June 1981 .

Michacl F. Plass

Department of Computer Science

Stanford University
Stanferd, CA 94305

Report. No. STAN-CS-81-870

Optimal Pagination Techniques
for Automatic Typesetting Systems

INFORMATION
UL 141382

YSTEMS

Cn
N

)

)

M

Optimal Pagination Techniques

for Automatic Typesetting Systems

Michael F. Plass

Computer Science Department
Stanford University
Stanford, California 94305

© Copyright 1981 by Michael Frederick Plass

This report reproduces a dissertation submitted to the Department
of Computer Science and the Committee on Graduate Studies of
Stanford University in partial fulfillment of the requirements for
the degree of Doctor of Philosophy. It is also available as Xerox
technical report ISL-81-1.

Key words and phrases: Composition, Dynamic programming,
Layout, NP-Completeness, Pagination, Shortest paths, Typesetting.

This research and printing was supported in ‘part by National Science Foun-
dation grants MCS-77-23738 and IST-7921977, and by Xerox Corporation.
Reproduction in whole or part is permitted for any purpose of the United
States Government.

Optimal Pagination
Techniques for Automatic

Typesetting Systems

A DISSERTATION
SUBMITTED TO THE
DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By
Michael Frederick Plass

June 1981

OPTIMAL PAGINATION TECHNIQUES
FOR AUTOMATIC TYPESETTING SYSTEMS

Michael Frederick Plass, PhD
Stanford University, 1981

Abstract: This thesis considers how to use a computer to break a document
into pages suitable for printing. Although this problem is easy to solve when
the document consists of just text, it becomes complicated when footnotes,
displays, and figures are introduced. These elements add some freedom of
choice in the way breaks are chosen, since the white space around the displays
and the exact placement of the figures can be decided by the pagination
algorithm. Out of the many possible ways to paginate such a document, the
pagination algorithm should pick the one that is in some sense optimal. The
approach taken here is to define a badness function that depends on the way
the document is broken up, and then to design an algorithm to find a way
to minimize the value of this function.

The document is modelled by two lists, the text list and the ﬁgure list.
Each item in the text list is either a ‘box’, corresponding to something that
will print such as a line of text, a ‘glue’ item, corresponding to the white
space between the lines, a ‘penalty’ item, corresponding to a legal place to
break the list, or a ‘citation’, marking a reference to one of the figures. The
items in the figure list indicate the size of each figure, and by how much each
figure is allowed to stretch or shrink. This model is based on the one used
in the TEX typesetting system.

The optimizing pagination algorithm uses dynamic programming to find,
for each %, 5, and k, the best way to put the first 7 lines of text and the first
7 figures onto the first k pages; to make the program run in a reasonable

amount of time, this calculation includes énly those subproblems that are
feasible, i.e., likely to lead to a solution with a small badness value.

The badness function must be chosen carefully in order to get a problem
that can be solved by these techniques. For certain simple badness functions,
the pagination problem is- NP-complete; two ‘such functions are described in
the thesis.

il

Acknowledgements

THE GREATEST DEBT of gratitude that I owe concerning this thesis is
to my advisor, Donald Knuth. In addition to conscientiously reading the
draft and making hundreds of suggestions for its improvement, he made it
all possible in the first place by making typesetting into a valid topic for
research. And without TEX, the typesetting of the thesis in its present form
would not have been possible. For this, and for his unerring advice while I
worked under him, I give him my wholehearted thanks.

My thanks, also, to the other members of my reading committee, Luis
Trabb Pardo, Andrew C. Yao, and Leo Guibas, who also made thoughtful
comments on the contents of the thesis.

My wife, Susan, I thank for her continuing encouragement and for finding
the quotation for the last chapter. _ _

And I would also like to thank my parents for always encouraging my
academic achieveinents, while never putting pressure on me to succeed.

v

Chapter 1. Introduction.

Practices of early printers .
Footnotes . .

The badness function .
The model.

Advanced uses of penalties and glue

Chapter 2. Some NP-complete Pagination Problems

‘What efficient means

The quadratic badness function

Singly referenced figures.

The zero-one badness function . _ .
The zero-one badness function with ordered figures .

Chapter 3. Dynamic Programming for Pagination

Pagination with no figures.
Introducing figures .

Making the algorithm more general.

A different generalization .

Chapter 4. hhplementa‘oion

The algorithm .
Variations.

Chapter 5. Connections .
Early typesetting systems .
Procedural vs. declarative .
Batch vs. interactive .
Problems for further research

Bibliography .

Contents

Page
1

3
6
.. 8
.. 10

12

17

18
... 20
.
27
34

43

44
46
48
50

. . B5

59
65

67
67
68
69
70

71

List of Nlustrations

Figure 1.1.
Figure 1.2.

Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 2.4.
Figure 2.5.
Figure 2.6.

One way to paginate a little book
Another way

Truth value settings in construction for vz
Clause encoding in construction for vz .
Embedding function for clause of vz .

Truth value settings for vz with constant page size .
Embeddings for the various possible truth values. .

Embedding for a small example of oz.

vi

Page

29
29
31
32
34
39

Chapter 1

Introduction

There ts nothing on earth more exquisite
than a bonny book, with well-placed columns
of rich black writing in beautiful borders,
and illuminated pictures cunningly inset.
But nowadays, instead of looking at books,
people read them. -— G. B. Shaw

WHEN COMPUTERS were first applied to typesetting two decades ago, they
were programmed- to handle the routine decisions, leaving the exceptional
cases to be handled by a human. This is still true today. However, the art of
developing these systems has progressed, and things that used to be excep-
tional are now considered to be routine. As an example, early systems could
break paragraphs into lines, but they needed help from a human to hyphenate
words when required. Later systems could hyphenate, but frequently failed
to find a way to hyphenate a word or hyphenated erroneously, thus requiring
intervention. Today’s better systems need only occasional help for hyphena-
tion. Pagination, the process of breaking a document into pages suitable
for printing, is analogous to line breaking in many ways; however, it can be
more complicated. For simple text, as in a novel, for example, pagination is
trivial. However, as the text becomes more complex with the introduction of
footnotes, displayed formulas, tables, diagrams, and illustrations, pagination
becomes much more difficult, to the extent that every present-day typeset-
ting system needs occasional help to perform this task satisfactorily. The
thrust of the present work is to investigate ways of making pagination more
routine, so that the computer can almost always do a satisfactory job, leaving
comparatively few exceptional cases to be cleaned up by some overworked
human.

Optimal Pagination Techniques

1 2
3 5
— (1) (3) [4
(4) -
(5)
(2)
page 1 page 2 page 3 page 4

Figure 1. One way to paginate a little book.

As an example of the kinds of complexities that can arise in pagination,
consider figure 1. The horizontal lines in this figure represent lines of text,
and the boxes with numbers inside represent illustrations. The numbers in
parentheses indicate where in the text the illustrations are cited. This must
be some sort of children’s book, because there is only room for ten lines of
text on each page, and there are many illustrations for a book of this size.
So imagine a second-grader sitting down to read this booklet. On the first
page, she reads the part where the book talks about the first picture, and
there it is, right in front of her. When she starts reading about (2), there
is a bit of suspense before she turns the page and sees what it’s all about.
Perhaps this little bit of suspense is desirable, but maybe it only annoys her.
As she reads about (3) and (4), she has to look ahead at the next page, but
that is not so bad because the book is bound so that pages two and three
face each other. (The division between two facing book pages is called the
‘gutter’, so a reference that crosses such a boundary might be known as a
‘gutter reference’.) When she gets to (5), though, she has to turn the page
to find the picture, and there is a good deal of text to come back and read
after she has looked at picture 5. This time it isn’t even good for suspense,
it is just annoying. "

The placement of the illustrations in figure 1 follows a simple rule: when a
citation is encountered, put the illustration on the next page that has room
for it, but not before any earlier illustration. This is the kind of rule used by
most typesetting systems that allow ‘floating’ insertions. Such a feature is
handy to have, but,—as in this example—there are times when a good deal
of improvement can be made.

Introduction

—(2)—"" i(‘;)-

(5)

page 1 page 2 page 3 page 4

Figure 2. Another way.

Figure 2 shows a better way of paginating this little book. The problem
with picture 2 has been alleviated by moving a line from page 1 to page 2,
leaving a little more white space on page 1. By moving picture 3 to page 2,
enough space has been freed on page 3 for picture 5, thus solving the other
problem handily. Note that these two changes do not interfere with each
other; but if citation (5) had occurred one line later, they could not both be
made. This illustrates that the way early page boundaries are chosen can
influence how later breaks are made, and vice versa. To do a really good job,
the pagination routine should therefore consider the book (or chapter) as a
whole.

The art of printing is about 500 years older than the use of computers, so
it is appropriate to take at least a brief look at how compositors of the past
have dealt with pagination. The earliest printers did not publish descriptions
of the methods of their craft, preferring to pass this information down by
way of tradition and apprenticeship. Therefore what we know about their
methods has been deduced primarily by examining their work; fortunately,
the quality of the paper and ink they used was sufficiently good that some
of their products have lasted into our own time.

According to an account by Douglas McMurtrie [1], the first illustrated
books were printed by Albrecht Pfister starting in 1460, about 15 years after
movable types had come into practical use. The illustrations were done by
using woodcuts, and at first they were all full page illustrations printed on
a separate press run from the text. Not until 1472 did a book appear with
the text and illustrations printed in the same impression; this technique

PRACTICES
OF EARLY
PRINTERS

MOXON'’S
ACCOUNT

Optimal Pagination Techniques

was first mastered by Giinther Zainer. The use of woodcuts continued to
increase and develop until the last part of the eighteenth century, although
in the later years the ballooning volume brought a corresponding decrease in
quality. The introduction of lithography brought to an end the widespread
use of woodcuts for book illustration. We can only guess about how the early
printers undertook the task of fitting the copy in with the figures; it is clear
that, with the labor involved in making the woodcuts and hand-setting the
type, any time used in the planning of the book was time well spent.

The first printer to describe in print the details of his craft was Joseph
Moxon, whose Mechanick Exercises on printing began to come out in parts
in 1683 [2]. He described the techniques of hand composition in such detail
that his words were copied by later authors of printer’s handbooks. Thus,
although there are only about fifty extant copies of the edition printed by
Moxon, and although the only reprint prior to 1958 was a limited edition, the
work was of great value to printers up until the end of the nineteenth century,
when the Linotype and Monotype machines were introduced. Moxon’s book
remains to be of interest to those who, for artistic or recreational purposes,
still use hand composition.

Mozxon does not say a great deal about pagination, probably relying on the
common sense of the compositor to solve any tricky problems as they were
encountered. He does have this to say concerning widow lines:

When in Composing he comes near a Break, he for some Lines
before he comes to it considers whether that Break will end
with some reasonable White; If he finds it will, he is pleas’d,
but if he finds he shall have but a little single Word in his
Break, he either Sets wide to drive a Word or two more into
the Break-line, or else he Sets close to get in that little Word,
because a Line with only a little Word in it, shews almost
‘like a. White-line, which unless it be properly plac’d, is not
pleasing to a curious Eye.

Nor do good Compositors account it good Workmanship
to begin a Page with a Break-line, unless it be a very short
Break and cannot be gotten in the foregoing Page; but if it
be a long Break, he will let it be the Direction-line of the
fore-going Page, and Set his Direction at the end of it.

The meaning of this passage is not readily apparent unless we know the
terminology used. A break is the white space used to fill out a short line,
such as the last line of a paragraph. In the first paragraph Moxon tells us

Introduction

that a compositor should avoid setting only a single short word at the end
of a paragraph, even though to do this it is necessary to look ahead. To
understand the meaning of the second paragraph, it is necessary to know
that it was the custom in Moxon’s time to typeset, in the lower right hand
corner of each page, the first word or syllable of the next page. This word
is called the direction, and the line it is set in is called the direction-line.
So Moxon'’s remedy for the widow line was to put it in the normally empty
space before the direction on the previous page, provided that it fit.

Notice that Moxon says nothing about looking ahead to avoid the widow,
in a fashion analogous to the look-ahead for line breaking. Perhaps this was
because it would have been too hard for the compositor to look ahead that
far, or maybe the availability of the easy solution of filling up the direction-
line made a more complicated method unnecessary.

In Moxon’s time, each page was made up as soon as the compositor had
set enough lines to fill a page. This made revision of the typeset text into
a time consuming and error-prome process, as it was sometimes necessary
to unlock several pages of type in order to move lines between them, if the
revision resulted in more or fewer lines than the original text. Moxon gives
a detailed account of this correction process.

Early in the nineteenth century, the practice of setting the type in long
galleys originated in newspaper offices. The type was printed, proofread, and
corrected in this form before it was finally broken into pages for imposition
and printing. This made the correction of the text much easier, and allowed a
division of labor between the person who composed the lines and the one who
made up the pages. This division of labor became more pronounced after
the introduction of the Linotype and the Monotype—these machines made
the process of typesetting the lines into a keyboard activity. But neither of
these machines could assemble type into pages, nor could they handle the
complexities of mathematical formulas. The building up of these formulas,
addition of diagrams, separation into pages, insertion of displayed lines and
pages, and the locking up of type into pages still had to be done by hand.
The compositor responsible for these tasks was called the ‘maker-up’ [3,4].

The job of the maker-up is one that he often cannot perform satisfactorily
without the help of the author. T. L. DeVinne [5] makes this clear when
he exhorts the author to read the proof, and warns that he will surely find
“subheadings, footnotes, extracts, tables; and illustrations contrary to the
plan of the copy and in unexpected positions.” The proofreader and the

ORIGIN OF
THE GALLEY

THRE
AUTHOR"S
RESPONSIBILITY

6 Optimal Pagination Techniques

maker-up (and; we might add, the automatic typesetting system) cannot
rearrange the composition without instructions from the author. The author
alone has the authority and responsibility to insert or delete lines around a
table or illustration that may prevent proper make-up.

FOOTNOTES DeVinne also has something to say about footnotes, calling them a “hin-
drance in composition and making-up.” Most troublesome is a long note that
is cited on the last line of the page—this must be split up and continued
on successive pages. He gives an example of a particularly trying use of
footnotes, printed in 1740. The sample page has but five lines of main text,
and some seventy-four lines of footnotes, set in two columns. These notes
are also annotated, and the footnotes to the footnotes occupy twelve more
lines of six-point type. DeVinne tells us that this is not atypical of the book,
but that this page was selected as an example because it was one of the few
that could be intelligibly reproduced.

Footnotes must have been in disfavor at the time Moxon wrote, for he
makes no mention of them in his work. Neither does he say anything about
the making-up of tables and illustrations, although engravings do-appear in
his book. These engravings are plates that each occupy a full page, and so
do not pose major problems to the maker-up. Moxon does describe how to
compose side-notes (both cut-in and marginal), so this must have been his
preferred method of annotation.

LEADING The spacing between lines, called the leading by typographers, is an im-
THE LINES portant element in the appearance of the printed page. The leading between

e nooens normal lines of text should generally not be varied, once a suitable value has
been decided upon; the leading between larger units is subject to more varia-
tions, depending upon the material being typeset. Variations in the leading
have an obvious impact on pagination, and it is important to decide how
much variation is allowable in what places before asking a machine to decide
how to break the material into pages. This decision is largely a matter of
taste. Some people have devoted much time to developing their taste in such
matters, and we ought to pay attention to the conclusions they have reached,
even if we do not always choose to follow their advice. Bruce Rogers, a book
designer, has this to say [6]:

Uneven leading or extra leading between paragraphs may
sometimes be necessary in a reference or other special kind
of book, but for ordinary text it throws lines out of register,
interrupts the continuity of the text, and offends the eye. It

Introduction

might therefore be said that the leading of a book should be
uniform throughout, with no extra space between paragraphs.

In books of maxims or short extracts several leads between
the selections are desirable where considerations of length will
not permit full blank lines, and where the extracts are not
pumbered or titled or dated. In setting such matter it is also
advisable to set the first lines without indention. This will
serve still further to indicate the fragmentary character of
the text, and to distinguish the beginning of each excerpt
from any paragraphs that may occur within it, which should
of course be given the usual indention.

It is sometimes unavoidable to make facing pages either
long or short to take care of ‘widow’ lines; but every effort
should be made to avoid them if the make-up can be rear-
ranged without too much overrunning in order to gain or
lose lines. It seems a little too finicky to demand consistent
uniformity in length of page throughout a book, especially
when some pages may run short for textual reasons. There
is entirely too much stress nowadays put on uniformity in
composition. A few obvious variations frcquently help the
appearance.

Sometimes even the leading between normal lines of text needs to be
altered slightly; Rogers describes a problem that arose in the design of his
version of Homer’s Odyssey, in which Book XXII began with two figures that
had to be printed on facing pages:

Unfortunately the preceding Book ended with only a few
lines on the left-hand page, leaving the opposite a full blank.
So with the addition of thin cards we reduced the lines per
page from thirty-one to thirty throughout Book XXI, thereby
gaining enough lines to fill the short page and carry over six
lines to the blank preceding Book XXII. I have never heard
of anyone’s noticing this discrepancy in Book XXI. It was
only one of the tricks of the trade, resorted to by many early
printers.

One last bit of advice from Rogers:

Don’t try to ‘design’ every page of type throughout a book,
or work it over too carefully after the style is chosen; leave
something to accident, so long as it is not a glaring defect.

8 Optimal Pagination Techniques

tue papnEss 10 program a computer to produce ‘readable’ books, we must formally define
FUNCTION what ‘readable’ means. One approach is to define a mathematical function,
called the badness function, that depends on the way the text is broken into
pages. This function ideally has thé property that the less readable the book
is, the greater the value of the function will be. Of course, such a function
cannot hope to capture all the nuances of readability; it will ignore such
things as the sentence structure, the design of the typefaces, the different
reading habits of the various readers, and so forth. Such things fall outside
of the scope of the pagination algorithm; they are the responsibility of the
author, the typographer, the editor, and the book designer. The badness
function may depend on the distribution of white space, the placement of
illustrations relative to their citations in the text, and whether the page
breaks come in logically desirable places.

Once a badness function has been defined, we need an algorithm that will
try to minimize its value.” While it is certainly valid to use an algorithm
that may not always find the exact minimum, or one that might take a very
long time in rare cases, we shall concentrate our attention on algorithms that
are guaranteed to find the exact minimum in a reasonable amount of time.
For any given badness function, it may or may not be possible to find such
an algorithm. Indeed, chapter two demonstrates some badness functions for
which there is good reason to believe that no good minimization algorithm
exists. Fortunately, as shown in chapters three and four, there are also
badness functions that model the intuitive notion of badness fairly well, and
that also have a reasonably fast minimization algorithm.

SOURCES OF To take full advantage of the badness function approach, there must be

IN THE TEXT SOINE flexibility in the text. Suppose, for example, that a book design called
for each line to take exactly one unit, and each figure to take an integral -
number of units, where there is a fixed number of units per page, and where
each figure is required to appear on the same page as its citation. Then
there would either be a unique way to break the text into pages, which could
be found by a simple algorithm, or there would be no way at all to do it
according to this design. But in general, the pagination algorithm is allowed
a little more leeway in its treatment of the; text.

The example at the beginning of this:chapter demonstrates two ways of
exploiting flexibility in the typographic conventions to improve the pagina-
tion. One is the movement of the figures in relation to where they are cited

Introduction

in the text. The other is manipulation of white space, in a way analogous to
the way the size of interword spaces are increased or decreased to justify a
line. Within a paragraph, there is little of this kind of flexibility, since the
eye can notice very small changes in the spacing between lines. However,
the space between paragraphs may often be expanded by a small fraction of
the baseline spacing without offending the critical eye. The largest amount
of white-space flexibility will come from the white space around displays,
figures, and at chapter and section heads.
These are some things a pagination algorithm might vary:

a) Placement of the figures in relation to the text

b) White space around displays

¢) White space between paragraphs

d) Size of the figures

e) White space between lines

f) Depth of the pages

g) Horizontal spacing in paragraphs, to alter the number of lines

h) Width of the pages

i) Size of the type

j) Order of the figures.
These possibilities are listed roughly in the order of decreasing usefulness to
an automated approach. The approach we will consider allows (a) thru (f).
The possibility of allowing the pagination routine to influence the way lines
are broken, as in (g), is discussed in chapter four. The width of the pages
and size of the type are parameters of the book design, and probably should
not be altered at the whim of the pagination routine. Similarly, the order of
the figures should conform to the plan of the author—composing them out
of order would only lead to confusion on the part of the reader.

The composition of a page is inherently a two-dimensional problem. Illus-
trations might occupy only a fraction of the full measure, allowing two or
more of them to occupy the same vertical height. Or the text may be run
around the figure; if this is done before pagination is performed, the place
that the figure occupies cannot be broken across a page boundary. But if the
figure could be moved up or down a few lines, the pagination could probably
be improved. The use of multiple columns introduces further complications,
especially if partial columns at the end of each section must be made to
balance. Some further problems of page make-up, and the implications for

SCOPE OF
RESULTS

10

THE MODEL:
80XES, GLUE,
PENALTIES,
AND INSERTS

Optimal Pagination Techniques

automatic typesetting systems, are described in a brief article by Paul Justus,
“There is more to typesetting than setting type’ [7]. It is a challenge to write a
system that can cope with the combination of these make-up conventions well
enough to produce a reasonably well-formatted document. It is even harder
to design an optimizing make-up procedure, even assuming the existence of
a badness function that can take into account the many trade-offs involved.
As we are interested here primarily in exact minimization procedures, we
will restrict ourselves to a one-dimensional model. Furthermore, we will not
concern ourselves with how the typographical components are arranged on
the page, but merely with what goes on each page.

The model we shall use was developed by D. E. Knuth for the TEX typesetting
system [8]. In this model, the components of the page are pictured as being
enclosed in bozes. Boxes are rectangles with sides that are parallel to the
edges of the paper. At the lowest level, each character is a box whose height
and width correspond to the height and width of the character. The height
of a character is measured from the baseline, which is the lowest point of the
letter ‘A’. Just as some letters (‘p’, for example) extend below the baseline,
so may boxes. The amount of this extension is called the depth of the box.
A row of boxes, called a horizontal list in TEX terminology, may be stuck
together and enclosed in a box to form a line. To keep the words from
all running together, they are separated by glue. Glue has properties that
resemble a glob of silicone sealant, or a small metal spring. Like a box, a
piece of glue has a normal width. It also has two other parameters, the stretch
and the shrink. These tell TEX by how much the glue can be expanded or
compressed. For example, the space between words normally has a width of
6 units, a stretch component of 3 units, and a shrink component of 2 units,
where the size of a unit depends on the current font. When a horizontal list
is boxed to a certain size, for example to make it fit the measure of the page,
all the pieces of glue in the list are expanded or compressed in proportion to
their stretch or shrink so that the resulting box will be exactly the desired
size. Once this is done, the glue is ‘set’ and does not change its size any more,
the enclosing box being treated as a unit. The height of the box around a
horizontal list is calculated as the maximum of the heights of the component
boxes, and similarly for the depth.

Just as boxes can be combined in a horizontal list, they may be combined
in a vertical list. The glue between items in a vertical list works in the same

Introduction

way as horizontal glue, but it usually arises in a different way. Whereas the
horizontal glue nsually comes from a space between words, the vertical glue
is normally calculated so that the distance between baselines is a fixed value
specified by the user, unless this is impossible due to an unusually high or
deep box. The user may also specify either kind of glue explicitly.

It is possible for the user to specify exactly what goes into each box. More
commonly, TEX will take a long list of boxes and break it up into several
lists, each of which is boxed separately. If the original list was a horizontal
list, these new boxes form lines, and get joined together in a vertical list. If
the original list was a vertical list, then each new box forms a page, which
gets sent to the output file after the addition of such things as page numbers
and running heads.

To break a horizontal list into lines, TEX uses a dynamic programmmg
algorithm to decide on the ‘best’ way to do the breaking. This algorithm,
analogous to those for page breaking that will be developed in chapters three
and four, finds a way to break the paragraph into lines so that a certain
badness function is minimized. Omne component of the badness function
measures the amount that the glue has to be stretched or compressed in
order to make a line fit. If the normal spacing of the line is short of the
measure by the amount z, and if y is the total amount of stretchability in
the line, then the adjustment ratio r is z/y; if the normal spacing of the line
is wider than the measure by the amount z and the total shrinkability in the
line is z, then r is —z/z.

TEX is not allowed to break a list just anywhere; most commonly a break
is made between a box and some glue that immediately follows it. The only
other place that a break may occur is at a penalty node. A penalty node’s
purpose is to control the breaking of the list. It has an associated penalty
value, which is added to the total badness if a break is made at the penalty
node. This value may be positive, to dlscourawe a break, or negative, to
encourage one. By convention, any value 1000 or greater is treated as infinity,
so ‘penalty 1000’ means ‘never break here,’” and ‘penalty ~1000’ means ‘always
break here.” When a break is chosen, all of the glue and penalties that follow
it and precede the mext box in the list are discarded before the new boxes
are made.

TEX calculates the badness function of a paragraph by figuring out how
many demerits to charge for each line, and then adding together all the
demerits. The demerits for a line having adjustment ratio r and ending with

11

BREAKING
PARAGRAPHS
INTO LINES

12

ADVANCED
USES OF
PENALTIES
AND GLUE

RAGGED LEFT
MARGINS

Optimal Pagination Techniques

a penalty node with the value P is calculated according to the formula
(1 + 100r|* + P)?,

provided that r > —1 and P > 0. If r < —1, the badness is taken to be
infinite, since TEX does not allow glue to be compressed by more than its
shrinkability. If P < 0, the demerits are calculated as

(1 4+ 1007|*)* — P?,

in order to keep the function monotone when the penalty is negative. Addi-
tional demerits are charged when both this line and the one before it end
in a hyphen. This particular definition is quite arbitrary, but it works out
quite well in practice, as you can see by looking at this page.

When the boxes-and-glue model was first proposed, it was apparent'tha.t it
would allow many of the common typesetting operations to be done without
introducing new primitives for each. Justification is an obvious example,
accomplished by .using glue with positive stretchability, shrinkability, and
width for each blank, and by suppressing the glue at the ends of the lines.
The glue after punctuation marks may have more stretch and less shrink
than a normal space. By putting glue with a very large stretchability at
the right end, at the left end, or at both ends of a line, the line can be left
justified, right justified, or centered. On a title page, it is often desirable to
‘center’ some text on the page, but what is wanted is not the exact center,
but the visual center, which is a bit higher on the page. This is easily done
by putting some glue with large stretchability above the text, and some glue
with an even larger stretchability after the text.

After TEX had been implemented and in use for a while, it was discovered
that by using boxes and glue in conjunction with penalty nodes and the
optimizing line breaking algorithm, it was possible to do other interesting
things without introducing new primitives. For instance, to set a paragraph
with a ragged left margin and a straight i'ight margin, the user may specify

penalty 0

glue 4pt plus —,1000pt
boz width Opt
penalty 1000

glue Opt plus 1000pt

Introduction

for each space in the text. The only place a break may occur is at the
penalty 0 node; if no break occurs here, the negative stretch in the first glue
cancels out the stretch in the second glue, and the net effect is 4 points of
fixed-width glue. If a break does occur, the first glue is discarded, and the
empty box causes the second glue to be retained, so this glue appears at the
front of the next line. To get the boundary conditions right, the paragraph
should begin with ‘glue Opt plus 1000pt’ and it should have no extra glue at
the end. (TEX normally adds glue with 100000 points of stretch at the end
of each paragraph to set the last line flush left.)

By means of analogous sequences, it is possible to get the line breaking
algorithm to set a paragraph with a ragged right margin, or even to center
each line of the paragraph. These and other similar sequences may be
discovered with an algebra of boxes and glue that was developed by D. E.
Knuth [9]. Of course, similar techniques may be used in vertical mode to
allow, for instance, the amount of white space at the bottom of the page to
vary in order to give the pagination routine some extra flexibility.

In vertical mode, the box-and-glue model is not quite sufficient to do
automatically everything that is needed for practical typesetting. There
must be a way of specifying figures and tables that are allowed to ‘float’
with respect to the text; their position in the final document is not specified
exactly by the author, but determined by constraints such as ‘this figure
should appear at the top of a page somewhere nearby’ or ‘this footnote must
appear at the bottom of the present page.” In TEX, such things are specified
as inserts. An insert is a vertical list that may appear in the document at
some place other than where it is defined. Since an insert contains a vertical
list, it has a normal height, stretch, and shrink, just like glue. When the
insert is specified, the user tells whether it is to appear at the top or bottom
of the page (i.e., whether it is a topinsert or botinsert), and whether it must
appear on the same page as the definition (bound), or may appear on a
different page, if necessary (floating). The floating topinsert is most useful
for inserting figures or tables, since these most often come at the top of a
page. The bound botinsert is useful for short footnotes that never have to be
broken across a page. It is possible to think of other varieties of inserts that
would be handy, such as ‘put this a.lgorithni§ definition right here if it will fit;
otherwise put it at the top of a facing page,’ or ‘if this is the first figure on
the present page, put it at the top; otherwise put it at the bottom.” Since
such variations deal with how things are arranged on the page rather than

13

INSERTS

14

SALCULATION
>F INTERLINE
SLUE TO LINE
UPp BASELINES

DROPPING OR
ADDING LINES
AT THE ENDS
OF PAGES

Optimal Pagination Techniques

with what the page is to contain, they do not affect the pagination algorithm
unless the different arrangements take up different amounts of space.

Books are normally printed so that the top baselines on all the pages line
up, and similarly for the ba,selinés of the last line on each page. To allow for
this convention, TEX adds some glue before the first box on each page with a
size calculated to put the top baseline a fixed distance, specified by the user,
from the top of the page. It may happen that the height of the first box
on the page is greater than this distance; should this happen, TEX does not
add any such glue. Similarly, the glue in the vertical list is set so that the
baseline of the last line of the page coincides with the bottom boundary of
the page. If this depth is greater than a specified maximum, as may happen
with a built-up box, the baseline of the bottom box is effectively lowered so
that the depth does not exceed the maximum. ‘

This convention of aligning the bottom baselines on the page makes the
pagination routine work a little harder; if the depth of a botinsert differs
from the depth of the last fine of text on the page, the nominal height of the
material on the page will change when the insert is moved to the bottom of
the page. This needs to be taken into account when doing the pagination;
we shall see in chapter four that, although it adds a little complication to
the code, it is not a major obstacle.

Sometimes a book designer wishes to allow the bottom margin of the page
to vary by a line or two in order to avoid widow lines; one way to do this is
to specify a sequence of penalty and glue items analogous to that used for
a ragged rtight margin. But it is often desirable in a case like this to make
the distance between the last baseline on the page and the pormal. bottom
baseline position a whole pumber of baseline units, so that the ending lines
will align with the text on the surrounding pages. This can be accomplished
by inserting the following sequence between the lines:

penalty 0 v

glue 2bu — (depth of previous box)
penalty 200

glue —1bu

penalty 100 !

glue —2bu

penalty 300

glue 2bu — (height of next box)

Introduction

where ‘bu’ stands for the nominal distance between baselines. This sequence
allows the page to be short by one or two lines, or long by one line, and
charges penalties of 100, 200, and 300, respectively.

Some styles allow long footnotes to be broken up and continued on the next
page. Although such things are to be avoided wherever possible because they
_ make it harder for the reader to follow the footnotes, TEX’s model is capable
of supporting them in the following way: make each line of the multi-line
footnote into a bound botinsert, and separate each of them by a penalty node
with a positive penalty. Since there is no penalty or glue between the first
line of footnote and the preceding box, no break can occur there, and at least
the first line of the footnote must come on the same page as the citation.
The penalty nodes will allow the footnote to be broken if necessary, but
these breaks will be avoided where possible because of the positive penalty
values. If appropriate ordering of the inserts on the bottom of the page were
provided, footnotes-within-footnotes could also be supported by this method,
although this style should not be encouraged. It should be noted here that
the current implementation of TEX does not automatically break up long
footnotes in this way, and to do the specification manually would probably
be more work than just using one botinsert for the footnote, and breaking
it in two if trouble arises.

The pagination algorithm can handle bound inserts with little more trouble
than just boxes, glue, and penalties. For the purposes of pagination, a bound
insert may almost be treated as the sequence

penalty 1000
glue (normal size) plus (stretch) minus (shrink)
box height 0

where the penalty prevents a break from occurring at the glue, and where
the null box allows a break to happen after the insert, should it be followed
by glue. The normal size, stretch, and shrink of the glue are equal to the
corresponding components of the insert.‘ After the pagination routine has
used this substitution to decide on where the page breaks should be, the
paste-up routine can put the insert at its proper position on the page. We
say this substitution is ‘almost’ sufficient because the pagination routine also
has to remember the depth of the last botinsert on the page, and use this
instead of the depth of the last text line when calculating what the depth of
the whole page is going to be.

15

TREATMENT
OF
FOOTNOTES

Chapter 2

Some NP-complete Pagination Problems

Breaking up 13 hard to do. — N. Sedaka

AN OPTIMIST might hope to find a pagination algorithm that would take an
arbitrary computable badness function and some text, and find the way of
dividing the text into pages that achieves the smallest possible value of the
badness function. One way to do this is to by trying all ways of paginating
the document. It is not very hard to count how many different ways there
are to do this; if there are n lines of text and m figures, and if there must be
at least one line of text on each of p pages, then p — 1 of the n — 1 spaces
between the lines will be chosen as page boundaries. After this has been
done, m of the p pages will be chosen, with repetition allowed, to hold the
figures. By the techniques of elementary combinatorics, the number of ways
to break is therefore "

G=0)

18 Optimal Pagination Techniques

If we make the assumption that both m and n grow in proportion to p, say
m = up and n = vp, then we find by Stirling’s approximation that

(VP"‘ 1)(/110-!-17— 1) — 6(cP/p) asp— oo,

p—1 up

v (e
(v — 11 uH

provided that v > 1 and u > 0. Thus the number of possibilities grows
exponentially as the size of the problem increases. Since a typical value
for v is around 50, p does not have to get very large before the number of
possibilities becomes unmanageable.

A brute-force approach that examines all possibilities is the best we can
do if we are not allowed to use any special properties of the badness function.
This may be shown by a simple adversary argument: suppose we were given
a purported algorithm that didn’t need to look at all of the possibilities.
We run it with a particular positive-valued badness function and some text
as input, and note-the places at which the badness function is evaluated.
Then we choose one of the places at which the badness function was not
evaluated, and define a new badness function that is the same as the old
one, except that it takes the value zero at this one place. Now if this new
badness function and the same text are given to the algorithm, it will find
the samé answer as before, which is not the right answer for the modified
badness function.

From this argument we see that a good pagination algorithm will work
only for a restricted class of badness functions. Since most of the ways
of paginating a document will have a very high badness according to any
‘reasonable’ badness function, our optimist might hope to find a large class
of such functions that can be handled by an efficient pagination algorithm.
But this hope, too, will be crushed by the results presented in this chapter.
We will examine some badness functions that seem to be quite reasonable on
the surface, but whose minimization problems are NP-complete.

WHAT For the purposes of this chapter and the next, we shall call an algorithm
T MEANS effictent if its running time is bounded by somé polynomial in the size of the
input. This is a useful definition because the class of such efficient algorithms
is invariant over a wide variety of machine models, including deterministic
Turing machines, pointer machines, and random-access machines.

where ¢ _— > 1,

Some NP-complete Pagination Problems

The nondeterministic Turing machine is an imaginary machine that is
like no machine anyone has ever seen. It is allowed to make guesses, and
take branches based on those guesses. Given a sequence of guesses, the
machine may halt after some number of steps. The running time of the
nondeterministic Turing machine is the minimum number of steps executed
for any sequence of guesses. The set NP is the set of all problems that can
be solved in polynomial time on a nondeterministic Turing machine.

The theory of NP-complete problems was established in the late 1960s
when S. Cook [10] showed that the satisfiability problem for propositional
calculus is at least as hard as any problem in NP, in the sense that if there
existed an efficient algorithm for the satisfiability problem, then any problem
in NP would be solvable by an efficient algorithm. A problem that shares this
property with satisfiability is called NP-hard, and if it is also in NP, it is called
NP-complete. Since no efficient way of solving the satisfiability problem, or
any NP-complete problem, has ever been found, an NP-complete problem is
normally considered to be intractible. In 1972, R. Karp [11] showed several
important problems to be NP-complete, and since then hundreds of other
problems have been shown to belong to this class, many of them of practical
importance. A collection of most of these results to date, as well as a lucid
introduction to the theory of NP-completeness, may be found in the book
by M. Garey and D. Johnson, Computers and Intractability [12].

It is convenient to restrict the discussion to decision problems when proving
NP-completeness results. A decision problem is one that asks a yes-no
question about the input. Some problems are already decision problems.
For example, the satisfiability problem takes a formula in the propositional
calculus and asks whether or not there exists an assignment of truth values
to the variables such that the formula is true. A minimization problem,
such as the pagination problem, may be converted to a decision problem by
including as part of the input a bound B, and asking if there is a way to give
the variable to be minimized a value of at most B.

For the purposes of proving NP-completeness results, it is usually best to
specialize the general problem so that irrelevant details are suppressed. Each
of the proofs in this chapter will need a slightly different specialization, so
the correspondence to the general model will,be explained for each proof
when it is not readily apparent. ‘

19

20

QUADRATIC
BADNESS
FUNCTION

Optimal Pagination Techniques

The first NP-completeness result uses a badness function for the figure
placement that is the sum of the squares of the differences between the page
numbers of the citations and the page numbers of their corresponding figures.
Each figure in this problem may have more than one citation that refers to
it, and in fact there may be many references from a given text block to a
given figure. We will denote the number of references between text block ¢;
and figure f; by the function W(t:, f;). In order to obtain a strong NP-
completeness result, we will bound W by a polynomial ¢ in the size of the
problem. The same polynomial applies to all instances of the problem; we
will choose g later so that all the instances we need will satisfy this constraint.

Page Breaking Problem with Multiply Referenced Figures and Quadratic
Badness Function (MQ): .

GIvEN: A set T = {t1,t2,...,tNn} of text blocks,
a set F' = {f1, f2,-.., fn} of figures, with TNF =0,
amapping W: T X F — {0,1,2,...,q(NN)}, and a bound B.

QuEesTION: Is there a 1-1 mapping P : (TUF)—{1,2,... ,2N'}
such that P(t;) < P(t), P(fi) < P(f;) for 1 <1< 3 <N,

and

S= >, Wt ;)P — P(f;))* < B?
1<ij<N

Before we become involved in the details of the construction, let us take a
few moments to examine how this version of the problem is related to real-
life page breaking problems. Suppose that the text we are typesetting is not
allowed to be stretched or compressed to fit on a page and that each of the
figures exactly fills one page. Then the page boundaries must always occur at
the same places in the text, no matter where the figures are placed. Each page
of text material £; may have any number (up to a limit imposed by the page
size) of references to each figure f;; the function W (t;, f;) is just the number
of such references. The function W is bounded by the polynomial g because
we cannot realistically expect there to be exponentially many references in
the document. Of course, it may be that the user of the typesetting system
is allowed to specify a weight for each reference; in such a case an arbitrary
function W would not be unrealistic. The function P just specifies the order
in which we choose to place the text and figures. The particular badness

Some NP-complete Pagination Problems

function we have chosen contributes a quantity proportional to the square of
the distance (within the linear embedding) between a figure and a reference
to it. This is in some sense the simplest function for which the following
proof technique will work. We shall see in the next chapter that the problem
has a good solution if the square in the badness function is replaced by the
absolute value.

Now that we have a feeling for why this problem is relevant, let us proceed
with the proof of its NP-completeness.

Theorem 1. MQ is NP-complete.

Proof: The problem is evidently in NP, since a nondeterministic Turing
machine can guess the embedding P, and test it to determine whether or not
it satisfies the required properties, all in polynomial time.

To finish the proof, we will show how to transform an instance of Maximum
2-Satisfiability into an instance of MQ.

The Maximum 2-Satisfiability problem is defined as follows:

MAX 2-SAT:

GIVEN: A set of variables X = {z1,%3,...,Zn};
a set of clauses C = {u; Vv1,u2 V Ug,..., Uy V Um},
where u;,v; € {21,%1,%2,%2,--,Tn, Tn};
and a bound K < |C|.

QUESTION: Is there an assignment of truth values to the variables z; such
that at least K of the clauses are satisfied?

MAx 2-sAT was shown to be NP-complete by Garey, Johnson, and Stock-
meyer [13] by a transformation from 3-satisfiability.

Given an instance of MAX 2-SAT, we will describe a transformation to an
instance of MQ that has the same answer. ’

Let N = 2n + 2177., T = {tl, ceey t2n+2m}, and F' = {f]_, ceay f2n+2m}-
The weight function W is constructed as follows: First set W{t,, f;) = b,
for 1 < ¢ < N, where b; will be chosen large enough to insure that the
function P must satisfy |P(t;) — P(f:)] = 1. Thus the only choices left for
the function P will be whether to put ¢; or f; first, for each ¢. The first 4n
positions of the embedding will be used to indicate the truth values of the

21

22

Optimal Pagination Techniques
variables z;. The occurrence of

P(k): 4i—3 4i—2 4di—1 4
k: to;_1 fa2i—1 fai tai corresponds to z; being true, and
ki foi—1 tzi—1 t2i fai corresponds to z; being false.

To guarantee that the embedding conforms to one of the above patterns, let
W(t2i—1, f2i) = Witz:, fai—1) = b2 (1 <1 < n), where a suitable value
for b, will be given later. Note that these cause a contribution to the total
badness in the amount of 8b for each of the allowed patterns above, but 1062
for the alternative patterns ¢ f t f and ft ft. These pairs of weight function
values will be subsequently referred to as communication pairs, since they
communicate the embedding between two ¢-f pairs.

The reﬁlaining 4m positions of the embedding will correspond to the
clauses. The correspondences are as follows:

P(k): 4n+4-4;—3 4n+4j—2 4nt4j—1 dntdj

k: t2n+;j_1 font-25—1 & uj true,
k: fapt2ij—1 tang-2i—1 & uj false,
k: tont2; Sfontoj & v true,
k: fon+25 tant2j & vj false.

To link the values of the literals to the values of the corresponding vari-
ables, we add the following communication pairs:

Wltanaai—1, f2i) = Wltai, fant2i—1) =baifuj =z
W(tanag2j—1, f2im1) = W(t2i—1, fant2j—1) = b2 if u; = Z: :

) 1< 7 <
Wi(tant25, fai) = W(t2:, fant2;) = by if v; = z; S1=m
W(t2nt2i, fai—1) = W(tzi—1, fang2;) =0b2if v; =12

Each of these weights will contribute 2d2b, to S if the truth setting of
the literal corresponds to the truth setting of its variable, where d is twice
the difference between the subscripts of the two arguments to the weight
function. For instance, if v; = Z;, then d = 2(2n + 2j — (2¢ — 1)). If the
truth values do not properly correspond, the co?tribution will be

((d — 1)? + (d + 1)%)by = 2(d* + 1)ba.

Some NP-complete Pagination Problems

The remaining values of W will encode the semantics of the clauses. For
1<j75< m,let

Wltznt-2i—1, font2;) =3 and W(tanyaj, font2j—1) =5.

These are called the “clause pairs.”

Then the four possible truth assignments in a clause make the following
contributions to the badness:

u true, vtrue & t ft f contributes 32.3 4 12.5 = 32
u true, vfalse & ¢t fft contributes 22-3 4-2%.5 = 32
u false, vtrue & ft 1 contributes 22.3 4 22.5 =32
u false, v false & f ¢ contributes 12.3 - 32.5 = 48.

Let W be zero for all values in its domain for which it has not yet been
defined.

Now let us fix the bound B = B; + B> + Bj so that the embedding P is
forced to have all the required properties.

Let By = 48(m — K) + 32K, which allows enough to embed K or more
of the clause pairs in their satisfied configuration, leaving the rest

unsatisfied.

Let By = 4by Y (i — 7)?, where the sum is over all pairs (z,7) such
that W(¢;, f;) = b2. This permits the communication pairs to be
embedded properly.

Let by = 8(m —k)-+5. It is proved below that if any of the communication
pairs are embedded improperly, this value of by causes an increase in
badness larger than any accompanying decrease due to more clauses
being satisfied. "

Let By = Nb;. This permits each ¢; to be next to its f;.

24

SINGLY
FERENCED
FIGURES

Optimal Pagination Techniques

Let by = [(Bz + B1)/3]+ 1. We will see in 2 moment that if any £; is not
next to its fi, this value of by causes an increase in the badness larger
than any decrease that could arise from fouling the communication
pairs or the clause pairs.

Let g(1) = 64(z -+ 1)*; this makes q(IN) > by > by > 5 > 3, so W will be
bounded as required. ’

Now if we are given a truth value assignment to z1, Z2,...,Zn that makes
K or more clauses true, it is clear from the remarks above how to construct P
to satisfy the bound B. Conversely, given a P that satisfies the bound B, it
must satisfy the following conditions:

o|P(t;)— P(f)l=1for 1 <z < N,or else S > (N — 1+ 2%)by > B;

e the communication pairs are set properly, or else S > By + Ba+2b2+
32m > B;

e at least K clause pairs must be embedded in their satisfied position, or

else S > B.
Thus the function P can be used to construct a truth assignment to the
variables 71, Za, - . - , Z» that satisfies at least K of the clauses. This completes

the proof of theorem 1.

The MQ problem shows that there is at least one badness function that
leads to a hard pagination problem. The essential features of the badness
function that the proof relies on are that the function flz,y) = (z — y)?
has a smaller value when |z —y| = 1 than when |z —y| > 1 and that
fla,b) + fla+1,6+1) < fla,b+1) 4+ fla+1, b); similar proofs may be
constructed for other badness functions that satisly these properties. By
making the construction a little more complicated, chaining together the
clause references to z; instead of referring them all the way back to fs;, the
values of b; and by could be considerably reduced.

It may seem that the fact that multiple references per figure are allowed is
a necessary prerequisite for this result, but in fact a similar result may be
proved about a pagination problem with only one reference per figure. The
idea is to replace each figure in the above construction by a collection of
figures, one new figure for each reference to the old figure. For want of a

~ better collective noun, we will call this collection of figures a flock. The sizes

of the figures in a flock add up to the page size; each text block is one page

Some NP-complete Pagination Problems

high, as before. All of the figures in a given flock must fall on the same page,
because no figures can share a page with a text block (there is no room), and
the ordering of the figures prevents the flocks from getting mixed up. This
new problem may be stated as follows:

Page Breaking Problem with Singly Referenced Figures and Quadratic
Badness Function (sQ):

GIVEN: A set T = {t1,¢2,...,ta} of text blocks;
a set S = {s1, s2,...,5m} of figures, with TNS = 0;
a mapping r : S — T, indicating where each figure is cited;
a page size ¢ € {1,2,... }; _
a mapping h: TUS — {1,2,...,c}, indicating the height of text

and figures;
an integer p, the number of pages, where Z h(z) = pc;
z€TUS

and a bound K.

QuESTION: Is there a mapping @ : (TUS) — {1,2,...,p}
such that Q(t;) < Q(t;) for 1 <1< j< n,
Qs) < Qlsy) for 1<i<i<m,

h(z) =c¢ for1 <1< p,
ze@—1(1)
where Q1) ={z €TUS | Q(z) =1},
and such that »_ (Q(s:) — Q(r(s:)))* < K.
1<i<m
Theorem 2. sqQ is NP-complete.

Proof: Clearly sq € NP. The reduction is from MQ.
Given an instance of MQ, let '

m = Z W(ts, f3);
1<i,j<n }
S == SlUS2U... USn;
where S; = {s;;,x |1 <1<, 1 <k < Wits, i)}
the elements s; jx are sorted first by 7 and then by ¢ and k, and
given the names sy, 52,-..,5m-

25

26

Optimal Pagination Techniques

Furthermore, let 7(s:,j,k) = ti;

—_ S-'
c é‘f‘én‘ 5l

h(t;) =c for 1 <1< n

h(Si,j,k) =1 for 1<k W(ti,fj);
h(s:,5,6) =€ — |S;l+1 for k= W(t:, fi);
p =2n, and K = B.

Now given a solution to the instance of MQ, 2 solution to the corresponding
instance of sQ is obtained by setting

Q(t;) = P(t:;) for 1 <1< n, and

Q(s:;6) = P(f;) for 1 <2, <n, 1< k < W(t, f;)-

Because P is one-to-one, @ 1(I) will either be the singleton {t;}, for some j,
or else the set S;, for some §; in either case the sum ZzeQ—l(z) h(z) will be
equal to c. It is not hard to see that the references coded by the functions
r and W are in a one-to-one correspondence that preserves the origin and
terminus of each reference, so that

S (@) —QUr(s)) =S=B<K

1<i<m

Conversely, given a solution to this instance of sQ, we need to construct a
solution to the instance of MQ. The most difficult part of this is to show that
if a page contains one figure 8y j,k, then it must contain exactly the set S;.
Suppose this is not the case, and let lo be minimum such that the condition
fails for s;, = Siq,jo,1- L€t Zo = Q(s1,), the page that the figure sy, falls
on. We cannot have a text block fall on page zo, or the bound ¢ on the
sum of the heights of items on the page would be exceeded. For the same
reason the page cannot contain more ltems than those in S;,. The figure sy,
cannot be the first thing on the page, because this would force the page to
contain exactly Sj,, again because the sum lof the heights must be ¢, and
because the mapping @ satisfies Q(s;) < Q(s;) for 2 < 3. Thus the page
must contain s;,_.1, and not all of its family S;,—1, again by the bound c.
But this contradicts the requirement that /o be minimum.

Some NP-complete Pagination Problems

Having shown that @ maps all the elements in S; to the same value, we
may go on to construct a solution to the instance of MQ. Let P(t;) = Q(¢;)
for 1 < 1 < n, and let P(f;) = Q(s1,5,1) for 1 < j < n. Then P will satisfy
all the requirements of a solution to MQ, completing the proof of theorem 2.

The remaining NP-completeness results of this chapter use a different bad-
ness function for the placement of the figures, which we will call the zero-one
badness function. The badness due to a reference is zero if the citation and
the figure fall on pages that have the same ‘handedness,” and one otherwise.
In other words, if the figure is on page p and the citation is on page q, the
associated badness is (p — ¢) mod 2. The total badness is just the sum of the
badnesses of all the references. This is probably not a badness function that
anyone would ever want to use in a real book, but with it we will be able to
show that even this simple badness function cannot be efficiently minimized,
even when the figures have one citation each and are constrained to appear
in the same order as the citations. This result indicates that the class of
functions we will be able to handle efficiently is quite limited.

To introduce the details of the construction in a more easily understood
form, we will look at a couple of easier constructions along the way to the
final result of this chapter.

The first of these constructions is actually quite simple. There will be one
text block or figure per page, as was the case for MQ. In this construction the
pages are not all the same size—the size of each page is specified as part of
the problem instance. The reduction is from 3-sAT, that is, the satisfiability
problem for propositional formulas in clause normal form with three literals
per clause. An instance of 3-SAT is defined as follows:

Satisfiability with Three Literals Per Clause (3-SAT):

B

GIvEN: A set of variables X == {z;,z,,...,2Z,}, and a set of clauses
C = {ulvvlle;u2vv2vw21-'~yumvvmvwm})
where u;, v;,w; € {Z1,%1,Z2,Z2,-+5%n, En}-

QuUESTION: Is there an assignment of truth values to the variables z; such
that all of the clauses in C are satisfied?

27

ZERO-ONE
BADNESS
FUNCTION

28 -~ Optimal Pagination Techniques
The problem we will prove to be NP-complete is the following:

Page Breaking Problem with Zero-one Badness Function
and Variable Page Size (vz):

GIvEN: A set T = {t1,%2,...,tn} of text blocks;
a set F' = {fi1, f2,..-, fm} of figures, with TNF = 0;
a mapping r : F — T, indicating where each figure is cited;
a mapping s : {1,2,...,M + N} — {1,2,...}, indicating the size
of each page; and a mapping h: TUF — {1,2,...}, indicating the
height of each text block or figure.

QuEsTION: Is there an integer p and a mapping P: TUF — {1,2,... ,P}
such that P(t;) < P(t;) for 1 <1< j £ N;
P(f) < P(f;) for 1<i<i <M

Y. =s(i) for 1<i<p,
zEP—1(i)
where P—1(i) = {z € TUF | P(z) = 1};
and P(f;) = P(r(f:)) (mod 2)?

Note that this last condition is equivalent to requiring the total badness
to be zero.

The pagination forced by the construction will consist of two parts: the
first 2n pages will encode the variables, and the last 6m pages will encode
the clauses. Each variable will be encoded in four pages, starting on an odd
page, which may be set with zero badness in one of the two ways shown in
figure 1.

Each clause will be encoded by six pages that must contain three figures
and three text blocks, and that start on an odd page. The last page of the
group will be forced to contain a text block. The position of each of the
three figures will encode the setting of the corresponding literal, true if the
figure falls on an odd page, and false if it falls n an even page. Since there
are three figures and two even pages, at least one of the figures must fall on
an odd page, so at least one literal in each clause must be true. An example
of this encoding is shown in figure 2. |

Having seen the general idea of the constructibn, we now proceed to prove
how it works.

Some NP-complete Pagination Problems

to figures representing
positive literals

to figures representing
positive literals

tyf | f |t f
to figures representing to figures representing
negative literals negative literals
true setting false setting

Figure 1. Truth value settings in construction for vz.

An embedding with the first
t flrltjft Iiteral false and the other two
true.

Figure 2. Clause encoding in construction for vz.

Theorem 3. vz is NP-complete.

Proof: Clearly the problem is in NP. Now given an instance of 3-SAT, we
will construct an instance of vz that is solvable if and only if the instance of

3-SAT Is.

Let N = M = 2n + 3m;
h(t2i—1) = h(fai—1) =2 for 1< i< n
h(tzi) = h(f2) =3 for 1 <i<m
h(fi)=2 for 2n < i< 2n-3m;
h(tant3i—1) = h(tant3i—2) =2 for 1< i< m;
h(topta:) =3 for 1 <i<m.

29

30

Optimal Pagination Techniques

Furthermore, let s(41 — 2) = s(41 — 3y=2 for 1< 1 < my

s(47) = s(4i —1) =3 for 1< 1 <

s(4n 4+ 6i)=3 for 1 <1< my

s(4n + 61 — k) =2 for 1<1<m,1<k<5

r(f2i) = tai—1, T(fai—1) = t2: for 1 <:<m

r(fangai—2) = 7'(ui), r(fant3i—1) = r'(v3), T(fan-r3i) = 7'(wi)
for 1 <2< m, g

where 1/ : {z1,%1,Z2,Z2,-++) Zns Zn} — {t1,t2,--s ton} is defined
by 1"(:1:,') = {9; 1, T'(ﬁ':,) == {g;.

Now if the instance of 3-SAT is satisfiable, we can solve the instance of vz
as follows:
For 1 < t < n, if z; is true, -
let P(tg,‘_l) == 47 — 3, P(fz,;_l) = 41 — 2, P(f2z) = 41 — 1, and
P(t2) = 4
if z; is fa.lse,
let P(f2i—1) = 41 —3, P(tgi—1) = 41— 2, P(ty;) = 4t —1, and
P(f2:) = 41.
For 1 <7 < m, let Pltanyai) = 4n + 61,
and define P(z) = 4n-+ A(z)-+6:—6 on the other items according
to the table in figure 3.
It is straightforward to verify that P satisfies all the conditions required
for an affirmative answer to the instance of vz.

Conversely, suppose we have solved the instance of vz in the affirmative.
We will construct the solution to the 3-SAT instance that shows that it is
satisfiable. The first thing to do is to verify that the vz solution must fall
into a pattern as outlined above. Every page must contain exactly one item,
because the page size is to small to allow two or more items on a page, and
the pages are not allowed to be empty. Furthermore, the ordering and page
size constraints on P force the layout to satisfy

{P(tzg_l), P(fzi_l)} B {41 —— 3, 42 — 2} a.nd

{P(t2:), P(f2:)} = {4i — 1,44} for 1 < i< n,and

{P(fans3i—2) P(fon+3i—1); P(fan+3i), P(tant3i—2), P(ton+y3i—1)} =
{4n+6i—5,...,4n+6i———1}

and P(t2n3i) = 4n + 62 for 1 <1< m.

Some NP-complete Pagination Problems

u; Uy Wy Alfant3i—2) A(fanpai—t) A(fantai) Atan-ai—z) A(tanta3i—1)
true true true 1 3 5 2 4
true true false
true false true
true false false
false true true
false true false
false false true

PO OB N M e
R R CR CR)
LR O B W
T T N
(RS T S

Figure 3. Embedding function for clauses of vaz.

Because of the references from tg;__; to f2; and from t2; to f2i—1, the pairs
(fai—1,t2i—1) and (f2q, f2;) must be placed so that the figure comes first in
exactly one of them. For 1 < ¢ < m, at least one of fon43i—2, font3i—1;
or fan43: must fall on an odd page, meaning its corresponding literal must
be true. Each of these figures has a reference from a text block in the first 4n
pages that forces its truth value (its page number modulo 2) to be the same
as all other figures that represent the same literal. Thus if we let z; = true
if P(t2;) is odd and false otherwise, for 1 < ¢ < n, then at least one literal
in each clause will be true, and the formula is satisfiable. This completes the
proof of theorem 3.

We can also prove that vz is NP-complete even if the page size is constant.
The construction is similar to the one above, but a different method is used
to constrain the possible positions of the figures. Each figure will be smaller
than the page size, but greater than half the page size so that two figures
cannot occur on the same page. The balance of each page with a figure on
it must be filled up with one or more text blocks; by supplying the proper
sequence of text block sizes, we will be able to force the figures to be placed

on only the pages we wish.

31

CONSTANT
PAGE SIZE

32

Optirnal Pagination Techniques

to positive literals
to negative literals

tgi—a
famt | tems | A Bl b |
tgi—3
T I lgi—2
81—7 8{—5
61— 5 61— 4 6t —3 61— 2 6t — 1 61

false setting of z;

to positive literals
//' /—\ /v to negative literals

Y/ —F— \/
/.' & f
g . 21 tos—
_ faima 83 tgi—1 tgi
tgi—s
o5 tgi—a lgi—2
6t —5 61 — 4 61 —3 62— 2 61— 1 617

true setting of z;

Figure 4. Truth value settings for vz with constant page size.

Theorem 4. vz is NP complete, even if the page size 5(2) is constant.

Proof: We will reduce an instance of 3-SAT to an instance of vz with the
constant page size function s(z) =T7. 4

For each variable z;, 1 < @ < n, we will introduce 8 text blocks and 2
figures. The heights & of the text blocks tgi—7,tgi—s; - - - » tsi are 1,6,1,2,5,2,7,
and 7, respectively, and the heights of the figures are h(f2i—1) = 6 and
h{f2:) = 5. As before, there are references tying each of these figures to a
text block: r{ fai—1) = tgi—3 and r(f2:) = tsi—s- The intention is that these
text blocks and figures be placed on pages 6i—5,6t—4,...,6t in one of the
two ways shown in figure 4.

Some NP-complete Pagination Problems

We need to show that these are the only two alternatives that contribute
no badness. We may assume by induction that the previous figures and text
blocks were placed in the previous 6(i — 1) pages. The text blocks tgi—1 and
tg; must fall on consecutive pages, and the other text blocks tgi—7,.--,t8i—2,
along with whatever figures that fall before tg;—1 must have a total height
that is an integral multiple of the page size. Thus one or both of f2;—3 and fa;
cannot come after tg;—1, or else this total height would be 23 or 17, neither of
which is a multiple of 7. Furthermore, no later figures may be placed before
tg:, because this would require that foit1, which has height 6, be placed on
a page with either gi71 Or tgi—s; this is not possible since tgi—6 and foi—1
must each share a page with one of these. Now to attain zero badness, tgi—s¢
and fo; must fall on different pages with the same handedness, and so the
only two ways to place these items are those shown above.

Next we show how to encode the clauses. Let r'(z;) = tgi—e and r(Z;) =
tgi3, for 1 < 7 < n. The clause u;,v;, wj, for 1 < 3 < m, will be encoded
by 12 text blocks tgnt125—11,- .. ,tgn412; of heights 1,1,1,4,1,1,1,4,1,1,1,7,
respectively, and by 3 figures fon+t3j—2, fan+3i—1, fan+3j, all of size 6, with
r(fansa—2) = (1), F(f2ntai—1) = 7(v5), and 1(fantsi) = r'(w;)-

" These 12 text blocks and 3 figures must appear on 6 consecutive pages, by
an argument similar to what we have just considered, because if any of the
3 figures occur after the last text block, the sum of the heights before the
last text block is not divisible by 7. No figures may be introduced from the
encoding of the following clause, because three of the small text blocks must
occur on the same pages as the three figures, and the remaining 6 small text
blocks are needed to pad the pages that contain the text blocks of height 4;
thus no small text blocks are left to pair up with the extra figures.

Now given a solution to the instance of vz, the solution to the instance of
3-SAT may be constructed as before, by setting z; = true if P(tsi—se) is odd,
and false otherwise, for 1 < 7 < 7. Conversely, if we have a solution to the
3-SAT instance, we can construct a solution to the vz instance as follows:

The items {t1,---,tan} and {f1,... , fan} are mapped as in figure 4, ac-
cording to the setting of the z;. To explain the mapping of the remaining
items, we will introduce a new notation. Square brackets will enclose two
rows of numbers, the top row containing the sizes of the figures and the
bottom row containing the sizes of the text blocks. Vertical bars will mark
the boundaries between the pages. Since the order of the text and the or-
der of the figures are both fixed, this notation unambiguously specifies an

33

34

ORDERED
FIGURES

Optimal Pagination Techniquea

uj v; wj embedding

true true true 6 6 6
(1]1141(1{1411}1|7]

true true false 6 6/6
1|1141|1{1]4111]|7]

true false true 6166 -

3

(1111411141117

true false false 6|6 6
1|1]1411]|1{4111]7]

false true true 6/6 6
11114)1§1]1411}17
i 6166 1

fals t fals

¢ e ¢ lr114)1a 1'4111 7]

false . false true 6 6|6

11114)1{1141|1}1}7]

Figure 5. Embeddings for the various possible truth values.

embedding. Using this notation, the mapping of the remaining items is as
shown in figure 5.

If the mapping P is chosen in this way, it will satisfy all the properties
specified in the definition of vz; this completes the proof of theorem 4.

In the previous three constructions there was exactly one citation for each
figure, but the order specified for the figures was not the same as the order
of the citations. It seems natural to speculate that if we required them to be
in the same order, the problem would be easier to solve. The next theorem
will show that this is not the case, at least when we allow glue between the
text blocks. 5

The model we shall use incorporates most of the features of the boxes and
glue model. We will not need penalty nodes, and the glue nodes will have no
stretch or shrink components.

Some NP-complete Pagination Problems

Page Breaking Problem with Ordered Figures and with Zero-one Badness
Function (0z):

Given: A sequence tj,t2,...,tn of nonnegative integers, the text block
sizes;
a sequence gi,gz,---;gN—1 of nonnegative integers, the glue sizes;
a sequence f1, f2,...,fm of nonnegative integers, the figure sizes;
a nondecreasing function r: {1,2,...,M} — {1,2,..., N}, telling
what text block cites each figure;
and a positive integer ¢, the page size.

Question: Do there exist an integer p and nondecreasing functions
P:{1,2,...,N}—+{1,2,...,p}a.nd :
Q: {1,2,...,M} — {1,2,...,p} such that, for 1 < & < p,

S ot+ oy et D, fi=e
0 <i<iy) t0<i<iy jo<iZ<n
where 4o = min{z | P(i) = k}, 4, = max{1 | P(i) = k},
jo = min{j | Q() = k}, j1 = max{j | Q) =k}
and P(r(j)) = Q(j) (mod2) for 1 <7< M?

Theorem 5. 0z is NP-complete.

Proof: The reduction is again from 3-saT. The construction is more com-
plicated than for the earlier proofs, so we will view it at a higher level of
abstraction to understand more easily how it works.

The construction will be built up out of modules, each consisting of a
sequence of figure sizes and a sequence of alternating text block and glue
sizes. These modules will be joined together to form the text, glue, and
figure sequences that define the instance of 0z. A module containing figures
of sizes fi, fa, .-, fi, text blocks of sizes t1,%2,...,%;, and glue items of sizes
g1, 92, - - - » §j—1 Will be written as

{ fifaeoi fi }

t1{g1]t2lga)- - - [gj—lltj

The intention is that the contents of a module will fall into a range of pages
in the embedding that will include no other text or figures. To ensure this,

we will choose the figure sizes so that they are all different and occupy almost

35

36

Optimal Pagination Techniques

all of a page. The rest of each page that contains a figure will be filled up
by a shim, that is, a text block whose size adds to the figure’s size to make
up the page size. The shim sizes will be carefully chosen to prevent two or
more of them from combining with a figure in the place of a shim that was
intended for the figure. This approach is quite conservative, since in reality
we only have to worry about figures straying into neighboring madules, but
we will stay with it since it simplifies the proof. -

To make sure that each module begins and ends on a page boundary, we
will constrain the first and last text block sizes in each module to be equal
to the page size c.

It is convenient to use a comma to stand for zero glue [0], since it comes
up so often in the construction. In addition, we will use & to stand for the
expression ¢ — Q. :

When joining modules together, we need to specify what text blocks
reference the figures in the module. We will use the convention that only one
text block in each module may reference any figure, and this text block will
be distinguished by underlining it in the description of the module. Writing

M; = M (k1 ka,-.)

means that the module 1 is of type 7 and the first figure in M; is referenced
by the distinguished text block in module k;, the second figure by the dis-
tinguished text block in module k2, and so on. When a module is appended
onto a sequence of modules, the figure sequence of the new module is ap-
pended onto the previous figure sequence, the text sequence of the module is
appended onto the previous text sequence, and the glue sequence is extended
on the front by zero glue and then appended onto the previous glue sequence.

We will denote ‘odd’ by 1 and ‘even’ by 0. The construction will represent
true by 1 and false by 0.

Each module has one horizontal input, one horizontal output, one vertical
input for each figure it contains, and one wvertical output. Each of these
inputs and outputs may be 1 or 0, and for most of the modules the outputs
are a function of the inputs. The horizontal input-is 0 or 1 depending on
whether the module begins on an even or odd - page in the embedding, and
the horizontal output is 0 or 1 depending on whether the next module after
it in the embedding begins on an even or odd page. The values of the vertical
inputs depend on the placements of the text blocks that reference the figures

Some NP-complete Pagination Problems

in the module and the value of the vertical output depends on the placement

of the distinguished text block.
Let us take a look at some module types that we will need later. An

snverter looks like this:
a
M~ = { G }
c,a, &, 0, C

The lowercase greek letters signify a shim size, and their use is local to a
module definition. Shim sizes defined in different modules will be different,
even if the same letter is used to represent them in both module definitions.
The module M~ will pass the value of the horizontal input to the horizontal
output unchanged, and the value of the vertical output will be the comple-
ment of the vertical input. This may be verified by examining the two pos-

sible embeddings of M™:
] or [}'
[c c

a a

o o, o

B
One of these embeddings is forced by each of the four possible combinations

of the inputs, and in each case the output is correct.
The buffer module passes the variables unchanged in both directions:

g,a

M* = {c,o[ih, o -a— 1 1[i]o,c}’

where & and o — 1 are shim sizes not used elsewhere.
The two possible embeddings for M€ are

L‘O[ﬂl o,c] o Lfo cl’

and both of these fill an even number of pages and have the distinguished
text block on the same page as the figure. |

The generator passes the horizontal input unchanged, has no vertical
input, and can have a vertical output of either 0 or 1. The generator is
useful for making a nondeterministic choice for the variables when solving

[0

i 1,a——-1‘1[i]0

a—1,1

38

Optimal Pagination Techniques

the 3-sAT problem:

The junction module has no vertical input, and passes the value of its
horizontal input to both of its outputs:

MT = .
[

When the vertical oufput is not used, this becomes the null module,

M =
c,c)’

useful as a place holder when specifying how to put modules together.

The test module may be embedded only with the horizontal and vertical
inputs the same; the horizontal output is the complement of the input, and
the vertical output is the same as the input:

The only other module we need is the or-gate MV. The description of MV
is rather complicated, and will be deferred until after we have seen how the
whole construction fits together. The MY module has two vertical inputs;
the first of these will always be 1 in our construction. The vertical output of
MYV is pot used, and the horizontal output is given by this table:

horizontal input second vertical input horizontal output

0 0 : 0
0 1 1
1 0 1
1 1 1

The first vertical input is needed as a reference, for without it the module
has no way of knowing what is even and what is odd.

Some NP-complete Pagination Problems

0 20 20 O
St o
i ST Q

Figure 6. Embedding for a small example of 0z.

Now we can put the modules together to form an instance of oz that will
have the same answer as the given instance of 3-sAT. The modules will be
arranged in 2m -} 2-Tows, each sending its output variables to the row below.
The easiest way to ‘see how the construction works is to look at an example.

Suppose X = {z1, Z2, z3} and C = {z,VZ2Vz3}. Then the construction
may be diagramed as in figure 6.

The first row guesses the settings of the variables, and the remaining rows
check to see if these settings will satisfy the clauses. The encoding of each
clause occupies two rows. The first of these starts with an M= module,
which checks that the previous clause was true, and forces the module that
follows it to begin on an even page; in other words, it forces the horizontal
variable to 0. The only other modules in the two rows are the three or-gates.
These will set the horizontal output to 1 if the horizontal input was 1 or
if the vertical input, which is attached to a module corresponding to one
of the literals, is 1.. Thus at the end of row 2¢ -+ 1, the horizontal output
corresponds to the truth value of clause . These outputs must all be 1 in a
valid embedding, since they are each followed by a test module to make sure
this happens.

More precisely, the construction goes like this: We will think of the se-
quence of modules {M]_,MQ',.-:,MGmn_*_:jn_*/_l} as an array with 2m 4+ 2
rows, n columns, and 3 modules for each entry. To aid in this identification,
we define (1,7, k) = 6ni +37 +k+1 for 0 < i<2m+1,0<753<m
and 0 < k < 3.

39

Optimal Pagination Techniques

Now we define
M 0y = MT, Migj,0 =M’ for 0<j<nm,
M(g,_*_l 0,0) — M=(<2t 0 0)) for O <) < m,
Mgiq1,5,00 = M°® ((2,7,0)) for 0<i<m,1<7<n,
M 5,00 = M°((2: — 1, 7,0)) for 1<i<m,0<7<mn,
Miiny=M=((1—1,72) for 1<i1<2m, 0<5< n.

If z; appears in clause 1, let

Mgi—q,j—11) = MY((20 — 2,7 —1,0),(2i — 2,5 — 1,2)).

If Z; appears in clause 1, let

M(2i,j——1,1) = MV((22 —- 1,] 1 O) (22 —1] 1 2))

Let all the M; not otherwise defined be M® for 1 < 7 < 6mn 4 3n 4 1.

The figure, text, and glue sequences for the instance of 0z are obtained by
concatenating these modules together in order, with zero glue being inserted
whenever two lower lists are combined, as described above. The reference
function r is created as indicated by the module definitions.

These are still two loose ends in the construction that have to be explained.
One is how to pick the shim sizes, and the other is how to build an or-gate
module. Some care is needed in picking the shim sizes. Suppose we need
! different shim sizes; | = O(mn) since there are O(mn) modules and the
number of different shims that any module needs is bounded by a constant.
Then we can pick the shim sizes to be 41,1 4-2,...,2[. Any two or more
shims put together will then be larger than any single shim, and will not be
able to take the place of a single shim in the construction. The page size ¢
may then be picked to be at least 4l 1, so that each figure occupies at least
half of a page, implying no two figures can appear on the same page.

Finally, we will look at how to implement an or-gate module. The top line
of this module will contain the two figure sizes & and B. The bottom line
of the module will consist of four parts, each part handling one of the four
possible input configurations (recalling that the figure of size @ will always
fall on an odd page). Both figures must fall into the same one of these four
parts when the module is embedded, by the way the parts are constructed.
The part that gets the two figures will occupy an odd or even number of

Some NP-complete Pagination Problems

pages, whichever is needed to yield the correct horizontal output, and the
other three parts will each occupy an even number of pages, thus leaving the
horizontal variable unchanged.

The first part accepts the figures exactly when it starts on an even page
and the second figure also falls on an even page. Its text and glue sequence
and its two possible embeddings are

. [c : g ~{7lo}e c]
o00 = c,a[atA+]87(710,¢
[c a[aFBFA|8.1|0c c]
The remaining three parts work analogously:
& B
o clalv[Z]v|B8]¢
B

alaF)7 |77 +B)B

c]
.

oo1 = e.afaFA [T [FFE]8. [
[

|

@
a

B
gl i7lo

[

LC

[

o010 = c,c,alaFB+7|8,7(70,c {
<

GIG+13+"I]13»’7

.

[+

-
24

!

0,c

B
B

[+

c ~[Flo

1|z

011 = c,c,afatA|r[ZA][FFE]AAA10ee [
<

!

aladA]v||F+27|87

The or-gate module is then

M"——{ & b }
700,001,010,711

|

This completes the construction for the proof that 0z is NP-complete.

41

42

SUMMARY

Optimal Pagination Techniques

To conclude this chapter, we will step back from the morass of details in the
proofs herein, and try to give an intuitive explanation of why these particular
problems are NP-complete. The single most important factor seems to be
the badness function; both of the functions used here allow information to
be communicated over long distances in the embedding, without affecting
the portion of the embedding in between. In addition, the constructions rely
on various mechanisms for restricting the possible positions of each figure to
a small range of pages. Some of the constructions used multiply-referenced
figures for this requirement; others exploited the ability to have more than
one item per page, a variable page size, the presence of glue, or a combination
of these. Something of this nature is needed to make the construction work;
for example a problem with a quadratic badness function, one item per page,
one reference per figure, and the figures in the same order as the citations
would be easily solved by putting each figure right after its citation. If we
instead allow multiple items per page with a constant page size and with
glue, the NP-completeness of the resulting problem is an open question.
Other open problems could be generated by taking the various elements of
the problems in this chapter in different combinations, but the proofs we
have already seen give a sufficient indication that there are severe restrictions
on the kind of badness function that can be used in a practical pagination
scheme.

Chapter 3

Dynamic Programming for Pagination

The first requisite in all book design 1s orderliness.
— B. Rogers

ONE OF THE MOST SUCCESSFUL WAYS we have of solving a large problem is
to break it into smaller problems, solve each one of those individually, and
then piece the solutions together to find the solution to the original problem.
This approach may be applied recursively to the smaller problems, breaking
them down further and further until at the lowest level we need to solve only
trivial problems, albeit we may have to solve a great many of them. For
many problems this recursive decomposition may be applied directly with
good results. However, it often happens that the same subproblems arise
many times when breaking down problems in this way, and we do the work
of solving them again and again. The way to avoid this extra work is to
remember the solution to each subproblem as it is solved, so that when it
is needed again later on, it won’t have to be recomputed. If we know what
all the subproblems will look like in advance, the easiest way to manage the
bookkeeping is to work from the bottom up, solving the trivial problems first,
then those that decompose into only trivial problems, and so forth until we
get the answer to the problem we originalﬂf wanted to solve. This technique
is called dynamic programming, a term coined by R. Bellman [14], who first
popularized it as a general technique for solving optimization problems.

As the first example, we shall see how to apply dynamic programming to
the pagination problem when there are no figures involved. In this case the
problem is completely analogous to the problem of breaking a paragraph into

PAGINATION
WITH NO
FIGURES

IMPROVING
THE RUNNING
TIME

Optimal Pagination Techniques

lines, a problem considered in detail by Knuth and Plass [9]. Here we will
retain the terminology of the pagination problem, and stay with a high-level
description of the solution, leaving the details for the next chapter.

The idea is to consider subproblems of the form “find the best way to put
the first 7 lines, along with the interspersed glue, onto the first k pages.” To
this end, we will define B;x to be the total badness corresponding to the best
way to put lines 1 thru 7 on pages 1 thru k. Now suppose we have such an
optimal pagination with total badness Bj, and let 2 be the number of the last
line on the next to last page, so that page k contains lines ¢-}1 thru j. Then
the total badness for pages 1 thru k — 1 must be exactly B; k-1, because
if it were less, B; x—1 would not be the smallest badness possible, and if it
were greater, B;x would not be the minimum. The important point here is
that the way the material is arranged in the first part of the document does
not interact with the placement of the rest of the material; the problem is
said to satisfy the principle of optimality, and this is what makes dynamic
programming applicable to this problem.

There are not too many ways to pick 7, so one way to compute By i3 to
use the formula ~

Bk = Bt 1
ke Oélltll<1]{ k—1 + Bijk }

where f;;i is the badness due to placing lines ¢ + 1 thru 7 on page k. The
quantities B;;x may each be computed in constant time, if the subtotals for
the box sizes and glue have been precalculated.

It is not hard to see why this formula works, but there are still a lot
of details to consider before this can be made into a practical solution to
the pagination problem. One of these is the question of how to extract the
actual optimum pagination, instead of just its badness. To do this it is only
necessary to store, along with the value of Bjy, the value of : that minimized
the sum B, k—1 + Bijx. Once the winning solution for the entire problem
has been chosen, these may be used as links in a chain to trace back and
find out what lines to put on each page:

If this method is applied directly by calculating all of the By, the running
time will be &(n?) if there are n lines in the input. The constant factor on
this running time is fairly high, so in its simplest form the algorithm is too
slow to be routinely applied to practical pagination problems. However, most
of the numbers Bji will be so large that we are not interested in them. If
this fact is exploited to limit the number of subproblems that are considered,

Dynamic Programming for Pagination

the running time can be decreased to the point where it can be considered
practical. The details of this pruning technique will be saved until chapter
four, since we are concerned primarily with theoretical issues in the present
chapter.

There is an important special case for which the running time may be
reduced even more _dramatically. If the page size is constant and the same
badness function applies for each page, so that the B;;x do not depend on
the page number k, then we only have to remember the best way to put the
first 7 lines into any number of pages. This happens because if we have a way
to put, say, the first 1000 lines of text onto 20 pages and a way to put them
onto 21 pages, in the optimal solution we will use whichever one of them has
a smaller badness, because this choice cannot affect the way we choose to
paginate the rest of the document. Since we will only use the better of these
partial solutions, we may as well remember only one of them.

More formally, if B; is the lowest total badness for paginating the first 5
lines, and if §;; is the badness of putting lines 7 -1 thru j onto a page, then

B; = og}g], {B; + Bij}-

If there are n lines, this calculation takes O(n) space and O(n?) time;
normally the height of each line is bounded below, so that each page can
hold at most ¢ lines, for some constant ¢. In this case, the minimum need
be taken only over the range 7 —¢ < 1 < j, so the running time will be
proportional to cn.

When figures are introduced, care must be taken when defining the badness
function for figure placement so that the resulting problem is amenable to
a solution by dynamic programming. Chapter two presented some badness
functions to be avoided; the property those functions share is that they can
be used to communicate information over long distances in the embedding,
and this is also the property we need to avoid in order to satisly the principle
of optimality. We have seen that the proof that MQ is NP-complete does
not work if the quadratic badness function is replaced by a linear badness
function, i.e., if the square in the badness function is replaced by the absolute
value. This suggests that perhaps the problem with the linear badness
function may have a polynomial time solution, and it turns out that it does.

45

INCLUDING
FIGURES

46 Optimal Pagination Techniques

To be precise, let us define the

Page Breaking Problem with Multiply Referenced Figures and Linear
Badness Function (ML):

GrveN: A set T = {t1,%2,...,tn} of text blocks,
a set ' = {f1, f2,..., fm} of figures, with TN F = 9,
a mapping W: T X F — {0,1,2,...}, and a bound B.

QuEsTION: Is there a 1-1 mapping P : (TUF)—{1,2,...,N+4+ M}
such that P(t;) < P(t;), P(f) < P(f;) for 1< j,and

ST Wit £5)|P(t) — P(f;)| < B?
1<IigN
i<iSM

This problem can be solved by decomposing it into problems of the form
“what is the best way to put the first ¢ text blocks and the first 7 figures
into the first ¢ 4 j pages?” In order for this question to make sense, we
have to extend the badness function so that it can be applied to just part
of the input. Suppose we have merged the first 1 text blocks and the first
§ figures into the first k pages in some way. Some of the text blocks may
reference figures that are not in this initial segment, and similarly some of
the first j figures might be referenced by text blocks that occur later. These
“dangling references” must be accounted for in some way when computing
the badness of the partial embedding. One way to think of the calculation
of the badness is to think of a penalty being charged every time a reference
crosses over a page boundary. (Recall that a reference can be thought of as
an arc leading from a citation to its figure.) Since the dangling references are
known to end somewhere past the end of the partial embedding, it makes
sense to include only the page boundaries they have already crossed when
calculating the badness of the partial embedding. Using this idea, we can
solve the ML problem as follows:

Let R; ; be the number of dangling references when the first ¢ text blocks
and the first j figures have been placed on the first 1+ 7 pages. This function
is well-defined, because any rearrangement of the figures and text on the first
k pages does not affect the set of references that must cross the boundary
between page k and page k + 1. The numbper of dangling forward references

is given by the sum '
S Wit fs)s

1<r<s
j<agSM

Dynamic Programming for Pagination

since we want to count the edges that originate in the first part of the
embedding and end in the last part. Similarly, the number of dangling
backward references is given by the sum

> Wit fa).

i<r<N
1<ey

The value of R;j; could be calculated by just adding these two sums
together, but we can save some calculation by first tabulating the sums

S,'j = z W(tr,f,,)
1gr<<4
1g<s5s

and then calculating the dangling reference count by the formula '
Rij = Sim + Snj — 2545

It is not hard to verify this formula by considering the regions over which
the summations occur.
The badness B;; may now be calculated according to the formula

B;; = min (Bi—1,j, Bi,j—1) + Rij

with the boundary conditions Bgg = 0 and B;; == o0 if either ¢ or j is
negative. Choosing b;_,,; as the smaller of the two numbers corresponds
to putting text block 7 on page 1 + 7, and choosing B; ;1 corresponds to
putting figure j on page ¢ 7. The term R;; accounts for the penalty due to
the dangling edges crossing the boundary between pages 1 +7 and 147 1.
Then Bpyus is the smallest possible total badness for embedding all N text
blocks and all M figures.

To get an embedding that achieves this’ minimum badness, we need only
trace a path through the table of badness values that starts at Bya, ends
at Bgg, and at each step goes from some B;; to the smaller of B;—4,; and
B; ;1. If the path goes from By; to Bi_y,;, then P(t;) = ¢ -7, and if it
goes from B;; to B; j—1, then P(f;) = i—|—j’. Note that there might be many
embeddings- that all achieve the minimum badness.

47

48 Optimal Pagination Techniques

maxing e This algorithm may be generalized to allow references that join text blocks to
ALGOR ore each other, rather than to figures, and to allow a third sequence of items that
GENERAL s to be merged in as well; this could be, for example, a sequence of tables
that are referenced in the text just like figures are, but that are numbered
independently of the figures. To handle three sequences, it is necessary to
solve a three-dimensional array of subproblems, and the exponent on the

running time increases accordingly.

A further generalization can be made if we introduce the notion of partial
ordering. A partially ordered set (V, <) is a set V along with a binary
relation < that satisfies the following properties, for all y,v,weV:

1. uKu (irreflezivity)

9. u < v and v < w imply that u < w (transitivity).
Note that this is like a total ordering, except that it is not required that
every two elements be related to each other. If u < v or u = v, we write
u < v. If uv, v<u, and uz%4v, then we say the elements v and v are
incomparable. If uy < ug < ... < Uk, then the sequence {v1,v2,...,Vk} I8
called a chatn; if the elements of a set U C V are pairwise mcomparable,
then U is an anfichain.

Using this notion of partial ordering, we can define the following problem:

K-Constrained Optimal Linear Arrangement (K-coLa):

GIVEN: A partially ordered set (V, <) of vertices, such that the size of the
largest antichain does not exceed K,
a graph G = (V, E),
an edge weight function W : E — {0,1,2,...},
and a bound C.

QuEsTION: Is there a one-to-one function P : V' — {1,2,..,|VI}
" such that P(u) < P(v) whenever u < v,

and Y w((u,v))|f(w) — fl)| < C?

(u,v)EE

If the size of the antichains is not constrained, the problem is NP-complete,
as shown by Garey, Johnson, and Stockmeyer [13]. Even and Shiloach
showed that this is the case even if G is a bipartite graph [15].

The ML problem is easily seen to be an instance of K-corLa in which the
partial order consists of two chains, one containing the figures and the other

Dynamic Programming for Pagination

containing the text blocks. In this case the graph G'is bipartite, with the
figures on one side and the text blocks on the other.

We will call a subset X of vertices a leading subsetif z € V and y € X and
z < y together imply that z € X. (Another name for a leading subset is an
order ideal.) Every antichain of V' will have a corresponding leading subset of
V, obtained by starting with the antichain and successively adding elements
that precede elements already in the set until no more such elements can
be added. Conversely, given a leading subset, the corresponding antichain
can be found by deleting all the elements that have successors in the subset.
Thus the antichains are in one-to-one correspondence with leading subsets.
Since the sizes of the antichains do not exceed K, there are no more than
(JV]-+1)¥ antichains, and so the number of leading subsets of V" is bounded
by a polynomial. ,

The leading subsets are partially ordered by set inclusion. If X is a leading
subset and its corresponding antichain is the set {z1,Z2,...,Zx}, then the
immediate predecessors of X are X — {z1}, X — {z2},...,X — {zx}; we
will denote the set of immediate predecessors of X by Pred(X).

To solve an instance of K-coLa, we use dynamic programming. There will
be a subproblem for each leading subset of V. If X is a leading subset of V,
let B(X) be the badness of the best possible way to arrange X in the first
|X | pages of the embedding, where the badness contributed by the dangling
edges is calculated as before. Then B(X) can be calculated by the formula

BX)=_ Eggg(x){B(Y)} + R(X),
for all nonempty leading subsets X, and with B(@) = 0. Here R(X) is the
sum of the weights on all the dangling edges:

RX)=), w((w)

(u,v)EB
wEX,vEV —X
orvEX ,ueEV—X

These values are calculated in topological"'order, so that when the badness
of X is being calculated, the badness values for all of its leading subsets
are already known. The value B(V) calculated in this way is the smallest
possible total badness for all linear a.rrangements of V that are comnsistent
with the given partial order.

The K-coLA problem appears to be a non-trivial generalization of ML, and
may even have applications in other areas, but for the purposes of pagination

49

50

A DIFFERENT
WAY TO
GENERALIZE

Optimal Pagination Techniques

we need to generalize in other ways. One generalization that is needed is to
permit more than one item to be placed on a page; another is to allow glue
between the text blocks. These things contribute to the badness function in
a very localized way—we can account for them by defining a function that
takes a subset of the items and a page number, and returns the badness
of putting those items on the given page. This function would only need
to apply to certain subsets of the items; for instance in the case where the
partial order comnsists of a chain of text blocks and a chain of figures, a legal
subset would contain a contiguous sequence of text blocks and a contiguous
sequence of figures. We don’t need to place any restriction on this component
of the badness function, other than that it can be evaluated in a reasonable
amount of time.

Another way the algorithm should be generalized is to allow a more general
way to specify the badness to be charged for figure placement. We have
seen from the results of the previous chapter that this component cannot
be a completely general function, but we would like to have an idea of how
general it can be while still allowing a solution by dynamic programming.
Ideally, we would like to have a necessary and sufficient condition on the
figure-placement badness function that would say whether or not the function
can be minimized by a dynamic programming algorithm. Finding sufficient
conditions” is no problem—we already have an example, in the K-corLa
problem, of one of these. Proving that a condition is necessary, however,
is a harder task. For one thing, the definition of ‘dynamic programming’ is
sufficiently vague to make it difficult to pin down exactly—it is, after all,
only a general approach for designing algorithms, not a rigorously defined
mathematical notion. Another problem is that there are so many degrees
of freedom present in the definition of the badness function that, given a
simply stated criterion, it would probably be possible to cook up a function
that failed to meet the criterion, but that still could be handled by an
appropriate algorithm. In view of these difficulties, we will not attempt to
find a necessary condition, but instead will aim for a sufficient condition that
is not too complex to state, and yet encompasses a broad class of badness
functions that will be useful in practice.

We will start by giving a very general W%,y of specifying the figure place-
ment component of the badness function, and then look for restrictions to
place on it 'so that dynamic programming will still apply. Following this
strategy, we have the

Dynamic Programming jor Pagination

Generalized Pagination Problem (Gp):

GIVEN: A partially ordered set (V, <) of items;
a function L(X,7) that gives the badness of putting the set X C V
on page ;
a function R,,(7,7) that gives the badness of putting u € V on
page 7 and v € V on page j;
an integer p, the number of pages;
and a bound C.
QUESTION: Is there a mapping P: V — {1,2,...,p} such that
P(u) < P(v) whenever u < v, and

ST LPTE,) + Y RuP),PO) < C 7

1<V} u,v€V

The partial order < is assumed to satisfy the same restriction as in the

K-coLA problem, so that the number of leading subsets is bounded by a -

polynomial in the size of V. The mapping P is no longer required to be one-
to-one, because we want to allow more than one item to go on a page. Now
we would like to know what restrictions we need to place on the function R
in order to be able to solve this problem by using dynamic programming.

The kind of algorithm we have in mind will calculate, for each leading
subset X and each page number k, the value B(X, k), which is the minimum
badness for embedding X into the first k£ pages. Suppose we have embedded
X into the first k pages, and V — X into pages starting with &+ 1. Let u be
an element of X, and v an element of V — X . The principle of optimality
says that if the badness cannot be decreased by changing the embedding of X
or by changing the embedding of V.— X, then it cannot be decreased by
changing the embedding of both of these at the same time. The first part of
the badness, computed from the function L, clearly satisfies this requirement.
The second part of the badness will satisfy it also, if R, satisfies the
condition

Ruo(3,7) — Rusli’s) = Rus(é,) — Rus(i', ')

for 7,77 < 7,3 and for 7,5/ < 1,7. This condition just says that the
amount by which the figure placement badness changes when the position
of u changes does not depend on where v ‘happens to be, as long as they do
not pass each other. This condition is the restriction we place on I, in
order to guarantee that dynamic programming will work.

51

52 Optimal Pagination Techniques
The restriction on R,, can be restated in the form -
DA R(3,7) =0 for |[1—j] > 1,
where Ay is the finite difference operator on the kth variable of the function:
Arf(z1,y s Zn) = f(Z1,- s The1, Tk + L, Tty - -+, Tn) — f(21,...,2,),

and where the subscripts have been dropped from R,,.
Using this new form of the condition, we have

R(,7) = R(0,5)+ D> A1R(k,3)

0<k<i
=R(0,5)+ D (AIR(k,O)—{— > /_\2A1R(k,l)>
0<k<i 0<k<y
= R(0,7) + R(:,0) — R(0,0)+ > AxA;1R(k,1).
0<k<i :
o<y

The summand is zero in the region k > l+1, so in the case z > 7, the range
of the summation may be reduced to 0 < &k < j_+ 1,0 <1 < j. Thus, if

1> 7,
R(5 +1,5) — R(0,5) — R(j + 1,0) + £(0,0)
= R(z,0) — R(j + 1,0) + R(7 + 1, 5);
and, similarly, if z < 7,
~ R(i,5) = R(0,7) — (0, + 1) + R(3, i+ 1).
Now R(z,0), R(0,%), R(: + 1,7), R(¢,2 + 1), and R(z,7) are all functions of

one variable that may be chosen independently of each other; we will write
R(i,i + 1) — R(0,7+ 1), and f5(i) = R(3,).
fi(d) + fa(f) fi> g
R(z,7) = f2(5) + fals) i <J
f5(2) ifr=37
for arbitrary functions fi, f2,..., fs.

Dynamic Programming for Pagination

This kind of badness function is useful for practical applications, especially
the portions contributed by f; and f2. Omne way to think of this is that
a contribution of Afi(z + 1) is made to the badness function whenever a
reference from u to v passes over the boundary between pages 1and 1+ 1
in the reverse direction, and a contribution of Afa(i + 1) is made when a
reference crosses the boundary between pages 1 and ¢ 4+ 1 in the forward
direction. Thus the pagination algorithm may charge a small penalty when
a reference crosses a gutter, and a larger penalty when the page must be
turned to get from a citation to its figure. Furthermore, the cost can depend
on which direction the crossing is made, and the penalties can be different for
every reference. The usefulness of fs and f4 is not as clear, but they might
be used, for instance, to force a figure to come after its citation by making
fs infinite and f4 zero. The function fs may just as well be incorporated
into the local component, L, of the badness function, and so we will assume
that fs is zero.

We can now solve ap by calculating B(X, k), the badness of putting the
leading subset X onto pages 1 thru k, according to the formula

B(X,k) = }%1}1({B(Y,k —1) + L(X —Y,k)+ D(Y, X, k)},

where D(Y, X, k) is the part of the badness due to dangling references crossing
the boundary between pages k and &k - 1:

DY, X k)= 5 (Afour(k+ 1)+ Afuva(k + 1) + foua(k) + Fuvs(K)-
eIk

The smallest possible badness for any embedding is then given by B(V,p),

and we need only compare this against C to answer the question. The actual

embedding P that satisfies this bound may be extracted by methods similar

to those used for the earlier problems.

53

Chapter 4

Implementation

Machines ezist; let us ezplott them
to create beauty—a modern beauty,
while we are about it. — A. Huxley

THE PREVIOUS CHAPTER developed the theory for an optimizing pagination
algorithm, but hidden beneath the partial orders and the badness functions
are many details that need to be brought to the surface when writing a
practical pagination routine. The local badness function must be specified
in a way that is easy to evaluate, because it will be evaluated many times. A
practical algorithm has no need for the general partial order of gp—it will
suffice to have a list of text and a list of figures. The routine will have to
do some pruning to eliminate subproblems that have a high badness value,
because even though the number of subproblems is polynomially bounded,
there are still too many of them to solve in a reasonable amount of time. The
order in which the subproblems are solved needs to be decided upon—the
choice of this order makes a difference in how well the pruning techniques
work and in the ways that memory needs to be accessed. These are the issues
.we will deal with in this chapter.

The model used by the practical routine is essentially as described in
chapter one, but differs in some minor details. As described there, the figures
were included as entries in the vertical list; here we will use two lists, one
for the text and the other for the figures. The boxes in the text list will be
allowed to contain citations to the figures; this will permit each figure to be
referenced any number of times if this is, desirable. The badness function
for figure placement will not be quite as general as the one in the previous
chapter; each reference will have a forward weight and a reverse weight, and
each page boundary will have a weight value. Each time a reference crosses a
page boundary, the contribution to the badness function will be the product
of the page boundary weight with the forward or reverse reference weight,
as appropriate.

56

Optimal Pagination Techniques

The text list will be denoted as £3,%2,...,¢n,

where t; = (i, hs, di, ¥i, 24, Pi, fi, i, Vi),
7; is the kind of item, either ‘box’ or ‘penalty’ or ‘glue’,
h; is the height of the box or glue,
d; is the depth of the box,)
y; is the stretchability of the glue,
z; is the shrinkability of the glue,
p; is the penalty to be charged for breaking at this item,
fi is the figure cited by this box,
u; is the forward reference weight for this citation,
v; is the backward reference weight for this citation.

All nine of these values are never used in the same item, so when actually
coding the routine we would use some kind of record whose contents were
interpreted differently depending on the value of ;. However, for the purpose
of describing the algorithm, it is convenient to call them by these names, and
to assume that they are zero when the value is not relevant.

Since we are running short on letters, we will use capitals to denote the
contents of the figure list Fy, Fa,..., Fin:
= (KJ"HJ" D;, Y, ZJ')’
is the kind of figure, either ‘top’ or ‘bot’,
is the normal height of the figure,
; is the depth,
. is the stretchability,
is the shrinkability.

N~ IRy

It is useful to define ¢y and Fy as
to = (‘b0x’,0,0,0,0,0,0,0,0) and Fo = (‘top’,0,0,0,0).

The abstract pagination problems discussed in the previous chapter had
symmetry between the text items and the figures. This symmetry is not
carried over into this implementation because of the presence of penalty
items and glue in the text list. In the GP problem we allowed references
between two text items, or between two figures. This feature is dropped in
this chapter, not because it is very difficult to implement or because it would
not be useful, but merely because we would like to avoid further complication
in the notation.

Implementation

Instead of keeping track of the subproblems in a huge table, we choose
to remember them by using a list of breaknodes, one breaknode for each
subproblem that has been found to have a feasible solution. This way we
don’t have to allocate any storage to remember the subproblems that have
an unreasonably high badness, and we won’t need to examine such infeasible
subproblems when generating a new subproblem.

At any point in the algorithm, there will in general be some breaknodes
that are no longer useful for generating new subproblems, because the total
size of the material that would have to go onto a new page in order to
extend the embedding is larger than the page size, even when the maximum
shrinkability has been applied. These nodes are still needed, however, because
some of them will be involved in the optimum solution, and we don’t know
until the end which ones these will be. Therefore the breaknodes are stored
in two lists, the active list and the passive [ist; new breaknodes go into the
active list, and are moved to the passive list after it becomes evident that
they will no longer generate new subproblems. There is a certain danger
with this approach that an item with a negative size or glue with a very large
shrinkability mighf make it possible for a breaknode that has been moved
to the passive list to generate a new subproblem. One case where this could
happen is with the example of chapter one on page 14 where a sequence is
defined that allows the bottom margin of the page to vary by an integral
number of lines. The positive glue at the beginning may get partially or
totally cancelled out by negative glue that comes later, but if the pagination
routine didn’t know about that possibility, it would go ahead and deactivate
some breaknodes as soon as the positive glue had been examined. To avoid
this problem we introduce the safetymargin parameter, and do not deactivate
a breaknode until the compressed size of the text involved exceeds the page
size by this amount.

In addition to the lists ¢4,...,t, and FY,..., F},, the page breaking routine
needs the following parameters:

o b(k), the weight associated with the bc;undary between page k& and

page k + 1; typically this function will assume just two values,
large for & even and small for &k odd.

e pageheight, the height of the finished ﬂages.

e mazdepth, the maximum allowed depth of the page. If the bottom box on

the page has a depth that exceeds this value, it is raised so that its
bottom edge is mazdepth units below the normal bottom baseline.

58

Optimal Pagination Techniques

e topbaseline, the minimum height of the first line of text on the page.

The last three parameters could just as well be functions of the page
number, or of the first text item on the page; we will assume that they are
constant in order to simplify the presentation.

The algorithm as presented here will not look at topbaseline; instead, if
any box in the text list had a height h < topbaseline, we will assume that
it has been replaced by a box of height topbaseline preceded by an infinite
penalty item and glue with height h — topbaseline.

TEX allows the specification of a special insert item, called the topsep, that
is to be inserted after the last topinsert on the page, if there are any. There
is an analogous botsep for botinserts. We will not go into the details of how
these affect the badness calculation, but the description of the algorithm will
indicate where the appropriate adjustments need to be made.

To keep track of each subproblem and its best solution, each breaknode
has the following fields, where a is the pointer to the breaknode:

tezt(a) = number of text items to put before the break;
figures(a) = number of figures to put before the break;
pages(a) = number of pages before the break;
badness(a) = lowest badness for breaking this way;
previous(a) = pointer to breaknode for previous page;
link(a) = pointer to next breaknode in list.

The following variables are precalculated for 0 < £ < n,0 <[< m:

he= 3 (hi+di) Hi=) (H+Dj)
1<i<k 1<j5<l

U = Z Y Y= Z Y;

o T1<i<k 1<5<l

w3 w L= ¥ 7
1<i<k 1 1<5<1

and we let after(k) be the smallest index 7 > k such that either 2 > nor
is ‘box’. These tabulated values allow the total height, stretch, and shrink
on a page to be calculated quickly; for instance, if we need the total height
and depth of all the text items from the first box after text item a up to
text item b, we just do a subtraction:

izb - ;zaftcr(a)—-—l ’

Implementation

and similarly for the other values. _
We are now ready for the top-level description of the algorithm:

begin ({ tabulate the sums needed for the badness calculations});
(create a breaknode corresponding to no text and no figures);
1 :=0;
while : < n do
begin if (it is legal to break after t;) then
begin (deactivate useless breaknodes);
for j :=0to m do
(find and record the best feasible ways to break after ¢; and Fj});
end;
t =141
if ¢ < n then (update totals to include ¢;);
end;
{choose the best active node with n text items and m figures);
(trace back to find the optimum breakpoint sequence);
end.

The tabulation of the sums is straightforward, so we will omit its detailed
description. The global variable A will be used to point to the first node in
the active list, and P will point to the first node in the passive list. Thus

(create a breaknode corresponding to no text and no figures)=
begin A := newnode(tezt = 0, figures = 0, pages = 0, badness = 0,
previous = A, link = A);
P = A;
end.

Testing for a legal place to break is not hard to do:
(it is legal to break after ¢;)=

(r: = ‘penalty’) or ((r; = ‘box’) and (11 = ‘glue’))

A breaknode will no longer generate new subproblems when the height of
the text that would have to go on the new page, minus the shrinkability of
the text, exceeds the pagesize by more than the safety margin; we don’t need
to adjust for mazdepth, since this would only make it harder for the text to
fit on the page.

59

60

Optimal Pagination Techniques

(deactivate useless breaknodes)=

begin a := A; olda = A;
while a £ A do
begin 7’ := min(%, after (text(a)) — 1);
minstze == (fz, —hy — d;) — (2: — 2a);
if minsize > pageheight + safetymargin then
{(remove node at a and move it to passive list)
else begin olda := a; a := link(a);
end
end
end.

(remove node at a and move it to passive list =

begin if olda = A then A :== link(a)

else link(olda) := link(a) ;

newa := link(a); link(a) ;== P; P = a; a == newa;
end.

Now we have arrived at the most interesting part of the algorithm, namely
finding and recording the new feasible breaks. There might be more than
one way to break after ¢; and F}, each way ending up on a different page
boundary. We would like to generate all of these on one pass through the
active list; one way to do this would be to keep a table of new feasible breaks,
indexed by page number. The entry for page k would record the best way
known so far to break the text up to t; and the figures up to Fj into k pages.
After the whole active list had been examined, the new feasible breaks would
be moved from the table into the active list.

But there is a better way. If the active list is always maintained in
increasing order by page number, all the breaknodes that contribvte to
a given subproblem are grouped together in the list. Hence after all the
breaknodes for page k have been processed, a new breaknode for page k-1
can be inserted at the right place in the active list before going on to process
the old breaknodes for page k - 1. This eliminates the need to build a
table to keep new subproblems in, since we only need to work on one new
subproblem at a time. "

Implementation

(find and record the best feasible ways to break after ¢; and Fj)=

begin (calculate total weight of dangling references);
if dangweight < danglimit then
begin (indicate no new feasible subproblem yet); a := A4;
while a 5% A do
begin if ;7 > figures(a) then
begin (calculate adjustment ratio adjratio);
if (adjratio > —1) and (adjratio < adjratiolimit) then
begin (calculate total badness);
(record best feasible subproblem)
end
end;
if (link(a) = A) or (pages(link(a)) > pages(a)) then
(insert any new breaknode into the active list);
a := link(a); '
end
end
end.

This section of the code incorporates two mechanisms for pruning the
infeasible subproblems; one limits the total weight of the dangling references,
and the other limits the adjustment ratio. The latter mechanism is the same
one used by TEX’s line breaking algorithm, and guards against stretching
the glue too much. The dangling reference limit keeps the algorithm from
even considering such ridiculous things as putting all the figures on the first
page when the citations come much later. We could imagine adding other
types of pruning; for example a bound could be placed on the total badness
of any subproblem.

It should be noted that, in unusual circumstances, this pruning could cause
the discovered solution to be non-optimal—=the optimal solution might violate
one of these local bounds, but come out ahead because everything else works
out perfectly, or nearly so. But by specifying these limits, the user is saying
that any solution that violates them is too bad to consider, so what is really
wanted is the best solution that satisfies the limits. It might also happen that

61

62

Optimal Pagination Techniques

no such solution exists; in this case the active list becomes empty and the
algorithm essentially gives up. A production version would probably have to
do something more friendly for the user, as is done with the line breaking
routine of TEX. In any case, the limits could be raised and the pagination
retried, either automatically or manually.

Next we need to calculate the total weight of the dangling references. This
comes in two parts,

forward weight of reference d
from text item k to figure !/’ an

forwardtotal(i, 7) = Z
k<i
1>5

backwardtotal(z,7) = Z
k

>1
I<j

These could be tabulated ahead of time, but it seems better to keep only the
current row of each of these matrices, and update them when 7 increases;
since these rows will only change when the text item is a citation, the total
work done for the updating will be proportional to the number of figures
times the number of citations. This is small compared with the amount of
work we are doing in the rest of the algorithm.

Therefore, for the current value of ¢, let

backward weight of reference
from text item k to figure [/’

ftot(j) = forwardtotal(z, 5), and
btot(j) = backwardtotal(s, 7).

Initially, when z = 0,
ftot(j)=0 and btot(j) = > vk
klfe<j

Using these arrays, it is easy to expand
{calculate total weight of dangling references)=

dangweight := ftot(j) + btot(s)

Implementation

The next few sections are straightforward to fll out:

(indicate no new feasible subproblem yet)=
begin lowestbadness := infinity; bestprev := A
end.

(calculate adjustment ratio adjratio)=
begin ' := min(3, after (test(a)) — 1); 5’ :== figures(a);
height := (h; — ha) 4 (H: — Hp);
numtopinserts := tottop(j) — tottop(s’);
numbotinserts = j — 5/ — numiopinserts;
if numtopinserts > 0 then (account for topsep %
if numbotinserts > 0 then
begin (account for botsep); depth + Diastbor(s)
end :
else if 1 > text(a) then depth « d;
. else depth « (depth of topsep) ;
if depth > mazdepth then depth «— mazdepth;
height «— height — depth;
if height < pageheight then glue «— (§; — §,) + (¥; — ¥;r)
else glue «— (2; — 2,) + (ZJ — Za);
if glue < 0.0001 then glue +— 0.0001;
adjratio «— (pageheight — height)/ glue
end.

A few words of explaination are in order about this section of code. The
complications arise from the practical need to align the bottom baselines on
each page, whether the bottom box is a text item or an insert (typically a
footnote). To aid in determining which one of these situations occurs, two
additional precalculated arrays have been introduced:

tottop(7) = number of topinserts among Fy, Fy, ..., F;, and
lastbot(y) = index of last botinsert among Fy, Fy,. .., Fj.

If the glue is too close to zero or is neéative, 1t is arbitrarily set to a small
positive value; this gives a large adjustment ratio, as it should, unless the
height is also very close to the page height. This is an example of the kind
of details that arise when moving from theory to practice.

63

64 Optimal Pagination Techniques

Continuing, we define

(calculate total badness)=
totbadness := badness(a) Iadjra.ltio!3 + pi + dangweight X b(pages(a) -+ 1)

(record best feasible subproblem)=

if totbadness < lowestbadness then
begin lowestbadness := totbadness; besiprev := a;
end.

(insert any new breaknode into the active list)=

if lowestbadness < tnfinity then
begin :
- newa := newnode(text = i, figures = j, pages = pages(bestprev) + 1,
badness = lowestbadness, previous = bestprev, link = link(a));
link(a) := newa; a = newa; :
(indicate no new feasible subproblems yet)
end.

{update totals to include ¢;)=

if f; 5 0 then
begin if u; 7% 0 then
for k ;== 0to f; — 1 do ftot(k) := ftot(k) + u;;
if v; £ 0 then
for k := f; to m do btot(k) ;= btot(k) — v;;

end.

(choose the best active node with n text items and m figures)=
begin a := A; winner := A; lowestbadness := tnfinity;
while a 5~ A do

begin if (tezt(a) = n) and (figures(a)'= m) and
(badness(a) < lowestbadness) then
begin winner := a; lowestbadness := badness(a);
end; i
a = link(a);
end
end.

Implementation

And finally,
(trace back to find the optimum breakpoint sequence)=
begin if winner := A then
(there is no feasible solution)
else begin a := winner;
while a 5£ A do
begin (break after ttezt(a) and Frigures(a)); a := previous(a);
end
end
end.

The implementation described in this chapter is, of course, only one of the
many ways that the details of the pagination algorithm can be filled in. There
are many variations possible, and we shall discuss some of them here.

There is no limit to the number of variations that can be made on the
local badness function, as long as it only depends upon what goes on a single
page. It might, for example, take the page number into é,ccount, so that a
particular piece of text, say a chapter heading, could be forced to an odd
page. It could charge an extra penalty if the page contained more than one
figure, or if it contained a citation but not the cited figure. The function
might even invoke a heuristic page layout routine that tried to arrange the
contents nicely on the page, and returned an appropriate badness; such a
routine would need to be fast, though, because it would be called many
times. S

The existing algorithm is not very helpful when it fails to find 2 feasible
solution; there should be some useful feedback so that the user can easily see
where the input needs to be altered to allow a good solution.

Provided b(%) is really a function of, k mod 2, the routine does not really
have to remember the best feasible break for each page number, but only the
best break for an even page number and the best for an odd page number.
This could be done by having two active lists, one for even Page numbers and
the other for odd page numbers. The page number would no longer need to
be stored in the break node, because all that matters is its value modulo 2,
and this could be deduced by knowing which active list contained it. This
optimization could not be applied, however, if the page size were 2 function
of the page number.

65

VARIATION:

66

Optimal Pagination Techniques

The line breaking algorithm of TEX incorporates some refinements to avoid
making two adjacent lines with wildly different adiustment ratios. This same
idea could be applied to the pagination algorithm to avoid a drastic change
in the adjustment ratio between two facing pages.

Provided that the spacing between baselines was constant, the pagination
routine could interact with the line breaking routine to gain some extra
flexibility in the text. The line breaking routine would record in the vertical
list the additional demerits for making the paragraph longer or shorter by
a few lines; when the pagination routine calculated the badness, it would
consider each of the possibilites and pick the one that gave the best results.
This process is analogous to the selective use of abbreviations as an aid to
line breaking, as discussed in the paper by Knuth and Plass [9].

If the baseline spacing is not constant, for example because of the presence
of oversized characters in a line, the situation becomes more complicated.
By using a simple reduction from the 2-partition problem, this pagination
problem can be shown to be NP-complete. However, it is not strongly NP-
complete, and can be solved in polynomial time if the heights of the lines
are small integer multiples of some unit. For a more detailed discussion of
strong NP-completeness, the reader is referred to the book by Garey and
Johnson {12]. 7

Chapter 5

Connections

Why should we look to the past in order to
prepare for the future? Because there is
nowhere else to look. — J. Burke

THIS FINAL CHAPTER is to point out the relationship of this thesis with
earlier results, and to indicate some directions for further research.

Michael Barnett was one of the first researchers to apply the power of
a computer to typesetting.. The photocomposition machines then in use ac-
cepted input that was encoded on paper tape, and Barnett realized that there
was no reason why these tapes could not be produced by a suitably pro-
grammed computeér. His group at M.I.T. began working on this problem in
1961, and developed a series of experimental typesetting systems culminating
in the PC6 system [16]. This system, although quite impressive for its time,
did not include features for footnotes or for automatic placement of figures.
There were codes that a.llowed a section of text to be specified as not break-
able; the system would set part of such a section below the normal bottom
boundary of the page if a page break would ordinarily have fallen inside
of it. PC6 was the forerunner of two distinct lines of typesetting systems,
the RUNOFF/NROFF/TROFF family [17], and the PAGE-1/PAGE-2/PAGE-3
family [18]; the former group of systems were developed and used primarily
in academic and research environments, while the latter systems found more
commercial applications. None of these systems have comprehensive pagina-
tion routines built into them, but they proyvide primitives within a procedural
language that may be used to specify how pagination is to take place. This
makes it possible to write specifications for some quite complicated page for-
mats, but no attempt is made to base the pagmatlon decisions on more than
local information.

About the same time as Barnett’s work, a group headed by John Duncan
pursued similar goals at the Computing Laboratory of the University of

EARLY
COMPUTER
AIDED
TYPESETTING
SYSTEMS

68

FITTING IN
WITH THE
SYSTEM

PROCEDURAL
vs.
DECLARATIVE

Optimal Pagination Techniques

Newcastle-Upon-Tyne. Duncan’s experiments improved the state of know-
ledge about line breaking and hyphenation algorithms, and his survey work
[19] points out many of the requirements that a typesetting system needs to
satisfy before it can be useful in a commercial environment. He apparently
did not attempt to apply the experience gained in developing the line break-
ing algorithms to the analogous pagination problem.

Some of the typesetting systems in use today are PUB, SCRIBE, BRAVO,
and TEX [20,21,22,8]. These systems provide various degrees of flexibility in
the specification of figures, footnotes, and displays, but all of them make the
page breaking decisions one page at a time, based on local information. There
are undoubtedly many other systems in use, especially in the “real world” of
commercial printing, but it seems unlikely that they have pagination schemes
that are much more elaborate.

The pagination methods developed in this thesis fit in more gracefully with
some kinds of typesetting systems than others. Since it requires two passes,
it fits in best with a two-pass batch-oriented system. Since the pagination
does not need to be perfect in the initial drafts, the use of the optimizing
algorithm should be optional, perhaps invoking a second pass in an otherwise
one pass system. Amnother approach is similar to that taken by SCRIBE
for cross-referencing: the information about the text and figure lists can be
written as a separate file each time the system runs, and the page breaks
can be chosen on the basis of the information recorded on the previous run.
This means that in most cases the program would ultimately need to be
run twice to get the correct pagination. A variation of this approach is to
run the pagination routine as a separate program, taking the auxiliary file
written by the first run of the typesetter as input, and producing another file
that tells the typesetter how to do the pagination on the next run. This is
the approach that was taken for the experimental versions of the pagiration
routine, using TEX as the host system.

People like to classify computer langiages as being either procedural or
declarative; a procedural language is one in which the specifications are
written as instructions that the machine is to follow step-by-step in order to
get the desired output. A declarative language, on the other hand, allows
the user to specify goals and constraints that the output is to satisfy, and
the system is to translate these into actions to produce an output that meets
those goals and constraints. No real typesetting language can be placed

Comnnections

entirely into one of these éategories or the other, but most of them have a
predominant style of specification that can be used to classify them. Many
typesetting systems appear to be declarative to the novice user, with the
procedural specification of the ‘styles’ being left to experts.

The optimizing pagination algorithm fits in more naturally with the de-
clarative style of specification. The use of glue, penalties and references is a
non-procedural way. of describing constraints.

Another way to classify systems is as interactive or batch. An interactive
system lets the user see right away how the output is affected by changes to
the document, and this instant feedback can be very helpful in maintaining
the user’s interest and avoiding the frustrations of waiting for the results
of batch runs. A batch system processes the whole document, with little
or no feedback to or guidance from the user. Each of these approaches
has its advantages and disadvantages. The advantages of the interactive
approach are fairly clear, but an interactive typesetting system requires
special terminals that are not yet widely available, or standardized. The
batch approach allows existing equipment to be used, with the possible
exception of the output device, which may be shared by many users. The
batch environment is somewhat more inclined to the notion of separating
the task of the author from that of the compositor—the style of the output
can be changed by merely changing to a different set of document design
specifications. This is not to say that this cannot be done with an interactive
system, but with such a system the author tends to take the appearance

of the page into account as he writes, so that if the style is subsequently’

changed, it may not work out as well as the original style. This tendency
is not necessarily a bad thing, however, because if the document design that
the author uses while writing is the same as the one that will be used in
the eventual publication, the result will likely be a better-looking and more
readable document.

The optimizing pagination algorithm is designed for a batch environment,
and so its appiication in an interactive tenvironment is somewhat clumsy.
The most promising immediate approach seems to be to have the interactive
system work with a ‘galley’ of text not yet broken into pages. The pagination
routine could then be applied when theiuser asks for the document to be
printed. A more ambitious approach would be to modify the algorithm to fit
mm with the interactive environment; provided adequate storage is available,
by using appropriate data structures it might be possible to update the

69

BATCH
vs.
INTERACTIVE

70 Optimal Pagination Techniques

information in the breaknodes in response to small changes in the file without
having to recompute them all. This kind of technique should be explored in
connection with the line breaking problem before trying to make it work for
pagination.

prosLems There are still many aspects of the pagination problem that are promising
R Esmamcn for further research. For example, alternatives to the global optimization
approach should be investigated. One idea is to optimize locally, just taking
the next few pages into account. It is not hard to see how to cook up
examples that will lead such a locally optimizing algorithm astray, leading
up to a bad break at the end, while causing the no-lookahead algorithm
no problems. This shows that increasing the lookahead will not necessarily
increase the quality of the output. However, it would be interesting to see
how well such a bounded lookahead scheme would work in practice.

As mentioned in chapter four, the optimizing algorithm can be made to
work in conjunction with heuristic page layout routines. There are other ways
of incorporating approximations into the pagination routine; for instance,
inset figures could be handled satisfactorily by doing the pagination as if they
were full width figures with the same area as the original figures; afterwards’
the paragraphs could be re-broken in order to fit them around the figures.
The optimizing line breaking algorithm would be helpful in this regard, since
it could break the text .on the page in such a way that it would come out
to the right number of lines. Layout artists traditionally use approximate
copyfitting techniques to do such tasks, so methods like this hold much
promise.

Bibliography

Douglas C. McMurtrie, The Book: The Story of Printin:g and
Bookmaking, Oxford University Press, New York, 1943.

Joseph Moxon, Mechanick Ezercises, J. Moxon, London, 1683.
Reprinted by the Typotheta of New York, 1896, with preface and
notes by T. L. De Vinne; also reprinted by Oxford University Press,
London, 1958, and by Dover, New York, 1978. Quoted passages are
from vol. 2, page 217. ‘

Theodore W. Chaundy, Percy R. Barrett, and Charles Batey, The
Printing of Mathematics, Oxford University Press, London, 1957.

Alexander Lawson, Printing Types: An Introduction, Beacon Press,
Boston, 1971. : |

Theodore Low De—Vinne, Correct Composition, Vol. 2 of The Practice
of Typography, Century, New York, 1901. The referenced material
appears on pages 171-175 and 343.

Bruce Rogers, Paragraphs on Printing, William E. Rudge’s Sons,
New York, 1943. Reprinted by Dover, New York, 1979. The quoted
material appears on pages 50, 57, and 160.

Paul E. Justus, ‘There is more to typesetting than setting type,’
IEEE Transactions on Professional Communications PC-15, 13-16,
18 (1972).

Donald E. Knuth, 7gX and METAFONT: New Directions in
Tupesetting, American Mathematical Society and Digital Press,
Bedford, Massachusetts, 1979. ‘

j
Donald E. Knuth and Michael F. Plass, ‘Breaking Paragraphs into Lines,’
to appear in Software: Practice and Ezperience (1981); also available as
Stanford CS report STAN-CS-80-828.

72

Optimal Pagination Techniques

[10] Stephen A. Cook, ‘The complexity of theorem-proving procedures,’
Procedings of the Third Annual ACM Symposium on Theory of
Computing, Association for Computing Machinery, New York, 151-158
(1971).

[11] Richard M. Karp, ‘Reducibility among combinatorial problems,’
in R. E. Miller and J. W. Thatcher (eds.), Complezity of Computer
Computations, Plenum Press, New York, 85-103 (1972).

[12] Michael R. Garey and David S. Johnson, Computers and Intractability,
W. H. Freeman, San Francisco, 1979.

[13] Michael R. Garey, David S. Johnson, and L. Stockmeyer, ‘Some
simplified NP-complete graph problems,’ Theoretical Computer
Science 1, 237—-267 (1976).

[14] Richard Bellman, Dynamic Programming, Princeton Univ. Press,
Princeton, N.J., 1957.

[15] S. Even and Yossi Shiloach, ‘NP-completeness of several arrangement

problems,” Report No. 43, Department of Computer Science, Technion,
Haifa, Israel, 1972.

[16] Michael P. Barnett, Computer Typesetting: Ezperiments and Prospects,
M.LT. Press, Cambridge, Mass., 1965.

[17] Joseph F. Ossanna, ‘NrROFF/TROFF User’s Manual,” Bell Telephone
Laboratories Internal memorandum, Murray Hill, New Jersey, 1975.

(18] John Pierson, Computer Composition using PAGE-1,
Wiley-Interscience, New York, 1972.

[19] C. J. Duncan, ‘Look! No hands!’, The Penrose Annual 57, 121-168
(1964).

[20] Larry Tesler, PUB: The Document Compzler, Stanford Artificial
Intellegence Project Operating Note 70, 1973.

[21] Brian K. Reid and Janet H. Walker, SCRIBE Introductory User’s
Manual, Unilogic, Ltd., Pittsburgh, PA, 1980.

[22] Bravo Manual, XEROX Corporation, 1979.

