162

Key—value setting handling in the
ETEX kernel

Joseph Wright, KTEX Project Team

1 Introduction

KTEX 2¢ introduced the idea of classes and packages,
and along with that the concept of class and pack-
age options. These are nowadays very familiar to
IMTEX authors, with the first optional argument to
\documentclass and \usepackage used in the vast
majority of IMTEX documents:

\documentclass[10pt,final]l{article}
\usepackage [T1]{fontenc}
\usepackage [numbers] {natbib}

This system is a powerful way of controlling
behaviours, but is limited as the options are string
literals. This is perhaps best exemplified by the font
size options: 10pt, 11pt and 12pt in the standard
classes. Rather than being dimensions parsed and
interpreted, these options are used to load hard-
coded configurations for the three nominal sizes.

For the programmer, creating options is easy,
requiring only one command for each option, plus a
separate one to process the list of options given by
the user:

\DeclareOption{foo}{...}
\DeclareOption{bar}{...}
\ProcessOptions\relax

2 Third-party key—value support

It is natural to want to have a more flexible system,
and key—value methods are the obvious way to obtain
this. As the kernel hasn’t to-date offered this, a
number of third-party packages have been developed
to support programmers in providing these interfaces.

Fundamentally, all of these packages work in
the same way. Keys are defined using an existing
key—value implementation, ready to be used when
the options are examined. A dedicated command is
provided to do the latter, and this examines each
option recorded by KTEX and tries to match it as
a key or a key—value pair. If that is possible, the
key—value process is called, while if the option is not
known as a key, an unknown key process is used.

Perhaps the most convenient package for provid-
ing key—value options to date is kvoptions, written
by Heiko Oberdiek. Rather than try to provide a
full setup for generic key—value work, this package
provides a small set of commands which define the
most common types of key—value interface with clear
names:

Joseph Wright, BTEX Project Team

doi.org/10.47397/tb/43-2/tb134wright-keyval

TUGDboat, Volume 43 (2022), No. 2

\RequirePackage{kvoptions}
\DeclareStringOption[me] {name}
\DeclareBoolOption{draft}
\DeclareComplementaryOption{final}{draft}
\DeclareDefaultOption{\ERROR}
\ProcessKeyvalOptions*

As we can see, kvoptions supports ‘strings’ (saving the
tokens given in the input), boolean (switch) options
and inverse booleans. It also provides a way to handle
unknown options.

Using kvoptions or similar approaches has al-
lowed programmers to provide key—value options for
a number of years. But there are some downsides.
First, ideally one wouldn’t need to load a package
to do this. It would also be better if there was one
mechanism, not several with slightly different syn-
taxes. More fundamentally, the IATEX kernel carries
out space stripping and expansion of options before
they are passed to packages to examine. This makes
handling some option texts awkward.

There is also the issue of option clashes. The
KTEX kernel checks that the option list of a package
is identical if you try to load it twice:

\usepackage [option = al{mypkg}
\usepackage [option = b]{mypkg}
This is an issue even without key—value options, but
with them it’s much worse: it’s not possible to know
if there is a true clash or if the settings simply can
override each other. So there needs to be a way to
let packages themselves handle this.

3 The new kernel mechanism

In the 2022-06 release of the IXTEX kernel, a new
built-in approach is available for processing options
using key—value methods. This is based on the expl3
module 13keys, which is nowadays built into the ker-
nel. You don’t, though, need to know anything about
expl3 to use the new approach: everything is made
available under standard IATEX 2¢ names.

As for the classical approach, we need to do three
things: create options (keys), define how to deal with
unknown options, and process the options. Unlike
\DeclareOption, the new command \DeclareKeys
can create multiple options in one go. Each option
(key) is created by setting one or more properties:
these are given after the key name as . (prop). The ba-
sic properties are .store, .if and .code. These set
up keys, respectively, to store the input, to use it to
set a switch or to insert arbitrary code. We can also
set the .default for a key: the value that is assumed
if none is given by the user. We will also be adding
.notif for the Fall 2022 release: that will be the
same as kvoptions’ \DeclareComplementaryOption.



TUGDboat, Volume 43 (2022), No. 2

\DeclareKeys{
name .store = \mypkg@name |,
name .default = me s
draft .if = mypkg@draft ,
% final .notif = mypkg@draft ,
demo .code =

\protected@edef\mypkg@demo{#1}
}

To deal with unknown keys, we can declare a dedic-
ated handler: here we simply issue an error.

\DeclareUnknownKeyHandler{’,

\PackageError{mypkg}
{Unknown option "\CurrentOption"}
\@ehc

}

Finally we need to process the options: the command
name here is pretty simple.

\ProcessKeyOptions

This approach will provide the key—value setup
we want, and the kernel will automatically use the
new approach to repeated loading: there will be
no option clash warnings. We might, though, want
more control: that can be obtained using the .usage

property:

\DeclareKeys{
name .store = \mypkg@name ,
name .default = me ,
name .usage = load ,
draft .if = mypkg@draft ,
draft .usage = preamble s
demo .code =

\protected@edef\mypkg@demo{#1}
}

With this, the kernel will automatically issue an error
if an option is used in the wrong place: after first
loading for load options, outside of the preamble for
preamble options.

163

4 Options are keys

You might have picked up from the above that ‘op-
tions’ and ‘keys’ are used almost interchangeably.
That’s because, when processing key—value options,
they are simply keys that are created before a call
to \ProcessKeyOptions. That means that we can
use options as keys: all we need is a way to set them.
This is available in a command called \SetKeys: you
might notice the name is similar to the long-standing
\setkeys from the keyval package.

As most of the time we want to set keys after
loading a package, we need to pass the family the
keys are in. This is given in an optional argument
to \SetKeys. (The optional argument applies to
all of the other new commands, but most of the
time we don’t need to worry about it, as KTEX will
automatically use the package or class name.) So we
might have something like

\NewDocumentCommand\mypkgsetup{m}{%
\SetKeys [mypkg] {#13}%
}

We can then use this new setup command to work
with exactly the same keys as we have created as
options: provided of course we do not try to do that
outside their usage scope.

5 More flexibility

As the new approach is based on I3keys, we can use
any key properties that are defined by I3keys. That
is because of the fact that options are keys and wvice
versa: all we need to do is define the keys in the
right place.

o Joseph Wright
Northampton, United Kingdom
joseph dot wright (at)
morningstar2.co.uk

o IBTEX Project Team

Key—value setting handling in the &TEX kernel



