Web2c

This document describes how to install and use the programs in the Web2c implementation of the TeX system, especially for Unix systems. It corresponds to Web2c version 2024, released in March 2024.

Table of Contents


1 Introduction

This manual corresponds to version 2024 of Web2c, released in March 2024.

Web2c (also spelled Web2C) is the name of a TeX implementation, originally for Unix, but now also running under Windows and other operating systems. By TeX implementation, we mean all of the standard programs developed by the Stanford TeX project led by Donald E. Knuth: Metafont, DVItype, GFtoDVI, BibTeX, Tangle, etc., as well as TeX itself. Other programs are also included: DVIcopy, written by Peter Breitenlohner, MetaPost and its utilities (derived from Metafont), by John Hobby, and many more.

General strategy: Web2c works, as its name implies, by translating the WEB source in which TeX is written into C source code. Its output is not self-contained, however; it makes extensive use of many macros and functions in a library (the web2c/lib directory in the sources). Therefore, it will not work without change on an arbitrary WEB program.

Availability: All of Web2c is freely available—“free” both in the sense of no cost (free ice cream) and of having the source code to modify and/or redistribute (free speech). See unixtex.ftp in Kpathsea, for the practical details of how to obtain Web2c.

Different parts of the Web2c distribution have different licensing terms, however, reflecting the different circumstances of their creation; consult each source file for exact details. The main practical implication for redistributors of Web2c is that most of the executables are covered by the GNU General Public License or GNU Lesser General Public License, and therefore anyone who gets a binary distribution must also be able to get the sources, as explained by the terms of the GPL (https://gnu.org/licenses/). The GPL covers the Web2c executables, including tex, because the Free Software Foundation sponsored the initial development of the Kpathsea library that Web2c uses. The basic source files from Stanford, however, have their own copyright terms or are in the public domain, and are not covered by the GPL.

History: Tomas Rokicki originated the TeX-to-C system in 1987, working from the first change files for TeX under Unix, which were done primarily by Howard Trickey and Pavel Curtis. Tim Morgan then took over development and maintenance for a number of years; the name changed to Web-to-C somewhere in there. In 1990, Karl Berry became the maintainer. He made many changes to the original sources, and started using the shorter name Web2c. In 1997, Olaf Weber took over, and then in 2006, Karl started taking care of it again. No significant development or changes have been needed for many years, though dozens of other people have contributed in many ways; their names are listed in the ChangeLog files.

Originally, Web2c was distributed as its own package, alongside the original web programs from Stanford and other components. It was also the basis for the teTeX distribution (now discontinued). Around 2004, the packaging focus shifted entirely to the TeX Live distribution (https://tug.org/texlive/), though the same Web2c is at the heart of the release.

Other acknowledgements by Karl: The University of Massachusetts at Boston (particularly Rick Martin and Bob Morris) provided computers and ftp access to me for many years. Richard Stallman at the Free Software Foundation employed me while I wrote the original path searching library (for the GNU font utilities). (rms also gave us Emacs, GDB, and GCC, without which I cannot imagine developing Web2c.) And, of course, TeX would not exist in the first place without Donald E. Knuth.

Further reading: See References.


2 Installation

(A copy of this chapter is in the distribution file web2c/INSTALL.)

Installing Web2c is mostly the same as installing any other Kpathsea-using program. Therefore, for the basic steps involved, see Installation in Kpathsea. (A copy is in the file kpathsea/INSTALL.)

One peculiarity to Web2c is that the source distribution comes in two files: web.tar.gz and web2c.tar.gz. You must retrieve and unpack them both. (We have two because the former archive contains the very large and seldom-changing original WEB source files.) See unixtex.ftp in Kpathsea.

Another peculiarity is the MetaPost program. Although it has been installed previously as mp, as of Web2c 7.0 the installed name is now mpost, to avoid conflict with the mp program that does prettyprinting. This approach was recommended by the MetaPost author, John Hobby. If you as the TeX administrator wish to make it available under its shorter name as well, you will have to set up a link or some such yourself. And of course individual users can do the same.

For solutions to common installation problems and information on how to report a bug, see the file kpathsea/BUGS (see Bugs in Kpathsea). See also the Web2c home page, http://www.tug.org/web2c.

Points worth repeating:


2.1 configure options

This section gives pointers to descriptions of the ‘--with’ and ‘--enableconfigure arguments that Web2c accepts. Some are specific to Web2c, others are generic to all Kpathsea-using programs.

For a list of all the options configure accepts, run ‘configure --help’. The generic options are listed first, and the package-specific options come last.

For a description of the generic options (which mainly allow you to specify installation directories) and basic configure usage, see Running configure scripts in Autoconf, a copy is in the file kpathsea/CONFIGURE.

--disable-dump-share

Do not make fmt/base/mem files sharable across different endian architectures. See Hardware and memory dumps.

--without-maketexmf-default
--without-maketexpk-default
--without-maketextfm-default
--with-maketextex-default

Enable or disable the dynamic generation programs. See mktex configuration in Kpathsea. The defaults are the inverse of the options, i.e., everything is enabled except mktextex.

--enable-shared

Build Kpathsea as a shared library. See Shared library in Kpathsea.

--with-editor=cmd

Change the default editor invoked by the ‘e’ interactive command. See Editor invocation.

--with-epsfwin
--with-hp2627win
--with-mftalkwin
--with-nextwin
--with-regiswin
--with-suntoolswin
--with-tektronixwin
--with-unitermwin
--with-x
--with-x-toolkit=KIT
--with-x11win
--with-x11

Define Metafont graphics support; by default, no graphics support is enabled. See Online Metafont graphics.

--x-includes=dir
--x-libraries=dir

Define the locations of the X11 include files and libraries; by default, configure does its best to guess). See Optional Features in Autoconf. A copy is in kpathsea/CONFIGURE.


2.2 Compile-time options

In addition to the configure options listed in the previous section, there are a few things that can be affected at compile-time with C definitions, rather than with configure. Using any of these is unusual.

To specify extra compiler flags (‘-Dname’ in this case), the simplest thing to do is:

make XCFLAGS="ccoptions"

You can also set the CFLAGS environment variable before running configure. See configure environment in Kpathsea.

Anyway, here are the possibilities:

-DFIXPT
-DNO_MF_ASM

Use the original WEB fixed-point routines for Metafont and MetaPost arithmetic calculations regarding fractions. By default, assembly-language routines are used on x86 hardware with GNU C (unless ‘NO_MF_ASM’ is defined), and floating-point routines are used otherwise.

-DIPC_DEBUG

Report on various interprocess communication activities. See IPC and TeX.


2.3 Additional targets

Web2c has several Make targets besides the standard ones. You can invoke these either in the top level directory of the source distribution (the one containing kpathsea/ and web2c/), or in the web2c/ directory.

c-sources

Make only the C files, translated from the Web sources, presumably because you want to take them to a non-Unix machine.

formats
install-formats

Make or install all the memory dumps (see Memory dumps). By default, the standard plain formats plus latex.fmt are made. You can add other formats by redefining the fmts, bases, and mems variables. See the top of web2c/Makefile for the possibilities.

fmts
install-fmts

Make or install the TeX .fmt files. See Initial TeX.

bases
install-bases

Make or install the Metafont .base files. See Initial Metafont.

mems
install-mems

Make or install the MetaPost .mem files. See Initial MetaPost.

triptrap
trip
trap
mptrap

To run the torture tests for TeX, Metafont, and MetaPost (respectively). See the next section.


2.4 Trip, trap, and mptrap: Torture tests

To validate your TeX, Metafont, and MetaPost executables, run ‘make triptrap’. This runs the trip, trap, and mptrap “torture tests”. See the files triptrap/tripman.tex, triptrap/trapman.tex, and triptrap/mptrap.readme for detailed information and background on the tests.

The differences between your executables’ behavior and the standard values will show up on your terminal. The usual differences (these are all acceptable) are:

  • string usage and table sizes;
  • glue set ratios;
  • down4’, ‘right4’, and ‘y4’ commands in DVItype output;
  • dates and times.

Any other differences are trouble. The most common culprit in the past has been compiler bugs, especially when optimizing. See TeX or Metafont failing in Kpathsea.

The files trip.diffs, mftrap.diffs, and mptrap.diffs in the triptrap directory show the standard diffs against the original output. If you diff your diffs against these files, you should come up clean. For example

make trip >&mytrip.diffs
diff triptrap/trip.diffs mytrip.diffs

To run the tests separately, use the targets trip, trap, and mptrap.

To run simple tests for all the programs as well as the torture tests, run ‘make check’. You can compare the output to the distributed file tests/check.log if you like.


3 Commonalities

Many aspects of the TeX system are the same among more than one program, so we describe those pieces together, here.

Another kind of commonality is the extensions to TeX that are available across all the engines; see Extended TeX engines.


3.1 Option conventions

To provide a clean and consistent behavior, we chose to have all these programs use the GNU function getopt_long_only to parse command lines. However, we do use in a restricted mode, where all the options have to come before the rest of the arguments.

As a result, you can:

  • use ‘-’ or ‘--’ to start an option name;
  • use any unambiguous abbreviation for an option name;
  • separate option names and values with either ‘=’ or one or more spaces;
  • use filenames that would otherwise look like options by putting them after an option ‘--’.

By convention, non-option arguments, if specified, generally define the name of an input file, as documented for each program.

If a particular option with a value is given more than once, it is the last value that counts.

For example, the following command line specifies the options ‘foo’, ‘bar’, and ‘verbose’; gives the value ‘baz’ to the ‘abc’ option, and the value ‘xyz’ to the ‘quux’ option; and specifies the filename -myfile-.

-foo --bar -verb -abc=baz -quux karl --quux xyz -- -myfile-

3.2 Common options

All of these programs accept the standard GNU ‘--help’ and ‘--version’ options, and several programs accept ‘--verbose’. Rather than writing identical descriptions for every program, they are described here.

--help

Print a usage message listing basic usage and all available options to standard output, then exit successfully.

--verbose

Print progress reports to standard output.

--version

Print the version number to standard output, then exit successfully.

TeX, Metafont, and MetaPost have a number of additional options in common:

-cnf-line=str

Parse str as if it were a line in the texmf.cnf configuration file, overriding all other settings. See Path searching options in Kpathsea.

-file-line-error
-no-file-line-error

Change (or do not change) the way error messages are printed. The alternate style looks like error messages from many compilers and is easier to parse for some editors that invoke TeX. This option used to be called ‘-file-line-error-style’.

-fmt=dumpname
-base=dumpname
-mem=dumpname

Use dumpname instead of the program name or a ‘%&’ line to determine the name of the memory dump file read (‘fmt’ for TeX, ‘base’ for Metafont, ‘mem’ for MetaPost). See Memory dumps. Also sets the program name to dumpname if no ‘-progname’ option was given.

-halt-on-error

Stop processing and exit when an error occurs, as opposed to the normal process of trying to recover and continue.

-ini

Enable the “initial” form of the program (see Initial and virgin). This is implicitly set if the program name is initex resp. inimf.

-interaction=string

Set the interaction mode from the command line. The string must be one of ‘batchmode’, ‘nonstopmode’, ‘scrollmode’, or ‘errorstopmode’.

-jobname=string

Set the job name to string, instead of deriving it from the name of the input file.

-kpathsea-debug=number

Set path searching debugging flags according to the bits of number (see Debugging in Kpathsea). You can also specify this in KPATHSEA_DEBUG environment variable (for all Web2c programs). (The command line value overrides.) The most useful value is ‘-1’, to get all available output.

-output-directory=dirname

Specify the directory dirname to which output files are written. Also look for input files in dirname first, before looking along the normal search path. Input files are only looked for as specified; no default extension is added. See Output file location.

-parse-first-line
-no-parse-first-line

Check or disable checking whether the first line of the main input file starts with ‘%&’, and parse it if it does. This line can be used specify the format and/or a TCX file.

-progname=string

Set program (and memory dump) name to string. This may affect the search paths and other values used (see Config files in Kpathsea). Using this option is equivalent to making a link named string to the binary and then invoking the binary under that name. See Memory dumps.

-recorder

Enable the filename recorder. This makes the program save a list of the opened files into a file with (by default) extension ‘.fls’. For Aleph, this option is always on, and the file has extension ‘.ofl’.

Ordinarily, the ‘.fls’ file is written to the same location as the ‘.log’ file, for example, respecting -output-directory if it is given (see Output file location). However, if TeX processing is done on the command line (or in response to the ‘**’ prompt), the ‘.fls’ might be written to the current directory, or include an integer (the current pid), as in texput1234.fls. You can use -jobname to explicitly set the basename.

-translate-file=tcxfile

Use tcxfile to define which characters are printable and translations between the internal and external character sets. Moreover, tcxfile can be explicitly declared in the first line of the main input file ‘%& -translate-file=tcxfile’. This is the recommended method for portability reasons. See TCX files: Character translations.

-8bit

This option specifies that by default all characters should be considered printable. If ‘-translate-file’ was given as well, then the TCX file may mark characters as non-printable. This is a no-op in engines natively supporting Unicode.


3.3 Path searching

All of the Web2c programs, including TeX, which do path searching use the Kpathsea routines to do so. The precise names of the environment and configuration file variables which get searched for particular file formatted are therefore documented in the Kpathsea manual (see Supported file formats in Kpathsea). Reading texmf.cnf (see Config files in Kpathsea), invoking mktex… scripts (see mktex scripts in Kpathsea), and so on are all handled by Kpathsea.

The programs which read fonts make use of another Kpathsea feature: texfonts.map, which allows arbitrary aliases for the actual names of font files; for example, ‘Times-Roman’ for ‘ptmr8r.tfm’. The distributed (and installed by default) texfonts.map includes aliases for many widely available PostScript fonts by their PostScript names.


3.4 Output file location

All the programs generally follow the usual convention for output files; namely, they are placed in the directory current when the program is run, regardless of any input file location; or, in a few cases, output is to standard output. The main programs (TeX, Metafont, MetaPost) provide several ways to override this, as explained below.

For example, if you run ‘tex /tmp/foo’, by default the output will be in ./foo.dvi and ./foo.log, not /tmp/foo.dvi and /tmp/foo.log.

An explicitly-given output location is also checked for input files, as TeX often generates files that need to be subsequently read. For input, the input filename is simply checked as given. No suffixes, such as ‘.tex’, are added by default, and no exhaustive path searching is done.

Override 1: ‘-output-directory’ option

If the ‘-output-directory’ option is specified, all output files that would normally be written in the current directory are written in the specified directory instead. See Common options.

Override 2: TEXMF_OUTPUT_DIRECTORY environment variable

Furthermore, if the ‘-output-directory’ option is specified, its argument is saved in the environment variable TEXMF_OUTPUT_DIRECTORY. This is for the benefit of any subprograms that might be called via \write18 (see Shell escapes), such as kpsewhich (see Invoking kpsewhich in Kpathsea). (This feature was added in TeX Live 2024.)

If the ‘-output-directory’ option is not specified, but the environment variable TEXMF_OUTPUT_DIRECTORY is set, then the environment variable value is used just as if it had been given to the option.

Warning: we most strongly recommend always setting TEXMF_OUTPUT_DIRECTORY temporarily, for a given run. It has great potential for confusion, since with it set, output files will not be in the expected place. To reduce this chance somewhat, TEXMF_OUTPUT_DIRECTORY must be set in the environment, not a configuration file.

Override 3: TEXMFOUTPUT environment variable

Finally, if neither ‘-output-directory’ nor TEXMF_OUTPUT_DIRECTORY is set, and an output file is not writable, then the main programs (TeX, Metafont, MetaPost), plus BibTeX for this one case, make an exception: if the config file or environment variable value TEXMFOUTPUT is set (it is not by default), the output file is written to the directory specified. Usually this is because the current directory is not writable, and thus all output files are written to TEXMFOUTPUT, but technically it works on a file-by-file basis.

None of these explicitly-given output locations are checked until (and unless) the program actually needs to write a file. For example, the invocation
tex --output-directory=/nonesuch \\end
won’t generate an error until TeX tries to write the log file:
! I can't write on file `texput.log'.’.


4 Three programs: Metafont, MetaPost, and TeX

TeX, Metafont, and MetaPost have a number of features in common. Besides the ones here, command-line options and other commonalities are described in the previous section.


4.1 Runtime options

Besides the configure- and compile-time options described in the installation section (see Installation), you can control a number of parameters in the texmf.cnf runtime file read by Kpathsea (see Config files in Kpathsea).

The main purpose of texmf.cnf is to specify search paths, but array sizes and other options are also set there. Most are rather obscure. Here are a few of the more interesting values:

main_memory

Total words of memory available, for TeX, Metafont, and MetaPost. Must remake the format file after changing.

extra_mem_bot

Extra space for “large” TeX data structures (default 0): boxes, glue, breakpoints, et al. If you use PiCTeX, you may well want to set this.

expand_depth

Limit on recursive expansion calls before TeX aborts (default 10000). If a TeX program does an unterminated recursive expansion, TeX will dutifully expand macros until the system’s runtime stack overflows, typically with a segmentation fault (SIGSEGV). This parameter was introduced to minimize the chance of that unpleasant (though not dangerous) crash, instead allowing TeX to quit with a more informative message.

The crash can still happen, though, if the system has an exceptionally small memory allocation for its stack. There is no quantitative way to determine the limit, and it does not seem worth implementing system-dependent heuristics to guess at the number, since it’s highly improbable that any real TeX code will ever need more than 10000 recursive expansions (it has never happened). For the same reason, using the libsigsegv library (https://gnu.org/s/libsigsegv) does not seem worth the effort.

texmf_casefold_search

See Casefolding search in Kpathsea.

Ideally all arrays would be dynamically expanded as necessary, so the only limiting factor would be the amount of swap space available, or some configurable limit much larger than can currently be supported.

Unfortunately, implementing this is extremely difficult, as the fixed size of arrays is assumed in many places throughout the source code. These runtime limits are a practical compromise between the compile-time limits in previous versions, and truly dynamic arrays. (On the other hand, the Web2c BibTeX implementation does do true dynamic reallocation of some arrays.)

Nowadays there is rarely a reason to modify the values. But if you do wish to modify texmf.cnf, in TeX Live the best approach is to put your changes, and only your changes at the top of the TL installation tree. That is, if the system texmf.cnf is installed in /some/path/to/texlive/YYYY/texmf-dist/web2c/texmf.cnf is put your custom settings in /some/path/to/texlive/YYY/texmf.cnf, where YYYY is the year of installation (if you use that subdirectory; it’s the default). That way, unrelated changes to the system texmf.cnf can happen with normal updates, without affecting your local values.


4.2 Initial and virgin

The TeX and Metafont programs each have two main variants, called initial and virgin. MetaPost no longer makes this distinction.

The initial form is enabled if:

  1. the ‘-ini’ option was specified; or
  2. the program name is initex resp. inimf; or
  3. the first line of the main input file is ‘%&ini’;

otherwise, the virgin form is used.

The virgin form is the one generally invoked for production use. The first thing it does is read a memory dump (see Determining the memory dump to use), and then proceeds on with the main job.

The initial form is generally used only to create memory dumps (see the next section). It starts up more slowly than the virgin form, because it must do lengthy initializations that are encapsulated in the memory dump file.


4.3 Memory dumps

In typical use, TeX and Metafont require a large number of macros to be predefined; therefore, they support memory dump files, which can be read much more efficiently than ordinary source code.


4.3.1 Creating memory dumps

The programs all create memory dumps in slightly idiosyncratic (thought substantially similar) way, so we describe the details in separate sections (references below). The basic idea is to run the initial version of the program (see Initial and virgin), read the source file to define the macros, and then execute the \dump primitive.

Also, each program uses a different filename extension for its memory dumps, since although they are completely analogous they are not interchangeable (TeX cannot read a Metafont memory dump, for example).

Here is a list of filename extensions with references to examples of creating memory dumps:

TeX

(‘.fmt’) See Initial TeX.

Metafont

(‘.base’) See Initial Metafont.

When making memory dumps, the programs read environment variables and configuration files for path searching and other values as usual. If you are making a new installation and have environment variables pointing to an old one, for example, you will probably run into difficulties.


4.3.2 Determining the memory dump to use

The virgin form (see Initial and virgin) of each program always reads a memory dump before processing normal source input. All three programs determine the memory dump to use in the same way:

  1. If the first non-option command-line argument begins with ‘&’, the program uses the remainder of that argument as the memory dump name. For example, running ‘tex \&super’ reads super.fmt. (The backslash protects the ‘&’ against interpretation by the shell.)
  2. If the ‘-fmt’ resp. ‘-base’ option is specified, its value is used.
  3. If the ‘-progname’ option is specified, its value is used.
  4. If the first line of the main input file (which must be specified on the command line, not in response to ‘**’) is %&dump, and dump is an existing memory dump of the appropriate type, dump is used.

    The first line of the main input file can also specify which character translation file is to be used: %&-translate-file=tcxfile (see TCX files: Character translations).

    These two roles can be combined: %&dump -translate-file=tcxfile. If this is done, the name of the dump must be given first.

  5. Otherwise, the program uses the program invocation name, most commonly tex resp. mf. For example, if latex is a link to tex, and the user runs ‘latex foo’, latex.fmt will be used.

4.3.3 Hardware and memory dumps

By default, memory dump files are sharable between architectures of different types; specifically, on machines of different endianness (see Byte order in GNU C Library) and with different word sizes (4-byte long vs. 8-byte long). This is a feature of the Web2c implementation, and is not true of all TeX implementations.

The script tl-check-fmtshare in the TeX Live source tree (Master/tlpkg/bin) provides a relatively easy way to test that a .fmt built on the local host can be loaded by a TeX engine built on some remote host.

If you specify ‘--disable-dump-share’ to configure, however, memory dumps will be endian-dependent. The reason to do this is speed. To achieve endian-independence, the reading of memory dumps on LittleEndian architectures, such as PC’s and DEC architectures, is somewhat slowed (all the multibyte values have to be swapped). Usually, this is not noticeable, and the advantage of being able to share memory dumps across all platforms at a site far outweighs the speed loss. But if you’re trying to squeeze out every possible bit of performance, you may wish to do this.

TeXnically, even without ‘--disable-dump-share’, sharing of .fmt files cannot be guaranteed to work. Floating-point values are always written in native format, and hence will generally not be readable across platforms. Fortunately, TeX uses floating point only to represent glue ratios, and none of the common formats (plain, LaTeX, AMSTeX, …) do any glue setting at .fmt-creation time. Metafont does not use floating point in any dumped value at all.

Incidentally, different memory dump files will never compare equal byte-for-byte, because the programs dump the current date and time. So don’t be alarmed by a few bytes difference.

If you don’t know what endianness your machine is, and you’re curious, here is a little C program to tell you. (The configure script contains a similar program.) This is from the book C: A Reference Manual, by Samuel P. Harbison and Guy L. Steele Jr. (see References).

main ()
{
  /* Are we little or big endian?  From Harbison&Steele.  */
  union
  {
    long l;
    char c[sizeof (long)];
  } u;
  u.l = 1;
  if (u.c[0] == 1)
    printf ("LittleEndian\n");
  else if (u.c[sizeof (long) - 1] == 1)
    printf ("BigEndian\n");
  else
    printf ("unknownEndian");

  exit (u.c[sizeof (long) - 1] == 1);
}

You can add printf("long %d\n", sizeof(long)); to see the size of the long data type.


4.4 Editor invocation

TeX, Metafont, and MetaPost all (by default) stop and ask for user intervention at an error. If the input came from a file, and the user responds with e or E, the program invokes an editor.

Specifying ‘--with-editor=cmd’ to configure sets the default editor command string to cmd. The environment variables/configuration values TEXEDIT, MFEDIT, and MPEDIT (respectively) override this. If ‘--with-editor’ is not specified, the default is vi +%d %s on Unix, and an invocation of the TeXworks editor on Windows. (See texmf.cnf for the precise values.)

In this string, ‘%d’ is replaced by the line number of the error, and ‘%s’ is replaced by the name of the current input file.


4.5 \input filenames

TeX, Metafont, and MetaPost source programs can all read other source files with the \input (TeX) and input (MF and MP) primitives:

\input name % in TeX

The file name can always be terminated with whitespace; for Metafont and MetaPost, the statement terminator ‘;’ also works. (LaTeX and other macro packages provide other interfaces to \input that allow different notation; here we are concerned only with the primitive operation.)

As (allowed) extensions to standard TeX, Web2c also supports specifying the filename in double quotes ("some name") and in braces ({some name}), which is convenient for filenames containing spaces or other special characters, as described in the sections below.

In all cases, space tokens are ignored after the filename is read.

Also, double quote (") characters are ignored within the filename; there is no way to read files whose names contain a ".

However, for maximal portability of your document across systems, use only the characters ‘a’–‘z’, ‘0’–‘9’, and at most one ‘.’. Do not use anything but simple filenames, since directory separators vary among systems; instead, add the necessary directories to the appropriate search path.


4.5.1 \input quoted filename: \input "some name"

As of Web2c version 7.5.3 (2004), double-quote characters can be used to include spaces or other special characters. In typical use, the ‘"’ characters surround the entire filename:

\input "filename with spaces"

Technically, the quote characters can be used inside the name, and can enclose any characters, as in:

\input filename" "with" "spaces

One more point. In LaTeX, the quotes are needed inside the braces of its \input macro, thus:

\input{a b}    % fails
\input{"a b"}  % ok

There is no way to quote the quote character.


4.5.2 \input braced filename: \input{some name}

As of Web2c 2020, \input filenames in TeX engines (this does not apply in Metafont and MetaPost) can also be specified within a TeX group, typically curly braces. For example:

\input{filename with spaces}

As always with TeX, the brace characters are not hardwired; what counts is the category code: the first token after the \input must be of catcode 1 (begin group), and it is matched with the next character of catcode 2 (end group).

Within the group-delimited filename, braces are treated as normal characters.

As with all forms of filenames, following spaces are ignored (after the end group), and double quote (") characters are ignored within the filename.


4.5.3 \input filename caveats

The quoting mechanisms just described come into play after TeX has tokenized and expanded the input. So, multiple spaces and tabs will generally be seen as a single space, active characters such as ‘~’ are expanded first (generally causing an error), and so on. More examples below.

On the other hand, various C library routines and Unix itself use the null byte (character code zero, ASCII NUL) to terminate strings. So filenames in Web2c cannot contain nulls, even though TeX itself does not treat NUL specially.

Finally, the present Web2c implementation does ‘~’ and ‘$’ expansion on name, unlike Knuth’s original implementation. Thus:

\input ~jsmith/$foo.bar

will dereference the environment variable or Kpathsea config file value ‘foo’ and read that file, extended with ‘.bar’, in user ‘jsmith’’s home directory. You can also use braces in the variable expansion, as in ‘${foo}bar’, if you want to follow the variable name with a letter, numeral, or ‘_’.

(So another way to get a program to read a filename containing whitespace is to define an environment variable and dereference it.)

In all the common TeX formats (plain TeX, LaTeX, ConTeXt, AMSTeX, …), the characters ‘~’ and ‘$’ have special category codes, so to actually use these in a document you have to change their catcodes or use \string.


5 TeX: Typesetting

TeX is a typesetting system: it was especially designed to handle complex mathematics, as well as most ordinary text typesetting.

TeX is a batch language, like C or Pascal, and not an interactive “word processor”: you compile a TeX input file into a corresponding device-independent (DVI) file (and then translate the DVI file to the commands for a particular output device). This approach has both considerable disadvantages and considerable advantages. For a complete description of the TeX language, see The TeXbook (see References). Many other books on TeX, introductory and otherwise, are available.


5.1 tex invocation

TeX (usually invoked as tex) formats the given text and commands, and outputs a corresponding device-independent representation of the typeset document. This section merely describes the options available in the Web2c implementation. For a complete description of the TeX typesetting language, see The TeXbook (see References).

TeX, Metafont, and MetaPost process the command line (described here) and determine their memory dump (fmt) file in the same way (see Memory dumps). Synopses:

tex [option]... [texname[.tex]] [tex-commands]
tex [option]... \first-line
tex [option]... &fmt args

TeX searches the usual places for the main input file texname (see Supported file formats in Kpathsea), extending texname with .tex if necessary. To see all the relevant paths, set the environment variable KPATHSEA_DEBUG to ‘-1’ before running the program.

After texname is read, TeX processes any remaining tex-commands on the command line as regular TeX input. Also, if the first non-option argument begins with a TeX escape character (usually \), TeX processes all non-option command-line arguments as a line of regular TeX input.

If no arguments or options are specified, TeX prompts for an input filename with ‘**’.

TeX writes the main DVI output to the file basetexname.dvi, where basetexname is the basename of texname, or ‘texput’ if no input file was specified. A DVI file is a device-independent binary representation of your TeX document. The idea is that after running TeX, you translate the DVI file using a separate program to the commands for a particular output device, such as a PostScript printer (see Introduction in Dvips) or an X Window System display (see xdvi(1)).

TeX also reads TFM files for any fonts you load in your document with the \font primitive. By default, it runs an external program named mktextfm to create any nonexistent TFM files. You can disable this at configure-time or runtime (see mktex configuration in Kpathsea). This is enabled mostly for the sake of the EC fonts, which can be generated at any size.

TeX can write output files, via the \openout primitive; this opens a security hole vulnerable to Trojan horse attack: an unwitting user could run a TeX program that overwrites, say, ~/.rhosts. (MetaPost has a write primitive with similar implications). To alleviate this and similar problems the functions kpathsea_out_name_ok and kpathsea_in_name_ok from the Kpathsea library (see Calling sequence in Kpathsea) are used to determine if a given filename is acceptable to be opened for output or input, depending on the setting of the configuration variables openout_any and openin_any: ‘a’ (for “any”, the default for openin_any), ‘r’ (for “restricted”), or ‘p’ (for “paranoid”, the default for openout_any).

In any case, all \openout filenames are recorded in the log file, except those opened on the first line of input, which is processed when the log file has not yet been opened.

The program accepts the following options, as well as the standard ‘-help’ and ‘-version’ (see Common options):

-enc
-[no]-file-line-error
-fmt=fmtname
-halt-on-error
-ini
-interaction=string
-ipc
-ipc-start
-jobname=string
-kpathsea-debug=number
-[no]parse-first-line
-output-directory
-progname=string
-recorder
-translate-file=tcxfile
-8bit

These options are common to TeX, Metafont, and MetaPost. See Common options.

-enc

Enable encTeX extensions, such as \mubyte. This can be used to support the Unicode UTF-8 input encoding, although using an engine with native Unicode support is more common nowadays. http://www.olsak.net/enctex.html.

-ipc
-ipc-start

With either option, TeX writes its DVI output to a socket as well as to the usual .dvi file. With ‘-ipc-start’, TeX also opens a server program at the other end to read the output. See IPC and TeX.

These options are available only if the ‘--enable-ipc’ option was specified to configure during installation of Web2c.

-mktex=filetype
-no-mktex=filetype

Turn on or off the ‘mktex’ script associated with filetype. For TeX proper, filetype can only be ‘tex’ and ‘tfm’, but for pdfTeX and luaTeX, it can also be ‘pk’.

-mltex

If we are INITEX (see Initial and virgin), enable MLTeX extensions such as \charsubdef. Implicitly set if the program name is mltex. See MLTeX.

-output-comment=string

Use string as the DVI file comment. Ordinarily, this comment records the date and time of the TeX run, but if you are doing regression testing, you may not want the DVI file to have this spurious difference. This is also taken from the environment variable and config file value ‘output_comment’.

-shell-escape
-no-shell-escape
-shell-restricted

Enable, or disable, or enable with restrictions the \write18{shell-command} feature for external executing shell commands. See Shell escapes.

-enable-write18
-disable-write18

Synonyms for -shell-escape and -no-shell-escape, for compatibility with MiKTeX. (MiKTeX also accepts both pairs of options.) See Shell escapes.

-src-specials
-src-specials=string

This option makes TeX output specific source information using ‘\special’ commands in the DVI file. These ‘\special’ track the current filename and line number.

Using the first form of this option, the ‘\special’ commands are inserted automatically.

In the second form of the option, string is a comma separated list of the following values: ‘cr’, ‘display’, ‘hbox’, ‘math’, ‘par’, ‘parend’, ‘vbox’. You can use this list to specify where you want TeX to output such commands. For example, ‘-src-specials=cr,math’ will output source information every line and every math formula.

These commands can be used with the appropriate DVI viewer and text editor to switch from the current position in the editor to the same position in the viewer and back from the viewer to the editor.

This option works by inserting ‘\special’ commands into the token stream, and thus in principle these additional tokens can be recovered or seen by the tricky-enough macros. If you run across a case, let us know, because this counts as a bug. However, such bugs are very hard to fix, requiring significant changes to TeX, so please don’t count on it.

Redefining ‘\special’ will not affect the functioning of this option. The commands inserted into the token stream are hard-coded to always use the ‘\special’ primitive.

TeX does not pass the trip test when this option is enabled.


5.2 Initial TeX

The initial form of TeX is invoked by ‘tex -ini’. It does lengthy initializations avoided by the “virgin” (vir) form, so as to be capable of dumping ‘.fmt’ files (see Memory dumps). For a detailed comparison of virgin and initial forms, see Initial and virgin.

For a list of options and other information, see tex invocation.

Unlike Metafont and MetaPost, many format files are commonly used with TeX. The standard one implementing the features described in the TeXbook is ‘plain.fmt’, also known as ‘tex.fmt’ (again, see Memory dumps). It is created by default during installation, but you can also do so by hand if necessary (e.g., if an update to plain.tex is issued):

tex -ini '\input plain \dump'

(The quotes prevent interpretation of the backslashes from the shell.) Then install the resulting plain.fmt in ‘$(fmtdir)’ (/usr/local/share/texmf/web2c by default), and link tex.fmt to it.

The necessary invocation for generating a format file differs for each format, so instructions that come with the format should explain. The top-level web2c Makefile has targets for making most common formats: plain latex amstex texinfo eplain. See Formats, for more details on TeX formats.


5.3 Formats

TeX formats are large collections of macros, often dumped into a .fmt file (see Memory dumps) by tex -ini (see Initial TeX). A number of formats are in reasonably widespread use, and the Web2c Makefile has targets to make the versions current at the time of release. You can change which formats are automatically built by setting the fmts Make variable; by default, only the ‘plain’ and ‘latex’ formats are made.

Nowadays, the formats are generally installed and updated as part of a larger TeX distribution, such as TeX Live (https://tug.org/texlive).

latex

The most widely used format. The current release is named ‘LaTeX2e’; new versions are released approximately every six months, with patches issued as needed. The old release was called ‘LaTeX 2.09’, and is no longer maintained or supported. LaTeX attempts to provide generic markup instructions, such as “emphasize”, instead of specific typesetting instructions, such as “use the 10pt Computer Modern italic font”. The LaTeX home page: https://www.latex-project.org.

context

ConTeXt is an independent macro package which has a basic document structuring approach similar to LaTeX. It also supports creating interactive PDF files and has integrated MetaPost support, among many other interesting features. The ConTeXt home page: http://www.pragma-ade.com.

amstex

The official typesetting system of the American Mathematical Society. Like LaTeX, it encourages generic markup commands. The AMS also provides many LaTeX packages for authors who prefer LaTeX. Taken together, they are used to produce nearly all AMS publications, e.g., Mathematical Reviews. The AMSTeX home page: https://www.ams.org/tex.

texinfo

The documentation system developed and maintained by the Free Software Foundation for their software manuals. It can be automatically converted into plain text, a machine-readable on-line format called ‘info’, HTML, etc. The Texinfo home page: https://www.gnu.org/software/texinfo.

eplain

The “expanded plain” format provides various common features (e.g., symbolic cross-referencing, tables of contents, indexing, citations using BibTeX), for those authors who prefer to handle their own high-level formatting. The Eplain home page: https://tug.org/eplain.

slitex

An obsolete LaTeX 2.09 format for making slides. It is replaced by the ‘slides’ document class, although the ‘beamer’ package is the most commonly method for making slides nowadays. The Beamer page on CTAN: https://ctan.org/pkg/beamer.


5.4 Languages and hyphenation

TeX supports most natural languages. See also TeX extensions.


5.4.1 MLTeX: Multi-lingual TeX

Multi-lingual TeX (mltex) is an extension of TeX originally written by Michael Ferguson and now updated and maintained by Bernd Raichle. With the advent of Unicode, it has become obsolete, though it is still supported in Web2c in the event of bugs or compilation bugs.

MLTeX allows the use of non-existing glyphs in a font by declaring glyph substitutions. These are restricted to substitutions of an accented character glyph, which need not be defined in the current font, by its appropriate \accent construction using a base and accent character glyph, which do have to exist in the current font. This substitution is automatically done behind the scenes, if necessary, and thus MLTeX additionally supports hyphenation of words containing an accented character glyph for fonts missing this glyph (e.g., Computer Modern). Standard TeX suppresses hyphenation in this case.

MLTeX works at .fmt-creation time: the basic idea is to specify the ‘-mltex’ option to TeX when you \dump a format. Then, when you subsequently invoke TeX and read that .fmt file, the MLTeX features described below will be enabled.

Generally, you use special macro files to create an MLTeX .fmt file.

The sections below describe the two new primitives that MLTeX defines. Aside from these, MLTeX is completely compatible with standard TeX.


5.4.1.1 \charsubdef: Character substitutions

The most important primitive MLTeX adds is \charsubdef, used in a way reminiscent of \chardef:

\charsubdef composite [=] accent base

Each of composite, accent, and base are font glyph numbers, expressed in the usual TeX syntax: `\e symbolically, '145 for octal, "65 for hex, 101 for decimal.

MLTeX’s \charsubdef declares how to construct an accented character glyph (not necessarily existing in the current font) using two character glyphs (that do exist). Thus it defines whether a character glyph code, either typed as a single character or using the \char primitive, will be mapped to a font glyph or to an \accent glyph construction.

For example, if you assume glyph code 138 (decimal) for an e-circumflex and you are using the Computer Modern fonts, which have the circumflex accent in position 18 and lowercase ‘e’ in the usual ASCII position 101 decimal, you would use \charsubdef as follows:

\charsubdef 138 = 18 101

For the plain TeX format to make use of this substitution, you have to redefine the circumflex accent macro \^ in such a way that if its argument is character ‘e’ the expansion \char138 is used instead of \accent18 e. Similar \charsubdef declaration and macro redefinitions have to be done for all other accented characters.

To disable a previous \charsubdef c, redefine c as a pair of zeros. For example:

\charsubdef '321 = 0 0  % disable N tilde

(Octal '321 is the ISO Latin-1 value for the Spanish N tilde.)

\charsubdef commands should only be given once. Although in principle you can use \charsubdef at any time, the result is unspecified. If \charsubdef declarations are changed, usually either incorrect character dimensions will be used or MLTeX will output missing character warnings. (The substitution of a \charsubdef is used by TeX when appending the character node to the current horizontal list, to compute the width of a horizontal box when the box gets packed, and when building the \accent construction at \shipout-time. In summary, the substitution is accessed often, so changing it is not desirable, nor generally useful.)


5.4.1.2 \tracingcharsubdef: Substitution diagnostics

To help diagnose problems with ‘\charsubdef’, MLTeX provides a new primitive parameter, \tracingcharsubdef. If positive, every use of \charsubdef will be reported. This can help track down when a character is redefined.

In addition, if the TeX parameter \tracinglostchars is 100 or more, the character substitutions actually performed at \shipout-time will be recorded.


5.4.2 TCX files: Character translations

TCX (TeX character translation) files help TeX support direct input of 8-bit international characters if fonts containing those characters are being used. Specifically, they map an input (keyboard) character code to the internal TeX character code (a superset of ASCII).

Of the various proposals for handling more than one input encoding, TCX files were chosen because they follow Knuth’s original ideas for the use of the ‘xchr’ and ‘xord’ tables. He ventured that these would be changed in the WEB source in order to adjust the actual version to a given environment. It turns out, however, that recompiling the WEB sources is not as simple a task as Knuth may have imagined; therefore, TCX files, providing the possibility of changing of the conversion tables on on-the-fly, have been implemented instead.

This approach limits the portability of TeX documents, as some implementations do not support it (or use a different method for input-internal reencoding). It may also be problematic to determine the encoding to use for a TeX document of unknown provenance; in the worst case, failure to do so correctly may result in subtle errors in the typeset output. But we feel the benefits outweigh these disadvantages.

This is entirely independent of the MLTeX extension (see MLTeX: Multi-lingual TeX): whereas a TCX file defines how an input keyboard character is mapped to TeX’s internal code, MLTeX defines substitutions for a non-existing character glyph in a font with a \accent construction made out of two separate character glyphs. TCX files involve no new primitives; it is not possible to specify that an input (keyboard) character maps to more than one character.

Information on specifying TCX files:

  • The best way to specify a TCX file is to list it explicitly in the first line of the main document:
    %& -translate-file=tcxfile
    
  • You can also specify a TCX file to be used on a particular TeX run with the command-line option ‘-translate-file=tcxfile’.
  • TCX files are searched for along the WEB2C path.
  • Initial TeX (see Initial TeX) ignores TCX files.

The Web2c distribution comes with a number of TCX files. Two important ones are il1-t1.tcx and il2-t1.tcx, which support ISO Latin 1 and ISO Latin 2, respectively, with Cork-encoded fonts (a.k.a. the LaTeX T1 encoding). TCX files for Czech, Polish, and Slovak are also provided.

One other notable TCX file is empty.tcx, which is, well, empty. Its purpose is to reset Web2C’s behavior to the default (only visible ASCII being printable, as described below) when a format was dumped with another TCX being active—which is in fact the case for everything but plain TeX in the TeX Live and other distributions. Thus:

latex somefile8.tex
⇒ terminal etc. output with 8-bit chars
latex --translate-file=empty.tcx somefile8.tex
⇒ terminal etc. output with ^^ notation

Syntax of TCX files:

  1. Line-oriented. Blank lines are ignored.
  2. Whitespace is ignored except as a separator.
  3. Comments start with ‘%’ and continue to the end of the line.
  4. Otherwise, a line consists of one or two character codes, optionally followed by 0 or 1. The last number indicates whether dest is considered printable.
    src [dest [prnt]]
    
  5. Each character code may be specified in octal with a leading ‘0’, hexadecimal with a leading ‘0x’, or decimal otherwise. Values must be between 0 and 255, inclusive (decimal).
  6. If the dest code is not specified, it is taken to be the same as src.
  7. If the same src code is specified more than once, it is the last definition that counts.

Finally, here’s what happens: when TeX sees an input character with code src, it 1) changes src to dest; and 2) makes the dest code “printable”, i.e., printed as-is in diagnostics and the log file rather than in ‘^^’ notation.

By default, no characters are translated, and character codes between 32 and 126 inclusive (decimal) are printable.

Specifying translations for the printable ASCII characters (codes 32–127) will yield unpredictable results. Additionally you shouldn’t make the following characters printable: ^^I (TAB), ^^J (line feed), ^^M (carriage return), and ^^? (delete), since TeX uses them in various ways.

Thus, the idea is to specify the input (keyboard) character code for src, and the output (font) character code for dest.

By default, only the printable ASCII characters are considered printable by TeX. If you specify the ‘-8bit’ option, all characters are considered printable by default. If you specify both the ‘-8bit’ option and a TCX file, then the TCX can set specific characters to be non-printable.

Both the specified TCX encoding and whether characters are printable are saved in the dump files (like tex.fmt). So by giving these options in combination with ‘-ini’, you control the defaults seen by anyone who uses the resulting dump file.

When loading a dump, if the ‘-8bit’ option was given, then all characters become printable by default.

When loading a dump, if a TCX file was specified, then the TCX data from the dump is ignored and the data from the file used instead.


5.4.3 Patgen: Creating hyphenation patterns

Patgen creates hyphenation patterns from dictionary files for use with TeX. Synopsis:

patgen dictionary patterns output translate

Each argument is a filename. No path searching is done. The output is written to the file output.

In addition, Patgen prompts interactively for other values.

For more information, see Word hy-phen-a-tion by com-put-er by Frank Liang (see References), and also the patgen.web source file.

The only options are ‘-help’ and ‘-version’ (see Common options).


5.5 Shell escapes

TeX can execute shell escapes, that is, arbitrary shell commands. Although tremendously useful, this also has obvious security implications. Therefore, as of TeX Live 2009, a restricted mode for shell escapes is the default mode of operation, which allows executing only certain commands, as specified in the texmf.cnf configuration file.

  • Unrestricted shell escapes are allowed if the option --shell-escape is specified, or if the environment variable or config file value shell_escape is set to ‘t’ or ‘y’ and ‘1’.
  • Restricted shell escapes are allowed if shell_escape is set to ‘p’. This is the default.
  • Shell escapes are completely disabled if --no-shell-escape is specified, or if shell_escape is set to anything else.

When enabled, the TeX construct to execute a system command is \write18{shell-command}; for example:

\write18{echo "hello, world"}

From TeX’s point of view, this is a normal \write command, and is therefore subject to the usual TeX expansions. Also, the system call either happens during the ‘\output’ routine or right away, according to the absence or presence of the \immediate prefix, as usual for \write.

The shell-command string is passed to the command shell (via the C library function system). The output of shell-command is not diverted anywhere, so it will not appear in the log file, or anywhere but the terminal output. The exit status of the system call is also not available to TeX.

In unrestricted mode, the argument is simply passed straight to system unaltered.

In restricted mode, ASCII double quote characters (") should always be used in the argument to \write18 where quoting of arguments is needed, as in the example above. This is to achieve some measure of system independence. On Unix systems, these are replaced with single quote (') characters to avoid insecure further expansion (from, e.g., `...`). Care is also taken on Windows to avoid additional expansions. Mismatched quotation marks in the command string result in a diagnostic message in the log file, and no execution is performed.

After quotation processing, if the first word (delimited by a space or tab) of the command is in the list specified by the shell_escape_commands configuration value, the command is executed. Otherwise it is not. In any case, a message is written to the log file.

The shell_escape_commands value is a comma-separated list of words. Whitespace is significant, and typically should not be present. The default definition in texmf.cnf looks like this, with more commands included:

shell_escape_commands = bibtex,kpsewhich,repstopdf,...

pdfTeX and luaTeX support reading (via \input and \openin) and writing (via \openout) from pipes if the first character is ‘|’. The following command is then treated exactly the same as the argument to \write18. In these engines, the primitive variable \pdfshellescape is set to 0 if shell escapes are disabled, 1 if they are enabled, and 2 if they are enabled with restrictions.

The purpose of this feature is to make it possible for TeX documents to perform useful external actions in the common case of an individual user running a known document on his or her own machine. In environments such as CGI scripts or wikis where the input has to be considered untrustworthy, shell escapes should be completely disabled.

Programs intended to be called from TeX in restricted should implement the “paranoid” safety measures regarding output files that TeX itself does. See Calling sequence in Kpathsea.


5.6 IPC and TeX

(If anyone uses this feature and needs documentation, write .)

This functionality is available only if the ‘--enable-ipc’ option was specified to configure during installation of Web2c (see Installation).

If you define IPC_DEBUG before compilation (e.g., with ‘make XCFLAGS=-DIPC_DEBUG’), TeX will print messages to standard error about its socket operations. This may be helpful if you are, well, debugging.


5.7 Extended TeX engines

The base TeX program has been extended in many ways.

There has been a substantial effort to make a set of extended functionality available across all actively-updated engines, so that formats, notably LaTeX, can rely on it. A list of this common extended functionality is in a LaTeX News article, https://www.latex-project.org/news/latex2e-news/ltnews31.pdf. For engines in TeX Live, the detailed documentation for these primitives is mostly in the pdfTeX manual (http://pdftex.org).

In addition, each engine (naturally) has its own particular features, described in its own manual. Here’s a partial list of the engines.

e-TeX

Adds many new primitives, including right-to-left typesetting and more registers. Now frozen. More info: https://ctan.org/pkg/etex.

Aleph

This adds Unicode support, right-to-left typesetting, and more, based on the Omega engine, with the e-TeX and other extensions. Aleph is maintained only for serious bug fixes and does not include the common functionality mentioned above. More info: https://ctan.org/pkg/aleph, https://ctan.org/pkg/omega.

pdfTeX

Can produce PDF as well as DVI files. It also incorporates the e-TeX extensions, new primitives for hypertext and micro-typography, reading/writing from pipes, and much more. In TeX Live, the command etex invokes pdfTeX to make all these additions available with DVI output. Home page: http://pdftex.org.

LuaTeX

Embeds the Lua programming language (http://lua.org) and opens up the TeX typesetting engine to control from Lua, starting from the pdfTeX capabilities as a base. Also natively supports UTF-8 input, the OpenType and TrueType font formats, and use of system fonts. Home page: http://luatex.org.

XeTeX

Combines support for Unicode input, the OpenType and TrueType font formats, and use of system fonts with the capabilities of pdfTeX, with the exception of the font expansion part of micro-typography. Home page: https://tug.org/xetex.

hiTeX

Outputs its own HINT format, which is designed for reading technical documents on mobile devices. More info: https://ctan.org/pkg/hitex.

pTeX
upTeX

With additional support for Japanese; pTeX was the original engine, and upTeX has native Unicode support and thus is more useful for Chinese and Korean. More info: https://ctan.org/pkg/ptex, https://ctan.org/pkg/uptex.

epTeX
eupTeX

Further extends pTeX and upTeX with the e-TeX extensions. More info: https://ctan.org/pkg/eptex, https://ctan.org/pkg/euptex.


6 Metafont: Creating typeface families

Metafont is a system for producing shapes; it was designed for producing complete typeface families, but it can also produce geometric designs, dingbats, etc. And it has considerable mathematical and equation-solving capabilities which can be useful entirely on their own.

Metafont is a batch language, like C or Pascal: you compile a Metafont program into a corresponding font, rather than interactively drawing lines or curves. This approach has both considerable disadvantages (people unfamiliar with conventional programming languages will be unlikely to find it usable) and considerable advantages (you can make your design intentions specific and parameterizable). For a complete description of the Metafont language, see The METAFONTbook (see References).


6.1 mf invocation

Metafont (usually invoked as mf) reads character definitions specified in the Metafont programming language, and outputs the corresponding font. This section merely describes the options available in the Web2c implementation. For a complete description of the Metafont language, see The Metafontbook (see References).

Metafont processes its command line and determines its memory dump (base) file in a way exactly analogous to MetaPost and TeX (see tex invocation, and see Memory dumps). Synopses:

mf [option]... [mfname[.mf]] [mf-commands]
mf [option]... \first-line
mf [option]... &base args

Most commonly, a Metafont invocation looks like this:

mf '\mode:=mode; mag:=magnification; input mfname'

(The single quotes avoid unwanted interpretation by the shell.)

Metafont searches the usual places for the main input file mfname (see Supported file formats in Kpathsea), extending mfname with .mf if necessary. To see all the relevant paths, set the environment variable KPATHSEA_DEBUG to ‘-1’ before running the program. By default, Metafont runs an external program named mktexmf to create any nonexistent Metafont source files you input. You can disable this at configure-time or runtime (see mktex configuration in Kpathsea). This is mostly for the sake of the EC fonts, which can be generated at any size.

Metafont writes the main GF output to the file basemfname.nnngf, where nnn is the font resolution in pixels per inch, and basemfname is the basename of mfname, or ‘mfput’ if no input file was specified. A GF file contains bitmaps of the actual character shapes. Usually GF files are converted immediately to PK files with GFtoPK (see GFtoPK: Generic to packed font conversion), since PK files contain equivalent information, but are more compact. (Metafont output in GF format rather than PK for only historical reasons.)

Metafont also usually writes a metric file in TFM format to basemfname.tfm. A TFM file contains character dimensions, kerns, and ligatures, and spacing parameters. TeX reads only this .tfm file, not the GF file.

The mode in the example command above is a name referring to a device definition (see Modes: Device definitions for Metafont); for example, localfont or ljfour. These device definitions must generally be precompiled into the base file. If you leave this out, the default is proof mode, as stated in The Metafontbook, in which Metafont outputs at a resolution of 2602dpi; this is usually not what you want. The remedy is simply to assign a different mode—localfont, for example.

The magnification assignment in the example command above is a magnification factor; for example, if the device is 600dpi and you specify mag:=2, Metafont will produce output at 1200dpi. Very often, the magnification is an expression such as magstep(.5), corresponding to a TeX “magstep”, which are factors of

After running Metafont, you can use the font in a TeX document as usual. For example:

\font\myfont = newfont
\myfont Now I am typesetting in my new font (minimum hamburgers).

The program accepts the following options, as well as the standard ‘-help’ and ‘-version’ (see Common options):

-[no]-file-line-error
-fmt=fmtname
-halt-on-error
-ini
-interaction=string
-jobname=string
-kpathsea-debug=number
-[no]parse-first-line
-output-directory
-progname=string
-recorder
-translate-file=tcxfile
-8bit

These options are common to TeX, Metafont, and MetaPost. See Common options.

-mktex=filetype
-no-mktex=filetype

Turn on or off the ‘mktex’ script associated with filetype. The only value that makes sense for filetype is ‘mf’.


6.2 Initial Metafont

inimf is the “initial” form of Metafont, which does lengthy initializations avoided by the “virgin” (vir) form, so as to be capable of dumping ‘.base’ files (see Memory dumps). For a detailed comparison of virgin and initial forms, see Initial and virgin.

For a list of options and other information, see mf invocation.

The only memory dump file commonly used with Metafont is the default ‘plain.base’, also known as ‘mf.base’ (again, see Memory dumps). It is created by default during installation, but you can also do so by hand if necessary (e.g., if a Metafont update is issued):

mf -ini '\input plain; input modes; dump'

(The quotes prevent interpretation of the backslashes from the shell.) Then install the resulting plain.base in ‘$(basedir)’ (/usr/local/share/texmf/web2c by default), and link mf.base to it.

For an explanation of the additional modes.mf file, see Modes: Device definitions for Metafont. This file has no counterpart in TeX or MetaPost.

In the past, it was sometimes useful to create a base file cmmf.base (a.k.a. cm.base), with the Computer Modern macros also included in the base file. Nowadays, however, the additional time required to read cmbase.mf is exceedingly small, usually not enough to be worth the administrative hassle of updating the cmmf.base file when you install a new version of modes.mf. People actually working on a typeface may still find it worthwhile to create their own base file, of course.


6.3 Modes: Device definitions for Metafont

Running Metafont and creating Metafont base files requires information that TeX and MetaPost do not: mode definitions which specify device characteristics, so Metafont can properly rasterize the shapes.

When making a base file, a file containing modes for locally-available devices should be input after plain.mf. One commonly used file is ftp://ftp.tug.org/tex/modes.mf; it includes all known definitions.

If, however, for some reason you have decreased the memory available in your Metafont, you may need to copy modes.mf and remove the definitions irrelevant to you (probably most of them) instead of using it directly. (Or, if you’re a Metafont hacker, maybe you can suggest a way to redefine mode_def and/or mode_setup; right now, the amount of memory used is approximately four times the total length of the mode_def names, and that’s a lot.)

If you have a device not included in modes.mf, please see comments in that file for how to create the new definition, and please send the definition to to get it included in the next release of modes.mf.

Usually, when you run Metafont you must supply the name of a mode that was dumped in the base file. But you can also define the mode characteristics dynamically, by invoking Metafont with an assignment to smode instead of mode, like this:

mf '\smode:="newmode.mf"; mag:=magnification; input mfname'

This is most useful when you are working on the definition of a new mode.

The magnification and mfname arguments are explained in mf invocation. In the file newmode.mf, you should have the following (with no mode_def or enddef), if you are using modes.mf conventions:

mode_param (pixels_per_inch, dpi);
mode_param (blacker, b);
mode_param (fillin, f);
mode_param (o_correction, o);
mode_common_setup_;

(Of course, you should use real numbers for dpi, b, f, and o.)

For more information on the use of smode, or if you are not using modes.mf, see page 269 of The Metafontbook.


6.4 Online Metafont graphics

The Web2c implementation of Metafont can do online graphics with a number of devices. (See the Metafont manual for more information about how to draw on your screen.) By default, no graphics support is enabled.

Metafont examines the MFTERM environment variable or config file value at runtime, or the TERM environment variable if MFTERM is not set, to determine the device support to use. Naturally, only the devices for which support has been compiled in can be selected.

Here is a table of the possibilities, showing the MFTERM value and the corresponding configure option(s) in parentheses.

epsf

(‘--enable-epsfwin’) Pseudo-window server for Encapsulated PostScript (see web2c/window/epsf.c). This device produces an EPS file containing the graphics which would be displayed online on other devices. The name of the EPS file defaults to metafont.eps but can be changed by setting the MFEPSF environment variable to the new filename. Contributed by Mathias Herberts.

hp2627

(‘--enable-hp2627win’) HP2627a color graphics terminals.

mftalk

(‘--enable-mftalkwin’) Generic window server (see web2c/window/mftalk.c).

next

(‘--enable-next’) NeXT window system. This requires a separate program, called DrawingServant, available separately. See the web2c/window/next.c.

regis

(‘--enable-regiswin’) Regis terminals.

sun

(‘--enable-suntoolswin’) The old Suntools (not any flavor of X) window system. (You can get the even older SunWindows gfx system by using sun-gfx.c.)

tek

(‘--enable-tektronixwin’) Tektronix terminals.

uniterm

(‘--enable-unitermwin’) Uniterm, Simon Poole’s emulator of a smart Tektronix 4014 terminal. This may work with regular Tektronix terminals as well; it’s faster than the driver ‘--enable-tektronixwin’ selects.

xterm

--with-x’ The X window system (version 11).

There are two variants of the X11 support, one that works with the Xt toolkit, and another that works directly with Xlib. The Xt support is more efficient and has more functionality, so it is the default. If you must use the Xlib support, use ‘configure --with-x --with-kf-x-toolkit=no’.

Specify ‘--disable-mf-nowin’ in order not to build a separate non-windows-capable Metafont executable mf-nowin (or mf-nowin.exe).

You cannot specify any of the usual X options (e.g., ‘-geometry’) on the Metafont command line, but you can specify X resources in your ~/.Xdefaults or ~/.Xresources file. The class name is Metafont. If you’re using the Xt support, all the usual X toolkit resources are supported. If you’re using the Xlib support, only the geometry resource is supported.

You specify the X display to which Metafont connects in the DISPLAY environment variable, as usual.

Writing support for a new device is straightforward. Aside from defining the basic drawing routines that Metafont uses (see mf.web), you only have to add another entry to the tables on the last page of web2c/lib/texmfmp.c. Or you can write an independent program and use MFtalk (see web2c/window/mftalk.c).


6.5 GFtoDVI: Character proofs of fonts

GFtoDVI makes proof sheets from a GF bitmap file as output by, for example, Metafont (see Metafont: Creating typeface families). This is an indispensable aid for font designers or Metafont hackers. Synopsis:

gftodvi [option]... gfname[gf]

The font gfname is searched for in the usual places (see Glyph lookup in Kpathsea). To see all the relevant paths, set the environment variable KPATHSEA_DEBUG to ‘-1’ before running the program.

The suffix ‘gf’ is supplied if not already present. This suffix is not an extension, no ‘.’ precedes it; for instance, cmr10.600gf.

The output filename is the basename of gfname extended with .dvi, e.g., ‘gftodvi /wherever/foo.600gf’ creates ./foo.dvi.

The characters from gfname appear one per page in the DVI output, with labels, titles, and annotations, as specified in Appendix H (Hardcopy Proofs) of The Metafontbook.

GFtoDVI uses several fonts besides gfname itself:

  • gray font (default gray): for the pixels that actually make up the character. Simply using black is not right, since then labels, key points, and other information could not be shown.
  • title font (default cmr8): for the header information at the top of each output page.
  • label font (default cmtt10): for the labels on key points of the figure.
  • slant font (no default): for diagonal lines, which are otherwise simulated using horizontal and vertical rules.

To change the default fonts, you must use special commands in your Metafont source file, typically via commands like slantfont slantlj4. There is no default slant font since no one printer is suitable as a default. You can make your own by copying one of the existing files, such as .../fonts/source/public/misc/slantlj4.mf and then running mf on it.

For testing purposes, you may it useful to run mf-nowin rtest (hit RETURN when it stops) to get a gf file of a thorn glyph. Or use mf instead of mf-nowin to have the glyph(s) displayed on the screen. After that, gftodvi rtest.2602gf should produce rtest.dvi, which you process as usual.

The program accepts the following option, as well as the standard ‘-verbose’, ‘-help’, and ‘-version’ (see Common options):

-overflow-label-offset=points

Typeset the so-called overflow labels, if any, points TeX points from the right edge of the character bounding box. The default is a little over two inches (ten million scaled points, to be precise). Overflow equations are used to locate coordinates when their actual position is too crowded with other information.


6.6 MFT: Prettyprinting Metafont source

MFT translates a Metafont program into a TeX document suitable for typesetting, with the aid of TeX macros defined in the file mftmac.tex. Synopsis:

mft [option]... mfname[.mf]

MFT searches the usual places for mfname (see Supported file formats in Kpathsea). To see all the relevant paths, set the environment variable KPATHSEA_DEBUG to ‘-1’ before running the program. The output goes to the basename of mfname extended with .tex, e.g., ‘mft /wherever/foo.mf’ creates ./foo.tex.

Line breaks in the input are carried over into the output; moreover, blank spaces at the beginning of a line are converted to quads of indentation in the output. Thus, you have full control over the indentation and line breaks. Each line of input is translated independently of the others.

Further control is allowed via Metafont comments:

  • Metafont comments following a single ‘%’ should be valid TeX input. But Metafont material can be included within vertical bars in a comment; this will be translated by MFT as if it were regular Metafont code. For example, a comment like ‘% |x2r| is the tip of the bowl’ will be translated into the TeX ‘% $x_{2r}$ is the …’, i.e., the ‘x2r’ is treated as an identifier.
  • %%’ indicates that the remainder of an input line should be copied verbatim to the output. This is typically used to introduce additional TeX material at the beginning or an MFT job, e.g. code to modify the standard layout or the formatting macros defined in mftmac.tex, or to add a line saying ‘%%\bye’ at the end of the job. (MFT doesn’t add this automatically in order to allow processing several files produces by MFT in the same TeX job.)
  • %%% token1 other-tokens’ introduces a change in MFT’s formatting rules; all the other-tokens will henceforth be translated according to the current conventions for token1. The tokens must be symbolic (i.e., not numeric or string tokens). For example, the input line
    %%% addto fill draw filldraw
    

    says to format the ‘fill’, ‘draw’, and ‘filldraw’ operations of plain Metafont just like the primitive token ‘addto’, i.e., in boldface type. Without such reformatting commands, MFT would treat ‘fill’ like an ordinary tag or variable name. In fact, you need a ‘%%%’ command even to get parentheses to act like delimiters.

  • %%%%’ introduces an MFT comment, i.e., MFT ignores the remainder of such a line.
  • Five or more ‘%’ signs should not be used.

(The above description was edited from mft.web, written by D.E. Knuth.)

The program accepts the following options, as well as the standard ‘-help’ and ‘-version’ (see Common options):

-change=chfile[.ch]

Apply the change file chfile as with Tangle and Weave (see WEB: Literate programming).

-style=mftfile[.mft]

Read mftfile before anything else; a MFT style file typically contains only MFT directives as described above. The default style file is named plain.mft, which defines this properly for programs using plain Metafont. The MFT files is searched along the MFTINPUTS path; see Supported file formats in Kpathsea.

Other examples of MFT style files are cmbase.mft, which defines formatting rules for the macros defined in cm.base, and e.mft, which was used in the production of Knuth’s Volume E, Computer Modern Typefaces.

Using an appropriate MFT style file, it is also possible to configure MFT for typesetting MetaPost sources. However, MFT does not search the usual places for MetaPost input files.

If you use eight-bit characters in the input file, they are passed on verbatim to the TeX output file; it is up to you to configure TeX to print these properly.


7 MetaPost: Generating PostScript

MetaPost is a picture-drawing language similar to Metafont (see Metafont: Creating typeface families), but instead of outputting bitmaps in a “font”, it outputs PostScript commands. It’s primarily intended for creating technical illustrations, but can also be used to create PostScript or OpenType fonts (https://ctan.org/pkg/metatype1).

MetaPost also provides for arbitrary integration of text and graphics in a natural way, using any typesetter (TeX and Troff are both supported) and a number of other subsidiary programs, described below.


7.1 mpost invocation

MetaPost (installed as mpost) reads a series of pictures specified in the MetaPost programming language, and outputs corresponding PostScript code. This section merely describes the options available in the Web2c implementation. For a complete description of the MetaPost language, see AT&T technical report CSTR-162, generally available in texmf/doc/metapost/, where texmf is the root of TeX directory structure. The MetaPost home page: https://tug.org/metapost.

Also, a standard MetaPost package for drawing graphs is documented in AT&T technical report CSTR-164, available as the file mpgraph.ps, generally stored alongside mpman.ps.

MetaPost processes its command line and determines its memory dump (mem) file in a way analogous to Metafont and TeX (see tex invocation, and see Memory dumps). Synopses:

mpost [option]... [mpname[.mp]] [mp-commands]
mpost [option]... \first-line
mpost [option]... &mem args

MetaPost searches the usual places for the main input file mpname (see Supported file formats in Kpathsea), extending mpname with .mp if necessary. To see all the relevant paths, set the environment variable KPATHSEA_DEBUG to ‘-1’ before running the program.

MetaPost writes its PostScript output to a series of files basempname.nnn (or perhaps basempname.ps, very occasionally basempname.tfm), where nnn are the figure numbers specified in the input, typically to the beginfig macro, and basempname is the basename of mpname, or ‘mpout’ if no input file was specified. MetaPost uses the ‘.ps’ extension when the figure number is out of range, e.g., if you say beginfig(-1).

You can use the output files as figures in a TeX document just as with any other PostScript figures. For example, with this TeX command:

\special{psfile="filename"}

or by using epsf.tex (see EPSF macros in Dvips).

The MetaPost construct

btex ... tex-input ... etex

generates a MetaPost picture expression corresponding to tex-input.

The construct

verbatimtex ... tex-input ... etex

simply passes the tex-input through to TeX. For example, if you are using LaTeX, your MetaPost input file must start with a verbatimtex block that gives the necessary \documentclass (or \documentstyle) \begin{document} command. You will also need to set the environment variable TEX to ‘latex’.

tex-input need not be specifically TeX input; it could also be Troff. In that case, you will need the ‘-m pictures’ Troff macro package (unfortunately absent from many Troff implementations), or an equivalent such as the ‘-m pspic’ macros from GNU groff described in grops(1).

Naturally, you must use fonts that are supported by the typesetter; specifically, you’ll probably want to use standard PostScript fonts with Troff. And only the TeX system understands Computer Modern or other Metafont fonts; you can also use PostScript fonts with TeX, of course.

MetaPost-generated PostScript figures which do use Computer Modern fonts for labels cannot be directly previewed or printed. Instead, you must include them in a TeX document and run the resulting DVI file through Dvips to arrange for the downloading of the required fonts (see Fonts in figures in Dvips). To help with this, the MetaPost distribution provides a small TeX file mproof.tex which is typically called as:

tex mproof mp-output-files... ; dvips mproof -o

The resulting file mproof.ps can then be printed or previewed.

To generate EPSF files, set the internal MetaPost variable prologues positive. To make the output files self-contained, use only standard PostScript fonts. MetaPost reads the same psfonts.map file as Dvips, to determine PostScript fonts that need to be downloaded (see psfonts.map in Dvips).

It is possible for pdfTeX to read MetaPost output directly; this is in contrast to general EPSF files, which have to be converted for use with PDF output. The easiest way is to name the MetaPost output files with the .mps extension. Then the LaTeX \includegraphics command, for example, will be able to read them, even when outputting PDF.

MetaPost can write output files, via the write primitive; this opens a security hole. See tex invocation.

The program accepts the following options, as well as the standard ‘-help’ and ‘-version’ (see Common options):

-[no]-file-line-error
-fmt=fmtname
-halt-on-error
-ini
-interaction=string
-jobname=string
-kpathsea-debug=number
-[no]parse-first-line
-output-directory
-progname=string
-recorder
-translate-file=tcxfile
-8bit

These options are common to TeX, Metafont, and MetaPost. See Common options.

-T
-troff

Set the prologues internal variable to 1.

-tex=texprogram

When this option is given, the program texprogram is used to typeset the labels.


7.2 Initial MetaPost

As of MetaPost 1.504 (TeX Live 2011), MetaPost no longer dumps .mem files (see Memory dumps) and does not distinguish virgin and initial forms (see Initial and virgin). Instead, the “initial” file name is read in its source form—that is, mpost.mp when the program is invoked as mpost.

For a list of options and other information, see mpost invocation.

MetaPost provides a format with all the features of plain Metafont, called mfplain. You can use that in the same way; just run mfplain instead of mpost. This lets you directly process Metafont source files with MetaPost, producing character proofs (one file for each character) similar to those produced with Metafont in proof mode and GFtoDVI (see GFtoDVI: Character proofs of fonts).


7.3 DVItoMP: DVI to MPX conversion

DVItoMP converts DVI files into low-level MetaPost commands in a so-called MPX file. Synopsis:

dvitomp dvifile[.dvi] [mpxfile[.mpx]]

If mpxfile is not specified, the output goes to the basename of dvifile extended with .mpx, e.g., ‘dvitomp /wherever/foo.dvi’ creates ./foo.mpx.

DVItoMP supports Dvips-style color specials, such as ‘color push name’ and ‘color pop’, outputting them as withcolor MetaPost commands.

The only options are ‘-help’ and ‘-version’ (see Common options).


8 BibTeX: Bibliographies

BibTeX automates much of the job of typesetting bibliographies, and makes bibliography entries reusable in many different contexts.


8.1 BibTeX invocation

BibTeX creates a printable bibliography (.bbl) file from references in a .aux file, generally written by TeX or LaTeX. The .bbl file is then incorporated on a subsequent run. The basic bibliographic information comes from .bib files, and a BibTeX style (.bst) file controls the precise contents of the .bbl file. Synopsis:

bibtex [option]... auxfile[.aux]

The output goes to the basename of auxfile extended with .bbl; for example, ‘bibtex /wherever/foo.aux’ creates ./foo.bbl. BibTeX also writes a log file to the basename of auxfile extended with ‘.blg’.

The names of the .bib and .bst files are specified in the .aux file as well, via the \bibliography and \bibliographystyle (La)TeX macros. BibTeX searches for .bib files using the BIBINPUTS and TEXBIB paths, and for .bst files using BSTINPUTS (see Supported file formats in Kpathsea). It does no path searching for .aux files.

The program accepts the following options, as well as the standard ‘-help’ and ‘-version’ (see Common options):

-terse

Suppress the program banner and progress reports normally output.

-min-crossrefs=n

If at least n (2 by default) bibliography entries refer to another entry e via their crossref field, include e in the .bbl file, even if it was not explicitly referenced in the .aux file. For example, e might be a conference proceedings as a whole, with the cross-referencing entries being individual articles published in the proceedings.

If you want to avoid these automatic inclusions altogether, make n a sufficiently large number, and be sure to remove any previous .aux and .bbl files. Otherwise the option may appear to have no effect, since BibTeX will have added the citation for e to the .aux, and nothing will remove it.

See also:

btxdoc.tex

Basic LaTeXable documentation for general BibTeX users.

btxhak.tex

LaTeXable documentation for style designers.

btxdoc.bib

BibTeX database file for the two above documents.

xampl.bib

Example database file with all the standard entry types.

ftp://ftp.math.utah.edu/pub/tex/bib/

A very large .bib and .bst collection, including references for all the standard TeX books and a complete bibliography for TUGboat.


8.2 Basic BibTeX style files

Here are descriptions of the four standard and four semi-standard basic BibTeX styles. CTAN:/biblio/bibtex contains these and many more (for CTAN info, see unixtex.ftp in Kpathsea).

plain

Sorts entries alphabetically, with numeric labels. Generally formatted according to van Leunen’s A Handbook for Scholars. The other style files listed here are based on plain.

abbrv

First names, month names, and journal names are abbreviated.

acm

Names are printed in small caps.

alpha

Alphanumeric labels, e.g., ‘Knu66’.

apalike

No labels at all; instead, the year appears in parentheses after the author. Use this in conjunction with apalike.tex (plain TeX) or apalike.sty (LaTeX), which also changes the citations in the text to be ‘(author, year)’.

ieeetr

Numeric labels, entries in citation order, IEEE abbreviations, article titles in quotes.

siam

Numeric labels, alphabetic order, Math. Reviews abbreviations, names in small caps.

unsrt

Lists entries in citation order, i.e., unsorted.

btxbst.doc

The template file and documentation for the standard styles.


9 WEB: Literate programming

WEB languages allow you to write a single source file that can produce both a compilable program and a well-formatted document describing the program in as much detail as you wish to prepare. Writing in this kind of dual-purpose language is called literate programming. (The Usenet newsgroup comp.programming.literate is devoted to this subject.)

WEB-like languages have been implemented with many pairs of base languages: Cweb provides C and Troff (see References); CWEB provides C and TeX (CTAN:/web/c_cpp/cweb); Spiderweb provides C, C++, Awk, Ada, many others, and TeX (CTAN:/web/spiderweb); and, of course, the original WEB provides Pascal and TeX, the implementation languages for the original TeX, Metafont, MetaPost, and related programs to come from the TeX project at Stanford.

The original WEB language is documented in the file webman.tex, which is included in the ftp://ftp.tug.org/tex/lib.tar.gz archive (and available in many other places, of course).


9.1 Tangle: Translate WEB to Pascal

Tangle creates a compilable Pascal program from a WEB source file (see WEB: Literate programming). Synopsis:

tangle [option]... webfile[.web] [changefile[.ch]]

The Pascal output is written to the basename of webfile extended with ‘.p’; for example, ‘tangle /wherever/foo.web’ creates ./foo.p. Tangle applies changefile to webfile before writing the output; by default, there is no change file.

If the program makes use of the WEB string facility, Tangle writes the string pool to the basename of webfile extended with ‘.pool’.

The Pascal output is packed into lines of 72 characters or less, with the only concession to readability being the termination of lines at semicolons when this can be done conveniently.

The program accepts the following options, as well as the standard ‘--help’ and ‘--version’ (see Common options):

-length=number

The number of characters that are considered significant in an identifier. Whether underline characters are counted depends on the ‘-underline’ option. The default value is 32, the original tangle used 7, but this proved too restrictive for use by Web2c.

-lowercase
-mixedcase
-uppercase

These options specify the case of identifiers in the output of tangle. If ‘-uppercase’ (‘-lowercase’) is specified, tangle will convert all identifiers to uppercase (lowercase). The default is ‘-mixedcase’, which specifies that the case will not be changed.

-underline

When this option is given, tangle does not strip underline characters from identifiers.

-loose
-strict

These options specify how strict tangle must be when checking identifiers for equality. The default is ‘-loose’, which means that tangle will follow the rules set by the case-smashing and underline options above. If ‘-strict’ is set, then identifiers will always be stripped of underlines and converted to uppercase before checking whether they collide.


9.2 Weave: Translate WEB to TeX

Weave creates a TeX document from a WEB source file (see WEB: Literate programming), assuming various macros defined in webmac.tex. It takes care of typographic details such as page layout, indentation, and italicizing identifiers. It also automatically gathers and outputs extensive cross-reference information. Synopsis:

weave [option]... webfile[.web] [changefile[.ch]]

The output is to the basename of webfile extended with ‘.tex’; for example, ‘weave /wherever/foo.web’ creates ./foo.tex. Weave applies changefile to webfile before writing the output; by default, there is no change file.

The program accepts the following option, as well as the standard ‘-verbose’, ‘-help’ and ‘-version’ (see Common options):

-x

Omit the cross-reference information: the index, the list of WEB module names, and the table of contents (an empty CONTENTS.tex file will still be written when the Weave output file is processed by TeX using the default webmac.tex, though).

Conventionally, WEB programmers should define the TeX \title macro at the beginning of the source file. Also, to get output of only changed modules, one can say \let\maybe=\iffalse (usually as the first change in the change file).


9.3 Pooltype: Display WEB pool files

Pooltype shows the so-called string number of each string in a WEB pool file (see WEB: Literate programming), as output by Tangle (see Tangle: Translate WEB to Pascal), including the first 256 strings corresponding to the possible input characters. Pooltype primarily serves as an example of WEB conventions to implementors of the TeX system. Synopsis:

pooltype [option]... poolfile[.pool]

No path searching is done for poolfile. Output is to standard output.

The only options are ‘--help’ and ‘--version’ (see Common options).

As an example of the output, here is the (edited) output for tex.pool:

0: "^^@"
1: "^^A"
...
255: "^^ff"
256: "pool size"
...
1314: "Using character substitution: "
(23617 characters in all.)

In Metafont and MetaPost, the first 256 characters are actually represented as single bytes (i.e., themselves), not in the ‘^^’ notation. Consider Pooltype as showing the results after conversion for output.


10 DVI utilities

TeX outputs a file in DVI (DeVice Independent) format as a compact representation of the original document. DVI files can be translated to meet the requirements of a real physical device, such as PostScript printers (see Introduction in Dvips), PCL printers (see dvilj(1)), and X displays (see xdvi(1)). In fact, DVI translators are available for virtually all common devices: see CTAN:/dviware (for CTAN info, see unixtex.ftp in Kpathsea).

For the precise definition of the DVI file format, see (for example) the source file web2c/dvitype.web.

The DVI-processing programs in the Web2c distribution are not device drivers; they perform generic utility functions.


10.1 DVIcopy: Canonicalize virtual font references

DVIcopy reads a DVI file, expands any references to virtual fonts (see Virtual fonts in Dvips) to base fonts, and writes the resulting DVI file. Thus you can use virtual fonts even if your DVI processor does not support them, by passing the documents through DVIcopy first. Synopsis:

dvicopy [option]... [indvi[.dvi] [outdvi[.dvi]]]

DVIcopy reads standard input if indvi is not specified, and writes standard output if outdvi is not specified.

The program accepts the following options, as well as the standard ‘-help’ and ‘-version’ (see Common options):

-magnification=integer

Override existing magnification in indvi with integer; 1000 specifies no magnification. This is equivalent to setting TeX’s \mag parameter.

-max-pages=n

Process n pages; default is one million.

-page-start=page-spec

Start at the first page matching page-spec, which is one or more (signed) integers separated by periods, corresponding to TeX’s \count0…9 parameters at \shipout time; ‘*’ matches anything. Examples: ‘3’, ‘1.*.-4’.


10.2 DVItype: Plain text transliteration of DVI files

DVItype translates a DeVice Independent (DVI) file (as output by TeX, for example) to a plain text file that humans can read. It also serves as a DVI-validating program, i.e., if DVItype can read a file, it’s correct. Synopsis:

dvitype [option]... dvifile[.dvi]

DVItype does not read any bitmap files, but it does read TFM files for fonts referenced in dvifile. The usual places are searched (see Supported file formats in Kpathsea). To see all the relevant paths, set the environment variable KPATHSEA_DEBUG to ‘-1’ before running the program.

Output goes to standard output.

The program accepts the following options, as well as the standard ‘-help’ and ‘-version’ (see Common options):

-dpi=real

Do pixel movement calculations at real pixels per inch; default 300.0.

-magnification=integer

Override existing magnification in indvi with integer; 1000 specifies no magnification. This is equivalent to setting TeX’s \mag parameter.

-max-pages=n

Process n pages; default is one million.

-output-level=n

Verbosity level of output, from 0 to 4 (default 4):

  • 0: Global document information only.
  • 1: Most DVI commands included, and typeset characters summarized.
  • 2: Character and movement commands explicitly included.
  • 3: DVI stack and current position calculations included.
  • 4: Same information as level 3, but DVItype does random positioning in the file, reading the DVI postamble first.
-page-start=page-spec

Start at the first page matching page-spec, which is one or more (signed) integers separated by periods, corresponding to TeX’s \count0…9 parameters at \shipout time; ‘*’ matches anything. Examples: ‘1’, ‘5.*.-9’.

-show-opcodes

Show numeric opcode values (in decimal) for DVI commands, in braces after the command name. This can help in debugging DVI utilities. We use decimal because in the DVI format documentation (in dvitype.web, among others) the opcodes are shown in decimal.


10.2.1 DVItype output example

As an example of the output from DVItype (see section above), here is its (abridged) translation of the story.dvi resulting from running the example in The TeXbook, with ‘-output-level=4’ and ‘-show-opcodes’ on.

...
Options selected:
  Starting page = * 
  Maximum number of pages = 1000000
  Output level = 4 (the works)
  Resolution = 300.00000000 pixels per inch
numerator/denominator=25400000/473628672
magnification=1000;       0.00006334 pixels per DVI unit
' TeX output 1992.05.17:0844'
Postamble starts at byte 564.
maxv=43725786, maxh=30785863, maxstackdepth=3, totalpages=1
Font 33: cmsl10---loaded at size 655360 DVI units 
Font 23: cmbx10---loaded at size 655360 DVI units 
Font 0: cmr10---loaded at size 655360 DVI units 
 
42: beginning of page 1 
87: push {141} 
level 0:(h=0,v=0,w=0,x=0,y=0,z=0,hh=0,vv=0) 
88: down3 -917504 {159} v:=0-917504=-917504, vv:=-58 
92: pop {142} 
...
104: putrule {137} height 26214, width 30785863 (2x1950 pixels) 
113: down3 5185936 {159} v:=655360+5185936=5841296, vv:=370 
117: push {141} 
level 1:(h=0,v=5841296,w=0,x=0,y=0,z=0,hh=0,vv=370) 
118: right4 12265425 {146} h:=0+12265425=12265425, hh:=777 
[ ]
123: fntdef1 23 {243}: cmbx10 
145: fntnum23 {194} current font is cmbx10 
146: setchar65 h:=12265425+569796=12835221, hh:=813 
147: w3 251220 {150} h:=12835221+251220=13086441, hh:=829 
151: setchar83 h:=13086441+418700=13505141, hh:=856 
...
164: setchar82 h:=17448202+565245=18013447, hh:=1142 
165: x0 -62805 {152} h:=18013447-62805=17950642, hh:=1138 
166: setchar89 h:=17950642+569796=18520438, hh:=1174 
[A SHORT STORY]
167: pop {142} 
level 1:(h=0,v=5841296,w=0,x=0,y=0,z=0,hh=0,vv=370) 
...
550: pop {142} 
level 0:(h=0,v=42152922,w=0,x=0,y=0,z=0,hh=0,vv=2670) 
551: down3 1572864 {159} v:=42152922+1572864=43725786, vv:=2770 
555: push {141} 
level 0:(h=0,v=43725786,w=0,x=0,y=0,z=0,hh=0,vv=2770) 
556: right4 15229091 {146} h:=0+15229091=15229091, hh:=965 
561: setchar49 h:=15229091+327681=15556772, hh:=986 
[ 1]
562: pop {142} 
level 0:(h=0,v=43725786,w=0,x=0,y=0,z=0,hh=0,vv=2770) 
563: eop {140} 

Explanation:

  • The DVItype options are recorded at the beginning, followed by global information about the document, including fonts used.
  • Each DVI command is preceded by its byte position in the file (‘42:’, ‘87:’, …), and (because of the ‘-show-opcodes’) followed by its decimal opcode value in braces (‘{141}’, ‘{142}’, …).
  • The ‘level’ lines record information about the DVI stack; ‘h’ and ‘v’ define the current position in DVI units, while ‘hh’ and ‘vv’ are the same in pixels.
  • Text sequences are summarized in brackets, as in ‘[A SHORT STORY]’ and the ‘[ 1]’.

11 Font utilities

The Web2c programs described here convert between various TeX-related font formats; the first section below briefly describes the formats. GFtoPK is the only one that is routinely used, as Metafont outputs GF format, but it’s most efficient for device drivers to use PK.

The precise definitions of the PK, GF, TFM, PL, VF, and VPL formats mentioned below are in the source files that read them; pktype.web, gftype.web, tftopl.web, etc.


11.1 Font file formats

For another perspective on this, see Font concepts in Dvips.

Font files come in several varieties, with suffixes like:

.tfm  .*pk  .*gf  .*pxl (obsolete)  .pl  .mf  .vf  .vpl

Each represents a file format.

A TFM (TeX font metric) file is a compact binary file that contains information about each character in a font, about combinations of characters within that font, and about the font as a whole. The font metric information contained in TFM files is device-independent units is used by TeX to do typesetting. Unlike the bitmap (raster) fonts described below, TFM font files contain no information about the shapes of characters. They describe rectangular areas and combinations thereof, but not what will eventually be printed in those areas.

Since TeX does scaling calculations, one TFM file serves for all magnifications of a given typeface. On the other hand, the best printed results are obtained when magnified (or reduced fonts) are not produced geometrically (as done by PostScript, for example) but rather optically, with each size a separate design (as done with Computer Modern and the EC fonts, for example); then a separate TFM file is needed for each size.

At any rate, TeX produces a DVI (DeVice Independent) file from your source document. In order to print DVI files on real devices, you need font files defining digitized character shapes and other data. Then previewers and printer-driver programs can translate your DVI files into something usable by your monitor or printer. Bitmap fonts come with suffixes such as ‘.600pk’ or ‘.600gf’ or ‘.3000pxl’, where the ‘600’ is the horizontal dots-per-inch resolution at which the font was produced, and the ‘pk’ or ‘gf’ or ‘pxl’ indicates the font format. Outline fonts in PostScript Type 1 format have suffixes such as ‘.pfa’ or ‘.pfb’.

Fonts in pk (packed) format are in the tightly packed raster format that is pretty much the standard today. They take up less space than fonts in the gf (generic font) format that Metafont generates, and far less space than fonts in pxl format. Fonts in pxl format take up gross amounts of disk space and permit only 128 characters. They are obsolete.

Font files with the ‘.pl’ (property list) suffix are the plain text (human-readable) analog of the binary ‘.tfm’ files. The TFtoPL and PLtoTF programs convert between the two formats (see TFtoPL: TeX font metric to property list conversion and PLtoTF: Property list to TeX font metric conversion).

Font files with the ‘.mf’ suffix are in Metafont source format. These are the files used by Metafont to generate rastered fonts for specific typefaces at specific magnifications for the specific resolution and type of mapping used by your device.

The suffix ‘.vf’ identifies “virtual font” files, for which ‘.vpl’ is the human-readable analog. See See VFtoVP: Virtual font to virtual property lists, and VPtoVF: Virtual property lists to virtual font. For further discussion of virtual fonts, see CTAN:/doc/virtual-fonts.knuth, CTAN:/help/virtualfonts.txt, and Virtual fonts in Dvips.

(This section is based on documentation in the original Unix TeX distribution by Pierre MacKay and Elizabeth Tachikawa.)


11.2 GFtoPK: Generic to packed font conversion

GFtoPK converts a generic font (GF) file output by, for example, Metafont (see mf invocation) to a packed font (PK) file. PK files are considerably smaller than the corresponding gf files, so they are generally the bitmap font format of choice. Some DVI-processing programs, notably Dvips, only support PK files and not GF files. Synopsis:

gftopk [option]... gfname.dpi[gf] [pkfile]

The font gfname is searched for in the usual places (see Glyph lookup in Kpathsea). To see all the relevant paths, set the environment variable KPATHSEA_DEBUG to ‘-1’ before running the program.

The suffix ‘gf’ is supplied if not already present. This suffix is not an extension; no ‘.’ precedes it: for instance, cmr10.600gf.

If pkfile is not specified, the output is written to the basename of ‘gfname.dpipk’, e.g., ‘gftopk /wherever/cmr10.600gf’ creates ./cmr10.600pk.

The only options are ‘--verbose’, ‘--help’, and ‘--version’ (see Common options).


11.3 PKtoGF: Packed to generic font conversion

PKtoGF converts a packed font (PK) file to a generic font (GF) file. Since PK format is much more compact than GF format, the most likely reason to do this is to run GFtype (see GFtype: Plain text transliteration of generic fonts) on the result, so you can see the bitmap images. Also, a few old utility programs do not support PK format. Synopsis:

pktogf [option]... pkname.dpi[pk] [gffile]

The font pkname is searched for in the usual places (see Glyph lookup in Kpathsea). To see all the relevant paths, set the environment variable KPATHSEA_DEBUG to ‘-1’ before running the program.

The suffix ‘pk’ is supplied if not already present. This suffix is not an extension; no ‘.’ precedes it: for instance, cmr10.600pk.

If gffile is not specified, the output is written to the basename of ‘pkname.dpigf’, e.g., ‘pktogf /wherever/cmr10.600pk’ creates ./cmr10.600gf.

The only options are ‘--verbose’, ‘--help’, and ‘--version’ (see Common options).


11.4 PKtype: Plain text transliteration of packed fonts

PKtype translates a packed font (PK) bitmap file (as output by GFtoPK, for example) to a plain text file that humans can read. It also serves as a PK-validating program, i.e., if PKtype can read a file, it’s correct. Synopsis:

pktype pkname.dpi[pk]

The font pkname is searched for in the usual places (see Glyph lookup in Kpathsea). To see all the relevant paths, set the environment variable KPATHSEA_DEBUG to ‘-1’ before running the program.

The suffix ‘pk’ is supplied if not already present. This suffix is not an extension; no ‘.’ precedes it: for instance, cmr10.600pk.

The translation is written to standard output.

The only options are ‘-help’ and ‘-version’ (see Common options).

As an example of the output, here is the (abridged) translation of the letter ‘K’ in ‘cmr10’, as rendered at 600dpi with the mode ‘ljfour’ from modes.mf (available from ftp://ftp.tug.org/tex/modes.mf).

955:  Flag byte = 184  Character = 75  Packet length = 174
  Dynamic packing variable = 11
  TFM width = 815562  dx = 4259840 
  Height = 57  Width = 57  X-offset = -3  Y-offset = 56
  [2]23(16)17(8)9(25)11(13)7(27)7(16)7(28)4(18)7(28)2(20)7(27)...
  ...
  (14)9(24)12(5)[2]23(13)21 

Explanation:

955

The byte position in the file where this character starts.

Flag byte
Dynamic packing variable

Related to the packing for this character; see the source code.

Character

The character code, in decimal.

Packet length

The total length of this character definition, in bytes.

TFM width

The device-independent (TFM) width of this character. It is 2^24 times the ratio of the true width to the font’s design size.

dx

The device-dependent width, in scaled pixels, i.e., units of horizontal pixels times 2^16.

Height
Width

The bitmap height and width, in pixels.

X-offset
Y-offset

Horizontal and vertical offset from the upper left pixel to the reference (origin) pixel for this character, in pixels (right and down are positive). The reference pixel is the pixel that occupies the unit square in Metafont; the Metafont reference point is the lower left hand corner of this pixel. Put another way, the x-offset is the negative of the left side bearing; the right side bearing is the horizontal escapement minus the bitmap width plus the x-offset.

[2]23(16)…

Finally, run lengths of black pixels alternate with parenthesized run lengths of white pixels, and brackets indicate a repeated row.


11.5 GFtype: Plain text transliteration of generic fonts

GFtype translates a generic font (GF) bitmap file (as output by Metafont, for example) to a plain text file that humans can read. It also serves as a GF-validating program, i.e., if GFtype can read a file, it’s correct. Synopsis:

gftype [option]... gfname.dpi[gf]

The font gfname is searched for in the usual places (see Glyph lookup in Kpathsea). To see all the relevant paths, set the environment variable KPATHSEA_DEBUG to ‘-1’ before running the program.

The suffix ‘gf’ is supplied if not already present. This suffix is not an extension; no ‘.’ precedes it: for instance, cmr10.600gf.

The translation is written to standard output.

The program accepts the following options, as well as the standard ‘-help’ and ‘-version’ (see Common options):

-images

Show the characters’ bitmaps using asterisks and spaces.

-mnemonics

Translate all commands in the GF file.

As an example of the output, here is the (abridged) translation of the letter ‘K’ in ‘cmr10’, as rendered at 600dpi with the mode ‘ljfour’ from modes.mf (available from ftp://ftp.tug.org/tex/modes.mf), with both ‘-mnemonics’ and ‘-images’ enabled.

GFtype outputs the information about a character in two places: a main definition and a one-line summary at the end. We show both. Here is the main definition:

2033: beginning of char 75: 3<=m<=60 0<=n<=56
(initially n=56) paint (0)24(12)20
2043: newrow 0 (n=55) paint 24(12)20
2047: newrow 0 (n=54) paint 24(12)20
2051: newrow 0 (n=53) paint 24(12)20
2055: newrow 7 (n=52) paint 10(21)13
2059: newrow 8 (n=51) paint 8(23)9
...
2249: newrow 8 (n=5) paint 8(23)11
2253: newrow 7 (n=4) paint 10(22)12
2257: newrow 0 (n=3) paint 24(11)22
2261: newrow 0 (n=2) paint 24(11)22
2265: newrow 0 (n=1) paint 24(11)22
2269: newrow 0 (n=0) paint 24(11)22
2273: eoc
.<--This pixel's lower left corner is at (3,57) in METAFONT coordinates
************************            ********************
************************            ********************
************************            ********************
************************            ********************
       **********                     *************
        ********                       *********
...
        ********                       ***********
       **********                      ************
************************           **********************
************************           **********************
************************           **********************
************************           **********************
.<--This pixel's upper left corner is at (3,0) in METAFONT coordinates

Explanation:

2033
2043

The byte position in the file where each GF command starts.

beginning of char 75

The character code, in decimal.

3<=m<=60 0<=n<=56

The character’s bitmap lies between 3 and 60 (inclusive) horizontally, and between 0 and 56 (inclusive) vertically. (m is a column position and n is a row position.) Thus, 3 is the left side bearing. The right side bearing is the horizontal escapement (given below) minus the maximum m.

(initially n=56) paint (0)24(12)20

The first row of pixels: 0 white pixels, 24 black pixels, 12 white pixels, etc.

newrow 0 (n=55) paint 24(12)20

The second row of pixels, with zero leading white pixels on the row.

eoc

The end of the main character definition.

Here is the GF postamble information that GFtype outputs at the end:

Character 75: dx 4259840 (65), width 815562 (64.57289), loc 2033

Explanation:

dx

The device-dependent width, in scaled pixels, i.e., units of horizontal pixels times 2^16. The ‘(65)’ is simply the same number rounded. If the vertical escapement is nonzero, it would appear here as a ‘dy’ value.

width

The device-independent (TFM) width of this character. It is 2^24 times the ratio of the true width to the font’s design size. The ‘64.57289’ is the same number converted to pixels.

loc

The byte position in the file where this character starts.


11.6 TFtoPL: TeX font metric to property list conversion

TFtoPL translates a TeX font metric (TFM, see Metric files in Dvips) file (as output by Metafont, for example) to property list format (a list of parenthesized items describing the font) that humans can edit or read. This program is mostly used by people debugging TeX implementations, writing font utilities, etc. Synopsis:

tftopl [option]... tfmname[.tfm] [plfile[.pl]]

The font tfmname (extended with ‘.tfm’ if necessary) is searched for in the usual places (see Supported file formats in Kpathsea). To see all the relevant paths, set the environment variable KPATHSEA_DEBUG to ‘-1’ before running the program.

If plfile (which is extended with ‘.pl’ if necessary) is not specified, the property list file is written to standard output. The property list file can be converted back to TFM format by the companion program TFtoPL (see the next section).

The program accepts the following option, as well as the standard ‘-verbose’, ‘-help’ and ‘-version’ (see Common options):

-charcode-format=type

Output character codes in the PL file according to type: either ‘octal’ or ‘ascii’. Default is ‘ascii’ for letters and digits, octal for all other characters. Exception: if the font’s coding scheme starts with ‘TeX math sy’ or ‘TeX math ex’, all character codes are output in octal.

In ‘ascii’ format, character codes that correspond to graphic characters, except for left and right parentheses, are output as a ‘C’ followed by the single character: ‘C K’, for example. In octal format, character codes are output as the letter ‘O’ followed by octal digits, as in ‘O 113’ for ‘K’.

octal’ format is useful for symbol and other non-alphabetic fonts, where using ASCII characters for the character codes is merely confusing.

As an example of the output, here is the (abridged) property list translation of cmr10.tfm:

(FAMILY CMR)
(FACE O 352)
(CODINGSCHEME TEX TEXT)
(DESIGNSIZE R 10.0)
(COMMENT DESIGNSIZE IS IN POINTS)
(COMMENT OTHER SIZES ARE MULTIPLES OF DESIGNSIZE)
(CHECKSUM O 11374260171)
(FONTDIMEN
   (SLANT R 0.0)
   (SPACE R 0.333334)
   (STRETCH R 0.166667)
   (SHRINK R 0.111112)
   (XHEIGHT R 0.430555)
   (QUAD R 1.000003)
   (EXTRASPACE R 0.111112)
   )
(LIGTABLE
   ...
   (LABEL C f)
   (LIG C i O 14)
   (LIG C f O 13)
   (LIG C l O 15)
   (KRN O 47 R 0.077779)
   (KRN O 77 R 0.077779)
   (KRN O 41 R 0.077779)
   (KRN O 51 R 0.077779)
   (KRN O 135 R 0.077779)
   (STOP)
   ...
   )
...
(CHARACTER C f
   (CHARWD R 0.305557)
   (CHARHT R 0.694445)
   (CHARIC R 0.077779)
   (COMMENT
      (LIG C i O 14)
      (LIG C f O 13)
      (LIG C l O 15)
      (KRN O 47 R 0.077779)
      (KRN O 77 R 0.077779)
      ...
      )
   )
...

As you can see, the general format is a list of parenthesized properties, nested where necessary.

  • The first few items (FAMILY, FACE, and so on) are the so-called headerbyte information from Metafont, giving general information about the font.
  • The FONTDIMEN property defines the TeX \fontdimen values.
  • The LIGTABLE property defines the ligature and kerning table. LIG properties define ligatures: in the example above, an ‘f’ (in the ‘LABEL’) followed by an ‘i’ is a ligature, i.e., a typesetting program like TeX replaces those two consecutive characters by the character at position octal ’014 in the current font—presumably the ‘fi’ ligature. KRN properties define kerns: if an ‘f’ is followed by character octal ’047 (an apostrophe), TeX inserts a small amount of space between them: 0.077779 times the design size the font was loaded at (about three-quarters of a printer’s point by default in this case, or .001 inches).
  • The CHARACTER property defines the dimensions of a character: its width, height, depth, and italic correction, also in design-size units, as explained in the previous item. For our example ‘f’, the depth is zero, so that property is omitted. TFtoPL also inserts any kerns and ligatures for this character as a comment.

11.7 PLtoTF: Property list to TeX font metric conversion

PLtoTF translates a property list file (as output by TFtoPL, for example) to TeX font metric (TFM, see Metric files in Dvips) format. It’s much easier for both programs and humans to create the (plain text) property list files and let PLtoTF take care of creating the binary TFM equivalent than to output TFM files directly. Synopsis:

pltotf [option]... plfile[.pl] [tfmfile[.tfm]]

If tfmfile (extended with ‘.tfm’ if necessary) is not specified, the TFM file is written to the basename of ‘plfile.tfm’, e.g., ‘pltotf /wherever/cmr10.pl’ creates ./cmr10.tfm. (Since TFM files are binary, writing to standard output by default is undesirable.)

The only options are ‘-verbose’, ‘-help’, and ‘-version’ (see Common options).

For an example of property list format, see the previous section.


11.8 VFtoVP: Virtual font to virtual property lists

VFtoVP translates a virtual font metric (VF, see Virtual fonts in Dvips) file and its accompanying TeX font metric (TFM, see Metric files in Dvips) file (as output by VPtoVF, for example) to virtual property list format (a list of parenthesized items describing the virtual font) that humans can edit or read. This program is mostly used by people debugging virtual font utilities. Synopsis:

vftovp [option]... vfname[.vf] [tfmname[.tfm] [vplfile[.vpl]]]

The fonts vfname and tfmname (extended with ‘.vf’ and ‘.tfm’ if necessary) are searched for in the usual places (see Supported file formats in Kpathsea). To see all the relevant paths, set the environment variable KPATHSEA_DEBUG to ‘-1’ before running the program. If tfmname is not specified, vfname (without a trailing ‘.vf’) is used.

If vplfile (extended with ‘.vpl’ if necessary) is not specified, the property list file is written to standard output. The property list file can be converted back to VF and TFM format by the companion program VFtoVP (see the next section).

The program accepts the following option, as well as the standard ‘-verbose’, ‘-help’ and ‘-version’ (see Common options):

-charcode-format=type

Output character codes in the PL file according to type: either ‘octal’ or ‘ascii’. Default is ‘ascii’ for letters and digits, octal for all other characters. Exception: if the font’s coding scheme starts with ‘TeX math sy’ or ‘TeX math ex’, all character codes are output in octal.

In ‘ascii’ format, character codes that correspond to graphic characters, except for left and right parentheses, are output as a ‘C’ followed by the single character: ‘C K’, for example. In octal format, character codes are output as the letter ‘O’ followed by octal digits, as in ‘O 113’ for ‘K’.

octal’ format is useful for symbol and other non-alphabetic fonts, where using ASCII characters for the character codes is merely confusing.


11.9 VPtoVF: Virtual property lists to virtual font

VPtoVF translates a virtual property list file (as output by VFtoVP, for example) to virtual font (VF, see Virtual fonts in Dvips) and TeX font metric (TFM, see Metric files in Dvips) files. It’s much easier for both programs and humans to create the (plain text) property list files and let VPtoVF take care of creating the binary VF and TFM equivalents than to output them directly. Synopsis:

vptovf [option]... vplfile[.vpl] [vffile[.vf] [tfmfile[.tfm]]]

If vffile (extended with ‘.vf’ if necessary) is not specified, the VF output is written to the basename of ‘vplfile.vf’; similarly for tfmfile. For example, ‘vptovf /wherever/ptmr.vpl’ creates ./ptmr.vf and ./ptmr.tfm.

The only options are ‘-verbose’, ‘-help’, and ‘-version’ (see Common options).


11.10 Font utilities available elsewhere

The Web2c complement of font utilities merely implements a few basic conversions. Many other more sophisticated font utilities exist; most are in CTAN:/fonts/utilities (for CTAN info, see unixtex.ftp in Kpathsea). Here are some of the most commonly-requested items:


Appendix A Legalisms

In general, each file has its own copyright notice stating the copying permissions for that file. Following is a summary.

The Stanford TeX programs and Web2c system itself are in the public domain (https://tug.org/texlive/copying.html). The sources may be copied verbatim, or used as the starting point of new software under different names; however, per the wishes of the authors, they should be modified only through a .ch file, but this is in the nature of a development request rather than a legal requirement.

MLTeX, pdfTeX, LuaTeX, XeTeX, and all the other derived engines have used various license terms for their additions to the base code, often the GPL (see https://www.gnu.org/licenses/#GPL) or (for example) the file web2c/pdftexdir/COPYINGv2. They also mostly make use of additional libraries with their own (compatible) terms. Please see each program’s sources.

The Kpathsea library is covered by the GNU Lesser General Public License (see Introduction in Kpathsea). Therefore, the binaries resulting from a standard Web2c compilation are also covered by the LGPL; so if you (re)distribute the binaries, you must also (offer to) distribute the complete source that went into those binaries. See https://gnu.org/licenses/#LGPL or the file kpathsea/COPYING.LESSERv2.


Appendix B References

  1. Kpathsea: See Introduction in Kpathsea.
  2. Dvips and Afm2tfm: See Introduction in Dvips.
  3. The TeX Users Group: https://tug.org. For an introduction to the TeX system, see https://tug.org/begin.html.
  4. TUGboat, the principal journal for the TeX world: https://tug.org/TUGboat.
  5. TeX and computer typesetting in general:
    ftp://ftp.math.utah.edu/pub/tex/bib/texbook1.bib.
  6. For a bibliography of formal articles and technical reports on the TeX project, see the books TeX: The Program or Metafont: The Program cited below.
  7. [Bil87] Neenie Billawala. Write-white printing engines and tuning fonts with Metafont. TUGboat, 8(1):29–32, April 1987. https://tug.org/TUGboat/tb08-1/tb17billawala.pdf.
  8. [Hob89] John D. Hobby. A Metafont-like system with PS output. TUGboat, 10(4):505–512, December 1989. https://tug.org/metapost.
  9. [Hob92] John D. Hobby. A User’s Manual for MetaPost. Technical Report CSTR-162, AT&T Bell Laboratories, 1992.
  10. [Hob93] John D. Hobby. Drawing Graphs with MetaPost. Technical Report CSTR-164, AT&T Bell Laboratories, 1993.
  11. [HS91] Samuel P. Harbison and Guy L. Steele Jr. C—A Reference Manual. Prentice-Hall, Upper Saddle River, NJ 07458, USA, third edition, 1991. An authoritative reference to the C programming language, and a good companion to Kernighan and Ritchie.
  12. [KL93] Donald E. Knuth and Silvio Levy. The CWEB System of Structured Documentation, Version 3.0. Addison-Wesley, Reading, MA, USA, 1993. https://ctan.org/pkg/cweb.
  13. [Knu84] Donald E. Knuth. A torture test for TeX. Report No. STAN-CS-84-1027, Stanford University, Department of Computer Science, 1984.
  14. [Knu86a] Donald E. Knuth. A Torture Test for METAFONT. Report No. STAN-CS-86-1095, Stanford University, Department of Computer Science, 1986.
  15. [Knu86b] Donald E. Knuth. The TeXbook, volume A of Computers and Typesetting. Addison-Wesley, Reading, MA, USA, 1986.
  16. [Knu86c] Donald E. Knuth. TeX: The Program, volume B of Computers and Typesetting. Addison-Wesley, Reading, MA, USA, 1986.
  17. [Knu86d] Donald E. Knuth. The METAFONTbook, volume C of Computers and Typesetting. Addison-Wesley, Reading, MA, USA, 1986.
  18. [Knu86e] Donald E. Knuth. METAFONT: The Program, volume D of Computers and Typesetting. Addison-Wesley, Reading, MA, USA, 1986.
  19. [Knu86f] Donald E. Knuth. Computer Modern Typefaces, volume E of Computers and Typesetting. Addison-Wesley, Reading, MA, USA, 1986.
  20. [Knu89] Donald E. Knuth. The errors of TeX. Software—Practice and Experience, 19(7):607–681, July 1989. This is an updated version of Knuth:1988:ET.
  21. [Knu90] Donald Knuth. Virtual Fonts: More Fun for Grand Wizards. TUGboat, 11(1):13–23, April 1990. https://tug.org/TUGboat/tb11-1/tb27knut.pdf.
  22. [Knu92] Donald E. Knuth. Literate Programming. CSLI Lecture Notes Number 27. Stanford University Center for the Study of Language and Information, Stanford, CA, USA, 1992.
  23. [Lam94] Leslie Lamport. LaTeX: A Document Preparation System: User’s Guide and Reference Manual. Addison-Wesley, Reading, MA, USA, second edition, 1994. Reprinted with corrections, 1996.
  24. [Lia83] Franklin Mark Liang. Word hy-phen-a-tion by com-put-er. Technical Report STAN-CS-83-977, Stanford University, August 1983. https://tug.org/docs/liang/liang-thesis.pdf.
  25. [Mac91] Pierre A. MacKay. Looking at the pixels: Quality control for 300 dpi laser printer fonts, especially Metafonts. In Robert A. Morris and Jacques Andre, editors, Raster Imaging and Digital Typography II—Papers from the second RIDT meeting, held in Boston, Oct. 14–16, 1991, pages 205–215, New York, 1991. Cambridge University Press.

Index

Jump to:   -   .   "   \   #   %   ^   ~   $   2   3   6   8  
A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y  
Index EntrySection

-
- starting a filenameOption conventions
- starts option namesOption conventions
-- starts option namesOption conventions
--disable-dump-share configure optionHardware and memory dumps
--disable-mf-nowinOnline Metafont graphics
--enable-epsfwinOnline Metafont graphics
--enable-hp2627winOnline Metafont graphics
--enable-ipc configure optiontex invocation
--enable-mftalkwinOnline Metafont graphics
--enable-nextOnline Metafont graphics
--enable-regiswinOnline Metafont graphics
--enable-suntoolswinOnline Metafont graphics
--enable-tektronixwinOnline Metafont graphics
--enable-unitermwinOnline Metafont graphics
--help common optionCommon options
--verbose common optionCommon options
--version common optionCommon options
--with-editor=cmdEditor invocation
--with-mf-x-toolkit=kitOnline Metafont graphics
--with-xOnline Metafont graphics
-8bitCommon options
-base=baseDetermining the memory dump to use
-base=dumpnameCommon options
-change=chfilemft invocation
-charcode-format=typetftopl invocation
-charcode-format=typevftovp invocation
-cnf-lineCommon options
-D compiler optionsCompile-time options
-disable-write18tex invocation
-dpi=realdvitype invocation
-enable-write18tex invocation
-enctex invocation
-file-line-errorCommon options
-file-line-error-styleCommon options
-fmt=dumpnameCommon options
-fmt=fmtDetermining the memory dump to use
-geometry, supported with XtOnline Metafont graphics
-halt-on-errorCommon options
-imagesgftype invocation
-iniCommon options
-iniInitial and virgin
-interaction=stringCommon options
-ipctex invocation
-ipc-starttex invocation
-jobname=stringCommon options
-kpathsea-debug=numberCommon options
-length=numbertangle invocation
-loosetangle invocation
-lowercasetangle invocation
-magnification=integerdvicopy invocation
-magnification=integerdvitype invocation
-max-pages=ndvicopy invocation
-max-pages=ndvitype invocation
-mem=dumpnameCommon options
-min-crossrefs=nbibtex invocation
-mixedcasetangle invocation
-mktex=filetypetex invocation
-mktex=filetypemf invocation
-mltextex invocation
-mnemonicsgftype invocation
-no-file-line-errorCommon options
-no-mktex=filetypetex invocation
-no-mktex=filetypemf invocation
-no-parse-first-lineCommon options
-no-shell-escapetex invocation
-output-comment=stringtex invocation
-output-directoryCommon options
-output-directoryOutput file location
-output-level=ndvitype invocation
-overflow-label-offset=pointsgftodvi invocation
-page-start=page-specdvicopy invocation
-page-start=page-specdvitype invocation
-parse-first-lineCommon options
-progname=stringCommon options
-progname=stringDetermining the memory dump to use
-recorderCommon options
-shell-escapetex invocation
-shell-restrictedtex invocation
-show-opcodesdvitype invocation
-stricttangle invocation
-style=mftfilemft invocation
-Tmpost invocation
-tersebibtex invocation
-tex=texprogrammpost invocation
-translate-file=tcxfileCommon options
-troffmpost invocation
-underlinetangle invocation
-uppercasetangle invocation
-xweave invocation

.
., used for outputOutput file location
.2602gfmf invocation
.aux cross-reference filesbibtex invocation
.baseInitial Metafont
.bbl bibliography filesbibtex invocation
.bib bibliography databasesbibtex invocation
.blg BibTeX log filebibtex invocation
.fmtInitial TeX
.mfmf invocation
.mpmpost invocation
.mps files and PDFmpost invocation
.nnn PostScript figuresmpost invocation
.nnngf generic fontsmf invocation
.tcx character translation filesCommon options
.tcx character translation filesTCX files
.textex invocation
.tfm outputmf invocation
.tfm outputmpost invocation
.XdefaultsOnline Metafont graphics
.XresourcesOnline Metafont graphics

"
" character, ignored in filenames\input filenames

\
\bibliographybibtex invocation
\bibliographystylebibtex invocation
\charsubdef and MLTeX\charsubdef
\countndvicopy invocation
\countndvitype invocation
\font and dynamic generationtex invocation
\fontdimentftopl invocation
\immediate\write18Shell escapes
\input braced (grouped) filename\input braced filename
\input filename caveats\input filename caveats
\input filenames\input filenames
\input quoted filename\input quoted filename
\input, and pipesShell escapes
\magdvicopy invocation
\magdvitype invocation
\openin, and pipesShell escapes
\openout and securitytex invocation
\openout, and pipesShell escapes
\output routine, and \writeShell escapes
\pdfshellescapeShell escapes
\string, and \input filenames\input filename caveats
\tracingcharsubdef and MLTeX\tracingcharsubdef
\tracinglostchars and MLTeX\tracingcharsubdef
\write18 shell escape extensionShell escapes
\write18, output location forOutput file location

#
#define’ optionsCompile-time options

%
%& magic numberDetermining the memory dump to use

^
^^ notation, avoidingTCX files

~
~ expansion in filenames\input filename caveats

$
$ expansion in filenames\input filename caveats

2
2602gfmf invocation

3
32-bit architectureHardware and memory dumps

6
64-bit architectureHardware and memory dumps

8
8 bit cleanCommon options
8 bit clean output, specifyingCommon options
8-bit charactersTCX files

A
abbrv.bstBasic BibTeX style files
accented characterTCX files
accents, hyphenating words withMLTeX
acknowledgementsIntroduction
acm.bstBasic BibTeX style files
Ada, WEB forWEB
additional Make targetsAdditional targets
AFM to TFM conversionFont utilities available elsewhere
afm2tfmFont utilities available elsewhere
afmtoplFont utilities available elsewhere
AlephTeX extensions
aliases for fontsPath searching
alpha.bstBasic BibTeX style files
American Mathematical Society, typesetting systemFormats
AMSTeXFormats
apalike.bstBasic BibTeX style files
architecture dependenciesHardware and memory dumps
array limit, fixedRuntime options
array sizesRuntime options
assembly language routinesCompile-time options
autotraceFont utilities available elsewhere
Awk, WEB forWEB

B
base file, determiningDetermining the memory dump to use
base filesInitial Metafont
base files, need mode definitionsModes
base files, plain onlyInitial Metafont
base files, sharingHardware and memory dumps
bases Make targetAdditional targets
basic BibTeX style filesBasic BibTeX style files
basic fonts and macrosInstallation
batch languagesTeX
BDF and GF conversionFont utilities available elsewhere
beamer, packageFormats
beginfigmpost invocation
Berry, KarlIntroduction
BIBINPUTS, search path for bib filesbibtex invocation
bibliographies, creatingBibTeX
bibliographyReferences
bibliography items, cross-referencedbibtex invocation
bibtexbibtex invocation
BibTeXBibTeX
BibTeX collectionbibtex invocation
BibTeX style filesBasic BibTeX style files
BigEndian machinesHardware and memory dumps
binaries, linkingCommon options
blank lines, in TCX filesTCX files
boxes, memory forRuntime options
braced filename for \input\input braced filename
breakpoints, memory forRuntime options
Breitenlohner, PeterIntroduction
BSTINPUTS, search path for bst filesbibtex invocation
btex for MetaPost labelsmpost invocation
btxdoc.bibbibtex invocation
btxdoc.texbibtex invocation
btxhak.texbibtex invocation
byte positionpktype invocation
byte positiongftype invocation
byte swappingHardware and memory dumps

C
c-sources Makefile targetAdditional targets
caveats for \input filenames\input filename caveats
change files, and MFTmft invocation
change files, and Tangletangle invocation
change files, and Weaveweave invocation
changing error messages styleCommon options
character codes, in GFtype outputgftype invocation
character codes, in PKtype outputpktype invocation
character codes, in TCX filesTCX files
character proofs of fontsgftodvi invocation
CHARACTER propertytftopl invocation
character translation filesTCX files
CHARDP propertytftopl invocation
CHARHT propertytftopl invocation
CHARIC propertytftopl invocation
CHARWD propertytftopl invocation
chtopxFont utilities available elsewhere
class name for MetafontOnline Metafont graphics
cm.baseInitial Metafont
cmbase.mfInitial Metafont
cmbase.mftmft invocation
cmmf.base not recommendedInitial Metafont
color, in DVItoMPdvitomp invocation
comments, in TCX filesTCX files
comments, MFT controlmft invocation
common optionsCommon options
commonalitiesCommonalities
compilationInstallation
compile-time optionsconfigure options
compile-time optionsCompile-time options
Computer Modern fonts, and Troffmpost invocation
Computer Modern macrosInitial Metafont
Computer Modern Typefaces, production ofmft invocation
configurationInstallation
configuration file readingPath searching
configuration file valuesRuntime options
configuration, compile-timeconfigure options
configure --with/--enable optionsconfigure options
CONTENTS.texweave invocation
ConTeXtFormats
conventions for options,Option conventions
conversion, DVI to plain textdvitype invocation
conversion, GF to PKgftopk invocation
conversion, GF to plain textgftype invocation
conversion, PK to GFpktogf invocation
conversion, PK to plain textpktype invocation
conversion, property list to TFMpltotf invocation
conversion, property list to VFvptovf invocation
conversion, TFM to property listtftopl invocation
conversion, VF to VPLvftovp invocation
copyright noticesLegalisms
Cork encoding and ISO inputTCX files
creating memory dumpsCreating memory dumps
cross-engine functionalityTeX extensions
cross-referenced bibliography itemsbibtex invocation
cross-references, omittingweave invocation
current directory, used for outputOutput file location
Curtis, PavelIntroduction
CwebWEB
CWEBWEB

D
date and time, in memory dumpsHardware and memory dumps
debugging DVI utilitiesdvitype invocation
debugging flags, specifyingCommon options
decimal character codes, in TCX filesTCX files
dependencies, hardwareHardware and memory dumps
design-size unitstftopl invocation
device definitions, for MetafontModes
device-independent widthpktype invocation
device-independent widthgftype invocation
directory structureInstallation
DISPLAYOnline Metafont graphics
dot files, written by TeX programstex invocation
double quote character, ignored in filenames\input filenames
downloading of fonts for MetaPost labelsmpost invocation
DrawingServantOnline Metafont graphics
dump fileCommon options
dumping memoryMemory dumps
DVI comment, specifyingtex invocation
DVI files, converting to MPXdvitomp invocation
DVI files, explainedFont file formats
DVI format definitionDVI utilities
DVI opcodes, showingdvitype invocation
DVI utilitiesDVI utilities
dvicopydvicopy invocation
dvitompdvitomp invocation
dvitype DVI validationdvitype invocation
dvitype output exampledvitype output example
dvitype.webDVI utilities
dx horizontal escapementpktype invocation
dx horizontal escapementgftype invocation
dy vertical escapementgftype invocation
dynamic array allocationRuntime options
dynamic Metafont mode definitions with smodeModes
dynamic packing variablepktype invocation

E
e response at error promptEditor invocation
e-circumflex\charsubdef
e-TeXTeX extensions
e.mftmft invocation
EC fontstex invocation
EC fontsmf invocation
editing of bitmap fontsFont utilities available elsewhere
editor invoked at errorEditor invocation
eight-bit characters in filenames\input filename caveats
empty.tcxTCX files
endian dependenciesHardware and memory dumps
eoc GF commandgftype invocation
EplainFormats
epsfOnline Metafont graphics
epTeXTeX extensions
errors, editor invoked atEditor invocation
escapement, horizontalpktype invocation
escapement, horizontalgftype invocation
escapement, verticalgftype invocation
etex for MetaPost labelsmpost invocation
etex is pdfTeXTeX extensions
eupTeXTeX extensions
executables, shared initial and virginInitial and virgin
exit status, of shell escapeShell escapes
expand_depthRuntime options
expanded plain formatFormats
expansion limit, recursiveRuntime options
expansion, and \input filenames\input filename caveats
extensions to TeXTeX extensions
extra_mem_botRuntime options

F
FACE propertytftopl invocation
FAMILY propertytftopl invocation
FAMILY propertytftopl invocation
Ferguson, MichaelMLTeX
file formats for fontsFont file formats
file recorderCommon options
filename conventions, in input files\input filenames
filenames starting with ‘-Option conventions
first line of the main input fileCommon options
fixed-point arithmeticCompile-time options
FIXPTCompile-time options
flag bytepktype invocation
floating-point arithmeticCompile-time options
floating-point valuesHardware and memory dumps
fmt file, determiningDetermining the memory dump to use
fmt filesInitial TeX
fmt files, sharingHardware and memory dumps
fmts Make targetAdditional targets
font aliasesPath searching
font character code, translatingTCX files
font designMetafont
font downloading for MetaPost labelsmpost invocation
font file formatsFont file formats
font proofsgftodvi invocation
font utilitiesFont utilities
font utilities, non-Web2cFont utilities available elsewhere
fontforgeFont utilities available elsewhere
fontinst, for creating virtual fontsFont utilities available elsewhere
fonts, basicInstallation
format filesInitial TeX
formats for TeXFormats
formats Make targetAdditional targets
fraction routinesCompile-time options
Free Software Foundation documentation systemFormats
freedom of Web2cIntroduction
ftp.math.utah.edubibtex invocation

G
generating source specialstex invocation
geometric designsMetafont
geometric font scalingFont file formats
geometry for MetafontOnline Metafont graphics
getopt_long_onlyOption conventions
GF files, explainedFont file formats
GF files, output by Metafontmf invocation
GF format definitionFont utilities
GF outputmf invocation
GF, converting PK topktogf invocation
GF, converting to PKgftopk invocation
gftodvigftodvi invocation
gftopkgftopk invocation
gftopxlFont utilities available elsewhere
gftype GF validationgftype invocation
gftype.webFont utilities
glue ratio representationsHardware and memory dumps
glue, memory forRuntime options
glyph substitutionsMLTeX
gray fontgftodvi invocation
group-delimited filename for \input\input braced filename
Gruff, Billy GoatTriptrap
gsftopkFont utilities available elsewhere

H
Harbison, Samuel P.Hardware and memory dumps
hardware and memory dumpsHardware and memory dumps
headerbyte informationtftopl invocation
height, in pixelspktype invocation
help, onlineCommon options
Herberts, MathiasOnline Metafont graphics
hex character codes, in TCX filesTCX files
HINT (Hint Is Not TeX)TeX extensions
historyIntroduction
hiTeXTeX extensions
Hobby, JohnIntroduction
horizontal escapementpktype invocation
horizontal escapementgftype invocation
hp2627Online Metafont graphics
human languages, supported in TeXLanguages and hyphenation
human-readable text, converting DVI todvitype invocation
human-readable text, converting GF togftype invocation
human-readable text, converting PK topktype invocation
human-readable text, converting TFM totftopl invocation
human-readable text, converting VF tovftovp invocation
hypertextTeX extensions
hyphenation and languagesLanguages and hyphenation
hyphenation patterns, creatingpatgen invocation

I
ice creamIntroduction
identifier casetangle invocation
identifier collisionstangle invocation
identifier lengthtangle invocation
identifiers with underlinestangle invocation
ieeetr.bstBasic BibTeX style files
il1-t1.tcxTCX files
il2-t1.tcxTCX files
Info formatFormats
initial form, enablingCommon options
initial MetafontInitial Metafont
initial MetaPostInitial MetaPost
initial programsInitial and virgin
initial TeXInitial TeX
initializations, lengthyInitial and virgin
input filenames\input filenames
input from the output directoryOutput file location
install-bases Make targetAdditional targets
install-fmts Make targetAdditional targets
install-formats Make targetAdditional targets
install-mems Make targetAdditional targets
installationInstallation
interaction between TCX files and ‘-8bit’.TCX files
interaction modeCommon options
international charactersTCX files
introductionIntroduction
IPCIPC and TeX
IPC_DEBUGCompile-time options
IPC_DEBUGIPC and TeX

J
job nameCommon options

K
kerning table, in TFM filestftopl invocation
keyboard character code, translatingTCX files
Knuth, Donald E.Introduction
Knuth, Donald E.mft invocation
KPATHSEA_DEBUGCommon options
KRN propertytftopl invocation

L
label fontgftodvi invocation
LABEL propertytftopl invocation
language support in TeXLanguages and hyphenation
languages, hyphenation rules forpatgen invocation
LaTeXFormats
Latin ModernFont utilities available elsewhere
left side bearingpktype invocation
left side bearinggftype invocation
legalismsLegalisms
libsigsegv libraryRuntime options
licensing termsIntroduction
LIG propertytftopl invocation
ligature table, in TFM filestftopl invocation
LIGTABLE propertytftopl invocation
linking binariesCommon options
links to binariesDetermining the memory dump to use
literate programmingWEB
LittleEndian machinesHardware and memory dumps
location of texmf.cnf in TeX LiveRuntime options
log file, BibTeXbibtex invocation
long data type, size ofHardware and memory dumps
LuaTeX extensions
LuaTeXTeX extensions

M
machine dependenciesHardware and memory dumps
machine-readable, converting property lists topltotf invocation
machine-readable, converting property lists tovptovf invocation
MacKay, PierreFont file formats
macro packages, major TeXFormats
macros, basicInstallation
macros, predefining in memory dumpsMemory dumps
magnificationdvicopy invocation
magnificationdvitype invocation
main_memoryRuntime options
Make targets, additionalAdditional targets
Martin, RickIntroduction
Mathematical ReviewsFormats
mathematical typesettingTeX
mem file, determiningDetermining the memory dump to use
mem files, sharingHardware and memory dumps
memory dump to use, determiningDetermining the memory dump to use
memory dumpsMemory dumps
memory dumps and hardwareHardware and memory dumps
memory dumps, contain date and timeHardware and memory dumps
memory dumps, creatingCreating memory dumps
mems Make targetAdditional targets
meta characters in filenames\input filename caveats
MetafontMetafont
Metafont geometryOnline Metafont graphics
Metafont graphicsOnline Metafont graphics
Metafont input filesmf invocation
Metafont invocationmf invocation
Metafont meets PostScriptMetaPost
Metafont online support, new devicesOnline Metafont graphics
Metafont source, prettyprintingmft invocation
Metafont, compatibility in MetaPostInitial MetaPost
Metafont, initialInitial Metafont
Metafont, MetaPost, and TeXThree programs
MetaPostMetaPost
MetaPost and plain Metafont compatibilityInitial MetaPost
MetaPost input filesmpost invocation
MetaPost invocationmpost invocation
MetaPost source, prettyprintingmft invocation
MetaPost, initialInitial MetaPost
MetaPost, TeX, and MetafontThree programs
metatype1Font utilities available elsewhere
mfmf invocation
mf.baseInitial Metafont
MFEDITEditor invocation
mfplainInitial MetaPost
mfputmf invocation
mftmft invocation
mftalkOnline Metafont graphics
MFTERMOnline Metafont graphics
mftmac.texmft invocation
micro-typographyTeX extensions
mktexmf, disablingmf invocation
mktextfM, disablingtex invocation
mltexMLTeX
MLTeX, enablingtex invocation
mode needed to run Metafontmf invocation
mode_defModes
mode_setupModes
modes file needed for MetafontModes
modes.mf recommended modes fileModes
modifying texmf.cnf in TeX LiveRuntime options
Morgan, TimIntroduction
Morris, BobIntroduction
MPEDITEditor invocation
mpgraph.pdfmpost invocation
mpman.pdfmpost invocation
mpostmpost invocation
mpost, reason for name changeInstallation
mpoutmpost invocation
mproof.texmpost invocation
mptrap Make targetAdditional targets
mptrap testTriptrap
mptrap.readmeTriptrap
MPX files, converting from DVI filesdvitomp invocation
Multi-lingual TeXMLTeX
multiple spaces, and \input filenames\input filename caveats

N
N tilde\charsubdef
new graphics support for MetafontOnline Metafont graphics
newrow GF commandgftype invocation
nextOnline Metafont graphics
NO_X11WINOnline Metafont graphics
non-Unix system, compiling onAdditional targets
non-windows-capable MetafontOnline Metafont graphics
NUL, not allowed in filenames\input filename caveats

O
octal character codes, in TCX filesTCX files
offset for overflow labelsgftodvi invocation
OmegaTeX extensions
online Metafont graphicsOnline Metafont graphics
opcodes, showing DVIdvitype invocation
OpenType supportTeX extensions
optical font scalingFont file formats
option conventionsOption conventions
originpktype invocation
output directory, specifyingCommon options
output directory, specifyingOutput file location
output file locationOutput file location
output files, written by TeX programstex invocation
output_comment for DVI filestex invocation
overflow label offsetgftodvi invocation
overflow, of runtime stackRuntime options

P
packet lengthpktype invocation
page, startingdvicopy invocation
page, startingdvitype invocation
parsing the first lineCommon options
Pascal, creating from WEBtangle invocation
patgenpatgen invocation
path searchingPath searching
path searching debuggingCommon options
PDFTeX extensions
PDF, and .mps filesmpost invocation
pdfTeXTeX extensions
permissions, legalLegalisms
PFA and PFB conversionFont utilities available elsewhere
pfaeditFont utilities available elsewhere
PiCTeX, increasing memory forRuntime options
pipes, reading and writingShell escapes
pixel heightpktype invocation
pixel widthpktype invocation
PK bitmaps from PostScriptFont utilities available elsewhere
PK files, explainedFont file formats
PK files, not output by Metafontmf invocation
PK format definitionFont utilities
PK, converting GF togftopk invocation
PK, converting to GFpktogf invocation
pktogfpktogf invocation
pktype PK validationpktype invocation
pktype.webFont utilities
PL files, explainedFont file formats
plain Metafont, compatibility in MetaPostInitial MetaPost
plain text, converting DVI todvitype invocation
plain text, converting GF togftype invocation
plain text, converting PK topktype invocation
plain text, converting TFM totftopl invocation
plain text, converting VF tovftovp invocation
plain.baseInitial Metafont
plain.bstBasic BibTeX style files
plain.fmtInitial TeX
plain.mftmft invocation
pltotfpltotf invocation
pool file, writingtangle invocation
Poole, SimonOnline Metafont graphics
pooltypepooltype invocation
portable filenames\input filenames
PostScript fonts, and Troffmpost invocation
PostScript meets MetafontMetaPost
PostScript outputmpost invocation
PostScript to PK bitmapsFont utilities available elsewhere
PostScript Type 1 font conversionFont utilities available elsewhere
PostScript, and font scalingFont file formats
potraceFont utilities available elsewhere
predefined macros and memory dumpsMemory dumps
prettyprinting Metafont sourcemft invocation
prettyprinting WEB programsweave invocation
primitives, newTeX extensions
printable characters, specifyingTCX files
printer characteristics, for MetafontModes
production useInitial and virgin
program name, determines memory dumpDetermining the memory dump to use
program names, specialCommon options
program names, specialCommon options
program names, specialtex invocation
prologuesmpost invocation
prologues, and EPSF outputmpost invocation
proof modemf invocation
proof sheets, of fontsgftodvi invocation
property list formattftopl invocation
property list, converting TFM totftopl invocation
property list, converting VF to virtualvftovp invocation
ps2pkFont utilities available elsewhere
psfonts.map, read by MetaPostmpost invocation
pTeXTeX extensions
PXL files, explainedFont file formats
pxtochFont utilities available elsewhere

Q
quoted filename for \input\input quoted filename

R
Raichle, BerndMLTeX
reading from the output directoryOutput file location
reading, additionalIntroduction
readonly directory, running TeX inOutput file location
readonly directory, running TeX inOutput file location
reallocation of arraysRuntime options
recursive expansion limitRuntime options
redefined character substitutions\tracingcharsubdef
reference pixelpktype invocation
referencesReferences
regisOnline Metafont graphics
Regis graphics supportOnline Metafont graphics
regression testingtex invocation
repeated rowspktype invocation
representation of stringspooltype invocation
restricted shell escapesShell escapes
right side bearingpktype invocation
right side bearinggftype invocation
Rokicki, TomasIntroduction
run length encoded bitmapspktype invocation
run length encoded bitmapsgftype invocation
runtime optionsRuntime options
runtime stack overflowRuntime options

S
scaled pixelspktype invocation
scaled pixelsgftype invocation
scaling of fontsFont file formats
security, and \openouttex invocation
security, and output filestex invocation
security, and shell escapesShell escapes
security, and writempost invocation
segmentation faultRuntime options
shapesMetafont
sharing memory dumpsHardware and memory dumps
shell commands in TeXShell escapes
shell_escape enabling in TeXShell escapes
shell_escape_commandsShell escapes
siam.bstBasic BibTeX style files
side bearingspktype invocation
side bearingsgftype invocation
SIGSEGVRuntime options
slant fontgftodvi invocation
slides, producingFormats
SliTeXFormats
small Metafont memory and modesModes
smode and dynamic Metafont mode definitionModes
socketsIPC and TeX
space-terminated filenames\input filenames
SpiderwebWEB
Stallman, RichardIntroduction
starting pagedvicopy invocation
starting pagedvitype invocation
Steele Jr., Guy L.Hardware and memory dumps
stopping at the first errorCommon options
strategy, overallIntroduction
string numbers, displayingpooltype invocation
string pool, writingtangle invocation
string representationpooltype invocation
style design, for BibTeXbibtex invocation
style filesmft invocation
substitutions of font glyphsMLTeX
sunOnline Metafont graphics
sun-gfx.cOnline Metafont graphics
SuntoolsOnline Metafont graphics
SunViewOnline Metafont graphics
swap space, as array limitRuntime options
swapping bytesHardware and memory dumps
syntax of TCX filesTCX files
system C library functionShell escapes
system commandShell escapes
system fonts, usingTeX extensions

T
T1 encoding and ISO inputTCX files
tabs, and \input filenames\input filename caveats
Tachikawa, ElizabethFont file formats
tangletangle invocation
targets, additional MakeAdditional targets
TCX character translation filesTCX files
technical illustrations, creatingMetaPost
tekOnline Metafont graphics
TektronixOnline Metafont graphics
Tektronix 4014Online Metafont graphics
TERMOnline Metafont graphics
terminator for filenames\input filenames
terse outputbibtex invocation
teTeX distributionIntroduction
textex invocation
TeX, bibliographies forbibtex invocation
TeX, creating from Metafontmft invocation
TeX, creating from WEBweave invocation
TeX, description ofTeX
TeX, extensions toTeX extensions
TeX, format packages forFormats
TeX, initialInitial TeX
TeX, input files foundtex invocation
TeX, invocationtex invocation
TeX, Metafont, and MetaPostThree programs
TeX, Web2c implementation ofIntroduction
tex.fmtInitial TeX
TEXBIB, search path for bib filesbibtex invocation
TEXEDITEditor invocation
texfonts.mapPath searching
TexinfoFormats
texmf_casefold_searchRuntime options
TEXMF_OUTPUT_DIRECTORYOutput file location
texmf.cnfPath searching
texmf.cnfRuntime options
texmf.cnf for editorsEditor invocation
texmf.cnf for shell escapesShell escapes
texmfmp.cOnline Metafont graphics
TEXMFOUTPUT, used if ‘.’ unwritableOutput file location
texputtex invocation
TFM files, converting property lists topltotf invocation
TFM files, explainedFont file formats
TFM files, output by Metafontmf invocation
TFM files, output by MetaPostmpost invocation
TFM width of characterspktype invocation
TFM width of charactersgftype invocation
tftopltftopl invocation
three programsThree programs
time and date, in memory dumpsHardware and memory dumps
title fontgftodvi invocation
tl-check-fmtshareHardware and memory dumps
tokenization, and \input filenames\input filename caveats
toolkits, XOnline Metafont graphics
torture testsTriptrap
translation file for TeX, specifyingCommon options
translation from WEB to CIntroduction
trap Make targetAdditional targets
trap testTriptrap
trapman.texTriptrap
Trickey, HowardIntroduction
trip Make targetAdditional targets
trip testTriptrap
tripman.texTriptrap
triptrap Make targetAdditional targets
Troff, and MetaPostmpost invocation
troff, supported in MetaPostMetaPost
Troff, WEB forWEB
Trojan horses and TeX programstex invocation
TrueType supportTeX extensions
TUGboat bibliographybibtex invocation
Type 1 conversionFont utilities available elsewhere
type design, personalInitial Metafont
type programs, DVIdvitype invocation
type programs, GFgftype invocation
type programs, PKpktype invocation
type programs, poolpooltype invocation
typeface familiesMetafont
typesettingTeX

U
UnicodeTeX extensions
Unicode inputtex invocation
Unicode input, nativeTeX extensions
unitermOnline Metafont graphics
unsrt.bstBasic BibTeX style files
upTeXTeX extensions
UTF-8 inputtex invocation
UTF-8 input, nativeTeX extensions

V
validation, of DVI filesdvitype invocation
validation, of GF filesgftype invocation
validation, of PK filespktype invocation
validation, of TFM filestftopl invocation
validation, of VF filesvftovp invocation
verbose BibTeX output, suppressingbibtex invocation
verbosity, enablingCommon options
version number, findingCommon options
vertical escapementgftype invocation
VF files, converting property lists tovptovf invocation
vftovpvftovp invocation
virgin programsInitial and virgin
virtual font creationFont utilities available elsewhere
virtual fonts, expandingdvicopy invocation
virtual-fonts.knuthFont file formats
virtualfonts.txtFont file formats
vptovfvptovf invocation

W
weaveweave invocation
WEBWEB
web environments, and securityShell escapes
WEB pool files, displayingpooltype invocation
WEB programs, compilingtangle invocation
WEB programs, typesettingweave invocation
WEB2C, search path for TCX filesTCX files
Weber, OlafIntroduction
webmac.texweave invocation
webman.texWEB
whitespace-terminated filenames\input filenames
whitespace, in TCX filesTCX files
width, device-independentpktype invocation
width, device-independentgftype invocation
width, in pixelspktype invocation
word processor, notTeX
writing memory dumpsCreating memory dumps

X
X bitmap fontsFont utilities available elsewhere
X class name for MetafontOnline Metafont graphics
x offsetpktype invocation
X resourcesOnline Metafont graphics
X toolkits and MetafontOnline Metafont graphics
xampl.bibbibtex invocation
xbfe, bitmap font editorFont utilities available elsewhere
XeTeXTeX extensions
xfed, bitmap font editorFont utilities available elsewhere
xfedor, bitmap font editorFont utilities available elsewhere
XlibOnline Metafont graphics
Xlib supportOnline Metafont graphics
XtOnline Metafont graphics
Xt supportOnline Metafont graphics
xtermOnline Metafont graphics

Y
y offsetpktype invocation