A TEX-oriented Research Topic: Synthetic Analysis on Mathematical Expressions and Natural Language

Takuto ASAKURA

National Institute of Informatics
(Supervisors: Prof. Yusuke Miyao \& Prof. Akiko Aizawa)
2019-08-10

A $T_{E} X$-driven Life

- I met $T_{E X}$ when I was a high school student \rightarrow at that time, I'm deeply interested in biology
- Later, I majored bioinformatics-combination of biology \& informatics-for my bachelor degree
- I learned computer science with $\mathrm{T}_{\mathrm{E}} \mathrm{X}$

The Gotoh algorithm: DP

Sequence alignment has a slightly more complex scoring scheme.
Example
match $=1$, mismatch $=-1, g(l)=-d-(l-1) e$
The algorithm
Sequence alignment in $O(m n)$ time:

$$
M_{i+1, j+1}=\max \left\{M_{i j}, I_{x i j}, I_{y i j}\right\}+c_{a_{i} b_{j}}
$$

where

$$
\begin{aligned}
& I_{x i+1, j}=\max \left\{M_{i j}-d, I_{x i j}-e, I_{y i j}-d\right\}, \\
& I_{y_{i, j+1}}=\max \left\{M_{i j}-d, I_{y_{i j}}-e\right\} .
\end{aligned}
$$

The Gotoh package

Usage

- \Gotoh $\{\langle$ sequence $A\rangle\}\{\langle$ sequence $B\rangle\}$
- Executes the algorithm
- Returns the results to specified CSs
- \GotohConfig\{〈key-value list)\}
- Setting various parameters
- e.g. algorithm parameters, CSs to store results

Example

Input:

\Gotoh\{ATCGGCGCACGGGGGA\} \{TTCCGCCCACA\}
\texttt\{
GotohResultA\}

\texttt $\{$ GotohResultB $\}$

Output:

ATCGGCGCACGGGGGA TTCCGCCCAC..... A

An Idea from $T_{E} X$: Toward NLP

Representing meanings with $T_{E X}$ macros Instead of directly using primitives or standard commands, we can define our own macros which reflect "meanings".

Example
To express a vector with a bold font:
\times Directly writing "\$\mathbf $\{x\}$ " "
\checkmark Defining "\def\vector\#1\{\mathbf\{\#1\}\}" and using the macro as " $\$ \backslash$ vector $\{x\} \$$ "

But: many authors neglect such representation.
How about automating the process?

Targets: STEM Documents

The targets of our work are Science, Technology, Engineering, and Mathematics (STEM) documents.

Example

- Papers,
- Textbooks, and
- Manuals, etc.

STEM documents are:

- essence of human knowledge
- well organized (semi-structured)
- texts with mathematical expressions

Long-term Goal: Converting STEM Documents to Formal Expressions

STEM Documents (Natural Language + Formulae)
Papers, textbooks, manuals, etc.
\downarrow Conversion
Computational Form (Formal Language)
Executable code, first-order logic, etc.

The conversion enables us to:

- construct databases of mathematical knowledge
- search for formulae

Necessity of Synthetic Analysis

Interaction among texts and formulae
Texts and formulae are complimentary to each other:
[Kohlhase and lancu, 2015]

- Texts explains formulae (and vice versa)
- Texts in formulae E.g. $\{x \in \mathbb{N} \mid x$ is prime $\}$
- Notations and verbalizations E.g. $1+2$ and "one plus two"

Deep synthetic analyses on natural language and mathematical expressions are necessary.

Grounding Elements to Mathematical Objects

- Elements in formulae and their combination can refer to mathematical objects
- The detection is fundamental for understanding STEM documents

Example

For example, x might describe the outcome of flipping a coin, with $x=1$ representing 'heads', and $x=0$ representing 'tails'. We can imagine that this is a damaged coin so that the probability of landing heads is not necessarily the same as that of landing tails. The probability of $x=1$ will be denoted by the parameter μ. The probability distribution over x can therefore be written in the form

The probability of 'heads' on top, float, $0 \leq \mu \leq 1$

$$
\operatorname{Bern}\left(\underset{1}{x} \mid(\underset{\mu}{\mu})=\mu^{x}(1-\mu)^{1-x}\right.
$$

The result of coin flipping, int, $x \in\{0,1\}$
which is known as the Bernoulli distribution. (PRML, pp. 86-87)

Difficulty of the Grounding

Factors which make the detection highly challenging:

- ambiguity of elements (see below)
- syntactic ambiguity of formulae E.g. $f(a+b)$
- necessity for common sence \& domain knowledge
- severe abbreviation

Usage of character \mathbf{y} in the first chapter of PRML (except exercises)	
Text fragment from PRML Chap. 1	Meaning of \mathbf{y}
\ldots can be expressed as a function $\mathbf{y}(\mathbf{x}) \ldots$	a function which takes an image as input
\ldots an output vector \mathbf{y}, encoded in \ldots	an output vector of function $\mathbf{y}(\mathbf{x})$
\ldots two vectors of random variables \mathbf{x} and $\mathbf{y} \ldots$	a vector of random variables
Suppose we have a joint distribution $p(\mathbf{x}, \underline{\mathbf{y}}) \ldots$	a part of pairs of values, corresponding to \mathbf{x}

Semantics Over Natural Language and Mathematical Expressions

There are ambiguity arise only when context exists. For instance, "equals signs" (=) in formulae have at least three meanings: definition, identity, and equation.

Example
Let $a \oplus 4, b \oplus 3$. Suppose we have to solve

$$
a x^{4}+b x^{2}+1 \fallingdotseq 0 .
$$

To reach the answer, "difference of two" is helpful:

$$
p^{2}-q^{2} \Theta(p+q)(p-q) .
$$

Dataset arXMLiv

- papers from arXiv in XML format [Ginev+, 2009]
- converted from $\Delta T_{E} X$ via $\angle T_{E} X M L$
- formulae are in MathML markups

XHTML/XML

III-B Defining Supervised Learning

Having introduced the goal of supervised lea formal definition of the problem. Throughou random variables and the corresponding lett

As a starting point, we assume that the traini

$$
\left(\mathrm{x}_{n}, \mathrm{t}_{n}\right)_{\text {i.i.d. }}^{\sim} p(x, t), n=1, \ldots, N,
$$

that is, each training sample pair $\left(\mathrm{x}_{n}, \mathrm{t}_{n}\right)$ is distribution $p(x, t)$ and the sample pairs are i (ii.d.). As discussed, based on the training s $\hat{t}(x)$ that performs well on any possible relev formalized by imposing that the predictor is $(\mathrm{x}, \mathrm{t}) \sim p(x, t)$, which is generated independ set \mathscr{D}.
The quality of the prediction $\hat{t}(x)$ for a test pair (x, t) is measured by a given loss function $\ell(t, \hat{t})$ as $\ell(t, \hat{t}(x))$. Typical examples of loss functions include the quadratic loss $\ell(t, \hat{t})=\left(t-\hat{t}^{2}\right.$ for regression problems; and the error rate $\ell(t, \hat{t})=1(t \neq \hat{t})$, which equals 1 when the prediction is incorrect, i.e., $t \neq \hat{t}$, and 1 ATEXML 0 otherwise, for classification problems.

A Little Note for MathML

- a W3C Recommendation [Ausbrooks+, 2014]
- includes two markups: presentation and content

Presentation Markup

This shows syntax:
<msup>
<mfenced>
<mi>a</mi>
<mo>+</mo>
<mi>b</mi>
</mfenced>
<mm>2</mm>
</msup>

Content Markup
This shows semantics:
<apply>
<power> <apply> <plus/> <ci>a</ci> <ci>b</ci> </apply> <cn>2</cn>
</apply>

$$
(a+b)^{2}
$$

The Research Plan

Creating a dataset (pilot annotation)

- do the grounding by hand for some papers in arXiv \rightarrow Let me show you a demonstration
- I would also like to do it for some textbooks

Automating the detection
Combination of rule-based and machine learning with features such as:

- apposition nouns E.g. "a function f "
- syntactic information in formulae E.g. does it appear inside an argument or not?
- distance from the former appearence

Possible Applications

- Mathematical Information Retrieval (MIR) \rightarrow enables us to create scientific knowledge bases
- Automatic code generation E.g. Python, Coq, etc.
- Searching for mathematical expressions

Example

Let us think about searching for:

$$
x^{n}+y^{n}=z^{n} \quad(n \geq 3)
$$

It is easy to search if you know a keyword Fermat's Last Theorem, but otherwise...

Conclusions

- converting STEM documents to computational form is beneficial and challenging
- for the conversion, synthetic analysis on natural language and mathematical expressions is required
- Currenly, we are working on creating a dataset
- Possible applications: MIR, code generation, searching for formulae

$$
\mathrm{T}_{\mathrm{E} X} \text { has a power to change one's life! }
$$

