
Omega, OpenType and the XML World

Yannis Haralambous

ENST Bretagne, Brest, France

John Plaice

UNSW, Sydney, Australia

Origins of Ω

• Conceived in February 1993 (Lille, F).

• Public discussion in July 1993 at TUG (Aston, UK).

• Multilingual typesetting extensions to TEX.

• All TEX 8-bit data structures become 16-bit in Ω.

• ΩTP-lists used to prepare input for typesetting.

• Basic TEX typesetting algorithms are unchanged.

• Support for multiple direction typesetting.

Where is Ω Heading?

• Ω version 2 (Free Software)

– When do we get pdf-xml-html-utf8-ot-e-Ω?

– Two grants from the TEX Users Group.

∗ Combining the Extensions of TEX into One System.

∗ Using Omega to Generate XML and MathML from

TEX Documents.

• Ω version 3 (Research)

– Redesigning typesetting from the ground up.

– “A Multidimensional Approach to Typesetting”

9:00 presentation Wednesday 23 July.

Ω, Version 2

• Upwardly compatible with TEX.

• Adaptable, context-dependent.

• “Standards-compliant” (Unicode, XML, OpenType).

• All new code written in C++/stl.

• No fixed-size arrays, 31 bits for characters, glyphs, etc.

• Distribution in 2003.

Participants

• UNSW, Sydney

– John Plaice

– Paul Swoboda

– Lap Yu (Kenneth) Ho

– Gabriel Christian Ditu

• ENST-Bretagne, Brest

– Yannis Haralambous

– Gabór Bella

– Pawe l Grams

Workflow – Input

• Running tree-structured context initialized from

command-line and environment variables.

• Entire input is passed through ΩTP-list, possibly empty.

• ΩTP-list interpretation is context-dependent.

• Direct input uses deserialization methods

to create internal data structures.

• TEX-style input converts character set, using iconv,

to ucs-4 (4-byte iso-10646/Unicode).

Workflow – Output

• Macro-expansion is context-dependent.

• Text is passed through ΩTP-list, possibly empty.

• TEX typesetting algorithms are used.

• Direct output uses serialization methods

to output internal data structures.

• DVI output is still available.

• Entire output is passed through ΩTP-list, possibly empty.

What are the rôles of

XML and OpenType?

Current Plans: XML and OpenType

1. Input filter converting XML → LATEX.

2. Direct output of XML and MathML.

3. Output filter converting DVI → DVX (XML).

4. Use of OpenType fonts with Ω.

XLATEX: XML Input

What is LATEX?

• A series of concepts (boxes, glue, words, paragraphs, pages,

footnotes, tables, floating objects, fonts, etc.)

• A series of methods (document, itemize, enumerate,

minipage, includegraphics, usepackage, etc.)

• A syntax (commands, environments, catcodes, etc.)

• The possibility to use lower level syntax, whenever

necessary (TEX, PostScript).

What is XLATEX?

• We keep the same concepts.

• We keep the same methods.

• We change the syntax.

• We keep the possibility to use lower level syntax whenever

necessary: LATEX, TEX, PostScript.

• Only a well-formed and valid XLATEX document can be

converted to LATEX, so say goodbye to LATEX errors!

TEX compilation can only go smoothly.

Why is XML a Better Syntax?

• Few special characters: <, > and & (sometimes ’ and ").

These characters all have standard syntax

(< > & ' ").

• Tag names are well defined and delimited: <TeX/>

(no ambiguity about white space, as in \TeX).

• Clear separation between data, meta-data and keywords :

<textcolor color="red">A word</textcolor>

• Can switch notations using processing instructions :

<?tex now we are back in \LaTeX?>

And What About XML Documents?

• They are trees (not limiting; with name spaces and tools

such as XLink one can create structures that are not trees).

• Global or partial validation using DTDs or Schemas.

• Well-defined encoding (by default: UTF-8).

• Can carry meta-data (RDF, ontologies).

• Many tools to edit, parse and transform them

(only TEX can read TEX, zillions of tools can read XML).

• Have become a standard for information exchange.

Is XLATEX Yet Another DTD?

• Yes, XLATEX is YAD.

• However, the element and attribute names strangely

resemble LATEX command and environment names.

• The goal is to minimize the learning curve of XLATEX

for LATEXists.

<itemize>

<item>Does this look <emph>familiar?</emph></item>

</itemize>

XLATEX Code: Documents

<document class="article" opt="12pt,a4paper">

<section id="s1">My first section</section>

...<includegraphics bbox="10 20 100 120"

src="toto.eps"/>...

</document>

• The document is contained in a <document> element.

The document class and its options are attributes.

• On a first run, the filter can detect if packages are needed

(<includegraphics> needs graphics or graphicx).

• Explicit <usepackage> and <preamble> also available.

XLATEX Code: Labels

<figure pos="t"><includegraphics bbox="10 20 100 120"

src="toto.eps"/>

<caption id="cap1">This is figure<nbsp/><ref

id="cap1"/>, on page<nbsp/><pageref~id="cap1"/>.

</caption></figure>

• Elements can have id attribute, equivalent to \label.

• <includegraphics> is an empty element (no textual data).

• Non-breakable space: Unicode 0xa0 or empty <nbsp/>.

• User-defined entities (such as) can be added.

XLATEX Code: Verbatim

<?verbatim

this is pure verbatim

1 < 2, Y&Y, \end, $x^{}2$

?>

• Verbatim code is obtained not by an element, but by a

processing instruction.

• Inside the verbatim PI, everything is allowed, except ?>.

• There are also verbatimstar, verb and verbstar

processing instructions.

XLATEX Code: Nested Verbatim

<footnote>Believe it or not: <?verbatim

you can put verbatim code into footnotes!

?></footnote>

• This works because the code produced by verbatim is not

a LATEX verbatim environment, but a quotation

environment.

• Special characters are protected and lines are obeyed.

• All the (notorious) incompatibility problems of verbatim

environment are gone.

XLATEX Code: Table of Contents

<section id="s1">

<toc>A Short Title.</toc>A Long Title.

</section>

• The id attribute holds the section label (meta-data).

• The “short version” of the title (for the Table of contents)

may contain other mark up. It can only be a sub-element of

<section>.

XLATEX Code: Tables

<tabular format="|c|c|"><hline/>

A <tab/> B

C <tab/> D
<hline/>

</tabular>

• Tables have the same logic as in LATEX.

• One can also write <tabular><format>...</format>...

• <tab/> is used both in <tabular> and <tabbing>, with

different productions.

XLATEX Code: Shortcuts

Writing:

this is <i>code in emphatic style</i>

is shorter than:

<textbf>this is <textit>code in

<emph>emphatic </emph> style</textit></textbf>

• We keep the widely known shorter and easy to understand

HTML tags: <i> and <textit> produce the same result.

• There is a <p> element to produce an empty line. It is

practical for carrying attributes: <p indent="0pt">.

XLATEX Code: Direct TEX Input

If really necessary

<?tex One can always return to

\emph{good ol’ \LaTeX\ldots} ?>

• XML is a hostile environment for you? The LATEX syntax

world is always available. You don’t need Mr. Sulu to beam

you between worlds, the <?tex ... ?> processing

instruction is enough.

XLATEX Code: Namespaces

<?xml version="1.0" encoding="iso-8859-1"?>

<document xmlns="http://omega.enstb.org/2003/xlatex"

xmlns:mml="http://www.w3.org/1998/Math/MathML"

xmlns:svg="http://www.w3.org/2000/svg">

...

</document>

• XLATEX document with MathML formulas and SVG figures.

• One can also write mathematics by using a TEX processing

instruction: <?math x^2+y^2=0 ?>.

XLATEX Code: Adding New Elements

<toto>Some words</toto>

<titi arg1="bla" arg2="bli">and more</titi>

<tata_ optarg="t">Something</tata_>

is transformed without validation into:

\toto{Some words}

\titi{bla}{bli}\{and more\}

\begin{tata}[t]

Something

\end{tata}

Ω Becomes Part of the XML World

• XLATEX documents can be placed directly on the Web, since

XSLT stylesheets can transform them to XHTML.

• One can write XSLT stylesheets to transform DocBook or

TEI into XLATEX.

• Using namespaces virtually any XML tool can be combined

with XLATEX elements.

Direct output of XML and MathML

Getting MathML out of TEX Documents (1)

• Project initiated by American Mathematical Society.

• Inside Ω, new sgml_node holds a tagged list.

• Automatic grouping of expressions to form proper <mrow>.

• New primitives to generate entities.

\def\arccos{\SGMLentityop{mi}{arccos}}

Getting MathML out of TEX Documents (2)

• New primitives to redefine math at the macro level

\renewcommand{\sqrt}{\@ifnextchar[\sqrttwo\sqrtone}

\newcommand{\sqrtone}[1]{%

\SGMLstartmathtag{msqrt} #1

\SGMLendmathtag{msqrt}}

\def\sqrttwo[#1]{\sqrttwoend{#1}}

\newcommand{\sqrttwoend}[2]{%

\SGMLstartmathtag{mroot} {#2} {#1}

\SGMLendmathtag{mroot}}

Getting XML out of TEX Documents

• New primitives to redefine structural components

\def\section#1{%

\@closepar%

\@closesection%

\@startsection%

\refstepcounter{section}%

\SGMLattribute{type}{\@sectiontype}%

\SGMLattribute{n}{\thesection}%

\SGMLstarttexttag{head}#1\SGMLendtexttag{head}%

\@startpar%

}

DVX: XML Output

Transforming DVI Directly Into XML

• DTD for DVI, called DVX.

<?xml version="1.0"?>

<dvx version="1.0">

<pre id="2" num="25400000"

den="473628672" mag="1000"

string=" Omega output 2003.05.09:2000"/>

<page id1="1005" id2="0" id3="0" id4="0" id5="0"

id6="0" id7="0" id8="0" id9="0" id10="0"/>

<fontdef id="31" checksum="1831058770"

size="655360" designsize="655360"

name="cmss10"/>

Transforming DVI Directly Into XML

• DTD for DVI, called DVX.

<set>Y</set>

<right dim="-18205"/>

<set>ou</set>

<right dim="285661"/>

<set>a</set>

<right dim="-18205"/>

<set>re</set>

<right dim="285661"/>

<set>reading.</set>

Moving to OpenType Fonts

Printing OpenType fonts

• Adaptation of odvips so that OpenType (and TrueType)

fonts are treated as are PostScript fonts.

• The Ω engine still uses OFM files.

• OpenType fonts are included in the psfonts.map file.

Tfmname InternalName </access/path/filename.otf

• One OpenType font will generate (many) Type1 fonts

using only those glyphs used.

• Intermediate PostScript Font Container (PFC) file to hold

Type 1 descriptions to draw the glyphs.

Current directions

• Get out and polish the distribution.

• Adapt Ω to directly read .otf files.

• Develop DTDs so that Ω can ensure round-trip conversion:

Ω reads XML and generates the identical XML.

• Longer term:

– Direct XML input without TEX macro processing.

– Direct XML (SVG) output, as annotation of input.

