\LaTeX\ Source from Word Processors

Bart Childs
Texas A\&M University
College Station, TeXas 77843-3112
USA
bart (at) tamu.edu
http://faculty.cse.tamu.edu/bart/

Abstract

Hennings’ CTAN survey is a good starting point when considering projects implied by the title of this article. I found it a fair view of most related packages. He suggests having one of two goals: converting the \texttt{document structure} or converting the \texttt{appearance}. My goal is neither of these. I want to produce \LaTeX\ source that is accurate in content, clean, and therefore maintainable. This is in keeping with Knuth’s original goals in producing \TeX\: graphic excellence and a document convenient for archiving. Structure and appearance are important. I believe clean \LaTeX\ is more likely to have this intrinsic result (not use of word processing systems). My current conversion system is a hybrid based on the use of the Open Office \texttt{Writer} package, its \texttt{Writer2LaTeX} application, and macros for the \texttt{Emacs} editor written in \texttt{elisp}. The test cases for this system are books: 1) on rotordynamics, 2) a C++ programming text, 3) a memoir on a friend’s life including significant text fragments in the Czech language, and 4) a novel that includes three love triangles. Even the worst case with significant mathematics formatting done in Word Perfect is tractable, I did not say easy. The lack of intelligent? use of word processors causes many of the problems. I estimate that a 300 page novel written in a reasonable dialect of WORD, Word Perfect, or \texttt{Writer} could be converted to \LaTeX\ in an hour or two.

1 Genesis

My primary formatting system has been \TeX\ based for more than thirty years. Throughout this time I have had occasional need to import small parts of documents done in word processors into my \TeX\ based documents. I have accomplished that in a number of ways: from keyboarding small projects to somewhat automatic conversion depending upon what was available. I used some of the earlier systems discussed by Hennings [2].

Several years ago, two colleagues were writing a text on “programming” and became aware that they would have significant advantages if they could convert the half of the book that was completed to \LaTeX\ and take some instruction on how to complete the rest in \LaTeX.\ They sketched the process and created a small set of \texttt{Emacs’ elisp} macros to do that conversion. We agreed to the generalities with the plans to make a formal agreement upon the return of the senior author from a summer long trip. Much of the \LaTeX\ work was to be done by the junior author, naturally. The health of the junior author suddenly deteriorated and my conversion project was cancelled.

I continued to be intrigued by the concept. I learned more \texttt{elisp}, added macros, and a number of \texttt{open} packages that seemed to offer promise as a means of getting much of the conversion done in an automatic manner. I never felt that a mostly automatic conversion was realistic for projects involving significant mathematics content. I expected to pursue a “PhD with a screwdriver” approach. I was willing to do this based on working from the WORD .rtf (Rich Text File format), total extraction of text without formatting, \texttt{and/or} a mostly automatic conversion that needed tweaking—my pipe dream.

A few years after retirement, a friend and colleague in the college of engineering asked me for help in finding someone to keyboard a new text he was writing based on a few dozen of his research papers—and related studies. The topic the text is rotordynamics—from small pumps and turbines to large ones as in the main engine of the space shuttle.
I ressurrected my plan and we agreed on the plan of work. The draft source of this rotordynamics text is being done in Word Perfect, the formatter the author has used for many years. Most of the text is being adapted from the author’s contributions in the subject. The current version is approximately 400 pages in length with another 25% to be added. The lists of contents, figures and tables will likely occupy 18 pages. There are hundreds of equations with one of them being a full page.

2 The Process Evolves

I started this conversion using the process I had prototyped for the programming text. The rotordynamics text was a quite different document because of the large fraction of displayed equations. The displayed equations and figures in the rotordynamics text require approximately the same fraction of space required by figures, programs, and code fragments in the programming text. Most (maybe all) the code fragments, programs, and figures in the programming text were restricted from floating. There had to be some “manual floats.”

I did some small portions of the rotordynamics book as manual conversions for test cases. Some of the equations were manually entered because conversion of mathematics among word processing systems was generally accepted to be non-existent (I think that is improving). The manual process was based on: a) having a .pdf of the document, b) editing the .rtf file, c) editing a text file exported from a word processor (with some encoding), and/or d) a form of \(\LaTeX \) exported from one of several systems. I was delivering \(\LaTeX \) source faster than I could have keyboarded it from good copy. Still, it was unsatisfactory because it was mostly a manual process.

The source documents were done in Word Perfect on a PC and I was doing \(\LaTeX \) on a Mac. There are good \(\LaTeX \) and Emacs systems for the Mac using MAC OS X. Some Emacs systems were not acceptable to me because my system uses function keys.

I continued to strive for big improvements because keyboarding mathematics would be slow. A significant improvement came by changing the format that sources were delivered to me. The source was 1) edited to remove the graphics from the Word Perfect source, 2) exported in .rtf form, 3) the graphics elements were put in a .zip file. The version of Word Perfect being used would create .rtf files hundreds of times bigger than needed if the graphics was in the export to the .rtf. Removing the graphics was no loss because it—like the mathematics—was not being exported.

I would take the .rtf from Word Perfect, import it to OOo Writer, and save it! This apparently lost nothing but gave a smaller file and therefore my system was faster in using it. I also noticed that Writer’s export of text with encoding was different from the other systems I had used. Further, the export could be done in Unicode which was compatible with Emacs.

Apparently there was significant appreciation of Unicode in the Word Perfect export process. The export of the mathematics from Word Perfect was not converted but many symbols, Greek letters, etc. were now viewable on the screen. Most \(\LaTeX \) users should be able to glean the proper content from a printed .pdf of the Word Perfect. Now, the Emacs macros could do much more. At this time, my benefactor had other obligations and so I had time to work on the macros and test the system using the modified process.

I continued to learn more elisp.

3 Keeping The Mind Busy

My benefactor’s diversions lasted longer than planned. I read more about Unicode and realized how provincial some of us are here in English only USA.

A college buddy of mine is a Czech immigrant and was corresponding with a publisher in the Czech Republic about his memoir. When he wrote to the publishers and sent it by email, the formatting was lost. I suggested learning a bit of \(\LaTeX \), converting it to .pdf, and emailing that. He had sent me a draft of the book so I could create some examples. The published version [1] was done while I was creating this system. Of course I was naïve and would still have been so had I read Horak’s [2] note.

But while waiting, I thought I could polish my Emacs macros to handle his Czech problems. It was fairly easy and with the improvements in the Writer export process, it was really easy. I mention this project because it shows evidence of real problems with similar projects. That will be discussed later.

In the abstract I mentioned a novel about three love triangles. That project was trivial but also contains the same real problems with conversion of word processor sources.

4 Real Problems

There are several sources of problems that impeded progress in these projects. Some of these sources could be avoided by “user learning” while others resultec from differences in the design and implementation of the systems they used. The authors had several kinds of problems that automatic conversion did not handle:
1. Inconsistent use of functionality.
2. Wrong use of functionality.
3. Not using available functionality.

This quote is in section 1.2 of Write2LaTeX Users Manual [3]

You can use LaTeX as a typesetting engine for your OoO documents: Write2LaTeX can be configured to create a LaTeX document with as much formatting as possible preserved. Note that the resulting LaTeX source will be readable, but not very clean. . . . You will find that Write2LaTeX uses the principle garbage in - garbage out!

Each of the above examples of garbage in—garbage out was present in at least two of the test cases cited. Garbage in—garbage out may be a bit strong a description for these but the message is clear. For example, in the Czech memoir it was certainly appropriate to attempt to show correct accents—Horak (?) would be proud. It overwhelmed the author’s limits of skills with the systems he was using.

Each of the authors has a doctorate and has taught at major universities. They are consistent users of computers but obviously are not the most persistent readers of the formatter manuals. Maybe the manuals are poor, non-existent, or not convenient? Maybe the easy to use graphics interfaces overwhelmed the authors? Maybe these interfaces do not encourage users like these to seek the information they need? Maybe they just do not care?

4.1 Inconsistent use of functionality

The author of the memoir that used many Czech words, phrases, and sentences is to be saluted for attempting to make that text look proper to a Czech reader. There are five special items in this sentence

On my next visit to Prague, he joined Vlád’a and me, along with our wives, for lunch at a French restaurant in Obecn’i dám (Municipal House).

The nickname Vlád’a has an accent over the letter “a” and an accent often called a caron modifying the letter “d”. The accented “i” in the first italicized word is a dotless “i”. Finally, the second italicized word has an accent that almost appears to be the degrees (as in temperature) symbol. Although it was not the author’s intention, the distances these accents were raised or kerned differed in most cases. (I do not claim my caron is perfect.)

4.2 Misuse of functionality

In the rotordynamics book there were many instances of using different Greek characters as the same. The phi and varphi, φϕ, as well as others. Since this document was constructed using papers written years ago, this is easily understood.

The author of the novel containing three love triangles suffered a similar problem. The author did not like the double prime (") for the opening and closing quotes. When he wrote the first part he selected special graphics characters for the quotes. When he wrote the other two parts, the smart quotes were automatic for him. He did not recall why, it may have been a new revision of his formatter.

4.3 Not using available functionality

In two of the test cases the authors used itemized lists. The exported form yielded consecutive lists of one item. This did not bother the bulleted lists but would have been an error with enumerated and description lists.

In many cases the authors did not use styles and so chapter and section beginnings show the formatting but no \LaTeX commands. This is not a total loss, because I convert the section numbers into labels that would aid if we were trying to resolve differences in my output with the older version.

4.4 Oops?

These examples can be difficult. A glaring example is that in Word Perfect’s mathematics operators may follow the operand in some cases. In \LaTeX the operator is always first! I did not find a general rule as to when to expect this. My Emacs macros for adjusting this are interactive to enable the user (me) to minimize such problems.

A really big Oops worth repeating is the lack of using styles which caused inconsistencies. I had to handle some of these manually.

5 Typical Emacs macros

The first version of these macros were developed when I was using an export that was usually designated text with encoding. This export would discard all (or nearly all) formatting, such as emphases. The improvements in Write2LaTeX have led to a reduced need of this kind of detailed editing. Still, the concepts in the design of these macros are applicable in the current system of conversion as well as keyboarding original documents.

This list contains three cases where it is more efficient to use text with encoding exports than the converted exports, assuming the goal of clean \LaTeX.
These came from the rotordynamics text, the programming text, and the User’s Manual. These are:

Tables Tables are exported with all formatting on every cell. The usual \LaTeX{} procedure is to give default formatting in a template and exceptional formatting when needed in a cell.

Mathematics Text is often used for explanatory purposes in equations.

Programs and verbatim text also need special handling.

Portions of some documents are easier to convert by exporting as text with encoding and then inserting the formatting by editing. Two examples are mathematics that does not convert and formatted code fragments in a processor where font changes are done manually rather than using a package like listings.

These macros were implemented using the mouse (or similarly functioning device) to point or highlight in conjunction with function keys. In Emacs one can also highlight a region of text by setting the mark and moving the point. The function keys can also be modified by use of shift, control, and alt.

5.1 Applying fonts to text

In this paragraph there are single words and a three word sequence that are emphasized by changing fonts. The default font is changed to italic or typewriter. Source exported as text with encoding will have formatting removed. A similar situation occurs when text is inserted into mathematics code.

The user can highlight a phrase or click within the single word. Then the user presses the appropriate function key for the formatting command to be inserted with grouping of the appropriate text. If the user has clicked within a word, then the extent of the word is determined by whitespace delimiters. Clicking on whitespace is a special form of this, the commands are inserted and the cursor placed on the right brace for user input.

Instead of highlighting a region, the user can use the Emacs form of setting the mark and moving the cursor to the other end of the region. I implemented these functions for bold, italic, sans serif, and typewriter fonts. I did not insert the italic correction but easily could have paying attention to the following character. I did not because in many cases it is just not needed and besides the user should have some responsibilities. The same functions are reused for simple grouping and the \text{} commands which were used mostly in mathematics modes.

5.2 Inline mathematics

Inline mathematics is common in the rotordynamics text. Most of the resulting mathematics is usually a fraction of a line in length.

The implementation is like the font changes in the previous subsection. A significant difference is that the export processes handling Word Perfect mathematics yields significant artifacts of excessive white space and nattng trash. This almost always includes many of the grave characters—these must be an escape character for the internal form of Word Perfect mathematics.

I have not had a reasonable test case with WORD mathematics, yet. There are small examples of mathematics in the programming text.

5.3 Display mathematics

The concepts in the previous subsection are applicable. However, there are several forms of display mathematics. These forms were used in the rotordynamics text:

1. \begin{equation*} \end{equation*} delimited, which numbers the equations and should have an accompanying label
2. \begin{equation*}, \end{equation*} delimited which is an alias for the former, or vice versa
3. \begin{equation*}, \end{equation*} delimited, which numbers the equations and should have an accompanying label
4. \begin{equation*} \begin{split}, \end{split} \end{equation*} delimited, the collection of equations is numbered and should have an accompanying label

Chapter 8 of Frank Mittelbach’s et al The \LaTeX{} Companion is seventy pages of great details of Advanced Mathematics formatting.

I implemented these four display math choices using one function key and prompting the user for which of the above forms was desired. I developed similar choice macros for presenting fractions and matrices which made conversions faster and most importantly more consistent. The most important facet of this conversion is that with a little care the totality of the mathematics was converted correctly and hours of detailed, laborious proofreading was avoided.

5.4 Programs, code fragments, verbatim text

Programs should be formatted by language sensitive packages like listings. The package fancyverb requires some study but gives great results. Both packages come with inline commands whose use is
5.5 Other macros — fix-up

There were several other macros that aided the conversion. I consider these to be “fix-up” in nature. These include:

- \caption{}s in the rotordynamics text often contain inline mathematics. The use of the \LaTeX{} delimiters (\(\langle \
angle \)) are not allowed and must be converted to the \TeX{} toggle ($\)\$\$\$\).
- Interactive aid to standardizing presentation of fixed-point and floating-point numbers.
- Locating likely multicharacter super/subscripts that were not exported correctly (needed grouping).
- Locating likely problems due to insertion of inadvertent whitespace.
- Locating unescaped \TeX{} control characters.
- Macros to aid the insertion of labels and their references.

6 Current System

The current system has been improved greatly with the release of OOo Writer2LaTeX version beta 1.2.

I missed the notice of this release until after the abstract of this paper was submitted. It is a beta release but I have not found any problems to date.

I find these observations about this beta release interesting: 1) the users guide is 10% shorter and 2) the output files are 3–5% shorter than with version 1.0. The \TeX{} output is cleaner as most of the reduction in the size is the elimination of needless formatting like: 1) most paragraphs were inside grouping braces and a declaration that I used English and 2) \textit{word } while most of the rest are weird constructs like \textit{ } and \textbf{\textit{ \ \}}. The first may be sloppy keyboarding by the author. The second seems to be intentional spacing, why not (\)? The last is likely a hacked indentation kludge?

Inline mathematics. Some inline mathematics is converted to italics. That is troublesome to me because it should really remain as unconverted mathematics. Then too, that may be the fault of the author.

Export of structure. The structure of the chapter and lists are inconsistent to missing. This is likely the authors’ fault as the use of styles seems to be the cause.

7 Writer and Friends

In spite of my earlier remarks I salute OOo. I believe that the Writer package and Writer2LaTeX application have made a great contribution to the goal of converting many documents into a form for better presentation and archival, namely \TeX{}/\LaTeX{}. That may not have been the intent. The intent may have been to enable a good Writer user to simply use \LaTeX{} as an output device?
The \LaTeX\ code output in version beta 1.2 is improved, but not clean. The \texttt{Writer2LaTeX Users Manual} is 45 pages in length. The exported \LaTeX\ (with the \texttt{clean} option) source averages about fourteen occurrences of \texttt{\textbf{mdseries}} and twelve occurrences of \texttt{\textit{styleSourceText}} per page. Each paragraph is grouped with \texttt{\textbf{mdseries}} as the start. The latter is effectively an alias for \texttt{\texttt{texttt}} and used in tables.

8 Conclusions
Reasonable document interchange and archival is now possible for a wide range of systems. I believe that \TeX/\LaTeX\ is the most reasonable basis for many archival systems.

The advances by OOo and its \texttt{Writer} system are impressive and appreciated. I hope that its \texttt{open} status and development will continue. Note: I have addressed only a small part of a large project.

A point made in a number of venues is the problem of \TeX\ systems not having a native graphical input process. Lyx and OOo are touted as solutions—along with several others. The authors of the three test cases I have used show that the graphical interfaces are not a solution to the problems—in my humble opinion. All the authors are highly educated and familiar with the problems of getting people to learn at the college level. Still, each has shown the results from casual learning about their systems. The effective use of styles, consistent use of symbols and special functions, document structure, etc. were lacking in each of their documents.

The first line of a \LaTeX\ document requires statement of the class of the document. There is a finite number of them. It does not seem to enter the stream of consciousness for many that if they learned how to type "Mary had a little lamb," on a machine that should be at least a small change in the start of a letter to a sweetheart, a grocery list, or any other class of documents.

In a moment of frustration I lamented "Users avoid using \LaTeX\ because you have to learn how to do some things while users of \texttt{WORD} believe if it takes any non-obvious effort to do something, it should not be done!"

I raised these questions earlier about why educated users of computers seem to get so little from users guides and manuals. Maybe the manuals are poor, non-existent, or not convenient? Maybe the easy to use graphics interfaces overwhelmed the authors? Maybe these interfaces do not encourage users like these to seek the information they need? Maybe they just do not care?

Was the intent in creating \texttt{Writer2LaTeX} to give the user "\LaTeX\ as an improved output device?" I think that poses a bigger challenge "How do you teach a \texttt{Writer} user to write for \LaTeX?"

9 Questions
I did not intend this as a FAQ but thought it might be a good way to end the paper.

LL \LaTeX\ Do any of the test cases use \LaTeX beyond Leslie Lamport’s book?

\textbf{Answer No} for memoir and book on the three love triangles.

\textbf{Yes} for the science and engineering texts. Packages used: \texttt{float}, \texttt{lscape}, \texttt{makeidx}, \texttt{fancyvrb}, \texttt{graphicx}, \texttt{array}, \texttt{amsmath}, \texttt{amssymb}, \texttt{sidecap}, \texttt{wrapfig}, and \texttt{caption}. These were probably not all necessary but useful.

\textbf{WORD test case?} What do you want for a \texttt{WORD} test?

\textbf{Answer} A one pager, like Norman Naugle’s An Elementary Sum. Then, many others would help. I hope it would also convert to \texttt{Writer} and back too.

\textbf{How long?} How long did it take you to type Norman’s note?

\textbf{Answer} An hour or so. The answer to the next question is why didn’t you just do it in \texttt{WORD}? Probably eight or seven hours and fortunately I do not have \texttt{WORD} in my house.

References

This is intended as a preprint copy. The bibliography will be expanded and other cleaning done.