
164 TUGboat, Volume 43 (2022), No. 2

siunitx: Launching version 3

Joseph Wright

1 Introduction

Typesetting units is an important task for scientists
and engineers. When done in (LA)TEX, it is natural
to use a macro-based approach to carry out the
formatting. I entered this area in 2008 with the LATEX
package siunitx, which I’ve looked at in TUGboat
before (Wright, 2011; Wright, 2018). Last year, I
launched version 3 of siunitx after development over
several years. Here, I will recap why this came about
and how I went about launching the latest version.

2 Looking back

I started developing siunitx in late 2007, when I
answered a question about a bug in a previous pack-
age, SIunits (Heldoorn and Wright, 2007). I quickly
decided to write a new package, which combined
SIunits and SIstyle (Els, 2008) with a key–value in-
terface and bringing in some new ideas. The first
release of siunitx was available at Easter 2008.

This first release worked well, and soon picked
up lots of users. However, internally it was essentially
a mix of material from the previous packages put
together. It also had some poor choices for key names,
which I very much wanted to address. I therefore
wanted to work on a second implementation, and got
on to that in 2010.

Around this time, I started working with expl3
coding, and quickly decided to move siunitx to using
expl3 internally. The re-write meant starting from
scratch in some ways, but I got a lot of work done
pretty quickly and was quite happy with the results.

3 Moving forward again

Version two retains most of the features that version
one had, but as well as the good ones, it turns out
it retained some issues, particular in the internal
API. I needed to look at a system where the different
parts of the siunitx system communicated with each
other using a documented approach. To support that,
and to keep things working with existing sources, I
needed tests. And there was a big issue with fonts.

The font assumptions in versions 1 and 2 carry
all the way through from SIstyle (Els, 2008), and
which I adjusted only slightly. The approach was:

1. Detect the current font type using LATEX
internal data.

2. Insert everything inside \text (an \mbox).

3. Apply \ensuremath inside the box.

4. Perhaps apply \text again (for text mode
output).

5. Force the font by using e.g. \mathrm or
\rmfamily.

That requires a lot of work, and it’s not always
easy to get it right. So there is a new approach for
version three:

1. Detect current font type using LATEX internal
data.

2. Set any aspects that are needed.

3. Only use an \mbox if math version has to be
altered.

This ‘minimal change’ approach is much faster
than the current one, and is much better at respecting
font changes. The downside is that this is quite hard
to map in all cases to the older keys: we were going
to need a way to deal with this.

3.1 Making it all work

Getting version 3 out needed me to solve three major
issues:

1. Testing;

2. Backward compatibility;

3. Handling multi-part and complex values.

Only one of those (the third) is an area for
just me: the first two are general, and tools from
the LATEX team have helped. Over the past few
years, we have developed l3build (Wright, 2022) as an
automated testing tool. So development of version 3
has been backed by testing for everything : each code-
level API and all of the key–value interfaces have
dedicated tests.

It’s not possible to be entirely backward-com-
patible with the scale of the changes I’ve made in
siunitx. Luckily, the LATEX team have also provided
a mechanism to handle this. The user can add

\usepackage{siunitx}[=v2]

and this will load the last version of v2; all I have to
do is set things up as a package author. The siunitx
source thus contains:

% Set up a couple of commands in recent-ish

% \LaTeXe{} releases.

\providecommand\DeclareRelease[3]{}

\providecommand\DeclareCurrentRelease[2]{}

%

% Allow rollback to version~2: if we need to,

% version~1 could eventually be added here too.

\DeclareRelease{2}{2010-05-23}{siunitx-v2.sty}

\DeclareRelease{v2}{2010-05-23}{siunitx-v2.sty}

\DeclareCurrentRelease{}{2021-05-17}

The third issue above was dealing with multi-
part quantities (e.g. 2m×3m) and complex numbers
(1 + 2i). I decided to keep the core code faster, and
to provide dedicated document commands for these.

doi.org/10.47397/tb/43-2/tb134wright-siunitx3

Joseph Wright

TUGboat, Volume 43 (2022), No. 2 165

Again, this means you might have to update a source
to go from version 2 to 3, but I think this is the right
call.

4 Conclusions

It’s taken a few years, but with the tools available
from the LATEX team, creating a new version of siunitx
has worked well. Over a year after the launch, the
code is performing well and I’ve dealt with the minor
issues that came up. I’m now looking forward to
developing new features that have been outstanding
for years.

References

Els, D. “The SIstyle package”. 2008.
ctan.org/pkg/sistyle.

Heldoorn, Marcel, and J. Wright. “The SIunits
package: Consistent application of SI units”.
2007. ctan.org/pkg/siunits.

Wright, Joseph. “siunitx: A comprehensive
(SI) units package”. TUGboat 32(1),
95–98, 2011. tug.org/TUGboat/tb32-1/
tb100wright-siunitx.pdf.

Wright, Joseph. “siunitx: Past, present and future”.
TUGboat 39(2), 119–121, 2018. tug.org/
TUGboat/tb39-2/tb122wright-siunitx.pdf.

Wright, Joseph. “l3build: The beginner’s guide”.
TUGboat 43(1), 40–43, 2022. tug.org/
TUGboat/tb43-1/tb133wright-l3build.html.

⋄ Joseph Wright
Northampton, United Kingdom
joseph dot wright (at)

morningstar2.co.uk

