox in math mode require us to “escape” back
to HTML in <math> elements. While not officially
supported, using <mtext> nodes for that works well
in both Firefox and Chromium (and with some hack-
ing with MathJax). However, when doing so, vari-
ous CSS properties are inherited from those set by
the default stylesheet for MathML. Hence, whenever
we escape back to horizontal or vertical mode, we
explicitly insert the parameters of the current text
font, and set:

mtext {

letter-spacing: initial;

word-spacing: initial;

display: inline-flex;

}

As mentioned in [9], spacing around operators
(i.e. <mo> nodes) is governed by an operator dictio-
nary. The spacing rules are in principle well-chosen
and best left to the rendering engine. TEX can
change these however, using the commands \mathop,
\mathbin, etc.

To accomodate this functionality, we can ex-
plicitly set left and right padding based on TEX’s
math character class, and set:

mo {padding-left: 0;padding-right: 0}

TUG 2023 ❊ 24

? 10 draft: 2023-06-14 10:10 TUGboat, Volume 0 (9999), No. 0

Notably, this works (as of May 2023) in Fire-
fox, but not in Chromium-based browsers9, where
the spacing determined by the operator dictionaries
is effectively a minimum that can not be reduced
further.

Changing these spacing factors can occasionally
be important when composing symbols from more
primitive ones. For example, the \Longrightarrow
macro =⇒ concatenates the symbols = and ⇒ with
a negative \kern between them - in which case unin-
tended spacing between the two symbols can break
the intended result.

8 \halign

The \halign command is the primary means LATEX
packages use to layout tables, and not surprisingly,
its closest correspondants in HTML are <table> nodes.
However, as with text alignment, effects that in HTML

are achieved via attributes of the parent node (<table>,
<tr> or <td>) are achieved in TEX via content el-
ements in the individual cells – or between them:
Where a table in HTML is exactly a sequence of rows
consisting of cells, in TEX, the \noalign command
allows for inserting vertical material between rows,
which is used to insert horizontal lines (e.g. \hline)
or determine the spacing between rows. Borders and
spacing between cells are achieved via \vrules and
skips.

Hence, we have to face two major problems
when translating \haligns to <table>s:

1. If we want to accomodate spacing, text align-
ments and borders, we need to “parse” the con-
tents of cells and \noalign blocks to determine
which CSS attributes to attach to the <table>,
<tr> and <td> nodes. This is worsened by the
fact that the margin attributes on <td> and
<tr> nodes have no actual effect.

2. The height of a <tr> is computed from the ac-
tual height of its children, and even enclosing
a whole cell in a <div> with height:0 does not
change the actual height of the relevant <tr>.

While the former problem is inconvenient but solv-
able, the latter becomes severe if we consider less
obvious situations that \halign is used for: For ex-
ample, the \forkindep macro mentioned above (i.e.
|⌣) uses \ooalign to combine the two characters
| and ⌣, which uses an \halign to superimpose
them, forcing us to make the rows narrower than
<tr>s allow for.

Therefore we use the CSS grid model for \halign
rather than the (seemingly more adequate) <table>:

9 conversely, scaling brackets properly with
stretchy="true" seems to not work in Firefox as of
yet.

.halign {

display:inline-grid;

width: fit-content;

grid-auto-rows: auto;

}

with cells being styled like .hbox with the additional
attributes height:100%;width:100%, and any \halign
with n columns being given the additional CSS at-
tribute grid-template-columns:repeat(n,1fr). This
aligns the individual cells almost exactly like <table>
would, but gives us the more control over their in-
tended heights. \noalign vertical material can now
be inserted in a .vbox <div> with grid-column:span n.
Notably, this entirely obviates the need to imple-
ment special rules for visible borders or spacing be-
tween rows/columns: The existing treatment for \vrule/\hrule
and skips produces (almost universally) the desired
output out of the box.

Notably, empty cells in \halign are not actu-
ally empty. Consider:

\halign{#&#\cr a&b\cr c&d\cr&\cr e&f\cr}

ab
cd

ef

Note that the third row really is entirely empty, with
no spacing involved. Instead, we get a row that has
roughly the same height as the other three. We can
remedy this effect via:

\baselineskip=0pt\relax

\halign{#&#\cr a&b\cr c&d\cr&\cr e&f\cr}

ab
cd
ef

or do even more ridiculous things:

\baselineskip=0pt\relax

\lineskiplimit=-100pt\relax

\halign{#&#\cr a&b\cr c&d\cr&\cr e&f\cr}

abcdef

This entails, that we now need to take \baselineskip
and \lineskiplimit into account and use them to
compute min-height (for \baselineskip) or height
values (in case of sufficiently negative \lineskiplimit
values) for the cell’s HTML node.

9 Limitations

This brings us to the first insurmountable differ-
ence between TEX and CSS: lines. A line of text in

TUG 2023 ❊ 25

TUGboat, Volume 0 (9999), No. 0 draft: 2023-06-14 10:10 ? 11

TEX consists of individual character boxes with indi-
vidual heights, widths and depths, and the spacing
between lines is governed by the three parameters
\baselineskip (the “default” distance between two
baselines), \lineskiplimit (the minimally allowed
distnce between the bottom of a line and the top of
the subsequent one), and \lineskip (the minimal
skip to insert between two lines, if their distance
is below the \lineskiplimit). In particular, the
height of a horizontal box containing e.g. a single
character is entirely determined by the height of that
particular character.

In contrast, a line of text in HTML/CSS has a
fixed height of the current line-height value regard-
less of the occurring characters – and every single
character counts as a “line”: for every character, a
leading space is inserted on top of it to make the con-
taining box adhere to the line-height. This makes
box manipulation on the level of individual charac-
ters currently (almost) impossible.10

One striking example for this is the \LaTeX

macro, where the A is enclosed in a \vbox. RUSTEX
replaces its expansion by a simple \raise\hbox to
achieve the (almost) same effect.

Situations where layouting critically depends on
very precise positioning and sizing of boxes remains
tricky. This is the case for example with the tikzcd
package, where the nodes are layout as tables, with
pgf arrows between the individual cells.

Various macros make use of LATEX floats in non-
trivial ways, such as \marginpar and the \begin{wrapfig}
environment, making special treatment for them (as
of yet) unavoidable.

The xy package is a clear example of where,
due to its usage of custom fonts, there is currently
no feasible way to achieve support in terms of TEX
primitives alone; anecdotally, I have been told that a
pgf driver for xy is in the works, which, if completed,
would likely immediately work for RUSTEX as well.

10 Conclusion

Despite the limitations mentioned above, the schema
presented here works surprisingly well in a variety of
cases. For example, list environments (\begin{itemize},
\begin{enumerate}, etc.), \begin{lstlisting}, fig-
ures, \begin{algorithmic}, tcolorbox, various en-
vironments for definitions, theorems and examples,
bibtex and biblatex, and many other macros, en-
vironments and packages with often intricate op-
tions and configurations, work out of the box with-

10 A proposal to the W3C CSS WG regarding leading
space, which would presumably help here, has been open since
2018: github.com/w3c/csswg-drafts/issues/3240

out special treatment and with the expected presen-
tation in the HTML.

Indeed, it is certainly surprising how much can
be achieved without providing dedicated implemen-
tations for non-primitive macros, to the point where
I am nowadays more surprised if the schema fails
than when it succeeds.

To mention one particular highlight: A tongue-
in-cheek paper was published in May 2023 on arxiv.
org that argued for solving the order-of-authors prob-
lem in scientific publishing by overlaying all the au-
thor names on top of each other, including instruc-
tions how to achieve that in both TEX and HTML [1].

Running RUSTEX over the LATEX sources for the
paper produced the right layout directly (see Fig-
ure 1).

PDF:

HTML:

Figure 1: Screenshots from [1] in PDF and RUSTEX
generated HTML

TUG 2023 ❊ 26

? 12 draft: 2023-06-14 10:10 TUGboat, Volume 0 (9999), No. 0

The most important aspect for generating ad-
equate (and often great) HTML seems to be the
“proper” treatment of \hbox/\vbox, \hrule/\vrule
and skips/kerns, which RUSTEX implements as de-
scribed here. Their treatment should be relatively
easy adaptable to, and usable by, other HTML con-
verters as well, where “PDF-like” HTML output is
desirable.

The most dire limitations are often related to
intrinsic limitations of CSS– presumably, any exten-
sion of CSS that allows for more fine-grained con-
trol, especially on the character level, would allow
for even better translations from TEX.

Future Work Naturally, some of the techniques
described here have been slightly simplified and are
augmented in practice via various heuristics that
are still subject to experimentation and improve-
ments. Other discrepancies or problems are usually
addressed (if possible) as we become aware of them
(which still happens regularly).

Acknowledgements The presented research is part
of the VoLL-KI project, supported by the Bundesmin-
isterium für Bildung und Forschung (BMBF) under
grant 16DHBKI089.

References

[1] Erik D. Demaine and Martin L. Demaine. Ev-
ery Author as First Author. 2023. arXiv: 2304.
01393 [cs.DL].

[2] David Fuchs. “TeX Font Metric files”. In: Com-
munications of the TeX Users Group (TUG-
boat). Vol. 2. 1. 1981, pp. 53–61. url: https:
//www.tug.org/TUGboat/tb02-1/tb02fuchstfm.

pdf.

[3] Donald E. Knuth. The TEXbook. AddisonWes-
ley, 1984.

[4] Michael Kohlhase and Dennis Müller. The sTeX3
Package Collection. Tech. rep. url: https:
//github.com/slatex/sTeX/blob/main/

doc/stex-doc.pdf (visited on 04/09/2023).

[5] MathJax: Beautiful Math in all Browsers. http:
//mathjax.org. url: http://mathjax.com.

[6] Bruce Miller. LaTeXML: A LATEX to XML Con-
verter. url: http://dlmf.nist.gov/LaTeXML/
(visited on 03/12/2021).

[7] Dennis Müller. “Mathematical Knowledge Man-
agement Across Formal Libraries”. PhD the-
sis. Informatics, FAU Erlangen-Nürnberg, Dec.
2019. url: https://opus4.kobv.de/opus4-
fau/files/12359/thesis.pdf.

[8] Dennis Müller and Michael Kohlhase. “sTeX3
– A LATEX-based Ecosystem for Semantic/Ac-
tive Mathematical Documents”. In: TUGboat;
TUG 2022 Conference Proceedings. Ed. by Karl
Berry. Vol. 43. 2. 2022, pp. 197–201. url: https:
/ / kwarc . info / people / dmueller / pubs /

tug22.pdf.

[9] Luca Padovani. “MathML Formatting with TeX
Rules, TeX Fonts, and TeX Quality”. In: Com-
munications of the TeX Users Group (TUG-
boat). Vol. 24. 1. 2003, pp. 53–61. url: https:
//tug.org/tugboat/tb24-1/padovani.pdf.

[10] Pandoc – a universal document converter. https:
//pandoc.org/. 2023.

[11] sLaTeX/RusTeX. url: https://github.com/
sLaTeX/RusTeX (visited on 04/22/2022).

[12] TeX4ht. https://tug.org/tex4ht/. url:
https://tug.org/tex4ht/.

TUG 2023 ❊ 27

preliminary draft, June 20, 2023 21:56 preliminary draft, June 20, 2023 21:56

TUGboat, Volume 0 (9999), No. 0 preliminary draft, June 20, 2023 21:56 ? 1

Primo — The new sustainable solution for
publishing

Rishikesan Nair T, Apu V and Hàn Th´̂e
Thành, Jan Vaněk

Abstract

Primo is a cutting-edge, cloud-based authoring, sub-
mission, and proofing framework that provides a
sustainable solution for academic publishing. It com-
bines the advantages of XML-based workflows that
facilitate controlled authoring and/or editing in ac-
cordance with specific dtds and house styles, with
the visually appealing and mathematically precise
typesetting language of TEX, enabling the creation
of high-quality PDFs and mathematical images (of-
fering an alternative to MathML coding).

By speaking the widely accepted communicat-
ing lingua of mathematics and science (i.e., TEX),
and utilizing the XML/MathML format for archiv-
ing, Primo has the potential to revolutionize the
publishing industry. This tool caters to both the
author and the publisher, bringing their needs to-
gether with enhanced participation of authors in
the publishing process. The three main modules
of Primo include Authoring, Submission/Reviewing,
and Proofing, all of which are equipped with usabil-
ity checks during submission, a collaborative editing
feature, a wysiwyg math editing tool, and pub-
lisher/journal-based PDF manuscript rendering. With
Primo, authors can be assured that their work will
be published with the highest level of precision and
quality.

1 Introduction

Primo, the latest addition to the lineup of TEX-
based tools, is developed by STM Software Engi-
neering Pvt Ltd. who is a specialized TEX type-
setting house renowned for its top-notch typeset-
ting and pre-press services, catering to the needs
of stm publishing giants specialized in the complex
article typesetting. With its state-of-the-art tech-
nologies, STM Software Engineering Pvt Ltd. de-
veloped a range of cloud-based typesetting frame-
works, including TEXFolio [1] and Ithal [2], primar-
ily designed for in-house typesetting and format con-
version purposes within publishing houses. On the
other hand, Neptune [3] and Primo target authors
directly, providing them with efficient and user-friendly
TEX-based tools.

2 Primo

Primo’s modular structure and well-designed tools
enable authors to navigate the entire publication

journey with ease, from initial authoring to final
proofing. By integrating these three modules, Primo
optimizes the authoring, submission, and proofing
processes, making it a comprehensive and efficient
platform for scholarly publishing.

2.1 Authoring tool

An intriguing offshoot of the aforementioned pro-
cesses is a stand alone authoring tool, codenamed
Primo Editor. This tool encompasses all the nec-
essary elements to effortlessly compose an article
that meets all technical requirements for seamless
uploading to a publisher.

2.1.1 Salient features

Please note that while the below list covers the main
features, there are undoubtedly additional features
yet to be mentioned that further enhance the func-
tionality and user experience of the tool.

1. Collaborative Editing: Multiple authors can
contribute simultaneously.

2. Operating System Independence: The tool
shall be operating system independent and will
have a wysiwyg interface.

3. Cloud-Based with TeX Installation: A com-
pletely cloud-based version with a TEX instal-
lation comprising of essential packages, fonts,
compiler and utilities. The user need not worry
about installation or setting up of a TEX distro
in their local system.

4. Proper template: With the Primo author-
ing tool, authors no longer need to spend time
searching for the appropriate template for their
submissions. The tool offers a comprehensive
collection of templates, and by simply provid-
ing the name of the journal and publisher, it au-
tomatically selects the most suitable template.
This eliminates the hassle of manually locating
the correct template and ensures that authors
can focus on their content without the added
burden of formatting.

5. Math Input: Users can enter mathematical
equations using LATEX syntax or utilize built-in
math tools from the menu.

6. Form-Like Interface: A user-friendly form-
like interface is available to capture front mat-
ter data such as author information, affiliations,
abstract, keywords, graphical or stereo-chemical
abstracts, and more.

7. WYSIWYG Interfaces for Tables and Fig-
ures: wysiwyg interfaces for entry of table
and figure data.

TUG 2023 ❊ 28

preliminary draft, June 20, 2023 21:56 preliminary draft, June 20, 2023 21:56

? 2 preliminary draft, June 20, 2023 21:56 TUGboat, Volume 0 (9999), No. 0

Figure 1: Primo: The main page.

Figure 2: The author and affiliation field.

TUG 2023 ❊ 29

preliminary draft, June 20, 2023 21:56 preliminary draft, June 20, 2023 21:56

TUGboat, Volume 0 (9999), No. 0 preliminary draft, June 20, 2023 21:56 ? 3

Figure 3: Math content rendering.

TUG 2023 ❊ 30

preliminary draft, June 20, 2023 21:56 preliminary draft, June 20, 2023 21:56

? 4 preliminary draft, June 20, 2023 21:56 TUGboat, Volume 0 (9999), No. 0

Figure 4: The primo drive.

8. BibTeX Support: BibTEX data is always wel-
come if the user prefers to use the same.

9. Bibliography Data Checking: Checking bib-
liography data with Cross-ref is an added ben-
efit.

10. Bibliography Import: With the help of Primo,
users can easily import bibliography data using
identifiers such as dois (Digital Object Identi-
fiers) or pmid (PubMed IDs), streamlining the
referencing process.

11. Enhanced Author Participation: The tool
promotes active author involvement in the pub-
lishing process, minimizing errors and semantic
inconsistencies introduced by typesetters. This
enhances the overall quality and reduces the
time gap between submission and publication.

12. Compliance Checking: The tool automati-
cally checks the manuscript’s adherence to the
specific style guidelines of the publisher or jour-
nal, ensuring compliance with formatting re-
quirements.

These features collectively provide a compre-
hensive and user-friendly platform for collaborative
manuscript preparation, improving the efficiency and
quality of the publishing process.

2.2 Submission tool

The submission process for authors can often be ar-
duous and time-consuming. With strict timelines

and numerous procedures to navigate, authors often
find it challenging and frustrating. Primo seeks to
alleviate these difficulties faced by the author com-
munity. In its initial stage, this authoring tool as-
sists authors in crafting their manuscripts in com-
pliance with the specific style requirements of pub-
lishers and journals. The subsequent step involves
a seamless transfer of the source files to the submis-
sion system employed by publishers.

2.2.1 Salient features

1. Source files: Since the source files were al-
ready prepared as per the specification using
the authoring tool, there will not be any sur-
prises in the submission system.

2. Proper submission: Transferring files directly
from author tool to submission tool and finally
to the publishers’ submission system helps to
eliminate chances for any missing files or mate-
rials.

3. File category: In the popular submission sys-
tems, we have to select the file type of each
source file that we upload. For example, ”Man-
uscript”, ”Revised Manuscript”, ”Figure”, etc.
Primo tool helps to sort this out easily and helps
authors to identify which is which.

4. Usability check: Depending on the compli-
ance of the submission system to which finally
the source files are uploaded for the publisher,

TUG 2023 ❊ 31

preliminary draft, June 20, 2023 21:56 preliminary draft, June 20, 2023 21:56

TUGboat, Volume 0 (9999), No. 0 preliminary draft, June 20, 2023 21:56 ? 5

the Primo submission tool runs a custom-made
usability check on the source files and reports
problems any problems with the source files.
This will help those authors who prepare man-
uscript in their system or any other interface
and directly upload source files to the Primo
submission tool.

2.3 Proofing tool

The proofing tool plays a crucial role in Primo. Once
the typesetting process is complete, the typesetter
uploads or imports a dataset that includes the arti-
cle’s XML/MathML, figures, supplementary materi-
als such as audio, video, program codes, and alter-
native images for MathML, among others.

The format of the dataset is simple and it looks
like:

Archive: ENDEND_99996.zip

Name

ENDEND_99996.pdf

main.assets/

main.assets/fx1006.jpg

main.assets/gr1.jpg

main.assets/fx999.jpg

main.assets/gr2b.jpg

main.assets/mmc1.pdf

main.assets/fx1001.jpg

main.assets/fx1004.jpg

main.assets/fx1.jpg

main.assets/fx1005.jpg

main.assets/fx1002.jpg

main.assets/gr2a.jpg

main.assets/fx1003.jpg

main.assets/fx1007.jpg

main.pdf

main.stripin/

main.stripin/si33.svg

main.stripin/si121.svg

main.stripin/si165.svg

....................

....................

....................

2.3.1 Salient features

1. Track changes: This facility helps the authors
to understand the changes made by the type-
setters in their document. The accept and re-
ject buttons can be used to accept or reject the
changes made by the typesetters. The visualize
mode in the track changes further has two fea-
tures. They are to visualize the changes made
by the authors and to visualize the changes made
by the copy-editors or co-authors.

2. Comment: If authors are unsure about how a
change is to be done, then the comment facility
can be used to put a comment.

3. Queries: Queries raised by the typesetters or
copy-editors are available in the query panel.
Authors can provide reply to the queries just
below the queries.

4. DTD compliant: All the features allowed by
the dtd can be used. For example, they cannot
insert a figure in the author field since the dtd
does not support that.

5. Changing the order: Order of author names
or position of given and surname or just the
content can be swapped.

6. List: Changing the formats of the list counters
or when inserting a new list, selecting the for-
mat of the counters is just easy by using the
drop-down menu facility.

7. Intelligent insertions: Since the tool follows
the dtd faithfully, the insert menu will show the
items according to the content model only. So if
you are in a paragraph, the drop-down list will
show sections, math (both inline and display),
list, display quote, etc. However, if you are in
the reference section, the insert menu will show
bib-entry, bibliography section, etc.

3 Technologies behind Primo

Primo is written mostly in Scala, both server-side
and client-side. The client-side is compiled using
Scala-JS to JavaScript. On the server-side, Scala is
compiled to Java byte-code and runs in the JVM.
It can seamlessly inter-operate with existing Java
libraries. The development environment is Intellij
IDEA, the build-tool is SBT. Primo uses its own
widget library called VDL, part of the Primo code
base.

Primo doesn’t have many external dependen-
cies. We use following ”major” libraries:

• JDK obviously

• undertow - the web-server, like tomcat, but smaller

• sqlite - for the DB

• lucene - full-text index of the documents

And some ”minor” libraries:

• xpp3 - XML parser

• scala-js DOM, java-time, java-logging

• boopickle, scala-css, and some others

References

[1] Rishikesan Nair T., Rajagopal C.V., and Rad-
hakrishnan C.V. TEXFolio — a framework to
typeset XML documents using TEX. TUGBoat

TUG 2023 ❊ 32

preliminary draft, June 20, 2023 21:56 preliminary draft, June 20, 2023 21:56

? 6 preliminary draft, June 20, 2023 21:56 TUGboat, Volume 0 (9999), No. 0

40(2), 147–149. 2019.
https://tug.org/TUGboat/tb40-2/

tb125rishi-texfolio.pdf

[2] https://ithal.io/main.html

[3] Aravind Rajendran, Rishikesan Nair T., and
Rajagopal C.V. NEPTUNE — a proofing
framework for LATEX authors. TUGBoat 40(2),
150–152, 2019.
https://tug.org/TUGboat/tb40-2/

tb125rajendran-neptune.pdf

� Rishikesan Nair T, Apu V
STM Document Engineering Pvt

Ltd.,
River Valley Campus,
Mepukada, Malayinkizh,
Trivandrum 695571,
India
rishi (at) stmdocs dot in, apu.v

(at) stmdocs dot in

https://stmdocs.org

� Hàn Th´̂e Thành, Jan Vaněk
Trivic s.ro., Družstevni 161, 763 15

Slušovice, Czech Republic
thanh (at) trivic dot io, jan

(at) trivic dot io

https://trivic.io

TUG 2023 ❊ 33

TUGboat, Volume 0 (9999), No. 0 draft: June 13, 2023 06:51 901

Curvature combs and harmonized paths in
METAPOST

Linus Romer

Abstract

Most font editors offer curvature related tools. One
of these tools is the visualization of curvature via
curvature combs. Another tool is the so-called harmo-
nization, which makes the curvature continuous along
paths. An implementation of both tools in META-
POST will be presented. Curvature optimized paths
already play a significant role in METAFONT and
METAPOST and therefore some exemplary META-
POST paths will be examined for their curvature
behavior.

1 Curvature

The curvature in a point of a curve is the inverse
of the radius of the osculating circle at this point
(depicted here as a “curvature vector” on the opposite
side of the radius):

1
2

2

1
2

2

For straight segments, the curvature is constantly
zero, since the radius of the osculating circle is in-
finitely large. Vice versa, the curvature becomes
infinitely large when the radius of the osculating
circle tends to zero.

2 Curvature combs in METAPOST

We can assemble these curvature vectors into a cur-
vature comb:

The curvature may be additionally mapped to a color
and the gaps may be filled:

A figure as above can be achieved by

path p; p = ⟨path⟩ ; comb(p,300); draw p;

using the comb macro that will be presented here
(the 300 scales the curvature comb). We start by
defining the macro crossprod that returns the cross
product between two given vectors w⃗ and z⃗:

primarydef w crossprod z =

(xpart w * ypart z - ypart w * xpart z)

enddef;

Then the macro curv shall be applied to a path
p in order to return a “curvature vector” that is
orthogonal to the path in its initial point. The length
of the vector is proportional to the initial curvature
of the path:

vardef curv expr p =

save v,w,l; pair v,w;

v = direction 0 of p;

l = length v;

v := v/l;

w = (point 0 of p - 2*postcontrol 0 of p

+ precontrol 1 of p)/l;

2/3*(v crossprod w)/l*(v rotated -90)

enddef;

Here is the math behind this macro. A cubic Bézier
segment can be described by:
(
x(t)

y(t)

)
= t3(3Q⃗− P⃗ + S⃗ − 3R⃗) + 3t2(P⃗ − 2Q⃗+ R⃗)

+ 3t(Q⃗− P⃗) + P⃗

P⃗

Q⃗ R⃗

S⃗t = 0 t = 1

The initial derivatives are then:(
ẋ(0)

ẏ(0)

)
= 3 (Q⃗− P⃗)︸ ︷︷ ︸

=:v⃗

(
ẍ(0)

ÿ(0)

)
= 6 (P⃗ − 2Q⃗+ R⃗)︸ ︷︷ ︸

=:w⃗

The signed curvature is calculated by

(
ẋ
ẏ

)
×

(
ẍ
ÿ

)
∣∣(ẋ

ẏ

)∣∣3 .

Using l := |v⃗| we finally have the formula used in the
macro for the initial curvature:

3v⃗ × 6w⃗

(3l)3
=

2

3

v⃗ × w⃗

l3
=

2

3l
·
(
1

l
v⃗ × 1

l
w⃗

)

The divisions by l are necessary to prevent arith-
metic overflows. The special case

∣∣(ẋ(0)
ẏ(0)

)∣∣ = 0 is not

handled here. The curvature then would diverge to
±∞ (or be 0 if the cubic Bézier segment is a line
segment).

Now we define the curvature comb macro of a
path p by subdividing each segment in 50 parts and
filling an area over each part. Each part of the comb
is made of two subsequent “curvature” vectors k⃗, c⃗
that are scaled by a constant factor s given by the
user. The color depends on the average length of
them.

xnotdoi.org/10.47397/tb/0-0/curvaturecombharmonize

Curvature combs and harmonized paths in METAPOST

TUG 2023 ❊ 34

902 draft: June 13, 2023 06:51 TUGboat, Volume 0 (9999), No. 0

t = 0 t = 1

t = i−1
50

t = i
50

c⃗

k⃗

p

q

vardef comb(expr p,s) =

save q,c,k; path q; pair c,k;

for n = 0 upto length(p)-1:

c := s * curv subpath(n,n+1) of p;

for i = 1 upto 50:

k := c;

c := s * curv subpath(n+i/50,

n if i<25: +1 fi) of p;

q := subpath(n+(i-1)/50,n+i/50) of p;

fill q -- point 1 of q + c

-- point 0 of q + k

-- cycle withcolor

(1,1/(1+.1*.5[length c,length k]),0);

endfor

endfor

enddef;

The condition if i<25: +1 fi makes the subpath
as large as possible to get better accuracy.

A curvature of 0 is mapped to yellow and an
infinitely large curvature is mapped to red. This is
done by changing the green value between 1 and 0.
If you increase the .1, the green value tends faster
to 0.

3 Harmonize paths in METAPOST

In METAPOST, the code

z0 = (70,60); z1 = (0,30); z2 = (20,0);

draw z0{left} .. z1 .. z2{right};

produces the following curve:

z0

z1

z2

While the directions at the start and the end of the
path were set by the user, METAPOST has chosen
the angle of the path in z1 to equalize the so-called
mock curvature on both sides. The mock curvature is
a Taylor approximation of the real curvature (Hobby,
1986). After that, two cubic Bézier segments that
nearly minimize the curve energy have been drawn
between the given points.

z0

z1

z2

z0{left}

.. z1

.. z2{right}

The curvature comb in the preceding picture shows
that the curvature in z1 indeed is not continuous
but only near continuous. When a user sets the
direction in the joining knot, METAPOST has no
possibility to optimize the curvature in the joint and
the curvature often changes more abruptly in the
joint (see the following picture). However, this case
is frequent in type design because knots at horizontal
and vertical extrema are preferred over knots with
arbitrary direction.

z0

z1

z2

z0{left}

.. z1{down}

.. z2{right}

Fortunately, a METAPOST path can be modified to
a curvature continuous curve by the later defined
harmonize macro that moves the joining knot along
its tangent:

z0

z1

z2

harmonize z0{left}

.. z1{down}

.. z2{right}

4 The math of harmonization

Assume two adjoint cubic Bézier segments that have
the same direction in their joint and do not have
zero-handles. Furthermore, assume the joining knot
to not be a point of inflection. By translation and
rotation we can force one control point next to the
joining knot to lie on the origin of the coordinate
system and the joining knot tangent to lie on the
x-axis:

(..., d)

(0, 0)

(g, 0)

(i, 0)

(..., l)

We want to choose g such that the curvature is con-
tinuous. So the curvature on both sides of (g, 0) must

Linus Romer

TUG 2023 ❊ 35

TUGboat, Volume 0 (9999), No. 0 draft: June 13, 2023 06:51 903

be equal:

2d

3g2
=

2l

3(i− g)2

In the special case d = l, we get g = i− g. Solving
for g we get

g =

{
d±

√
dl

d−l · i if d ̸= l,
i
2 else.

Since
√
dl is the geometric mean between d and l,

the solution d−
√
dl

d−l · i guarantees the joining knot to
lie between its control points.

(..., d)

(0, 0)

(d−
√
dl

d−l · i, 0)
(i, 0)

(..., l)

If either d or l is zero, g = d−
√
dl

d−l · i becomes either 0
or i. That means, that the joining knot will become
collocated with one of its control points, which gener-
ally should be avoided. One reason for this avoidance
is that the curvature might become infinitely large:

(..., 0)

(0, 0)

(i, 0)

(..., l)

undesireable

So, we will not alter the paths at all in the case of
either d or l being zero. This case occurs also when
a straight line goes over to a curve, which is quite
frequent in type design:

When the joining knot is a point of inflection, the
curvatures 2d

3g2 and 2l
3(i−g)2 must have different signs.

(..., d)

(0, 0)

(g, 0) (i, 0)

(..., l)

Hence, a curvature-continuous solution forces d =
l = 0. A curvature continuous solution then only has
to satisfy that all control points must lie on one line
e.g.:

In this situation, one could also satisfy further condi-
tions like the preservation of area. On the other hand,
having all four control points on the same line of the
two affected cubic Bézier segments is critical. Due
to rounding errors, such a conversion is likely to add
new points of inflection. So, instead of this, we will
only guarantee the absolute value of the curvature
to be continuous in the case of points of inflection
by moving the joining knot in the same manner as
before in between its control points:

Finally, the solution of setting

gnew =

gold if d = 0 or l = 0,
i
2 else if |d| = |l|,
|d|−

√
|dl|

|d|−|l| · i else

is chosen here and shall be the definition of harmo-
nization. We define a corresponding macro harmonize
that returns a harmonized version of a given path p.
In the generic case, the tangent in the joining knot is
not the x-axis (as depicted in the preceding figures),
so we calculate d and l as the height to the tangent
by cross products.

Curvature combs and harmonized paths in METAPOST

TUG 2023 ❊ 36

904 draft: June 13, 2023 06:51 TUGboat, Volume 0 (9999), No. 0

vardef harmonize expr p =

save t,u,d,l,n,q; pair t,u,q[];

n = length p;

for j = if cycle p: 0 else: 1 fi upto n-1:

q[j] = point j of p;

t := unitvector(direction j of p);

u := unitvector(point j of p

- precontrol j of p);

if eps > abs((u dotprod t) - 1): % smooth

l := abs(t crossprod

(precontrol j+1 of p - point j of p));

d := abs(t crossprod

(postcontrol j-1 of p - point j of p));

if not ((l = 0) or (d = 0)):

q[j] := if (d = l): .5 else:

((d-sqrt(d*l))/(d-l)) fi

[precontrol j of p,postcontrol j of p];

fi

fi

endfor

if not cycle p:

q[0] = point 0 of p;

q[n] = point n of p;

fi

q[0] % start returned path

for j = 0 upto n-1: % define new path

.. controls postcontrol j of p

and precontrol j+1 of p .. if (j = n-1)

and (cycle p): cycle else: q[j+1] fi

endfor

enddef;

A mostly equivalent algorithm has been published in
(Roach, 1990).

5 Examples of harmonization

Should you use harmonization? At least it does not
harm to consider it. Most of the time, the changes
are subtle as in the following bulb terminal:

original harmonized

And sometimes they are less subtle as in the following
calligraphic dots:

original harmonized

After harmonization, the dot has become more rounded
and may have lost its “personality”.

6 Smoothing out paths even more

Harmonization does not affect control points nor
the curvatures at other joining knots. Hence, it can
be easily used over several cubic Bézier segments.
Nonetheless, harmonized paths normally no longer
interpolate the knots they were originally meant to.
The author once thought it might therefore be a
good idea to leave the joining knots and move the
control points instead. Then we not only can make
the curvature continuous but also the the change of
curvature. The curve then becomes some kind of
“supersmooth”.

harmonized “supersmooth”

original

However, there are some problems that come with
this “supersmoothness”: It might introduce addi-
tional points of inflection (see below). Furthermore,
this will normally change the curvature at other knots
and break curvature continuity there.

harmonized “supersmooth”

original

References

Hobby, John D. “Smooth, easy to compute interpolat-
ing splines”. Discrete & computational geometry
1(2), 123–140, 1986.

Roach, Robert L. “Curvature continuity of cubic
Bezier curves in the solid modeling aerospace
research tools design software”. interim report,
NASA Langley Research Center, 1990.

⋄ Linus Romer
Ahornstrasse 8
Uznach, 8730
Switzerland

Linus Romer

TUG 2023 ❊ 37

TUGboat, Volume 0 (9999), No. 0 draft: June 6, 2023 09:49 901

An updated survey of OpenType math fonts
Ulrik Vieth

Abstract
OpenType math fonts have been introduced more
than 15 years ago. Over the years, more and more
math fonts have been developed and added to the
font collection. In this paper, we review some of the
more recent additions, comparing them to previous
choices of OpenType math fonts such as Cambria,
Lucida, Latin Modern, or TEX Gyre.

In our analysis, we focus on aspects such as com-
pleteness of symbols and alphabets, design choices
of alphabets, and available font features. However,
a detailed study of glyph and font metrics is beyond
the scope of this paper, but some aspects of this have
been recently addressed by other contributions.

1 Introduction
OpenType math fonts have been introduced more
than 15 years ago. It started when Microsoft added
support for math typesetting in Office 2007 [1] and
proposed an extension of the OpenType font format,
adding a MATH table that eventually became part
of the OpenType standard [2].

It didin’t take long until the TEX community
recognized the potential of OpenType math fonts
[3, 4] and started adopting the font technology for
their own purposes.

X ETEX started in 2008 to introduce limited sup-
port for OpenType math in the scope of an extended
TEX math engine [5]. LuaTEX followed in 2009 with
a more complete implementation, aiming to provide
a full-featured OpenType math engine [6, 7].

Since 2010 both engines and supporting macro
packages and font loaders have been available in the
mainstream TEX Live distribution. At this point,
the technology for OpenType math typesetting was
essentially ready for use, except that there weren’t
many OpenType math fonts available yet.

2 Overview of available math fonts
When OpenType math was introduced, only a single
math font was available: Cambria Math [8] by Tiro
Typeworks, which was commissioned by Microsoft
and distributed as a system font with Office 2007.
Cambria Math was also intended as a reference im-
plementation show-casing the features of OpenType
math, illustrated in a promotional booklet.

This was followed in 2008 by Asana Math [9]
by Apostolos Syropoulos as the first independently
developed OpenType math font, which was based
on pxfonts by Young Ryu.

When the STIX fonts 1.0 were released in 2010,
they were quickly assembled as an OpenType math
font and released as the XITS fonts [10]. It was only
years later that OpenType versions of STIX fonts
were released with STIX fonts 1.1.1 in 2013 and the
much revised STIX2 fonts in 2016 [11, 12].

In the meantime, the earlier XITS and STIX
fonts are considered obsolete, and only the STIX2
fonts are maintained.

Perhaps the most significant contribution to the
collection of math fonts came in 2011–2014 with the
development of the Latin Modern and TEX Gyre
math fonts by the GUST font team with support
from various TEX user groups [13, 14, 15, 16].

Another contribution by the GUST team was
the development of a math font for DejaVu in 2015,
which was added to the TEX Gyre collection.

During the same time came the development of
Lucida OpenType text and math fonts in 2011–2012,
which was initiated as a TUG project with support
from Bigelow & Holmes and a group of volunteers.
While the Lucida fonts aren’t free, they are available
at a very reasonable price from TUG [17].

With these developments, there were already
more than 10 choices of OpenType math fonts in
2015, when there were just a few in 2010.

But there was more to come: In the following
years, more math fonts were added, complementing
various freely available OpenType text fonts.

Starting in 2016, Khaled Hosny developed the
Libertinus OTF fonts [18], derived from Libertine
and Biolinum, and added a Libertinus Math font,
borrowing some symbols and alphabets from other
existing fonts such as the STIX fonts.

A Garamond Math font [19] followed in 2018,
developed by Yuansheng Zhao, using alphabets from
EB Garamond and borrowing a sans-serif alphabet
from Libertinus Math.

Daniel Flipo provided the Erewhon Math and
XCharter Math fonts [20, 21], using alphabets from
Michael Sharpe’s Erewhon1 and XCharter text fonts,
which, in turn, are derived from extended versions
of Adobe Utopia and Bitstream Charter. The math
symbols for Utopia and Charter are based on the
Fourier-GUT and MathDesign packages by Michel
Bovani and Paul Pichaureau.

Another recent contribution by Daniel Flipo is
the KpFonts OTF collection [22], based on KpFonts
by Christophe Caignaert, which, in turn, is derived
from a version of URW Palladio (not Kepler!) and
complemented by a sans-serif and a monospace to
make a complete font family.

1 erewhon backwards is nowhere, which alludes to Utopia.

An updated survey of OpenType math fonts

TUG 2023 ❊ 38

902 draft: June 6, 2023 09:49 TUGboat, Volume 0 (9999), No. 0

font name first latest version release sources developer, maintainer ref.
Cambria Math 2007 2019 6.99 MS — Microsoft, Tiro Typeworks [8]
Asana Math 2008 2019 0.958 CTAN — Apostolos Syropoulos [9]
XITS Math 2010 2020 1.302 CTAN Github Khaled Hosny [10]
STIX Math (obsolete) 2010 2014 1.1.1 CTAN Github David Jones, STIpub [11]
STIX Two Math 2016 2021 2.13 CTAN Github David Jones, STIpub [12]
Latin Modern Math 2011 2014 1.959 CTAN GUST GUST font team [13]
TEX Gyre Pagella Math 2012 2016 1.632 CTAN GUST GUST font team [14]
TEX Gyre Termes Math 2012 2016 1.543 CTAN GUST GUST font team [14]
TEX Gyre Bonum Math 2013 2016 1.005 CTAN GUST GUST font team [14]
TEX Gyre Schola Math 2014 2016 1.533 CTAN GUST GUST font team [14]
TEX Gyre DejaVu Math 2015 2016 1.106 CTAN GUST GUST font team [14]
Lucida Bright Math 2012 2023 1.901 TUG — Bigelow & Holmes, TUG [17]
Libertinus Math 2016 2021 7.040 CTAN Github Khaled Hosny [18]
Garamond Math 2018 2022 2022-01 CTAN Github Yuansheng Zhao [19]
Erewhon Math 2019 2023 0.60 CTAN — Daniel Flipo [20]
XCharter Math 2022 2023 0.40 CTAN — Daniel Flipo [21]
KpFonts (Roman, Sans) 2020 2023 0.52 CTAN — Daniel Flipo [22]
GFS Neohellenic Math 2016 2022 1.02 CTAN — Antonis Tsolomitis, GFS [23]
Fira Math 2018 2020 0.3.4 CTAN Github Xiangdong Zeng [24]
Lato Math 2020 2020 ?? — Github Chenjing Bu [25]
Noto Math 2020 2023 2.539 — Github Noto Fonts Project [27]
New CM Math 2019 2023 4.5 CTAN — Antonis Tsolomitis [29]
Concrete Math 2022 2023 0.40 CTAN — Daniel Flipo [30]
Euler Math 2022 2023 0.40 CTAN — Daniel Flipo, Khaled Hosny [31]

Table 1: List of available OpenType math font packages with dates of first and latest
releases, latest versions, availability of releases and sources, developer or maintainer,
as well as links to resources.

While KpFonts also includes a sans-serif design,
it is not the only sans-serif math font available.

There is GFS Neohellenic Math [23] maintained
by Antonis Tsolomitis, which is based on a sans-serif
font in neo-hellenic style that was developed by the
Greek Font Society (GFS).

Another example is Fira Math [24] developed
by Xiangdong Zeng in 2018, using alphabets from
Fira Sans and corresponding math symbols.

There also exists a project for Lato Math [25],
using alphabets from Lato [26] by Łukasz Dziedzic
combined with symbols borrowed from Fira Math.
Unfortunately, the project seems unfinished and is
unsuitable for distribution in the current state.

Another very recent project, started in 2023,
aims to provide OpenType math functionality for
Noto Math [27]. While the font already exists for
some years, it only provided the glyphs, but it didn’t
come with a MATH table, so it was lacking the math
typesetting functionality. When the project is done,
it will provide another important addition to the
collection of sans-serif math fonts.

Finally, besides all the developments to provide
math support for various existing OpenType fonts,

there has also been renewed interest in extending
and reviving some traditional TEX fonts.

A significant extension is the New Computer
Modern font family [28, 29] by Antonis Tsolomitis,
which extends Latin Modern fonts in many ways.
Besides numerous additions to the text fonts, it also
adds additional Unicode blocks of mathematical and
technical symbols to the math fonts. As a result,
these fonts are now the most complete math fonts,
even more complete than STIX fonts.

Another recent contribution by Daniel Flipo has
revived some traditional TEX fonts, providing OTF
versions of Concrete Math and Euler Math [30, 31].
While Concrete Math was generated from sources,
Euler Math is based on Neo Euler [32] by Khaled
Hosny, started in 2009, which originated from a col-
laboration with Hermann Zapf more than a decade
ago and was long since abandoned [33].

With these developments, we now have more
than 20 choices of OpenType math fonts in 2023
(not counting variants). This is a significant increase
compared to the numbers of 2015 or 2010.

A summary of available OpenType math font
packages is provided in table 1.

Ulrik Vieth

TUG 2023 ❊ 39

TUGboat, Volume 0 (9999), No. 0 draft: June 6, 2023 09:49 903

font name weights
XITS Math Regular, Bold
Lucida Bright Math Regular, Demi
Erewhon Math Regular, Bold (minimal)
XCharter Math Regular, Bold (minimal)
KpRoman Math Light, Semibold

Regular, Bold
KpSans Math Regular, Bold
New CM Math Regular, Book

Table 2: List of available OpenType math fonts with
bold versions or additional weights.

Some OpenType math font packages come with
multiple weights, so the total number of individual
font shapes is actually more than 30 now.

In some cases, there is a fairly complete bold
math font, in other cases, only a bare minimum is
provided, suitable for inline math only.

Besides bold math fonts, there are also some
font packages which provide multiple weights of the
base fonts, such as light or book variants.

A summary of OpenType math fonts with bold
or additional weights is provided in table 2.

Nearly all OpenType math fonts discussed in
this paper are free and readily available from CTAN
or TEX Live. However, some unfinished projects are
currently only available from Github.

The only non-free fonts discussed in this paper
are Cambria Math, which comes as a system font on
Windows, and the Lucida fonts, which are sold via
TUG. We have excluded other non-free fonts since
we don’t have any up-to-date information.

In this paper, we want to analyze how the avail-
able math fonts compare with regards to coverage of
symbols and alphabets, and with regards to design
choices of alphabets.

Some of these topics have also been considered
in an earlier review [34], which reflected the state
of math fonts in 2012, when just a few OpenType
math fonts were available, such as Cambria, Lucida,
Latin Modern, and some TEX Gyre fonts.

In this review, we provide an update on the
state of OpenType math fonts in 2023 with many
updated and many additional fonts available.

Given the number of available fonts, a detailed
technical study of font parameters and glyph metrics
is beyond the scope of this paper.

Fortunately, some recent studies by LuaMeta-
TEX developers2 have covered this topic in detail
and have also resulted in improvements or repairs of
several OpenType math fonts [35, 36, 37].

2 LuaMetaTEX (LMTX) is a follow-up of LuaTEX.

3 Completeness of available math fonts
In the following sections, we want to analyze how
the available math fonts compare with regards to
completeness of symbols and alphabets.

In order to determine the range of coverage, we
are essentially counting the number of Unicode slots
provided in a given OpenType font.

This could be done using a test script such as
Frank Mittelbach’s unicodefonttable package [38,
39], which generates a Unicode font table for a given
font and counts the available glyphs.

A similar approach, more specific to math fonts,
would be to adapt the unimath-symbols,ltx table
from the documentation of unicode-math package
[40], which typesets a font table of Unicode math
symbols encoded in unicode-math-table.tex and
counts the available glyphs.

In our case, we have used a modified version of
this, which provides separate counts for symbols and
alphabetic characters. We have also used a modified
version of the symbol table.

The numbers determined this way represent a
lower estimate for the available glyphs, since we are
only counting the base glyphs in Unicode slots and
only the known symbols.

In most cases, OpenType math fonts provide
more than just the base glyphs. For big operators,
big delimiters, wide accents, or similar objects, there
are multiple sizes and an extensible versions.

Besides additional sizes, many OpenType math
fonts also provide additional glyph variants that can
be accessed via stylistic sets.

It is difficult to determine an exact number of
glyphs that should be provided to make a math font
complete. The boundary between mathematical and
technical symbols is a little vague and the decision
which symbols to include or exclude in the encoding
table could be somewhat subjective.

Furthermore, Unicode comes with new releases
every year, so there could be additional symbols
added from time to time, which could be overlooked
if they are missing in the symbol table.

Some of the most complete OpenType math
fonts amount to 1270 symbols and 1170 alphabetic
characters, so there would be 2440 glyphs in total,
not counting any sizes or variants. If we include
the additional sizes and variants, there will be even
more glyphs needed for a complete math font.

While the glyph variants are usually hidden and
excluded from the count, some font designers make
them available in the private-use area, which could
add them to the total count of Unicode slots.

An updated survey of OpenType math fonts

TUG 2023 ❊ 40

904 draft: June 6, 2023 09:49 TUGboat, Volume 0 (9999), No. 0

3.1 Completeness of math symbols
When analyzing the counts regarding completeness
of math symbols, we find that there are essentially
two groups of OpenType math fonts.

The first group aims for completeness, covering
more or less the complete range of Unicode math,
providing some 1150–1270 math symbols:

New CM Math 1270 symbols
STIX Two Math 1256 symbols
XITS Math 1253 symbols
Lato Math 1221 symbols
Asana Math 1211 symbols
GFS Neohellenic Math 1175 symbols
Noto Math 1162 symbols
Cambria Math 1157 symbols
Lucida Bright Math 951 symbols

In this group we find fonts that were designed for
completeness such as STIX/XITS, Noto, or Lato, but
also some new entries such as New CM Math, which
is currently the most complete math font. Cambria
is also fairly complete by now, but was much less
complete in earlier versions. Lucida is somewhere
in between: It is a little behind the first group, but
way ahead of the second group.

The second group does not aim for complete-
ness and covers only a subset of symbols, providing
some 500–600 math symbols:

Garamond Math 604 symbols
Erewhon Math 599 symbols
Euler Math 591 symbols
KpFonts (Roman, Sans) 589 symbols
XCharter Math 577 symbols
Libertinus Math 560 symbols
TEX Gyre Math (5×) 556 symbols
Latin Modern Math 554 symbols
Fira Math 508 symbols
Concreate Math 499 symbols

Among this group, the Latin Modern and TEX Gyre
math fonts by the GUST font team provide a a con-
sistent subset across all fonts, which could be taken
as a starting point for a common subset encoding.
Unfortunately, there is not much agreement among
other fonts, so the details of symbol coverage will be
slightly different for each font.

While a subset of 500–600 math symbols may
seem small compared to the full Unicode symbol
range, it is actually not that small. If we consider
that a traditional TEX with AMS fonts had no more
than 5 fonts of 128 slots to encode all the math
symbols and alphabets, any OpenType font with
500–600 symbols (not including alphabets) will be
as good as any traditional TEX font.

Finally, it is interesting to note how bold math
fonts compare, if they are provided at all.

Since the regular math fonts already include
bold math alphabets for semantic markup, separate
bold math fonts are only needed in the context of
headings, when formulas are switched to bold as a
whole, and it may be reasonable to assume that only
inline math will be used in this context.

As shown in table 2, only a few font packages
provide a separate bold math font, and these bold
versions come with a smaller range of math symbols
compared to the regular versions:

XITS Math Bold 499 symbols
KpFonts (Roman, Sans) 495 symbols
Lucida Bright Math Demi 478 symbols
Erewhon Math Bold 114 symbols
XCharter Math Bold 107 symbols

In the case of Erewhon Math and XCharter Math,
the idea of only providing support for inline math
was taken to the extreme, omitting most of the big
operators and big delimiters, and only including the
basic sizes of the most common symbols.

3.2 Completeness of math alphabets
When analyzing the counts regarding completeness
of math alphabets, we find that there are again sev-
eral groups of OpenType math fonts.

The first group aims for completeness, covering
all of the math alphabets, providing some 1150–1170
alphabetic symbols:

New CM Math 1170 alphabetic
STIX Two Math 1170 alphabetic
XITS Math 1170 alphabetic
Cambria Math 1170 alphabetic
Asana Math 1167 alphabetic
Noto Math 1164 alphabetic
TEX Gyre Math (5×) 1163 alphabetic

The second group is a little less complete, covering
most of the math alphabets with some limitiations,
providing some 1050–1150 alphabetic symbols:

Libertinus Math 1145 alphabetic
Erewhon Math 1117 alphabetic
Latin Modern Math 1111 alphabetic
Garamond Math 1100 alphabetic
XCharter Math 1073 alphabetic
KpRoman Math 1068 alphabetic
Lucida Bright Math 1038 alphabetic

Among the most common omissions are lowercase
Script and BBold, which are missing in several fonts.
Lucida Math is missing only lower bold Script and
bold Fraktur. Garamond Math is missing lowercase
Greek in sans serif bold italic.

Ulrik Vieth

TUG 2023 ❊ 41

TUGboat, Volume 0 (9999), No. 0 draft: June 6, 2023 09:49 905

font name regular sans-serif Script Fraktur BBold Mono
up it bf bi up it bf bi scr bscr frak bfrak bb tt

Cambria Math •
Asana Math •
XITS Math •
STIX Two Math •
Latin Modern Math • • • • • • • • • – • – • • • • • • • •
TEX Gyre Math (5×) •
Lucida Bright Math • • • • • • • • • • • – • • – – • – • •
Libertinus Math •
Garamond Math • • • • • • • ◦ • • • • • • • • • • • •
Erewhon Math • • • • • • • • • – • – • • • • • • • •
XCharter Math • • • • • • • • • – • – • • • • • – • •
KpRoman Math • • • • • • • • • – • – • • • • • – • •
KpSans Math • • • • – – – – • – • – • • • • • – • •
GFS Neohellenic Math • • • • – – – – • – – – • – – – • – – –
Fira Math • • • • – – – – – – – – – – – – • • • •
Lato Math • • • • – – – – – – – – – – – – • • • •
Noto Math •
New CM Math •
Concrete Math • • • • – – – – • – – – • • • • • – – –
Euler Math • – • – – – – – • – • – • • • • • • – –

Table 3: List of available OpenType math fonts with coverage of math alphabets.
For regular and sans-serif the columns indicate upright, italic, bold and bold italic.
For Script, Fraktur, BBold the columns indicate upper- and lowercase.

The third group consists of sans-serif or special
designs, which usually leave out the sans-serif slots,
resulting in much lower numbers:

KpSans Math 720 alphabetic
Concrete Math 634 alphabetic
Lato Math 606 alphabetic
Fira Math 584 alphabetic
GFS Neohellenic Math 568 alphabetic
Euler Math 480 alphabetic

Again, the most common omissions are lowercase
Script and BBold, which are missing in several fonts.
GFS Neohellenic is missing lower and bold Script
and Fraktur, as well as lower BBold. Lato and Fira
are missing all of Script and Fraktur, but they do
provide a full set of BBold.

Euler uses a special setup, which only provides
an upright version of the base font, so besides the
omission of sans-serif and typewriter slots, it also
leaves out the italic and bold italic slots.

While most sans-serif fonts provide a reduced
set of math alphabets, Noto is an exception that
provides the complete range of alphabets, but uses
an unusual approach. While the upright uses a sans-
serif font, the italic, bold, and bold italic happen to
use a serif font. Then again, a full set of sans-serif
alphabets are also provided.

Finally, it is interesting to note how bold math
fonts compare in terms of math alphabets.

When formulas are switched to bold as a whole
in the context of headings, regular alphabets will
be replaced by bold alphabets, and bold alphabets
should ideally become heavier, but usually they just
remain bold, if they are included at all.

Depending on what is included or omitted, the
numbers of alphabetic symbols vary a lot:

XITS Math Bold 1093 alphabetic
Erewhon Math Bold 970 alphabetic
Lucida Bright Math Demi 961 alphabetic
KpFonts (Roman, Sans) 362 alphabetic
XCharter Math Bold 317 alphabetic

Gaps in the regular fonts are usually reflected in
the bold fonts: Lucida is already missing lower bold
Script and bold Fraktur in the regular font, so the
bold font is also missing Script and Fraktur.

Finally, some bold fonts have chosen to provide
only a minimum set, so besides the omission of sans-
serif and typewriter slots, they also leave out bold
alphabets when the regular alphabets are switched
to bold, resulting in even lower numbers.

A summary of available or missing alphabets
in the various math fonts and bold math fonts is
provided in tables 3 and 4.

An updated survey of OpenType math fonts

TUG 2023 ❊ 42

906 draft: June 6, 2023 09:49 TUGboat, Volume 0 (9999), No. 0

font name regular sans-serif Script Fraktur BBold Mono
up it bf bi up it bf bi scr bscr frak bfrak bb tt

XITS Math Bold • • • • • • • • • • • • • • • • • • – –
Lucida Bright Math Demi • • • • • • • • • – • – – – – – • – • •
Erewhon Math Bold • • • • • • • • • – • – • • • • – – – –
XCharter Math Bold • • – – – – – – • – • – • • – – – – – –
KpRoman Math Bold • • – – – – – – • – • – • • – – • – – –
KpSans Math Bold • • – – – – – – • – • – • • – – • – – –

Table 4: List of available OpenType bold fonts with coverage of math alphabets.
For regular and sans-serif the columns indicate upright, italic, bold and bold italic.
For Script, Fraktur and BBold the columns indicate upper- and lowercase.

While it may be difficult to keep track of the
details, users of OpenType math fonts shouldn’t be
too concerned about missing alphabets, unless they
have special requirements.

In general, OpenType math fonts provide more
math alphabets than traditional TEX math fonts,
and most of the gaps only affect specific alphabets,
which may not be used much.

It should be safe to assume that nearly all Open-
Type math fonts provide at least the main alphabet
in 4 shapes, including Latin and Greek, as well as a
basic set of Script, Fraktur, and BBold.

There may be gaps when it comes to lowercase
Script, lowercase BBold, bold Scrip,t or bold Frak-
tur, but these are much less used. There may also
be gaps in the sans-serif or typewriter alphabets.

4 Design choices of math alphabets
For a full-featured OpenType math font, a number
of math alphabets are required:

• 4 shapes of the main font (upright, italic, bold,
bold italic), each including Latin and Greek,

• 4 shapes of a sans-serif (upright, italic, bold,
bold italic), some including Latin and Greek,

• 2 shapes of Script/Calligraphic (regular, bold),
each including upper- and lowercase,

• 2 shapes of Fraktur/Blackletter (regular, bold),
each including upper- and lowercase,

• 1 shape of Blackboard bold or BBold (regular),
also including upper- and lowercase,

• 1 shape of a monospace/typewriter (regular),
also including upper- and lowercase.

To provide all these alphabets, it will be necessary to
assemble glyphs from multiple sources and to adjust
them to match the main font.

When dealing with a comprehensive font family,
some choices may be obvious, such as choosing a
sans-serif or a typewriter font, but in most cases
some design decisions will be needed.

In the following sections, we want to consider
how the available OpenType math fonts compare
with regards to design choices of math alphabets for
Script, Fraktur, and Blackboard Bold.

While some design choices in existing fonts may
be unfortunate, it is hard to change anything, once a
font has been released and put into use for some time.
It will usually be necessary to create a new variant,
when you want to revise some design choices.

This is what happened to the STIX fonts, which
were renamed to STIX Two after a major revision of
the glyph shapes and some math alphabets.

Similarly, the New Computer Modern fonts can
be considered a new variant of Latin Modern. While
New Computer Modern can choose to disagree with
Latin Modern and use different choices, any future
revisions of Latin Modern will likely have to respect
previous choices for compatibility.

4.1 Design choices of sans-serif
When choosing a sans-serif font for use in math font,
it is important to keep in mind that math alphabets
are not meant for generic font switches, but for se-
mantic markup of symbols in a formula. In physics,
bold sans-serif italic might be used to for tensors,
while bold italic might be used for vectors.

Besides providing a suitable range of Latin and
Greek, the sans-serif glyphs also need to be clearly
distinguishable from the corresponding serif glyphs
based on their font properties, such as weight, width,
contrast or stroke thickness.

While having some contrast between serif and
sans-serif can be helpful, the sans-serif design should
not be too incompatible with the main font, since
the symbols from different alphabets should work
together in a formula.

In general, it is better to combine serif and sans-
serif fonts of similar weight and width, having just
enough contrast in between to make them clearly
distinguishable. It is also a good idea to use familiar
shapes and to avoid any unusual shapes.

Ulrik Vieth

TUG 2023 ❊ 43

TUGboat, Volume 0 (9999), No. 0 draft: June 6, 2023 09:49 907

4.2 Design choices of Script/Calligrahic
When it comes to choices for Script or Calligraphic,
there are two different styles how users expect a
mathematical Script to look like.

The first group uses a restrained style of Script
or Calligraphic. This includes the traditional styles
used in Computer Modern, Euler Script, and Lucida
Calligraphic:3

Neohellenic 𝒜ℬ𝒞𝒳𝒴𝒵
Concrete 𝒜ℬ𝒞𝒳𝒴𝒵
Garamond 𝒜ℬ𝒞𝒳𝒴𝒵 (StylisticSet=3)
KpFonts 𝒜ℬ𝒞𝒳𝒴𝒵 (StylisticSet=1)
XITS 𝒜ℬ𝒞𝒳𝒴𝒵 (StylisticSet=3)
Lucida 𝒜ℬ𝒞𝒳𝒴𝒵 (StylisticSet=4)
Euler 𝒜ℬ𝒞𝒳𝒴𝒵
LM 𝒜ℬ𝒞𝒳𝒴𝒵
New CM 𝒜ℬ𝒞𝒳𝒴𝒵𝒶𝒷𝒸𝓍𝓎𝓏
STIX Two 𝒜ℬ𝒞𝒳𝒴𝒵𝒶𝒷𝒸𝓍𝓎𝓏
Cambria 𝒜ℬ𝒞𝒳𝒴𝒵𝒶𝒷𝒸𝓍𝓎𝓏

TG DejaVu 𝒜ℬ𝒞𝒳𝒴𝒵𝒶𝒷𝒸𝓍𝓎𝓏

The second group uses a more fancy and elaborate
style of formal Script. This includes the new design
of Lucida Script:

Erewhon 𝒜ℬ𝒞𝒳𝒴𝒵
XCharter 𝒜ℬ𝒞𝒳𝒴𝒵
KpFonts 𝒜ℬ𝒞𝒳𝒴𝒵
STIX Two 𝒜ℬ𝒞𝒳𝒴𝒵 (StylisticSet=1)
XITS 𝒜ℬ𝒞 𝒳𝒴𝒵 𝒶𝒷𝒸𝓍𝓎𝓏
Libertinus 𝒜ℬ𝒞𝒳𝒴𝒵𝒶𝒷𝒸𝓍𝓎𝓏
Garamond 𝒜ℬ𝒞𝒳𝒴𝒵𝒶𝒷𝒸𝓍𝓎𝓏
TG Termes 𝒜ℬ𝒞𝒳𝒴𝒵𝒶𝒷𝒸𝓍𝓎𝓏
TG Schola 𝒜ℬ𝒞𝒳𝒴𝒵𝒶𝒷𝒸𝓍𝓎𝓏
Lucida 𝒜ℬ𝒞𝒳𝒴𝒵𝒶𝒷𝒸𝓍𝓎𝓏

TEX Gyre Pagella uses a very unique style, which
could make this font less usable in general:

TG Pagella 𝒜ℬ𝒞𝒳𝒴𝒵𝒶𝒷𝒸𝓍𝓎𝓏

Several OpenType math fonts also provide an
alternate style of Script or Calligraphic, which can
be accessed using stylistic sets. These variants have
also been included in the overview.

It is interesting to note that the STIX Two fonts
have reversed a design decision of the XITS fonts
regarding the choice of Script, and the designs have
also been modified. New Computer Modern extends
the Script from Latin Modern using the same style,
while Concrete Math has adopted the original style
of Calligraphic from Computer Modern.

3 Some fonts have been scaled to match the size of other
fonts: Lucida Calligraphic to 90% and Lucida Script to 85%,
DejaVu to 90%, Termes, Pagella, and Schola to 95%.

4.3 Design choices of Fraktur/Blackletter
When it comes to choices for Fraktur or Blackletter,
there is only one preferred style how users expect a
mathematical Fraktur to look like.

The first group includes a majority of math font
packages which use a very typical style of Fraktur.
Many fonts make use of Euler Fraktur, such as Latin
Modern, New Computer Modern, or Pagella:4

LM 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
New CM 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
Concrete 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
Euler 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
Erewhon 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
XCharter 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
TG Pagella 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
TG Termes 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
Garamond 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
Cambria 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷

Libertinus 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
STIX Two 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
XITS 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
TG Schola 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
TG DejaVu 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷

The second group uses a Blackletter style instead
of Fraktur, which is fairly unusual and could make
these fonts less usable in general:

Neohellenic 𝔄𝔅ℭ𝔛𝔜ℨ
Lucida 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷
KpFonts 𝔄𝔅ℭ𝔛𝔜ℨ𝔞𝔟𝔠𝔵𝔶𝔷

These designs could be just a fallback option when
no suitable design of Fraktur was available.

4.4 Design choices of Blackboard Bold
When it comes to choices for Blackboard Bold, there
are again two styles using a sans-serif or serif style
of the BBold letters.

The first group uses a sans-serif style of BBold:
LM 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ 𝕒𝕓𝕔 𝟘𝟙𝟚
Euler 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ𝕒𝕓𝕔𝟘𝟙𝟚
Erewhon 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ𝕒𝕓𝕔𝟘𝟙𝟚
STIX Two 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ𝕒𝕓𝕔𝟘𝟙𝟚
XITS 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐 ℤ 𝕒𝕓𝕔 𝟘𝟙𝟚
Lucida 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ
KpSans 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ
Neohellenic 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ
Fira 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ𝕒𝕓𝕔
Noto 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ𝕒𝕓𝕔𝟘𝟙𝟚
Lato 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ𝕒𝕓𝕔𝟘𝟙𝟚

4 Some fonts have been scaled to match the size of other
fonts: DejaVu to 90%, Schola to 95%. Termes, Pagella, and
Lucida Blackletter are not scaled and shown at 100%.

An updated survey of OpenType math fonts

TUG 2023 ❊ 44

908 draft: June 6, 2023 09:49 TUGboat, Volume 0 (9999), No. 0

The second group uses a serif style of BBold:5

New CM 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ𝕒𝕓𝕔 𝟘𝟙𝟚
Concrete 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ
XCharter 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ
KpRoman 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ
Garamond 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ𝕒𝕓𝕔 𝟘𝟙𝟚
Libertinus 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ𝕒𝕓𝕔 𝟘𝟙𝟚
Cambria 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ𝕒𝕓𝕔𝟘𝟙𝟚

TG Schola 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ 𝕒𝕓𝕔 𝟘𝟙𝟚
TG Termes 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ 𝕒𝕓𝕔 𝟘𝟙𝟚
TG Pagella 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ 𝕒𝕓𝕔 𝟘𝟙𝟚
TG DejaVu 𝔸𝔹ℂℕ𝕆ℙℚℝ𝕏𝕐ℤ 𝕒𝕓𝕔 𝟘𝟙𝟚

While Latin Modern has adopted a sans-serif BBold,
which also includes lowercase and numerals, New
Computer Modern and Concrete Math have reverted
to the traditional style of BBold from AMS fonts,
at least for the uppercase. Many other fonts have
chosen a scaled or adjusted variant of the sans-serif
BBold from STIX/XITSfonts.

5 Summary and Conclusions
OpenType math fonts have been introduced more
than 15 years ago. Over the years, more and more
math fonts have been developed and added to the
font collection. As of this year, we have more than
20 choices of OpenType math fonts available (not
counting variants) and more than 30 individual fonts
(including variants and additional weights).

Nearly all OpenType math fonts discussed in
this paper are free and readily available from CTAN
or TEX Live, except for some non-free fonts and
some unfinished projects from Github.

The available choices of OpenType math fonts
cover most of what was previously available in other
formats, including traditional TEX fonts (Computer
Modern, Concrete, Euler), standard PostScript fonts
(Times, Palatino, etc), and other free PostScript
fonts (Garamond, Utopia, Charter, DejaVu).

In our analysis, we have analyzed the coverage
of math symbols and alphabets, as well as design
choices and available font features.

While the range of symbols and alphabets may
vary for each font, most available fonts will be good
enough for general use, providing at least as much
as traditional TEX fonts or even more.

Regarding design choices, most available font
packages follow some typical styles how users expect
mathematical Script, Fraktur, or Blackboard Bold
to look like. There are only few exceptions which
use a unique or unusual style.

5 Some fonts have been scaled to match the size of other
fonts: DejaVu to 85%, Termes, Pagella, and Schola to 90%.
Lucida is not scaled and shown at 100%.

In general, OpenType math fonts are not ex-
pected to provide the same level of stability and com-
patibility as traditional TEX fonts. While it should
always be possible to reprocess existing documents,
you cannot expect the exact same line breaks, unless
you archive the specific versions of fonts.

In some cases, OpenType math fonts happen to
be stable simply because they haven’t been updated
for years, but they may still exhibit the same bugs or
limitations. Over time, it becomes more and more
difficult to change anything, the longer a font has
been left unchanged, and it may be necessary to
introduce new variants for major revisions.

While font development is ongoing, OpenType
math fonts are readily available for use.

References
[1] Murray Sargent: High-quality editing and

display of mathematical text in Office 2007.
https://learn.microsoft.com/en-us
/archive/blogs/murrays

[2] Microsoft Typography: OpenType
specification, version 1.9, December 2021.
https://learn.microsoft.com/en-us
/typography/opentype/spec

[3] Ulrik Vieth: Do we need a Cork math font
encoding? TUGboat, 29(3), 426–434, 2008.
https://tug.org/TUGboat/tb29-3
/tb93vieth.pdf
Reprinted in MAPS, 38, 3–11, 2009.
https://ntg.nl/maps/38/02.pdf

[4] Ulrik Vieth: OpenType Math Illuminated.
TUGboat, 30(1), 22-31, 2009.
https://tug.org/TUGboat/tb30-1
/tb94vieth.pdf
Reprinted in MAPS, 38, 12–21, 2009.
https://ntg.nl/maps/38/03.pdf

[5] Jonathan Kew: X ETEX Live.
TUGboat, 29(1), 151–156, 2008.
https://tug.org/TUGboat/tb29-1
/tb91kew.pdf

[6] Taco Hoekwater: Math in LuaTEX 0.40.
MAPS, 38, 22–31, 2009.
https://ntg.nl/maps/38/04.pdf

[7] Hans Hagen: LuaTEX math enhancements.
TUGboat, 37(3), 269–274, 2016.
https://tug.org/TUGboat/tb37-3
/tb117hagen-otmath.pdf

[8] Tiro Typeworks: Cambria Math.
https://tiro.com/projects.html

[9] Apostolos Syropoulos: Asana Math.
https://ctan.org/pkg/asana-math

Ulrik Vieth

TUG 2023 ❊ 45

TUGboat, Volume 0 (9999), No. 0 draft: June 6, 2023 09:49 909

[10] Khaled Hosny: XITS font package.
https://ctan.org/pkg/xits
https://github.com/alif-type/xits

[11] STIX Consortium: STIX font package.
https://ctan.org/pkg/stix

[12] STIX Consortium: STIX2 font package.
https://ctan.org/pkg/stix2-otf
https://github.com/stipub/stixfonts

[13] GUST e-foundry: Latin Modern Math.
https://ctan.org/pkg/lm-math
https://gust.org.pl/projects/e-foundry

[14] GUST e-foundry: TEX Gyre Math.
https://ctan.org/pkg/tex-gyre-math
https://gust.org.pl/projects/e-foundry

[15] Bogusław Jackowski, Piotr Strzelczyk, Piotr
Pianowski: GUST e-foundry font projects.
TUGboat, 37(3), 269–274, 2016.
https://tug.org/TUGboat/tb37-3
/tb117jackowski.pdf

[16] Bogusław Jackowski, Piotr Strzelczyk, Piotr
Pianowski: Parametric math symbol fonts.
TUGboat, 38(2), 208–211, 2017.
https://tug.org/TUGboat/tb38-2
/tb119jackowski.pdf

[17] TEX Users Group: Lucida fonts from TUG.
https://tug.org/store/lucida/

[18] Khaled Hosny: Libertinus Fonts.
https://ctan.org/pkg/libertinus-fonts
https://github.com/alerque/libertinus

[19] Yuansheng Zhao, Xiangdong Zeng:
Garamond Math.
https://ctan.org/pkg/garamond-math
https://github.com/YuanshengZhao
/Garamond-Math

[20] Daniel Flipo: Erewhon Math.
https://ctan.org/pkg/erewhon-math

[21] Daniel Flipo: XCharter Math.
https://ctan.org/pkg/xcharter-math

[22] Daniel Flipo: KpFonts OTF package.
https://ctan.org/pkg/kpfonts-otf

[23] Antonis Tsolomitis: GFS Neohellenic Math.
https://ctan.org/pkg/gfsneohellenicmath

[24] Xiangdong Zeng: Fira Math.
https://ctan.org/pkg/firamath
https://github.com/firamath/firamath

[25] Chenjing Bu: Lato Math.
https://github.com/abccsss/LatoMath

[26] Łukasz Dziedzic: Lato Fonts.
https://github.com/latofonts/lato-source

[27] Noto Fonts Project: Noto Math.
https://github.com/notofonts/math

[28] Antonis Tsolomitis: New Computer Modern
font family. TUGboat, 42(1), 52–55, 2021.
https://tug.org/TUGboat/tb42-1
/tb130tsolomitis-newcm.pdf

[29] Antonis Tsolomitis: New Computer Modern.
https://ctan.org/pkg/newcomputermodern

[30] Daniel Flipo: Concrete Math.
https://ctan.org/pkg/concmath-otf

[31] Daniel Flipo: Euler Math.
https://ctan.org/pkg/euler-math

[32] Khaled Hosny: Neo Euler — An abandoned
OpenType port of Euler math font.
https://github.com/aliftype/euler-otf

[33] Hans Hagen, Taco Hoekwater, Volker Schaa:
Reshaping Euler: A collaboration with
Hermann Zapf.
TUGboat, 29(3), 283–287, 2008.
https://tug.org/TUGboat/tb29-2
/tb92hagen-euler.pdf

[34] Ulrik Vieth: OpenType math font
development: Progress and challenges.
TUGboat, 33(3), 302–308, 2012.
https://tug.org/TUGboat/tb33-3
/tb105vieth.pdf

[35] Hans Hagen, Mikael P. Sundqvist:
Pushing math forward with ConTEXt LMTX.
TUGboat, 43(2), 202–206, 2022.
https://tug.org/TUGboat/tb43-2
/tb134hagen-math.pdf

[36] Hans Hagen, Mikael P. Sundqvist:
New directions in math fonts.
TUGboat, 43(3), 300–310, 2022.
https://tug.org/TUGboat/tb43-3
/tb135hagen-mathchange.pdf

[37] Hans Hagen, Mikael P. Sundqvist:
Patching Lucida Bright Math.
TUGboat, 43(3), 311–316, 2022.
https://tug.org/TUGboat/tb43-3
/tb135hagen-lucida.pdf

[38] Frank Mittelbach:
The unicodefonttable package.
TUGboat, 42(3),287–304, 2021.
https://tug.org/TUGboat/tb42-3
/tb132mitt-unicodefonttable.pdf

[39] Frank Mittelbach: unicodefonttable.
https://ctan.org/pkg/unicodefonttable

[40] Will Robertson: unicode-math package.
https://ctan.org/pkg/unicode-math

⋄ Ulrik Vieth
Stuttgart, Germany
ulrik dot vieth (at) arcor dot de

An updated survey of OpenType math fonts

TUG 2023 ❊ 46

Find out more at www.overleaf.com

A free online LaTeX and Rich Text

collabora琀椀ve wri琀椀ng and publishing tool

Features include:

• Cloud-based platform: all you need is a web browser. No

software to install. Prefer to work o昀툀ine? No problem - stay in
sync with Github or Dropbox

• Complementary Rich Text and LaTeX modes: prefer to see
less code when writing? Or love writing in LaTeX? Easy to
switch between modes

• Sharing and collaboration: easily share and invite colleagues
& co-authors to collaborate

• 1000’s of templates: journal articles, theses, grants, posters,
CVs, books and more – simply open and start to write

• Simpli昀椀ed submission: directly from Overleaf into many
repositories and journals

• Automated real-time preview: project compiles in the
background, so you can see the PDF output right away

• Reference Management Linking: multiple reference tool linking
options – fast, simple and correct in-document referencing

• Real-time Track Changes & Commenting: with real-time
commenting and integrated chat - there is no need to switch to
other tools like email, just work within Overleaf

• Institutional accounts available: with custom institutional

web portals

Overleaf makes the whole process of writing, editing and
publishing scienti昀椀c documents much quicker and easier.

Science is what we understand well enough to explain to a
computer. Art is everything else we do.

— Donald E. Knuth

stmdocs
the confluence of art and science of text

processing in the cloud!

◦ empowering authors to self-publish
◦ assisted authoring
◦ TEXFolio — the complete journal

production in the cloud
◦ NEPTUNE — proofing framework for

TEX authors

S T M D O C U M E N T E N G I N E E R I N G P V T LT D
Trivandrum • India 695571 • www.stmdocs.in • info@stmdocs.in

1

Exclusive for TeX Users

Group:

Save 40% on The LaTeX

Companion, 3rd Edition, print

book or eBook.*

Use discount code TUG2023

at checkout to apply savings.

O昀昀er expires July 31, 2023.

