
102 TUGboat, Volume 44 (2023), No. 1

An introduction to automata design with
TikZ’s automata library

Igor Borja

Abstract

This article is a quick introduction to TikZ’s au-
tomata library, used for the design and typesetting
of finite automata in LATEX. It also explores the
use of TEX loops and conditionals to automate the
generation of images that follow noticeable patterns.
TikZ itself is a package used for generating a variety
of figures— from geometry configurations to graphs
and automata—allowing for more control over im-
age editing and quality. Although the package is
very versatile, its uses for designing automata will
be the primary topic of this article.

1 Introduction and basic syntax

Finite automata, also called finite state machines,
are a basic concept in computer science for model-
ing computation. Wikipedia (en.wikipedia.org/
wiki/Finite-state_machine) provides an introduc-
tion to the topic.

In this article, all the code to typeset an au-
tomaton will be contained inside a tikzpicture en-
vironment [3]. After starting the environment, you
can pass optional arguments, separated by a comma,
such as node distance and arrow style. A reminder:
the node distance (which we’ll see below) must be a
dimension (cm, em, pt, etc.).

1.1 Nodes

You can declare a node of an automaton via the
following syntax:

\node[state, ⟨state modifiers⟩,
⟨position modifiers⟩] (⟨id⟩) {⟨name⟩};

Note that a node declaration should always end in a
semicolon. Let’s analyse all of these parameters:

1. Every state node must begin with the word
state.

2. State modifiers are mostly used to indicate that
node is the initial node or an accepting node,
and thus are often not needed.

3. Position modifiers are used to place a node rela-
tive to another (already declared) node. Some
common modifiers are right=of ⟨id⟩, left=

of ⟨id⟩, below=of ⟨id⟩ and above=of ⟨id⟩. Here,
⟨id⟩ is the id of the node relative to which the
positioning is carried out.

Also, it’s possible to give dimensions via the
xshift and yshift parameters to achieve man-
ual control over the position after the relative
placement.

4. The ⟨id⟩ is the unique identifier that will be
used to refer to that node later.

5. The ⟨name⟩ is the text that will appear in the
automaton, inside the circle that represents that
node. It does not need to be plain text; it’s also
possible to use a math expression (enclosed by
single $ signs).

A minimal working example:

\documentclass{standalone}

\usepackage{tikz}

\usetikzlibrary{automata}

\usetikzlibrary{positioning, arrows}

\begin{tikzpicture}

[->, node distance = 2cm]

\node[state] (p) {$p = 1$};

\node[state, accepting, right=of p,

yshift= -2cm] (q) {$q = 2$};

\end{tikzpicture}

p = 1

q = 2

Figure 1: Two nodes

The use of ⟨direction⟩ of=⟨id⟩, although correct, is
marked as deprecated in PGF/TikZ source code [4].

1.2 Edges

You can declare an edge between two nodes with the
following syntax

(⟨id-head⟩) edge[⟨options⟩]
node[⟨options⟩]{⟨value⟩} (⟨id-tail⟩);
Every sequence of consecutive edge declarations

must be preceded by a \draw command. Also, a
semicolon is used to indicate the last edge declaration
of a sequence; any that come after that and before
another \draw command will be ignored. Therefore
(provided n1, n2, n3 have all been declared), this
is correct:

\draw

(n1) edge node{text} (n2)

(n2) edge node{more text} (n3)

(n2) edge node{more text} (n1);

\node[state, above=of n1] (n4) {text};

\draw

(n3) edge node{more text} (n4);

While this is (for both reasons mentioned above)
not correct:

doi.org/10.47397/tb/44-1/tb136prado-automata

Igor Borja

https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Finite-state_machine
https://doi.org/10.47397/tb/44-1/tb136prado-automata

TUGboat, Volume 44 (2023), No. 1 103

\draw

(n1) edge node{text} (n2)

(n2) edge node{more text} (n3)

(n2) edge node{more text} (n1)

\node[state, above=of n1] (n4) {text};

(n3) edge node{more text} (n4);

The edges are treated as directed—to get the
visual effect of undirected edges, remove the arrow
in the environment options.

1.2.1 Analysing the different components
of an edge command

⟨id-head⟩ is the identifier of the head node—the
node from which the edge is originated.

⟨id-tail⟩ is the identifier of the tail node—the
node to which the edge arrives.

The options after the edge keyword indicate how
the edge should be drawn. The following options are
the most common:

• Directions right, left, below, above: indicate
from where the edge should leave

• loop: specifies that the edge should loop and go
back to the head node. Using the loop option
makes TikZ ignore the tail node’s id (which can
be left empty).

Combining the loop option with directions
indicates where the loop should be rendered:
above, to the right, left or below the node.

• bend: indicates bends in the edge to a certain
direction

The options after the node keyword indicate
how the text associated with that edge should be
drawn. The most common arguments are the four
main directions right, left, above and below.

Defaults: if no edge-positioning options are
given, the edge will be drawn as a straight line by
default. Also, if no node options (i.e., options that
determine the positioning of the edge text) are pro-
vided, the text will be rendered at the “center” of
the edge by default. See both behaviors below:

\documentclass{standalone}

\usepackage{tikz}

\usetikzlibrary{automata}

\usetikzlibrary{positioning, arrows}

\begin{tikzpicture}

[->, node distance = 2cm]

\node[state] (p) {$p = 1$};

\node[state, accepting, right=of p,

yshift=-2cm] (q) {$q = 2$};

\draw

(p) edge node{hello} (q)

(p) edge[loop] ();

\end{tikzpicture}

p = 1

q = 2

hello

Figure 2: Two nodes, a labeled edge and a loop

2 Loops and automation by example

Here we show a more complex example.

2.1 Context

Consider the language L over the alphabet Σ =
{a, b} that contains all the sequences with at least
2 characters a and at least 1 character b. Note that
L is the intersection of two regular languages (over
the same alphabet {a, b}): the set of strings with at
least 2 characters a and the set of strings with at
least 1 character b.

Therefore, using the construction detailed in
[2], a possible finite automaton that recognizes L is
M = (Q, {a, b}, δ, q0,0, q2,1), where

Q =
{
qi,j

∣∣∣ 0 ≤ i ≤ 2 ∧ 0 ≤ j ≤ 1
}

are the states that can be reached. The transition
function δ works as follows: δ(qi,j , a) = qmin(2,i+1),j

and δ(qi,j , b) = qi,min(1,j+1).
In other words, qi,j represents that the string

read has (up to that point) i characters a (if i < 2)
or 2 or more, if i = 2. Also, it has j characters
b if j < 1, else it has 1 or more. Representing it
graphically, we get the following state diagram:

q0,0start q1,0 q2,0

q0,1 q1,1 q2,1

a a
a

b b b

a a
a

b b b

Figure 3: State diagram

An introduction to automata design with TikZ’s automata library

104 TUGboat, Volume 44 (2023), No. 1

which we can produce with the following LATEX code:

\begin{tikzpicture}

[->, node distance = 1.3cm]

\node[state, initial] (a0b0)

{$q_{0,0}$};

\node[state, right=of a0b0] (a1b0)

{$q_{1,0}$};

\node[state, right=of a1b0] (a2b0)

{$q_{2,0}$};

\node[state, above=of a0b0] (a0b1)

{$q_{0,1}$};

\node[state, above=of a1b0] (a1b1)

{$q_{1,1}$};

\node[state, accepting, above=of a2b0]

(a2b1) {$q_{2,1}$};

%% Horizontal edges in first layer

\draw

(a0b0) edge node[above]{a} (a1b0)

(a1b0) edge node[above]{a} (a2b0)

(a2b0) edge[loop right]

node[right]{a} (a2b0);

%% First set of vertical edges

\draw

(a0b0) edge node[right]{b} (a0b1)

(a1b0) edge node[right]{b} (a1b1)

(a2b0) edge node[right]{b} (a2b1);

%% Horizontal edges in second layer

\draw

(a0b1) edge node[above]{a} (a1b1)

(a1b1) edge node[above]{a} (a2b1)

(a2b1) edge[loop right]

node[right]{a} (a2b1);

%% Second set of vertical edges

\draw

(a0b1) edge[loop above]

node[above]{b} (a0b1)

(a1b1) edge[loop above]

node[above]{b} (a1b1)

(a2b1) edge[loop above]

node[above]{b} (a2b1);

\end{tikzpicture}

It is easy to see that this state diagram’s grid-
like structure generalizes nicely to the family of lan-
guages (Lm,n)m,n∈N, where Lm,n is the language of
strings with at least m characters a and at least n
characters b.

However, drawing the state diagram for Lm,n

quickly becomes too much work, since there will be
(m+1)(n+1) nodes and 2(m+1)(n+1) edges: even
at small values (say, m = 4 and n = 3) it is still
more than 60 lines of code.

2.2 Loops

However, due to its very simple structure, render-
ing automata like this one can be abstracted and
automated in a relatively straightforward way, us-

ing foreach loops, available through the package
pgffor.

1. For the nodes, it’s possible to draw first q0,0
with id a0-b0, then for each 1 ≤ i ≤ m draw
qi,0 at the right of qi−1,0 and attribute to it
the id a⟨i⟩-0 (where ⟨i⟩ is a placeholder for the
value of i). This completes the first row.

Then, for each 1 ≤ j ≤ n and for each 0 ≤
i ≤ m we draw qi,j above qi,j−1 and attribute
to it the id a⟨i⟩-b⟨j ⟩. At each iteration it is
necessary to check if i = m and j = n, in which
case we need to add the accepting option.

2. For the edges, we have four different cases: stan-
dard horizontal edges, standard vertical edges,
edges that loop above the node and edges that
loop at the right of the node.

For each 0 ≤ i ≤ m − 1 and 0 ≤ j ≤ n,
we build a horizontal edge from qi,j to qi+1,j .
Then, for each 0 ≤ i ≤ m and 0 ≤ j ≤ n− 1 we
build a vertical edge from qi,j to qi,j+1. Finally,
we build an edge that loops above qi,n for each
0 ≤ i ≤ m and an edge that loops at the right
of qm,j for each 0 ≤ j ≤ n.

It is necessary to refer to i− 1 and j − 1 several
times in this algorithm. However, simply using the
TEX code \i - 1 and \j - 1 and a\i - 1b\j - 1

(for ids) in the TEX code won’t work: loop indices in
foreach loops function as standard variables defined
with \def (just with restrained scope). That means
that any reference \i will be replaced by the value
of \i (as a string), so the expression \i - 1 will not
be evaluated. For example, if i = 5, \i - 1 will be
replaced by 5 - 1.

In order to fix that, we use the fixed-point arith-
metic package called fp and its command for eval-
uating expressions: \fpeval. The implementation
below summarizes all that in working LATEX code, ab-
stracting it all in a command with three arguments
called \gridAutomata. The first argument is the
node distance, the second is m and the third is n:

\usepackage{ifthen}

\newcommand{\gridAutomata}[3][2cm]

{

\begin{tikzpicture} [

->,

node distance = #1,

]

%% building first row of nodes

\ifthenelse{\equal{#2}{0}}

{

% if m == 0

\ifthenelse{\equal{#3}{0}}

{

\node[state, initial,

Igor Borja

TUGboat, Volume 44 (2023), No. 1 105

initial where=below, accepting]

(a0-b0) {$q_{0,0}$};

}{

\node[state, initial,

initial where=below]

(a0-b0) {$q_{0,0}$};

}

}{

% if m > 0

\node[state, initial, initial where=below]

(a0-b0) {$q_{0,0}$};

\foreach \i in {1,...,\fpeval{#2 - 1}}

{

\node[state,

right=of a\fpeval{\i - 1}-b0]

(a\i-b0) {$q_{\i, 0}$};

}

\ifthenelse{\equal{#3}{0}}

{

% if m > 0 and n == 0

\node[state,

right=of a\fpeval{#2 - 1}-b0,

accepting]

(a#2-b0) {$q_{#2, 0}$};

}{

% if m > 0, n > 0

\node[state,

right=of a\fpeval{#2 - 1}-b0]

(a#2-b0) {$q_{#2, 0}$};

}

}

%% other rows

\foreach \j in {1,...,#3}

{

\foreach \i in {0,...,#2}

{

\ifthenelse{\equal{\i}{#2}

\AND \equal{\j}{#3}}

{

\node[state,

above=of a\i-b\fpeval{\j-1},

accepting]

(a\i-b\j) {$q_{\i, \j}$};

}{

\node[state,

above=of a\i-b\fpeval{\j-1}]

(a\i-b\j) {$q_{\i, \j}$};

}

}

}

%% Constructing the edges

%% Loops above

\foreach \i in {0,...,#2}

{

\draw (a\i-b#3) edge[loop above]

node[above]{b} (a\i-b#3);

}

%% Rightmost loops

\foreach \j in {0,...,#3}

{

\draw (a#2-b\j) edge[loop right]

node[right]{a} (a#2-b\j);

}

%% Horizontal edges

\foreach \i in {0,...,\fpeval{#2 - 1}}

{

\foreach \j in {0,...,#3}

{

\draw (a\i-b\j) edge

node[above]{a} (a\fpeval{\i+1}-b\j);

}

}

%% Vertical edges

\foreach \j in {0,...,\fpeval{#3 - 1}}

{

\foreach \i in {0,...,#2}

{

\draw (a\i-b\j) edge

node[right]{b} (a\i-b\fpeval{\j + 1});

}

}

\end{tikzpicture}

}

Using this command for m = 4, n = 3 with a node
distance of 1.5 cm yields the result below:

q0,0

start

q1,0 q2,0 q3,0 q4,0

q0,1 q1,1 q2,1 q3,1 q4,1

q0,2 q1,2 q2,2 q3,2 q4,2

q0,3 q1,3 q2,3 q3,3 q4,3

b b b b b

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

b b b b b

b b b b b

b b b b b

Figure 4: Result for m = 4, n = 3

This command’s generality allows for construc-
tion of a larger example. The image on the next page
uses the values m = 7, n = 8 with a node distance
set to 1.5 cm.

An introduction to automata design with TikZ’s automata library

106 TUGboat, Volume 44 (2023), No. 1

q0,0

start

q1,0 q2,0 q3,0 q4,0 q5,0 q6,0 q7,0

q0,1 q1,1 q2,1 q3,1 q4,1 q5,1 q6,1 q7,1

q0,2 q1,2 q2,2 q3,2 q4,2 q5,2 q6,2 q7,2

q0,3 q1,3 q2,3 q3,3 q4,3 q5,3 q6,3 q7,3

q0,4 q1,4 q2,4 q3,4 q4,4 q5,4 q6,4 q7,4

q0,5 q1,5 q2,5 q3,5 q4,5 q5,5 q6,5 q7,5

q0,6 q1,6 q2,6 q3,6 q4,6 q5,6 q6,6 q7,6

q0,7 q1,7 q2,7 q3,7 q4,7 q5,7 q6,7 q7,7

q0,8 q1,8 q2,8 q3,8 q4,8 q5,8 q6,8 q7,8

b b b b b b b b

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

b b b b b b b b

Figure 5: Result for m = 7, n = 8

Igor Borja

TUGboat, Volume 44 (2023), No. 1 107

3 More customization possibilities

3.1 Absolute positioning

It is also possible to define the position of each node
manually, as a coordinate pair. The syntax is:

\node[state] at (⟨x ⟩, ⟨y⟩) (⟨id⟩) {⟨name⟩};
The fields ⟨x ⟩ and ⟨y⟩ are the x and y components
of the position. To better illustrate this, we make
use of the help lines option to draw a 3× 3 grid,
in which the nodes will be positioned.

a

b

c

Figure 6: An isosceles triangle

\begin{tikzpicture}[<->]

\draw[help lines] (0,0) grid (3,3);

\node [state] at (0, 0) (a) {a};

\node [state] at (1, 2) (b) {b};

\node [state] at (3, 1) (c) {c};

\draw

(a) edge (b)

(b) edge (c)

(c) edge (a);

\end{tikzpicture}

3.2 Drawing arcs and bending edges

Especially when avoiding crossing edges in more
complicated automata, it is useful to be able to draw
edges as arcs (instead of straight lines). In plain TikZ
it is possible to render arbitrary arcs, specifying the
center, the starting and stopping angle, and the
radius (as shown in [5]):

\draw (⟨x ⟩,⟨y⟩) arc (⟨start⟩:⟨stop⟩:⟨radius⟩);
Through the automata library, however, the

syntax is simplified for the case of an arc between
two (already defined) nodes.

(⟨id1 ⟩) edge[bend ⟨options⟩] (⟨id2 ⟩);
More commonly, a directional option (left or

right) is used to inform in which side the arc should
be rendered. Furthermore, its radius can also be
changed, by including the angle (in degrees) of the
arc. Our last example illustrates these options:

a

b c
15◦ arc

90◦ arc

60◦ arc

Figure 7: Various arcs

\begin{tikzpicture}

\node[state] at (0, 0) (a) {a};

\node[state] at (1, 1) (b) {b};

\node[state] at (3, 1) (c) {c};

\draw

(a) edge[bend left=15] node[above left]

{15° arc} (b)

(b) edge[bend left=90] node[above=0.25]

{90° arc}(c)

(c) edge[bend left=60] node[below]

{60° arc} (a);

\end{tikzpicture}

References

[1] S. Sikdar. Drawing Finite State Machines in
LATEX using TikZ: A Tutorial, 2017.

[2] M. Sipser. Introduction to the Theory of
Computation. Thomsom/Course Technology,
2005. Pages 48–50.

[3] T. Tantau, et al. The TikZ and PGF
Packages: Manual for version 3.1.10, ch.
Automata Drawing Library, pp. 571–575. 2023.
ctan.org/pkg/pgf

[4] TeX Stack Exchange. Difference between
“right of=” and “right=of” in PGF/TikZ.
tex.stackexchange.com/questions/9386.

[5] TeX Stack Exchange. How is arc defined in
TikZ? tex.stackexchange.com/questions/

175016.

[6] TikZBlog. Automata diagrams in LATEX.
latexdraw.com/automata-diagrams-in-

latex, 2021.

⋄ Igor Borja
igorpradoborja (at) gmail dot com

https://github.com/IgorPBorja

An introduction to automata design with TikZ’s automata library

https://ctan.org/pkg/pgf
https://tex.stackexchange.com/questions/9386
https://tex.stackexchange.com/questions/175016
https://tex.stackexchange.com/questions/175016
https://latexdraw.com/automata-diagrams-in-latex
https://latexdraw.com/automata-diagrams-in-latex

	Introduction and basic syntax
	Nodes
	Edges
	Analysing the different components of an edge command

	Loops and automation by example
	Context
	Loops

	More customization possibilities
	Absolute positioning
	Drawing arcs and bending edges

