
A Multidimensional Approach to Typesetting

John Plaice, Paul Swoboda

UNSW, Sydney, Australia

Yannis Haralambous

ENST Bretagne, Brest, France

Chris Rowley

Open University, London, UK



Origins of the Research

• Discussions between Ω Project and LATEX3 Project.

• Initiated at Int. Symp. on Multilingual Inf. Proc., Tokyo,

January 2001, organized by NAIST (formerly ETL).

• Attempt to find a low-level Ω interface that could be used

for higher-level multilingual LATEX programming.

• Ω waiting for LATEX API in order to implement . . .

• LATEX waiting for working Ω in order to experiment . . .

• We needed a model for change of language and script

supporting complex variants.



The Answer: Intensional Programming

• Programs adapt to multidimensional context.

• Dimensions act as distributed global variables.

• The context permeates everything, and each component

adapts accordingly by testing the context.

• Components come in multiple versions, i.e., (context , object)

pairs; the most relevant is chosen as needed.

• A change of value for a dimension can simultaneously affect

multiple levels of thousands of programs, with the support

of a networked context server.



But What is the problem?



The Standard Model

• Unicode: one character set for all of the world’s characters.

• XML: to hold tree-structured documents.

• ISO-639: two-letter codes for the world’s languages.

• XSL-FO: to do the formatting.



The Standard Model

• Unicode: one character set for all of the world’s characters.

• XML: to hold tree-structured documents.

• ISO-639: two-letter codes for the world’s languages.

• XSL-FO: to do the formatting.

In this model, it is “understood” that character, glyph,

language and script are discrete, eternal, unchanging entities.

History disappears, as does cross-cultural evolution.



Language Evolution

• English is a multidimensional complex.

• Time: Old, Middle and Modern English.

• Space: national and regional Englishes.

• Culture: science, arts, business, diplomacy.

Implication: spellings and hyphenations vary, hence

different rules must be used according to the situation.



Script Evolution

• There are some 200 named Indic scripts.

• Each has evolved from the original Brahmi script.

• All have a similar, but not identical, structure.

• Unicode encodes only a dozen of these scripts.

Implication: Each of these scripts must be understood both as

a separate script as well as a variant of a single script.



Language/Script Co-Evolution

• Turkish: Arabic ⇒ Latin script, with extra letters.

• German: Gothic ⇒ Latin script, without short/long s.

• Chinese: traditional ⇒ simplified characters.

• Chinese Latin transliteration: Wade-Giles ⇒ pinyin.

• Berber: Tifinagh (not in Unicode!), Arabic and Latin.

Implication: Need to allow semi-automatic conversion from one

writing system to another, using morphological analyzers.



Character/Glyph Co-Evolution

• A character is a unit of “textual” information.

• A glyph is a unit of “visual” information.

• The unit “æ” is a Danish character, but an English ligature.

• Chinese variant characters can be seen either as glyphs or

characters, depending on the situation.

• When typesetting continuous scripts, the glyphs do not

necessarily even correspond to characters, but, rather, to

bits thereof.

Implication: glyph and character are fluid concepts.



How do we deal with this variance?



Our Initial Model

• We use a tree-structured context:

<characterset:<Unicode + encoding:<UTF8>> +

input:<XML + DTD:<TEI>> +

language:<English +

spelling:<Australian> +

script:<Latin>> +

output:<PDF +

viewer:<AcrobatReader +

version<5.0 + OS:<MacOSX>>>>>

• input and output are dimensions.

• lang:script is a nested dimension.



Context-Dependent Processing (1)

An initial context is set up from:

• environment variables

• system locale

• user profiles

• command-line arguments

• menu selections

• document markup



Context-Dependent Processing (2)

The context is active throughout the process. It is used:

• to interpret the input;

• to choose the exact format for the output;

• to determine what processing should be undertaken.

Defining the process involves:

• choosing the number of passes;

• choosing linguistic, layout, or other plug-in tools;

• parametrizing each of these.



Context-Dependent Processing (3)

Changing language, script or font means changing the context.

• Context operations modify contexts:

[language:<French +

spelling:<Quebec> +

script:<Latin>]

• Flexible approach that can be used to specify subtleties of

the typesetting process, to an arbitrary level of precision.

• Specialized tools can be invoked as needed.



Adding Contexts to Ω (1)

• \contextset{Cop} modifies the current context.

• \contextbase{D} gives the value for dimension D.

• \contextshow{D} gives the sub-context for dimension D.

where Cop is a context operation and D is a nested dimension.



Adding Contexts to Ω (2)

Three mechanisms to adapt Ω’s behavior:

• versioned execution flow;

• versioned macros;

• versioned ΩTPs.



Versioned Execution Flow

If C is the current context, then executing:

\contextchoice{{Cop1}=>{exp1},

. . .

{Copn}=>{expn}

}

will select and expand one of the expressions expi. The one

chosen will correspond to the best-fit context among

{C Cop1, . . . , C Copn}



Versioned Macros (1)

If C is the current context, then:

\vdef{Cop}\controlsequence args{definition}

defines the C Cop version of \controlsequence. Definitions are

scoped as for TEX.



Versioned Macros (2)

The standard TEX definition:

\def\controlsequence args{definition}

is simply equivalent to

\vdef{<>}\controlsequence args{definition}

i.e., it defines the empty version of a control sequence.



Versioned Macros (3)

If controlsequence is defined for contexts {C1, . . . , Cn},
and C is the current context, then

\controlsequence

will select the definition corresponding to the best-fit context:

max{Ci : Ci v C}

A particular version can also be requested:

\vexp{Cop}\controlsequence



Versioned ΩTPs

An ΩTP is a filter, reading from standard input and writing to

standard output. An ΩTP-list is a series of ΩTPs.

• Internal ΩTP — Rules can be preceded by a context:

<<context>> pattern => expression

A rule is only examined if its context is less refined than

the current context.

• External ΩTP — Context is passed as an argument:

program -context=context



The User-Level Interface

Ω always has an active ΩTP-list, and the \contextchoice

operator can be used to build ΩTP-lists that adapt to the

context, by selectively turning on and off the member ΩTPs.

Finally, Ω has a user-level means for manipulating the large sets

of parameters that must be handled when doing complex

multilingual typesetting: parameters are changed as needed.

Versioning of the macros and ΩTPs allows one to deal with the

variance in language and script, as well as encouraging the

sharing of resources across multiple languages.



We now have a

context-dependent user interface.



How about a

context-dependent typesetter?



Multiple-Phase Character-Level Typesetter

We present a simple approach:

• Preparation: Adding extra markup to input stream.

• Segmentation: Cutting input into typesettable clusters.

• Cluster typesetting : Finding formattings for clusters.

• Recombination: Relative positioning of formatted clusters.



Example typesetter

stream<Glyph>

typeset(stream<Char> input, Context context) {

stream<Char> prepared =

input.apply(otp_list.best(context));

stream<Cluster> segmented =

segmenter.best(context)(prepared);

stream<TypesetCluster> typeset =

clusterset.best(context)(segmented);

stream<Glyph> recombined =

recombine.best(context)(typeset);

return recombined;

}



Preparation

stream<Char> prepared =

input.apply(otp_list.best(context));

The preparation phase works entirely on characters, i.e., at the

information exchange level, but it allows additional typographic

information to be added to the character stream, so that the

following phases can use the extra information to produce

better typography.



Segmentation

stream<Cluster> segmented =

segmenter.best(context)(prepared);

The segmentation phase splits the stream of characters into

clusters of characters; typically, segmentation is used for word

detection. Trivial process for English, non-trivial for languages

such as Thai.

This process can also be used to find compound word divisions

in Germanic and Slavic languages.

Choice of segmenter is clearly context-dependent.



Cluster Typesetting

stream<TypesetCluster> typeset =

clusterset.best(context)(segmented);

A cluster engine processes a character cluster, taking into

account the current context and produces the typeset output —

a sequence of positioned glyphs.

When hyphenation or some other form of cluster-breaking is

allowed, there are multiple possible typeset results, and all of

these possibilities must be output.

For complex scripts and dynamic fonts, many different engines

are needed.



Recombination

stream<Glyph> recombined =

recombine.best(context)(typeset);

Typeset clusters are placed next to each other. For simple text,

such as English, this simply means placing a fixed stretchable

space between typeset words. In situations such as Thai and

some styles of Arabic typesetting, kerning would take place

between words. Once again, the recombiner’s behavior is

context-dependent.



But don’t Char and Glyph

vary with the context?



Problem with Example

stream<Glyph>

typeset(stream<Char> input, Context context);

In this type declaration, the types Glyph and Char, are fixed,

unchanging sets, not at all consistent with the view that

character and glyph are multidimensional entities.

However, if these basic types were to continually change, then

no algorithms could be written, because one could never be sure

of the “atoms” with which one was working.



Typographical Spaces

The typographical space constrains the variance in the context.

stream< Glyph<TS> >

typeset(stream< Char<TS> > input, Context context);

In a typographical space, certain parameters are kept fixed, or

at least their values are kept within a certain range. Other

parameters may vary at will, and their values may be

manipulated by the algorithms within that space.



Typesetting Unicode

The typographical space is a necessary solution to the problem

raised by the existence of multi-script character sets such as

Unicode. It is simply infeasible to write a single typesetter that

will do quality typesetting of Egyptian hieroglyphics, Japanese

kanji with furigana, Persian in Nastaliq style, and German

using Fraktur fonts.

By creating separate typographical spaces for these different

kinds of situation, we can allow specialists to build typesetters

for the scripts and languages that they know best.



How to build a multilingual typesetter

What is still needed for quality multilingual typesetting is to

define some basic parameters, or dimensions, that apply across

different typographical spaces, so that it becomes possible to

move smoothly from one typographical space to another.



Example Typographical Spaces (1)

• Latin, Greek, Cyrillic, IPA: left-to-right, discrete glyphs,

numerous diacritics, stacked vertically, above or below the

base letters, liberal use of hyphenation;

• Hebrew : right-to-left, discrete glyphs, optional use of

diacritics (vowels and breathing marks), which are stacked

horizontally below the base letter;

• Arabic: right-to-left, contiguous glyphs, contextually

shaped, many ligatures, optional use of diacritics (vowels,

breathing marks), placed in 1.5-dimensions, above or below;



Example Typographical Spaces (2)

• Indic scripts : left-to-right, 1.5-dimensional layout of

clusters, numerous ligatures, applied selectively according

to linguistic and stylistic criteria;

• Chinese, Japanese: vertical or left-to-right, often on fixed

grid, with annotations to the right or above the main

sequence of text, automatic word recognition needed for

any form of analysis;

• Egyptian hieroglyphics : mixed left-to-right and right-to-left,

1.5-dimensional layout.



Conclusion

• Context-dependent user interface will be part of Ω2.

• Context-dependent typesetter is current area of research.


