1 Sets

The universal set (\mathcal{U}) contains everything. The empty set (\emptyset) contains nothing.

Some assignments:

$$B_1 = \{1, 3, 5, 7\}, \quad B_2 = \{2, 4, 6, 8\}, \quad B_3 = \{9, 10\}$$

Define:

$$\mathcal{A} = \bigcup_{i=1}^{3}B_i = \{1, \ldots, 10\}$$

The cardinality of a set \mathcal{S} is denoted $|\mathcal{S}|$ and is the number of elements in the set.

$$|B_1| = 4, \quad |B_2| = 4, \quad |B_3| = 2, \quad |B_1 \cup B_2| = 8, \quad |\emptyset| = 0$$

2 Spaces

A number space (denoted \mathcal{S}) is characterised by a set of entities with a set of axioms. For example:

$$\mathbb{N} = \{x : x \text{ is positive integer}\}$$
$$\mathbb{Z} = \{x : x \text{ is an integer}\}$$
$$\mathbb{R} = \{x : x \text{ is a real number}\}$$

3 Vectors and Matrices

A matrix (denoted \mathbf{M}) is a rectangular array of values. A vector (denoted \mathbf{v}) is a column or row of values (that is a one-dimensional matrix).

$$I \mathbf{x} = \mathbf{x}, \quad \mathbf{A}^{-1} = I, \quad x^{-1} = \sum_i x_i$$

Glossary

I the identity matrix. \mathbb{Z} the set of integers.
M^{-1} the inverse of \mathbf{M}. \mathbb{N} the set of natural numbers.
\mathbf{v} a vector. \mathbb{R} the set of real numbers.
$\mathbf{1}$ the vector of 1s. $|\mathcal{S}|$ the cardinality of \mathcal{S}.
$\sum\sum$ n-ary summation. \emptyset the empty set.
$\bigcup\bigcup$ n-ary union. \mathcal{S} a set.
\mathcal{S} a number space. $\{x : \ldots\}$ set membership.
\mathcal{U} the universal set. $\{\ldots\}$ set contents.