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1 Intensive Functions and Extensive Func-

tions

Thermodynamics Variables are either extensive or intensive. To illustrate
the difference between these kings of variables, think of mass and density.
The mass of an object depends on the amount of material in the object,
the density does not. Mass is an extensive variable, density is an intensive
variable. In thermodynamics, T , p, and µ are intensive, the other variables
that we have met, U , S , V , N , H, F , and G are extensive. We can develop
some useful formal relationships between thermodynamic variables by relat-
ing these elementary properties of thermodynamic variables to the theory of
homogeneous functions.

2 Homogeneous Polynomials and Homogeneous

Functions

A polynomial
a0 + a1x + a2x

2 + · · · + anx
n
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is of degree n if an 6= 0. A polynomial in more than one variable is said to
be homogeneous if all its terms are of the same degree, thus, the polynomial
in two variables

x2 + 5xy + 13y2

is homogeneous of degree two.
We can extend this idea to functions, if for arbitrary λ

f(λx) = g(λ)f(x)

it can be shown that
f(λx) = λnf(x)

a function for which this holds is said to be homogeneous of degree n in the
variable x. For reasons that will soon become obvious λ is called the scal-
ing function. Intensive functions are homogeneous of degree zero, extensive
functions are homogeneous of degree one.

2.1 Homogeneous Functions and Entropy

Consider
S = S(U, V, n),

this function is homogeneous of degree one in the variables U , V , and n,
where n is the number of moles. Using the ideas developed above about
homogeneous functions, it is obvious that we can write:

S(λU, λV, λn) = λ1S(U, V, n),

where λ is, as usual, arbitrary. We can gain some insight into the prop-
erties of such functions by choosing a particular value for λ. In this case we
will choose λ = 1

n
so that our equation becomes

S
(

U

n
,
V

n
, 1
)

=
1

n
S(U, V, n)

Now, we can define U
n

= u, V
n

= v and S(u, v, 1) = s(u, v), the internal energy,
volume and entropy per mole respectively. Thus the equation becomes

ns(u, v) = S(U, V, n),

and the reason for the term scaling function becomes obvious.
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3 The Euler Equation

Consider
U(λS, λV, λn) = λU(S, V, n)

differentiating with respect to λ (and changing sides of the equation) this
becomes

U(S, V, n) =

(
∂U

∂(λS)

)
V,n

∂(λS)

∂λ
+

(
∂U

∂(λV )

)
S,n

∂(λV )

∂λ
+

(
∂U

∂(λn)

)
S,V

∂(λn)

∂λ

which simplifies to

U(S, V, n) =

(
∂U

∂(λS)

)
V,n

S +

(
∂U

∂(λV )

)
S,n

V +

(
∂U

∂(λn)

)
S,V

n.

Recalling that λ is arbitrary, we now choose λ = 1, resulting in

U(S, V, n) =

(
∂U

∂S

)
V,n

S +

(
∂U

∂V

)
S,n

V +

(
∂U

∂n

)
S,V

n,

and recognizing that the partial derivatives in this equations are now just
the definitions of the extensive variables T , p, and n, we can rewrite this as

U = TS − pV + µn.

This equation, arrived at by purely formal manipulations, is the Euler equa-
tion, an equation that relates seven thermodynamic variables.

3.1 The relationship between G and µ

Starting from
U = TS − pV + µn.

and using
G = U + pV − TS

we have
G = TS − pV + µn + pV − TS = µn.

So for a one component system G = µn, for a j-component system, the Euler
equation is

U = TS − pV +
j∑

i=1

µini
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and so for a j-component system

G =
j∑

i=1

µini

4 The Gibbs-Duhem Equation

The energy form of the Euler equation

U = TS − pV + µn

expressed in differentials is

dU = d(TS) − d(pV ) + d(µn) = TdS + SdT − pdV − V dp + µdn + ndµ

but, we know that
dU = TdS − pdV + µdn

and so we find
0 = SdT − V dp + ndµ.

This is the Gibbs-Duhem equation. It shows that three intensive variables
are not independent – if we know two of them, the value of the third can be
determined from the Gibbs-Duhem equation.
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