202

Pushing math forward with ConTEXt lmtx
Hans Hagen, Mikael P. Sundqvist

Editor’s note: For enlarged views of many of the small
details presented here, please also see the slide presenta-
tion, available from tug.org/tug2022.

Abstract

We report on some recent work on mathematical
typesetting. Our main purpose has been to make
both the input and output of math cleaner and more
structured. Among the many enhancements, we
mention here the introduction of new atom classes
that has given better control over many details. We
also cover the unboxing of fenced material which, to-
gether with improved line-breaking and more flexible
multiline display math, has created a coherent way
to produce displayed formulas that split over lines.

1 Introduction

When creating ConTEXt MKIV, the ConTEXt ver-
sion that is based on LuaTgX, we only had Cambria
available as an OpenType math font with a com-
plete math table, so for the others we started out
with runtime virtual math fonts assembled from tra-
ditional TEX fonts. Stepwise, more fonts became
available. Not all fonts conform to the way Cambria
does things. In order to deal with the inconsisten-
cies in these fonts and because the specification was
vague —it is better now —and had to be derived
from e.g. how Microsoft Word does things, we ended
up with a mix of generic runtime fixes to fonts and
font-specific corrections done in what we call goodie
files. However, given the amount of work involved,
it never became complete.

That all changed when we became aware of
Lansburgh’s 1964 book [1]. This book predates
TEX, and it is, with its more than 400 pages of
well-motivated typesetting rules — the majority of
them about mathematics —the most comprehensive
guide we are aware of. The book, written in Swedish,
was originally used as a typesetting guide for the
publisher Almqvist & Wiksell, in particular for the
highly respected mathematics journal Acta Mathe-
matica. For this reason Lansburgh discusses the rules
for typesetting mathematics in great detail.

The question became: why can’t we do now
what was recommended 50 years ago? The Lua-
MetaTEX math engine was already at this point
partially redone and more configurable, but why not
go further? We knew it would take much time to get
all done, and it did (basically years of full time), but
here we are. In the process we looked over the goodie
files (they are now organized tweaks) and all fonts,

Hans Hagen, Mikael P. Sundqvist

doi.org/10.47397/tb/43-2/tb134hagen-math

TUGDboat, Volume 43 (2022), No. 2

by now stable but flawed, were studied in detail. A
direct consequence was rewriting the LuaTEX math
engine to permit more control. So, in some ways,
one has to thank Lansburgh for our work.

In this article we discuss only some of what the
end user sees. At a lower level it all boils down to
configuring the many (also new) font parameters,
selectively fixing properties of glyphs, adding addi-
tional properties such as staircase-like kerns for some,
setting up lots of pairwise spacing and penalties (we
inherit where we can, so that saves some effort), defin-
ing rules that influence the inter-atom handling, etc.
The LuaMetaTEX engine is completely configurable,
meaning that we have more variables that can be
set, and one can even change the styling rules, of
which many were hard-coded. This is why a project
like this takes much time and dedication but is also
much fun.

One note has to be made: Don Knuth did a
tremendous job on TEX and the math engine, and
only by working with the code can one realize how
quickly it was all achieved: we’re baffled. It does
what was possible within the constraints of hardware
and fonts, and it does it well. For instance, when we
mention the \nulldelimiterspace parameter that
we try to avoid, it doesn’t mean that it was not there
for a reason: there is a subtle interplay between fonts,
where characters have italic corrections as the means
for spacing and attachments of sub/superscripts, and
a zero-ordered spacing that then cooperates nicely
with the few relatively unknown spacing parameters.
As with everything TEX: it all makes sense when you
see it in perspective and there are excellent tricks
to be found in there. That said: we took advantage
of today’s faster processors, plenty of memory, fonts
that collect all shapes into one with more properties
per font and shape, and in the end “time”, as we
were under no pressure to finish this soon.

To date, enough has been done to fill a whole
issue of TUGboat. Maybe we will wrap up some
more in articles in due time. After all, we also have
an additional wishlist to fulfill.

2 Math microtypography

By math microtypography we mean the fine-tuning
of small details in mathematical formulas. Let us
give an example. When you type a_{0}b in math
mode you get agb. Have you ever noticed that there
is a small space automatically inserted between the
0 and the b7 If the space is not there, as in agb, it is
no longer clear if the 0 belongs to the a or to the b.

There are occasions when this space is unwanted.
For example, we usually expect a symmetric space
around relations (as in ¢ = b) and binary symbols

https://tug.org/tug2022
https://doi.org/10.47397/tb/43-2/tb134hagen-math

TUGDboat, Volume 43 (2022), No. 2

(as in a + b). If, however, there is a subscript (or a
superscript) just to the left of such a symbol, the
surrounding space becomes uneven because of the
inserted extra space.

agbg = co +.dy

ord

The space is specified by the \scriptspace parame-
ter. Don Knuth set it to 0.5pt in plain TEX (likely
a choice that looked good with his 10pt bodyfont
size). The \scriptspace parameter, and its par-
ticular value, has survived several decades, formats,
body font sizes and engines. In ConTEXt Imtx we
have introduced several options for the different
math atom classes. One of these class options is
\nopostslackclassoptioncode, and if it is set for
a class then any inserted \scriptspace will be re-
moved. Looking at the example above we see that
the unwanted extra space is present before = and +.
And indeed, both the relation class and the binary
class do have this option set. Thus, when we type-
set the formula above in ConTEXt Imtx we get the
following.

a()\;b 0.=.Co. T d 0

ight clord ord

The space between the ag and the b is in fact no
longer a \scriptspace, but we instead rely on the
font parameter SpaceAfterScript.

The situation with \nulldelimiterspace is a
bit similar. It is traditionally used as a kind of side
bearing in fences and fractions. Its value was in plain
TEX set to 1.2pt, and that has also stayed. In the
formula %a the space is inserted between the % and
the a and without it the formula would look bad: %a.

The \nulldelimiterspace is, however, also in-
serted before the fraction %, making the space before
the formula slightly (1.2pt) larger than the space
after it. This means that the margin will not be
perfectly aligned if the fraction is located at the

beginning or at the end of a line.

a d

b»"‘»czgf

In addition to the extra space at the left margin, the
spaces around the + and the = above have become
asymmetrical due to the inserted 1.2pt space.

In ConTEXt lmtx we use new atom classes to
control the spacing around fractions. One of the new
atom classes is the fraction class. Thus, we set the
\nulldelimiterspace value to Opt.

203

a d
T C =
b‘l"mn ‘L, ord L,M::l ‘xvue Lf

Observe that no space is inserted to the left of the
first fraction.

In the examples above we have used one of the
many ConTEXt helpers (\showmakeup [mathglue])
to visualize the inserted spaces. For instance, to the
right of the fraction we see frabin, which means that
the classes that meet are fraction and binary; the
space between them is set up to be a \medmuskip.
We also used \showglyphs to draw the bounding
boxes in orange (grayscaled in print). These and
other helpers have been indispensable for our work.

3 A more general spacing model

In traditional TEX the spaces between atoms have
traditionally been set to one of the following muskips.
\thickmuskip 5mu plus 5mu

\medmuskip 4mu plus 2mu minus 4mu
\thinmuskip 3mu

\zeromuskip Omu

For example, between an ordinary and a binary atom,
TEX inserts a \medmuskip. It has not been possible
to set up the space between a single pair of atoms
without altering the spaces between others.

In ConTEXt Imtx the inter-atom spaces are no
longer hard-coded to \thickmuskip, \medmuskip
and \thinmuskip. Users are free to define new
muskips and to use them between any atom pair.
After a lot of testing, we decided to alter the old
muskips just a little, and added two new ones.
\thickmuskip 5mu plus 3mu minus 1lmu
\medmuskip 4mu plus 2mu minus 2mu
\thinmuskip 3mu
\tinymuskip 2mu minus imu
\pettymuskip 1mu minus 0.5mu
\zeromuskip Omu

We use the \tinymuskip for example between the
radical and ordinary atoms, and between ordinary
and fraction atoms. Traditionally, there is no space
inserted in the first case.

avVbe +d

e
fg
This is how it looks in ConTEXt Imtx:
e
fg
Note that there is a space between the v/b and the c.
The \pettymuskip is mostly used in scriptstyle,
in sub- and superscripts, where TEX traditionally

inserts no space. We don’t know why, but it might
be that one simply wants the formulas to take less

avbe+d

Pushing math forward with ConTEXt Imtx

204

space. It might also be that the smallest available
non-zero muskip, the \tinymuskip, was too big.

J+n

E aj, = €a+b7c
k=0

With the \pettymuskip added, it looks like below,
and you can judge for yourself whether it looks better
or not.

jtn

E a = ea+b7c
k=0

The observant reader has now realized that the spac-
ing between atoms not only can be set to values other
than the traditional four, but also they can also be
different in different math styles. Indeed, when we do
the setups we have access to the following keywords.

\alldisplaystyles
\alltextstyles
\allscriptstyles
\allscriptscriptstyles
\allmathstyles
\allsplitstyles
\alluncrampedstyles
\allcrampedstyles

Let us show examples with one of the new
classes, the exponential class. This is a very small
class, with currently only one member, the exponen-
tial e, accessed via \ee. This class is set up to inherit
the inter-atom spaces from the ordinary atom class.

\setnewconstant \mathexponentialcode
\mathclassvalue exponential

\copymathspacing \mathexponentialcode
\mathordinarycode

Thus, if we type
\dm{rs \ee"{-rs \ee"{st} tu} tu}

in math mode, we get

enst
rse TS ity

Lansburgh suggests that a small space should be
inserted between exponentials and other symbols, in
particular if it carries exponents. We obtain that
with the code below (and similar for the ordinary
exponential combination).

\setmathspacing
\mathexponentialcode \mathordinarycode
\allsplitstyles \tinymuskip
\setmathspacing
\mathexponentialcode \mathordinarycode
\allscriptstyles \pettymuskip

This results in some extra space around the e.

. st
rse T gy,

Hans Hagen, Mikael P. Sundqvist

TUGDboat, Volume 43 (2022), No. 2

4 New atom classes

The classes defined in the LuaMetaTEX engine are or-
dinary, operator, binary, relation, open, close, punc-
tuation, variable, active, inner, under, over, radical,
fraction, middle, accent, fenced, ghost, vcenter.

The classes defined so far in ConTEXt lmtx are
imaginary, differential, exponential, ellipsis, function,
digit, explicit, division, factorial, wrapped, construct,
mathpunctuation, dimension, unspaced, begin, end,
all and unary.

You probably recognize many of the engine
classes from classical TEX. We felt that it would
be good to convert some standard constructions, like
fractions and radicals, to their own classes. Once
we decided to open up for more classes, we rapidly
found a use for several new ones, some with just a
few members, and some of a more technical nature.
Let us give some comments.

Fractions and radicals are now their own classes,
and since fenced material inherits their class struc-
ture from the content, there is currently no use of
the inner class in ConTEXt Imtx.

The middle class, introduced in e-TEX, was more
like a technical hack built on top of the open class.
In ConTgEXt lmtx it is a true atom class.

The imaginary, differential, exponential, ellip-
sis and factorial classes have only a few members
each. The differential class is perhaps the most
interesting among them. The macro \dd yields
a differential d with an adapted spacing; that is,
the code \int_{a}"{b} f(x) \dd x in math mode
gives f: f(x)dz. With
\setupmathematics[differentiald=upright]

the \dd gives an upright d instead, fab f(z)da.

The factorial class consists of only one character,
the exclamation mark. It is merely there to auto-
matically get a small space between the exclamation
mark and an ordinary symbol. Thus, if we type
\binom{n}{k} = \frac{n!}{(n-k)!'k!} in display
math mode it comes out as follows.

(&) = w=mmm

Observe the extra space between the)! and the k.

5 Tweaking fonts
Take a look at the following formula, set with TEX
Gyre Bonum Math:
= ("1 (12
alf1= [L (012 at

In the so-called “goodie files” we have collected fixes
for the various math fonts. Let us look at the same
formula, with the fixes in the goodie file applied.

TUGDboat, Volume 43 (2022), No. 2

qLf] = jo LF/ ()12 dt

We fix most issues in so-called tweaks, but some are
also done with the help of font parameters, some of
which are our own. We used

e the dimension tweak to scale the whole fraktur
lowercase alphabet.

e the same tweak to modify the bounding box and
italic correction of lower case italic f so that it
does not clash with other letters.

o the font parameter DisplayOperatorMinHeight
to increase the size of the integral sign, and
NoLimitSubFactor to move the lower limit closer
to the integral sign.

e the fixprimes tweak to move the prime down
(see further discussion below).

The details of these fixes, as well as others, can be
found in the goodie file bonum-math.1fg.

In order to solve the persistent issues with primes
(fonts differ widely in that) the engine now supports
primes natively. This means that every atom can
have a super- and subscript, a super- and subpre-
script as well as a prime attached. Optionally, scripts
can be shifted to behave like an index. The fact that
we need to deal with all four corners of a nucleus also
means that we need to make sure that the glyphs
behave well at both ends. That gave us some extra
work. There are additional parameters to control the
relative positioning of primes and superscripts.

Some Unicode math fonts, including Bonum,
have several sizes of the integral sign, and we can use
\startintegral and \stopintegral to make them
grow as delimiters. This means we can write

\startintegral [bottom={a}, top={b}]
\frac{1l + \frac{f_1(x)Hf_2(x)}}

{1 + \frac{f_3(x)Hf_4(x)}} \dd x
\stopintegral

in math mode, to get

Ja(x)
S3(x)
a YT

Technically, the integral sign works as the left part
of a paired delimiter. Thus, we see an example of a
paired delimiter where the sub- and superscript are
placed on the left delimiter. It is also possible to set
the size of the integral sign manually. You can play
with \int [size=50pt] if you need specific sizes.

6 Math macrotypography

ConTEXt has in the past had good support for type-
setting displayed equations, and there has been rather

205

complete support for different types of alignments,
numbering of equations, and so on [2].

Multiline formulas have historically been set in
TEX via the \halign primitive. As a consequence
these formulas have in fact been an array of math
mode cells.

In ConTEXt there has for some time existed
partial support for displayed formulas typeset as
paragraphs, but they were not configured for real us-
age. When we opened up the set of atom classes, and
introduced the unboxing of subformulas, it was also a
good time to set this up and extend the functionality.

We build the formulas as one long formula, and
do the layout mainly with the split and align keys.
The user can also insert manual formatting with
\breakhere, \skiphere and \alignhere.

The default value for the split key is text, and
that means that formulas can split over lines, but
not over pages. If we also want them to split over
pages, we set split to page. The only difference
between these two settings is the setup of penalties,
and it is possible for the user to define their own.
For formulas that fit on a line it does not matter.

”P(A) - P(AO)HL2(F)~>H5/2(Q) < C|/\ - /\O|

Longer formulas automatically split over lines.

\startformula
\iint K(xy) f£(x) g(y) \dd x \dd y
\leq \phi(p~{-1})
\left[\int x"{p-2}f(x)"p \dd x\right] ~{1/p}
\left[\int g(y)~q \dd y \right]~{1/q}
\stopformula

// K(xy) f(z)g(y) dz dy <
o) | [22y do] v [/ stwras] v

The splitting of the formula can be prohibited by
adding split=no as an argument to \startformula.
We get a formula that is set in a box (here we clip
the formula so as not to mess up the formatting of
this article).

[K@ s@ 9t dedy <o) [o2 da

If we instead add align=slanted, and also insert a
\breakhere just before the \leq, we get

[K@ 1@)9t0) dedy
<¢(p™) U P2 f(x)P dx] v U g(y)qdy} v

The align=slanted flushes the first line left, the
last line right, and midaligns the other lines. This

Pushing math forward with ConTEXt Imtx

206

key can be given any of the values middle (default),
flushleft, flushright and slanted.

With the default values of split and align we
can easily add an align point with \alignhere.
\startformula

\tfrac{1}{2}(p~2 \abs{x} + \abs{x} p~2)

\alignhere

= \abs{x} p \abs{x}"{-1} p \abs{x}

- \tfrac{1}{2} \abs{x}

(\laplace \abs{x}"{-1}) \abs{x}

\breakhere

= \abs{x} p \abs{x}"{-1} p \abs{x}

- \tfrac{1}{2} \abs{x} 4 \pi \delta(O0)

\abs{x}

\breakhere

= \abs{x} p \abs{x}"{-1} p \abs{x}
\stopformula
Observe the \breakhere where we want new lines.

3 (Ple] + [alp?) = el pla| " ple| — 5le] (Ala] ™) J2]
= [a|pla| ™" ple| — 5|2/ 475 (0) |«

—1
= |a[ple] " plx|

The careful reader also notes that there is a space
after the close atoms, something that was suggested
in [1]. Compare the final term on the right-hand side
with |x|p|z|~!p|z|, with no such space inserted.

We end with a slightly more advanced chain
formula.

BP (1Y, e 1Yy, 15,)

= (ir)F1 {P,é (zl, e zn,@)

r

i . L M
B] F:l“—kﬁpk_l(zl,...,zn,?) +:|

iB= (ir)k—1 P] (zl, ey 2 nk) +O(rk=2)

r

Here we have marked the align point with an A. Its

position might at first glance be a bit surprising.
To the formula we have added textdistance=2em.

This is the space that is automatically added at each
\breakhere, the extra horizontal shift you see at the
B, compared to the A. At one row we have in addition
added \skiphere[3], that adds an extra space of
6em (the configurable unit is by default 2em). This
is shown as S 3. This is how we typed the formula:

\startformula[textdistance=2em]

\alignhere

P’(iy_1, \ldots, iy_n, i\eta_k)
\breakhere

= (ir)~{k-1} \left[

P_k’> \left(z_ 1, \ldots, z_n,

\frac{\eta_k}{r} \right)

\breakhere

Hans Hagen, Mikael P. Sundqvist

TUGDboat, Volume 43 (2022), No. 2

\skiphere[3]
+ \frac{1}{ir}P_{k-1}’
\left(z_ 1, \ldots, z_n,
\frac{\eta_k}{r} \right)

+ \ldots

\right]

\breakhere

= (ir)~{k-1}

P_k’\left(z_ 1, \ldots, z_n,
\frac{\eta_k}{r} \right)

+ 0(r~{k-2})
\stopformula
We emphasize that the formula above is broken inside
the \left[and \right] fences. This is thanks to
the possibility to unpack and repack subformulas.

One of the things we're currently experimenting
with is carrying over kerns at the corners of nested
subformulas. For instance, when a fenced formula,
fraction, radical or any composed atom is prepared,
it happens in a nested call to the mlist-to-hlist con-
verter. The content is sort of abstract and wrapped
in an atom of some class (say fenced) that determines
spacing. In that case, anchoring a superscript cannot
be related to the shape of, for instance, the right
fence, which can have some extreme inward bending
shape (as in Cambria). Dealing with that is not
entirely trivial, but we managed to get it working.
Of course, we then need to add shape-related kerning
information to the goodie files because it is not part
of the OpenType math concept. It is all about look
and feel here.

References

[1] W.N. Lansburgh. Almquist & Wiksells
sattningsregler. Almqvist & Wiksell, 1964.

[2] A. Mahajan. My way: Using \startalign and
friends, 2006. d1.contextgarden.net/myway/
mathalign.pdf

¢ Hans Hagen
https://pragma-ade.nl

o Mikael P. Sundqvist
Department of Mathematics
Lund University
Box 118
221 00 Lund
Sweden
mickep (at) gmail dot com

https://dl.contextgarden.net/myway/mathalign.pdf
https://dl.contextgarden.net/myway/mathalign.pdf

	Introduction
	Math microtypography
	A more general spacing model
	New atom classes
	Tweaking fonts
	Math macrotypography

