Never raise your hand to your kids. It leaves your groin unprotected.
–Red Buttons

1 Algorithms

This section contains two figures. The first is Figure 1 which illustrates an excerpt from a computer program both in pseudocode and as a flowchart.

Is \(x \) equal to \(y \)?

Yes

Let \(x = x + 1 \).

No

If \(x = y \) then
\[x = x + 1 \]
End If

Figure 1: A small example in pseudocode and as a flowchart

Next, we illustrate the division algorithm using a flowchart in Figure 2.

*Department of Mathematics, Southern Connecticut State University, New Haven CT
Let \(r = r - d \).

Input: integers \(n \) & \(d \)
Local: integers \(q \) & \(r \)

Let \(q = 0 \) and \(r = n \).

Is \(r > d \)?

Yes

Let \(r = r - d \).
Let \(q = q + 1 \).

No

Goto

Return: \(q \) & \(r \)

Figure 2: The division algorithm in flowchart form.

That’s all folks!

06515, USA; e-mail: fields@southernct.edu