
TUGboat, Volume 31 (2010), No. 2 145

From PostScript to PDF with epstopdf,

pdftricks, pst-pdf, auto-pst-pdf, pst2pdf,

and more

Herbert Voß

1 Introduction

For a few years now the pdfTEX engine has been the
default engine for LATEX. It can create PDF output
directly, which implies that images must be in one
of these formats: PDF, JPEG, or PNG. The EPS or
PostScript formats cannot be used for images with
PDF output, whereas they worked with no problem
in “traditional” TEX usage (Figure 1):

LATEX source

pdfTEX compiler

Class file
Packages

Binary format file
Fonts (metrics)

DVI file Auxiliary files External programs
(index,bibliography)

DVI driverFonts (Type1,
Type3, bitmap) b

PS file

ghostscript

PDF file PDF file

The structure of a TEX sys-

tem with pdfTEX as com-

piler which can generate

output as PDF or the driver

independent DVI format.

Figure 1: The traditional way of creating PDF output,
via DVI.

There are still several reasons to use this tradi-
tional way of creating PDF output, namely the se-
quence latex → dvips → ps2pdf. Using pdfLATEX
is only possible when the PostScript related code
is handled before the pdfLATEX run. Thus, several
packages and/or scripts have been developed to sup-
port EPS images, or general PostScript-related code,
in a document which is compiled at least one time
with pdfLATEX: pst-pdf, auto-pst-pdf, pstool,
epstopdf, pst2pdf, pdftricks, All have the
same general goal, but each works in a different way.

We also show some examples of the reverse: us-
ing non-PostScript image files with latex.

2 Using EPS images with pdflatex

For eps, perhaps the simplest approach is to use the
epstopdf package, as follows:

\documentclass{article}

\usepackage{graphicx}

\usepackage{epstopdf}

\begin{document}

\includegraphics{demo.eps} \end{document}

It is necessary to enable execution of external com-
mands in the pdflatex run, as shown next.

pdflatex -shell-escape test0.tex

2.1 Using zipped EPS images with latex

latex cannot read compressed files directly, in addi-
tion to the image itself, say demo.eps.gz, we need
a second file for the bounding box: demo.eps.bb.
The .bb file should contain a single line, the EPS

bounding box comment:

%%BoundingBox: 102 93 203 122

Then we can run include demo.eps.gz as usual:

\documentclass{article}

\usepackage{graphicx}

\begin{document}

\includegraphics{demo}

\end{document}

latex test0.tex

3 Using other image types with pdflatex

3.1 Using GIF images with pdflatex

Since pdfTEX doesn’t read GIF files directly, this ex-
ample uses the convert utility from ImageMagick to
convert GIF to PNG. Any conversion program could
be used. (The ifplatform package can be used to
run different programs on different platforms.) We
load the epstopdf package to enable the conver-
sions, even though we aren’t using EPS images.

\documentclass{article}

\usepackage{graphicx}

\usepackage{epstopdf}

\epstopdfDeclareGraphicsRule

{.gif}{png}{.png}

{convert gif:#1 png:\OutputFile}

\AppendGraphicsExtensions{.gif}

\begin{document}

\includegraphics{knuth-tex.gif}

\end{document}

As before, we must enable shell escapes:

pdflatex -shell-escape test0.tex

3.2 Using PNG and GIF images with latex

Analogously, we can use PNG and GIF images with
latex, via conversion to EPS. This shows conversion
without involving epstopdf.

\documentclass{article}

\usepackage{graphicx}

From PostScript to PDF with epstopdf, pdftricks, pst-pdf, auto-pst-pdf, pst2pdf, and more

146 TUGboat, Volume 31 (2010), No. 2

\DeclareGraphicsRule

{.png}{eps}{.bb}

{‘convert #1 eps:-}

\makeatletter % more complex method for

% programs other than convert:

\let\Saved@Gin@base\Gin@base

\let\Gin@base\relax

\DeclareGraphicsRule{.gif}{eps}{.bb}

{‘convert #1 \Gin@base.eps &&

cat \Gin@base.eps}

\let\Gin@base\Saved@Gin@base

\makeatother

\usepackage{grfext}

\AppendGraphicsExtensions*{.png,.gif}

\begin{document}

\includegraphics{lion}\qquad

\includegraphics{knuth-tex}

\end{document}

Again, we need .bb files for the images:

knuth-tex.bb knuth-tex.gif

lion.bb lion.png

And shell escapes enabled:

latex -shell-escape testimgfmts.tex

4 Using PSTricks with pdflatex

Let’s turn our attention now to some of the meth-
ods for using PSTricks packages specifically with
pdflatex.

4.1 pdftricks

First, the pdftricks package. With this, you de-
marcate the preamble that should be used for the
intermediate run with the psinputs environment:

\documentclass{article}

\usepackage{pdftricks}

\begin{psinputs}% preamble for latex runs!

\usepackage{pst-node}

\usepackage{graphicx}

\end{psinputs}

And then the usual:

pdflatex -shell-escape testpdftricks

We can thus use PSTricks packages together with
EPS images, and as usual for pdflatex also JPEG,
PNG, and PDF images.

4.2 pst-pdf

With the pst-pdf package, load PSTricks packages
only when not producing PDF:

\documentclass{article}

\usepackage{pst-pdf,ifpdf}

\ifpdf\else

\usepackage{pst-node}

\fi

Then there are several steps to the processing:

1. Run latex to create a dvi file with only the
extracted pspicture and postscript environ-
ments. or \includegraphics for eps images.

2. The dvi output then is converted to a Post-
Script file which itself is of a special format and
can only be used for the next step.

3. The ps output is converted to a pdf file which
has one page per extracted image.

4. If needed, run pdfcrop to tightly crop.

5. The last pdflatex run replaces the pspicture

and postscript environments and eps images
with created pdf images.

For example:

latex ptest

dvips -o ptest-pics.ps ptest.dvi

ps2pdf ptest-pics.ps ptest-pics.pdf

#pdfcrop ptest-pics.pdf

#mv ptest-pics-crop.pdf ptest-pics.pdf

pdflatex ptest

4.3 auto-pst-pdf

The auto-pst-pdf package automates the above
process.

\documentclass{article}

\usepackage{auto-pst-pdf,ifpdf}

\ifpdf\else

\usepackage{pst-node}

\fi

We need only one pdflatex run, everything is done
inside of the auto-pst-pdf package.

pdflatex -shell-escape ptest

4.4 Option pdf for PSTricks

The [pdf] option to pstricks works only for latex!
It loads the package auto-pst-pdf.

\documentclass{article}

\usepackage[pdf]{pstricks}

\ifpdf\else

\usepackage{pst-node}

\fi

...

As above, we need only one pdflatex run:

pdflatex -shell-escape ptest

Herbert Voß

TUGboat, Volume 31 (2010), No. 2 147

5 pst2pdf

pst2pdf is a Perl script which extracts postscript

and pspicture environments from the main doc-
ument and creates sub-documents with the same
preamble as the main document. Thus, any defi-
nition will also be valid in the sub-documents.

Both pspicture and postscript environments,
can contain arbitrary code except that neither can
contain a postscript environment. (Thus, only
pspicture environments can be nested.) In both
cases, only top-level environments will be extracted.

Next, we describe each of pst2pdf’s steps in
more detail.

5.1 pst2pdf step 1: create sub-documents

In the first step, the preamble of the main document
is saved and then used together with the extracted
code snippets to create new sub-documents, each of
which contains the code of one outer postscript or
pspicture environment.

LATEX source

Perl programpreamble

text/
graphic

i

text/
graphic

2

text/
graphic

1

doc i

doc 2

doc 1

5.2 pst2pdf step 2

Next, each sub-document is run with the command
sequence latex → dvips → ps2pdf → pdfcrop,
to create eps and pdf versions of the sub-document,
which will by default be cropped to get rid of any
surrounding whitespace. The Perl script also sup-
ports (on Unix-ish systems) other output formats,
e.g., png.

doc i LATEX dvips ps2pdf pdfcrop pdfi

doc 2 LATEX dvips ps2pdf pdfcrop pdf2

doc 1 LATEX dvips ps2pdf pdfcrop pdf1 ?

5.3 pst2pdf step 3

The last step is a pdflatex run that replaces all
extracted environments with the created image of
the sub-documents. An original source:

some text...

\begin{postscript}

\includegraphics{image.eps}

\end{postscript}

... more text ...

\begin{pspicture}(3,7)

...

\end{pspicture}

... again some normal text

will be modified to:

some text...

\begin{postscript}

\includegraphics{image.eps}

\end{postscript}

... more text ...

\begin{pspicture}(3,7)

...

\end{pspicture}

... again some normal text

\includegraphics{image1.pdf}

\includegraphics{image2.pdf}

As shown, the last pdflatex run now uses the orig-
inal document without any PostScript-related code;
everything is inserted as a PDF image.

5.4 Optional arguments for pst2pdf

all image types (png not on Windows):

my @imageType = ("eps","pdf","png");

directory in which to save the images:

my $imageDir = "images";

leave empty if not special:

my $Iext = ".png";

my $tempDir = "."; # temporary directory

my $verbose = 1; # 0/1, logfile

my $clear = 0; # 0/1, clears temporaries

my $DPI = 75; # very low value

my $Iscale = 1; # for \includegraphics

my $noImages = 0; # 1->create no images

⋄ Herbert Voß

DANTE e.V.

http://tug.org/PSTricks

From PostScript to PDF with epstopdf, pdftricks, pst-pdf, auto-pst-pdf, pst2pdf, and more

