
TUGboat, Volume 44 (2023), No. 2 287

Cheats (or not): When \prevdepth = -1000pt

Hans Hagen

There are numerous quantities that a user can set in
TEX, for example \parskip and \parindent. These
are internal registers, and being registers they can be
manipulated with for instance \advance. The more
curious \prevdepth and \prevgraf are not registers
but are properties of the current list. They are set
by the engine but users can also set them in order
to control or even fool the machinery. Here we focus
on \prevdepth.

The depth of a box is normally positive but rules
can have a negative depth in order to get a rule above
the baseline. When TEX was written the assumption
was that a negative depth of more than 1000 points
made no sense at all. The last depth on a vertical
list is registered in the \prevdepth variable. This is
essentially a reference into the current list.

In order to illustrate some interesting side effects
of setting this \prevdepth, and especially when we
set it to −1000pt, this special sentinel value can be
changed in LuaMetaTEX. However, as dealing with
the property is somewhat special in the engine, you
should not set it unless you know that the macro
package is aware of it.

line 1\par line 2\par\nointerlineskip line 3\par

Assuming that we haven’t set any inter-para-
graph spacing this gives:

line 1L__

line 2L__

line 3L__

Here \nointerlineskip is (normally) defined as:

\def\nointerlineskip{\prevdepth-1000pt }

TEX also internally sets \prevdepth to −1000pt
at the beginning of a vertical list, or just after a rule,
to automatically suppress the next interline glue at
those places.

In LuaMetaTEX we made all these hard-coded
numbers configurable and this −1000pt is one of
them. One reason for this is that it makes it easier
to explain some of the side effects. When I tried to
explain this to a curious user it was no fun to show
pages spanning thousands of points. The variable
that we can set is named \ignoredepthcriterion;
in LMTX, that variable is used when we need to
check for the magical value of \prevdepth.

We are now ready to give a more extensive ex-
ample (\ruledhbox is a ConTEXt command):

\ruledhbox \bgroup

\PrevTest{-10.0pt}\quad

\PrevTest{-20.0pt}\quad

\PrevTest{-49.9pt}\quad

\PrevTest{-50.0pt}\quad

\PrevTest{-50.1pt}\quad

\PrevTest{-60.0pt}\quad

\PrevTest{-80.0pt}%

\egroup

The \PrevTest helper, to construct a box of a
given depth (negative in our cases here), is defined
as (first example):

\def\PrevTest#1%

{\setbox0\ruledhbox{\strut$\tf#1$}%

\dp0=#1

\vbox\bgroup\hsize4em

FIRST\par

\unhbox0\par

LAST\par

\egroup}

or (second example)

\def\PrevTest#1%

{\setbox0\ruledhbox{\strut$\tf#1$}%

\dp0=#1

\vbox\bgroup

\ruledhbox{FIRST}\par

\box0\par

\ruledhbox{LAST}\par

\egroup}

In this example we set \ignoredepthcriterion
to−50.0pt instead of the normal−1000pt. The result
is shown in figures 1 and 2. The first case is what
we normally have in text; we haven’t set prevdepth
explicitly between lines, so TEX just looks at the
depth of the lines. In the second case, where we
typeset boxes instead of their contents, the depth
is ignored when it is less than the criterion value
which is why, when we set the depth of the box to a
negative value, we get somewhat interesting skips.

FIRSTL__

−10.0ptL__

LASTL__

FIRSTL__

−20.0ptL__

LASTL__

FIRSTL__

−49.9ptL__

LASTL__

FIRSTL__

−50.0ptL__

LASTL__

FIRSTL__

−50.1ptL__

LASTL__

FIRSTL__

−60.0ptL__

LASTL__

FIRSTL__

−80.0ptL__

LASTL__

Figure 1: Showing explicitly-set depths of lines.

FIRST
−10.0pt
LAST

FIRST
−20.0pt
LAST

FIRST
−49.9pt
LAST

FIRST
−50.0pt

LAST

FIRST
−50.1pt

LAST

FIRST
−60.0pt

LAST

FIRST
−80.0pt

LAST

Figure 2: Depths above and below the magic
\prevdepth value.

doi.org/10.47397/tb/44-2/tb137hagen-prevdepth

Cheats (or not): When \prevdepth = -1000pt

https://doi.org/10.47397/tb/44-2/tb137hagen-prevdepth

288 TUGboat, Volume 44 (2023), No. 2

I’m sure one can use this effect in ways other
than intended, but I doubt is any user is interested
in doing so. Still, the fact that we can lower the
criterion makes for nice experiments. For the record,
in figure 3 you see what we get with positive values:

\ruledhbox \bgroup

\PrevTest{10.0pt}\quad

\PrevTest{20.0pt}\quad

\PrevTest{49.9pt}\quad

\PrevTest{50.0pt}\quad

\PrevTest{50.1pt}\quad

\PrevTest{60.0pt}\quad

\PrevTest{80.0pt}%

\egroup

Watch the interline skip kick in when we make
the depth larger than \ignoredepthcriterion, set
here to (positive) 50pt. The (extremely) small addi-
tional space at 50.1pt is generated from \lineskip,
while the full \baselineskip shows up at 60pt.

FIRST
10.0pt
LAST

FIRST
20.0pt

LAST

FIRST
49.9pt

LAST

FIRST
50.0pt

LAST

FIRST
50.1pt

LAST

FIRST
60.0pt

LAST

FIRST
80.0pt

LAST

Figure 3: Positive depths.

So why don’t we run into these side effects in
regular documents? Simply because no one uses these
excessive depths in box production, and also because
hardly any user will work with such large paper sizes
so for most users 1000pt (let alone −1000pt) is not
something that they will naturally encounter.

This is true for many more mechanisms: sane
usage is expected, so extreme cases can be ignored
deep down in the engine. For instance, this is also
why (due to old-times’ performance reasons) wrap
around of integers (and dimensions are just integers)
is not that harmful and sometimes even useful, for
instance when collecting content in boxes, where only
when a user manipulates a related dimension some
checking for overflow happens. Let’s call them handy
side effects.

Appendix: Implementation

For the record, here is the relevant snippet from
original TEX:

@d ignore_depth==-65536000

{|prev_depth| value that is ignored}

...

if prev_depth > ignore_depth then begin

d := width(baseline_skip) - prev_depth

- height(b);

if d < line_skip_limit then

p := new_param_glue(line_skip_code)

else begin

p := new_skip_param(baseline_skip_code);

width(temp_ptr) := d;

end;

link(tail) := p;

tail := p;

end;

link(tail) := b;

tail := b;

prev_depth := depth(b);

What we did was to make the ignore_depth

constant into something like
int_par(ignore_depth_criterion_code).

If you look at the LuaMetaTEX code you will
find something similar to the above, but there we
split into functions. We also interface to a bit more
granular paragraph (property) management, as well
as adding callbacks.

⋄ Hans Hagen
Pragma ADE

Hans Hagen

	Appendix: Implementation

