
136 TUGboat, Volume 43 (2022), No. 2

Extracting information from (LA)TEX source
files

Jean-Michel HUFFLEN

Abstract

We present some tools that allow us to parse all
or part of (LA)TEX source files and process suitable
information. For example, we can use them to ex-
tract some metadata of a document. These tools
have been developed in the Scheme functional pro-
gramming language. Using them requires only basic
knowledge of functional programming and Scheme.
Besides, these tools could be easily implemented us-
ing a strongly typed functional programming lan-
guage, such as Standard ML or Haskell.

0 Introduction

In many places, it has been told or written that
TEX is a wonderful tool for typesetting texts. But it
deals only with its own formats: that is well-known,
too. However, the information contained in source
file texts processed by TEX —or any format or en-
gine built out of it —may be of interest for purposes
other than typesetting, e.g., enriching the metadata
usable by Web search engines.

Doing such jobs by means of (LA)TEX commands
arranged into an option of a class or a package is pos-
sible, but we think that this is misusing TEX. From
our point of view, this tool does not aim to be a
universal multi-task program, able not only to type-
set texts, but also to generate Web pages or fulfill
any other purpose we can imagine. From a point of
view related to theoretical computer science, TEX’s
language has the same expressive power as a Tur-
ing machine, so any function can be programmed
using TEX’s primitives,1 but as with any specialised
language, using it for a purpose other than its in-
tended one is tedious.2 In addition, this language’s
syntax is old, its parsing uses old-fashioned conven-
tions, it does not provide advanced data structures,
as we can find in many more recent programming
languages.

Hereafter we describe a way to connect Scheme
functions to TEX commands when a (LA)TEX source
file is parsed and these commands recognised. Our
basic idea is that often only a little information is
relevant, e.g., the metadata of a document. Extract-
ing them from (LA)TEX source files allows us to avoid
information redundancy. Section 2 explains the ori-

1 Interested readers can consult [2, 19] about this subject.
2 As another accurate example, any programmer knows

that using Prolog [4] outside logic programming is quite
painful.

gins and reasons for our choices, discussed further in
Section 3. Reading this article requires only basic
knowledge about TEX and LATEX commands [14, 18]
and the division of a LATEX source file into a pream-
ble and body. Some basic notions of programming
in Scheme are needed, too, as can be found in any
good introductory book to this functional program-
ming language, e.g., [23].

1 Our Scheme library

1.1 Why Scheme?

As mentioned above, we aim to extract accurate in-
formation from (LA)TEX source files; we are not in-
terested in processing the whole of such a file; we do
not want to put a ‘new TEX program’ into action.

Now let us recall that in functional program-
ming, functions are first-class objects, just like other
data. So functions can be arguments or results of a
computation. This feature allows us to write gener-
ators of functions. Our tool is a wonderful example
of such a generator. You choose which information
you would like to retain and how you plan to pro-
cess it. This step is done by a computation which
returns a function. This second function’s argument
is the input filename to be parsed.

In Section 2, we will see that some parts have
already been written using Scheme [22] for several
years. Let us recall that within this functional pro-
gramming language —as within any Lisp dialect —
data and programs have the same format. Here-
after, the description of our library’s main features
emphasises that functions and other data are mixed
by means of a unique format.

1.2 How to use our library

Building a function parsing a (LA)TEX source file is
done by the construct:3

(g-mk-tex-parsing-f directive ...)
with any number of directives.4 There are two kinds
of directives:
(g-retain-command command-name arg-nb

optional-arg? top-level?
recursive? preamble?
occ-nb-info function)

(g-retain-match command-name s top-level?
recursive? preamble?
occ-nb-info function)

3 Let us recall that Scheme systematically uses prefixed
syntax. All the definitions introduced by our library are pre-
fixed by ‘g-’.

4 This is the terminology used within our source files. You
can use g-mk-tex-parsing-f without arguments — that is, no
directive —in which case the result will just move along the
file’s preamble without performing any other operation.

doi.org/10.47397/tb/43-2/tb134hufflen-extract

Jean-Michel HUFFLEN



TUGboat, Volume 43 (2022), No. 2 137

where:
command-name is the name of the command to be

caught, without the initial ‘\’ character;
arg-nb is the argument number for this command;
optional-arg? is true5 if the first argument is op-

tional, surrounded by square brackets,6 false
otherwise;

top-level? is true if we have to look for this com-
mand only at the top level, false otherwise;

recursive? is used when \input commands are
encountered: if it is true, corresponding files are
searched recursively, otherwise such an \input
command is just skipped;

preamble? stops searching after a preamble if it is
bound to true; otherwise, search goes on;

occ-nb-info may be bound to:
• 0 or the false value: we check that this

command does not appear within files;
• a positive integer n: the first n occurrences

of this command are processed, and follow-
ing ones are ignored;

• the true value: all the occurrences of this
command are processed;

function the Scheme function to call; it must ac-
cept the same number of arguments than the
\command-name command. All the arguments
of such a function are supposed to be strings.
We can see that the directives introduced by the

g-retain-command function are suitable for most
LATEX commands, possibly with a leading optional
argument. More difficult cases are handled by the
g-retain-match function: its second argument is
the command’s pattern, given as a string, according
to TEX’s conventions used by the \def primitive,
the command’s name being omitted. Here are two
examples:

\csname ← "#1\endcsname"
\ifx ← "#1#2#3\else#4\fi"

All the other arguments of this g-retain-match
function have the same meaning as the namesake ar-
guments of g-retain-command. Let us notice that
g-retain-match and g-retain-command are func-
tions, whereas g-mk-tex-parsing-f is a macro.7

5 Let us recall that the boolean values true and false are
expressed in Scheme by the expressions #t and #f respec-
tively.

6 That is, according to LATEX’s conventions [15].
7 Let us recall that Scheme uses a call-by-value strategy

for functions: arguments are evaluated before applying the
function. Defining g-mk-tex-parsing-f as a macro allows us
to install the structures we need, before applying the direc-
tives to populate these structures, and finally building the
parsing function. The process put into action by that macro
may be viewed as a kind of compiling.

The result of g-mk-tex-parsing-f is a func-
tion that applies to a filename. It parses this file by
performing one pass and returns:
false if something went wrong, or a forbidden com-

mand is included into the file;
true in all other cases.
You have to use Scheme functions interfaced with
TEX constructs to update your own structures when
a file is parsed. Beware that if an error occurs, these
structures may be in an inconsistent state.

1.3 Other functions

Scheme’s initial library and our basic functions in-
clude a rich set of functions dealing with strings. For
example, s being a string:
(normalize-space s) whitespace-normalises the s

string, that is, leading and trailing spaces are
stripped, multiple occurrences of whitespace are
replaced by a single space character; the result
is a newly allocated string.

The next two functions can be useful to destruc-
ture an argument of a TEX command; the succes-
sive characters of the s0 string are supposed to be
a comma-separated list, s1 is any string:
(g-parse-to-list s0) returns its elements within

a linear list, e.g.:
(g-parse-to-list "New-York, New-York")

=⇒ ("New-York" "New-York")

(g-parse-to-alist s0 s1) returns the successive
pairs key=value of s0 within an association
list ; if a key is given without a value, this miss-
ing value is replaced by s1, e.g.:
(g-parse-to-alist "town=LA,state" "CA")

=⇒ (("town" . "LA")
("state" . "CA"))

In both cases, the original order is preserved.

1.4 A simple example

As a simple example, let us consider a source text
for LATEX. We would like to know:

• its title,
• the options given to the babel package8 [18,

Ch. 9] if it is loaded,
• the number of occurrences of the \emph

command.
The function we build and run is given in Fig. 1.
Some remarks:9

8 We do not consider the ‘main=...’ construct.
9 You may notice that we specify the commands of inter-

est in alphabetical order. This is just a personal habit; the
order of directives inside the g-mk-tex-parsing-f macro is
irrelevant.

Extracting information from (LA)TEX source files



138 TUGboat, Volume 43 (2022), No. 2

(define tug-2022-example-emph-occ-nb ’0) ; Initialisations needed.
(define tug-2022-example-language-name-list ’*dummy-value*) ; (. . . )
(define tug-2022-example-title ’*dummy-value*)

(define tug-2022-example-function
(g-mk-tex-parsing-f (g-retain-command "emph" 1 ; One argument.

#f ; No optional argument.
#f ; May be located at any level.
#f ; Look for it recursively.
#f ; Search the preamble and body.
#t ; Process all the occurrences of this command.
(lambda (ignored-s) ; The argument is ignored.

(set! tug-2022-example-emph-occ-nb
(+ tug-2022-example-emph-occ-nb 1))))

(g-retain-command "title" 1 #f ; One non-optional argument.
#t ; Top level only.
#f ; Recursively search.
#f ; Search the preamble and body.
1 ; Process only the first occurrence.
(lambda (title-s)

(set! tug-2022-example-title (normalize-space title-s))))
(g-retain-command "usepackage" 2 #t ; Two arguments, including an optional one.

#t ; Search only at the top level.
#t ; Recursive search.
#t ; Search only the preamble.
#t ; Process all the occurrences.
(lambda (option-s package-names-s)

(when (member "babel" (g-parse-to-list package-names-s)
string=?)

(set! tug-2022-example-language-name-list
(g-parse-to-list option-s)))))))

(tug-2022-example-function "⟨this article’s source file⟩") =⇒ #t ; Parsed successfully!

tug-2022-example-emph-occ-nb =⇒ 39 ; Variables updated.
tug-2022-example-language-name-list =⇒ ("french" "english") ; (. . . )
tug-2022-example-title =⇒ "Extracting Information from \AllTeX\ Source Files"

Figure 1: Example of using our Scheme functions.

• the \title command may or may not be given
in the preamble, but is unique;

• if babel package is loaded, it can only be lo-
cated in the preamble; but there may be sev-
eral \usepackage commands, possibly for other
packages;

• the innermost occurrences of the \emph com-
mand are processed first: some additional de-
tails about this point are given in App. A.

The evaluation given in Fig. 1 applies to the source
of the present text. The three Scheme variables used
are initialised at Fig. 1’s top.

1.5 Types used

Scheme is a dynamically typed language. This prop-
erty allows variables to be bound to a value being
any type, a priori. Scheme is not strongly typed,

since variables are not given types, as in the C pro-
gramming language [13]. This feature may be viewed
as an advantage or drawback, depending on pro-
grammers’ feelings. However we mention that our
tool could be implemented using a strongly-typed
functional programming language, such as Standard
ML [20] or Haskell [21]. Let us recall that program-
mers of these languages do not have to put down the
types associated with variables, but a type-checking
mechanism is in charge of determining such types. If
this operation fails, your program is rejected. So in
practice, programmers of these languages pay great
attention to types used.

When arguments of our directives are strings or
booleans— true or false values — there is no prob-
lem. The information about the number of occur-
rences to be processed can be viewed as the union
of natural numbers and boolean values. Since these

Jean-Michel HUFFLEN



TUGboat, Volume 43 (2022), No. 2 139

two sets are disjoint, modern strongly-typed func-
tional programming languages can implement such
a construct by means of a disjoint union:10

Occ-nb-info-type def
= Boolean ⊎Natural

The type of the functions connected to TEX
commands can be specified by a direct sum, too,
due to a limitation of TEX. Let us consider that all
the possible results of such a function are encom-
passed into a type called ’Result ’. Let n be a nat-
ural number, the type of a function associated with
a n-argument command is Stringn → Result, where
‘String’ is the type of strings.11 Since the greatest
argument number for a TEX command is ‘#9’ [14],12
the complete functions are finally of the type:

Function-for-TEX def
=

⊎
0≤i<10

(Stringi → Result)

2 History

2.1 Genesis

Let us recall that we implemented MlBibTEX13, a
possible successor of BibTEX, the bibliography pro-
cessor that was commonly associated with LATEX for
a long time. In particular, MlBibTEX has aimed to
ease the production of multilingual bibliographies.

When we put MlBibTEX’s first public version
into action [9], we realised that we needed to parse
the beginning of source .tex files, in order to get
the way to process the languages used throughout
a document; this information was not given in .aux
files.14 There was at most one occurrence of load-
ing the babel package or an ad hoc package such as
french or polski.15 Such a load order could be located
in a subfile grouping the packages for the set up of
a document. On another point, we did not have to
parse the whole of a LATEX document: we stopped
either after encountering such a load order, or en-

10 Let S0 and S1 be two sets, the disjoint union [8] of S0

and S1 is defined by:

S0 ⊎ S1
def
= ({0} × S0) ∪ ({1} × S1)

If we connect this formula with an abstract data type defi-
nition, ‘0’ and ‘1’ may be viewed as the constructors of this
data type.

11 This definition includes zero-argument commands, since
a zero-argument function f0 : → Result may be viewed as
f0 : {∅} → Result, as mentioned by [6]. In programming
languages such as Standard ML or Haskell, the {∅} set is
implemented by the unit type, containing only the () value.

12 There are workarounds if more arguments are needed, as
explained in [14]. This point is obviously out of this article’s
scope.

13 MultiLingual BibTEX.
14 Incidentally, BibTEX only parses .aux files and never

reads .tex files.
15 At this time, the polyglossia package [3] had not yet come

out, and babel did not yet support the Unicode TEX engines.

countering ‘\begin{document}’, that is, at the end
of the document’s preamble. When we designed the
second version [10], we needed to get the encoding
used through a document. To do that we proceeded
in an analogous way. In other words, we had al-
ready created a kind of mini-TEX parser, possibly
recursive.

2.2 Apotheosis

In December 2020, we became the new editor of
the Cahiers GUTenberg , the journal of the French-
speaking TEX user group.16 For many reasons, we
decided to revise the class used for this journal and
discovered that the previous version was used to
build other files, such as metadata for Web search
engines. On another point, we also decided to au-
tomate as many tasks as possible. For example, we
plan to extract the information about the title, au-
thor(s), and pages from each article’s source file, in
order to build the table of contents of an issue. In
addition, we wished to check the succession of page
numbers for successive articles.

We did not implement the production of meta-
data from issues of Cahiers GUTenberg . But we
adapted our mini-parser into a library customisable
as shown in §1.2 and we succeeded in generating
automatically the table of contents of [1], although
several engines were used for separate articles.

3 Discussion

Coupling engines based on TEX’s kernel with a more
modern programming language has shown increased
interest for more than a decade. The best-known ex-
ample is LuaTEX [7], where the engine can call pro-
cedures written using the Lua language [12], other
experiments connect TEX with Python [16]; applica-
tions based on such a modus operandi can be found
in [17, 24].

Using functions written using the Lua program-
ming language— as allowed by LuaLATEX —for the
tasks described in §2.2 was impossible: some arti-
cles of [1] needed pdfTEX or X ELATEX, and compiling
them with LuaLATEX crashed. Besides, we confess
that we were not disappointed. Extracting meta-
data from a source text is not tightly tied to type-
setting texts — so it should work regardless of the
engine used— and should be performed by a sepa-
rate program.

An alternative could be given by the use of
regular expressions17 for most cases. However, let

16 GUTenberg : Groupe francophone des Utilisateurs de
TEX .

17 Interested readers can consult [5] for a good introduction
to this field.

Extracting information from (LA)TEX source files



140 TUGboat, Volume 43 (2022), No. 2

us notice that TEX’s conditional and iterative ex-
pressions are not balanced as in modern program-
ming languages, as we showed in [11]. So we are
not sure that difficult matching cases can be rea-
sonably handled by regular expressions, which are
‘naturally’ static. In addition, let us recall that our
functions resulting from constructs performed by the
g-mk-tex-parsing-f macro work in one pass, which
seems to us to be more efficient than using several
regular expressions.

In practice, we have applied such Scheme func-
tions to examples in LATEX, or close to this format,
that is, X ELATEX or LuaLATEX. We think we could
build functions able to parse plain TEX or ConTEXt
documents and extract suitable information from
them, in which case the g-retain-match function
will be used more intensively.

4 Conclusion

Our contribution consists in a bridge between TEX
and more ‘classical’ programming. More experience
will be needed in order to evaluate the relevance of
our method. We can be told that using our tool
requires mastering Scheme. But there is a price to
pay for interesting applications outside typesetting
texts. In other words, this program is not intended
for end-users who just typeset texts. But we think
that our tool may be enjoyed by LATEX users who
can program. Finally, we can observe that simple
requirements can be put into action easily, as shown
for getting an article’s title.

Acknowledgments

I thank Denis Bitouzé for his impressions about a
first version of this article. I am also grateful to the
very efficient proofreaders of TUGboat: Karl Berry
and Barbara Beeton.

A How (LA)TEX files are parsed

You can discover the behaviour of the Scheme func-
tions generated by the g-mk-tex-parsing-f macro
by choosing some commands judiciously and asso-
ciating them with functions that trace their argu-
ments. Hereafter we give broad outlines of the com-
plete process. Let us recall that a token recognised
by TEX may be a command name, a begin or end
of a group, or a single character. Some groups of
characters can be processed globally, e.g., two or
more consecutive occurrences of end-of-line charac-
ters, equivalent to the \par command.

Our parser processes such tokens in turn. If a
command is associated with a Scheme function, its
arguments are parsed recursively, either by using the
information about the argument number provided

by the g-retain-command function, or by process-
ing the pattern introduced by the g-retain-match
function. As soon as these arguments are built,
the associated Scheme function is applied to these
corresponding arguments. Getting such arguments
causes tokens to be processed, so commands located
with these arguments will be processed according
to a kind of call by value.18 So if we consider the
following example:
An \emph➊{emph’d \emph➋{internal} text}.

if all the occurrences of the \emph command are
to be processed, the ‘. . . ➋’ occurrence will be pro-
cessed first, then the ‘. . . ➊’ occurrence will be pro-
cessed, according to a leftmost-innermost strategy.
Of course, as soon as a Scheme function associated
with a command is executed and returns its result,
the process of exploring successive tokens in turn is
resumed.

References
[1] Association GUTenberg : Ils sont de retour !,

Vol. 58 de Cahiers GUTenberg. Septembre 2021.
https://www.gutenberg-asso.fr/
-Cahiers-GUTenberg-

[2] Pieter Belmans: TEX is Turing-Complete.
December 2010. Universiteit Antwerpen,
https://pbelmans.files.wordpress.com/2010/
12/textalk.pdf

[3] François Charette, Arthur Reutenauer,
Bastien Boucariès and Jürgen Spitzmüller:
polyglossia: Modern Multilingual Typesetting
With X ELATEX and LuaLATEX. 18 July 2022.
https://ctan.org/pkg/polyglossia

[4] William F. Clocksin and Christopher S.
Mellish: Programming in Prolog. 5th edition.
Springer-Verlag. 2003.

[5] Jeffrey E. F. Frield: Mastering Regular
Expressions. 3rd edition. O’Reilly. August 2006.

[6] George Grätzer: Universal Algebra. 2nd edition.
Springer-Verlag. 1979.

[7] Hans Hagen: “LuaTEX: Howling to the Moon”.
Biuletyn Polskiej Grupy Użytkowników Systemu
TEX, vol. 23, pp. 63–68. April 2006. Also
published in TUGboat vol. 26, no. 2, pp. 152–157.
https://tug.org/TUGboat/tb26-2/hagen.pdf

[8] Paul Richard Halmos: Naive Set Theory.
Undergraduate Texts in Mathematics.
Springer-Verlag. 1987.

[9] Jean-Michel Hufflen: “MlBibTEX’s Version 1.3”.
TUGboat, vol. 24, no. 2, pp. 249–262. July 2003.
https://tug.org/TUGboat/tb24-2/tb77hufflen.
pdf

18 If such commands are to be processed. Let us recall
that we can restrict our process to work at the top level for
a precise number of occurrences.

Jean-Michel HUFFLEN



TUGboat, Volume 43 (2022), No. 2 141

[10] Jean-Michel Hufflen: “MlBibTEX Now Deals
with Unicode”. In: Tomasz Przechlewski,
Karl Berry and Jerzy B. Ludwichowski,
eds., Premises, Predilections, Predictions. Proc.
TUG@BachoTEX 2017, pp. 39–41. April 2017.
Also published in TUGboat vol. 38, no. 2,
pp. 245–248. https://tug.org/TUGboat/tb38-2/
tb119hufflen-mlbibtex.pdf

[11] Jean-Michel Hufflen: “Which Success for TEX
as an Old Program?”. ArsTEXnica, vol. 30,
pp. 24–30. In Proc. GUIT 2020 meeting. October
2020.

[12] Roberto Ierusalimschy: Programming in Lua.
2nd edition. Lua.org. March 2006.

[13] Brian W. Kernighan and Dennis M. Ritchie:
The C Programming Language. 2nd edition.
Prentice Hall. 1988.

[14] Donald Ervin Knuth: Computers & Typesetting.
Vol. A: The TEXbook. Addison-Wesley Publishing
Company, Reading, Massachusetts. 1986.

[15] Leslie Lamport: LATEX: A Document Preparation
System. User’s Guide and Reference Manual.
Addison-Wesley Publishing Company, Reading,
Massachusetts. 1994.

[16] Mark Lutz: Programming Python. O’Reilly
& Associates. October 1996.

[17] Henri Menke: “Parsing Complex Data Formats
in LuaTEX with LPEG”. TUGboat, vol. 40, no. 2,
pp. 129–135. In Proc. TUG. 2019. https://tug.
org/TUGboat/tb40-2/tb125menke-lpeg.pdf

[18] Frank Mittelbach and Michel Goossens,
with Johannes Braams, David Carlisle,
Chris A. Rowley, Christine Detig and Joachim
Schrod: The LATEX Companion. 2nd edition.
Addison-Wesley Publishing Company, Reading,
Massachusetts. August 2004.

[19] Walter Moreira: A Turing Machine in TEX.
April 2004. Montevideo, Uruguay. http:
//www.cmat.edu.uy/%7Ewalterm/turing/turing.
html#download

[20] Lawrence C. Paulson: ML for the Working
Programmer. 2nd edition. Cambridge University
Press. 1996.

[21] Simon Peyton Jones, ed.: Haskell 98 Language
and Libraries. The Revised Report. Cambridge
University Press. April 2003.

[22] Alex Shinn, John Cowan, and Arthur A.
Gleckler, with Steven Ganz, Aaron W. Hsu,
Bradley Lucier, Emmanuel Medernach,
Alexey Radul, Jeffrey T. Read, David
Rush, Benjamin L. Russel, Olin Shivers,
Alaric Snell-Pym and Gerald Jay Sussman:
Revised7 Report on the Algorithmic Language
Scheme. 6 July 2013. https://small.r7rs.org/
attachment/r7rs.pdf

[23] George Springer and Daniel P. Friedman:
Scheme and the Art of Programming. The MIT
Press, McGraw-Hill Book Company. 1989.

[24] Uwe Ziegenhagen: “Combining LATEX with
Python”. TUGboat, vol. 40, no. 2, pp. 126–128.
In Proc. TUG 2019. https://tug.org/TUGboat/
tb40-2/tb125ziegenhagen-python.pdf

⋄ Jean-Michel HUFFLEN
FEMTO-ST (UMR CNRS 6174)

& University of Bourgogne
Franche-Comté

16, route de Gray
25030 BESANÇON CEDEX
France
jmhuffle (at) femto-st dot fr

Extracting information from (LA)TEX source files


