
270 TUGboat, Volume 44 (2023), No. 2

Enhancing accessibility of structured
information via ‘Tagged PDF’

Ross Moore

It is common practice in LATEX to use coding such
as in the following listing, resulting in a layout as
shown in Figure 1. (Names are smeared for privacy.)

The \AOP\ consisted of:

<-1st member->\footnote{<-affil->} (chair),

<-2nd member->\footnote{<-affil->},

<-3rd member->\footnote{<-affil->}, ...

When reading the names one ‘glances’ down the
page to check the affiliation, or in some PDF readers,
hovers over the footnote marker link to induce the
pop-up, as shown in Figure 1.

Figure 1: sequence of names/authors and affiliations

However, what if ‘glancing’ is not possible? For
example, the reader is visually-impaired, for whom
a pop-up also is not appropriate. Even the concept
of ‘page’ need not be relevant or useful.

Figure 2: capturing structure, using ‘Tagged PDF’

In several countries there are now anti-discrim-
ination laws or policies1 which for the most part
embody the principle that “. . . agencies must give
disabled employees and members of the public access

1 https://www.section508.gov/manage/laws-and-policies/

to information comparable to the access available to
others.”

To achieve a result, as in Figure 2, the first step
is to rearrange coding as in this next listing.

The \AOP\ consisted of:

\begin{AOPpanel}

\AOPchair{<-1st ...->\footnote{<-affil->}}

\AOPmember{<-2nd ...->\footnote{<-affil->}}

...

\AOPlastmember{<-5th ...->\footnote{<-affil->}}

\end{AOPpanel}

using definitions in a preamble or package, such as:

\newenvironment{AOPpanel}{\ignorespaces}{}

\newcommand{\AOPchair}[1]{\PRPpanel{#1} (chair)}

\newcommand{\AOPmember}[1]{, \PRPpanel{#1}}

\newcommand{\AOPlastmember}[1]{ and \PRPpanel{#1}.}

\newcommand{\PRPpanel}[1]{#1}

One can see on the right in Figure 2 that
the visual layout is the same as in Fig-
ure 1. However tagging in the left panel
of Figure 2 shows how the punctuation is
separated out from the panelist informa-
tion; with a separate structure element
for each. Each use of a macro \AOPchair,
. . . , corresponds to a detail in how the in-
formation fits into the single paragraph.
\PRPpanel handles the real information,
combining both the name with the af-
filiation in a footnote; Figure 3 shows
this in greater detail. This is all enclosed
in a structure for the {AOPpanel} as a
whole.

The way the user-defined macros and environment
are used, provides a way to capture the ‘semantics’
of this sequence of panelist names and affiliations.

The reason for using a separate
\PRPpanel macro, rather than one
named \AOP... is because there are
other similar structures in this same doc-
ument. Differences in the tagging, and
hence the semantics being captured, can
be associated with the surrounding envi-
ronment, whilst \PRPpanel can be com-
mon to all such situations. In Figure 3 we
see part of an earlier page in the same
document. The footnote numbers are
earlier, and there is no existing para-
graph surrounding the {PRPauthors}

structure.

\newenvironment{PRPauthors}%

{\ignorespaces}{\bigskip\bigskip}

\newcommand{\PRPchair}[1]{\PRPpanel{#1} (chair)}

\newcommand{\PRPauthor}[1]{, \PRPpanel{#1}}

\newcommand{\PRPlastauthor}[1]{ and \PRPpanel{#1}}

doi.org/10.47397/tb/44-2/tb137moore-pdf-html

Ross Moore

https://www.section508.gov/manage/laws-and-policies/
https://doi.org/10.47397/tb/44-2/tb137moore-pdf-html

TUGboat, Volume 44 (2023), No. 2 271

Figure 3: tagging of the PRP authors

Figure 3 shows the result from \PRPpanel, as
tagging a <PRPpanelist> structure, numbered in
sequence. Firstly the name is placed, followed by
a <Reference> structure, consisting of the super-
scripted \footnotemark as anchor for an active hy-
perlink. This is followed immediately by the <Note>
structure coming from the \footnotetext, repeat-
ing the mark as a <Lbl> then placing the text.

For a person reading with Assistive Technology
(AT) navigating via structure, the analog of ‘glancing
down the page’ is to simply move by a single element
from the <Reference> to its following <Note>, or to
use the hyperlink to get to the same location.

While the first \footnotemark uses a custom
<SupScript> structure, which is ‘Role-mapped’ to a
standard , the second usage does not. There
the <Lbl> structure has an attribute dictionary:

<< /O /Layout /TextPosition /Sup >>

For deriving to HTML (see below) this attribute
cannot be applied to the <Link> structure; hence
the extra <SupScript> is used.

Constructing a ‘Tagged PDF’ document which
is structured as shown in Figures 2 and 3 requires a
highly sophisticated LATEX macro system to produce
the tagging of both structure and content. The
tagpdf LATEX package is under development, but
not yet ready for real-world documents such as the
one shown here. Instead this author and colleagues
use coding developed by the author, under the name
tpdf. A full description of tpdf is beyond the scope
of this article.

However, it should be clear that part of any
such system must include extending or re-defining
the expansions of the macros used for user input;
that is, the \AOP... and \PRP... macros, the envi-
ronments {AOPpanel} and {PRPauthors} as well as
LATEX internal commands (e.g., for processing foot-
notes and hyperlinks) and environments generally.
With environments there are ‘hooks’ which allow for
additional coding to be executed in 4 different places
via \AddToHook{⟨hook⟩}; so env/AOPpanel/before

and env/AOPpanel/after allow coding
to be added before and after the en-
vironment itself is processed. These
can be used to control how the en-
vironment’s structure fits into that
of the surrounding document. Simi-
larly, hooks env/AOPpanel/begin and
env/AOPpanel/end can place more cod-
ing inside the environment, affecting how
information is handled within the envi-
ronment itself, without affecting outside.
Both pairs of hooks are useful.

Furthermore, one can modify \AOPpanel and
\endAOPpanel from the expansions provided when
the environment was set up using \newenvironment.
There is a \patchcmd macro in the etoolbox pack-
age, but often it is easier to redefine the expansions
directly, whilst keeping a copy of the original expan-
sion in case needed within the redefined version.

\NewCommandCopy\LTX@AOPpanel\AOPpanel

\newcommand\TPDF@AOPpanel[1]{....}

\NewCommandCopy\AOPpanel\TPDF@AOPpanel

Use similar coding for adjusting \endAOPpanel.

For example, the \TPDF@PRPpanel replacement
for \PRPpanel must implement the following tasks:

• close off any preceding text, leaving the <Para>
open;

• increment the counter for the kind of panelist;

• start the next <PRPpanelist> structure, num-
bered appropriately;

• process the argument #1; that is, place the name
as tagged text, then allow a \footnote{...}

command to be processed with its argument.

It is a modified version of internal commands called
by \footnote that handles tagging of the footnote
markers and text, resulting in the tagging seen in
Figure 3. After that is all done, structure is closed to
the level of the original <Para>, to allow any further
panelists to be included, as seen in Figure 2.

PDF reuse as HTML and XML, attributes
and classes

Typically visually impaired people prefer to read
documents via HTML, using Assistive Technology
(AT) such as screen-readers, Braille keyboards, and
more. Previously PDF files have been regarded as
inaccessible, compared with HTML. Standards such
as PDF/UA are intended to redress this situation;
but old habits and preferences cannot be expected
to be altered until AT software updates sufficiently
to better handle Tagged PDFs built to conform to
newer standards.

Enhancing accessibility of structured information via ‘Tagged PDF’

272 TUGboat, Volume 44 (2023), No. 2

Figure 4: HTML coding derived from \PRPpanel usage

<div class="PRPanelist" data-pdf-se-type-original="PRPanelist" data-pdf-se-type="Div" id="PRPanelist.6">

(-- 2nd author --)<a href="#Note.15" class="Xlink" data-pdf-se-type="Link"

aria-details="Note.15" aria-label="AOP panelist 2 affiliation" id="Link.0994">

⁶

<p class="PRPaffil" data-pdf-se-type="Note" name="Hfootnote.6" id="Note.15">

^{6 }

Atlantic States Marine Fisheries Commission, Massachusetts Division of Marine Fisheries. (5/23, 5/24, 8/3)

</p></div>

Fortunately there is good online software2 that
‘derives’ a well-structured single HTML file from a
valid PDF/UA document. Figure 5 shows the result
of using this with our real-world example PDF, for a
sequence of panelists, viewed in the Firefox browser.
Being a single HTML file, there is no concept of ‘page’
to determine where to place footnotes. Instead, the
<Note> structure is floated to the right using CSS

rules, explained below.

Figure 5: HTML version of the PRP authors

To better understand Figure 5, one needs to look
at part of the raw HTML coding, as shown above in
Figure 4. One sees that each HTML tag (<div, <sup,
<p, <span) has a unique id="..." attribute, inher-
iting the corresponding structure’s unique name from
the PDF. Namely, the paragraph with id="Note.15",
which comes from the <Note> structure having the
footnote text as can be seen in Figure 1, becomes the
target for the hyperlink from <a href="#Note.15".

Also shown, as lighter colored attributes and
values, are the PDF structure-element names, with
-original indicating a ‘Custom’ structure name.
This maps to a ‘Standard’ name as shown in the
attribute which follows. Such user-defined HTML

attributes would be ignored by web browsers, unless
specially set up to handle them.

For layout on the HTML page, the important
attributes are class="...". The specified names
and affiliations are subject to CSS style rules:

.PRPanelist { clear:right; }

.PRPaffil { float:right; font-size:small;

margin:0 0 0 5px; width:60%; }

2 ngPDF: https://ngpdf.com/

This use of float and clear is what turns an
otherwise horizontal sequence into what appears to
be a 2-column vertical listing.

For Accessibility, having anchor text being just
a single digit, say ‘2’, is not very informative. Hence
the aria-label="..." tells what kind of informa-
tion is found at the link target. A longer description,
via aria-details="...", is at the target location it-
self. With such attributes for all internal hyperlinks,
WCAG Level A Success Criterion 2.4.43 is fulfilled
for this document. This uses the concept of ‘Acces-
sible Name’,4 here built from the anchor-text and
aria-label value.

Figure 6: link attributes

Figure 6 shows the array of attribute dictionaries
specified for the hyperlink within the PDF document,
as shown in figures 2 and 5. These control how
the link works when exported into either HTML or
XML formats. Notice how the XML version uses a
target of Hfootnote.6, which is the name of the PDF

‘Destination’. On the other hand, HTML requires
the ‘Structure Destination’ of Note.15.

Within the PDF, the hyperlink is implemented
as an ‘Annotation’ of subtype ‘Link’, as shown in

3 Web Content Accessibility Guidelines: https://www.w3.
org/TR/WCAG21/#link-purpose-in-context

4 https://www.w3.org/WAI/ARIA/apg/practices/

names-and-descriptions/

Ross Moore

https://ngpdf.com/
https://www.w3.org/TR/WCAG21/#link-purpose-in-context
https://www.w3.org/TR/WCAG21/#link-purpose-in-context
https://www.w3.org/WAI/ARIA/apg/practices/names-and-descriptions/
https://www.w3.org/WAI/ARIA/apg/practices/names-and-descriptions/

TUGboat, Volume 44 (2023), No. 2 273

Figure 7: Link annotation dictionary

Figure 7. This dictionary includes a clickable ‘Rect-
angle’ on the specific page, as well as specifying the
‘Action’ to be taken when clicked. The D field value
of Hfootnote.6 names the target within the PDF,
while SD provides a reference to the structure, having
object number 4533 and named as Note.15, found
at that location; that is, a ‘Structure Destination’.
Notice how this object also provides its name for
export to both XML and HTML formats, specifying
the respective ‘Attribute’ type (either id or name).
Also there is the ‘Class’ name of PRPaffil, used for
CSS styling as discussed earlier.

One further detail, seen in Figure 5, is that the
punctuation has been suppressed to become simply
 . This is achieved in the PDF con-

tent stream as shown in Figure 8. Appearing as
a comma within the PDF using the ‘show string’
of [(,)]TJ, the /Alt(...) and /ActualText(...)

provide alternatives that can be spoken by a screen-
reader or used with text extraction.

Figure 8: handling variants for punctuation

Access tags

A special kind of structure and content is provided by
so-called ‘Access’ tags, whose presence can be seen
by the <access> in Figure 3, and near the bottom
of the HTML listing in Figure 5. These use /Alt

and /ActualText similarly to the above, having a
‘show string’ of [()]TJ (see Figure 9) which places
a space character, but using the ‘dummy font’ having
width 0.001 pt, as obtained with the \pdffakespace
primitive. This space is imperceptible within the
typeset PDF, yet is still selectable. With an empty
string for /ActualText it adds no content to the
HTML and XML exports.

Figure 9: ‘Access Tag’ after footnote

However, a non-empty /Alt(...) string, as in
Figure 9, affects what is spoken by some (but not all)
screen-reading software, including Adobe Reader’s
‘Read Out Loud’ facility. With ‘ ; ’ creating a slight
pause, the descriptive markup conveyed via these
‘Access’ tags is separated from actual content being
read. Furthermore, the complete stream that is read
can be exported as ‘Text (Accessible)’ from Adobe
software. In Figure 10 we see how the sequence of
names shown in Figures 1 and 2 will be spoken or
exported. The judicious use of \n\n inserts line-
breaks to help break up the text stream nicely upon
export.

Conclusions

Here we have attempted to show, using a ‘real-world’
example document, how with a relatively simple

Enhancing accessibility of structured information via ‘Tagged PDF’

274 TUGboat, Volume 44 (2023), No. 2

Figure 10: Accessible Text for screen-reading

The A O P consisted of: ; start of AOPauthors block ; (-- 1st author --) , Ph.D.

; refer to footnote 5 ;

; start of footnote 5 ; Northeast Fisheries Science Center, Woods Hole, Massachusetts. (5/23, 5/24, 8/3)

; end of footnote ; (chair)

; and ; (-- 2nd author --), Ph.D.

; refer to footnote 6 ;

; start of footnote 6 ; Atlantic States Marine Fisheries Commission, Massachusetts Division of Marine

Fisheries. (5/23, 5/24, 8/3)

; end of footnote ;

; and ; (-- 3rd author --), Ph.D.

...

adjustment of source coding, the semantics of struc-
tured information can be captured explicitly within a
‘Tagged PDF’ document. Each use of a user-defined
macro or environment provides a place where extra
meaning can be captured for presentation, not just
visually on a page, but preserved for export into
other formats. The various figures show how and
where this information can be stored inside the PDF,
and also where it then appears within derived HTML

and Text-only export formats.
By giving consideration also to CSS styling for

the exported HTML, and WCAG recommendations
for enhancing Accessibility, one can indeed provide
“disabled . . . access . . . comparable to . . . others”.
Even the tiniest details, such as punctuation, can
be handled so as to enhance each alternative view,
without compromising the high-quality visual layout
that is (LA)TEX’s hallmark.

Technical notes

All the images and figures used in this article origi-
nate from a ‘real-world’ document intended for pub-
lication and release into the public domain.5 Re-
searchers’ names have been deliberately blurred, so
as not to be easily extractable. Similarly, names have
been replaced by generic place-holder strings in the
textual outputs of Figures 5 and 10. Those authors
and panel members have nothing whatsoever to do
with the techniques of ‘Tagged PDF’ production and
the export into other formats being discussed here.

Figure 1 is a (doctored) view using Apple’s ‘Pre-
view’ application, using ‘TEXshop’6 on a MacBook;
most of the page’s content was removed and the rest
compacted to better display the relevant parts. Fig-
ures 2, 3 and 6–9 are views using Adobe’s ‘Acrobat
Pro’ application,7 involving various panels to display

5 at http://www.science.mq.edu.au/~ross/TaggedPDF/
FallMT2022/ as FallMT2022.html and FallMT2022.pdf.

6 TEXshop: https://pages.uoregon.edu/koch/texshop/
7 Acrobat Pro: https://www.adobe.com/products/

acrobat-pro-cc.html

visual content, ‘Tags’ tree, an ‘Attribute’ array, an
internal view of a portion of the ‘Structure Tree’,
and internal parts of a ‘Page Content’ stream in raw
PDF. All graphic editing of screen-shots was done
using ‘GraphicConverter’8 for macOS.

Figure 4 is a screenshot, taken while using the
‘Firefox’ browser, of the HTML webpage derived by
‘ngPDF’ at the website2 stated earlier. Figure 5 is
from a text-editor application (‘Erbele’9 for macOS)
which was used to work with the HTML document
source. With Figure 10 Apple’s ‘TextEdit’10 was
used to present the Text (Accessible), exported from
‘Acrobat Pro’; but any text-editing software would
be sufficient for this. Other textual code-listings were
done using either ‘Erbele’ or the default editor for
‘TEXshop’, which was the application for composing
this article. It was also the application used to build
the “real-world” 185-page ‘Tagged PDF’ document
that has supplied the examples, built using LATEX.
All software used was running on an Apple ‘MacBook
Pro’11 device.

⋄ Ross Moore
School of Mathematical and Physical

Sciences
Macquarie University
Sydney, Australia
ross.moore (at) mq dot edu dot au

https://researchers.mq.edu.au/en/

persons/ross-moore

8 GraphicConverter: https://www.lemkesoft.de/en/

products/graphicconverter/
9 Erbele text editor: https://apps.apple.com/de/app/

erbele/id1595456360
10 TextEdit: https://support.apple.com/en-au/guide/

textedit/welcome/mac
11 MacBook Pro: https://www.apple.com/macbook-pro/

Ross Moore

http://www.science.mq.edu.au/~ross/TaggedPDF/FallMT2022/
http://www.science.mq.edu.au/~ross/TaggedPDF/FallMT2022/
https://pages.uoregon.edu/koch/texshop/
https://www.adobe.com/products/acrobat-pro-cc.html
https://www.adobe.com/products/acrobat-pro-cc.html
https://www.lemkesoft.de/en/products/graphicconverter/
https://www.lemkesoft.de/en/products/graphicconverter/
https://apps.apple.com/de/app/erbele/id1595456360
https://apps.apple.com/de/app/erbele/id1595456360
https://support.apple.com/en-au/guide/textedit/welcome/mac
https://support.apple.com/en-au/guide/textedit/welcome/mac
https://www.apple.com/macbook-pro/

