
324 TUGboat, Volume 45 (2024), No. 3

My website exploring language support
and more in libre TrueType and
OpenType fonts: https://typosetting.co.uk

Ken Moffat

Abstract

At typosetting.co.uk I have a website where I
explore libre OpenType and TrueType fonts to try
to see which languages they support (and to note
mismapping of codepoints when I spot them). I am
using X ELATEX to produce PDFs showing the glyphs
in the fonts, the languages I think they support, and
some other comparisons between fonts.

1 Introduction

For many years I have been interested in using fonts
which render all the text I am likely to see on mailing
lists (whether or not I can read it), and whatever
text is presented in the various rabbit-holes I dive
into on Wikipedia.

My previous websites for doing this began in
or before 2013. I had a C++ program to list what
was in a font, and various Bash and Perl scripts.
For the PDFs I was using LibreOffice, and at that
time it indicated missing codepoints. In PDFs which
compared files I referenced the font numbers.

Later, I added a second table (to avoid renum-
bering) for some other fonts, and then in 2023 I
revisited fonts and added a third table.

Along the way, perhaps in 2016, LibreOffice
had changed to plucking missing glyphs from other
fonts when a font lacked a codepoint. Before that I
had picked up a little information for testing LATEX
etc. to check that from-source builds worked, and
determined that X ELATEX mostly worked for me when
displaying multiple languages.

For all languages I cover, I show Article 1 of
the Universal Declaration of Human Rights to give a
flavour of how text will look. For Latin and Cyrillic
alphabets and monotonic Greek I attempt to show
the whole alphabet including accented letters.

As a novice I used the default page layout with
large margins and lots of space above and below the
text. I ignored text that overflowed and did not think
about any hyphenation.

My initial interest was only for on-screen output.
At that time fontconfig was the tool that decided
which glyphs to use. (Now browsers, office suites, and
desktop environments can all override fontconfig.)
As a result, I ignore any supporting files which might
be on CTAN and can happily use a newer version of
a font even when CTAN is out of date.

2 The new site: typosetting.co.uk

I prefer a readable dark-mode site without JavaScript.
The PDFs have a white background as usual, and
links to directories use a white background.

The three tables are now merged into one, keep-
ing the same numbers. I have added indexes to link
the fontconfig names to the table entries, and simi-
larly to link my own identifiers (which omit spaces
and are usually based on the filename). Figure 1
shows the first few rows of the table

That table is now very wide. I inserted a column
showing when I revised the PDF for the supported
languages, with links to the .tex file and a link for
the small cap .tex file if there is one. The lines above
the table, and on other pages, are much narrower,
based on what looks good with my default sans font.

For fonts which do not cover Latin or Cyrillic
alphabets or CJK languages I am not attempting
to revise the pre-2024 documents. Although I have
always used HarfBuzz with Graphite2, some of the
old rendering of complex scripts might be poor [1].

I have not yet revised several CJK fonts where
I am aware of newer versions. For any file revised
before 2024 there is a possibility that it will no longer
compile in X ELATEX and there are probably typos in
any Latin or Cyrillic alphabets, outdated Article 1
text in a few languages, and ugliness (formatting of
CJK, and some of the TEX markup).

At the end of 2023 I realised that showing over-
long lines was poor. For many languages with Latin
alphabets polyglossia can usually do an adequate
job of fitting the available space. But for Cyrillic
alphabets, Greek, CJK and others the font needs a
specific OpenType tag (cyrl, grek, hani, etc.). For
Northern Sami (supposedly supported, but did not
hyphenate) I found some guidance online for splitting
the words into syllables. Similarly, for several Cyril-
lic languages where I was unable to use polyglossia I
found various suggestions on how to split syllables.
The results may be ugly to native readers.

For a few languages, and for some small caps
fonts, I have to reformat the Article 1 text. Mostly
I now use shorter lines to avoid putting vast spaces
between words. For monospace fonts, much of the
output includes spaces added automatically to justify
the lines, but occasionally I will add non-breaking
spaces to replicate what happens in a graphical ter-
minal such as xfce4-terminal.

3 Characteristics I have noted

I have grouped fonts into sans, serif, and monospace,
and then for Latin alphabets tried to separate the
styles (transitional serif, modern serif, etc.). For
monospace and sans I am no longer sure that such a

doi.org/10.47397/tb/45-3/tb141moffat-typosetting

Ken Moffat

https://typosetting.co.uk
https://typosetting.co.uk
https://typosetting.co.uk
https://doi.org/10.47397/tb/45-3/tb141moffat-typosetting


TUGboat, Volume 45 (2024), No. 3 325

Figure 1: The start of the big table at typosetting.co.uk.

distinction is generally useful. In the past, particu-
larly in my comparative “lipsum” files, I have made
a similar distinction for types of Cyrillic fonts. For
CJK fonts I am now tending towards merely labelling
them as sans or serif— the terminology varies and
is not always consistent for CJK fonts for a specific
language.

Beyond that I show italics and bold weights for
fonts offering Latin alphabets. For recent families
I mention the range of weights, and briefly show
Cyrillic italics.

For CJK fonts I hope to create language-specific
files showing codepoints known to differ across lan-
guages, together with examples of each Noto CJK
font and WenQuanYi Zen Hei (a preferred font in
fontconfig). The first of these, CJK-sans-sc, is in
the files/PDF-cjk/ and files/cjk-tex/ directo-
ries (sc for Simplified Chinese). I have few sans (Hei)
sc fonts so this was an easier place to start, but many
of the chosen codepoints look similar in sans fonts.

4 Validating my analysis, tools and
templates

I doubt there is much of significance in any of my
analysis of what a font covers, but in the last year I
have read many articles online where research could
not be validated, sometimes because the tools were
not available. In addition, many fonts needed weird
workarounds in some places, particularly for extended
text in small caps. So I have attempted to make all
my tools, and my templates, available.

4.1 Templates

For people using X ELATEX and/or polyglossia (and
perhaps for users of LuaLATEX) the templates are
perhaps the most interesting thing (apart from the
.tex files for any fonts of interest to them). They
currently include:

4.1.1 languages-full.tex

This is for attempting to see which languages a font
covers. It includes a few languages which are covered
by FreeSans and FreeSerif.

Beyond that, it has a lot of comments for me
about things to look at when I revise an old file, and
reminders about mentioning styles (normal, italic)
and weights— in the past I tended to talk of font
“faces” — followed by sections for the various lan-
guages.

If a language supports Vietnamese I attempt to
show the added accents for the various tones. The
individual letters are precomposed, but I show a
separate combining accent at the start of the line
to indicate what is used. A few fonts do not sup-
port those combining accents, in those cases I show
their missing glyph indication. More commonly, the
combining accent is either in the gutter (negative
spacing needed) or ends up being inset (monospaced
fonts). None of the PDFs have well-aligned columns
for all of these accented letters.

For my revisions after the site went live I now
try to be specific about how missing codepoints are
rendered, but most files use older, more general,
language like “blank spaces”, “nothing”, or “indication
of a missing glyph”.

For quotation marks I show all supported vari-
ants, but for currencies and some other symbols such
as copyright I list them all whether or not they exist
in that font. The output messages usually end with
missing codepoints. I now know that I need to review
those messages, particularly where HarfBuzz might
add an accent or simulate a non-breaking hyphen.

The CJK area starts with a series of codepoints
which may have different forms in some of the lan-
guages. That is to help me decide at which language
a font is targeted, and will be deleted once I’ve made
the decision. It then includes some English text to
help me know where the margins should be (in theory
the X ELATEX CJK settings near the front of the file
should fix that) which I will again delete.

In some cases, all I need to do for fontspec
is use the name known to fontconfig; for X ELATEX,
unlike LibreOffice, this is the first name, before any
comma, if there is more than one name. But for
several fonts, such as Carlito, FreeSerif, lmroman
and Junicode, I had to add a Path statement within

My website exploring language support and more in libre TrueType and OpenType fonts

https://typosetting.co.uk


326 TUGboat, Volume 45 (2024), No. 3

the setmainfont invocation to find one or more of
the related font files.

4.1.2 languages-sc.tex for small caps

A very much cut-down template, for Latin and Cyril-
lic alphabets, and monotonic Greek. Many fonts
with small caps omit certain less-common letters.
For Azeri or Turkish (which use both dotted and
dotless i) I was advised to use lowercase dotless i
with combining dot above.

4.1.3 languages-italic.tex

A working document, to help me decide which lan-
guages have italics and/or small cap italics.

4.1.4 Hangul-Hanja.tex

Until recently I assumed that Hanja (South Korean
Han) glyphs were no longer in common use. But
it seems they are still used, both for place names
on signs (probably only sans glyphs) and for both
surnames and given names in official documents. I
found a 2015 PDF of the list of permitted glyphs
online, organized by Hangul syllable. But I cannot
paste from that, and the only online pastable glyphs
are mostly in Wikipedia, under Korean given names.
Those pages are for notable people, so many of the
permitted glyphs are not shown.

In addition, many of the glyphs are hard for me
to distinguish unless I enlarge a text file until it is
hard to navigate. As a result, these are only a subset
of the permitted glyphs and probably contain some
duplicates — certainly the initial files I created have
a few duplicates.

The aim of this is to let me say “seems to ade-
quately cover Hanja used in names”, or “covers most”,
“covers many”, . . .

4.2 Programs and scripts

These programs and scripts assume I am the only
user on the machine, I make no attempt to use secure
names for temporary files and am happy to write
working files to known names in /tmp. These items
have evolved since 2011, I do not normally touch
most of them.

In files/tools/to-compile are directories for
the following two tools and also source tarballs.

4.2.1 get_codepoints

The first requirement is to identify which codepoints
are provided in a font. I found a has_char script by
user repolho on github (github.com/repolho/has_
char) which is public domain. It links to fontconfig
and attempts to bypass the (obsolete?) rules that
fontconfig uses to determine if a font has all the
codepoints needed for the current locale.

I have been using this since 2016 with various
releases of fontconfig and GNU C++, most recently
fontconfig-2.15.0 and gcc-14.1.0.

4.3 getfonts

That get_codepoints script reads a TTF (normally,
a regular or medium file, I suppose other files could
have fewer codepoints). But historically fonts for Chi-
nese and Japanese have been supplied as TTC (True-
Type Collection) files to save space and fit within
a size limit. I used to use fontforge to extract an
individual TTF, but it was always very difficult to
use (tiny faint text, very hard to read, and prone to
errors while trying to extract a single font to a TTF).

If I now need to repeat the process I found a repo
called textile at github, designed for copying TTFs
from a TTC on Mac OS X (github.com/DavidBarts/
getfonts). The program is called getfonts; I had
to fiddle about a bit to get it working. On the TTC
I tested, it did not find the font name, so I had four
numbered fonts. But looking at fc-list showed me
the names of each so it is good enough.

I had hoped to fork the original repo, then work
out what I had changed and add the changes as
individual commits, but time is not on my side.

4.4 create-codepoint-files

This script is how I get the lists of codepoints in
a file. At times in the past I have had problems
with things not found by get_codepoints, so as a
backup I install ttfconfig.pl which is shipped in
the examples part of Perl module Font-TTF-Scripts
(metacpan.org/dist/Font-TTF-Scripts).

I have had special code to deal with known TTC
files, but it looks as if that is no longer used and only
a variable remains.

Then I merge both files, converting the code-
points to 0xXXXX or 0xXXXXX format so that I
can sort them, then write them as U+XXXX or
U+XXXXX. After that I run the font-contains
script, described next, to create the coverage file
which lists the codepoint ranges of this font within
their blocks.

4.5 font-contains

This sources the unicode-blocks script (described
below) and then converts the codepoint to decimal for
less-slow shell maths — on a big font such as the main
(Latin, Cyrillic, Greek) Noto or Source fonts, or the
Noto CJK fonts, it will take several minutes. Unicode
values with five hex digits are written to a temporary
file for a second pass (probably unnecessary). It
then uses the data from unicode-blocks to find

Ken Moffat

https://github.com/repolho/has_char
https://github.com/repolho/has_char
https://github.com/DavidBarts/getfonts
https://github.com/DavidBarts/getfonts
https://metacpan.org/dist/Font-TTF-Scripts


TUGboat, Volume 45 (2024), No. 3 327

which block it should be in and writes lines of the
contiguous codepoints present within that block.

4.6 generate-all-characters

This Bash script attempts to write every character in
a font to a text file. That text file can then be opened
in LibreOffice Writer, changed to use the required
font, and formatted with page headings, footings and
repeating the block names after the page breaks. If
the 32 characters for a line (or to the end of the block
if sooner) have gaps, spaces are used as padding.

For combining characters they are applied to
a space, which usually works fairly well for Latin
and Cyrillic combining accents. For more complex
scripts the results may be poor (again see [1]) With
CJK fonts I typically notice that Han glyphs are
double-width, but that Hangul (Korean) seems to be
an intermediate width.

4.7 Determining coverage of small caps

Most fonts with small caps include them as variants
of the normal lowercase letters. Sometimes I can read
what is in the file and generate the codepoints with
some degree of confidence. I also report things I’m
not sure about, which led me down rabbit holes for
old Polish and for the Ukrainian yi-yi combination.

4.7.1 find-small-caps

A Bash script using the otfinfo program from Eddie
Kohler’s lcdf-typetools [2].

4.7.2 merge-sc-codepoints

This Bash script then merges the list of small caps
codepoints into an updated codepoint file, adding
‘+sc’ wherever there is a small cap available.

4.8 unicode-blocks

This is the data used by generate-all-characters:
a list of the decimal values for the end of each
block (strictly, the first value after this), a value
for MAXBLOCK (378 as of Unicode 15.1.0 : unassigned
blocks may be split in the future), and the block
names with a list of their Unicode ranges. The
process to create this is discussed in the next section.

4.9 Updating Unicode

When a coverage report shows codepoints in an unas-
signed area, it implies that Unicode has been ex-
tended. To update the data I use the following
scripts:

4.9.1 Blocks.txt

I use the current list of Unicode assigned blocks. It
can be downloaded from unicode.org/Public/UCD/
latest/ucd/.

4.9.2 update-blocks.sh

This script processes Blocks.txt to create the file
unicode-blocks. Although it invokes /bin/sh it
might be Bash-specific.

It creates a temporary file, assignments.txt,
and uses the parse script to get blocks and to create
unassigned blocks to fill the gaps. Then it concate-
nates the files to get the unicode-blocks file.

4.9.3 parse

This invokes /usr/bin/perl to read through the
assignments.txt file. At the end it appends the
number of blocks.

5 Acknowledgements

Bob Tennent for suggesting otfinfo -g to list the
small caps.

Don Hosek for suggesting dotless i with combin-
ing dot above for Turkish small caps.

Both Bruno Voisin and Herbert Voss suggested
alternative approaches to listing the small caps; these
are in the tex-live list archives for October 2023
(tug.org/pipermail/tex-live/2023-October/).

David Carlisle for explaining how HarfBuzz will
add combining accents to base characters or alterna-
tively use precomposed characters when combining
accents are added.

Max Chernoff pointed to an alternative approach
to typesetting a grid of characters showing all code-
points using LuaTEX; in the tex-live list archives
for May 2024.

Werner Lemberg prompted me to dive deeper
into CJK formatting. After discovering how to fix
X ELATEX for this, I later found draft W3C recommen-
dations.

To all these people, and anyone I’ve missed—
thanks for your help.

References

[1] Behdad Esfahbod. State of Text Rendering 2024.
behdad.org/text2024/

[2] Eddie Kohler. LCDF Typetools.
www.lcdf.org/type/

⋄ Ken Moffat
https://typosetting.co.uk

My website exploring language support and more in libre TrueType and OpenType fonts

https://unicode.org/Public/UCD/latest/ucd/
https://unicode.org/Public/UCD/latest/ucd/
https://tug.org/pipermail/tex-live/2023-October/
https://behdad.org/text2024/
https://www.lcdf.org/type/

	Introduction
	The new site: https://typosetting.co.uk
	Characteristics I have noted
	Validating my analysis, tools and templates
	Templates
	languages-full.tex
	languages-sc.tex for small caps
	languages-italic.tex
	Hangul-Hanja.tex

	Programs and scripts
	get_codepoints

	getfonts
	create-codepoint-files
	font-contains
	generate-all-characters
	Determining coverage of small caps
	find-small-caps
	merge-sc-codepoints

	unicode-blocks
	Updating Unicode
	Blocks.txt
	update-blocks.sh
	parse


	Acknowledgements

