
TUGBOAT

Volume 42, Number 3 / 2021

General Delivery 223 From the president / Boris Veytsman

224 Editorial comments / Barbara Beeton

R.I.P. Walter Schmidt; R.I.P. Chuck Geschke; R.I.P. Rogério Brito;

Computers & Typesetting; Hyphenation patterns and non-TEX uses;

Update on TUGboat DOIs; News from GUT; An overview of TEX history;

MacKichan Software is no more; More Knuth references

226 Michael D. Spivak, 1940–2020 / Barbara Beeton

228 How to keep your sanity when preparing a transcript of an online interview

for publication / Barbara Beeton

Typography 231 Form, pattern & texture in the typographic image / Charles Bigelow

Multilingual

Document Processing

247 Arabic text justification using LuaLATEX and the DigitalKhatt OpenType

variable font / Amine Anane

Graphics 258 Rendering open street maps / Hans Hagen

267 Controlling captions, fullpage and doublepage floats: hvfloat / Herbert Voß

Fonts 284 Preventing tofu with pdfTEX and Unicode engines / Frank Mittelbach

287 The unicodefonttable package / Frank Mittelbach

LATEX 305 LATEX news, issue 34, November 2021 / LATEX Project Team

Hints & Tricks 310 Production notes / Karl Berry

311 A new unit for LMTX: The dk / Hans Hagen

312 The treasure chest / Karl Berry

Abstracts 313 La Lettre GUTenberg : Contents of issues 41–44 (2020–2021)

315 Les Cahiers GUTenberg : Contents of issue 58 (2021)

315 ConTEXt Group Journal : 14th meeting (2020)

Cartoon 316 Comic: Fontzie / John Atkinson

TUG Business 222 TUGboat editorial information

222 TUG institutional members

Advertisements 317 TEX consulting and production services

318 TEXnology Inc.

319 Pearson | Addison-Wesley

News 320 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: tug.org/TUGboat.

Individual memberships
2021 dues for individual members are as follows:

Trial rate for new members: $30.
Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Members may also choose to
receive TUGboat and other benefits electronically,
at a discount. All membership options are described
at tug.org/join.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership carries with it such rights
and responsibilities as voting in TUG elections. All
the details are on the TUG web site.

Journal subscriptions
TUGboat subscriptions (non-voting) are available to
libraries and other organizations or individuals for
whom memberships are either not appropriate or
desired. Subscriptions are delivered on a calendar
year basis. The subscription rate for 2021 is $115.

Institutional memberships
Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and TUG. It also provides a discounted member-
ship rate, site-wide electronic access, and other ben-
efits. For further information, see tug.org/instmem
or contact the TUG office.

Trademarks
Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is.

[printing date: November 2021]

Printed in U.S.A.

Board of Directors

Donald Knuth, Ur Wizard of TEX-arcana
†

Boris Veytsman, President∗

Arthur Rosendahl∗, Vice President
Karl Berry∗, Treasurer
Klaus Höppner∗, Secretary
Barbara Beeton
Johannes Braams
Paulo Cereda
Kaja Christiansen
Ulrike Fischer
Jim Hefferon
Frank Mittelbach
Ross Moore
Norbert Preining
Raymond Goucher (1937–2019),

Founding Executive Director
Hermann Zapf (1918–2015), Wizard of Fonts
∗member of executive committee
†honorary

See tug.org/board for a roster of all past and present
board members, and other official positions.

Addresses

TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone
+1 503 223-9994

Fax
+1 815 301-3568

Web
tug.org

tug.org/TUGboat

Electronic Mail

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Volunteer technical support:
support@tug.org

Contact the
Board of Directors:
board@tug.org

Copyright c© 2021 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not
be reproduced, distributed or translated without the
authors’ permission.

For the editorial and other material not ascribed to a

particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice
are preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another
language, except that the TEX Users Group must approve
translations of this permission notice itself. Lacking such

approval, the original English permission notice must
be included.

Gareth was at his old bench: [. . .] he was needed to set
type for a few hours a day. [. . .] In his concentration
and the fluidity of his movements, he looked to me
like a painter or a composer, his placement of type as
deliberate as notes on a sheet of music.

Kip Williams
The Dictionary of Lost Words (2020)

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 42, NUMBER 3, 2021

PORTLAND, OREGON, U.S.A.

TUGboat editorial information

This regular issue (Vol. 42, No. 3) is the last issue of
the 2021 volume year. The deadline for the first issue in
Vol. 43 is March 31, 2022. Contributions are requested.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG store
(tug.org/store), and online at the TUGboat web site
(tug.org/TUGboat). Online publication to non-members
is delayed for one issue, to give members the benefit of
early access.

Submissions to TUGboat are reviewed by volun-
teers and checked by the Editor before publication. How-
ever, the authors are assumed to be the experts. Ques-
tions regarding content or accuracy should therefore be
directed to the authors, with an information copy to the
Editor.

TUGboat editorial board

Barbara Beeton, Editor-in-Chief
Karl Berry, Production Manager

Robin Laakso, Office Manager

Boris Veytsman, Associate Editor, Book Reviews

TUGboat advertising

For advertising rates and information, including consul-
tant listings, contact the TUG office, or see:
tug.org/TUGboat/advertising.html

tug.org/consultants.html

222 TUGboat, Volume 42 (2021), No. 3

Submitting items for publication

Proposals and requests for TUGboat articles are grate-
fully received. Please submit contributions by electronic
mail to TUGboat@tug.org.

The TUGboat style files, for use with plain TEX
and LATEX, are available from CTAN and the TUGboat

web site, and are included in common TEX distributions.
We also accept submissions using ConTEXt. Deadlines,
templates, tips for authors, and more, are available at
tug.org/TUGboat.

Effective with the 2005 volume year, submission of
a new manuscript implies permission to publish the ar-
ticle, if accepted, on the TUGboat web site, as well as
in print. Thus, the physical address you provide in the
manuscript will also be available online. If you have any
reservations about posting online, please notify the edi-
tors at the time of submission and we will be happy to
make suitable arrangements.

Other TUG publications

TUG is interested in considering additional manuscripts
for publication, such as manuals, instructional materials,
documentation, or works on any other topic that might
be useful to the TEX community in general.

If you have such items or know of any that you
would like considered for publication, please contact the
Publications Committee at tug-pub@tug.org.

TUG

Institutional

Members

TUG institutional members

receive a discount on multiple

memberships, site-wide electronic

access, and other benefits:

tug.org/instmem.html

Thanks to all for their support!

American Mathematical Society,

Providence, Rhode Island

Association for Computing

Machinery, New York, New York

Aware Software, Newark, Delaware

Center for Computing Sciences,

Bowie, Maryland

CSTUG, Praha, Czech Republic

Duke University Press,

Durham, North Carolina

Hindawi Foundation, London, UK

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

L3Harris, Melbourne, Florida

Maluhy & Co., São Paulo, Brazil

Marquette University,

Milwaukee, Wisconsin

Masaryk University,

Faculty of Informatics,

Brno, Czech Republic

Nagwa Limited, Windsor, UK

Overleaf, London, UK

StackExchange,

New York City, New York

Stockholm University,

Department of Mathematics,

Stockholm, Sweden

TEXFolio, Trivandrum, India

Université Laval,

Ste-Foy, Québec, Canada

University of Ontario,

Institute of Technology,

Oshawa, Ontario, Canada

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway

VTEX UAB, Vilnius, Lithuania

TUGboat, Volume 42 (2021), No. 3 223

From the president

Boris Veytsman

My previous column discussed various licenses used
for TEX-related software, and mentioned that 56% of
CTAN packages use the LPPL, the license developed
by the LATEX3 project. The LPPL insists on the right
of the users to know whether they are dealing with
the original package or with a modified version—and
the right of the maintainers of a package to preserve
its integrity. This insistence is quite unusual in the
other parts of the free software movements. I can fork
Emacs, change its functions (for example, mapping
Ctrl-X Ctrl-S by default to the deletion of all files in
the current directory), and still distribute the result
as Emacs. I cannot do this with the current LATEX
packages, however: I can change the code, but I must
prominently advertise to the users that they are not

using the “real LATEX”.
While technically this license was created for

LATEX and its packages, its spirit is, in my opinion,
traditional for the TEX world in general. Knuth’s dis-
tribution conditions for the original TEX code were
basically “you may do whatever you want with this
program, but if you want to call it TEX, it must pass
this suite of tests”. The old-timers may remember a
quite strong reaction from DEK when certain Linux
distributions included a copy of Computer Modern
fonts with slightly modified shapes. It is not surpris-
ing, however, that the Latin Modern fonts, which
are based on Computer Modern, but do not pretend
to be Computer Modern, have not caused objections
by Knuth.

This feature was met with certain resistance in
the free software community. I remember it being
dismissed as an attempt at “a poor person’s trade-
mark”, and it was questioned whether LPPL is too
limiting to be considered free software. Of course
any license with the exception of the purely public
domain CC-0 limits the rights of users (some people,
for example, consider the requirements of the GPL

far too onerous). The question is in the balance
between these limitations and the benefits to the
community. The LATEX team was able to convince
the gatekeepers of free software licensing that their
license has an acceptable balance.

One of the reasons for this insistence on integrity
of software in the TEX world may be the following.
As Chris Rowley observed a decade ago, TEX and
especially LATEX became the language of the scien-
tific community. Any language serves not just the
communication of information, but also its preserva-
tion. One of the concerns of DEK during the design

of TEX was the requirement that documents should
be typeset identically on all computers. It is well
known that this led to TEX using integer arithmetic
with the unit of length being 5.4 nm. If we want
our documents to be the same on all computers, we
also want them to be the same in all times. The
TEX community has always put a great emphasis
on the stability of historical documents, trying to
preserve them with nanometer scale accuracy. Of
course, macro packages written by ordinary people
rather than DEK are not as stable as his TEX, but
the effort to make the old documents compilable,
producing the same results today as many years ago
is quite extraordinary for the software community.

To tell the truth, many software developers are
not too concerned about backward compatibility or
legacy code. While the sheer disdain that Python
maintainers seem to feel towards their users is rather
rare, the expectation that users constantly adjust
their programs to keep them working is quite com-
mon. The huge effort that the LATEX3 team puts
into compatibility with old documents is almost un-
heard of. This work would be impossible without
the guarantee of integrity provided by the LPPL.

Another aspect of this is the attention the com-
munity pays to continuing maintenance of old pack-
ages when the original author moves on. The Ober-
diek Packages Support Group (github.com/ho-tex)
is a great example of this. A number of Heiko’s pack-
ages became key libraries for much LATEX code. Due
to the stewardship of the Group we can be assured
these packages are going to be supported in the fu-
ture. Now it looks like we might need another effort
in this direction. Peter Wilson, the author of mem-

oir, fonttable, ledmac, ledpar, cutwin and 83 other
packages including unique fonts, document styles and
much more, retired some time ag. Many have been
adopted by other people and groups, with the major-
ity taken by Will Robertson. Now Will, after years
of great work maintaining these packages, wishes to
focus on other tasks. There are now talks with the
LATEX team about taking them over. We also need
maintainers for other old but still important code by
other authors.

We are trying to prevent code from becoming
unmaintained. Thus if you are a package author, and
you feel you are no longer able to support your work,
or if you are looking for a package to maintain, please
contact us. We will be happy to match outgoing and
incoming maintainers, and help to continue the TEX
tradition of care about history and preservation.

⋄ Boris Veytsman

https://tug.org/TUGboat/Pres

doi.org/10.47397/tb/42-3/tb132pres

From the president

https://github.com/ho-tex
https://doi.org/10.47397/tb/42-3/tb132pres

224 TUGboat, Volume 42 (2021), No. 3

Editorial comments

Barbara Beeton

R.I.P. Walter Schmidt

Walter A. Schmidt (15 August 1960ś12 October
2021) was best known in the TEX community for
his support of fonts, in particular the support of
PostScript standard fonts via the psnfss package.
An article in The PracTEX Journal, łFont selection
in LATEX, The most frequently asked questionsž (tug.
org/pracjourn/2006-1/schmidt/), remains useful
after 15 years, although some fonts mentioned there
have been superseded by newer OpenType versions.
His listing on CTAN (https://ctan.org/author/
schmidt) shows 41 entries, including the German
translation of the łShort Introduction to LATEX2εž.
He reorganized and updated the font metric őles
for the Lucida Type 1 distribution from TUG and
PCTEX. He was a long-time member of DANTE, and
one of the organizers of the Stammtisch (monthly
local meeting) in Erlangen.

R.I.P. Chuck Geschke

Charles Matthew (łChuckž) Geschke (11 September
1939ś16 April 2021), together with John Warnock,
founded Adobe Inc. in 1982, after failing to convince
Xerox that their work at Xerox PARC on the page
description language Interpress was commercially
viable.

Based on this work, Adobe developed PostScript,
which was adopted by Apple and integrated into one
of the őrst desktop publishing systems. The inte-
gration of a laser printer with a personal computer
provided an attractive platform for individual use
of TEX. In 1992, PostScript was followed by the
Portable Document Format (PDF). Although there
was resistance to PDF for some years, while emphasis
was on the dynamic Web, the importance of print
was őnally recognized, and PDF is now the default
format for nearly all print applications, personal or
at commercial scale.

TEX has been used pervasively with both Post-
Script and PDF almost since the formats became
available. So Geschke’s contribution to the TEX
world, although indirect, was clearly a crucial one.

R.I.P. Rogério Brito

Rogério Theodoro de Brito, of São Paulo, Brazil,
succumbed to COVID-19 in April 2021. He was the
maintainer of the algorithms bundle of packages
(algorithm and algorithmic) and participated in
other free software projects, in particular Debian,
where he was a contributor for more than 15 years.

Computers & Typesetting

The entire series of C&T has been updated fol-
lowing the 2021 tuneup (tug.org/TUGboat/tb42-1/
tb130knuth-tuneup21.pdf). In addition to hard-
cover volumes (the softcover versions have been dis-
continued), e-versions (PDF) have been created; some
users may őnd these more convenient than a physical
book.

TUG members are eligible for a substantial dis-
count on the printed volumes or the e-volumes un-
til the end of the year. (A discount on an e-plus-
paper combination is available to all and the TUG

discount may not be added.) See the notice by
Pearson/Addison-Wesley at the end of this issue.

Hyphenation patterns and non-TEX uses

During the past month, considerable activity has
taken place on the list tex-hyphen@tug.org. The
usual traffic consists of notices regarding updates
to existing patterns for various languages and an-
nouncements regarding additional languages. (There
are currently patterns for around őfty languages on
CTAN, some with multiple versions supporting his-
torical dialects or variations due to spelling reforms.)
But the recent ŕurry has been concerned with the
potential use of the patterns for projects and applica-
tions not related to TEX, and questions regarding the
implications of the various licenses that are attached
to the pattern őles. I wasn’t aware that use of the
TEX hyphenation patterns is so widespread,

A thorough exposition of the hyphenation ef-
fort appeared in the 2016 article łHyphenation in
TEX and elsewhere, past and futurež, by Mojca
Miklavec and Arthur (Reutenauer) Rosendahl, tug.
org/TUGboat/tb37-2/tb116miklavec.pdf. This
both addressed TEXnical considerations and pre-
sented an extensive discussion on the available li-
censes, in particular the LPPL. While some of the
provisions of the LPPL are highly desirable (such as
the provisions relating to having a recognized main-
tainer), it was determined that in other respects the
LPPL is not ideal for őles of hyphenation patterns.

The recent discussions have also pointed out that
neither the GPL nor the LPPL are typically desired
for hyphenation patterns, barring personal choice,
since they require that any project incorporating a
module under their license must itself be licensed
compatibly in its entirety.

That cuts down the number of suitable licenses,
and it appears that the MIT license is the most
appropriate in this case. A request was sent out
through the list to maintainers of the pattern őles
to (re)consider the licenses applied to their patterns,
and responses concerning license changes are still

doi.org/10.47397/tb/42-3/tb132beet

https://tug.org/pracjourn/2006-1/schmidt/
https://tug.org/pracjourn/2006-1/schmidt/
https://ctan.org/author/schmidt
https://ctan.org/author/schmidt
https://tug.org/TUGboat/tb42-1/tb130knuth-tuneup21.pdf
https://tug.org/TUGboat/tb42-1/tb130knuth-tuneup21.pdf
tex-hyphen@tug.org
https://tug.org/TUGboat/tb37-2/tb116miklavec.pdf
https://tug.org/TUGboat/tb37-2/tb116miklavec.pdf
https://doi.org/10.47397/tb/42-3/tb132beet

TUGboat, Volume 42 (2021), No. 3 225

coming in. Some maintainers have updated their
license and submitted the updated version directly to
CTAN, while others have requested that this be done
by the team maintaining the hyphenation pattern
infrastructure.

To determine the current license status for a
particular set of patterns, it’s best to check the őles
of interest on CTAN. The list archives are public, so
the discussion can be reviewed at lists.tug.org/

tex-hyphen.

Update on TUGboat DOIs

As reported in volume 41:3, Document Object Iden-
tiőer (DOI) information is being added to the TUG-

boat archive. Going forward, the identiőer appears
below the bottom of the őrst column of each item to
which a DOI has been assigned; earlier content will
not be reprocessed to add this notation.

For all issues in the archive, the notation ł(doi)ž
will be added for each item in the online TOC for
the issue, linked to a separate page that contains
the bibliographic information for the item as well as
a summary of its content and the reference list, if
one is present. This page provides a quick way for
a prospective reader to decide whether to read the
full article, and will be present even for articles that
are still closed to non-members. These pages are
now present for issues starting with 41:3, and will be
created for earlier issues as (human) time permits.

News from GUTenberg

GUTenberg, the French TEX user group, has been
reconstituted and resumed issuing its publication,
La Lettre. The latest issue, No. 44, can be read
online from a link on the organization’s website,
www.gutenberg.eu.org. As for previous issues, a
single font was chosen to set the PDF version. The
font for No. 44 is Libertinus, a variant of Linux
Libertine; an article in the issue gives the history
and a description of the distinct features of both the
original and the other members of the family. (An
illustration of the available ligatures includes łfjž, a
feature usually absent.)

Also linked from the website is a collection of
videos from GUTenberg’s June meeting, which took
place online.

An overview of TEX history

An online document by Arno Trautman, still under
construction, promises to untangle all the terminol-
ogy associated with TEX since its creation. Enti-
tled łAn overview of TEX, its children and their
friends . . . ž, it can be found at github.com/alt/

tex-overview/blob/master/tex-overview.pdf.

Still lacking a table of contents, active links, and
other features expected from a łőnishedž document,
it is nonetheless a useful reference. The author invites
contributions and corrections. I expect to give it a
go, and suggest that other longtime TEX users might
őnd this worthwhile as well.

MacKichan Software is no more

MacKichan Software, creators and suppliers of the
Scientiőc Word and Scientiőc Workplace software,
has ceased operation. The notice on their website,
mackichan.com, carries this information:

Scientiőc Word 6.1 for Windows is now avail-
able for FREE

A link to it and some installation programs
is available HERE. In time, the source will be
posted on Github.

These two programs provided an input format that
many users found easier to master than direct LATEX
input, and produced as output a LATEX őle that could
be submitted directly to many journals. Scientiőc
Word was essentially a word processor; Scientiőc
Workplace included a third-party computer algebra
system.

Details of the closure are given on the cited
website.

More Knuth references

A featured article in the August 2021 issue of The

American Organist, entitled łA Pipe Dream Come
Truež, was written by Jan Overduin, the organist
who performed the premiere of Don’s Fantasia Apoca-

lyptica at Don’s 80th birthday celebration in Sweden.
Both a personal account of his interaction with Don,
how the collaboration came to be, and a detailed
description of the work, Overduin’s introduction con-
veys his enthusiasm for its concept and realization.
Examples of the musical references include quota-
tions from modern popular music as well as tradi-
tional religious and secular works. Although the
essay is written for a musically literate audience, it
should be comprehensible to anyone who appreciates
music, even without specialized training.

Finally, yet another interview about Don’s work
as a computer scientist has been posted online at
youtube.com/watch?v=lFkyhz_yDCs. Part of the
Simons Institute series on the Foundations of Com-
puting, it covers both old and new territory. A
reference has been added to the growing list of links
to Don’s interviews on the TUG website (tug.org/
video).

⋄ Barbara Beeton

https://tug.org/TUGboat

https://lists.tug.org/tex-hyphen
https://lists.tug.org/tex-hyphen
www.gutenberg.eu.org
https://github.com/alt/tex-overview/blob/master/tex-overview.pdf
https://github.com/alt/tex-overview/blob/master/tex-overview.pdf
https://mackichan.com
youtube.com/watch?v=lFkyhz_yDCs
https://tug.org/video
https://tug.org/video

226 TUGboat, Volume 42 (2021), No. 3

Michael D. Spivak, 1940ś2020

Barbara Beeton

Michael David Spivak was born May 25, 1940, in
Queens, New York. He died October 1, 2020, in
Houston, Texas. He suffered a broken hip earlier in
the fall, and had been conőned to an extended care
facility following that mishap.

I met Mike when I was sent to Stanford in the
summer of 1979 to learn TEX. A house had been
rented on the Stanford campus for the month of July
to accommodate a small contingent whose remit was
to learn TEX and construct a working environment
that could be used in production of AMS books and
journals. Dick Palais, then the chair of the AMS

Board of Trustees, was in charge of the group; it
was Dick who had learned of TEX from Don Knuth’s
Gibbs Lecture at the 1978 annual meeting [1] and
realized that this was a program directly applicable
to AMS publications.

The rest of the crew in this little commune
included these individuals, all of whom became active
in TUG at its founding:

• Robert A. (Bob) Morris [2], who was to develop
the macro interface to format the math struc-
tures that appear in AMS journals;

• Michael Spivak, who was charged with docu-
menting the macros in a user manual for authors
and their secretaries;

• Rilla Thedford, from Math. Reviews, to learn
what would be needed to produce MR internal
documents and ultimately, MR itself;

• myself, to learn how to install TEX at the AMS

Providence headquarters and how to use it to
develop macros őrst to produce ładministrative
publicationsž (including the AMS publications
catalog and the journal Notices) and then jour-
nals and books.

The reason for Mike’s assignment was his known
ability to write clearly on mathematical topics, in par-
ticular evidenced by his őve-volume set, A Compre-
hensive Introduction to Differential Geometry, work
for which he was awarded the 1985 Leroy P. Steele
Prize in Expository Writing [3].

For reasons unknown to me, Bob Morris decided
not to complete his assignment of writing the macros.
Mike took over this task, and not only produced the
documentation, but also developed a comprehensive
and well-designed set of macros. He had a őnely de-
veloped sense for what math should look like on the
printed page, as well as a sensitivity for naming math-
ematical structures in a way that would be familiar
to a mathematician, building on the strong base pro-

vided by Don Knuth. Together, these strengths have
contributed to the acceptance of TEX as a lingua
franca among mathematicians.

Working together, Mike and the inhouse AMS

technical staff developed the macros to produce a
łpreprintž style, amsppt.sty, which together with
the math macros provided a structure for producing
AMS journals in their accustomed format. (The goal
was to be able to switch from the previous system to
TEX in such a way that the change would be imme-
diately noticeable only to readers who were paying
extremely close attention.) The őrst formal edition
of The Joy of TEX [4] was published in 1982, and
contained the instructions that would be needed for
authors or their secretaries to be able to prepare man-
uscripts in AMS-TEX for publication in AMS journals.
(The őrst all-TEX issue of the AMS Transactions was
printed in January 1985, following more than a year
of experimentation and pre-production work.)

Joy is special in a number of ways. The title
is a play on the title of a then-popular book [6]
on a quite unrelated subject, and that book’s ti-
tle was a play on Joy of Cooking [5], a respected,
time-honored, and well-organized recipe book. (One
part of Joy of TEX returns to that source with the
heading łSauces and Picklesž.) Pronouns are gender-
neutralÐE, Em, Eir Ðbut even though these are
now called łSpivak pronounsž, when I asked, Mike
said he didn’t originate them. (On the other hand,
that his name attached to them indicates that his use
was widely noticed.) The material covered is clear
and easy to follow. As in The TEXbook, the appen-
dices were named alphabetically (A was łAnswers
To All The Exercisesž, B, łBibliographiesž, . . . , G,
ł{TEX Users}ž); sadly, when the second edition was
prepared at AMS, what was originally the last section
of the main text was moved to Appendix A, com-
promising the alphabetical alignment. The second
edition updated the technical coverage of the macros
(which were Mike’s work), but he had no part in the
updating of Joy, which was the work of the AMS

editorial staff. Long after AMS-TEX was superseded
by AMS-LATEX, AMS-TEX was no longer accepted or
supported by AMS, and with Mike’s permission, a
PDF copy of the łőnalž corrected edition of Joy was
posted to CTAN [4].

The original macros were documented by Mike,
but he initially refused permission to post this ma-
terial on CTAN. However, many years later, Mike
did relent, and the documentation őles were added
to the CTAN collection [7] early in 2019.

AMS-TEX was the production workhorse at AMS

for several years, but it had obvious limitations that
were noted by users with increasing frequency. The

doi.org/10.47397/tb/42-3/tb132beeton-spivak

https://doi.org/10.47397/tb/42-3/tb132beeton-spivak

TUGboat, Volume 42 (2021), No. 3 227

most serious was the absence of automatic number-
ing and cross-referencing facilities. If theorems were
to be numbered, or referred to later, that had to be
input by hand, with the obvious chances for errors.
The same was true for displayed equations and bibli-
ographic references. These gaps became a real prob-
lem if an author decided to rearrange the exposition.

By 1990, LATEX, which did have automatic num-
bering and cross-referencing capabilities, was in wide
use, and with increasing pressure from authors, AMS

gave in, and commissioned the adaptation of the
math macros into LATEX, resulting in what is now
the amsmath package, a required part of LATEX.

In the font realm, Mike favored Times Roman,
which had been used to set math journals and text-
books for many years before TEX and Computer
Modern came along. Being quite particular about
the appearance of math on the page, he created
his own variation of Times, with a full complement
of stylistically compatible symbols, which he called
MathTime Professional 2, or MTPro2. This was
made available through Personal TEX (later PCTEX),
a small supplier of TEX software located in northern
California. The founder and owner of this company
was Lance Carnes [8], someone who is also well known
in the TEX community, and who has helped me by
checking this remembrance (thanks, Lance).

Mike disagreed with the manner in which LATEX
implemented the text-related features, and instead
devised his own methods, which he implemented in
a structure he called LAMS-TEX, with an accom-
panying manual, łLAMS-TEX Ð the Synthesisž. But
LATEX had soaked too deeply into the TEX publishing
fabric, and LAMS-TEX never became the hoped-for
alternative. The LAMS-TEX macros are posted at
CTAN, but the sources for the manual were lost. We
have found a scanned copy, and will try to obtain
permission from Mike’s estate to post it on CTAN so
that the curious don’t have to work so hard to try it.

Mike was active in TUG for several years at the
beginning. He was a founding member of the Board
(at the time known as the łSteering Committeež)
and was acting Chairman from 1981ś1983 while Dick
Palais was on sabbatical. He left the Board in 1985.

In his łotherž life, Mike founded Publish-or-
Perish Press, which published several of his books,
both new works and updated versions or older works
őrst issued by other publishers, as well as books by
other authors [10]. (Thanks to Bob Palais for helping
to őnd this source.) Although further information

on the press itself is not easy to őnd, it is known that
academic libraries all over the world still hold copies
of many of his works, and they are still referred to by
readers needing clear, reliable instruction on topics
in math and physics.

References

[1] Knuth, Donald E., łMathematical
typographyž, Bull. Amer. Math. Soc.
(N.S.) 1 (1979), no. 2, pp. 337ś372.
https://ams.org/journals/bull/

1979-01-02/S0273-0979-1979-14598-1

[2] Morris, Robert (Bob), Obituary, TUGboat

42:1 (2021), p. 4. tug.org/TUGboat/
tb42-1/tb130beet.pdf, and Interview,
https://tug.org/interviews/morris.html

(2018).

[3] ł1985 Steele Prizes Awarded at Summer
Meeting in Laramiež, Notices of the Amer.
Math. Soc., 32 (October 1985), no. 5,
pp. 575ś576. https://ams.org/journals/
notices/198510

[4] Spivak, M.D., Ph.D., The Joy of TEX, A
Gourmet Guide to Typesetting with the
AMS-TEX macro package, 2nd edition,
reprinted with corrections, American
Mathematical Society, Providence, RI, 2004.
https://ctan.org/pkg/joy-of-tex

[5] Rombauer, Irma, and Marion Rombauer
Becker, Joy of Cooking, Fifth revision,
Bobbs-Merrill Company, Indianapolis, IN,
1975.

[6] Comfort, Alex, M.D., Ph.D., The Joy of Sex,
A Gourmet Guide to Love Making, Crown,
New York, 1972.

[7] CTAN package AMS-TEX,
https://ctan.org/pkg/amstex

[8] Carnes, Lance, Interview, https://tug.org/
interviews/carnes.html, 2004.

[9] CTAN package LAMS-TEX,
https://ctan.org/pkg/lamstex

[10] Books published by Publish or Perish,
https://openlibrary.org/publishers/

Publish_or_Perish

⋄ Barbara Beeton

https://tug.org/TUGboat

https://ams.org/journals/bull/1979-01-02/S0273-0979-1979-14598-1
https://ams.org/journals/bull/1979-01-02/S0273-0979-1979-14598-1
tug.org/TUGboat/tb42-1/tb130beet.pdf
tug.org/TUGboat/tb42-1/tb130beet.pdf
https://tug.org/interviews/morris.html
https://ams.org/journals/notices/198510
https://ams.org/journals/notices/198510
https://ctan.org/pkg/joy-of-tex
https://ctan.org/pkg/amstex
https://tug.org/interviews/carnes.html
https://tug.org/interviews/carnes.html
https://ctan.org/pkg/lamstex
https://openlibrary.org/publishers/Publish_or_Perish
https://openlibrary.org/publishers/Publish_or_Perish

228 TUGboat, Volume 42 (2021), No. 3

How to keep your sanity when preparing

a transcript of an online interview for

publication

Barbara Beeton

Abstract

Three interviews conducted during TUG 2021 online
were transcribed and edited for publication in the
conference proceedings. Accomplishing this to the
desired quality proved far more difficult than antici-
pated. The reasons for this are presented here, along
with lessons learned that might enable cooperation of
future interview participants, both interviewer and
subject, in making this process more straightforward
and less painful for the editor.

Background

Over many years I’ve had direct or indirect experi-
ence with these transcription mechanisms:

• transcription by experienced court stenotypists;

• transcription directly from an audio recording
(tape or computer, including cell phone);

• editing an auto-transcription from an online
video service (Zoom and YouTube).

In most cases, I was present (either in person or
online) at the original presentation, so I was famil-
iar with the subject matter, or had at least heard
it myself. In all but the őrst situation, I was the
individual responsible for preparing the transcript
for publication. It’s not for the faint of heart.

On the assumption that most interviews these
days are conducted online, or the result is posted and
viewable there, most of what follows will be speciőc
to that medium.

Overview

The TUG 2021 interviews were conducted electron-
ically, over Zoom, with an additional transmission
via YouTube, and recorded for future viewing. The
fact that interviewer and subject, and in some cases
attendees asking questions, were not in the same
location raised some complications with respect to
communication.

Only one of the interviewees was a native speaker
of (British) English, as was one of the individuals
involved in later discussion. The other participants
were from varied linguistic backgrounds; all of them
are ŕuent in English, but most accents were quite
distinct from the U.S. English norm. A built-in com-
plication was the subject matter, which was highly
technical, and not all familiar to me.

Both online services provided auto-transcrip-
tions as starting text. Neither was ideal, but the
difficulties were quite different between the two.

The “automatic” transcriptions

Since participants in the Zoom thread had to be reg-
istered, their names were known, and were present in
the transcript. A new łparagraphž was started with
each change of speaker, with a blank line between
two entries. If a speaker continued talking for a rel-
atively long time, or the discourse was interrupted
by a brief silence, the contribution might be broken
by additional blank lines. These segments were num-
bered consecutively in the transcript, and for each
segment, the starting and ending times (relative to
the start of the őle at 00:00) were given. Occasion-
ally, at a transition, a word or two would be assigned
to the wrong speaker, but in general, as long as more
than one person wasn’t talking at once, the speaker
identiőcation was accurate. The accuracy of the text,
on the other hand, left much to be desired. More
about that later.

The YouTube auto-transcript was quite different.
The identity of the speakers wasn’t known, and no
attempt was made to mark a change of speaker. The
text was presented like a łstream of consciousnessž
in strings of irregular length separated by blank lines.
On my monitor, the edit windows are usually set
to a width of 80 characters, and a run-on line is
ended with a (meaningless) backslash, for an effective
length of 79 characters per line. At least one łlinež
in one transcript was 88 lines long, or nearly 7,000
characters. No useful punctuation (except for an
occasional period in a url). And the accuracy of the
text was no better in general than what was provided
by Zoom.

Aside from the łŕowž and presence or absence
of speaker identiőcation, the content was far from
identical. Both systems were equally unfamiliar with
the speciőc technical environments represented by
the three interviewees. The only way to obtain a
script worthy of publication was to start with the
video recordings and listen carefully. In that respect,
there was not much difference (although the YouTube
recording of one interview was lost when the session
was not closed before 12 hours had elapsed).

Consistent lapses

The terms TEX and LATEX were spoken frequently
throughout the interviews, but appeared almost no-
where in the transcripts. Instead, łtechž was a fre-
quent substitution, as were łlaterž, łlate techž, and
łlate hackž. Preliminary edit passes, searching for
łtechž and łlatež, were effective in eliminating these

doi.org/10.47397/tb/42-3/tb132beeton-transcribe

https://doi.org/10.47397/tb/42-3/tb132beeton-transcribe

TUGboat, Volume 42 (2021), No. 3 229

misinterpretations, along with łTEX Livež, łMiKTEXž,
łWriteLATEXž, łShareLATEXž, and a few other com-
pounds.

Company names were also consistent failures.
łOverleafž sometimes survived, but also occurred
frequently as łoverlyž; another search, for łoverž,
took care of that. łFujitsuž didn’t fare so well, and
couldn’t be cleaned until a comparison was made
with the recording; I think my favorite miscue was
ł42ž instead of łFujitsuž.

A few other terms occurred frequently enough
to be attacked by a global search and explicit replace,
but mostly they weren’t discovered until the voice/
text comparison. When such a case did arise, the
word-for-word comparison was interrupted for a more
targeted cleanup.

To be able to recognize and correct such lapses,
it’s highly desirable that the person editing the tran-
script be familiar with the speaker and the general
subject of the interview; without this knowledge,
it will likely be necessary to ask the interviewee to
provide the needed corrections. Another problem
area is people’s names; here again a close personal
knowledge of the interviewee is useful.

Mechanical considerations—know your

equipment

Now it’s time to attack the details of the text, so that
the őnal transcript records the interview accurately.
Unless you can type as fast as people talk, it will
be necessary to stop the audio from time to time in
order to catch up. Other reasons to stop are so that
you can listen again to something that isn’t clear
the őrst time, or to verify a passage against another
source.

How to reset the position in the audio őle may
be a puzzle. It took me several tries to őnd out
that the back arrow on my keyboard could move
the recording back in 15 second increments. This
was far more efficient than trying to position the
slider to align with the timing reported in the Zoom
transcript, although using the timer was effective
when the goal was to review a larger section. A
few minutes of practice before starting can pay off
handsomely later.

Details of the text

As noted earlier, the texts of the Zoom and YouTube
transcriptions were not alike physically:

• Zoom: segmented, timed, speakers identiőed,
sentence structure marked.

• YouTube: run-on, no speaker ID, no punctua-
tion or case differentiation, interminable strings
of words.

The textual content was far from identical as well.
When a word (often a technical term) was unknown
to the system, its representation in one text might be
quite different from what appeared in the other. This
turned out to be useful when the version chosen as the
starter text made no sense, and the likely meaning
couldn’t be determined from the audio; it was usually
possible to check what was in the other version and
come to a sensible conclusion. For technical terms,
YouTube was slightly better. However, homing in on
the same passage was not easy; őnding a matching
term near the questioned material that could be
used to search in a őle that is just a jumble of words
involves careful guessing.

Another weakness is the possibility that the in-
terview participants are not skilled at this activity.
An unscripted, unrehearsed interview may be littered
with repetitions, meaningless interjections (łuhž, łI
meanž), and even an occasional interruption. While
the primary goal of a published transcript is to record
the content accurately, the result should also make
sense if read without prior exposure to the event.
Here is where editorial intervention is required. Con-
sider carefully whether that łI meanž is just őller,
or does in fact mean that the speaker is trying to
clarify a particular point.

Occasionally, especially in an online interview,
there may be unexpected interruptions. If an inter-
ruption is relevant to the topic of the interview, it can
be worthwhile to include the details in the transcript.
However, if it isn’t relevant, and the interruption is
short enough, it can be omitted; a longer interruption
can be noted brieŕy in a [bracketed comment]. The
choice depends on an estimation of whether noting
or omitting would be more disruptive to someone
reading the transcript and watching the interview at
the same time.

Some details, őnally, will require explanation
or conőrmation by the speakers themselves. An
instance in the TUG 2021 interviews was when one
of the interviewees referred to colleagues by only their
őrst names. Since I don’t know these individuals,
direct contact was necessary. That said, it’s always
a good idea to ask a subject to review the transcript
before publication to avoid surprises.

Examples of misinterpretation

As mentioned earlier, familiarity with the subject
matter is a great advantage. I encountered this long
ago, when observing the result of a symposium on
mathematical physics, recorded by experienced court
stenotypists. The transcribed phrase łbrownie in
motionž was determined to mean łBrownian motionž.
(The stenotypists would undoubtedly have produced

230 TUGboat, Volume 42 (2021), No. 3

letter-perfect transcriptions for medical terminology.)
Be warned.

Here is a not entirely random sample of terms
that led to head-scratching in the TUG 2021 inter-
views.

spoken Zoom YouTube

a local editor a low planetary a local editor

BachoTEX Bangladesh bob attack
parody

biblatex the block back people attack

CTAN Stacy time and say see town
tse-tung sita

ctan

Fujitsu 42 fujitsu

John Lees Miller john these Miller john lee’s miller

LATEX late night latex, later
late act

Overleaf overly overly

Overleaf usage obese usage overleafs usage

quarantine current time current time

ShareLATEX show a tech chelatec

TEX Live deck live deck live
tech live tech live

WriteLATEX right lasik right latex
right later

Suggestions for a prospective editor

0a. Make sure your equipment and support software
are in good working order. You should be a
competent user of your editing software, and
ideally, this software should be designed for use
with TEX text őles.

0b. If you haven’t already listened to the session,
do so, completely, before starting to work on
the transcript. Becoming even slightly familiar
with the individuals involved, their manner of
speaking, and the subject matter is worth the
time and effort.

1. Collect all recordings (audio or video) and text
őles in a convenient area. If the interview is
part of a larger recording, remove any unrelated
material from beginning or end, so that only the
relevant content will be part of the working set.

2. Create a łworkingž copy with a new name. If
more than one auto-transcript is available, choose
the one that provides the text in the form closest
to the őnal product. łLockž all original őles so
that they can’t be changed.

3. Analyze the text for consistently misinterpreted
items. Fix these globally in whatever manner
is most efficient and accurate. There may be a
function available with your chosen editor, or
a łsearch-and-replacež utility (such as sed on
Unix).

4. Now you are ready to compare the text őle to the
recording. Review the mechanism for stopping
the recording quickly and backing up just a few
seconds.

5. Update the text. Listen to the recording while
reading the corresponding text. Make correc-
tions as necessary. If something is unclear, go
over it again, and if it still doesn’t make sense,
refer to an alternate transcript if you have one,
or leave a comment in the őle for later attention,
and keep a separate list of questions.

6. It was suggested by a reviewer that łwaypointsž
(timing indicators) be inserted in the transcript
so that readers can őnd locations in the video
if they want. Since this was not done in the
transcripts that led to this article, I’m unable
to offer speciőc suggestions on how to do this
in a way that doesn’t detract from the natural
ŕow.

7. Process the őle to łőnalž form, and reread it,
preferably while listening to (and watching) the
recording. Make additional corrections as needed,
and clean up stammering, repetitions, etc., that
would cause confusion for someone reading (but
not watching) the interview for the őrst time.

8. Ask the participants to review the result, being
speciőc about questions that arose during the
editing. After approval, make any őnal correc-
tions and process for the őnal release.

There are organizations that offer transcription ser-
vices for a fee. It might be worth considering use
of such a service. Even if the transcriptionist is not
familiar with the technical details discussed in the in-
terview, the resulting text is likely to be much closer
to what was actually said than what is produced by
Zoom or YouTube.

References to the three interviews, both printed
transcripts and videos, that led to this article can be
found at tug.org/TUGboat/tb42-2.

⋄ Barbara Beeton

https://tug.org/TUGboat

https://tug.org/TUGboat/tb42-2

TUGboat, Volume 42 (2021), No. 3 231

Form, pattern & texture in the typographic image

Charles Bigelow

Abstract

In this essay we examine two fundamental typo-

graphic principles, size and combination, and show

that out of their interaction emerge three qualitative

levels of the typographic image: form, pattern, and

texture.

Preamble

This essay was originally published in 1989 in the journal

Fine Print: The Review for the Arts of the Book (vol. 15, no. 1).
In the intervening three decades, the terrain of typography

has shifted, and many books, as well as other forms of

typographic texts, are now read on digital displays, not in

print. Discussions of typographic art must now consider

analog and digital, in-print and on-screen, long-form and

short-form texts. Hence, looking back on this essay of

thirty-two years ago, I see that some of my views have

changed in light of new media, new knowledge, and new

discoveries about old knowledge.

The parts about vision science could and certainly

should be updated. Since the 1980s, reading scientists

have discovered more about the visual processes under-

lying reading, and many recent findings appear relevant

to understanding typography, and may at least expand

our perception of its richness. But, to rewrite this essay

to include all the newer technological developments in

typography and the scientific discoveries pertaining to

reading would force it into a book length disquisition. In-

stead, the essay appears here as originally written because

its basic distinctions are, I believe, still the same; the shift

to digital typography has not changed them.

There are a few additional references and illustra-

tions that touch on selected topics in reading science.

Also, some of the original illustrations have been replaced

with slightly different images, but their purposes within

the essay are unchanged. The endnotes are marked in

the main body of text by numbers in parentheses, e.g., (1),

and then listed by number at the end of the essay.

The original print essay was composed in Lucida

Bright, a typeface design first introduced in Scientific

American magazine in 1987 and later released for general

use. This republication for TUGboat uses Lucida Book, a
new variant of Lucida, still under development but making

its inaugural appearance here.

1 Introduction

In her famous essay, “The Crystal Goblet, or Printing

Should Be Invisible”, Beatrice Warde argues that

typography is not an art.

Type well used is invisible as type… That is

why it is mischievous to call any printed piece

a work of art, especially fine art: because

that would imply that its first purpose was to

exist as an expression of beauty for its own

sake and for the delectation of the senses. …

printing in English will not qualify as an art

until the present English language no longer

conveys ideas to future generations and until

printing itself hands its usefulness to some

yet unimagined successor. (1)

In a lesser-known but no less important essay,

“Clay in the Potter’s Hand”, Jan Tschichold argues

that typography is an art:

Decisions on matters of higher typography,

such as in a title page, need a really highly

developed taste, related to what is needed in

creative art. They may produce forms which

are quite as perfect as good painting or sculp-

ture. From the experts they should receive

even more respect since the typographer is

more strictly bound than any other artist by

the unchangeable wording of the material be-

fore him. None but a master can call the dead

leaden letters to true life.

Perfect typography is certainly the most

elusive of all arts. Out of stiff, unconnected

little parts a whole must be shaped which is

alive and convincing as a whole. Sculpture

in stone alone comes near in its obstinacy

to perfect typography. For most people it

offers no special aesthetic charm as it is as

difficult of access as the highest music… (2)

Warde bases her argument on pragmatics: be-

cause typography is useful, because it conveys ideas,

it cannot be art, for art is, by implication, aesthetic

and sensual rather than utilitarian and rational.

Tschichold bases his argument on sophistication,

in the sense of complexity or refinement: because

typography can be as developed, perfect, difficult,

and elusive as the fine arts, it must be an art itself.

In claiming that the typographic whole is con-

structed from elementary parts, that it is greater

than the sum of its parts, and that it can be alive,

Tschichold is espousing “holism”, a philosophy

doi.org/10.47397/tb/42-3/tb132bigelow-form

Form, pattern & texture in the typographic image

https://doi.org/10.47397/tb/42-3/tb132bigelow-form

232 TUGboat, Volume 42 (2021), No. 3

which asserts that complex systems exhibit emer-

gent characteristics that cannot be predicted from

knowledge of their components—simply put, that

the whole is greater than the sum of its parts—and

“vitalism”, a relative of holism, which says that a cer-

tain kind of complex system possesses a vital, living

essence that does not exist in its constituent parts.

Typography is a complex system which com-

prises type faces, which in turn comprise alphabets,

which in turn comprise letters, all of which may

be selected, combined, and arranged according to

many different principles in a vast number of ways.

The perceptual effect of a typographic work can-

not, according to a holistic view, be deduced from

simple knowledge of the individual letterforms.

What Warde and Tschichold both are trying to

do in these apparently contradictory essays is to

define and understand the aesthetic principles of

typography. They both observe that most readers

do not notice good typography. Nevertheless, be-

cause printed text is a dominant visual experience of

modern civilization, those readers will spend hours

a day and years in a lifetime viewing printed pages.

Therefore the principles that govern the typo-

graphic image are potentially important to everyone

who works with printed texts—writers, editors, pub-

lishers, teachers, librarians, and bibliophiles—as

well as to the printing historians and typographic

designers who scrutinize typeset pages with profes-

sional eyes.

In this essay we examine two fundamental typo-

graphic principles, size and combination, and show

that out of their interaction emerge three qualitative

levels of the typographic image: form, pattern, and

texture.

2 Size

Variation of size within a text is one of typogra-

phy’s signal contributions to the art of literacy. Size

variation was not unknown before typography—it

can be found in Latin and Greek alphabetic man-

uscripts, Egyptian hieroglyphic inscriptions, and

Chinese logographic brush writing and block print-

ing, but it has developed in typography to a greater

degree than in those chirographic, epigraphic, or

xylographic traditions.

Multiple sizes of type in a text are not strictly

necessary, either for sense—typewritten texts com-

posed in a single size of type have served authors,

editors, teachers and students well for over a cen-

Figure 1: The Konrad Berner type specimen, Frankfurt,
1592. See note (3).

tury—or for beauty—certain incunabula composed

only in one size of type are still regarded as paragons

of typography. Yet, variation of type size makes text

clearer, more dynamic, andmore engaging. Size vari-

ation is a mainstay of typographic design. Without

it, the modern book would be dull, and the modern

newspaper impossible.

Size is so important to typography that the cre-

ation of a spectrum of different sizes of type occu-

pied the careers of the greatest punchcutters of the

golden age of typography. After Claude Garamond

cut his first definitive romans, like the St. Augustin

size (approximately 14 point) in Jacques DuBois’ In
Linguam Gallicam Isagoge printed by Robert Esti-
enne in 1531, three generations of punchcutters

labored to create additional sizes in Garamond’s

idiom. The Konrad Berner Foundry type specimen

of 1592 (fig. 1) shows the Garamond style of roman

face available in a series of sizes from Canon (ap-

Charles Bigelow

TUGboat, Volume 42 (2021), No. 3 233

proximately 48 point) to Nonpareil (approximately

6 point), cut variously by Garamond himself, Robert

Granjon, Pierre Haultin, and Jacques Sabon. Christo-

pher Plantin’s folio type specimen of 1585 shows

a similar range by most of the same hands, with

yet larger sizes of roman by Hendrik van den Keere

(though in a style noticeably different from Gara-

mond’s). Toward the end of the sixteenth century,

Guillaume Le Bé I and Jacques de Sanlecque also cut

sizes of roman in the Garamond style. Moreover,

Granjon in his long and prolific career cut many

sizes of italic faces in his own distinctive styles, ex-

amples of which are also shown in the Berner and

Plantin specimens. (3)

Why is size so useful? Tschichold’s comparison

of typography to music suggests analogies that may

illuminate the role of size in typography. Large

letters are used for emphasis in text, as loud notes

are used for emphasis in music or loud voices in

conversation. Hence, size in type is somewhat like

loudness or dynamics in music. Just as different

parts of a musical composition are loud or soft (in

musician’s terms, forte or piano) different parts of

a text are large or small.

Type size is more closely analogous to musical

pitch, but in a spatial rather than a temporal dimen-

sion. In typography, spatial frequency is the number

of black and white alternations per unit of distance,

just as musical frequency is the number of acoustic

vibrations per unit of time. In a given length of line,

a small size of type fits more letters, and hencemore

alternations of black stems with white counters and

spaces, than does a large size; hence, smaller type

has a higher spatial frequency. Here we see chains

of “minimumu” at different sizes:

minimumuminim
minimumuminimumumi
minimumuminimumuminimumuminimimuminim

A typeface that is available in a range of sizes

is like a musical instrument which can produce a

scale of notes of different pitch. A typographic

composition that includes different type sizes thus

comprises “notes” of different visual pitch, just as

a musical composition comprises notes of different

audible pitch. When a reader views a whole page, dif-

ferent type sizes are perceived simultaneously, thus

constituting a kind of spatial harmony; when one

Figure 2: Times Roman fonts of different design sizes,
scaled to the same x-height to show proportional

changes according to scale. Courtesy of Kris Holmes.

reads a linear text, the types are perceived sequen-

tially, thus constituting a kind of spatial melody.

An analogy can also be drawn between the vis-

ual qualities of the typographic notes produced by

a typeface, and musical “timbre”. Typographic tim-

bre is a complex visual sensation resulting from the

interaction of the proportions, details, and spacing

of the typeforms, just as musical timbre is a com-

plex acoustic sensation that results from the sum

of the harmonics (partials or overtones) produced

by the shape and design of an instrument. A type-

face family that includes related variations, such as

roman, italic, and bold (and perhaps sans-serif as

well) permits the typographer to adjust visual tim-

bre somewhat independently of spatial frequency

or size. (4)

A concept related to size is “scale”. A scale is

a fixed series of measures, and hence to scale type

is to enlarge or reduce it. When scaling leaves letter

proportions unchanged, it is termed “linear”. Lin-

ear scaling is standard in photographic and digital

typography. Opposed to linear scale is non-linear

or optical scale, adapted to the eye rather than the

machine. Harry Carter, in his article “The Optical

Scale in Typefounding”, demonstrates that the tra-

ditional proportions of typeforms differ according

to whether type is large, medium, or small (fig. 2).

In particular, he shows that type designed for a

small scale tends to be wider, have a larger x-height,

thicker hairlines, and more exaggerated serifs, joins,

and terminals than type for a large scale. (5)

Similarly, Daniel Berkeley Updike observes that,

“A design for a type alphabet that may be entirely

successful for the size for which it is drawn, cannot

Form, pattern & texture in the typographic image

234 TUGboat, Volume 42 (2021), No. 3

be successfully applied to all other sizes of the same

series. Each size is a law unto itself…”. (6)

Traditional punchcutters and scribes made

such proportional changes in order to optimize

legibility. Recent research in visual perception sug-

gests that such proportional changes are necessary

because the human visual system has non-linear

sensitivity to visual features of different spatial

frequencies (fig. 3). (7)

Today, photographic and computer techniques

can render almost any size of type with ease and pre-

cision. Type size has become a continuum instead

of a sparse series of fixed sizes and proportions. Be-

cause innumerable fine gradations of size are now

possible, the typographer must strive to understand

the principles that govern the appearance of types

at all sizes.

The range of sizes in text is commonly divided

into three main scales: large, medium, and small. (8)

These refer to apparent size more than physical size.

Apparently small type may be physically small, e.g.,

6 point type in a newspaper classified advertisement

read at a distance of twelve inches, or physically

large, e.g., two-foot high type on a billboard read at

a distance of 288 feet, but both appear to be the

same size because they subtend the same degree

of visual angle at the retina of the eye, namely 0.4

degrees of visual angle in this case.

In general, large scale type is used for the dis-

play of particular words or phrases, as in titles;

medium scale for the main or body text, and small

scale for reference text, like footnotes in books

or classified advertising in newspapers. However,

the actual sizes depend on context. In a book, the

medium scale text may be composed in 12 point

and small scale footnotes in 9 point, whereas in

a newspaper, the medium scale text may be in 9

point and the small scale classified advertising in 6

point. (8)

The textual significance of a given size of type

is based on relative scale—the relationship of a

given size of type to the other sizes of type on the

page. For example, a small amount of large type

positioned above a large amount of smaller type

usually marks the former as a title or heading for

the latter, whatever their actual sizes may be. Rel-

ative scale has meaning, whereas absolute size is

merely a physical fact.

Figure 3: Superimposed letters F E D have been individ-
ually filtered into separate spatial frequency bands to

which the human visual system is differentially sensitive.

The large F is rendered within a band of high frequencies,

mainly edges, that make the letter identifiable at a close

viewing distance around one to two feet (30 to 60cm).

The large E is within a band of middle frequencies, mainly

interior form, that make it more identifiable at a distance

around three to four feet (90 to 120cm). The large D

lies within a band of low frequencies, mainly basic shape,

that make it most visible at around eight to twelve feet

(240 to 360cm). TUGboat readers may experiment to find
optimal visibilities by varying viewing distances. Identifi-

ability of the letters may also depend on viewer eyesight

and the ambient illumination.

At lower right, the superimposed small letters—one

eighth the size of the large ones—are rendered within

the same frequency bands as the large ones, respectively,

but because the spatial frequencies reaching the eye are

increased by smaller size or greater distances, followed

by filtering out of high frequencies in the visual system,

TUGboat readers may find the E or D more visible at nor-
mal reading distances, and the D most visible at greater

distances. It would be intriguing to read a text composed

in a font like this, if one is possible, which reveals differ-

ent texts depending on reading distances. The authors of

this study state, “Thus, large letters (and coarse square-

waves) are identified by their edges; small letters (and fine

squarewaves) are identified by their gross strokes.”

See note (7) with reference to Majaj et al. for further

explanation. Image courtesy of Denis Pelli.

Charles Bigelow

TUGboat, Volume 42 (2021), No. 3 235

Figure 4: Text composed in type based on the Textura
script, so named because of its woven appearance.

From the Gutenberg Bible, ca. 1455, the first European

book printed from movable type. Courtesy of the RIT

Cary Graphic Arts Collection.

3 Combination

In text composition, size is always associated with

another fundamental typographic principle, com-

bination, as a direct consequence of the nature of

language.

As a medium of communication, typography

is twice removed from its content. At the first re-

move, writing is a visual representation of language,

and at the second, typography is an industrialized

representation of writing. To the reader, the let-

ters that compose a text are recognized in passing

but are not themselves objects of contemplation;

rather, the words, and behind them, the ideas ex-

pressed by the text are of primary interest. As if to

acknowledge these two aspects, the word “text” has

dual meanings. First it is the printed artifact—the

perceptual object, and second it is the linguistic con-

struction—the conceptual object. Although text is

used mainly in the latter sense today, its etymology

suggests the former, as the modern word is derived

from Latin textus, a weaving, referring to the wo-
ven pattern created by written letters arrayed on a

page. (9) (See fig. 4.)

Because the art of weaving involves the creation

of a two-dimensional fabric from a one-dimensional

thread, an obvious analogy with typography can be

drawn, for speech is a one-dimensional string in

time woven by typography into a two-dimensional

plane in space. As the revolutionary Russian ty-

pographer El Lissitzky observed, “We have two di-

mensions for the word. As a sound it is a function

of time, and as a representation it is a function of

space.” (10)

Typographic weaving is composition, the repe-

tition and recombination of a small number of letter-

forms into strings and the assembly of those strings

into masses of text. It reflects what the French lin-

guist André Martinet has called the “double artic-

ulation” of language. (“Articulation” here being

itself a double entendre, meaning both segmenta-
tion into components and pronunciation.) Though

apparently of infinite variety, the utterances of a

language are constructed from a finite set of mean-

ingful segments—words or “morphemes”—which

constitute the first articulation. The words them-

selves are constructed from a much smaller set of

sound units—“phonemes”—which constitute the

second articulation. A language may contain myr-

iads of words but will have fewer than a hundred

distinct sounds. English, for example, has some

forty-five phonemes, and at least several hundreds

of thousands of words. Since there are so few in-

dividual phonemes in relation to the large number

of words, each phoneme is repeated many times in

many combinations. (11)

To represent language in a graphic medium,

typography likewise utilizes the repetition and re-

combination of elements. In alphabetic typogra-

phy, the graphic signs or “graphemes” are letters.

In logographic typography (used for Chinese, Japa-

nese, and Korean in varying degrees) the graphemes

are characters. Individual letters signify sounds or

phonemes (the second articulation), and combina-

tions of letters (or single characters in a logographic

script) signify words or morphemes, the first articu-

lation. As is true for the phoneme, the single letter

generally has no meaning by itself; its significance

lies in its differentiation from the other letters, and

its combinations with them to produce higher-level

meaningful segments.

4 The typographic image

The interaction of size and combination creates

three levels of the typographic image: form, pat-

tern, and texture. Each level contains a range of

sizes in varying degrees of combinatory complex-

ity. Although size is a quantitative aspect of type,

the emergent levels of the typographic image are

qualitative.

Form

The design of a letter is a study in form (fig. 5).

The letterform is a dualistic rendering: black and

white, intaglio and relief, figure and ground, on and

Form, pattern & texture in the typographic image

236 TUGboat, Volume 42 (2021), No. 3

a
Figure 5: The ‘a’ of Lucida Book, font size 216pt.

off. The contour that separates and defines the po-

larities of the letter image creates the interaction

between letterform and counterform, interior and

exterior, positive and negative space. The resul-

tant perception includes lines, such as fair curves,

straight edges, smooth joins, and sharp corners, as

well as shapes, such as solid regions, empty hollows,

delicate taperings, and abrupt terminations.

At the level of form, the letter is viewed at a

large scale. In the large letter, interior area domi-

nates contour line because of a geometrical rela-

tionship known to the Greeks: the area of a form

increases in proportion to the square of the size,

whereas the length of the contour that defines the

form increases in direct proportion to the size.

When a letter is large, the area of the interior is large

in proportion to the line of the contour, and much

of that region is relatively far from the contour.

Hence, the mass (or void) tends to dominate the im-

age. However, this tendency is partly counteracted

by mechanisms in the human visual system, such

as lateral inhibition, that extract edges from images

and de-emphasize monotonous surfaces. (12)

At its largest perceptual size, the letterform is

isolated. Extracted from the context of the alpha-

betic system, the isolated letter becomes an object

of contemplation, not meaning. It is pure form, its

semiological role vacated because alone the letter

has no significance. It is an abstraction. As Eric Gill

wrote, “Letters are not pictures or representations.

They are more or less abstract forms.” (13)

Form invites abstract analysis. Renaissance hu-

manists and artists analyzed the shapes of letter-

forms with the compass and straightedge of Eu-

clidean geometry (fig. 6). Enlightenment academi-

cians used the grids of Cartesian geometry. Today’s

Figure 6: Capital Q letter construction by Sigismondo
Fanti, Theorica et practica … de modo scribendi
fabricandique omnes literarum species, Venice, 1514.

computer scientists use the mathematical formulae

of splines and conic curves.

Because letterforms can easily be scaled to any

size by modern typographic technology, the finest

details of the forms, formerly examined only by

experts, can now be appreciated by everyone. The

letter under the lens of photographic and digital

typography is like the work of art under the lens of

the camera, as discussed by Andre Malraux in The
Voices of Silence (1978):

In an album or art book the illustrations tend

to be of much the same size. Thus works of

art lose their relative proportions; a minia-

ture bulks as large as a full-size picture, a

tapestry or a stained-glass window… In this

way reproduction frees a style from the lim-

itations which made it appear to be a mi-

nor art.

Indeed, reproduction (like the art of fic-

tion, which subdues reality to the imagina-

tion) has created what might be called “fic-

titious” arts, by systematically falsifying the

scale of objects; by presenting oriental seals

the same size as the decorative reliefs on pil-

lars and amulets like statues… Sometimes

the reproductions of minor works suggest to

us great styles which have passed away—or

which “might have been”. (14)

Charles Bigelow

TUGboat, Volume 42 (2021), No. 3 237

At a large scale, the letterform ceases to be

a minor art, and takes its place with the forms of

painting, sculpture, and even architecture as objects

of study and contemplation. The letter as form

is displayed, as Beatrice Warde said above, “as an

expression of beauty for its own sake and for the

delectation of the senses”.

The effect that the forms of letters will pro-

duce when combined into text is often impossible

to predict because many of the characteristics of

an alphabet design emerge only en masse. The next
level of the typographic image, the level of forms in

combination, is the level of pattern.

Pattern

Combined into words and lines of text, the forms

and counterforms of individual letters become ele-

ments of a periodic structure. The shapes of stems,

bowls, serifs, and other features of a letter relate

to similar features of other letters, as the forms of

counters inside a letter relate to the counters of

other letters and to the spaces between letters. Be-

cause there are only a few different letterforms in

an alphabet, each form is repeated many times in

many combinations, and the relationships between

forms and counterforms extend beyond near neigh-

bors to entire lines and columns. The sum of these

relationships is a pattern.

The level of pattern occurs at a medium scale,

where the interior area of a form no longer domi-

nates the contour line. Instead, these two different

aspects of a geometric figure tend toward equilib-

rium. Because much of the interior area of a form

lies close to the contour, the interaction of contours

with areas, edges with surfaces, gives the text image

an active quality.

A text pattern is complex because it results not

only from the repetition of whole letters, but also

of letter parts. Letters are constructed from more

primitive graphic elements. In handwriting, these

elements are kinesthetic movements—gestures and

strokes—which leave graphic traces; in type design,

they are graphic features which can be consistently

combined, such as stems, bowls, diagonals, cross

bars, hairlines, joins, serifs, and terminals. Because

the letters share a small number of elemental fea-

tures, the structure of the text pattern is derived

from symmetries and transformations of repeat-

ing letter parts as well as from repetitions of fully

formed letters.

This constructive, systematic nature of type-

faces is a result of the formal interactions of the

letters during a long, common history. The devel-

opment of the alphabet shows a transformation of

originally iconic or pictorial signs, linked by rela-

tionships of resemblance to the objects signified,

into abstract, symbolic shapes which have stronger

formal linkages to each other than to the things

they signify. The alphabet represents a system of

sounds, not a collection of isolated entities, and

thus no letter exists in isolation. Graphically, each

letter must be unique in order to carry its partic-

ular significance, but it must also be fashionable

by the same means as the others, writable by the

same hands and tools, constructible from the same

elements.

Pattern begins with the word and comes to full

flower in the line and column. The line of type is

a one-dimensional pattern, like a frieze, based on

the repetition of geometric figures in a line. For effi-

cient packing, the continuous line of type is cut into

segments which are arrayed in columns, creating a

two-dimensional type page which, like wallpapers,

tilings, and fabrics, is based on repetition in a plane

(fig. 7). This structural relationship of type to pat-

tern has been familiar to typographers for centuries.

Robert Granjon in the sixteenth century and Pierre

Simon Fournier in the eighteenth excelled in the

creation of floral forms or fleurons that could be

combined into ornamental patterns to accompany

their typeforms combined into text. (15)

The patterns that emerge from text are never-

theless different from those of ornamental friezes

and tilings because the latter, though often beauti-

ful and intricate, convey relatively little information

despite multiplicity of forms. The mathematical

principles that govern the tiling of the plane make it

possible to predict exactly when and where a given

geometric element will occur in a pattern (fig. 8).

Hence, there is little new information derived from

each repetition of the pattern. (16)

A third dimension of pattern is found in the

codex form of book, which, like a crystal, is com-

posed of parallel text planes in space. The codex

book is, however, a cognitive more than a visual

structure, since it relies on the reader’s memory

of the patterns on successive pages rather than on

simultaneous perception of them. The third dimen-

sion of book structure is often emphasized in mod-

ern books created as art objects or experiments.

Form, pattern & texture in the typographic image

238 TUGboat, Volume 42 (2021), No. 3

Figure 7: Page of prospectus designed by Jan Tschichold,
1947. The individual forms of the large capitals are ev-

ident, and the beginnings of patterns are seen in the

word combinations. The lines of smaller capitals exhibit

stronger patterns, while individual forms are less evident.

So-called “hyper-texts”, used for reading and

accessing complex computer data bases, have struc-

tures that rely on the computer’s memory to keep

track of page sequence, which can be arbitrarily

complex and convoluted, and seldom follows the

regular, linear sequencing of the codex. Yet, so far,

the basic designs of the typographic pages of hyper-

texts remain repetitive and book-like.

Typographic tilings are only partially predict-

able. The periodicity of a typographic pattern is

approximate rather than exact, flexible rather than

rigid, surprising rather than predictable, because

the text constantly changes. The occurrence of a

given letter or word space in a particular position

is determined not by rules of geometry but by rules

of language and the idiosyncratic choices of an au-

thor. (17)

1 11 11 11 11 11 1

11 1111 1111 1111 1111 1111 11

1 11 11 11 11 11 1

Figure 8: Arabesque after Granjon, from Kleines Spiel mit
Ornamenten by Max Caflisch (Berne: Angelus-Drucke,
1965), reconstructed by Jacques André (Petits jeux
avec des ornenents, jacques-andre.fr/ed/caflisch-
jeux.pdf, 2009, p. 63).

The pattern made by a typeface is greatly in-

fluenced by the amount and distribution of space

between lines and between letters. The typical text

column makes a striped pattern which the typogra-

pher can augment or diminish by using more or less

leading—interline spacing. Within the line, visually

even letterspacing is often held to be ideal. A regu-

lar spatial frequency of alternating dark stems and

white spaces creates a smooth rhythm with a look

of stability and repose (as in the earlier “minimum”

example). Techniques for the regular spacing of

capitals have been described by Tschichold and for

the even fitting of lower case by Walter Tracy. (18)

Perfectly even spacing is difficult to achieve in

practice because the arbitrary shapes of letters in-

evitably cause some degree of irregularity of fitting

in standard typographic technology. Not all letter

combinations seem equally spaced. But some de-

gree of irregularity in letterforms and spacing may

be preferable to monotonous regularity, just as in

music, where slight inharmonicity of partials, or

overtones, creates the complex, wavering quality

that makes a piano tone “warm”, whereas precisely

harmonic partials produce bland sounds. (19)

In contemporary advertising typography, the

unstable, restless patterns of tight letterspacing are

preferred. The busy, frenetic effect of so-called

“sexy” spacing, in which the letters tend to rub up

against each other, are common in the typography

of mass market persuasion, where arresting, stac-

cato patterns draw the reader’s attention to texts

that might otherwise be ignored. (19A)

Tight packing of letters also magnifies the logo-

graphic aspect of typography. Reduction of space

between letters within a word emphasizes by con-

trast the space between words, thus articulating the

text into an archipelago of word islands, rather than

continuous strings of letters. The semi-crystalline

lattice of letters on the page is thus interrupted by

holes, but holes that have a purpose and meaning.

In typography, the word space has developed as

Charles Bigelow

https://jacques-andre.fr/ed/caflisch-jeux.pdf
https://jacques-andre.fr/ed/caflisch-jeux.pdf

TUGboat, Volume 42 (2021), No. 3 239

Figure 9: Three pages from Fournier’sManuel Typographique, from left to right, exemplars
of form, pattern, and texture. Scaled to approximately 80% of original size.

Although Fournier invented a precursor of our current point system, his Manuel uses
names for type sizes, as was common in his era. In modern points, the sizes are approxi-

mately: Grosses de fonte (‘M’ in first image) = 96 points high; Palestine (second image) =

24 point body size; Nompareille (third image) = 6 point body size.

a representation of a psychological rather than an

acoustic reality, since there are rarely gaps or pauses

between words in continuous speech. (20) The im-

portance of the blank space as a logographic mark

in English text is indicated by its frequency, greater

than e, the most frequent letter.

Further, close letterspacing creates character-

istic word images by emphasizing the irregularity

of a given sequence of features in a word, thus dis-

tinguishing its shape from that of other words. By

subdividing the letter pattern into characteristic

chunks and gaps instead of a continuous flow, al-

phabetic typography takes on some of the qualities

of logographic Chinese writing.

Texture

The realm of texture is the habitat par excellence

of the serious reader, where the text reaches its

greatest mass and density and the ultimate visual

qualities of the literate image emerge. At the level

of texture, line dominates area; forms are obscured;

patterns become aggregates. Small, the letters are

seen as though at a distance, through an intervening

atmosphere, resemblingmore the attenuated figures

sculpted by Alberto Giacometti than the forms and

volumes shaped by Henry Moore.

When letters are seen at a small size, it is dif-

ficult if not impossible to discern the exact forms

of fine features such as serifs, joins, and terminals,

though these are obvious at a large size. Linear-

ity replaces interiority. The area of the interior of

the small letter is small compared to the length

of the contour, and most of the interior area lies

along the contour. At the level of texture, the letter

is mainly line, an aspect intensified by the edge-

detection mechanisms of the human visual system.

Textures are complexes of edges.

Patterns evident at a medium scale become so

dense at the small scale that statistical qualities

emerge; the density or “color” of the text, its granu-

larity, and its weave can be seen directly. Out of the

myriad interactions of features and spaces, texture

emerges. That a basic quality of the text emerges

frommultiplicity was known both to traditional and

to modern typefounders. Pierre Simon Fournier ob-

serves in his Manuel Typographique (fig. 9):

One letter measured singly may seem neither

Form, pattern & texture in the typographic image

240 TUGboat, Volume 42 (2021), No. 3

Typography is closely allied to the fine arts, and

types have always reflected the taste or feeling of

their time. The charm of the early Italian types has

perhaps never been equalled

Typography is closely allied to the fine arts, and

types have always reflected the taste or feeling of

their time. The charm of the early Italian types

has perhaps never been equalled

Figure 10: A quote from D. B. Updike’s Printing Types,
set in Helvetica (above) and Syntax (below), illustrating

an observation from poet Heinz Peyer.

appreciably too big nor too small, but ten

thousand composed into printed matter re-

peat the error ten thousand times over, and,

be this never so small, the effect will be the

opposite of what was intended. The same

trouble also occurs when a stroke is made ei-

ther too thick or too thin relative to its length,

which makes a letter look clumsy and faulty,

with out the reason for it being always easy

to find out. (21)

One memorable observation on typographic

texture was made by Heinz Peyer, a Swiss poet, who

said that reading a text composed in Helvetica was

like walking through a field of stones, whereas read-

ing a text in Syntax was like walking through a field

of flowers (fig. 10). (23)

Chauncey Griffith, designer of twentieth-cen-

tury news faces, found the ready analogy between

textiles and text typography:

But the individual piece of type is like a

thread. A single thread might be dyed crim-

son, scarlet, or pink and the human eye

would find the difference hard or impossible

to detect. But once that thread is woven into

cloth, the color is very apparent. So type

must be judged after it is woven into the

texture of a paragraph or a page. (22)

Although the level of texture is wheremost read-

ing takes place, the vocabulary of texture is the least

developed of the three levels of the typographic im-

age. At the level of form, terms like line, space, and

mass, commonly applied to drawing, painting, and

sculpture, can equally apply to type. At the level

of pattern, notions of symmetry, homology, and

periodicity, commonly applied to tessellations and

mosaics, can also apply to type. But at the level of

texture, few standard terms are available. Typogra-

phers use “color” for achromatic density—the dark-

ness or lightness—of printed text, or a few ad hoc

expressions like “spikey”, “wormy”, or “stolid”, de-

pending on one’s feeling for metaphor. In the realm

of texture, poets may need to come to the aid of

printers by providing words to describe the images

of the “black art”.

Form is often susceptible to logical analysis,

and pattern somewhat so, but texture evades precise

description because its repetitions are so numerous,

its features so small, and its interactions so refined,

that the multifarious complexity of the emergent

image resists orderly analysis. Texture requires a

holistic more than an analytic understanding. This

is an aspect of a deeper and larger philosophical

difficulty stated by Pascal in his famous comparison

of the intuitive mind to the geometrical mind:

These (principles) can be seen only with diffi-

culty, they are sensed more than seen, and it

is infinitely difficult to make them known to

those who do not sense them for themselves.

These things are so delicate and so numer-

ous that a sense of great delicacy and pre-

cision is necessary to perceive them and to

judge correctly and accurately from the per-

ception, and in most cases it is not possible

to prove the judgment logically as in geome-

try, because not all the necessary principles

are available and it would be an infinite under-

taking to gather them. It is necessary to see

the whole thing all at once, in a single glance,

and not by progressive reasoning… (24)

As a consequence of the complexity and refine-

ment of texture, psycho-physical and mathematical

studies of its perception have used statistical anal-

yses and formalized notions of clustering, orienta-

tion, and brightness. However, the visual elements

and arrangements used in such perceptual studies

are simple compared to the complexity of letter-

forms in actual text, and hence such studies, though

suggestive, have so far been minimally relevant to

typography. (25)

For various purposes, typefounders, telegra-

phers, cryptographers, and information theorists

have made statistical measures of the frequencies

of letters and letter combinations in various lan-

guages. (26)

When coupled with knowledge of the forms

Charles Bigelow

TUGboat, Volume 42 (2021), No. 3 241

Figure 11: Texts in Latin (from Cicero’s first oration

against Catiline), English (from D.B. Updike’s Printing
Types), and Clackamas Chinook (from Jacobs’ and

Howard’s Clackamas-Chinook Texts) show different

textures resulting from different letter frequencies.

Composed in Syntax-Antiqua.

of the letters, such statistics can partially indicate

texture. For example, Updike notes that differences

in letter frequencies change the appearance of a

type page. He favorably compares Latin text, with

its frequent u’s, m’s, and n’s, infrequent diagonally

stroked y’s, and infrequent descenders, to English

text, with its greater frequency of diagonals and

descenders. (27)

Updike’s personal preference for the texture of

Latin was, however, a matter of taste more than ob-

jective judgment. The letter frequencies of Latin and

English actually seem rather similar when compared

to those of non-Indo-European languages. Had Up-

dike broadened his literary horizons beyond Eu-

rope and New England to native American texts pub-

lished by his contemporary Franz Boas, he might

have noticed, for example, that literary texts in the

Chinookan languages of the Pacific Northwest have

a plenitude of diagonals and descenders that the

texture of English seems staid, and Latin dull in

comparison. (28) (See fig. 11.)

When the typographic image is understood

to comprise distinct levels of different aesthetic

and functional qualities, the opposing arguments

of Warde and Tschichold can both be seen to be

true. At the level of form, typography is a fine art.

Its works are accessible to the aesthetic sensibility

of the viewer as well as to the intellectual analyses

of the art historian, and its shapes are susceptible,

at least to some degree, to the logical analyses of

the mathematician and scientist. At the level of

texture, typography is a utilitarian craft. Its forms

are aesthetically transparent to the reader, and its

emergent visual qualities, though obvious to the be-

holder as a holistic image, are resistant to articulate

analysis, as its perceptual workings remain for the

most part mysterious to the scientist. Typography

as pattern articulates form with texture, presenting

a bivalent image—formal yet functional, ornamen-

tal yet informational—leading on the one hand

toward the isolated shape and on the other toward

the emergent image. As a whole, then, typography

can be seen both as a tool for thought and as an

object of contemplation, a conveyor of sense and a

delight to the senses.

5 Notes

(1) Beatrice Warde, “The Crystal Goblet, or Printing

Should be Invisible”, originally an address

entitled “Printing Should be Invisible”, given to

the British Typographers’ Guild at the St Bride

Institute, London, 1932.

Reprinted in The Crystal Goblet: Sixteen Essays
on Typography . London: Sylvan Press, 1955;
Cleveland and New York: The World Publishing

Co., 1956. Also reprinted in The Monotype
Recorder , vol. 44, no. 1, Autumn 1970.
readings.design/PDF/The%20Crystal%20
Goblet.pdf

Warde’s famous essay enjoys an enduring place

among the best literature of typography, and her

phrase, “until printing itself hands its usefulness

to some yet unimagined successor” was clairvoy-

ant. Nine decades later, her “unimagined successor”

to print is not only imaginable, it is nearly ubiqui-

tous in the digital display of text on the screens of

computers, tablets, e-readers, smart phones, and

the like. The number of smart phones worldwide

is estimated to be greater than six billion and the

number of computers at least 2 billion. Ebooks in

various forms have been estimated to constitute 14

to 21 percent of books published per year.

(2) Jan Tschichold, “Ton in des Töpfers Hand”,

in Ausgewählte Aufsätze uber Fragen der
Gestalt des Buches und der Typographie. Basel:
Birkhäuser, 1975.

English translation by Hajo Hadler, as “Clay in a

Potter’s Hand”, in The Form of the Book, Robert
Bringhurst, ed. Vancouver, Canada: Hartley &

Form, pattern & texture in the typographic image

https://readings.design/PDF/The%20Crystal%20Goblet.pdf
https://readings.design/PDF/The%20Crystal%20Goblet.pdf

242 TUGboat, Volume 42 (2021), No. 3

Marks Publishers, 1991. (Hadler’s translation

differs somewhat from the one in this essay.)

(3) John Dreyfus, ed., “Specimen no. 2: Konrad

Berner, Frankfurt 1592”, in Type Specimen
Facsimiles. John Dreyfus, general editor,
with research by A.F. Johnson, Harry Carter,

Matthew Carter, Netty Hoeflake, Mike Parker.

London: Bowes & Bowes, 1963.

H.D.L. Vervliet, Harry Carter, eds., “Specimen

no. 17: Plantin’s Folio Specimen c. 1585”

and “Specimen no. 18: The Le Bé–Moretus

Collection of Fragments c. 1599” in Type
Specimen Facsimiles II . Toronto: University of
Toronto Press, 1972.

Nicolas Barker, “The Aldine Roman in Paris,

1530–1534”. The Library , vol. s5-XXIX, no. 1,
Mar. 1974, pp. 5–20.

doi.org/10.1093/library/s5-XXIX.1.5

Harry Carter, ed., Sixteenth Century French
Type-founders: The Le Bé Memorandum.
Paris: André Jammes, 1967.

More recent research by Hendrik D.L. Vervliet in-

dicates that the St. Augustin roman type used by

Robert Estienne in the 1531 Isagoge and other books

was cut not by Garamond but by a “Maitre Con-

stantin” who cut five romans in the Aldine style for

Estienne but of whom little else is known.

Hendrik D.L. Vervliet, French Renaissance Printing
Types: A Conspectus. New Castle, DE, USA: Oak
Knoll Press, 2010. Simultaneously published in

London by the Bibliographical Society and the

Printing Historical Society, p. 36.

(4) Charles Bigelow, Kris Holmes, “The design

of Lucida”, in Text Processing and Document
Manipulation, J.C. van Vliet, ed. Cambridge:
Cambridge University Press, 1986, pp. 1–17.

Charles Bigelow, Kris Holmes, “Science and

history behind the design of Lucida”.

TUGboat , vol. 39, no. 3, pp. 204–211, 2018.
tug.org/TUGboat/tb39-3/tb123bigelow-
lucida.pdf

(5) Harry Carter, “The optical scale in

typefounding”, in Typography 4, pp. 144–148.
London: The Shenval Press, 1937.

Reprinted as “Optical scale in type founding”,

The Printing Historical Society Bulletin, vol. 13,

1984, pp. 144–148. London: St Bride Institute.

issuu.com/letterror/docs/harry_carter_
optical_scale_in_typefounding

Harry Carter’s influential essay is well known to type

designers; see, for instance: Tim Ahrens and Shoko

Mugikura, Size Specific Adjustments to Type Designs.
Garching, Germany: Just Another Foundry, 2013.

The first scientific study of the effect of optical

scale on legibility, to my knowledge is:

Kevin Larson, Matthew Carter, “Sitka: A

collaboration between type design and

science”, in Digital Fonts and Reading,
Mary C. Dyson, Ching Yee Suen, eds.,

pp. 37–53. Singapore: World Scientific,

2016. microsoft.com/en-us/research/
publication/sitka-a-collaboration-
between-type-design-and-science/

The authors conclude that type designs intended to

optimize legibility at small sizes are also optimally

legible at large sizes, while designs intended for

large sizes are artistically pleasing at large sizes:

The size-specific adjustments made for large sizes

do not increase legibility for large sized text. If

we want increased legibility at large sizes, we are

better served using a small size-specific design.

If our goal is instead some level of elegance or

personality, then a large size-specific design is

appropriate.

A review of a century of research on the effects

of typeface features on legibility is:

Charles Bigelow, “Typeface features and legibility

research”. Vision Research, vol. 165, Dec. 2019,
pp. 162–172.

(6) Daniel Berkeley Updike, Printing Types: Their
History, Forms, and Use, A Study in Survivals.
Cambridge, Massachusetts: Harvard University

Press, 1937.

(7) Najib J. Majaj, Denis G. Pelli, Peri Kurshan,

Melanie Palomares, “The role of spatial

frequency channels in letter identification”.

Vision Research, vol. 42, no. 9, Apr. 2002,
pp. 1165–1184. (Source for figure 3.)

Since the late 1970s, there have been several

studies of how (postulated) frequency sensitive

channels in the human visual system encode fea-

tures of letters and text for recognition by readers.

Evidence has emerged that different sizes of letters

Charles Bigelow

https://doi.org/10.1093/library/s5-XXIX.1.5
https://tug.org/TUGboat/tb39-3/tb123bigelow-lucida.pdf
https://tug.org/TUGboat/tb39-3/tb123bigelow-lucida.pdf
https://issuu.com/letterror/docs/harry_carter_optical_scale_in_typefounding
https://issuu.com/letterror/docs/harry_carter_optical_scale_in_typefounding
https://microsoft.com/en-us/research/publication/sitka-a-collaboration-between-type-design-and-science/
https://microsoft.com/en-us/research/publication/sitka-a-collaboration-between-type-design-and-science/
https://microsoft.com/en-us/research/publication/sitka-a-collaboration-between-type-design-and-science/

TUGboat, Volume 42 (2021), No. 3 243

are detected and encoded by visual channels sensi-

tive to different frequencies, although the findings

are neither as clear-cut nor as simple as I believed

when I wrote the present essay, in 1989.

Reading researcher Gordon Legge, summarizing

findings by several researchers, including in his own

laboratory, has written:

These empirical results imply that letters of large

angular size are identified by channels encod-

ing edge features or other high-frequency compo-

nents of the letters’ spectra. Identification of tiny

letters depends on channels that encode coarser

features (lower frequencies in units of cycles per

letter).

Gordon E. Legge, Psychophysics of Reading
in Normal and Low Vision. Mahwah, NJ:
Lawrence Erlbaum Associates, 2007, pp. 60–65.

The implication that large sized letters are recog-

nized by their high-frequency (sharp) edges, while

small sized letters are recognized by their low-

frequency (soft) components reminds us of claims

made by Harry Carter in “Optical Scale” (1937):

Legibility is all that matters in 6- to 10-point

types; so that their successful design is a tech-

nical, and not in the ordinary sense an artistic,

achievement… In the design of founts from 20-

to 72-point the artist comes into his element. The

eye dwells on big letters instead of hurrying from

one to another as quickly as it can make out their

meaning, as it does in reading text-sized types.

Every letter must therefore be worth looking at

for its own sake… There is no technical virtuosity

about the fact of cutting a 24-point letter: the

problem is an artistic one. The pleasure given by

a fine large type comes from the beauty of the

design and the beauty of the workmanship.

The whole problem of adapting type-design to

optical susceptibilities is a fascinating and a very

difficult one. It is only possible to nibble at it with-

out having proper experimental apparatus and

ample time.

Quantitative nibblings of spatial frequencies, or

optical susceptibilities, in the recognition of letters,

principally of type, include:

Arthur P. Ginsburg, “Visual information

processing based on spatial filters

constrained by biological data”. Report

No. AMRL-TR-78-129-VOL-1/2, Air Force

Aerospace Medical Research Lab,

Wright-Patterson AFB, Ohio, USA, 1978.

Robert Morris, “Spectral font signatures”.

Technical Report of the Department of

Mathematics and Computer Science. Boston:

University of Massachusetts, 1989.

Robert Morris, “Image processing aspects of type”,

in Document Manipulation and Typography,
J.C. van Vliet, ed. Cambridge: Cambridge

University Press, 1988.

Charles Bigelow and Donald Day, “Digital

typography”. Scientific American, vol. 249,
no. 2, Aug. 1983, pp. 106–119.

Charles Bigelow, “On Type: Optical letter

spacing for new printing systems”. Fine Print ,
vol. 4, no. 3, Oct. 1977. Reprinted in Visible
Language, vol. 11, no. 3, 1977, pp. 325–329,
visiblelanguage.herokuapp.com/issue/43

(8) Division into three levels of typographic scale

probably reveals a culturally ingrained preference

rather than a perceptual spectrum. Indo-European

languages and cultures, including English, often di-

vide phenomena into three parts, as in the grammat-

ical partitioning of adjectives into positive, compar-

ative, and superlative forms (big, bigger, biggest),

or the story of Goldilocks and the three bears, or

Caesar’s division of all Gaul into three parts. Had

Caesar been a book designer instead of a general, he

might have written, “Typographia est omnis divisa

in partes tres.”

A scientific analysis based on precise measures

of visual size and reading speeds suggests there

are two important divisions of typographic scale.

In studies beginning in the 1980s, Gordon Legge

and co-researchers have discovered a “critical print

size” (CPS) below which reading speed decreases

precipitously as type size decreases. Above the CPS,

reading speed does not appreciably increase but

instead reaches a plateau even as size increases. CPS

is measured by the visual angle that a font subtends

at the retina, which depends on two factors: the

physical x-height of a typeface in print or on screen

and the distance at which it is read.

As an example, assuming a reading distance of

16 inches (40 centimeters), the CPS of Times Roman

(or Times New Roman, or any similar-enough font)

is 9 point, giving a CPS of approximately 0.2 degrees

of visual angle.

A review of the relationship of critical print size

to typography:

Form, pattern & texture in the typographic image

https://visiblelanguage.herokuapp.com/issue/43

244 TUGboat, Volume 42 (2021), No. 3

Gordon E. Legge, Charles A. Bigelow, “Does

print size matter for reading? A review of

findings from vision science and typography”.

Journal of Vision, vol. 11, no. 5, Aug. 2011.
doi.org/10.1167/11.5.8

(9) Latin text- and Greek tex- (the “tech-” of “tech-

nology” and “technique”, as well as “TEX”, and the

“-tect-” of “architect” and “tectonic”) can both be

traced back to a reconstructed Proto-Indo-European

root, *teks-, meaning weaving and fabrication. The

use of computer technology to weave text reunites

aspects of an ancient craft.

A striking conjunction of typography with weav-

ing is in two books woven in silk by a nineteenth cen-

tury weaving firm in Lyon, France. A small, 20 page

book of a poem, “Les Laboureurs”, extracted from a

larger work by Alphonse de Lamartine, was digitized

and woven in silk on a Jacquard loom by the lace-

making firm of J.-A. Henry in Lyon, France. It was

exhibited at the 1878 Paris Exposition. The body size

of the digitally woven text is small, approximately

8.5 point. “Les Laboureurs” was followed in 1886

by a 50 page book (Livre de Prières tissé …) woven by
the same methods, and also elaborately ornamented

and illustrated, which won a prize at the 1889 Univer-

sal Exposition in Paris, where the newly completed

Eiffel Tower was a celebrated phenomenon.

(10) El (Lazar Markovich) Lissitzky, “Our Book”,

in Gutenberg Jahrbuch 1926 7. Mainz:
Gutenberg-Gesellschaft. English translation

by Helene Aldwinkel, in El Lissitzky, Sophie
Lissitzky-Küppers, ed. London: Thames and

Hudson, 1980.

(11) Andre Martinet, Éléments de Linguistique
Generale. Paris: Librairie Armand Colin, 1967.
Martinet follows an observation made by

Ferdinand de Saussure in Cours de linguistique
generale, Charles Bally and Albert Sechehaye
eds., 1916. English edition: Course in General
Linguistics, Wade Baskin, trans. New York: The
Philosophical Library, 1959.

Articulation into words is a notion familiar to

typographic literates because words are separated

by blank spaces in typography (though they were

not so in classical Greek and Latin manuscripts).

“Morpheme” denotes an elementary meaningful unit

of language, which may be a word or a significant

part of a word. An English noun such as “bird” is

a morpheme, as is the plural suffix represented by

the letter “-s” in the plural noun “birds”. Written

morphemes may or may not be separated by word

spaces, depending on the orthography of a language.

“Phoneme” denotes a psychologically distin-

guishable sound of speech. Unlike a word, a pho-

neme generally has no meaning in itself; its role is

to be different from other phonemes and to make

meaning through its interactions and combinations

with them. Articulation into phonemes is familiar to

readers of alphabetic scripts because many, though

not all, phonemes are uniquely represented by a sin-

gle letter. In English orthography, for example, the

letters b, d, p, and t, among others, represent conso-

nantal phonemes. Most orthographies are not, how-

ever, perfectly phonemic. English vowel phonemes,

as a notorious example, do not have simple, one-to-

one correspondences with the letters of written En-

glish. Few languages have more than 100 phonemes,

excepting some African Khoisan languages which

have a rich repertoire of click phonemes.

(12) Floyd Ratliff, “Contour and Contrast”.

Scientific American, vol. 226, no. 6, June 1972,
pp. 9–20.

David H. Hubel, Eye, Brain, and Vision. New York:
Scientific American Library, 1988.

See notes (7), (8), and (25) for findings that

letter recognition depends on different channels of

spatial frequencies, not simply on edges.

(13) Eric Gill, An Essay on Typography. London:
Sheed & Ward, 1936. Reprinted, Boston:

David R. Godine, 1988.

(14) Andre Malraux, “Museum Without Walls”,

in The Voices of Silence. Stuart Gilbert, trans.
Princeton: Princeton University Press, 1978.

(15) John Dreyfus, French Eighteenth Century
Typography. Cambridge, U.K.: The Roxburghe
Club, 1982.

(16) A.V. Shubnikov and V.A. Koptsik, Symmetry
in Science and Art. G.D. Archard, trans. New
York: Plenum Press, 1974.

Branko Grünbaum and G.C. Shephard, Tilings and
Patterns. New York: W.H. Freeman, 1986.

Hermann Weyl, Symmetry. Princeton: Princeton
University Press, 1952.

Charles Bigelow

https://doi.org/10.1167/11.5.8

TUGboat, Volume 42 (2021), No. 3 245

(17) John R. Pierce, An Introduction to Information
Theory: Symbols, Signals and Noise. New York:
Dover Publications, 1980.

(18) Jan Tschichold, A Treasury of Alphabets and
Lettering. New York: Reinhold, 1966.

Walter Tracy, Letters of Credit. Boston: David R.
Godine, 1986.

(19) John R. Pierce, The Science of Musical Sound.
New York: Scientific American Library, 1983.

(19A) Several studies have contradicted the popular

hypothesis that decreasing letter spacing increases

legibility by merging letters such that words are rec-

ognized as whole shapes instead of by their compo-

nent parts, i.e., letters. A few representative articles:

Susana T.L. Chung, “The Effect of Letter Spacing

on Reading Speed in Central and Peripheral

Vision”. Investigative Ophthalmology & Visual
Science, vol. 43, no. 4, 2002, pp. 1270–1276.

Using monospaced Courier as the test font, the au-

thor found that letter spacing less than that of stan-

dard Courier did not increase reading speed, and, on

average, apparently decreased it when the spacing

was less than approximately 0.9 of standard spacing.

Spacing greater than the standard value also failed

to increase reading speed.

Denis G. Pelli, Bart Farell, Deborah C. Moore, “The

remarkable inefficiency of word recognition”.

Letter to Nature, Nature, vol. 423, no. 6941,
June 12, 2003, pp. 752–756.

The authors state: “Our results indicate that, rather

than directly recognizing complex familiar objects,

such as words, our visual system detects smaller

components—letters or perhaps features of let-

ters—and only then recognizes the object specified

by these components.”

Kevin Larson, “The Science of Word Recognition”.

Lecture at Association Typographique

Internationale, Sept. 2003. docs.microsoft.
com/en-us/typography/develop/word-
recognition

The author summarizes: “Word shape is no longer

a viable model of word recognition. The bulk of

scientific evidence says that we recognize a word’s

component letters, then use that visual information

to recognize a word.”

Relevant discussion is found in:

Gordon E. Legge, Psychophysics of Reading
in Normal and Low Vision. Mahwah, NJ:
Lawrence Erlbaum Associates, 2007,

pp. 94–96.

(20) Andre Martinet, “The Word”. Diogenes 51,
1965.

(21) Pierre Simon Fournier, Manuel Typographique.
Paris: Fournier (and Barbou), 1764–66; Harry

Carter, trans. Fournier on Typefounding. New
York: Burt Franklin, 1973.

First edition: Pierre Simon Fournier, Harry Carter,

Fournier on Typefounding. The Text of the
Manuel Typographique, 1764–1766. Translated
and edited with notes by Harry Carter. [With a

Portrait.] London: Soncino Press, 1930.

(22) Chauncey Griffith, quoted by Edmund C.

Arnold in Functional Newspaper Design.
New York: Harper & Brothers, 1956.

(23) Related by Hans Ed. Meier, personal commu-

nication. The design philosophy of Syntax is an-

alyzed by Erich Schulz-Anker, “Syntax-Antiqua, a

Sans Serif on a New Basis”. Gebrauchsgraphik no. 8,
1970, pp. 49–56.

Syntax is a sans-serif based on proportions and

letter forms of Renaissance humanist minuscule and

classical Roman inscriptional letterforms. Released

in 1968 under the name Syntax-Antiqua, it joined

Edward Johnston’s London Underground lettering

and Eric Gill’s Gill Sans as a “Humanist” sans-serif.

In its narrow sense, the typographic term “Antiqua”

means Humanist types of the Renaissance, also

called “Garalde” (Garamond+Aldus) in a common

type classification. In a broad sense, such as in the

German DIN classification, Antiqua can mean nearly

any style of seriffed typeface. The “Humanist sans-

serif” has gained popularity since Syntax and has be-

come an expanded genre within the sans-serif class.

Helvetica, designed by Max Miedinger, is a sans-

serif typeface in the grotesque style cut in the mid-

nineteenth century but refined in 1957 for mod-

ernist typography. Figure 11 shows the two type-

faces for comparison.

(24) Blaise Pascal, Serie XXII, 512, in Pensées.
Paris: Editions du Seuil, 1962.

(25) In this essay on typography, “texture” refers to

the visual property of small sizes of text in which

Form, pattern & texture in the typographic image

https://docs.microsoft.com/en-us/typography/develop/word-recognition
https://docs.microsoft.com/en-us/typography/develop/word-recognition
https://docs.microsoft.com/en-us/typography/develop/word-recognition

246 TUGboat, Volume 42 (2021), No. 3

the letter shapes are too small to be easily appre-

ciated as forms on their own, but are nevertheless

big enough to be recognized in normal reading. Dif-

ferent textures are perceptible aesthetic features of

different typefaces.

Popular science accounts of the visual percep-

tion of texture include:

Bela Julesz, “Texture and Visual Perception”,

Scientific American, vol. 212, no. 2, Feb. 1965,
pp. 38–48; and “Experiments in the Visual

Perception of Texture”, Scientific American,
vol. 232, no. 4, Apr. 1975, pp. 34–43.

Some of Julesz’s claims have been disproven by

Persi Diaconis and David Freedman, “On the Statis-

tics of Vision: The Julesz Conjecture”. Journal of
Mathematical Psychology, vol. 24, no. 2, 1981.

A more recent discussion and definition of tex-

ture, including its relation to reading:

Denis G. Pelli, Katherine A. Tillman, “The

uncrowded window of object recognition”.

Nature Neuroscience, vol. 11, no. 10, Oct.
2008, pp. 1129–1135.

The authors state:

We suggest that one might define “texture” as

what one can see without object recognition.

If we cannot recognize things in this part of

our vision [the periphery], what do we see? We

see stuff (unnamed texture) and perceive space

(the shape of the scene we are in). With an effort,

observers can name and describe texture, but this

rarely happens.

(26) Pierce (1980).

(27) Updike, op. cit.

(28) Franz Boas and Charles Cultee (narrator),

Chinook Texts. Washington: Smithsonian

Institution, Bureau of Ethnology, 1894.

Melville Jacobs and Victoria Howard (narrator),

Clackamas-Chinook Texts. Bloomington:

Indiana University Research Center in

Anthropology, Folklore, and Linguistics, 1958.

Dell Hymes, “Victoria Howard’s ‘Gitskux and

his Older Brother’: A Clackamas Chinook

Myth”, in Smoothing the Ground: Essays on

Native American Oral Literature. Berkeley, CA:

University of California Press, 1983.

Acknowledgements

This essay is based on “The Literate Image: Form,

Pattern, and Texture in Typeface Design”, a talk

given in the Stanford University Lectures in Art se-

ries, November 20, 1985, and on “New Technology

of Type”, a talk given to the Monotype Typographic

Seminar, University College, University of London,

September 27, 1984.

I am grateful to the late Jack Stauffacher for

bringing Jan Tschichold’s essay to my attention, to

the late William Bright for discussions of the rela-

tion of typography to language, and especially to

Kris Holmes for collaboration on the Lucida fam-

ily of typefaces, which provided the opportunity to

consider these matters in practice as well as theory.

I am also grateful to the late Sandra Kirshen-

baum, founder, editor, and publisher of Fine Print,
in which this article first appeared in print. It was

my pleasure to serve as an associate editor for ty-

pography and as an occasional writer for Fine Print
over several years.⋄ Charles Bigelow

https://lucidafonts.com

Postscript: A final bonus image, a cover of a special is-
sue of the printing trade journal “typographische mit-

teilungen”, October 1925, designed by Jan Tschichold

with sans-serif types. This definitive introduction to ty-

pographic modernism by its leading practitioner shows

texture and pattern, while form is implied by the rectilin-

ear structure of vertical and horizontal title words aligned

with geometric rules. Compare with Figure 7, a title page

in classical style designed by Tschichold 22 years later

with seriffed types, also showing form and pattern.

Charles Bigelow

TUGboat, Volume 42 (2021), No. 3 247

Arabic text justification using LuaLATEX and
the DigitalKhatt OpenType variable font

Amine Anane

Abstract
Arabic script is a cursive script where the shape and
width of letters are not fixed, but vary depending
on the context and justification needs. A typesetter
must consider these dynamic properties of letters
to achieve high-quality text comparable to Arabic
calligraphy.

This article presents a proof-of-concept imple-
mentation of Arabic text justification, by varying
letter shapes and widths, as a first step towards such
high-quality Arabic typesetting. It uses LuaLATEX
and the DigitalKhatt OpenType variable font pro-
duced from a METAFONT-based dynamic font.

1 Introduction: Justification in Arabic
Due to the cursive nature of Arabic script, where
the letters are connected, a letter can have several
distinct forms and width depending on its position
in the word and the letters that surround it. For
example, Figure 1 shows fourteen possible forms of
the letter ➣

❺

(beh), among which are extensible forms.
Therefore, unlike the Latin script where justifica-

tion is mainly based on the distribution of whitespace,
Arabic calligraphy takes advantage of this dynamic
nature of letters to justify text using three main
techniques, as explained below: kashida extension,
wider form substitution, and ligature composition
and decomposition.

1.1 Kashida extension
The curvilinear stroke that connects letters is called
kashida or tatweel. The width of the kashida is

➣

❺

isolated form
↔

❺

☎

initial form
☎➠

❺

☎

medial form

☎➦

❺

terminal form
➝

❺

ß☎

↔

❺

☎Ý☎ ligature

↕

❺

✠

↔

❺

☎✟ ligature

➙

❺

➯

↔

❺

☎ followed by ☎➯

➜

❺

Ð

↔

❺

☎ followed by ☎Ï

➞

❺

à

✠

↔

❺

☎Ý☎✟ ligature
☎➡

❺

➯

☎➠

❺

☎ followed by ☎➯

☎➤

❺

✡

☎➠

❺

☎✟ ligature

☎➥

❺

ê

☎➠

❺

☎é ligature

✧

❺

isolated extended form

☎✺

❺

terminal extended form

Figure 1: letter ➣
❺

(beh) shapes

variable and can be stretched or compressed to justify
text. Table 1 shows kashida extension examples.

Table 1: Kashida extension

Min width Natural width Max width

Ù☎ò Ø☎ò

❁

☎❂

r

➍

õ

➍

✿

❄

Ù☎ç Ø☎ç

❁

☎❃

sì tì ➧ì

↔

❺

☎➍

↔

❺

➍

↔

❺

❄

1.2 Wider form substitution
Several Arabic letters have extended forms whose
width can vary continuously within an interval. To
stretch a line, a wider form is substituted. Table 2
shows some examples of wider forms.

Table 2: Wider form substitution

Original letter
Wider form

Min width Max width

➣

❺

✧

❺

✧

❺

✘ ✴ ✴

✫ ✪ ✪

✦ ✥ ✥

☎✗ ☎★ ☎★

1.3 Ligature composition/decomposition
Arabic script makes extensive use of ligatures [2].
To stretch a line, an optional ligature can be de-
composed to its constituent letters. Conversely, a
less common ligature can be composed to shrink a
text line. Table 3 shows some examples of ligature
decomposition.

doi.org/10.47397/tb/42-3/tb132anane-variable

Arabic text justification using LuaLATEX and the DigitalKhatt OpenType variable font

https://doi.org/10.47397/tb/42-3/tb132anane-variable

248 TUGboat, Volume 42 (2021), No. 3

Table 3: Ligatures

Ligature
Constituent letters

Natural width Max width

➝

❺

ß☎

↔

❺

☎Ý☎

↔

❺

æ

➸â☎

➳

☎Ý☎

➳

æ

î❐

í

☎✃

í

☎✃

To implement justification using the three tech-
niques above, a dynamic font having variable glyph
width and shape can be designed. By applying the
justification rules provided by the font, the justifica-
tion process will determine the width and shape of
the glyphs to stretch or shrink a line of text. A few
previous works [1, 2, 3, 12, 14] have been interested
in Arabic justification using dynamic fonts. Unfortu-
nately, these works still have significant challenges to
overcome and they do not appear to be any further
along in years.

On the other hand, most standard font for-
mats, such as Apple Advanced Typography (AAT),
Graphite and OpenType, provide mechanisms to
control justification of text lines. However, Arabic
justification has not benefited much from these so-
lutions. For instance, the idea of using a variable
font to stretch glyphs to do justification dates from
TrueType GX, currently specified in AAT by the
means of the just table. Unfortunately, this feature
cannot be used since it is not supported by the Apple
CoreText layout engine.

So, the approach adopted in this project is to
start from the widely used OpenType standard and
extend it to support Arabic justification using dy-
namic fonts, while drawing inspiration from existing
solutions.

This article presents a proof-of-concept imple-
mentation of Arabic text justification by applying
the three techniques above, using LuaLATEX and the
DigitalKhatt OpenType variable font. Section 2 in-
troduces METAFONT and the VisualMETAFONT ed-
itor, used to design the DigitalKhatt font. Section 3
presents the OpenType layout engine, the justifica-
tion algorithm and rules that have been developed.
Section 4 shows an overview of OpenType variable
fonts and explains how such a font is generated from

the METAFONT. Section 5 gives the results obtained
using LuaLATEX and compares them with a handwrit-
ten Quranic text. Section 6 concludes with future
work needed to further improve the results.

2 METAFONT

To design the glyph of an extensible letter, a function
must be defined. This function produces shapes
representing the extensible letter at different widths.
At runtime, the justification process will determine
the appropriate function arguments to justify text
lines by stretching or shrinking some glyphs.

To design such parametric glyphs, the META-
FONT [11] language1 is used, which was specifically
designed to deal with parametric fonts. Here are
some of the advantages of METAFONT.

• It supports macros to extend the language with
new syntax and operations.

• It supports deducing smooth cubic Bézier curves
from high-level constructs such as direction, ten-
sion, curl, without having to specify each control
point of the cubic curve.

• It supports a declarative style using linear equa-
tions.

For example, from the following METAFONT code
draw (0,0) .. (10,0) .. cycle

the following curve is generated: . METAFONT

deduces the control points in such a way to have a
smooth curve as close as possible to a circle. This
default behavior can be changed by giving the tension
or direction at some points. The following code

draw (0,0) .. tension 1.5 ..
(10,0) .. tension 1.5 .. cycle;

applies some tension to the end points to obtain an
ellipse-like shape: . This feature of automatically
calculating the control points can be useful to define
an extensible kashida. As an example to illustrate
this, the following code

draw (0,0){dir -56}
.. {dir 30} (50 + extension,0);

produces the following shapes by setting 0, 50 and
100 to the variable extension. METAFONT has au-
tomatically shifted the control points linearly with
respect to the variable extension, allowing it to
keep the same curve shape.

1 Specifically, the METAPOST program [7, 8, 9] was used,
an altered version of METAFONT which produces vector
graphic commands instead of raster images. The term ‘META-
FONT’ is kept since it is used for font and meta-font design
(i.e., functions generating functions).

Amine Anane

TUGboat, Volume 42 (2021), No. 3 249

In addition to the kashida having variable width,
it can have several shapes depending on the connect-
ing letters. To simplify the design of the font, a
step-by-step approach has been adopted. As a first
step, a generic stretchable kashida has been used to
join most of the connecting letters. So a functional
parametric font can be obtained as quickly as pos-
sible, from which justification experimentation can
be started. Subsequently a gradual refinement of
the kashidas will be undertaken, as mentioned in
section 6.

To design such a generic kashida a new op-
erator join is added. The following METAFONT

code uses this new operator to define the glyph
behshape.medi.

defchar(behshape.medi,-1,-1,-1,-1);
%%beginparams
z1 = (219.986,47.4628);
z3 = (134.906,31.769);
%%beginverbatim
leftExtRatio := 8;
rightExtRatio := 10;
righttatweel_const := (120,-y1);
z2 = z1 + (penwidth,0) rotated 70;
z4 = z3 + (penwidth,0) rotated 83;
%%beginpaths
fill (181.269,99.7718) {dir -116.055} .. z3

join z4 .. tension 0.932615 and 2.98102 ..
(182.631,170.321) .. tension 1.7264 and
1.23542 .. {right}(195.366,180.062) ..
tension 1.7264 and 1 .. z2 join z1 .. {curl
1} cycle;

%%endpaths
enddefchar;

The join operator can accept arguments to have
more control over the form of the kashida. For ex-
ample, the leftExtRatio and rightExtRatio vari-
ables above influence the curvature of the left and
right kashidas. The defchar command generates
the “glyph function”

〈glyph name〉_(leftExt,rightExt) (1)
which produces the glyph shape as a function of the
argument values provided. Here is the result of the
function behshape.medi_ called with different argu-
ments to stretch or shrink the kashidas:

. In addition, the join operator defines the
left and right anchors used to specify the OpenType
cursive attachment connections between glyphs.

Another advantage of METAFONT is the possibil-
ity of using elliptical and polygonal pens to describe
curves. However, this feature was not used, in or-
der to easily generate from the METAFONT font an
OpenType version which can be used elsewhere. So
all the glyph shapes are described using only cubic
curve outlines.

On the other hand, a major drawback of META-
FONT is that a font designer has to write code to
design a glyph. To validate that the glyph is correct,
it must be visualized by executing the code and
generating the glyph image with some labeling points
to help debug the code and fine-tune the result. This
process repeats until getting the desired result.

This fine-tuning process becomes more tedious if
there are several parameters, since it is important to
see how the glyph behaves by changing the parameter
values. Also, if the font design is based on tracing of
handwritten letters, as it is the case in this project,
the task becomes even slower.

So, a visual graphic editor was developed to
overcome this limitation, called VisualMETAFONT.
This editor is based on Qt, a C++ software develop-
ment framework. VisualMETAFONT uses the mplib
library [9], a project supported by the LuaTEX team
in order to turn the METAPOST interpreter into a
system library that can be used by other applications.
It is also based on HarfBuzz, a text-shaping engine
supporting OpenType, AAT, and Graphite used in
many applications and devices such as LuaLATEX,
Android, Chrome, Firefox, X ETEX and Qt.

Figure 2 shows the VisualMETAFONT window
for glyph design. It is composed of three panes. The
left pane is the METAFONT code of a single glyph.
Each glyph starts with a beginchar or defchar com-
mand which provides its name, Unicode code point
and glyph dimensions, if applicable. The code for
a glyph can have five sections. The first section is
a path to an image file that will be imported, to
be traced around. The second section defines the
parameters that will be controlled graphically. The
third section is free METAFONT code to add other
variables and define the relationships between them.
The fourth section defines the paths that will be
manipulated graphically. The fifth and last section
is free METAFONT code. Therefore, there is no limit
on what can be used in the METAFONT code. On the
other hand, there are limits to what can be managed
graphically, although features can be added to the
GUI as needed.

The outline resulting from the execution of the
METAFONT code is shown in the middle pane. The
points that can be manipulated graphically are shown
with different colors depending on their functions

Arabic text justification using LuaLATEX and the DigitalKhatt OpenType variable font

250 TUGboat, Volume 42 (2021), No. 3

Figure 2: VisualMETAFONT glyph window

(i.e., inline point, left and right control points, pa-
rameter of type point). Each change in the position
of one of these points generates new METAFONT code
which is reflected immediately in the visual pane.2

The right pane displays the glyph parameters
which can also be controlled graphically using slider
and spin widgets, especially for numeric parameters
without a graphic representation in the middle pane.
For instance, by sliding the widgets for leftTatweel
and rightTatweel, the user can view how the glyph
width and shape behave for different values.

Once the dynamic glyphs are designed, a font de-
signer needs to define the OpenType and justification
rules that govern how a Unicode-encoded text will
be presented using these glyphs. The next section
presents these rules and the algorithms behind them.

3 Justification
This section starts by introducing the OpenType
layout engine and its mechanism of lookups and
rules. Next, the justification process is presented; it
inherits the same notions of lookups and rules.

The OpenType layout engine takes as input an
ordered list of lookups given a language and a set
of features. Each lookup contains an ordered list
of rules having the same type of action, which is

2 Due to the speed of METAFONT and contemporary ma-
chines, the visual design is very smooth and no slowness or
lagging is experienced.

either glyph substitution or glyph positioning. A
substitution action replaces one sequence of glyphs
by another. It is used for different purposes such as
composition, decomposition, ligature, and alternates.
A positioning action alters the advance width and
offset position of a glyph. It is used for kerning,
cursive attachment, mark to base position or mark
to mark positioning. An OpenType rule can be
considered as a simple form of pattern matching
with the following general form:

backtrack input lookahead→ action

If the input, backtrack and lookahead sequences
match the glyph string at the current glyph then
the layout engine applies the action of the rule to
the input sequence and advances the current glyph
to the glyph after the input sequence. The layout
engine does the substitution lookups first, then the
positioning lookups, as shown in Algorithm 1.

The same principle of lookups and rules is used
for justification. Indeed, by applying ligature compo-
sitions and decomposition, glyph alternates, kerning,
and cursive attachment it is possible to shrink or
extend a line until desired width is achieved. This
technique of justification has been used in the Orien-
tal TEX Project [6].

The current implementation uses the same idea.
Two sets of steps can be defined: one used to shrink
text lines and one used to stretch text lines. Each
step contains a set of lookups that will be applied in

Amine Anane

TUGboat, Volume 42 (2021), No. 3 251

Algorithm 1: OpenType layout algorithm
input : Unicode text
output : List of glyph id, advance widths,

offset positions
glyphRun ← map Unicode text to glyph id;
foreach stage of {substitution, positioning} do

foreach lookup of stage’s lookups do
foreach currentGlyph in glyphRun do

foreach rule of lookup do
if rule matches at currentGlyph then

apply rule’s action to input sequence;
currentGlyph ← glyph after input seq;
break;

end
end

end
end

end

the order given until reaching the desired line width.
Listing 1 shows an example justification table, which
will be discussed in section 5.

Listing 1: Justification table
table(just) {
stretch {
lookup expa.ligadecomp;
lookup expa.kafalternate;
lookup expa.alternates;
lookup expa.seensad;
lookup expa.taamar_haa_dal;
lookup expa.alef_tah_lam_kaf;
lookup expa.behshape_yeh_reh;
lookup expa.waw_ain_qaf_fa;
lookup expa.others_fina;

}
shrink {
lookup shr1.ligatures;
lookup expa.shrinkspace;
lookup shr1.kaf;
lookup expa.shrink;
lookup shr1.kern;
lookup shr1.dalcursive;

} };

To take into account the dynamic aspect of the
glyphs, a new lookup format is added. The idea is
to assign for each expandable glyph two attributes
defining its ability to stretch and to shrink, as with
TEX glue. (As future work, it would be interesting
to study the possibility of including these attributes
in breaking of paragraphs into lines by TEX’s line-
breaking algorithm.) Listing 2 shows an example of

Listing 2: Justification lookup
lookup expa.taamar_haa_dal {
feature sch1;
lookupflag IgnoreMarks;
lookup expa.haa.l1 {
sub behshape.init expfactors 0 5 0 0;
sub behshape.medi expfactors 0 5 0 0;
...
sub heh.fina expfactors 0 0 0 2;
sub dal.fina expfactors 0 0 0 2;

} expa.haa.l1;
...
sub @haslefttatweel'lookup expa.haa.l1

 [heh.fina dal.fina]'lookup expa.haa.l1;
} expa.taamar_haa_dal;

this new format of justification lookup. The class
@haslefttatweel in this example contains all the
glyphs having an extensible kashida. If one of these
glyphs is followed by a heh.fina or dal.fina then
the justification attributes defined by the lookup
expa.haa.l1 are used.

So, depending on the context, the lookup speci-
fies which glyph will be substituted by another, if any,
in addition to the maximum desired stretch or shrink
for the left and right kashidas. For example, Listing 2
specifies that behshape.init and behshape.medi
can stretch by an argument value of leftExt that
cannot exceed 5 and heh.fina and dal.fina can
stretch by an argument value of rightExt that can-
not exceed 2.

The justification proceeds in two phases. The
first phase constitutes the execution of the lookup,
as given by Algorithm 1. The result of this execution
is the set of glyphs to be substituted, including their
extension attributes. The second phase calculates
the stretch/shrink values and applies them to the
glyph string, after substituting the affected glyphs.

Even though there are different justification tech-
niques, as given in section 1, from the point of view
of the justification algorithm all these techniques
constitute substitutions. Indeed, the kashida tech-
nique is a special case of justification by alternates,
which is a substitution of one glyph by another —
only in this case it may or may not be the same
glyph. The same is true for ligature composition
and decomposition, which is a substitution of one
sequence of glyphs with another, and thus represents
a more general case than the two previous techniques.
The algorithm takes into account this general case.

Here is the problem stated more formally. As
the result of the first phase, we will have m sequences

Arabic text justification using LuaLATEX and the DigitalKhatt OpenType variable font

252 TUGboat, Volume 42 (2021), No. 3

Sk to be substituted, where each sequence contains
one or more glyphs. Let ∆wi be the amount that
will be added to, or subtracted from, the width of
the line, if the glyph i is substituted, and let ei its
maximum stretchability or shrinkability. Let ∆Wk =∑

i∈Sk
∆wi. Let ∆d the amount by which we want

to stretch or shrink a text line. So the problem of
the second phase is to find the set of sequences R
and the extensibility ratio r such as∑

k∈R

(∆Wk +
∑

i∈Sk

ei ∗ r) ≤ ∆d

If we want to find the solution which maximizes
the above sum in order to minimize the gap ∆d of
the line, the problem becomes NP-hard. Indeed, if
we ignore the term

∑
i∈Sk

ei ∗ r from the inequality
above, the problem becomes an optimization problem
of the subset sum problem, which is NP-hard.

We can think of some heuristics to solve this
problem, or we can use an exact algorithm, when
there are only a few substitutions to apply. In addi-
tion to minimizing the gap ∆d, other criteria can be
considered. For example, we may prefer to distribute
the substitutions throughout the line rather than
being concentrated at the beginning or at the end of
the line. A deeper study of the rules of justification
will dictate the way forward.

Currently, the algorithm implemented iterates
over the sequences and chooses a sequence if its
gap ∆Wk is less than the remaining line gap ∆d,
otherwise it skips to the next sequence. We can
consider ordering the sequences such that the glyphs
to be justified are at the left or the right of the line
or distributed over the entire line. Algorithm 2 gives
the steps in more detail.

For Algorithm 2 to work, it is necessary that the
width difference ∆wi for each glyph i be linear in its
arguments leftExt and rightExt, in the intervals
between their current values and their maximum
values specified by the justification rule.

4 OpenType variable fonts
Variable fonts originated in Apple’s TrueType GX
and was adapted by OpenType in 2016. As variable
fonts are used more and more, it is interesting to show
that the justification technique already implemented
with METAFONT also works for variable fonts.

Initially, the goal of using variable fonts was to
allow continuous variations along design axis such as
weight, width, slant, italic and optical size. An axis
has a minimum, maximum and default values. For a
given axis value, the layout engine use interpolation
over regions of the variation space to calculate vari-
able quantities such as glyph outline points, anchor
position, and glyph advance width.

Algorithm 2: Justification lookup algorithm
input :m sequences Sk and ∆d
output : a set of sequences R and a ratio r
totExpansion← 0;
R←− ∅;
for k ← 1 to m do

if ∆Wk ≤ ∆d then
∆d = ∆d−∆Wk;
totExpansion← totExpansion +

∑
i∈Sk

ei;
R←− R+ {Sk};

end
end
if totExpansion > ∆d then
r ← ∆d/totExpansion;
∆d← 0;

else
r ← 1;
∆d← ∆d− totExpansion;

end

The same idea can be applied to glyph extension.
In our case, two extension axes are defined, lext and
rext corresponding to the leftExt and rightExt
parameters. Each axis has a default value 0. The
minimum and maximum values of the axes are chosen
arbitrarily, and each glyph can decide how the axes’
values are mapped to the argument values of the
corresponding parameters.

To simplify the explanation below, we will as-
sume that the minimum value of an axis is the mini-
mum possible argument value of its corresponding
parameter, and likewise for the maximum. A map-
ping that only requires two regions by glyph quantity
is to return the minimum value of a quantity when
the minimum value of the axes are given, and like-
wise for the maximum. However, this mapping can
make the width difference ∆wi of the previous sec-
tion non-linear in the interval containing 0 (i.e., the
functions are discontinuous at 0) and therefore the
justification rules should be adapted to this situation,
and probably also Algorithm 2.

So, to get linear mapping functions all along
the axis, the minimum values are returned when
the minimum argument value of the glyph is given,
and likewise for the maximum. For any axis value
less than the minimum argument value, its minimum
values are returned, and conversely for the maximum.
This second mapping which preserves linearity was
used to generate the OpenType variable font. So
each glyph is represented with a maximum of six
regions for each axis, three for the negative axis and
three for the positive axis.

Amine Anane

TUGboat, Volume 42 (2021), No. 3 253

lext

Width

−20 −10 0 10 20−4

500

1000

230

(a) Variation regions

lext

Width

−20 −10 0 10 20−4

500

1000

230

(b) Resulting width function

Figure 3: Variation example

As an example, suppose that the minimum value
for the lext axis is −20 and the maximum value is 20.
Further suppose we have a glyph with a natural width
of 450. Its maximum width is 1000, obtained when
the argument value is 10, and the minimum width
is 230, obtained when the argument value is −4.
Figure 3a shows the 6 regions that should be defined
for this glyph. Since the results of the regions in the
same segment add up, we get the resulting width
function in Figure 3b which becomes constant when
it reaches its maximum or minimum value.

At this point, the following question may arise:
What is the advantage of using METAFONT if vari-
able fonts can meet the need of a dynamic font to ap-
ply justification? As highlighted in section 2, META-
FONT remains an excellent tool to design such a
variable font, thanks to its power and flexibility. In
addition, if METAFONT could be used during the
layout process then its full power can be harnessed.
Nevertheless, designing a dynamic glyph using in-
terpolation can be easier than trying to adjust the
direction and tension of the curve points, especially
when there are multiple points to define. Fortunately,
METAFONT can design a glyph as an interpolation
function between two shapes. Also, it is often not
possible to find the glyph with the desired maximum
width. In this case, extrapolation can be used to
deduce the maximum shape.

5 Experimental results
A prototype implementation was presented at the
TUG 2019 meeting. The implementation is a patched
version of HarfBuzz and mplib and accepts as in-
put a METAFONT font. That implementation was
compiled to WebAssembly and a demonstration was
published at www.digitalkhatt.org.

This section presents the result of a prototype
implementation based on LuaLATEX which uses as
input the DigitalKhatt OpenType variable font pre-
sented in the previous section. All the examples
presented here are compiled with this patched ver-
sion of LuaLATEX.

LuaLATEX supports OpenType fonts through the
luaotfload package, which is an adaptation of Con-
TEXt modules. This package has three OpenType
processing modes: base, node and harf. The base
mode supports only OpenType features that can
be mapped to traditional TEX ligature and kerning
mechanisms, and the node mode uses the OpenType
layout engine implemented in ConTEXt.

The harf mode [10] uses the HarfBuzz library
linked in LuaHBTEX. Since HarfBuzz is already part
of LuaHBTEX, the integration of the justification
algorithm becomes much easier. Indeed, the justifi-
cation algorithm is patched in HarfBuzz and linked
with LuaTEX to generate a patched version of LuaHB-
TEX. The Lua interface to the HarfBuzz engine is
also modified to include the new functionality.

Unlike luaotfload’s node mode, harf mode
does not support OpenType variable fonts. So the
node modules supporting variable fonts are adapted
to harf mode. In the node mode, variable glyphs are
treated as LuaTEX virtual characters with special
commands. During PDF generation, these commands
are inserted each time the character is referenced,
potentially leading to large file sizes. To remedy this,
the virtual characters are converted to real characters
of Type 3 fonts, created dynamically during PDF
generation. This conversion also has the advantage
of treating glyphs like characters, thus enabling PDF
text functionality.

As a case study, the justification technique pro-
posed by Microsoft to extend CSS2 and implemented
in Internet Explorer (IE) is adapted here using only
justification rules and therefore shows that the justi-
fication algorithm is general enough to support mul-
tiple justification scenarios.3 Here is a description of
the technique, as specified in [13].

1. Find the priority of the connecting opportunities
in each word.

3 This technique has been abandoned and to date there is
no new CSS proposal for Arabic justification.

Arabic text justification using LuaLATEX and the DigitalKhatt OpenType variable font

https://www.digitalkhatt.org

254 TUGboat, Volume 42 (2021), No. 3

2. Add expansion at the highest priority connection
opportunity.

3. If more than one connection opportunity has the
same highest value, use the opportunity closest
to the end of the word.

Table 4 defines the priority for connection opportuni-
ties and where expansion occurs. Since the algorithm
deals with automatic justification, priority 1 for man-
ual insertion of the kashida is ignored.

The IE implementation requires one kashida
per word. To simplify the justification rules, this
constraint is reduced to one kashida per module (i.e.,
cluster of connecting letters). IE also uses a CSS
attribute kashida-space which defines the amount
of justification given to kashidas in ratio to spaces.
In our case, the amount of stretch is specified by the
justification rules. When there is no more stretching
possible, spaces will be used.

The CSS specification deals only with kashidas
and does not mention the other justification tech-
niques such as glyph alternates and ligature decom-
position. In this case study, these techniques are
added according to the priorities specified in the
justification table of Listing 1. Optional ligature
decomposition has the highest priority, followed by
Kaf alternate, then by the other alternates.

Afterwards, kashida justification rules are de-
fined according to the priorities presented in Table 4.
These rules consider that the glyphs with a given
priority participate in the justification process only
after glyphs with higher priorities have exhausted
their maximum stretchability or shrinkability. The
following example compares the IE result (top) to
the LuaLATEX result (bottom), using the Times New
Roman font after applying kashida justification. The
line is stretched about 1.4 times its natural width.

☞

✺

✵

✉

✶

✈

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

✉

✈

✑

✳

✇

❹

✳

é

✴

✭☞

▲

①

✳

ì

✳

☞

✸

✝

✱

þ

✳

➼

✳

s

❼

✷

②

✵

③

✷

✝

✳

☞

✹

✳

④

❹

⑤

❹

✳

✖

✷

t

❻

✳

②

✴

③

✷

☞

✹

✳

✪

✷

⑥

✳

③

✷

↔

❻

✴

⑦

❹

⑤

❹

✵

✖

✷

⑧

✴

③

✷

IE justifies text by inserting flat kashidas un-
like the curvilinear stretching of the current solu-
tion, which applies kashidas by substituting a wider
glyph. Figure 4 shows how the text line stretches
and shrinks, changing the line width by 5pt each
time. Line 6 is set to the natural width of the text
which gives a non-justified text. So the first five
lines correspond to the shrinking case. Lines 5 and
4 are shrunk by decreasing the space between words
due to the lookup expa.shrinkspace. Lines 3 and
2 shrink kashidas due to the lookup expa.shrink.
The result of the shrink is similar to that obtained
by using the pdf/LuaTEX font expansion feature. In
this case, however, the expansion factor is a continu-

1 ☞

✺

✵

✫

✶

✳

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

Ð

✳

⑨

✳

⑩

❹

✳

é

✴

✭☞

▲

❶

✳

ì

✳

☞

✸

✝

✱

þ

✳

❷

✳

❸

❼

✷

❹

✵

❺

✷

✝

✳

☞

✹

✳

❻

❹

ç

❹

✳

✖

✷

❼

❻

✳

❹

✴

❺

✷

☞

✹

✳

✪

✷

❽

✳

❺

✷

❻

❻

✴

❾

❹

ç

❹

✵

✖

✷

î

✴

❐

✷

2 ☞

✺

✵

✫

✶

✳

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

Ð

✳

⑨

✳

⑩

❹

✳

é

✴

✭☞

▲

❶

✳

ì

✳

☞

✸

✝

✱

þ

✳

❷

✳

❸

❼

✷

❹

✵

❺

✷

✝

✳

☞

✹

✳

❻

❹

ç

❹

✳

✖

✷

❼

❻

✳

❹

✴

❺

✷

☞

✹

✳

✪

✷

❽

✳

❺

✷

❻

❻

✴

❾

❹

ç

❹

✵

✖

✷

î

✴

❐

✷

3 ☞

✺

✵

✫

✶

✳

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

Ð

✳

❿

✳

➀

❹

✳

é

✴

✭☞

▲

➁

✳

ì

✳

☞

✸

✝

✱

þ

✳

➂

✳

➃

❼

✷

➄

✵

➅

✷

✝

✳

☞

✹

✳

➆

❹

ç

❹

✳

✖

✷

➇

❻

✳

➄

✴

➅

✷

☞

✹

✳

✪

✷

➈

✳

➅

✷

➆

❻

✴

➉

❹

ç

❹

✵

✖

✷

î

✴

❐

✷

4 ☞

✺

✵

✫

✶

✳

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

Ð

✳

➊

✳

➋

❹

✳

é

✴

✭☞

▲

➌

✳

ì

✳

☞

✸

✝

✱

þ

✳

➍

✳

➎

❼

✷

➏

✵

➐

✷

✝

✳

☞

✹

✳

➑

❹

ç

❹

✳

✖

✷

➒

❻

✳

➏

✴

➐

✷

☞

✹

✳

✪

✷

➓

✳

➐

✷

➑

❻

✴

➔

❹

ç

❹

✵

✖

✷

î

✴

❐

✷

5 ☞

✺

✵

✫

✶

✳

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

Ð

✳

☛

✳

Õ

❹

✳

é

✴

✭☞

▲

r

✳

ì

✳

☞

✸

✝

✱

þ

✳

➼

✳

s

❼

✷

ð

✵

✃

✷

✝

✳

☞

✹

✳

↔

❹

ç

❹

✳

✖

✷

t

❻

✳

ð

✴

✃

✷

☞

✹

✳

✪

✷

➳

✳

✃

✷

↔

❻

✴

➠

❹

ç

❹

✵

✖

✷

î

✴

❐

✷

6 ☞

✺

✵

✫

✶

✳

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

Ð

✳

☛

✳

Õ

❹

✳

é

✴

✭☞

▲

r

✳

ì

✳

☞

✸

✝

✱

þ

✳

➼

✳

s

❼

✷

ð

✵

✃

✷

✝

✳

☞

✹

✳

↔

❹

ç

❹

✳

✖

✷

t

❻

✳

ð

✴

✃

✷

☞

✹

✳

✪

✷

➳

✳

✃

✷

↔

❻

✴

➠

❹

ç

❹

✵

✖

✷

î

✴

❐

✷

7 ☞

✺

✵

✫

✶

✳

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

Ð

✳

☛

✳

Õ

❹

✳

é

✴

✭☞

▲

→

✳

ì

✳

☞

✸

✝

✱

þ

✳

➼

✳

s

❼

✷

ð

✵

✃

✷

✝

✳

☞

✹

✳

↔

❹

ç

❹

✳

✖

✷

t

❻

✳

ð

✴

✃

✷

☞

✹

✳

✪

✷

➳

✳

✃

✷

↔

❻

✴

➠

❹

ç

❹

✵

✖

✷

í

✴

✃

✷

8 ☞

✺

✵

➣

✶

↔

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

Ð

✳

☛

✳

Õ

❹

✳

é

✴

✭☞

▲

r

✳

ì

✳

☞

✸

✝

✱

þ

✳

➼

✳

s

❼

✷

ð

✵

✃

✷

✝

✳

☞

✹

✳

↔

❹

ç

❹

✳

✖

✷

t

❻

✳

ð

✴

✃

✷

☞

✹

✳

✪

✷

➳

✳

✃

✷

↔

❻

✴

➠

❹

ç

❹

✵

✖

✷

í

✴

✃

✷

9 ☞

✺

✵

↕

✶

➙

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

Ð

✳

✑

✳

Õ

❹

✳

é

✴

✭☞

▲

r

✳

ì

✳

☞

✸

✝

✱

þ

✳

➼

✳

s

❼

✷

ð

✵

✃

✷

✝

✳

☞

✹

✳

↔

❹

ç

❹

✳

✖

✷

t

❻

✳

ð

✴

✃

✷

☞

✹

✳

✪

✷

➳

✳

✃

✷

↔

❻

✴

➠

❹

ç

❹

✵

✖

✷

í

✴

✃

✷

10 ☞

✺

✵

➛

✶

➜

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

➛

➜

✑

✳

Õ

❹

✳

é

✴

✭☞

▲

r

✳

ì

✳

☞

✸

✝

✱

þ

✳

➼

✳

s

❼

✷

ð

✵

✃

✷

✝

✳

☞

✹

✳

↔

❹

ç

❹

✳

✖

✷

t

❻

✳

ð

✴

✃

✷

☞

✹

✳

✪

✷

➳

✳

✃

✷

↔

❻

✴

➠

❹

ç

❹

✵

✖

✷

í

✴

✃

✷

11 ☞

✺

✵

➝

✶

➞

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

➝

➞

✑

✳

Õ

❹

✳

é

✴

✭☞

▲

r

✳

ì

✳

☞

✸

✝

✱

þ

✳

➼

✳

s

❼

✷

ð

✵

✃

✷

✝

✳

☞

✹

✳

↔

❹

ç

❹

✳

✖

✷

t

❻

✳

ð

✴

✃

✷

☞

✹

✳

✪

✷

➳

✳

✃

✷

↔

❻

✴

➠

❹

ç

❹

✵

✖

✷

í

✴

✃

✷

12 ☞

✺

✵

✉

✶

✈

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

✉

✈

✑

✳

Õ

❹

✳

é

✴

✭☞

▲

➟

✳

ì

✳

☞

✸

✝

✱

þ

✳

➼

✳

s

❼

✷

ð

✵

✃

✷

✝

✳

☞

✹

✳

↔

❹

ç

❹

✳

✖

✷

t

❻

✳

ð

✴

✃

✷

☞

✹

✳

✪

✷

➳

✳

✃

✷

↔

❻

✴

➠

❹

ç

❹

✵

✖

✷

í

✴

✃

✷

13 ☞

✺

✵

✉

✶

✈

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

✉

✈

✑

✳

Õ

❹

✳

é

✴

✭☞

▲

①

✳

ì

✳

☞

✸

✝

✱

þ

✳

➼

✳

s

❼

✷

ð

✵

✃

✷

✝

✳

☞

✹

✳

➠

❹

➡

❹

✳

✖

✷

t

❻

✳

ð

✴

✃

✷

☞

✹

✳

✪

✷

➳

✳

✃

✷

↔

❻

✴

➢

❹

➡

❹

✵

✖

✷

í

✴

✃

✷

14 ☞

✺

✵

✉

✶

✈

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

✉

✈

✑

✳

Õ

❹

✳

é

✴

✭☞

▲

①

✳

ì

✳

☞

✸

✝

✱

þ

✳

➼

✳

s

❼

✷

ð

✵

✃

✷

✝

✳

☞

✹

✳

➤

❹

➥

❹

✳

✖

✷

t

❻

✳

ð

✴

✃

✷

☞

✹

✳

✪

✷

➳

✳

✃

✷

↔

❻

✴

➦

❹

➥

❹

✵

✖

✷

í

✴

✃

✷

15 ☞

✺

✵

✉

✶

✈

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

✉

✈

✑

✳

Õ

❹

✳

é

✴

✭☞

▲

①

✳

ì

✳

☞

✸

✝

✱

þ

✳

➼

✳

s

❼

✷

ð

✵

✃

✷

✝

✳

☞

✹

✳

➧

❹

➨

❹

✳

✖

✷

t

❻

✳

ð

✴

✃

✷

☞

✹

✳

✪

✷

➳

✳

✃

✷

↔

❻

✴

➩

❹

➨

❹

✵

✖

✷

í

✴

✃

✷

16 ☞

✺

✵

✉

✶

✈

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

✉

✈

✑

✳

Õ

❹

✳

é

✴

✭☞

▲

①

✳

ì

✳

☞

✸

✝

✱

þ

✳

➼

✳

s

❼

✷

ð

✵

✃

✷

✝

✳

☞

✹

✳

➫

❹

➭

❹

✳

✖

✷

t

❻

✳

ð

✴

✃

✷

☞

✹

✳

✪

✷

➳

✳

✃

✷

↔

❻

✴

➯

❹

➭

❹

✵

✖

✷

í

✴

✃

✷

17 ☞

✺

✵

✉

✶

✈

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

✉

✈

✑

✳

Õ

❹

✳

é

✴

✭☞

▲

①

✳

ì

✳

☞

✸

✝

✱

þ

✳

➼

✳

s

❼

✷

ð

✵

✃

✷

✝

✳

☞

✹

✳

④

❹

⑤

❹

✳

✖

✷

t

❻

✳

ð

✴

✃

✷

☞

✹

✳

✪

✷

➳

✳

✃

✷

↔

❻

✴

⑦

❹

⑤

❹

✵

✖

✷

í

✴

✃

✷

☞

✺

✵

✉

✶

✈

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

✉

✈

✑

✳

➲

❹

✳

é

✴

✭☞

▲

①

✳

ì

✳

☞

✸

✝

✱

þ

✳

➼

✳

s

❼

✷

➳

✵

➵

✷

✝

✳

☞

✹

✳

④

❹

⑤

❹

✳

✖

✷

t

❻

✳

➳

✴

➵

✷

☞

✹

✳

✪

✷

➸

✳

➵

✷

↔

❻

✴

⑦

❹

⑤

❹

✵

✖

✷

➺

✴

➵

✷

☞

✺

✵

✉

✶

✈

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

✉

✈

✑

✳

➻

❹

✳

é

✴

✭☞

▲

①

✳

ì

✳

☞

✸

✝

✱

þ

✳

➼

✳

s

❼

✷

➼

✵

➽

✷

✝

✳

☞

✹

✳

④

❹

⑤

❹

✳

✖

✷

t

❻

✳

➼

✴

➽

✷

☞

✹

✳

✪

✷

➾

✳

➽

✷

↔

❻

✴

⑦

❹

⑤

❹

✵

✖

✷

➚

✴

➽

✷

Figure 4: Continuous expansion

ous value whose limit can depend on the context and
the priority level. Line 1 uses in addition the lookup
shr1.dalcursive to decrease the space before ➜

❼

Ð

✳ in
the second word.

Line 7 shows two types of justifications. The
first is the decomposition of the ligature î

✴

❐

✷ in the
last word, and the second is the kashida stretching of
the letter seen in r

✳

ì

✳

☞

✸

✝

✱ , having priority 2 in Table 4.
Line 8 uses the alternate wider glyph ✪✶✳ of the letter
noon ✫

✶

✳

of the first word. However, the previous letter
➧

✳

☎ is no longer stretched. This is because, in line 7,
there is not enough space to accommodate the wider
✪

✶

✳ , while in line 8 there is enough space, and since
the alternates have priority over kashidas, the wider
✪

✶

✳ is chosen. In line 9, the wider alternate of letter
kaf✑✳☎ is used. Since it has priority over✪✶✳ , the wider
noon ✪✶✳ has shrunk a little. At line 10, the second
alternate ☎✬

✶

✳ of the second word is substituted. From
line 10 to line 13, the widths of ☎✬

✶

✳ and ✪✶✳ increase
continuously until they reach their limits; at this
moment, the stretching of the letter ➧

✳

☎ comes into
play again. At line 14 starts the stretching of ☎➠

❹

ç

❹

✳

and
↔

❹

ç

❹

✳

, of priority 3, until reaching their limits at line 18
where begins the stretching of kashidas of priority 7,
which continues to the last line 19.

Amine Anane

TUGboat, Volume 42 (2021), No. 3 255

Table 4: Priority for kashida opportunities in CSS/IE proposal

Pri Glyph Condition Kashida location
1 User-inserted Kashida The user entered a Kashida

in a position.
After the user inserted kashida

2 Seen, Sad Connecting to the next
character (initial or
medial form).

After the character.

3 Taa Marbutah, Haa, Dal Connecting to previous
character.

Before the final form of these
characters.

4 Alef, Tah, Lam, Kaf, Gaf Connecting to previous
character.

Before the final form of these
characters.

5 Ra, Ya, Alef Maqsurah Connected to medial Baa Before preceding medial Baa
6 Waw, Ain, Qaf, Fa Connecting to previous

character.
Before the final form of these
characters.

7 Other connecting characters Connecting to previous
character.

Before the final form of these
characters.

Figure 5 shows an example which compares the
justification result of the current solution with the
same handwritten text from which the font was de-
signed. In the second line the wider alternates are
not distributed evenly. For instance, the final noon
✫ of the second word has not been substituted by
a wider noon ✪, unlike the other two letters noons.
Instead, there is some stretching before the final Reh

☎é of the third and fourth words which has not been
considered among the justification cases of Table 4.

☞

➁

➳

r

❻

✶

✳

❾

✸

➡

✹

✵

s

❺

✴

ì✫

✳

☞

➁

➳

✷

t

✳

❾

➠

❺

✵

ç

✴

✭

✫

✳

☞

➁

➸

✷

✉

✳

❾

➬

✵

ç

✴

✭

✫

✳

☞

➁

➳

✈

✶

✳

❾

✸

➠

✹

✵

✇

✴

ì✫

✳

☞

➁

➳é

✶

✳

❿

☛

✵

t

✴

ì✫

✳

☞

➁

➳

①

✶

✳

❾

Þ

❺

✵

ç

✴

✭

✫

✳

☞

➁

➔

✷

➃

✳

→➘

✵

é

✴

✭

✫

✳

↔

❺

✵

➍

➁

➳

✷

➬

✳

ÿ

✷

é

✴

✭✦

✵

(a) justified text using interword space

☞

➁

➳

r

❻

✶

✳

❾

✸

➡

✹

✵

s

❺

✴

ì②

③

☞

➁

➳

✷

t

✳

❾

➠

❺

✵

ç

✴

✭②

③

☞

➁

➳

✷

✇

✳

❾

➬

✵

ç

✴

✭②

③

☞

➁

➳

✈

✶

✳

❾

✸

➠

✹

✵

✇

✴

ì②

③

☞

➁

➳é

✶

✳

❿

✑

✵

t

✴

ì④

⑤

☞

➁

➳

①

✶

✳

❾

Þ

❺

✵

ç

✴

✭④

⑤

☞

➁

➔

✷

➃

✳

→➘

✵

é

✴

✭④

⑤

↔

❺

✵

➍

➁

➳

✷

➬

✳

ÿ

✷

é

✴

✭⑥

✵

(b) justified text using letter stretching

(c) handwritten text

Figure 5: Comparison with handwritten text

Figure 6 shows another example illustrating the
difference between the handwritten text and Lua-
LATEX.

So far, all the examples presented are typeset
in TEX’s restricted horizontal mode using \hbox.
Figure 7a shows an example of justified text using
the current technique after TEX breaks paragraph
into lines. Figure 7b shows the same text not justi-
fied. Some kashidas remain to be improved; however,
this justification technique based on the continuous
extension of letters conforms to Arabic calligraphy
principles, allowing for better quality of Arabic text.

6 Future work
This article has presented a proof-of-concept imple-
mentation of Arabic justification based on letter ex-
tension techniques used in Arabic calligraphy, using
LuaLATEX and the DigitalKhatt variable font, which
has achieved very promising results. This section
presents some future work in the short and medium-
term to continue the journey towards a high quality
Arabic typesetter.

As a first step it is important to do more analy-
sis and experiments of the different calligraphic rules
used for Arabic justification to answer some impor-
tant questions, such as: Which justification approach
is preferable over another and in what context? If
there are many justification choices with same pref-
erence, how should the space be distributed among
them? Some works [2, 4, 6] have studied these rules
and it would be interesting to implement them and
compare them with the handwritten text.

Secondly, the DigitalKhatt font needs to be im-
proved, especially at the kashida level. For the mo-
ment, each connecting glyph starts and/or finishes at

Arabic text justification using LuaLATEX and the DigitalKhatt OpenType variable font

256 TUGboat, Volume 42 (2021), No. 3

❑✭

✳

r

✳

ì

✷

✖

✳

Û

✵

➮

✷

s

❹

✳

❾

ð

✴

✃

✷

✭

✳

☛

✳

➲

❸

✳

Õ

❹

✷

➠

❹

✳

➍

➘

✳

➍

t

❺

✵

ð

✵

✃➘

✶

✵

✉ö

❹

✴

ë

✶

❩

➳

✶

✳

➼

✳

✈

❺

✶

✴

ì

☞

▲

Ô

❹

✵

✠✄

✴

ÿ

❹

✷

✇

❼

✳

❾

①

❹

✵

ð

✵

✃

✷

↔

❼

✳

ÿ

✷

②

✳

③

✴

ì✫

✳

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘➑✭

✳

➳

✳

Õ

❻

✳

ç

✷

☞

✹

✳

Ù

❹

✳

ç

❹

✷

④

❹

✳

❾

ð

✴

❮↔

❺

✵

➍

➁

➳

✷

ÿ

✳

ç

❹

✳

☞➣

❺

✵

Ò

❹

✳

➬

✳

➍☞

➁

➧

✷

➠

❻

✳

✔

✳

➎⑤

❹

✴

ì

☞

▲

➳

✵

é

✳

t

❺

✶

✵

ð

✵

✃

✷

✭

✳

⑥

✳

➍⑦

❼

✳

⑧

❻

✳

ù

❹

✳

ë

✶

✳

⑨

✴

ì✫

✳

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘➒⑩

✳

➤

❻

✶

✳

✡

➀

✸

☞

✺

✵

✔

❹

✳

☞

❶

❹

✳

⑧

❻

✳

❷

✷

⑧

❹

✳

➍

þ

✳

❸

✳

❹

❼

✷

❺

✵

❻⑦

❺

✳

➍⑦

❺

❳

➍✔

❹

✳

☞þ

✳

ç

❹

✳

☞➣

❺

❩

❼

❸

✳

ç

✵

⑦

❼

ç

✲

☞

✺

✵

✔

❹

✳

☞î

✴

❐

✷

Ò

❹

✵

➠

❼

ò

✵

➘

✴

➠

❺

✷

➼

✵

❽

✴

ì✫

✳

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘➓✭

✳

❾

✴

ì

✳

☞

➁

➻

✶

✳

è

❹

✵

✯

✸

☞

✹

✳

➙

❹

➲

❸

✳

➍

✹

✳

➳

✳

✒

✴

❒

✴

☞

➁

➳

➲

✶

✳

➬

✷

✂

✳

✭

✳

☞

➁

➔

✷

→

✹

✳

↔

❺

✷

❿

✳

❾

é

✳

✭

✳

☞

➁

➔

✷

→

✹

✳

➀

❹

✷

➂

✵

ç

✳

✬

❻

✳

●

➁

❻

✳

➂

✵

➃

❼

➏

❳

➑

➄

✶

✳

➍

➙

❻

✳

➅

❸

✷

➆

✴

é

✴

✭

✫

✳

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘➔✭

✳

➇

✴

ì

✳

☞

➁

➻

✶

✳

è

❹

✵

✯✔

❹

✳

✖

✳

☞

✹

✳

✑

✴

➈

✷

Ô

❹

✵

✠

☞

➁

➔

✷

→

✹

✳

✖

✷

✚

❹

✵

✭

✳

➌

✺

✵

➳

✳

➠

❼

✷

ò

✵

↔

❻

✴

Ý

✷

➭

❸

✳

ë

✴

✭➉

➊

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘→✭

✳

❾

✴

ì

✳

☞

➁

➻

✶

✳

è

❹

✵

✯

➞

❼

✴

à

✷

✠

✵

❘✭

✳

↔

❼

✴

➬

✵

➠

❼

➦

❻

✴

✭

✳

➻

✳

ó

✴

☞

➁

Ø

❹

✷

➠

❻

✵

➋

✳

❾

×

✴

☞

➁

➳

✶

✳

➌

❼

✷

➍

✵

✭

✳

☞

➁

➳

①

❹

✶

✳

➎

✳

➏✖

✵

●

☞

✹

✳

Ò

❹

✳

➏

✳

➑

↔

❻

✳

ÿ

✷

Õ

❻

✵

➋

✴

ì➐

➑

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘➣➒

❺

✳

➍

✷

➓

❻

✳

➏r

✴

ì

☞

▲

➘

✵

➌

❸

✷

➍

✳

➔

✳

➏➓

❻

✳

➏✩

✳

☞

➁

➔

✷

→

✹

✳

✭

✶

✳

r

✴

ì➐

➑

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘↔→

❻

✳

➣r

✴

ì

✸

☞

▲

☞

✹

✳

✝

✵

✔

❹

✳

☞➘

✵

➠

❻

✷

↔

❹

✳

➣✭

✳

✑

✴

↔

❹

✶

✳

➣↔

❻

✴

é

✳

☞

↕

❺

❳

➣✭

✳

ü

✵

➙

❹

✳

❾

➛

✰

➣

☞

✹

✳

✝

✵

↕

❹

✶

✳

➣

➳

✳

➬

✳

➠

❺

✷

➜

✴

ì⑤

❸

✴

ì➝

➞

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘↕➳

✳

Õ

❻

✳

ç

✷

✭

✴

þ

✵

ç

✷

↔

❹

✳

➍

↔

❹

✳

Ý

✷

➟

✴

✭

✳

✝

✳

☞↔

❺

✳

➍

✸

✭

✹

✴

↔

❹

✳

➍❾

✳

❾

ç

❹

✳

☞

➘

✵

ÏÒ

❻

✳

➠

❺

✷

➪

✴

☞

✺

✵

➠

✷

❾

✳

❾

ç

❹

✳

☞

✸

☞

✺

✵

➔

✶

✳

→

✸

☞

✹

✳

➡

✳

❾

✆

✵

➥

❼

ê

✴

☞

➁

➔

✷

→

✹

✳

✭

✶

✳

➳

✵

Ú

❼

➠

➢

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘➙Ò

❻

✴

➪➳

✶

✵

➬

✳

➤

✵

☞

➁

➔

✷

→

✹

✳

✖

✷

✚

❹

✴

✭

✳

➘

✳

Ï

Ò

❹

✵

①

❼

ð

✳

➍

✸

☞

✺

✵

➥

✑

✴

➠

❹

➠

❻

✴

✃

✷

↔

❻

✳

ÿ

✷

➼

✳

➦

✴

ì➥

➧

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘➛

➧

✳

➠

❼

✳

➨

❻

✴

ìr

✴

ì➥

➧

➇

✵

➆

✶

✳

➅

✵

●

Ò

❻

✴

➪

✷

☞

✹

✳

Ò

❹

✳

➏

✳

➑

↔

❻

✳

ç

❹

✳

☛

✶

✳

é

✴

✭

✫

✳

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘➜Ò

❻

✴

➪

✷

➘

✳

Ï✖

✶

✳

➩

❺

✶

✴

☞

➁

➳

➲

✶

✳

②

✳

❾

ì

✳

❿➣

❻

✵

☞

➁

➳

➲

✶

✳

➠

❺

✷

✂

✵

✭

✳

✖

✳

➣

❺

✶

✴

☞

➁

➳

✷

ÿ

✳

é

✷

✘

❸

✵

☞

➁

➳

✷

ÿ

✳

✆

❹

✵

➠

❼

✃

✵

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘➝

➧

✳

➠

❼

✳

➨

❻

✴

ìr

✴

ì➫

➭

➇

✵

➆

✶

✳

➅

✵

●

Ò

❻

✴

➪

✷

☞

✹

✳

Ò

❹

✳

➏

✳

➑

↔

❻

✳

➠

❻

✶

✳

➨

❻

✴

ì➫

➭

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘➞Ò

❻

✴

➪

✷

➘

✳

➯

❖

↔

❺

✵

➠

❼

✳

ç

✵

✬

✵

❘➘

✳

➼

✳

➲

✴

ì➳

❻

✴

✍

✴

➶

✶

✵

➩

❸

✳

➵

✷

✝

❩

✭

✳

❾

✴

ì

✳

↔

❼

✴

Ý

❺

✵

➥

❼

ê

✴

✭

✳

➔

✳

→

↔

❼

✴

Ý

❺

✳

➍✖

✴

þ

✳

➼

✳

➠

❼

✷

ò

✵

☞

✺

✵

✫

✑

✴

➠

❹

➠

❻

✴

✃

✷

↔

❻

✳

ÿ

✷

➼

✳

➦

✴

ì✫

✳

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘➟

➸

✳

➠

❼

✳

➨

❻

✴

ìr

✴

ì✫

✳

➇

✵

➆

✶

✳

➅

✵

●

Ò

❻

✴

➪

✷

Ò

❹

✳

➍

✹

✳

↕

❹

✶

✳

✠

➀

➙

❻

✴

➺

✷

Ý

✳

é

✴

✭

✫

✳

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘➠

(a) LuaLATEX (b) Page 347 of Madina Mushaf

Figure 6: Difference between LuaLATEX and handwritten text

the minimum of the kashida. It is up to the justifica-
tion rule to specify how much width the left curve of
the kashida has and how much width the right curve
has. A better approach would be to design connect-
ing letters as a single stroke containing the whole
kashida, and then the justification rule specifies the
width of the whole kashida. Using METAFONT, the
kashida will be split at specific points to produce
each glyph part.

Another important work to consider is to em-
bed code within the font in order to support custom
rules. For instance, the width of some marks de-
pends on the width of other glyphs, and custom
rules are needed to express this. In a recent pre-
sentation [5], the author of HarfBuzz has proposed
using WebAssembly to embed code within a font,
since current technology allows it, which would bring
great flexibility to the font developer. For instance,
if this happens, it will be possible to embed the jus-

tification algorithm based on METAFONT within the
font, thus allowing to take full advantage of META-
FONT and to use it in any platform supporting this
technology. So, as future work, WebAssembly will
be considered to implement custom lookups and ac-
tions instead of using a specific scripting language.
Also, to deal with complex Arabic calligraphic rules,
adding custom lookups supporting the full power of
regular expression and finite state machines could be
necessary.

When typesetting the Quran by respecting the
handwritten Mushaf, page by page and line by line,
the difficulty will be more in terms of line shrinking
than line stretching. Indeed, the calligrapher can vis-
ually optimize the space between letters and words so
that some letters can appear above others and some
marks can change their positions horizontally and
vertically to fill the space, while avoiding some marks
or letters being too close. Implementing this using

Amine Anane

TUGboat, Volume 42 (2021), No. 3 257

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

✉

✈

↔

❼

✳

➪

❻

✴

ì➶

✴

ì✉

✈

✖

✳

↔

❺

✶

✳

❮

❹

✳

❰

✸

☞

✺

✵

↔

❹

✶

✳

❮

❹

✳

❰

✸

✝

✳

☞➘

✳

❮

❹

✶

✳

❰Ï

❹

✳

❰

➁

ü

❹

✷

Õ

❹

✵

é

✷

➳

✳

❮

❹

✳

❰✔

❹

✴

➹

❹

✴

ì↔

❺

✳

❮

❹

✳

❰✭

✳

Ò

❻

✵

❮

❹

✳

❰þ

✳

ç

❹

✳

☞Ð

❺

✈

☞

➁

➳❮

❹

✶

✳

❰✖

✵

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘❜

☞

➁

➳➘

✶

✳

❾

➥

❺

✵

ê

✵

➜

❼

Ñ

Ò

✭

✳

☞

➁

➳➘

✶

✳

❾

ç

✵

Ò

❻

✵

Ú

❼

Ñ

Ò

✭

✳

☞

➁

➳

✷

➪

❻

✳

❾

➠

❹

✵

➠

❻

✵

Ú

❼

Ñ

Ò

✭

✳

☞

➁

➳

✷

➬

✴

➠

❹

Õ

❹

✵

Õ

❻

✵

Ú

❼

Ð

✳

✭

✳

☞

➁

➳

✷

➬

✴

➲

✷

➠

❻

✳

ÿ

❹

✷

Õ

❹

✵

é

✵

➜

❼

Ð

✳

↔

❺

✵

➍

➁

➔

✷

→

✹

✳

➧

✷

Þ

✳

➍✖

✵

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘❝

①

❸

✳

Ó

✵

Ô

✳

☞

➁

➇➆

✶

✳

➅

✴

☞

✹

✳

Õ

❹

✶

✳

Ö

✴

◗➔

✳

→

✸

☞

✺

✵

×

✳

❾

Ö

✳

☞

✺

✵

➔

✶

✳

→➷

✴

ì

✳

✭

✳

☞

➁

➳

✷

➬

✳

➬

✳

❾

✸

➠

✹

✵

✚

✳

ò

❻

✴

✭

✳

☞

✹

✴

✭

▲

➶

✴

ì

☞

▲

☞

➁

➳

✷

ÿ

✵

➼

✷

✃

✵

Ò

❻

✳

➍

✸

↔

✹

✵

➬

✳

❖

➍↔

❺

✵

➍

➁

➳

✷

Õ

❻

✵

Ø

✷

✞

✵

●

➔

✳

→

✸

☞

✺

✵

➶

✳

❾

ò

✳

☞

✺

✵

➔

✶

✳

→➷

✴

ì

✳

☞

➁

➳

✷

ÿ

✳

é

❹

✵

❅

❼

é

❹

✴

☞

➁

➳

✷

Ý

✳

✚

✵

➠

❼

✃

✴

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘❞☞

✺

✵

Ù

✶

Ú

☞

➁

➻

è

✶

✵

➜

❼

Ù

Ú

ü

✵

➠

❹

ç

✳

☞

➁

➇➆

✶

✳

➅

✵

☞

➁

➔

✷

→

✺

✵

➧

✷

➮

✳

❾

✃

✴

❉

✭

✳

➘

✳

➍☞

➁

Ø

❹

✷

➠

❻

✳

➼

✳

Û

✳

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

Ð

✳

☞

✹

✴

✭➹

❻

✴

ì

☞

▲

☞

➁

➳

✷

✏

✵

➱

❻

✳

❾

Ü

❺

Ý

☞

✺

✵

➔

✶

✳

→

➘

✵

Ï

❖

↔

❺

✳

ÿ

✷

ç

✵

➘

✳

➍

Þ

❺

✳

ß

✸

✝

✳

í

✴

✃

✴

☞

➁

➳

✷

ÿ

✵

➼

✷

❮

✴

↔

❺

✳

ÿ

❹

✷

➠

❼

✳

❖

➍

↔

❺

✳

➡

❼

✷

s

❹

✳

ð

✴

✃

✷

❉

✭

✳

➘

✳

Ï↔

❼

✳

✏

✷

Õ

❹

✴

é

✷

t

❺

✵

➂

✳

➍➹

❼

✳

❾

à

❻

✵

☞

➁

➇➆

✶

✳

➅

✵

Ò

❹

✳

➍

✺

✵

á

✶

â

☞

➁

➇➆

✶

✳

➅

✳

➨

✳

ë

✵

↔

❼

✂

✴

☞

➁

➳

✷

Ý

✵

➲

✳

➍ã

❺

✵

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘❡Ò

❹

✳

➍

✺

✵

á

✷

Þ

✳

ß

✸

✃

❺

✶

✴

ì★

✳

Ò

❹

✳

Õ

❻

✴

➪

✷

☞

✹

✳

➧

✷

➼

✳

➬

✷

à

❻

✴

✭

✳

Ø

❺

✷

ñ

✵

ä

å

➇

✵

➆

✶

✳

➅

✵

✭

✳

➘

✳

æ

✵

☞

➁

↔

❻

✶

✳

➠

❺

✳

ÿ

✳

æ

✵

❉

✭

✳

Ò

❻

✴

➪➳

✶

✵

➚

✶

✳

è

❹

✵

➜

❼

ç

å

☞

✹

✴

✭➹

❻

✴

ì

☞

▲

☞

➁

➳

✷

✚

✵

➱

❻

✳

❾

è

❺

å

✭

✳

☞

➁

➔

✷

→

✹

✴

➘

✶

✵

s

❼

✶

✵

❙

Ï

✳

✝

✳

☞

✹

✳

➧

✷

➼

✳

➬

✷

➠

❻

✴

✃

✷

●

Ò

❹

✳

➍

✺

✵

é

✷

☞

✹

✳

➧

✷

➼

✳

❐

✴

ì

☞

▲

Ò

❹

✳

Õ

❻

✳

ç

✵

☞

➁

í

✷

➠

❻

✳

ç

✳

✭☞

▲

❈

✭

✶

✳

➌

✺

✵

é➹

❻

✳

ì

✳

➶

✶

✳

ì

✷

☞

▲

Ò

❹

✳

➍

✺

✵

↔

❹

✶

✳

➬

✳

➍

þ

✳

➼

✳

➠

❼

✷

ê

ë

☞

➁

➳

✷

➠

❺

✳

➮

✳

❾

✂

❹

✴

❉

✭

✳

☞

➁

➇➆

✶

✳

➅

✴

↔

❺

✳

ø

✵

➥

❼

ê

✴

❖

↔

❺

✵

➍

➁

➳

✷

ÿ

✵

➠

❺

✳

➍✔

✵

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘❢☞

✺

✵

ì

✶

í

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

ì

í

↔

❼

✳

✚

✷

Õ

❹

✴

é

✴

✭ì

í

t

❺

✵

➂

✳

➍➹

❼

✳

❾

î

❻

✵

☞

➁

➇➆

✶

✳

➅

✵

✭

✳

↔

❼

✳

Õ

❻

✷

➠

❻

✴

➮

✴

ì✫

✳

☞

➁

➳➠

❹

✶

✳

➡

❺

✵

s

❼

✶

✵

❙

ï

í

↔

❺

✵

ÿ

❹

✳

➥

❼

✷

ê

✵

Ø

✳

Ñ

✶

❩

✭

✳

↔

❼

✳

Õ

❻

✷

➠

❻

✴

➮

✴

ìð

ñ

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

ð

ñ

↔

❼

✳

➍

✹

✷

➘

✴

é

✴

✭ð

ñ

↔

❺

✵

➍

➁

➳

✷

Õ

❻

✵

➲

✷

✞

✵

➘

✵

ò

ñ

☞

➁

➳➠

❹

✶

✳

➍ó

✵

Ò

❹

✳

➡

❺

✳

➭

❸

✶

✵

ë

✷

í

✴

❮

↔

❺

✵

ÿ

✳

ç

❹

✳

☞➣

❺

✲

☞

✹

✳

➳

✵

➠

❼

✃

✲

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘❣

☞

✹

✴

✭

▲

❒

✳

❾

✸

➠

✹

✵

✗

✳

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

ô

õ

Ø

✳

➠

❺

✵

✆

✳

➦

❻

✷

☞

✹

✳

ü

✷

❐

✳

❾

➬

✴

ð

✴

✃

✷

Ô

❹

✵

✠

☞

➁

➻

è

✶

✴

↔

❹

✷

➠

❼

✳

➍✭

✳

☞

➁

➔

✷

➃

✳

→Ø

❹

✵

é

✳

✬

❻

✵

✭

✳

➘

✳

➍❒

✳

ð

✴

✃➘

✶

✵

Ï➹

❹

✶

✳

❾

ù

✵

ë

✵

➜

❼

Ð

✳

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘❤

(a) justified text using letter stretching

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

Ð

✳

↔

❼

✳

➪

❻

✴

ì➶

✴

ì✫

✳

✖

✳

↔

❺

✶

✳

➠

❹

✳

➍

✸

☞

✺

✵

↔

❹

✶

✳

➠

❹

✳

➍

✸

✝

✳

☞➘

✳

➠

❹

✶

✳

➍Ò

❹

✳

➍

➁

ü

❹

✷

Õ

❹

✵

é

✷

➳

✳

➠

❹

✳

➍✔

❹

✴

➹

❹

✴

ì↔

❺

✳

➠

❹

✳

➍✭

✳

Ò

❻

✵

➠

❹

✳

➍þ

✳

ç

❹

✳

☞➣

❺

✳

☞

➁

➳➠

❹

✶

✳

➍✖

✵

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘❜

☞

➁

➳➘

✶

✳

❾

➥

❺

✵

ê

✵

➜

❼

Ð

✳

✭

✳

☞

➁

➳➘

✶

✳

❾

ç

✵

Ò

❻

✵

Ú

❼

Ð

✳

✭

✳

☞

➁

➳

✷

➪

❻

✳

❾

➠

❹

✵

➠

❻

✵

Ú

❼

Ð

✳

✭

✳

☞

➁

➳

✷

➬

✴

➠

❹

Õ

❹

✵

Õ

❻

✵

Ú

❼

Ð

✳

✭

✳

☞

➁

➳

✷

➬

✴

➲

✷

➠

❻

✳

ÿ

❹

✷

Õ

❹

✵

é

✵

➜

❼

Ð

✳

↔

❺

✵

➍

➁

➔

✷

→

✹

✳

➧

✷

Þ

✳

➍✖

✵

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘❝

➴

❸

✳

ð

✵

ç

✳

☞

➁

➇➆

✶

✳

➅

✴

☞

✹

✳

↔

❹

✶

✳

ò

✴

◗➔

✳

→

✸

☞

✺

✵

➶

✳

❾

ò

✳

☞

✺

✵

➔

✶

✳

→➷

✴

ì

✳

✭

✳

☞

➁

➳

✷

➬

✳

➬

✳

❾

✸

➠

✹

✵

✏

✳

ò

❻

✴

✭

✳

☞

✹

✴

✭

▲

➶

✴

ì

☞

▲

☞

➁

➳

✷

ÿ

✵

➼

✷

✃

✵

Ò

❻

✳

➍

✸

↔

✹

✵

➬

✳

❖

➍↔

❺

✵

➍

➁

➳

✷

Õ

❻

✵

➲

✷

✞

✵

●

➔

✳

→

✸

☞

✺

✵

➶

✳

❾

ò

✳

☞

✺

✵

➔

✶

✳

→➷

✴

ì

✳

☞

➁

➳

✷

ÿ

✳

é

❹

✵

❅

❼

é

❹

✴

☞

➁

➸

✷

â

✳

✏

✵

➠

❼

✃

✴

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘❞☞

✺

✵

✫

✶

✳

☞

➁

➻

è

✶

✵

➜

❼

Ð

✳

ü

✵

➠

❹

ç

✳

☞

➁

➇➆

✶

✳

➅

✵

☞

➁

➔

✷

→

✺

✵

➧

✷

➮

✳

❾

✃

✴

❉

✭

✳

➘

✳

➍☞

➁

Ø

❹

✷

➠

❻

✳

➼

✳

×

✳

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

Ð

✳

☞

✹

✴

✭➹

❻

✴

ì

☞

▲

☞

➁

➳

✷

✏

✵

➱

❻

✳

❾

➦

❺

✳

☞

✺

✵

➔

✶

✳

→

➘

✵

Ï

❖

↔

❺

✳

ÿ

✷

ç

✵

➘

✳

➍Ù

❺

✳

➍

✸

✝

✳

î

✴

❐

✴

☞

➁

➳

✷

ÿ

✵

➼

✷

❮

✴

↔

❺

✳

ÿ

❹

✷

➠

❼

✳

❖

➍

↔

❺

✳

➡

❼

✷

s

❹

✳

ð

✴

✃

✷

❉

✭

✳

➘

✳

Ï↔

❼

✳

✏

✷

Õ

❹

✴

é

✷

t

❺

✵

➂

✳

➍➹

❼

✳

❾

➦

❻

✵

☞

➁

➇➆

✶

✳

➅

✵

Ò

❹

✳

➍

✺

✵

✫

✶

✳

☞

➁

➇➆

✶

✳

➅

✳

➨

✳

ë

✵

↔

❼

✂

✴

☞

➁

➸

✷

â

✵

➲

✳

➍➣

❺

✵

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘❡Ò

❹

✳

➍

✺

✵

✫

✷

Ù

✳

➍

✸

✃

❺

✶

✴

ì★

✳

Ò

❹

✳

Õ

❻

✴

➪

✷

☞

✹

✳

➧

✷

➼

✳

➬

✷

➦

❻

✴

✭

✳

Ø

❺

✷

ñ

✵

✠

✳

➇

✵

➆

✶

✳

➅

✵

✭

✳

➘

✳

Ï

✵

☞

➁

↔

❻

✶

✳

➠

❺

✳

ÿ

✳

Ï

✵

❉

✭

✳

Ò

❻

✴

➪➳

✶

✵

➚

✶

✳

è

❹

✵

➜

❼

Ð

✳

☞

✹

✴

✭➹

❻

✴

ì

☞

▲

☞

➁

➳

✷

✏

✵

➱

❻

✳

❾

➦

❺

✳

✭

✳

☞

➁

➔

✷

→

✹

✴

➘

✶

✵

s

❼

✶

✵

❙

Ï

✳

✝

✳

☞

✹

✳

➧

✷

➼

✳

➬

✷

➠

❻

✴

✃

✷

●

Ò

❹

✳

➍

✺

✵

✫

✷

☞

✹

✳

➧

✷

➼

✳

❐

✴

ì

☞

▲

Ò

❹

✳

Õ

❻

✳

ç

✵

☞

➁

í

✷

➠

❻

✳

ç

✳

✭☞

▲

❈

✭

✶

✳

➌

✺

✵

✫➹

❻

✳

ì

✳

➶

✶

✳

ì

✷

☞

▲

Ò

❹

✳

➍

✺

✵

↔

❹

✶

✳

➬

✳

➍

þ

✳

➼

✳

➠

❼

✷

✗

✳

☞

➁

➳

✷

➠

❺

✳

➮

✳

❾

✂

❹

✴

❉

✭

✳

☞

➁

➇➆

✶

✳

➅

✴

↔

❺

✳

ø

✵

➥

❼

ê

✴

❖

↔

❺

✵

➍

➁

➳

✷

ÿ

✵

➠

❺

✳

➍✔

✵

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘❢☞

✺

✵

✫

✶

✳

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

Ð

✳

↔

❼

✳

✏

✷

Õ

❹

✴

é

✴

✭

✫

✳

t

❺

✵

➂

✳

➍➹

❼

✳

❾

➦

❻

✵

☞

➁

➇➆

✶

✳

➅

✵

✭

✳

↔

❼

✳

Õ

❻

✷

➠

❻

✴

➮

✴

ì✫

✳

☞

➁

➳➠

❹

✶

✳

➡

❺

✵

s

❼

✶

✵

❙

Ï

✳

↔

❺

✵

ÿ

❹

✳

➥

❼

✷

ê

✵

Ø

✳

Ñ

✶

❩

✭

✳

↔

❼

✳

Õ

❻

✷

➠

❻

✴

➮

✴

ì✫

✳

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

Ð

✳

↔

❼

✳

➍

✹

✷

➘

✴

é

✴

✭

✫

✳

↔

❺

✵

➍

➁

➳

✷

Õ

❻

✵

➲

✷

✞

✵

➘

✵

Ï

✳

☞

➁

➳➠

❹

✶

✳

➍✘

✵

Ò

❹

✳

➡

❺

✳

➭

❸

✶

✵

ë

✷

í

✴

❮

↔

❺

✵

ÿ

✳

ç

❹

✳

☞➣

❺

✲

☞

✹

✳

➳

✵

➠

❼

✃

✲

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘❣

☞

✹

✴

✭

▲

❒

✳

❾

✸

➠

✹

✵

✗

✳

☞

➁

➻

✶

✳

è

❹

✵

➜

❼

Ð

✳

Ø

✳

➠

❺

✵

✆

✳

➦

❻

✷

☞

✹

✳

ü

✷

❐

✳

❾

➬

✴

ð

✴

✃

✷

Ô

❹

✵

✠

☞

➁

➻

è

✶

✴

↔

❹

✷

➠

❼

✳

➍✭

✳

☞

➁

➔

✷

➃

✳

→Ø

❹

✵

é

✳

✬

❻

✵

✭

✳

➘

✳

➍❒

✳

ð

✴

✃➘

✶

✵

Ï➹

❹

✶

✳

❾

ù

✵

ë

✵

➜

❼

Ð

✳

❆❇❈❉❊❋●❍■❏❑▲▼◆❖P◗❘❤

(b) justified text using interword space

Figure 7: Text justification after TEX’s line-breaking algorithm

rules will be very difficult due to the large number
of possible cases. An algorithm which analyzes the
available space to move marks and word modules
and prevent collisions would be very useful.

Finally, it is interesting to study how to ex-
tend TEX’s line-breaking algorithm in order to con-
sider glyph stretching and shrinking properties before
breaking paragraph to lines.

Acknowledgments
I would like to thank Barbara Beeton and Karl Berry
for improving this article with their English and
technical editing.

References
[1] A. Bayar, K. Sami. How a font can respect

basic rules of Arabic calligraphy. Intl. Arab. J.
e-Technol. 1(1):1–18, 2009. cs.uwaterloo.ca/
~dberry/HTML.documentation/KeshidePapers/
HowFontCanRespectArabicCalligraphy.pdf

[2] M.J.E. Benatia, M. Elyaakoubi, A. Lazrek. Arabic
text justification. TUGboat 27(2):137–146, 2006.
tug.org/TUGboat/tb27-2/tb87benatia.pdf

[3] D.M. Berry. Stretching letter and slanted-baseline
formatting for Arabic, Hebrew, and Persian
with ditroff/ffortid and dynamic PostScript
fonts. Softw. Pract. Exp. 29:1417–1457, 1999.
doi.org/10.1002/(SICI)1097-024X(19991225)
29:15%3C1417::AID-SPE282%3E3.0.CO;2-F

[4] M. Elyaakoubi, A. Lazrek. Justify just or just
justify. J. Elect. Pub. 13(1), Winter 2010.
doi.org/10.3998/3336451.0013.105

[5] B. Esfahbod. Better-engineered font formats.
www.youtube.com/watch?v=fG1QEcl3yks&ab_
channel=BehdadEsfahbod

[6] H. Hagen, I.S. Hamid. Oriental TEX: optimizing
paragraphs. MAPS 45:128–154, 2012.
www.ntg.nl/maps/45/12.pdf

[7] J.D. Hobby. A METAFONT-like system with
PostScript output. TUGboat 10(4):505–512, Dec.
1989. tug.org/TUGboat/tb10-4/tb26hobby.pdf

[8] J.D. Hobby. A User’s Manual for MetaPost, 1994.
www.tug.org/docs/metapost/mpman.pdf

[9] T. Hoekwater, L. Scarso. MPlib API
documentation, version 2.00, 2018. mirror.ctan.
org/systems/doc/metapost/mplibapi.pdf

[10] K. Hosny. Bringing world scripts to LuaTEX: The
HarfBuzz experiment. TUGboat 40(1):38–43, 2019.
tug.org/TUGboat/tb40-1/tb124hosny-harfbuzz.
pdf

[11] D.E. Knuth. The METAFONTbook. Addison-Wesley
Longman Publishing Co., Inc., USA, 1986.

[12] S. Mansour, H. Fahmy. Experiences with Arabic
font development. TUGboat 33(3):295–298, 2012.
tug.org/TUGboat/tb33-3/tb105mansour.pdf

[13] P. Nelson. Justifying text using cascading
style sheets (CSS) in Internet Explorer 5.5/6.0.
web.archive.org/web/20030813215144/http:
//www.microsoft.com/middleeast/Arabicdev/
IE6/KBase.asp

[14] A. Sherif, H. Fahmy. Meta-designing parameterized
Arabic fonts for AlQalam. TUGboat 29(3):435–443,
2008. tug.org/TUGboat/tb29-3/tb93sherif.pdf

⋄ Amine Anane
ananeamine (at) gmail dot com
https://github.com/DigitalKhatt

Arabic text justification using LuaLATEX and the DigitalKhatt OpenType variable font

https://cs.uwaterloo.ca/withtilde%20dberry/HTML.documentation/KeshidePapers/HowFontCanRespectArabicCalligraphy.pdf
https://cs.uwaterloo.ca/~dberry/HTML.documentation/KeshidePapers/HowFontCanRespectArabicCalligraphy.pdf
https://cs.uwaterloo.ca/~dberry/HTML.documentation/KeshidePapers/HowFontCanRespectArabicCalligraphy.pdf
https://tug.org/TUGboat/tb27-2/tb87benatia.pdf
https://doi.org/10.1002/(SICI)1097-024X(19991225)29:15%3C1417::AID-SPE282%3E3.0.CO;2-F
https://doi.org/10.1002/(SICI)1097-024X(19991225)29:15%3C1417::AID-SPE282%3E3.0.CO;2-F
https://doi.org/10.3998/3336451.0013.105
https://www.youtube.com/watch?v=fG1QEcl3yks&ab_channel=BehdadEsfahbod
https://www.youtube.com/watch?v=fG1QEcl3yks&ab_channel=BehdadEsfahbod
https://www.ntg.nl/maps/45/12.pdf
https://tug.org/TUGboat/tb10-4/tb26hobby.pdf
https://www.tug.org/docs/metapost/mpman.pdf
https://mirror.ctan.org/systems/doc/metapost/mplibapi.pdf
https://mirror.ctan.org/systems/doc/metapost/mplibapi.pdf
https://tug.org/TUGboat/tb40-1/tb124hosny-harfbuzz.pdf
https://tug.org/TUGboat/tb40-1/tb124hosny-harfbuzz.pdf
https://tug.org/TUGboat/tb33-3/tb105mansour.pdf
https://web.archive.org/web/20030813215144/http://www.microsoft.com/middleeast/Arabicdev/IE6/KBase.asp
https://web.archive.org/web/20030813215144/http://www.microsoft.com/middleeast/Arabicdev/IE6/KBase.asp
https://web.archive.org/web/20030813215144/http://www.microsoft.com/middleeast/Arabicdev/IE6/KBase.asp
https://tug.org/TUGboat/tb29-3/tb93sherif.pdf

258 TUGboat, Volume 42 (2021), No. 3

Rendering open street maps

Hans Hagen

1 Introduction

At the 2021 ConTEXt meeting I did a presentation
about rendering so-called open street maps with
MetaPost. These are maps available on the web and
in some mobile applications made from contributions
by (public) organizations, governments, and volun-
teers. On the web these maps are rendered efficiently
from cached tiles (bitmaps).

If you just want to render a map in ConTEXt
and not be bothered with how this is accomplished,
here is a recipe:

\usemodule[m-openstreetmap]

\startMPpage

draw lmt_openstreetmap [

filename = "hasselt.osm"

] ;

\stopMPpage

If you are interested in the details you can read
on. I will roughly describe what it takes and show
some TEX, MetaPost, Lua, and XML. You can Ąnd
the code in the Ąles m-openstreetmap.mkxl and
m-openstreetmap.lmt. These (in the usual spacey-
coded way) Ąles take some 50 KB which demonstrates
that modules that produce impressive graphics donŠt
need to be large. Of course we fall back on plenty
that is available in the ConTEXt code base.

2 The XML Ąles

In the web interface (www.openstreetmap.org) you
can export a selection. There are some pointers to
other exports. The osm Ąle is an XML Ąle that has
been exported from the web interface. These Ąles
can become pretty large. The Ąle used here describes
my hometown and is some 12 MB, and when we add

a bit of the surroundings it becomes 24 MB.1 The
small Ąle results in this map:

Although we generate an outline, rendering is
still pretty fast. The colors that I use are rather
primary but at the ConTEXt meeting Hraban [Ramm]
promised to come up with less primary colors. These
maps are quite detailed so you can zoom in a lot, so
for practical reasons I will use a smaller section.

In this smaller map you see the buildings as
outlines. You cannot see how large the lot is that
belongs to a house, but normally thatŠs not how you
use these maps.

The reason for coming up with this rendering is
that on the mailing list a user wanted to know if we
had ways to render a countryŠs outline. I had already
looked into that decades ago and a little browsing
showed me that there were still no free high quality
outlines available. At a BachoTEX meeting Mojca
Miklavec and I had spent some time on rendering

1 I found out that some sites have limitations on the total
amount that you can export in a period of time. Others have
slightly different export formats (for instance using coordinates
instead of latitudes and longitudes).

doi.org/10.47397/tb/42-3/tb132hagen-openstreetmap

Hans Hagen

m-openstreetmap.mkxl
m-openstreetmap.lmt
https://doi.org/10.47397/tb/42-3/tb132hagen-openstreetmap

TUGboat, Volume 42 (2021), No. 3 259

<?xml version="1.0" encoding="UTF-8"?>

<osm version="0.6">

<bounds minlat="52.58941" minlon="6.09082" maxlat="52.58967" maxlon="6.09128"/>

<node id="263682438" visible="true" lat="52.5895903" lon="6.0910379">

<tag k="addr:city" v="Hasselt"/> <tag k="addr:housenumber" v="27"/>

<tag k="addr:postcode" v="8061GH"/> <tag k="addr:street" v="Ridderstraat"/>

<tag k="source" v="BAG"/> <tag k="source:date" v="2014-01-22"/>

</node>

<node id="2636834867" visible="true" lat="52.5894257" lon="6.0908799"/>

<node id="2636834886" visible="true" lat="52.5894363" lon="6.0908368"/>

...

<way id="258306565" visible="true">

<nd ref="2636835112"/> <nd ref="2636835038"/> <nd ref="2636835025"/>

...

<tag k="building" v="yes"/> <tag k="ref:bag" v="1896100000000287"/>

<tag k="source" v="BAG"/> <tag k="source:date" v="2014-01-22"/>

<tag k="start_date" v="1951"/>

</way>

<way id="258307233" visible="true">

<nd ref="2636835038"/> <nd ref="2636835112"/> <nd ref="2636835042"/>

...

<tag k="building" v="house"/> <tag k="ref:bag" v="1896100000004701"/>

<tag k="source" v="BAG"/> <tag k="source:date" v="2014-01-22"/>

<tag k="start_date" v="1951"/>

</way>

</osm>

Figure 1: Stripped (and abridged) OpenStreetMap XML for three buildings in Hasselt

the open street map of that conference park in the
woods with MetaPost, so I wondered if we could use
that for country outlines. That code worked well but
of course only dealt with what we encountered in the
open street map XML at that time.

So, on a sunny (but too hot to stay outside)
weekend I sat down in my attic (which overlooks the
waterway you see in the rendering) to see what could
be done. It was only after I Ąnished the code that I
found out that the country borders in these maps are
not that usable. For instance, for the Netherlands
the borders run through the North Sea, because part
of it belongs to the Netherlands. This, although
correct, doesnŠt give the view one is accustomed to.
Because doing this is often a trial and error effort, it
makes sense to use data that you are familiar with,
which is why I choose Hasselt.

In the smallest map above, part of a neighboring
house is shown. In the map below this has been re-
moved, simply by editing the XML (shown in the code
above). I also removed the changeset, timestamp,
user and uid attributes because these bloat the out-
put (and we donŠt need them).

When looking at the data I noticed the year 1951

which I always thought should be 1952. Although
this data likely comes from a government database
I wonŠt be surprised if it has errors. A while ago I

found out that the lot is actually multiple combined
lots and some were registered in a peculiar way, but
in general it can be revealing.

The node and way elements are what deĄne
the map. What exactly is present in the way is
determined by the tag attribute. Once you look
into the large Ąle it becomes clear that the fact that
numerous volunteers create the content on the one
hand results in completeness but on the other hand

Rendering open street maps

260 TUGboat, Volume 42 (2021), No. 3

also brings inconsistencies. It doesnŠt look like there
is any periodic cleanup, so applications that deal
with the data have to apply heuristics.

I am only interested in the graphics, not in the
text. If there is demand I could look into it, in
which case we probably also need some more control,
because the additional (textual) information can be
anything users add. The house is tagged as:

<tag k="building" v="yes"/>

The large old church close by (in the center of
town) has tags:

<tag k="amenity" v="place_of_worship"/>

<tag k="building" v="yes"/>

<tag k="denomination" v="protestant"/>

<tag k="name" v="Grote- of Sint Stephanus kerk"/>

<tag k="ref:bag" v="1896100000001276"/>

<tag k="religion" v="christian"/>

<tag k="source" v="BAG"/>

<tag k="source:date" v="2018-08-08"/>

<tag k="start_date" v="1380"/>

In order to determine what kind of building we
have we need to look at building and/or amenity

and their values. There is often some inconsistency
in what gets assigned. The problem that arises from
that is that one has to apply heuristics to determine
the stacking order. For instance, ships Ćoat on water,
buildings are on top of meadows and streets, bridges
span water ways.

HereŠs another close-up:

The outline of the church has nice details and
the tower can be handled separately because it is
another way. The old town hall to the north lacks
detail, but thatŠs okay because the details are in the
third dimension.

Next example: these bridges are tricky. There is
information but my impression is that there is some
clever combination of road information and bridge
properties needed. The problem is not so much in
recognizing the shapes but in the intended stacking
order. For now, just to be sure, I use outlines but I
probably need to spend some more time on this in
the future.

3 The TEX and MetaPost Ąles

ItŠs now time to look into the (mid-2021) implementa-
tion and we start top down, with the MetaPost macro
that one uses. Because we use ConTEXt LMTX, we
can use the parameter driven interface:

\startMPdefinitions

presetparameters "openstreetmap" [

filename = "test.osm",

% grid = "dots",

griddot = 1.5,

] ;

def lmt_openstreetmap = applyparameters

"openstreetmap" "lmt_do_openstreetmap"

enddef ;

vardef lmt_do_openstreetmap = image (

lua.mp.lmt_do_openstreetmap() ;

) enddef ;

\stopMPdefinitions

The presetparameters macro registers a parame-
ter set (at the Lua end) and the applyparameters

macro uses Lua to scan following parameters from a
key/value list given between square brackets. When
that is done the macro lmt_do_openstreetmap will
be expanded. The parameter list is scanned using
Lua functions that themselves use MetaPost scanning
operations.

The filename parameter gets a string assigned
because the scanner sees a string (expression) and
griddot gets a number because a numeric expres-
sion is seen. From this you can deduce that we can
also pick up pairs, colors, transforms, paths, pens,
and we can also pick up a hash table (of parameters)
between square brackets and an indexed table (array)
by wrapping between curly braces. If you look at

Hans Hagen

lmt_do_openstreetmap

TUGboat, Volume 42 (2021), No. 3 261

how these scanners are implemented you will be sur-
prised how complex it is, simply because of the way
MetaPost interprets its input. It is a mix of picking
up tokens, symbols, known values, expressions with
occasional lookahead and push back. This scanning
interface is deĄnitely more complex than the TEX
scanners but the good news is that we have it all
wrapped up in helpers like the ones mentioned here.2

The lmt_do_openstreetmap macro renders an
image (which is a MetaPost macro returning a pic-
ture) by calling a Lua function. Here we use the
lua.mp interfacing method; a more efficient variant
would be to register a function and calling it by ref-
erence via runscript but that doesnŠt pay off here.

In the ConTEXt distribution there are plenty of
examples where parameters are accessed from the
MetaPost end but here we donŠt need that. We
handle all at the Lua end:

function mp.lmt_do_openstreetmap()

local specification = metapost.getparameterset

("openstreetmap")

return openstreetmap.convert(specification)

end

At the TEX end surprisingly little happens: we
only deĄne some colors, for instance (from a set
of 27):

\definecolor [osm:building] [r=.50]

\definecolor [osm:boat] [b=.25]

\definecolor [osm:water] [b=.75]

\definecolor [osm:forest] [g=.75]

\definecolor [osm:sand] [y=.75]

which then gets referenced in more detail, for instance
(from a set of 173):

\definecolor[osm:amenity:hospital]

[osm:building:special]

\definecolor[osm:amenity:townhall]

[osm:building:special]

\definecolor[osm:barrier:gate]

[osm:barrier]

\definecolor[osm:barrier:wall]

[osm:barrier]

\definecolor[osm:boat:yes]

[osm:boat]

\definecolor[osm:building:cathedral]

[osm:building]

\definecolor[osm:building:residential]

[osm:building]

\definecolor[osm:building:townhall]

[osm:building]

2 A further complication is that we can have multiple
MetaPost instances so an implementation has to deal with
that too.

From this you can conclude that much more
detail in coloring is possible. On the web you can
Ąnd CSS Ąles with speciĄcations, assuming some kind
of order, but I didnŠt look into those much (IŠm not
going to set up a large rendering farm); I leave that
to others.

4 The Lua Ąle

The real work happens at the Lua end. Here we start
by reading in the XML Ąle using the parser built into
ConTEXt. A 25 MB XML Ąle loads reasonably fast
but takes a bit of memory (because we store Ąles
in a round-trip way, prepared for Ąltering in and
rendering with TEX). At some point I exported Fort
Collins (the place where Alan Braslau, a MetaPost
companion, lives) which gave a 125 MB Ąle. It paid
off to Ąrst strip the versioning information from the
Ąle after loading the blob, but that (rather trivial
bit of) code is not shown here. In the following
explanation some other code has been left out also,
just to save paper and avoid confusion.

We start with some data tables. I mention these
lists because they give an idea of what one has to deal
with. The way objects get stacked is of relevance.
We omit objects that make no sense and end up with:

local order = {

"landuse", "leisure", "natural", "water",

"amenity", "building", "barrier", "man_made",

"bridge", "historic", "military", "waterway",

"highway", "railway", "aeroway", "aerialway",

"boundary",

}

We also need to determine what objects are
polygons. There is a bit of back and forth involved
here. For instance it makes sense in theory to add
bridges here but that doesnŠt work out for Hasselt.
Watch the mix of main categories and subcategories:

local polygons = tohash {

"abandoned:aeroway", "abandoned:amenity",

"abandoned:building", "abandoned:landuse",

"abandoned:power", "aeroway", "allotments",

"amenity", "area:highway", "craft",

"building", "building:part", "club", "golf",

"emergency", "harbour", "healthcare",

"historic", "landuse", "leisure", "man_made",

"military", "natural", "office", "place",

"power", "public_transport", "shop",

"tourism", "water", "waterway", "wetland",

}

Another piece of information is the stacking
order. When we have a highway we have some 25
subcategories. For instance a track gets a value of
110, a path, footway and cycleway use 100, and
steps come on top with 190. There are of course
more subcategories and categories to cover. Because

Rendering open street maps

lmt_do_openstreetmap

262 TUGboat, Volume 42 (2021), No. 3

all is in Lua tables, all can be tweaked and updated
easily.

local stacking = {

highway = {

...

track = 110,

path = 100,

footway = 100,

cycleway = 100,

steps = 190,

...

},

...

}

What gets colored is also speciĄed in tables.
Here we show the subtable for boundaries. This
boundary table demonstrates that there is some ar-
bitrary tagging going on: there is aboriginal_lands

but there are no tags for other lands (at least not
that I could Ąnd now).

local colors = {

amenity = {

...

},

boundary = {

aboriginal_lands = true,

national_park = true,

protected_area = true,

administrative = true,

},

...

}

We can Ąll areas but sometimes we need to force
outlines, so we have a registry for this:

local forcedlines = {

golf = { "cartpath", "hole", "path" },

emergency = { "designated", "destination",

"no", "official", "yes" },

historic = { "citywalls" },

leisure = { "track", "slipway" },

man_made = { "breakwater", "cutline",

"embankment", "groyne",

"pipeline" },

natural = { "cliff", "earth_bank",

"tree_row", "ridge", "arete" },

power = { "cable", "line", "minor_line" },

...

}

Normally we either draw or Ąll but sometimes
we have to do both:

local lines = {

amenity = true,

building = true,

man_made = true,

boat = true,

}

Again, by looking at these tables you get an
idea of the curious mix of tags. I was told (at the
meeting) that anyone can add tags so I suppose that
over time more has to be added to these tables. ItŠs
a bit like permitting any TEX user to add anything
to a macro package without being strict with respect
to how and where.

The conversion from XML data to MetaPost can
be seen in m-openstreetmap.lmt and is not that
complex. It is a typical example of ŞSit down and
just stepwise implementŤ with some testing as one
progresses. For me the most time goes into the look
and feel and having clean code, and here I also had
to Ągure out the speciĄcation (and heuristics). Some
safeguards and small extras (like drawing a grid on
top) are not shown here.

The f_ functions are what we call ŚformattersŠ
in ConTEXt which are variants of string.format

that offer more features. We could use the .. (string
concatenation) which is probably faster but I prefer
the formatters. The collected option can be used to
either combine the path or output them separately.
Combined paths permit transparency because cross-
ing lines are not treated twice (strings are broken for
TUGboat presentation):

local formatters = string.formatters

local f_draw = formatters[ŠD %--t W "%s";Š]

local f_fill = formatters[ŠF %--t--C W "%s";Š]

local f_both = formatters[ŠP := %--t--C;Š

.. Š F P W "%s"; D P W "white" L 2;Š]

local f_draw_s = formatters[ŠD %--t W "%s" L %s;Š]

local f_fill_s = formatters

[ŠF %--t--C W "%s" L %s;Š]

local f_both_s = formatters[ŠP := %--t--C;Š

.. Š F P W "%s"; D P W "white" L %s;Š]

local f_nodraw = formatters[ŠND %--t;Š]

local f_nofill = formatters[ŠNF %--t--C;Š]

local f_nodraw_s = formatters[ŠND %--t;Š]

local f_nofill_s = formatters[ŠNF %--t--C;Š]

local f_background

= formatters[ŠF %--t -- C W "osm:background";Š]

local f_clipped

= formatters[Šclip currentpicture to %--t--CŠ

.. Š withstacking (0,250);Š]

The MetaPost wrapping blobs come Ąrst. We
use short commands so that we donŠt have to pipe
too much from Lua to MetaPost. The no* and do*

commands are used to construct large paths instead
of small snippets. This is similar to drawing font
shapes. The resulting PDF is smaller and render-
ing can be faster. These commands are built into
Metafun and use some of the magic available in the

Hans Hagen

m-openstreetmap.lmt
string.format

TUGboat, Volume 42 (2021), No. 3 263

MetaPost library. The shortcuts are deĄned in the
preamble:

local beginmp = [[

begingroup ;

pickup pencircle scaled 1 ;

save P ; path P ;

save D ; let D = draw ;

save F ; let F = fill ;

save C ; let C = cycle ;

save W ; let W = withcolor ;

save L ; let L = withstacking ;

save ND ; let ND = nodraw ;

save DD ; let DD = dodraw ;

save NF ; let NF = nofill ;

save DF ; let DF = dofill ;

]]

The L shortcut expands to withstacking which
is a native MPlib (3.0) extension.3 When writing
this summary I realized that for clipping a more
advanced stacking method was needed, which is why
f_clipped shown before speciĄed the range to which
the clip applies. Just for the record, the stacking
property is just that: a property. It is the backend
that does the ordering based on these properties.

We end the graphics deĄnitions with:

local endmp = [[endgroup;]]

Between these two snippets we will make the
graphic. The graphic operators are collected and
Ćushed in one go. This all happens in the converter
that we deĄne next. Reporting, tracing and checking
has been removed here but is of course present in
the real code. First, we load the Ąle and determine
the bounds.

function openstreetmap.convert(specification)

local root = xml.load(specification.filename)

local bounds = xml.first(root,"/osm/bounds")

Users can overload colors by providing a table
in the parameter set (at the MetaPost end). Or
instead one can just overload the TEX deĄnitions
shown before or use palettes.

local usercolors

= specification.used -- from the parameter set

local usedcolors

= table.copy(colors) -- preserve the originals

if usercolors then

for k, v in next, usercolors do

local u = usedcolors[k]

if not u then

-- error

elseif v == false then

usedcolors[k] = false

3 It could be implemented using withprescript and some
backend Ąltering but a native mechanism is more efficient and
permits restacking.

elseif type(v) == "string" then

for k in next, u do

u[k] = v

end

elseif type(v) == "table" then

for kk, vv in next, v do

if vv == false then

u[kk] = false

elseif type(vv) == "string" then

u[kk] = vv

end

end

end

end

end

We do need to convert from lat (latitude) and
lon (longitude). This helper used conversion code
that Mojca (who is far more capable in math than I
am) gave to me for the BachoTEX park graphic.

local minlat = bounds.at.minlat

local minlon = bounds.at.minlon

local maxlat = bounds.at.maxlat

local maxlon = bounds.at.maxlon

local midlat = 0.5 * (minlat + maxlat)

local deg_to_rad = math.pi / 180.0

local scale = 3600

-- vertical scale: 1" = 1cm

local f_f_pair = formatters["(%.3Ncm,%.3Ncm)"]

local function f_pair(lon, lat)

return f_f_pair((lon - minlon) * scale

* cos(midlat * deg_to_rad),

(lat-minlat) * scale)

end

First we collect relevant data in tables. We need
to do this because the stacking order is not the same
as the order in the Ąle. We could resolve everything
via XML path lookups, but limiting the passes saves
time. The real code is a bit more optimized. We
could check for bad and redundant paths but itŠs not
worth the effort.

Most of the parsing action is driven by the xml.

collected iterators that Ąlter the relevant elements.
Much has to do with determining if something should
be drawn (which can be speciĄed), what color should
be applied to a Ąll or outline, and where the object
sits in the stacking order.

local insert = table.insert

local rendering = table.tohash(order)

local coordinates = { }

local ways = { }

local result = { }

local layers = { }

local areas = { }

Rendering open street maps

withstacking
withprescript
xml.collected
xml.collected

264 TUGboat, Volume 42 (2021), No. 3

for c in xml.collected(root,"/osm/node") do

local a = c.at

coordinates[a.id] = a

end

for c in xml.collected(root,"/osm/way") do

ways[c.at.id] = c

end

for c in xml.collected(root,"tag[@k=ŠareaŠ]") do

areas[c] = c.at.v

end

for c in xml.collected(root,"tag[@k=ŠlayerŠ]") do

layers[c] = c.at.v

end

Although normally Ąltering is fast enough not
to bother about performance, collecting nodes, ways,
areas and layers is cheaper than Ąltering them from
the (possibly huge) Ąle each time. Most entries go
into the nodes table.

As mentioned we can combine paths to save
some space (not much). Another advantage is that it
works better with transparency when a path crosses
itself. This is what the do* and no* formatters are
for: piecewise build a path and Ćush it afterwards.
This is not native MetaPost but handled in the back-
end where we go from the graphic output (in Lua
tables) to PDF.

local function drawshapes(what,order)

function xml.expressions.osm(k)

return usedcolors[k]

end

local function getcolor(r)

local t = xml.first(r,"/tag[osm(@k)]")

if t then

local at = t.at

local v = at.v

if v ˜= "no" then

local k = at.k

local col = usedcolors[k][v]

if col then

return k, col, lines[k], stacking[k][v],

forcedlines[k][v]

end

end

end

end

local function addpath(r, p, n)

for c in xml.collected(r,"/nd") do

local coordinate = coordinates[c.at.ref]

if coordinate then

n = n + 1 p[n] = f_pair(coordinate.lon,

coordinate.lat)

end

end

return p, n

end

local function checkpath(parent,p,n)

local what, color, both, stacking,

forced = getcolor(parent)

if what and rendering[what] then

if not polygons[what] or forced

or areas[parent] == "no" then

insert(result,stacking

and f_draw_s(p,color,stacking)

or f_draw(p,color))

elseif both then

insert(result,stacking

and f_both_s(p,color,stacking)

or f_both(p,color))

else

insert(result,stacking

and f_fill_s(p,color,stacking)

or f_fill(p,color))

end

end

end

There are ways and relations. Relations can
have members that point to ways but also to relations.
My impression is that we can stick to way members
so IŠll deal with more when needed.

for c in xml.collected(root,f_pattern(what)) do

local parent = xml.parent(c)

local tag = parent.tg

if tag == "way" then

local p, n = addpath(parent, { }, 0)

if n > 1 then

checkpath(parent,p,n)

end

elseif tag == "relation" then

if xml.filter(parent,"xml://tag[@k=ŠtypeŠ

and (@v=ŠmultipolygonŠ or @v=ŠboundaryŠ

or @v=ŠrouteŠ)]") then

local what, color, both, stacking,

forced = getcolor(parent)

if rendering[what] then

local p, n = { }, 0

for m in xml.collected(parent,

"/member[(@type=ŠwayŠ)

and (@role=ŠouterŠ)]") do

local f = ways[m.at.ref]

if f then

p, n = addpath(f,p,n)

end

end

if n > 1 then

checkpath(parent,p,n)

end

end

else

for m in xml.collected(parent,

"/member[@type=ŠwayŠ]") do

local f = ways[m.at.ref]

if f then

Hans Hagen

TUGboat, Volume 42 (2021), No. 3 265

local p, n = addpath(f, { }, 0)

if n > 1 then

checkpath(parent,p,n)

end

end

end

end

end

end

Now we can wrap up. We add a background
Ąrst and clip later. There can be substantial bits
outside the clip path (like rivers) because they are
deĄned as one way, but because paths are not that
detailed we donŠt waste time on building a cycle.
We could check if points are outside the bounding
box and then use the MetaPost buildpath macro,
at least if it works at all on these kinds of paths. ItŠs
not worth the trouble and probably would introduce
errors too.

local boundary = {

f_pair(minlon,minlat),

f_pair(maxlon,minlat),

f_pair(maxlon,maxlat),

f_pair(minlon,maxlat),

}

insert(result,beginmp)

insert(result,f_background(boundary))

for i=1,#order do

local o = order[i]

if usedcolors[o] then

drawshapes(o,i)

end

end

insert(result,f_clipped(boundary))

insert(result,endmp)

return concat(result)

end -- of drawshapes function

5 Running

This document only uses a few maps, a large one
and some smaller. On my 2013 Dell Precision laptop
processing this Ąle gives this on the console. Ob-
serve how we use scaled mode. For larger maps it
probably makes sense to use a double instance.
metapost > initializing instance Šmetafun:1Š

using format ŠmetafunŠ and method ŠdefaultŠ

metapost > loading ŠmetafunŠ as Šmetafun.mpxlŠ

using method ŠdefaultŠ

metapost > initializing number mode ŠscaledŠ

metapost > trace > This is MPLIB for LuaMetaTeX,

version 3.11, running in scaled mode.

metapost > trace > loading metafun for lmtx, including

the plain 1.004 base definitions

And:

openstreetmap > processing file Šhasselt.osmŠ

openstreetmap > original size 12352168 bytes,

stripped down to 6232386 bytes

openstreetmap > 1599441 characters metapost code,

preprocessing time 2.433 seconds

openstreetmap > processing file Šhasselt-small.osmŠ

openstreetmap > original size 906573 bytes,

stripped down to 453398 bytes

openstreetmap > 165132 characters metapost code,

preprocessing time 0.155 seconds

openstreetmap > processing file Šhasselt-tiny.osmŠ

openstreetmap > original size 7318 bytes,

stripped down to 3790 bytes

openstreetmap > 1337 characters metapost code,

preprocessing time 0.000 seconds

openstreetmap > processing file Šhasselt-tiny-stripped.osmŠ

openstreetmap > original size 2875 bytes,

stripped down to 2322 bytes

openstreetmap > 1111 characters metapost code,

preprocessing time 0.008 seconds

openstreetmap > processing file Šhasselt-church-cityhall.osmŠ

openstreetmap > original size 156921 bytes,

stripped down to 123986 bytes

openstreetmap > 7601 characters metapost code,

preprocessing time 0.030 seconds

openstreetmap > processing file Šhasselt-bridge.osmŠ

openstreetmap > original size 1088541 bytes,

stripped down to 568184 bytes

openstreetmap > 190043 characters metapost code,

preprocessing time 0.182 seconds

As you can see, we output some statistics that
are not implemented in the code shown here. With
standard compression, the hasselt.osm Ąle, when
processed standalone into hasselt.pdf, becomes a
951 KB Ąle. It has quite a lot of detail so in the
end that is not too bad for a Ąle with the usual
high-quality MetaPost outlines.

In the code above we had some code related to
user speciĄed colors. This is how that works:

\startMPpage

draw lmt_openstreetmap [

filename = "hasselt.osm"

% collect = true,

% grid = "dots",

% griddot = 1,

used = [

natural = "magenta",

leisure = "cyan",

landuse = "green",

amenity = false,

boundary = false,

building = false,

...

aerialway = false,

]

] ;

\stopMPpage

Rendering open street maps

266 TUGboat, Volume 42 (2021), No. 3

Thus, you can drop objects and also force differ-
ent colors. This one doesnŠt look pretty any more so
it is not shown here. It should be clear that you have
to know what objects are actually available, which is
not something trivial. The commented options drive
the collection in large paths and overlaying a dotted
grid with a given dot size. It would not be visible
here on the detailed map.

The last map (below) shows the location of the
next ConTEXt meeting in Dreifelden (Germany). be-
cause that is less populated than Hasselt, we can
show the grid. We use griddot=2 here and from the
log you can see that it is indeed a smaller map:

openstreetmap > processing file Šdreifelden.osmŠ

openstreetmap > original size 755190 bytes,

stripped down to 398891 bytes

openstreetmap > 130304 characters metapost code,

preprocessing time 0.150 seconds

6 Conclusion

This started out as an experiment but as usual once
you start you want to Ąnish it. I admit that after
writing the code I didnŠt really look at it before the
2021 ConTEXt meeting but I expect that once users
are aware of this module, they might have demands.
It is not hard to add features because after all it was
quite trivial to implement this, at least if we forget
about the guesswork and some fuzzy heuristics. But
these are things that users can help with once they
look at maps of places that they know well.

When wrapping up this document I decided to
check how Don KnuthŠs university area comes out,
and I was surprised to see that Ąrst of all the whole

area turned red (a side effect of the area being tagged
as an university amenity) but more strangely, quite
a few buildings did not show up. When I looked in
the Ąle I saw lots of ŚnewŠ (hence unrecognized) tags
for buildings and amenities. These two categories
(tags) are used very inconsistently and in the long
run I think that this should be Ąxed. After adding
colors (and enablers) for additional building values:

university barn bridge detached dormitory

farm_auxiliary grandstand greenhouse

kindergarten parking stable stadium toilets

the output looked more reasonable. And, after
adding a subset of the new amenities I saw

bicycle_parking bicycle_repair_station cafe

car_wash childcare clinic clubhouse college

community_centre events_venue fast_food (many :)
fire_station fountain fuel library mailroom

pharmacy place_of_worship post_office recycling

research_institute theatre wellness_centre

and even computer_lab showed up, but there is
plenty of work left (for potential users) to do. I
probably will make some helper for identifying new
tags and values.

In the end, this was one of the projects that
makes working with TEX, Lua and especially Meta-
Post fun. It is also a good demonstration that some
things are relatively easy in TEX and friends com-
pared to typographical challenges, where one mixes
all kinds of conĆicting user demands and still expects
perfect typeset outcomes.

⋄ Hans Hagen
http://pragma-ade.com

50°35’19”

50°35’20”

50°35’21”

50°35’22”

50°35’23”

50°35’24”

50°35’25”

50°35’26”

50°35’27”

50°35’28”

50°35’29”

50°35’30”

50°35’31”

50°35’32”

50°35’33”

50°35’34”

50°35’35”

50°35’36”

7°49’46” 7°49’48” 7°49’50” 7°49’52” 7°49’54” 7°49’56” 7°49’58” 7°49’60” 7°50’2” 7°50’4” 7°50’6” 7°50’8” 7°50’10” 7°50’12” 7°50’14” 7°50’16” 7°50’18” 7°50’20” 7°50’22” 7°50’24” 7°50’26”

griddot%20=%202
computer_lab

TUGboat, Volume 42 (2021), No. 3 267

Controlling captions, fullpage and

doublepage ŕoats: hvfloat

Herbert Voß

Abstract

The package hvfloat deőnes macros which place
objects and captions of ŕoats in different positions
with different rotating angles for the object and cap-
tion. The object can őll a full column, a full page or
full doublepage, with or without taking margins into
account.

1 Introduction

The well-known ŕoating environments like figure

and table are easy to handle if there is only one
object and one caption which őts into the current
page text layout. If you want a caption rotated and
beside the object (an image, tabular, . . .) then you
need some LATEX knowledge or a package which does
the rotation and the checking of the current page
number if you want to place the rotated caption for
a twocolumn document into the outer margin.

All this can be simpliőed by using the package
hvfloat which has a variety of possible options for
the ŕoating object and caption. The package is
loaded in the usual way:

\usepackage[options]{hvfloat}

The package has options hyperref, nostfloats,
and fbox. The latter is only used for locating spac-
ing problems in the document: objects and captions
are framed, so unwanted whitespace can easily be
seen. With nostfloats one can prevent the load-
ing of the package stfloats, which allows bottom
ŕoats in a twocolumn document. This option is
needed only in rare cases where a package conŕict
between stfloats and another package exists. With
hyperref the package of that name is loaded.

If you would like to reset the default for the ŕoat
position parameters to htp (here, top and page) (the
default is tbp, top, bottom, and page), then you can
load the helper package hvfloat-fps. It knows the
optional arguments table, figure, and all. If you
have a document with a large number of ŕoats and
relatively short text you can load the package with

\usepackage[all=!htb]{hvfloat-fps}

The exclamation allows LATEX to ignore the inter-
nal parameter settings for the ŕoats, e.g. the number
of ŕoats on one page [2].

Usually several LATEX runs will be needed un-
til hvfloat knows whether őgures are on even or
odd page and to get all the references correct. The
usual warning ‘Label(s) may have changed’ will
be shown if another compilation is needed.

2 Dependencies

The following packages are loaded by default:
afterpage, caption, expl3, graphicx, ifoddpage,
multido, picture, stfloats, subcaption,
trimclip, xkeyval.

3 The macros and optional arguments

The three main macros are \hvFloat, \hvFloatSet,
and \hvFloatSetDefaults. The syntax for calling
them is somewhat complex. Optional arguments are
gray shaded:

\hvFloat * [options] +

{ŕoat type}

{ŕoating object}

[short caption] {long caption}

{label}

\hvFloatSet{key=value list}

\hvFloatSetDefaults

The star version of \hvFloat is explained in sec-
tion 4 on page 270 and the optional + is explained
in section 7.2 on page 278.

The \hvFloatSet macro allows the global set-
ting of parameters via the given keyword=value list,
while \hvFloatSetDefaults sets all parameters to
their default values, as shown in Table 2 on page 269.

If \hvFloat is given an empty second argument
for ŕoat type, it switches by default to a nonŕoat ob-
ject and activates the option onlyText (see Table 2).
The short caption is a second optional argument; if
given, it speciőes, as usual, the caption entry for the
\listof.... All other arguments are mandatory
but may be empty.

Some other macros are deőned, mostly for use
in the hvfloat implementation, but they can also be
used for a user’s own purposes. Only \tabcaption

should be placed at the top of an object.

\figcaption [short caption] {long text}

\tabcaption [short caption] {long text}

\tabcaptionbelow [short caption] {long text}

They are used for the nonFloat keyword, where these
macros write captions in the same way but outside of
any ŕoat environment. The default caption cannot be
used here. It is no problem to use the \tabcaption

command to place a caption anywhere, for instance
here in an inline mode:

Table 1: A caption with neither sense nor object.

In this case a label should be put inside the
argument and not after the command \tabcaption,

doi.org/10.47397/tb/42-3/tb132voss-hvfloat

Controlling captions, fullpage and doublepage ŕoats: hvfloat

https://doi.org/10.47397/tb/42-3/tb132voss-hvfloat

268 TUGboat, Volume 42 (2021), No. 3

so that a reference to the nonexistent object Table 1
will still work. Source for this:

It is no problem to use the \verb|\tabcaption|

command ... here in an inline mode:

\tabcaption[The caption without sense ...]

{A caption with neither sense nor object.%

\label{dummy}}

In this case a label should be put inside the

argument ... so that a reference to the

nonexistent Table~\ref{dummy} will still work.

With the macro \hvDefFloatStyle one can de-
őne a style to be used instead of the individual set-
ting. Internally the style is saved in a macro named
\hv@name.

\hvDefFloatStyle{name}{setting}

The possible keywords are listed in the rotated and
full page Table 2 on the next page. To make this
table, we őrst save it in the predeőned box hvOBox

as a tabularx with the tabular width of the current
textheight. A tabularx cannot be used as an argu-
ment to \hvFloat. This is the reason we use the
intermediate box:

\begin{lrbox}{\hvOBox}\small

\begin{tabularx}{\textheight}

{@{} l>{\small\ttfamily}cX @{}}\toprule

\emph Keyword & \emph Default ...

[...]

\end{tabularx}

\end{lrbox}

Then, to typeset the table, we use the keyword
rotAngle, which rotates object and caption together:

\hvFloat*[floatPos=p,rotAngle=90,

capPos=top,capWidth=w,useOBox=true]

{table}{}

{The optional keywords for the

\texttt{\textbackslash hvFloat} macro.}

{tab:options}

3.1 Caption positioning

By default the caption is set below the object and
the macro \hvFloat behaves like the usual figure
or table environment. With the keyword capPos

and the value before, the caption can be placed
beside the object. For small objects (smaller than a
column/page), before is equivalent to left. Thus,
here is the code for our őrst example:

\hvFloat[capPos=left]{figure}

{\includegraphics{frose}}{A short caption

beside a figure [...] without a label.}{}

If the caption is shorter than the possible width
it is horizontally centered. The vertical position is
by default also centered. This can be changed by the
optional argument capVPos. The formatting can be

Figure 1: A short cap-
tion beside a őgure object
(capPos=left) without a
label.

modiőed by the optional arguments of the (already-
loaded) package caption. They can be speciőed to
\hvFloat via the optional argument capFormat (see
Figure 2). The caption is also rotated by setting
capAngle=90, which is a counter-clockwise rotation:

\hvFloat[capPos=right,

capAngle=90,capWidth=h,

capFormat={font=sf}]{figure}

{\includegraphics{frose}}

{A caption in sans [...],

to the right [...],

as wide as [...],

and rotated by 90\textdegree [...]}{fig:1}

F
ig

u
r
e

2
:

A
ca

p
ti
o
n

in
sa

n
s

se
ri
f
(c
a
p
F
o
r
m
a
t
=
{
f
o
n
t
=
s
f
}
),

to
th

e
ri
g
h
t

o
f
th

e
o
b
je

ct
(c
a
p
P
o
s
=
r
i
g
h
t
),

as
w

id
e

as
th

e
o
b
je

ct
(c
a
p
W
i
d
t
h
=
h
),

an
d

ro
ta

te
d

by
9
0°

(c
a
p
A
n
g
l
e
=
9
0
).

The caption’s vertical position is controlled by
the keyword capVPos which accepts the values top,
center, and bottom. The capPos=inner setting is
explained later (ğ5.2, p. 271). Typographically, a side
caption for images should usually be at the bottom
and for a table at the top of the object (Figure 3).

\hvFloat[capPos=inner,capVPos=bottom,

objectAngle=180]{figure}

{\includegraphics{frose}}

{This caption is at the inner margin [...],

and vertically at the bottom [...],

and the object is rotated [...]}{fig:11}

3.2 The caption width

For a caption beside the object the horizontal jus-
tiőcation is by default centered if the total width

Herbert Voß

TUGboat, Volume 42 (2021), No. 3 269

T
a
b
le

2
:

T
h
e

o
p
ti

o
n
a
l
k
ey

w
o
rd

s
fo

r
th

e
\
h
v
F
l
o
a
t

m
a
cr

o
.

K
e
y
w
o
rd

D
e
fa

u
lt

D
e
sc

ri
p
ti
o
n

f
l
o
a
t
P
o
s

t
b
p

T
h
is

is
th

e
sa

m
e

d
ef

a
u
lt

p
la

ce
m

en
t

se
tt

in
g

a
s

in
st

a
n
d
a
rd

LA
T
E
X

;
m

ay
b
e

n
o
t

a
lw

ay
s

th
e

b
es

t
se

tt
in

g
.

r
o
t
A
n
g
l
e

0
T

h
e

va
lu

e
fo

r
th

e
a
n
g
le

if
b
o
th

th
e

o
b
je

ct
a
n
d

th
e

ca
p
ti

o
n

sh
o
u
ld

b
e

ro
ta

te
d

to
g
et

h
er

.

c
a
p
W
i
d
t
h

n
T

h
e

w
id

th
o
f
th

e
ca

p
ti

o
n
.

C
a
n

b
e
n

fo
r

a
n
a
tu

ra
l
w

id
th

g
iv

en
b
y

th
e

cu
rr

en
t

li
n
ew

id
th

,
w

fo
r

th
e

w
id

th
o
f
th

e
o
b
je

ct
,

h
fo

r
th

e
h
ei

g
h
t

o
f
th

e
o
b
je

ct
,
o
r

a
sc

a
le

fa
ct

o
r

fo
r
\
c
o
l
u
m
n
w
i
d
t
h
.

c
a
p
A
n
g
l
e

0
T

h
e

in
te

g
er

va
lu

e
fo

r
th

e
a
n
g
le

if
th

e
ca

p
ti

o
n

sh
o
u
ld

b
e

ro
ta

te
d
.

P
o
si

ti
v
e

is
co

u
n
te

r-
cl

o
ck

w
is

e.

c
a
p
P
o
s

b
o
t
t
o
m

T
h
e

p
o
si

ti
o
n

o
f
th

e
ca

p
ti

o
n

re
la

ti
v
e

to
th

e
o
b
je

ct
.

P
o
ss

ib
le

va
lu

es
:

b
e
f
o
r
e
:

a
lw

a
y
s

b
ef

o
re

(l
ef

t)
fr

o
m

th
e

o
b
je

ct
.

t
o
p
:

a
lw

a
y
s

o
n

to
p

o
f
th

e
o
b
je

ct
.

l
e
f
t
:

a
lw

a
y
s

b
ef

o
re

(l
ef

t)
fr

o
m

th
e

o
b
je

ct
,
b
u
t

o
n

th
e

sa
m

e
p
a
g
e

in
tw

o
co

lu
m

n
m

o
d
e.

a
f
t
e
r
:

a
lw

a
y
s

a
ft

er
(r

ig
h
t)

fr
o
m

th
e

o
b
je

ct
.

b
o
t
t
o
m
:

a
lw

a
y
s

o
n

th
e

b
o
tt

o
m

o
f
th

e
o
b
je

ct
.

r
i
g
h
t
:

a
lw

a
y
s

a
ft

er
(r

ig
h
t)

fr
o
m

th
e

o
b
je

ct
,
b
u
t

o
n

th
e

sa
m

e
p
a
g
e

in
tw

o
co

lu
m

n
m

o
d
e.

i
n
n
e
r
:

in
tw

o
si

d
e

m
o
d
e

a
lw

ay
s

ty
p
es

et
a
t

th
e

in
n
er

m
a
rg

in
.

o
u
t
e
r
:

in
tw

o
si

d
e

m
o
d
e

a
lw

ay
s

ty
p
es

et
a
t

th
e

o
u
te

r
m

a
rg

in
.

e
v
e
n
P
a
g
e
:

in
tw

o
si

d
e

m
o
d
e

w
it

h
fu

ll
p
a
g
e

o
b
je

ct
s

a
lw

ay
s

o
n

a
n

ev
en

p
a
g
e.

o
d
d
P
a
g
e
:

in
tw

o
si

d
e

m
o
d
e

w
it

h
fu

ll
p
a
g
e

o
b
je

ct
s

a
lw

ay
s

o
n

a
n

o
d
d

p
a
g
e.

c
a
p
V
P
o
s

c
e
n
t
e
r

O
n
ly

u
se

d
w

h
en

c
a
p
P
o
s
=
l
e
f
t
|r
i
g
h
t
;
in

th
es

e
ca

se
s,

th
e

ca
p
ti

o
n

ca
n

b
e

v
er

ti
ca

ll
y

p
la

ce
d

a
t

th
e
b
o
t
t
o
m
,
c
e
n
t
e
r

o
r
t
o
p
.

o
b
j
e
c
t
P
o
s

c
e
n
t
e
r

H
o
ri

zo
n
ta

l
p
la

ce
m

en
t

o
f
th

e
o
b
je

ct
re

la
ti

v
e

to
th

e
d
o
cu

m
en

t.
P
o
ss

ib
le

va
lu

es
a
re

(l
)e

ft
,
(c

)e
n
te

r,
(r

)i
g
h
t.

o
b
j
e
c
t
A
n
g
l
e

0
In

te
g
er

va
lu

e
fo

r
th

e
a
n
g
le

if
th

e
o
b
je

ct
sh

o
u
ld

b
e

ro
ta

te
d
.

P
o
si

ti
v
e

is
co

u
n
te

r-
cl

o
ck

w
is

e.

f
l
o
a
t
C
a
p
S
e
p

5
p
t

A
d
d
it

io
n
a
l
sp

a
ce

b
et

w
ee

n
th

e
o
b
je

ct
a
n
d

a
le

ft
-

o
r

ri
g
h
t-

p
la

ce
d

ca
p
ti

o
n
.

u
s
e
O
B
o
x

f
a
l
s
e

In
st

ea
d

o
f
p
a
ss

in
g

th
e

o
b
je

ct
a
s

a
p
a
ra

m
et

er
to

\
h
v
F
l
o
a
t
,
w

it
h
u
s
e
O
B
o
x
=
t
r
u
e

th
e

co
n
te

n
ts

o
f
th

e
p
re

d
eő

n
ed

b
ox

\
h
v
O
B
o
x

is
u
se

d
.

o
n
l
y
T
e
x
t

f
a
l
s
e

T
h
e

ca
p
ti

o
n

is
p
ri

n
te

d
a
s

n
o
rm

a
l
te

x
t

w
it

h
n
o

en
tr

y
in

a
n
y

li
st

o
f
..

.

n
o
n
F
l
o
a
t

f
a
l
s
e

T
h
e

o
b
je

ct
is

n
’t

p
u
t

in
a

ŕ
o
a
ti

n
g

en
v
ir

o
n
m

en
t,

b
u
t

p
ri

n
te

d
a
s

st
a
n
d
a
rd

te
x
t

w
it

h
a
n

a
d
d
it

io
n
a
l
ca

p
ti

o
n
.

T
h
e

ŕ
o
a
t

co
u
n
te

r
is

in
cr

ea
se

d
a
s

u
su

a
l
a
n
d

ca
n

b
e

re
fe

re
n
ce

d
.

w
i
d
e

f
a
l
s
e

T
h
e

ŕ
o
a
t

ca
n

u
se

\
t
e
x
t
w
i
d
t
h
+
\
m
a
r
g
i
n
p
a
r
w
i
d
t
h

a
s

h
o
ri

zo
n
ta

l
w

id
th

.

o
b
j
e
c
t
F
r
a
m
e

f
a
l
s
e

P
u
t

a
fr

a
m

e
w

it
h

n
o

se
p
a
ra

ti
o
n

a
ro

u
n
d

th
e

ŕ
o
a
t

o
b
je

ct
.

s
t
y
l
e

n
o
n
e

U
se

a
d
eő

n
ed

st
y
le

.

c
a
p
F
o
r
m
a
t

n
o
n
e

D
eő

n
e

fo
rm

a
tt

in
g

o
p
ti

o
n
s

fo
r
\
c
a
p
t
i
o
n
;
se

e
d
o
cu

m
en

ta
ti

o
n

o
f
p
a
ck

a
g
e
c
a
p
t
i
o
n
.

s
u
b
c
a
p
F
o
r
m
a
t

n
o
n
e

D
eő

n
e

fo
rm

a
tt

in
g

o
p
ti

o
n
s

fo
r
\
s
u
b
c
a
p
t
i
o
n
.

f
u
l
l
p
a
g
e

f
a
l
s
e

U
se

a
co

m
p
le

te
co

lu
m

n
in

tw
o
co

lu
m

n
m

o
d
e.

F
u
l
l
P
a
g
e

f
a
l
s
e

U
se

th
e

fu
ll

te
x
t

a
re

a
fo

r
th

e
o
b
je

ct
.

F
U
L
L
P
A
G
E

f
a
l
s
e

U
se

th
e

fu
ll

p
a
p
er

w
id

th
/
h
ei

g
h
t

fo
r

th
e

o
b
je

ct
.

d
o
u
b
l
e
P
a
g
e

f
a
l
s
e

U
se

th
e

te
x
t

a
re

a
o
n

a
d
o
u
b
le

p
a
g
e

w
it

h
a
d
d
it

io
n
a
l
te

x
t.

d
o
u
b
l
e
P
A
G
E

f
a
l
s
e

U
se

th
e

te
x
t

a
re

a
o
n

a
d
o
u
b
le

p
a
g
e

w
it

h
o
u
t

a
d
d
it

io
n
a
l
te

x
t.

d
o
u
b
l
e
F
U
L
L
P
A
G
E

f
a
l
s
e

U
se

th
e

p
a
p
er

w
id

th
o
n

a
d
o
u
b
le

p
a
g
e

w
it

h
o
u
t

a
d
d
it

io
n
a
l
te

x
t.

v
F
i
l
l

f
a
l
s
e

P
u
t

a
\
v
f
i
l
l

b
et

w
ee

n
ev

er
y

tw
o

o
b
je

ct
s

in
a

m
u
lt

i-
o
r

su
b
ŕ
o
a
t.

s
a
m
e
H
e
i
g
h
t

f
a
l
s
e

u
se

th
e

sa
m

e
te

x
t

h
ei

g
h
t

o
n

b
o
th

p
a
g
es

fo
r

a
d
o
u
b
l
e
P
a
g
e

o
b
je

ct
.

Controlling captions, fullpage and doublepage ŕoats: hvfloat

270 TUGboat, Volume 42 (2021), No. 3

Figure 3: This caption
is at the inner margin
(capPos=inner, see
p. 271), vertically at the
bottom of the object
(capVPos=bottom), and
the object is rotated 180°

(objectAngle=180).

of object and caption are less than the current col-
umn/line width. The caption width itself can be
controlled by the keyword capWidth, which can be
set to n (natural width), w (width of the object), h
(height of the object), or a value by which to scale
\columnwidth. Figure 2 on page 268 shows the use
of capWidth=h, which is used for rotated captions
beside the object and Figure 4 shows a caption above
the object with the same width.

\hvFloat[capWidth=w,capPos=top,

capAngle=180,objectAngle=90]{figure}

{\includegraphics{frose}}

{A 180\textdegree-rotated caption above

[...] with the same width.}{fig:1a}

Figure4:A180°-rotatedcap-
tionabovea90°-rotatedobject,
withthesamewidth.

4 The star version \hvFloat*

In twocolumn mode the ŕoating environment can oc-
cupy both columns using the star version \hvFloat*.
This is analogous to the environments figure* and
table*.

If possible, the ŕoating environment will be
placed at the top of the following page or at the
bottom of the current page. The latter needs the
package stfloats which is loaded by hvfloat by
default. (stfloats cannot place a ŕoat at the bot-
tom of the őrst page of an article or chapter when
using the core LATEX document classes; these classes

also include code that prevents placement of a ŕoat
at the top of the őrst page.) Placing the ŕoat across
both columns within the text area is not possible.
Here is the code for the following example (Figure 5
on the next page):

\hvFloat*[capVPos=bottom,capPos=right]{figure}

{\includegraphics{frose}

\includegraphics[angle=180,origin=c]{frose}}

{A caption to the right [...],

It spans both columns [...]}{fig:2}

The same can be seen in Table 3 on the facing
page, which also spans two columns (we’ll discuss the
content of that table later). Internally the number
of possible ŕoating objects on top of the page is con-
trolled by the parameters \topnumber (in onecolumn
mode) and \dbltopnumber (in twocolumn mode).
They are preset for this documentclass (TUGboat)
to 2 and 2 and differ for other document classes. For
doublepage objects the values will temporarily be
changed to 1.

5 Full column or fullpage objects

As mentioned in Table 2 there are three keywords
for fullpage objects:

• fullpage for a complete column or page in a
onecolumn mode,

• FullPage for a complete text area of a page or
both columns in a twocolumn mode, and

• FULLPAGE for the complete paper area without
leaving any margin.

This refers to the reserved space which \hvFloat will
use when typesetting the object and caption. The ob-
ject itself can be smaller than a full column or page.
Package hvfloat deőnes őve additional optional ar-
guments for the package graphicx which can be used
together with \includegraphics to make the code
a bit shorter. They are listed in Table 3 on the next
page. The so-called bind correction is additional free
space at the inner margins of a twoside document.

In general, the interface is the same whether
using the complete text area or the complete paper
area for the ŕoating object; the only difference is
fullpage vs. FULLPAGE. By default, such a page will
have no page number, no header, and no footer, and
the pagestyle is empty.

Setting the keyword keepaspectratio to false
only makes sense for images which have nearly the
same ratio as the current height/width. Using a
full column or page for an object implies to put the
caption on the preceding or following column/page.
For a twocolumn document this should always be the
opposite column on the same page and for twoside
documents the opposite page. Only for doublepage

Herbert Voß

TUGboat, Volume 42 (2021), No. 3 271

Figure 5: A longer caption to the right of the object
(capPos=right), and vertically at the bottom of the
object (capVPos=bottom). It spans both columns
(\hvFloat*) and may be at the top or bottom of
the page.

Table 3: Additional keywords for the \includegraphics macro.

name width= height= keepaspectratio=

fullpage \columnwidth \textheight false

FullPage \textwidth \textheight false

FULLPAGE \paperwidth \paperheight false

doublefullPage 2\paperwidth-2in-2\evensidemargin true

doubleFULLPAGE 2\paperwidth \paperheight false

doubleFULLPAGEbindCorr 2\paperwidth−2\bindCorr \paperheight false

objects (leftśright pages) the caption must be on the
preceding or following column/page, by default at
the bottom of that page or column.

A label deőned via \hvFloat always points to
the image, not to the caption. This makes no dif-
ference for the default ŕoats, where the image and
caption are on the same page. For fullpage or double-
page objects, however, the macro internally deőnes
additional labels; one pointing to the caption (la-
bel ⟨label⟩-cap) and, if it is a doublepage object,
another pointing to the second (right) part of the
object (label ⟨label⟩-2).

All labels, the given one ⟨label⟩ and the inter-
nal ones ⟨label⟩-cap and ⟨label⟩-2, will point to the
same object counter, but possibly to different page
numbers. An example is shown in section 6, where
Figure 13, deőned with label fig:dP, has its caption
on page 277 and its image on pages 276 and 277.
The following table shows the behavior:

fig:dP fig:dP-cap fig:dP-2

\ref{...} 13 13 13
\pageref{...} 276 277 277

5.1 Twoside and onecolumn mode

In a twoside document with onecolumn mode, a
fullpage object and the corresponding caption should
be on facing pages (leftśright). This can be speciőed
with the keyword capPos and the values evenPage
or oddPage. To save space we show only the output
of two example documents (Figure 6 on the following

page). The upper pair of pages uses the following
settings:

\hvFloat[fullpage, capPos=evenPage]

{figure}

{\includegraphics[fullpage]{frose}}

{A caption of a \texttt{fullpage} object

with \texttt{capPos=oddPage} ... for a

long caption.}{fig:fullpage1}

The lower two pages in Figure 6 are similar,
except capPos=evenPage and the object is set as
FULLPAGE instead of fullpage.

The captions here (and throughout) are typeset
in red to make them more visible in the examples,
which are often reduced in size. The complete code
for all examples is on CTAN (mirror.ctan.org/
macros/latex/contrib/hvfloat/doc/examples).

5.2 Twoside and twocolumn mode

In contrast, in a twoside document in twocolumn
mode, by default a caption appears before the full-
page or fullcolumn object, independent of an even
or odd column or page. Figure 7 on page 273 shows
the output of this example code:

\hvFloat[fullpage, capPos=inner]

{figure}

{\includegraphics[fullpage]{frose}}

[A short caption for the LoF.]

{A caption on the inner side of a twoside and

twocolumn document (\texttt{capPos=inner}).

This can be an even or odd page. And ...

... long caption.}{fig:full0}

Controlling captions, fullpage and doublepage ŕoats: hvfloat

https://mirror.ctan.org/macros/latex/contrib/hvfloat/doc/examples
https://mirror.ctan.org/macros/latex/contrib/hvfloat/doc/examples

272 TUGboat, Volume 42 (2021), No. 3

5 Lists

6

5.2 Example for list (enumerate)

– First itemtext

• Second itemtext

5.2 Example for list (enumerate)

1. First itemtext

2. Second itemtext

3. Last itemtext

4. First itemtext

5. Second itemtext

5.2.1 Example for list (4*enumerate)

1. First itemtext

a) First itemtext

i. First itemtext

A. First itemtext

B. Second itemtext

ii. Last itemtext

b) First itemtext

2. Second itemtext

5.3 Example for list (description)

First itemtext

Second itemtext

Last itemtext

First itemtext

Second itemtext

Figure 1: A caption of a fullpage object with capPos=oddPage, so it appears on an odd-

numbered page. And some more text whch has no meaning because it merely fills the space

for a long caption.

7

6 Heading on level 1 (section)

5.3.1 Example for list (4*description)

First itemtext

First itemtext

First itemtext

First itemtext

Second itemtext

Last itemtext

First itemtext

Second itemtext

“hvFloat[FULLPAGE ,capPos=evenPage]%

–figure˝%

–“ includegraphics[FULLPAGE]–frose˝˝%

[A FULLPAGE float with the default caption setting]%

–A default caption of a ‘‘FULLPAGE ’’ object with the default

setting , which

is a ‘‘left ’’ caption which means that it always appears before

the object.

This can be an even or odd page. And some more text whch has no

real meaning because it fills only the space for a long caption .˝%

–fig:FULLPAGE 1˝

Float default

6 Heading on level 1 (section)

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam

nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper,

felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede.

Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed

interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit

amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet

aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum

turpis accumsan semper.

Figure 2: A default caption of a “FULLPAGE” object with the default setting, which is a “left”

caption which means that it always appears before the object. This can be an even or odd page.

And some more text whch has no real meaning because it fills only the space for a long caption.

8

Figure 6: Twoside documents, onecolumn mode.
Top: a fullpage ŕoat and capPos=oddPage (example document odd2s1c.tex, pp. 6ś7);
bottom: capPos=evenPage and a FULLPAGE ŕoat (example document paper-even2s1c.tex, pp. 8ś9).

Herbert Voß

TUGboat, Volume 42 (2021), No. 3 273

The caption is in the inner column, which is the
second one for an even (left) page and the őrst for
an odd (right) page. For a twoside document it also
makes sense to have the caption on the even (left)
page in the second margin and the object on the odd
page (right) in the őrst margin. This can be achieved
with the setting capPos=inner.

You can expect problems if you use the full
column setting on a page which has full-width (dou-
ble column) ŕoats at the top. In such a case it
is left to the user to modify the text structure to
prevent such situations. You’ll őnd many exam-
ples on CTAN (https://mirror.ctan.org/macros/
latex/contrib/hvfloat/doc/examples) or in the
documentation directory of your TEX distribution.

In twoside and twocolumn modes the setting
capPos=left is different from capPos=before. For
capPos=before it makes no difference on what page
and column the caption appears, it will always be
before the object. For capPos=left the caption will
always be left of the object and on the same page!
Figure 8 on the following page shows this behavior.

6 Doublepage objects

A doublepage object makes sense only for twoside
documents. Then the doublepage object can be
placed on facing leftśright pages and the caption
perhaps on the right page or, in a case where the
complete paper width is used, below the right part
of the image, or, if need be, on the bottom of the
preceding or following page. For example: suppose
a doublepage object uses the complete paper area
(2\paperwidth× \paperheight) on the (leftśright)
pages 80ś81; then the caption can be printed at
the bottom of page 79 or page 82 (see Figure 12 on
page 275). It is also possible to print the caption over

the right part of the object (image) on the bottom
or rotated at the right (see Figure 11 on page 275).

With the keyword doublePage, additional doc-
ument text may appear below the doublepage object,
that is, the object does not occupy the entire text-
height. The other two possibilities doublePAGE (use
the doublepage text area) and doubleFULLPAGE (use
the doublepage paperwidth) have no additional doc-
ument text on the two pages, but are still ŕoating
environments. We’ll now describe these in detail.

Figure 7: A caption on the inner side of a twoside
and twocolumn document (capPos=inner). This can
be an even or odd page. And some more text with
no real meaning because it merely őlls the space for
a long caption.

Controlling captions, fullpage and doublepage ŕoats: hvfloat

https://mirror.ctan.org/macros/latex/contrib/hvfloat/doc/examples
https://mirror.ctan.org/macros/latex/contrib/hvfloat/doc/examples

274 TUGboat, Volume 42 (2021), No. 3

2.3 Example for list (description)

2.2.1 Example for list (4*enumerate)

1. First item in a list

a) First item in a list

i. First item in a list

A. First item in a list

B. Second item in a list

ii. Second item in a list

b) Second item in a list

2. Second item in a list

2.3 Example for list (description)

First item in a list

Second item in a list

Third item in a list

Fourth item in a list

Fifth item in a list

2.3.1 Example for list (4*description)

First item in a list

First item in a list

First item in a list

First item in a list

Second item in a list

Second item in a list

Second item in a list

Second item in a list

3 File default2s2c

The f u l l p a g e image~\ v r e f { f i g :
f u l l p a g e 0} has a capt ion ~\
vpagere f { f i g : f u l l p a g e 0 - cap } .

The fullpage image 1 on the following page

has a caption on the current page.

\ hvFloat [f u l l p a g e]%
{ f i g u r e }%
{\ i n c l u d e g r a p h i c s [f u l l p a g e] {

f r o s e }}%
[A f u l l p a g e f l o a t with the

d e f a u l t capt ion s e t t i n g]%
{A d e f a u l t capt ion o f a ‘ ‘

f u l l page ’ ’ ob j e c t with the
d e f a u l t s e t t i ng , which

i s a ‘ ‘ l e f t ’ ’ capt ion which
means that i t always
appears be f o r e the ob j e c t .

This can be an even or odd page
. And some more text whch
has no

r e a l meaning because i t f i l l s
only the space f o r a long
capt ion . }%

{ f i g : f u l l p a g e 0}

Float default

4 Heading on level 1 (section)

Hello, here is some text without a meaning.

This text should show what a printed text will

look like at this place. If you read this text,

you will get no information. Really? Is there

no information? Is there a difference between

this text and some nonsense like “Huardest gef-

burn”? Kjift – not at all! A blind text like this

gives you information about the selected font,

how the letters are written and an impression

of the look. This text should contain all letters

of the alphabet and it should be written in of

the original language. There is no need for spe-

cial contents, but the length of words should

Figure 1: A default caption of a “fullpage” ob-

ject with the default setting, which is a “left”

caption which means that it always appears

before the object. This can be an even or odd

page. And some more text whch has no real

meaning because it fills only the space for a

long caption.

3

4 Heading on level 1 (section)

match the language.

4.1 Heading on level 2 (subsection)

Hello, here is some text without a meaning.

This text should show what a printed text will

look like at this place. If you read this text,

you will get no information. Really? Is there

no information? Is there a difference between

this text and some nonsense like “Huardest gef-

burn”? Kjift – not at all! A blind text like this

gives you information about the selected font,

how the letters are written and an impression

of the look. This text should contain all letters

of the alphabet and it should be written in of

the original language. There is no need for spe-

cial contents, but the length of words should

match the language.

4.1.1 Heading on level 3 (subsubsection)

Hello, here is some text without a meaning.

This text should show what a printed text will

look like at this place. If you read this text,

you will get no information. Really? Is there

no information? Is there a difference between

this text and some nonsense like “Huardest gef-

burn”? Kjift – not at all! A blind text like this

gives you information about the selected font,

how the letters are written and an impression

of the look. This text should contain all letters

of the alphabet and it should be written in of

the original language. There is no need for spe-

cial contents, but the length of words should

match the language.

Heading on level 4 (paragraph) Hello,

here is some text without a meaning. This text

should show what a printed text will look like

at this place. If you read this text, you will get

no information. Really? Is there no informa-

tion? Is there a difference between this text

and some nonsense like “Huardest gefburn”?

Kjift – not at all! A blind text like this gives

4

2.3 Example for list (description)

2.2.1 Example for list (4*enumerate)

1. First item in a list

a) First item in a list

i. First item in a list

A. First item in a list

B. Second item in a list

ii. Second item in a list

b) Second item in a list

2. Second item in a list

2.3 Example for list (description)

First item in a list

Second item in a list

Third item in a list

Fourth item in a list

Fifth item in a list

2.3.1 Example for list (4*description)

First item in a list

First item in a list

First item in a list

First item in a list

Second item in a list

Second item in a list

Second item in a list

Second item in a list

3 File left2s2c

The f u l l p a g e image~\ v r e f { f i g :
f u l l p a g e 0} has a capt ion ~\
vpagere f { f i g : f u l l p a g e 0 - cap } .

The fullpage image 1 on the following page

has a caption on the next page.

\ hvFloat [f u l l page , capPos=l e f t]%
{ f i g u r e }%
{\ i n c l u d e g r a p h i c s [f u l l p a g e] {

f r o s e }}%
[A f u l l p a g e f l o a t with the

d e f a u l t capt ion s e t t i n g]%
{A d e f a u l t capt ion o f a ‘ ‘

f u l l page ’ ’ ob j e c t with the
d e f a u l t s e t t i ng , which

i s a ‘ ‘ l e f t ’ ’ capt ion which
means that i t always
appears be f o r e the ob j e c t .

This can be an even or odd page
. And some more text whch
has no

r e a l meaning because i t f i l l s
only the space f o r a long
capt ion . }%

{ f i g : f u l l p a g e 0}

Float default

4 Heading on level 1 (section)

Hello, here is some text without a meaning.

This text should show what a printed text will

look like at this place. If you read this text,

you will get no information. Really? Is there

no information? Is there a difference between

this text and some nonsense like “Huardest gef-

burn”? Kjift – not at all! A blind text like this

gives you information about the selected font,

how the letters are written and an impression

of the look. This text should contain all letters

of the alphabet and it should be written in of

the original language. There is no need for spe-

cial contents, but the length of words should

match the language.

4.1 Heading on level 2 (subsection)

Hello, here is some text without a meaning.

This text should show what a printed text will

look like at this place. If you read this text,

you will get no information. Really? Is there

no information? Is there a difference between

3

4 Heading on level 1 (section)

this text and some nonsense like “Huardest gef-

burn”? Kjift – not at all! A blind text like this

gives you information about the selected font,

how the letters are written and an impression

of the look. This text should contain all letters

of the alphabet and it should be written in of

the original language. There is no need for spe-

cial contents, but the length of words should

match the language.

4.1.1 Heading on level 3 (subsubsection)

Hello, here is some text without a meaning.

This text should show what a printed text will

look like at this place. If you read this text,

you will get no information. Really? Is there

no information? Is there a difference between

this text and some nonsense like “Huardest gef-

burn”? Kjift – not at all! A blind text like this

gives you information about the selected font,

how the letters are written and an impression

of the look. This text should contain all letters

of the alphabet and it should be written in of

the original language. There is no need for spe-

cial contents, but the length of words should

match the language.

Heading on level 4 (paragraph) Hello,

here is some text without a meaning. This text

should show what a printed text will look like

at this place. If you read this text, you will get

no information. Really? Is there no informa-

tion? Is there a difference between this text

and some nonsense like “Huardest gefburn”?

Kjift – not at all! A blind text like this gives

Figure 1: A caption of a fullpage object with

the setting capPos=left, which means that it

always appears left of the object and on the

same page. And some more text whch has no

real meaning because it merely fills the space

for a long caption.

4

Figure 8: Twoside and twocolumn documents. Top:
capPos=before (default); bottom: capPos=left.
Pages 3ś4 of example documents default2s2c.tex
and left2s2c.tex, respectively.

6.1 Keyword doublePage

This is the same as putting two different ŕoats, one
each at the top of the left and right pages. The
package hvfloat clips an image which would be
wider than the paperwidth. Otherwise it makes no
sense to use a doublepage ŕoat.

For doublePage the object starts at the left
top of the text area and ends on the right page,
depending on its width. The inner margins of the
two-sided document are ignored, but a binding cor-
rection (bindCorr) can be set and will be taken into
account. The caption will always be on the right
page either beside, rotated or not, or below the ob-
ject. For example, in Figure 13 on page 276 the
caption is on the right (capPos=right) and rotated
by 90° (capAngle=90). The left part of the image
is on page 276, the right part on page 277 and the
caption is on page 277. Incidentally, the internally-
created labels described earlier were used to print
this information. The label for the őgure is fig:dP,
and so the source for the previous sentence is:

The left part of the image

is on page~\pageref{fig:dP},

the right part on page~\pageref{fig:dP-2} and

the caption is on page~\pageref{fig:dP-cap}.

A doublePage object allows for document text
in addition to the two parts of the object. As for the
caption, with capWidth=n and capPos=right the
caption will be set to the right of the object with a

natural width (from object to margin). This makes
sense if the object is narrower than \paperwidth+

\textwidth. Figure 13 on page 276 shows this, as
well as (at a greatly reduced size) Figure 9. The
source for Figure 13 is as follows.

\hvFloat[doublePage,capWidth=n,

capPos=right,capVPos=bottom]{figure}

{\includegraphics[width=2\textwidth]

{images/seiser}}

[A short caption for the LoF]

{A caption for a \texttt{doublePage} object,

which will be placed on the right side of

the right-hand part of the image. The image

begins on the left edge of the paper [...]

The photo was taken [...]}{fig:dP}

In some cases it makes sense to have some white-
space, a binding correction, between the two split
parts of the object. With the keyword bindCorr you
can deőne a length value for the whitespace to be
added both to the right of the left part and to the
left of the right part (so the total whitespace added
is 2× bindCorr).

The source for Figure 9 is the same as Figure 13,
except for the addition of bindCorr=1cm (and the
label name).

1. Definition on an odd page

here is some text without a meaning. This text

should show what a printed text will look like

at this place. If you read this text, you will get

no information. Really? Is there no informa-

tion? Is there a difference between this text

and some nonsense like “Huardest gef- burn”?

Kjift – not at all! A blind text like this gives

you information about the selected font, how

the letters are written and an impression of

the look. This text should contain all letters

of the alphabet and it should be written in of

the original language. There is no need for spe-

cial contents, but the length of words should

match the language.

Hello, here is the fifth paragraph. Hello,

here is some text without a meaning. This text

should show what a printed text will look like

at this place. If you read this text, you will get

no information. Really? Is there no informa-

tion? Is there a difference between this text

and some nonsense like “Huardest gef- burn”?

Kjift – not at all! A blind text like this gives

you information about the selected font, how

the letters are written and an impression of

the look. This text should contain all letters

of the alphabet and it should be written in of

the original language. There is no need for spe-

cial contents, but the length of words should

match the language.

Hello, here is some text without a meaning.

This text should show what a printed text will

look like at this place. If you read this text,

you will get no information. Really? Is there

no information? Is there a difference between

this text and some nonsense like “Huardest gef-

burn”? Kjift – not at all! A blind text like this

gives you information about the selected font,

how the letters are written and an impression

of the look. This text should contain all letters

of the alphabet and it should be written in of

the original language. There is no need for spe-

cial contents, but the length of words should

14

1.3. bindCorr=1cm – first column

F
ig
u
re

3:
A
ca
p
ti
o
n
fo
r
a
d
o
u
b
le
-s
id
ed

im
a
g
e
th
a
t
w
il
l
b
e
p
la
ce
d

o
n
th
e
ri
g
h
t
si
d
e
o
f
th
e
ri
g
h
t-
h
a
n
d
p
a
rt
o
f
th
e
il
lu
st
ra
ti
o
n
.
T
h
e

il
lu
st
ra
ti
o
n
b
eg
in
s
o
n
th
e
le
ft
ed
g
e
o
f
th
e
p
a
p
er
.
A
sh
o
rt
fo
rm

is

u
se
d
fo
r
th
e
L
O
F
.
T
h
e
p
a
ra
m
et
er

is
d
o
u
b
l
e
P
a
g
e

match the language.

Hello, here is the second paragraph. Hello,

here is some text without a meaning. This text

should show what a printed text will look like

at this place. If you read this text, you will get

no information. Really? Is there no informa-

tion? Is there a difference between this text

and some nonsense like “Huardest gef- burn”?

Kjift – not at all! A blind text like this gives

you information about the selected font, how

the letters are written and an impression of

the look. This text should contain all letters

of the alphabet and it should be written in of

the original language. There is no need for spe-

cial contents, but the length of words should

match the language.

Hello, here is the third paragraph. Hello,

here is some text without a meaning. This text

should show what a printed text will look like

at this place. If you read this text, you will get

no information. Really? Is there no informa-

tion? Is there a difference between this text

and some nonsense like “Huardest gef- burn”?

Kjift – not at all! A blind text like this gives

you information about the selected font, how

the letters are written and an impression of

the look. This text should contain all letters

of the alphabet and it should be written in of

the original language. There is no need for spe-

cial contents, but the length of words should

match the language.

Hello, here is the forth paragraph. Hello,

here is some text without a meaning. This text

should show what a printed text will look like

at this place. If you read this text, you will get

no information. Really? Is there no informa-

tion? Is there a difference between this text

and some nonsense like “Huardest gef- burn”?

Kjift – not at all! A blind text like this gives

you information about the selected font, how

the letters are written and an impression of

the look. This text should contain all letters

15

Figure 9: A doublePage object (the same image as
Figure 13) with a binding correction of 1 cm. Pages
14ś15 of example document doublepage2s2c.tex.

6.2 Keyword doublePAGE

A doublePAGE object appears alone on two facing
pages, except for an optional caption. No additional
document text will be printed on these two pages;
this is the only difference between doublePage and
doublePAGE. Figure 10 on the next page shows an
example. The caption is below the object in the őrst
column of the right (odd) page.

Figure 10 also shows an example of using the
optional keyword bindCorr to specify whitespace

Herbert Voß

TUGboat, Volume 42 (2021), No. 3 275

1. Definition on an odd page

30

1.7. bindCorr=¡inside textwidth¿ – first column

Figure 7: A caption for a double-sided image that will be placed on the right side of the right-

hand part of the illustration. The illustration begins on the left edge of the paper. A short form

is used for the LOF. The parameter is doublePAGE

31

Figure 10: A doublePAGE image with bindCorr

set to the inner margin. Pages 29ś30 of example
document doublepage2s2c.tex.

between the parts of the split object. In this case,
we use the inner margin for the binding correction to
get the two images exactly őtting the textwidth. The
value for the inner margin is computed internally:
bindCorr=inner

Here is the source for Figure 10:

\hvFloat[doublePAGE,capWidth=n,

bindCorr=inner]

{figure}

{\includegraphics[width=2\textwidth]

{images/sonne-meer}}

[A doublepage image with a caption ...]

{A caption for a double-sided image ...

The parameter is \texttt{doublePAGE}}

{fig:doublePAGE3}

6.3 Keyword doubleFULLPAGE

A ŕoating object speciőed with the doubleFULLPAGE
option always starts in the upper left corner of the left
(even) page. The deőned text area has no meaning,
it will be completely ignored for these two ŕoating
pages. The caption can be printed before, after,
below, or superimposed on the object.

Table 3 on page 271 lists the corresponding two
optional keywords for \includegraphics, namely
doubleFULLPAGE and doubleFULLPAGEbindCorr,
with a preset of keepaspectratio to false. These
keywords may make code more readable but have
otherwise no special meaning for any objects other
than images, e.g. a tabular or something else.

The object can have any width and height but it
should be at least as wide as the given \paperwidth

and not less than 50% of the \paperheight. For
smaller objects, use one of the other two possibilities,
doublePage or doublePAGE.

The caption can be superimposed on the ob-
ject or, as an alternative, printed on the bottom of
the page preceding or following the doublepage (leftś
right) object. For a twocolumn document the key-
word twoColCaption can be used to span both col-

F
ig
u
re

17
:
A
ca
p
ti
o
n
fo
r
a
d
o
u
b
le
-s
id
ed

im
a
g
e
th
a
t
w
il
l
b
e
p
la
ce
d
o
n
th
e
ri
g
h
t
si
d
e
o
f
th
e
ri
g
h
t-
h
a
n
d
p
a
rt
o
f
th
e
il
lu
st
ra
ti
o
n
.
T
h
e
il
lu
st
ra
ti
o
n
b
eg
in
s
o
n
th
e
le
ft
ed
g
e
o
f
th
e

p
a
p
er
.
A
sh
o
rt
fo
rm

is
u
se
d
fo
r
th
e
L
O
F
.
T
h
e
p
a
ra
m
et
er

is
do
ub

le
FU

LL
PA

GE

Figure 11: A doubleFULLPAGE object with
capPos=right, so the caption appears on the
right page. Pages 72ś73 of example document
doubleFULLPAGE2s2c.tex.

3. Full height, but no complete double page

Hello, here is the third paragraph. Hello,

here is some text without a meaning. This text

should show what a printed text will look like

at this place. If you read this text, you will get

no information. Really? Is there no informa-

tion? Is there a difference between this text

and some nonsense like “Huardest gef- burn”?

Kjift – not at all! A blind text like this gives

you information about the selected font, how

the letters are written and an impression of

the look. This text should contain all letters

of the alphabet and it should be written in of

the original language. There is no need for spe-

cial contents, but the length of words should

match the language.

Hello, here is the forth paragraph. Hello,

here is some text without a meaning. This text

should show what a printed text will look like

at this place. If you read this text, you will get

no information. Really? Is there no informa-

tion? Is there a difference between this text

and some nonsense like “Huardest gef- burn”?

Kjift – not at all! A blind text like this gives

you information about the selected font, how

the letters are written and an impression of

the look. This text should contain all letters

of the alphabet and it should be written in of

the original language. There is no need for spe-

cial contents, but the length of words should

match the language.

Hello, here is the fifth paragraph. Hello,

here is some text without a meaning. This text

should show what a printed text will look like

at this place. If you read this text, you will get

no information. Really? Is there no informa-

tion? Is there a difference between this text

and some nonsense like “Huardest gef- burn”?

Kjift – not at all! A blind text like this gives

you information about the selected font, how

the letters are written and an impression of

the look. This text should contain all letters

of the alphabet and it should be written in of

the original language. There is no need for spe-

cial contents, but the length of words should

match the language.

Hello, here is some text without a meaning.

This text should show what a printed text will

look like at this place. If you read this text,

you will get no information. Really? Is there

no information? Is there a difference between

this text and some nonsense like “Huardest gef-

burn”? Kjift – not at all! A blind text like this

gives you information about the selected font,

how the letters are written and an impression

of the look. This text should contain all letters

of the alphabet and it should be written in of

the original language. There is no need for spe-

cial contents, but the length of words should

match the language.

Hello, here is the second paragraph. Hello,

here is some text without a meaning. This text

should show what a printed text will look like

at this place. If you read this text, you will get

no information. Really? Is there no informa-

tion? Is there a difference between this text

and some nonsense like “Huardest gef- burn”?

Kjift – not at all! A blind text like this gives

you information about the selected font, how

the letters are written and an impression of

the look. This text should contain all letters

of the alphabet and it should be written in of

the original language. There is no need for spe-

cial contents, but the length of words should

match the language.

Figure 19: A caption for a double-sided image that will be placed at the bottom of the following

page. The doublepage image begins on the left edge of the paper. A short form is used for the

LOF. The parameter is doubleFULLPAGE

82

Figure 12: A doubleFULLPAGE object with
capPos=after, so the caption is on the following
page. Pages 80ś82 of example document
doubleFULLPAGE2s2c.tex.

umns. This will only work for twocolumn documents
which deőne the column mode using \twocolumn,
such as the present TUGboat document class. The
multicol package is not supported.

Figure 11 shows two pages with an image spread
across the double page which is small enough to get
a rotated caption on the right of the page which, for
our demonstration, is printed in red as usual. The
page layout is also printed as frames, which makes it
easier to understand and choose values for the full
page mode. These frames are shown by loading the
package showframe.

The code for Figure 11 is:

\hvFloat[doubleFULLPAGE,capPos=right]{figure}

{\includegraphics[height=\paperheight]

{images/rheinsberg}}

[A doublepage image ...]

{A caption for a double-sided image ...

The parameter is \texttt{doubleFULLPAGE}}

{fig:doubleFULLPAGE0n}

Controlling captions, fullpage and doublepage ŕoats: hvfloat

276 TUGboat, Volume 42 (2021), No. 3

If the image has nearly the same ratio as the
current \paperwidth / \paperheight, then a cap-
tion can reasonably appear at the bottom of the
following page. This is speciőed with capPos=after;
Figure 12 on the previous page shows the result. Sim-
ilarly, capPos=before would put the caption on the
preceding page.

Here is the code for Figure 12, specifying the
option doubleFULLPAGE option to both \hvFloat

and \includegraphics:

\hvFloat[doubleFULLPAGE,capPos=after,

twoColumnCaption]{figure}

{\includegraphics[doubleFULLPAGE]

{rheinsberg}}

{A caption for a double-sided image ...

The parameter is \texttt{doubleFULLPAGE}}

{fig:doubleFULLPAGE02ndnn}

7 Subŕoats and multiŕoats

A ŕoating environment can have any content except
another ŕoating environment. The only requirement
for the content is that it must be smaller than one
page spread. The content itself can be any combina-
tion of text, equations, tabulars, and/or images. We
call it a subŕoat if the content has one main caption
and several subcaptions for any object. We call it a

multiŕoat if the content has no main caption of its
own, but the objects have their own captions.

Table 4 gives the two keywords, subFloat and
multiFloat, which introduce such special content.
They can be placed as a default ŕoating environment,
full column, full page, or full doublepage.

Table 4: Keywords subFloat and multiFloat for
multiple objects in a ŕoat.

Name Description

subFloat For multiple objects with one main
caption and several subcaptions.

multiFloat For multiple objects, each with its
own caption.

The syntax for the macro which deőnes such
sub- or multiŕoats is somewhat complex. Only the
keyword deőnes whether the ŕoat is a multiŕoat or
subŕoat; the syntax of the macro shows no difference.
With the optional argument vFill the objects in a
column (two column) or a page (one column) are
stretched over the given height \textheight. The
default is no stretching so that extra whitespace
appears at the bottom of the column/page.

Herbert Voß

TUGboat, Volume 42 (2021), No. 3 277

Figure 13: A caption for a
doublePage object, which will
be placed on the right side of
the right-hand part of the image.
The image begins on the left edge
of the paper. A short form can
be used for the LoF. The photo
was taken in the Italian Alps at
the Alpi di Siusi (Seiser Alm).

7.1 Subŕoats

A subŕoat page can have only one type of object
which will have one main caption and individual
subcaptions. (For completeness: If you deőne no
subcaption then it does not matter what kind of
object we have.) The syntax for subŕoats and mul-
tiŕoats is similar, but some arguments are ignored
for a subŕoat, so can be left empty. The őrst line
deőnes only the ŕoating type and the main caption,
the object entry is ignored! All additional lines will
have the same ŕoat type; this is why the ŕoat type
entry is ignored.

\hvFloat [subFloat,...]

+{ŕoat type}{}% the main type

[short caption] {long caption}{label}

+{}{ŕoating object}% a subobject

[short caption] {long caption}{label}

... · · ·
+{}{ŕoating object}% another subobject

[short caption] {long caption}{label}

The + symbol deőnes an additional object which will
be part of the same ŕoating environment. It’s up to

the user to be sure that one page or one column can
hold all deőned objects.

The code for Figure 14 on the next page, which
comprises the subőgures 14a to 14e, is as follows:

\hvFloat[subFloat,vFill,fullpage,capPos=after]

+{figure}{}

[Short caption of the subfloat]

{The main caption of a fullpage subfloat,

which appears in the left or right column.

This can be an even or odd page.

The \texttt{vFill} option is set,

so vertical space is distributed between

the subobjects.}

{sub:demo}

+{}{\includegraphics[columnWidth]{CTAN}}

[Short caption A]

{Subcaption A of a fullpage subobject.}

{sub:demo0}

+{}{\includegraphics[columnWidth]{CTAN1}}

{Subcaption B of a fullpage subobject,

a little longer for no particular reason.}

{sub:demo1}

+{}{\includegraphics[columnWidth]{CTAN2}}

{Subcaption C of a fullpage subobject.}

{sub:demo2}

+{}{\includegraphics[columnWidth]{CTAN3}}

{Subcaption D of a fullpage subobject.}

{sub:demo3}

Controlling captions, fullpage and doublepage ŕoats: hvfloat

278 TUGboat, Volume 42 (2021), No. 3

(a) Subcaption A of a fullpage subobject.

(b) Subcaption B of a fullpage subobject, a little longer
for no particular reason.

(c) Subcaption C of a fullpage subobject.

(d) Subcaption D of a fullpage subobject.

(e) The last subcaption E of a fullpage subŕoat object,
which has subcaptions 14aś14e, and the main caption is
beside (to the right of) this full column object.

+{}{\includegraphics[trim=0 1.5cm 0 5mm,clip,

columnWidth]{TUGboat}}

{The last subcaption E of a fullpage

subfloat object, which has subcaptions

\ref{sub:demo0}--\ref{sub:demo5}, and the

main caption is beside (to the right of)

this full column object.}

{sub:demo5}

The keyword subFloat deőnes the following
images or tabulars as subŕoats. The keyword figure

in the second line of the code deőnes the main type
of the ŕoating environment; all subobjects must be
of the same type. This is the reason why all following
arguments are empty: +{}{....

The package subcaption is loaded by default
and is usually activated with
\captionsetup[sub][singlelinecheck].

The main label of the subŕoat is sub:demo,
which points to the object column on page 278. In
this case the internal label sub:demo-cap points to
the same page 278, because object and caption are
in different columns but on the same page. Both
refer to the same object: \ref{sub:demo} → 14 and
\ref{sub:demo-cap} → 14.

7.2 Multiŕoats

With a multiFloat object, no main caption is given.
Every object gets its own caption, which is the rea-
son that őgures, tabulars, etc., can be mixed. All
individual captions are listed before or after the full
column/page, at the bottom of the column/page (see
example on the facing page).

\hvFloat [multiFloat,...]

+{ŕoat type}{ŕoating object}

[short caption] {long caption}{label}

+{ŕoat type}{ŕoating object}

[short caption] {long caption}{label}

... · · ·
+{ŕoat type}{ŕoating object}

[short caption] {long caption}{label}

The + symbol deőnes an additional object which
will be part of the same ŕoating environment. For a
multiŕoat object all parameters are valid. It’s up to
the user to be sure that one page or one column can
hold all deőned objects.

Figure 14: The main caption of a fullpage subŕoat,
which appears in the left or right column. This can
be an even or odd page. The vFill option is set, so
vertical space is distributed between the subobjects.

Herbert Voß

TUGboat, Volume 42 (2021), No. 3 279

The captions of Figures 15ś18 and of Tables 5
and 6 are on page 279, and all objects also appear
on the same page. All of these őgures and tables are
part of the same multiŕoat. Here is the code of the
multiŕoat example:

\captionsetup{singlelinecheck=false}

\hvFloat[multiFloat,vFill,

fullpage,capPos=before]

+{figure}

{\includegraphics[columnWidth]{dove}}

[Short caption A]

{Caption A of a fullpage multifloat object,

which follows in the left or right column.

This can be an even or odd page. And some

more text with no real meaning because it

merely fills the space for a long caption.}

{img:demo}

+{table}{\begin{tabular}{lrcp{3cm}}\hline

Left & Right & Centered & Parbox\\\hline

L & R & C & P\\

left & right & center & Text

with possible line breaks\\

L & R & C & P\\

left & right & center & Text

with possible line breaks\\

\multicolumn{4}{c}{Centered multicolumn

over all columns}\\\hline

\end{tabular}}

[Short example caption B1]

{Caption B of a fullpage object, a tabular

in this case.}{tab:demo}

+{figure}

{\includegraphics[columnWidth]{CTAN1}}

{Caption C of a fullpage object.}

{img:demo1}

+{figure}

{\includegraphics[columnWidth]{CTAN2}}

{Caption D of a fullpage object.}

{img:demo2}

Figure 15: Caption A of a fullpage multiŕoat object,
which follows in the left or right column. This can
be an even or odd page. And some more text with
no real meaning because it merely őlls the space for
a long caption.

Table 5: Caption B of a fullpage object, a tabular
in this case.

Figure 16: Caption C of a fullpage object.

Figure 17: Caption D of a fullpage object.

Figure 18: Caption E of a fullpage object.

Table 6: Caption B2 of a fullpage object, another
tabular repeating Table 5.

Left Right Centered Parbox
L R C P
left right center Text with possible

line breaks
L R C P
left right center Text with possible

line breaks
Centered multicolumn over all columns

Left Right Centered Parbox
L R C P
left right center Text with possible

line breaks
L R C P
left right center Text with possible

line breaks
Centered multicolumn over all columns

Controlling captions, fullpage and doublepage ŕoats: hvfloat

280 TUGboat, Volume 42 (2021), No. 3

+{figure}

{\includegraphics[columnWidth]{CTAN3}}

{Caption E of a fullpage object.}

{img:demo3}

+{table}{\begin{tabular}{lrcp{3cm}}\hline

Left & Right & Centered & Parbox\\\hline

L & R & C & P\\

left & right & center & Text

with possible line breaks\\

L & R & C & P\\

left & right & center & Text

with possible line breaks\\

\multicolumn{4}{c}{Centered multicolumn

over all columns}\\\hline

\end{tabular}}

[Short example caption B2]

{Caption B2 of a fullpage object, another

tabular repeating Table~\ref{tab:demo}.}

{tab:demo2}

8 Splitting tables across two pages

By default a table can only be split in the vertical
direction, as a so-called longtable. Large tables can
be rotated on a page (see Table 2 on page 269), but
splitting it automatically in the horizontal direction
is not supported by core LATEX.

However, saving a table without page breaks into
a box is no problem and such a box can be handled
like an image, which is also like a box. The only
problem is that the table must be split horizontally
between two columns, as a split column may likely
be unreadable.

The package hvfloat provides the box \hvOBox

for public use. We can save a table into this box:

\savebox\hvOBox{%

\begin{tabular}{l @{} *{18}r}

... the table ...

\end{tabular}}

and then use it in the same way as a doublepage
image, with the table split in two pieces. If the split
occurs at an unfavorable point in the table, e.g. in the
middle of a column, then insert some horizontal space
between the two columns with @{\hspace{...}}.
For example (the output is shown in Table 7):

\begin{tabular}{lll@{\hspace{1cm}}ll}\hline

1 & 2 & 3 & 4 & 5 \\

1 & 2 & 3 & 4 & 5 \\

1 & 2 & 3 & 4 & 5 \\

1 & 2 & 3 & 4 & 5 \\\hline

\end{tabular}

Figure 19 shows how the table looks in the mid-
dle of the doublepage (the text shown at the bottom
of the page is just őller). The column with 1985 will
be cut and not readable. There are two solutions to
split the table at a better position: insert some space

Figure 19: The table column 1985 appears between
the two pages and would not be readable.

Table 7: Adding space between two columns

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

before this column, or use the bindCorr keyword to
insert a binding correction space. For Table 8 on
page 282 both possibilities are used. Inserting more
space:

\begin{tabular}{l @{} *{13}r @{\quad}*8r}

and using 8mm for the binding correction (shown
below) which was found by trial and error.

The code for the split table on a double page is:

\hvFloat[doublePage,capWidth=n,capPos=right,

capVPos=bottom,useOBox,% use the defined box

bindCorr=8mm]

{table}

{}% no need for an object

[A doublepage tabular.]

{A caption for a doublePage tabular that

will be placed on the right side of the

right-hand part of the tabular. The table

begins on the left edge of the text area

of the left page. The additional space

Herbert Voß

TUGboat, Volume 42 (2021), No. 3 281

between the columns 1984 and 1985 is

\texttt{\textbackslash quad}, which is the

same as 1\,em. The binding correction is

set to 8\,mm, which gives additional

whitespace of 16\,mm.}{tab:dP}

and the output is Table 8 on pages 282 and 283. It
depends on the way the document is printed whether
more or less space between the two pages makes
sense.

9 Todo list

The macro \hvFloat only checks the position of its
deőnition if it is deőned on an odd or even page. This
is done with the help of the macro \checkoddpage

from the package ifoddpage. Together with the
internal LATEX macro \if@firstcolumn it knows
exactly the position of its deőnition in the source
of the document: left or right page, őrst or second
column. But it doesn’t know if the current page is
completely empty, which is the case if \hvFloat is
the őrst command on a new page. If this is also an
even page, then a doublepage object can be placed
immediately. But the current code always uses the
next evenśodd page combination. In a future release
there should be a test like \if@newpage.

More checks for the correct use of the parame-
ters would be useful. For example: if one uses the
keyword doubleFULLPAGE with an object which is
narrower than \textwidth, then the output will be
rubbish.

The optional argument wide as shown in Fig-
ure 21 on the next page works only in oneside mode
if you also use twocolumn mode (see Figure 20). For
twoside mode we have different margins for a pos-
sible wide ŕoat in the őrst or the second column;
this is not recognized by hvfloat. However, if you
need wide ŕoats in a twoside and twocolumn mode
you can move the macro \hvFloat to places in the
source where the output is always in the outer col-
umn, which uses the marginpar width. Using the
argument nonFloat, as shown in Figure 20, the ŕoat
appears exactly at the place of the deőnition.

In some cases the option useOBox for a prede-
őned savebox \hvOBox does not work. One can use
instead {\usebox\hvOBox} as the argument for the
object, which has the same effect. However, the box
\hvOBox must have valid contents, and be set before
it is used.

10 Conclusion

The package hvfloat should work with all kinds
of documents, oneside in one- or twocolumn mode,
twoside in one- or twocolumn mode. It is much
easier to place doublepage objects in a onecolumn

1 File wide1s2c

\hvFloat[wide,nonFloat,
capPos=left,
capVPos=top,
objectPos=right,

]{figure}{\includegraphics[width=0.75\linewidth]{
images/CTAN}}%

{Caption at top left beside the object and object
position left and

the option \texttt{wide}.}{fig:80}

Figure 2: Caption at top

left beside the object and

object position left and

the option wide.
For a twosided document it will place the object

always in the margin.

Lorem ipsum dolor sit amet, consectetuer

adipiscing elit. Etiam lobortis facilisis sem. Nullam

nec mi et neque pharetra sollicitudin. Praesent

imperdiet mi nec ante. Donec ullamcorper, felis

non sodales commodo, lectus velit ultrices augue, a

dignissim nibh lectus placerat pede. Vivamus nunc

nunc, molestie ut, ultricies vel, semper in, velit. Ut

porttitor. Praesent in sapien. Lorem ipsum dolor

sit amet, consectetuer adipiscing elit. Duis fringilla

tristique neque. Sed interdum libero ut metus.

Pellentesque placerat. Nam rutrum augue a leo.

Morbi sed elit sit amet ante lobortis sollicitudin.

Praesent blandit blandit mauris. Praesent lectus

tellus, aliquet aliquam, luctus a, egestas a, turpis.

Mauris lacinia lorem sit amet ipsum. Nunc quis

urna dictum turpis accumsan semper.

\hvFloat[wide,nonFloat,
capPos=inner,
capVPos=top,

]{figure}{\includegraphics[width=0.75\linewidth]{
images/CTAN}}{%

Caption at top and inner beside the float and
object position right and

the option \texttt{wide}.}{fig:81}

Figure 3: Caption at top

and inner beside the float

and object position right

and the option wide.
Now we set the same image with the same

setting on the next page. The caption will change

its side due to the setting capPos=outer.

Lorem ipsum dolor sit amet, consectetuer

adipiscing elit. Etiam lobortis facilisis sem. Nullam

nec mi et neque pharetra sollicitudin. Praesent

imperdiet mi nec ante. Donec ullamcorper, felis

non sodales commodo, lectus velit ultrices augue, a

dignissim nibh lectus placerat pede. Vivamus nunc

nunc, molestie ut, ultricies vel, semper in, velit. Ut

porttitor. Praesent in sapien. Lorem ipsum dolor

sit amet, consectetuer adipiscing elit. Duis fringilla

tristique neque. Sed interdum libero ut metus.

Pellentesque placerat. Nam rutrum augue a leo.

Morbi sed elit sit amet ante lobortis sollicitudin.

Praesent blandit blandit mauris. Praesent lectus

tellus, aliquet aliquam, luctus a, egestas a, turpis.

Mauris lacinia lorem sit amet ipsum. Nunc quis

urna dictum turpis accumsan semper.

\hvFloat[wide,nonFloat,
capPos=inner,
capVPos=top,

]{figure}{\includegraphics[width=0.75\linewidth]{
images/CTAN}}{%

Caption at top inner beside the float and object
position right and

the option \texttt{wide}.}{fig:811}

Figure 4: Caption at top

inner beside the float and

object position right and

the option wide.

The caption can be typeset completely into the

margin with:

Lorem ipsum dolor sit amet, consectetuer

adipiscing elit. Etiam lobortis facilisis sem. Nullam

nec mi et neque pharetra sollicitudin. Praesent

imperdiet mi nec ante. Donec ullamcorper, felis

non sodales commodo, lectus velit ultrices augue, a

dignissim nibh lectus placerat pede. Vivamus nunc

nunc, molestie ut, ultricies vel, semper in, velit. Ut

porttitor. Praesent in sapien. Lorem ipsum dolor

sit amet, consectetuer adipiscing elit. Duis fringilla

tristique neque. Sed interdum libero ut metus.

Pellentesque placerat. Nam rutrum augue a leo.

Morbi sed elit sit amet ante lobortis sollicitudin.

Praesent blandit blandit mauris. Praesent lectus

tellus, aliquet aliquam, luctus a, egestas a, turpis.

Mauris lacinia lorem sit amet ipsum. Nunc quis

urna dictum turpis accumsan semper.

2

1 File wide1s2c

\captionsetup{justification=RaggedRight}
\hvFloat[wide,nonFloat,

capPos=outer,
capVPos=top,

floatCapSep=\marginparsep,
]{figure}{\includegraphics[width=\linewidth]{images

/CTAN}}{%
Caption at top inner beside the float and object

position right and
the option \texttt{wide}.}{fig:812}

Lorem ipsum dolor sit amet, consectetuer

adipiscing elit. Etiam lobortis facilisis sem. Nullam

nec mi et neque pharetra sollicitudin. Praesent

imperdiet mi nec ante. Donec ullamcorper, felis

non sodales commodo, lectus velit ultrices augue, a

dignissim nibh lectus placerat pede. Vivamus nunc

nunc, molestie ut, ultricies vel, semper in, velit. Ut

porttitor. Praesent in sapien. Lorem ipsum dolor

sit amet, consectetuer adipiscing elit. Duis fringilla

tristique neque. Sed interdum libero ut metus.

Pellentesque placerat. Nam rutrum augue a leo.

Morbi sed elit sit amet ante lobortis sollicitudin.

Praesent blandit blandit mauris. Praesent lectus

tellus, aliquet aliquam, luctus a, egestas a, turpis.

Mauris lacinia lorem sit amet ipsum. Nunc quis

urna dictum turpis accumsan semper.

Figure 5:

Caption at

top inner

beside

the float

and object

position

right and

the option

wide.
Lorem ipsum dolor sit amet, consectetuer

adipiscing elit. Etiam lobortis facilisis sem. Nullam

nec mi et neque pharetra sollicitudin. Praesent

imperdiet mi nec ante. Donec ullamcorper, felis

non sodales commodo, lectus velit ultrices augue, a

dignissim nibh lectus placerat pede. Vivamus nunc

nunc, molestie ut, ultricies vel, semper in, velit. Ut

porttitor. Praesent in sapien. Lorem ipsum dolor

sit amet, consectetuer adipiscing elit. Duis fringilla

tristique neque. Sed interdum libero ut metus.

Pellentesque placerat. Nam rutrum augue a leo.

Morbi sed elit sit amet ante lobortis sollicitudin.

Praesent blandit blandit mauris. Praesent lectus

tellus, aliquet aliquam, luctus a, egestas a, turpis.

Mauris lacinia lorem sit amet ipsum. Nunc quis

urna dictum turpis accumsan semper.

Figure 6:

Caption at

top inner

beside

the float

and object

position

right and

the option

wide.

Hello, here is some text without ameaning. This

text should show what a printed text will look like

at this place. If you read this text, you will get

no information. Really? Is there no information?

Is there a difference between this text and some

nonsense like “Huardest gef- burn”? Kjift – not

at all! A blind text like this gives you information

about the selected font, how the letters are written

and an impression of the look. This text should

contain all letters of the alphabet and it should be

written in of the original language. There is no

need for spe- cial contents, but the length of words

should match the language.

Hello, here is the second paragraph. Hello,

here is some text without a meaning. This text

should show what a printed text will look like

at this place. If you read this text, you will get

no information. Really? Is there no information?

Is there a difference between this text and some

nonsense like “Huardest gef- burn”? Kjift – not

at all! A blind text like this gives you information

about the selected font, how the letters are written

and an impression of the look. This text should

contain all letters of the alphabet and it should be

written in of the original language. There is no

need for spe- cial contents, but the length of words

should match the language.

Hello, here is the third paragraph. Hello, here

is some text without a meaning. This text should

show what a printed text will look like at this

place. If you read this text, you will get no

3

Figure 20: Pages 2ś3 of example document
wide1s2c.tex, oneside with twocolumn and the
wide option.

document than a twocolumn document. Internally,
LATEX puts two single pages together to one page
with two columns. Only the optional header and
footer are printed across these łtwož pages.

The package hvfloat makes intensive use of
the macro \afterpage [1]. If one deőnes a double-
page object in the őrst column of a left (even) page,
\hvFloat needs three nested \afterpage commands,
one for each column, to let an object or a caption
start on the next left (even) page. Until LATEX
reaches this page for the object/caption, nearly two
pages have to be őlled with text or other objects
which are deőned after the macro \hvFloat. Espe-
cially in twocolumn mode you can expect problems,
if you have too little text, images, tables or other
simple objects to őll up these two pages until the
doublepage object will be set. Such problems can
only be solved by adding some text or moving the
macro \hvFloat to another column of the document.

Just as with the standard ŕoating environments
figure and table, it is left to the user to ensure that
the contents of the environment őt the page. If an
object is wider than 2× \paperwidth or higher than
\paperheight it cannot be placed on a doublepage
and the output may be useless.

Before using a doublepage for an object, one
should test if it might be sufficient to use the mar-
gin for additional space. \hvFloat knows the op-
tional argument wide which allows using the space
of \marginparwidth. The caption can be placed in
the usual way, above/below or left/right relative to
the object. The use of the inner/outer position for
twoside documents is also possible.

Controlling captions, fullpage and doublepage ŕoats: hvfloat

282 TUGboat, Volume 42 (2021), No. 3

1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984

Line No 1 1 3 1 1 1 0 1 1 0 0 0 0 20

Line No 2 1 1 3 1 0 0 0 0 0 0 2 1 3

Line No 3 2 1 2 1 0 0 0 0 0 0 0 1 5

Line No 4 1 0 5 1 2 0 0 0 0 2 6 0 1

Line No 6 2 1 1 0 0 0 0 0 0 1 2 0 5

Line No 5 0 0 4 2 1 2 2 1 0 0 0 1 1

Line No 8 0 1 1 0 0 0 1 1 0 3 2 1 2

Line No 9 0 0 0 0 0 1 2 1 0 0 0 0 4

Line No10 0 1 3 0 1 0 1 0 0 1 1 0 1

Line No11 0 2 2 1 1 0 1 0 0 0 0 2 6

Line No12 2 0 2 4 1 0 4 0 0 0 0 0 0

xyz 2 3 0 0 0 0 0 0 0 0 1 0 2

Line No13 0 1 0 0 1 0 3 0 0 0 0 0 2

Line No14 0 1 0 0 0 0 0 0 0 0 0 0 3

Line No15 0 0 0 0 0 0 0 0 0 1 0 0 4

Line No16 0 0 0 0 0 1 0 0 0 0 0 0 0

Some numbers 2 6 13 8 4 3 5 4 0 6 3 5 23

10 Wide floats

Figure 22: Caption at

top left beside the float

and object position

right

10 Wide floats

With the optional argument wide the width of the defined \marginparwidth is added to the allowed

horizontal width of the float.

The code for figure 23:

\hvFloat[wide,
capPos=right,
capVPos=top,
objectPos=left,

]{figure}{\includegraphics[width=0.75\linewidth]{images/CTAN}}{%
Caption at top right beside the float and object position left and

the option \texttt{wide}.}{fig:70}

Fig. 23
Figure 23: Caption at top right beside the

float and object position left and the option

wide.

The code for figure 24:

\hvFloat[wide,
capPos=left,
capVPos=top,
objectPos=right,

]{figure}{\includegraphics[width=0.75\linewidth]{images/CTAN}}%
{Caption at top left beside the object and object position left and
the option \texttt{wide}.}{fig:80}

Fig. 24 For a twosided document it will place the object always in the margin.

Hello, here is some text without a meaning. This text should show what a printed text will

look like at this place. If you read this text, you will get no information. Really? Is there no

information? Is there a difference between this text and some nonsense like “Huardest gefburn”?

Kjift – not at all! A blind text like this gives you information about the selected font, how

22

Figure 24: Caption at top left beside the ob-

ject and object position left and the option

wide.

the letters are written and an impression of the look. This text should contain all letters of

the alphabet and it should be written in of the original language. There is no need for special

content, but the length of words should match the language.

\hvFloat[wide,
capPos=inner,
capVPos=top,

]{figure}{\includegraphics[width=0.75\linewidth]{images/CTAN}}{%
Caption at top and inner beside the float and object position right and
the option \texttt{wide}.}{fig:81}

Fig. 25
Figure 25:Caption at top and inner beside the

float and object position right and the option

wide.

Now we set the same image with the same setting on the next page. The caption will change

its side due to the setting capPos=outer .

Hello, here is some text without a meaning. This text should show what a printed text will

look like at this place. If you read this text, you will get no information. Really? Is there no

information? Is there a difference between this text and some nonsense like “Huardest gefburn”?

Kjift – not at all! A blind text like this gives you information about the selected font, how

the letters are written and an impression of the look. This text should contain all letters of

the alphabet and it should be written in of the original language. There is no need for special

content, but the length of words should match the language.

\hvFloat[wide,
capPos=inner,
capVPos=top,

]{figure}{\includegraphics[width=0.75\linewidth]{images/CTAN}}{%
Caption at top inner beside the float and object position right and
the option \texttt{wide}.}{fig:811}

Fig. 26The caption can be typeset completely into the margin with:

\captionsetup{justification=RaggedRight}
\hvFloat[wide,

capPos=outer,
capVPos=top,

23

Figure 21: Pages 22ś23 of the package documen-
tation, showing examples using optional argument
wide to use the margin space.

Figure 21 shows some examples of using the
margin for a onecolumn document with the following
use of \hvFloat.

\hvFloat[wide,capPos=inner,capVPos=top]{figure}

{\includegraphics[width=0.75\linewidth]

{images/CTAN}}

{Caption at top inner beside the float ...

and the option \texttt{wide}.}{fig:wide}

The list of őgures and list of tables are not
affected by package hvfloat and should work as
usual. For example, here is the list of tables for this
article:

List of Tables

1 A caption with no object 267
2 The optional keywords for the

\hvFloat macro 269
3 Additional keywords for the

\includegraphics macro 271
4 Keywords subFloat and multiFloat

for multiple objects in a ŕoat 276
5 Short example caption B1 279
6 Short example caption B2 279
7 Adding space between two columns . 280
8 A doublepage tabular 283
9 A short nonŕoating table 283

Another feature is that simple non-ŕoating ob-
jects can be placed by the environment hvFloatEnv,
which has only one optional argument, giving the
horizontal width. For the caption one has to use
the macro \captionof{type}{. . .} or the (usually
internal) macro \tabcaption{. . .} mentioned on
page 267:

\begin{hvFloatEnv}[0.5\columnwidth]

\centering\captionof{table}

{A short nonfloating table.}

\label{tab:nonfloat}

\begin{tabular}{@{} l c r @{}}\hline

left & center & right \\

L & C & R \\\hline

\end{tabular}

\end{hvFloatEnv}

Herbert Voß

TUGboat, Volume 42 (2021), No. 3 283

1985 1986 1987 1988 1989 1990 1991 1992

0 2 2 2 1 2 1 0

4 4 6 4 2 2 1 0

3 1 7 7 3 2 1 0

0 3 7 2 1 2 1 0

2 2 5 4 2 2 1 0

0 2 5 4 3 2 1 0

1 3 5 3 4 2 1 0

2 1 4 5 2 2 1 0

1 1 4 4 1 2 1 0

1 0 2 1 1 2 6 0

0 0 1 0 3 2 6 0

0 0 2 2 2 2 6 0

0 1 3 0 2 2 6 0

3 2 1 1 0 2 6 0

0 0 3 1 1 2 6 0

0 3 5 0 1 2 6 1

10 8 15 13 1 32 51 1

Table 8: A caption for a doublePage tabular that
will be placed on the right side of the right-hand part
of the tabular. The table begins on the left edge of
the text area of the left page. The additional space
between the columns 1984 and 1985 is \quad, which
is the same as 1 em. The binding correction is set to
8 mm, which gives additional whitespace of 16mm.

Table 9: A short nonŕoat-
ing table.

left center right
L C R

But pay attention to references if ŕoating and
non-ŕoating environments are mixed on one page;
they can point to wrong numbers. Moving the ŕoat-
ing environment to another place in the document is
one workaround for such a problem. Alternatively,
using only ŕoating environments is preferred, if your
document is mainly text, with only some őgures
and/or tables.

References

[1] D. Carlisle, The LATEX Team. The afterpage
package, version 1.08, 2014-10-28. Execute
command after the next page break.
https://ctan.org/pkg/afterpage

[2] F. Mittelbach, M. Goossens, et al. The LATEX

Companion. Pearson Education, 2nd ed., 2004.

[3] M. Scharrer. The adjustbox package, version
1.3, 2020-08-19. Graphics package-alike macros
for łgeneralž boxes.
https://ctan.org/pkg/adjustbox

[4] M. Scharrer. The ifoddpage package, version 1.1,
2016-04-23. Determine if the current page is odd
or even. https://ctan.org/pkg/ifoddpage

[5] A. Sommerfeldt. The caption package,
2020-10-26. Customising captions in ŕoating
environments.
https://ctan.org/pkg/caption

[6] S. Tolušis. The stŕoats package, version 3.3,
2017-03-27. Commands to control the
presentation of ŕoats.
https://ctan.org/pkg/stfloats

[7] H. Voß. The hvŕoat package, version 2.34,
2021-09-23. Rotating and controlling ŕoat
captions and objects.
https://ctan.org/pkg/hvfloat

⋄ Herbert Voß
Wasgenstraße 21
14129 Berlin, Germany
herbert (at) dante dot de

https://hvoss.org/

Controlling captions, fullpage and doublepage ŕoats: hvfloat

https://ctan.org/pkg/afterpage
https://ctan.org/pkg/adjustbox
https://ctan.org/pkg/ifoddpage
https://ctan.org/pkg/caption
https://ctan.org/pkg/stfloats
https://ctan.org/pkg/hvfloat

284 TUGboat, Volume 42 (2021), No. 3

Preventing tofu with pdfTEX and Unicode engines

Frank Mittelbach

Abstract

Discussion of input encodings vs. font encodings, miss-
ing characters, Unicode, and TEX history.

1 With tofu through the years

Tofu is not just an essential ingredient for many Asian
dishes, it is also the nickname for the little squares pro-
duced by many browsers when they are asked to render
a character for which they do not have a glyph available.

Especially in the early days of the World Wide Web,
websites in foreign languages (from the perspective of
your computer) got often littered with such squares,
making text comprehension quite difficult if not impos-
sible in some cases. So instead of getting

¿But aren’t Kafka’s Schloß & Æsop’s Œuvres of-
ten naïve vis-à-vis the dæmonic phœnix’s official
rôle in fluffy soufflés?

you might have seen something like
�But aren’t Kafka’s Schlo� � �sop’s �uvres
often na�ve vis-�-vis the d�monic ph�nix’s
official r�le in fluffy souffl�s?

Over the years the situation with browsers improved
(partly because using inferior fonts was deemed accept-
able as long as they could render the needed glyphs),
but even nowadays you may find tofu-littered sites, or
perhaps worse, those where your browser thinks it can
show you the glyphs but renders the wrong ones.

While with browsers you may accept a certain im-
perfection in the rendering, tofu in printed material is
quite unacceptable. Typesetting systems should always
use the correct glyphs or at least tell you very explicitly
if they are unable to do so for some reason, to allow
you to apply some corrective actions. In the remainder
of this article we will discuss how TEX and in particular
LATEX is doing in this respect and what a user can or must
do to avoid such a capital blunder.

Early vegetarian dishes with TEX

In the early days of TEX the use of fonts was easy because
you could use any font you wanted as long as it was called
Computer Modern.

In other words there was essentially only one set
of fonts available for use with TEX and the glyphs it
contained and how to address them was described in
The TEXbook [3]. Furthermore, all fonts only contained
128 glyphs, i.e., essentially the base Latin characters, a
few accents to construct diacritical characters using the
\accent primitive and a few other symbols such as †, $
and so forth to be accessed through command names.

Thus, once you learned the construction methods
and memorized the control sequences for accessing the
existing symbols you could be sure that the characters
you used would faithfully appear in the printed result. Of
course, part of the reason for this was the limited glyph
set; already any Latin-based language other than En-
glish posed serious issues, namely that necessary glyphs
were missing entirely, or only available as constructed
characters (whenever accents where involved)—which
prevented TEX from applying hyphenation.

So as TEX got more popular outside the English-
speaking world there was considerable pressure on Don
Knuth (largely by European users, the author among
them) to extend TEX so that it could better handle lan-
guages with larger character sets. At the 1989 TEX con-
ference in Stanford we finally managed to convince Don
to reopen (in a limited way) TEX development and pro-
duce TEX 3. This version of TEX was then able to deal
with more than one language within a document (e.g.,
use multiple hyphenation patterns) and support 8-bit
input and output (that is, 256 characters in a font).

While this enabled the use of different input code
pages for different character sets, as was standard in
those days, and also solved the problem of hyphenating
words containing accented characters (by using fonts
with precomposed glyphs), it also posed new challenges.

Depending on the active code page when writing a
document, a given keyboard character might be associ-
ated with a different number (between 0 and 255) and
that number had to be mapped to the right slot in a font
to produce the glyph that was originally intended. So the
days of input number equals font glyph position were
definitely over, and the TEX world had to come up with
a more elaborate scheme to translate one into the other
to avoid missing or wrong characters in the output.

The LATEX2ε solution

For LATEX the solution came in the form of the New Font
Selection Scheme [4], and in particular with the pack-
ages inputenc (for managing input in different code
pages and mapping it to a standard internal represen-
tation) and fontenc (for translating this internal rep-
resentation to the correct glyph positions in different
fonts).

Introducing font encodings

LATEX classified the font encodings and gave them names
such as OT1, T1, TS1, T2A, T2B, etc. Each such font
encoding defined which glyphs are in a font using that
encoding and to which character code (again, 0–255)
each glyph was assigned in the font. Thus, if you had
two different fonts with the same encoding you could
exchange one for the other and still be one hundred

doi.org/10.47397/tb/42-3/tb132mitt-tofu

Frank Mittelbach

TUGboat, Volume 42 (2021), No. 3 285

percent sure1 that your document typeset correctly, with
no missing or incorrect glyphs in the output.

In practice only a small number of font encodings
ever got used and new fonts usually were made available
in these “popular” encodings by providing the necessary
font re-encodings through the virtual font mechanism,
or through re-encodings done by device drivers (such as
dvips) or directly in the engine (in the case of pdftex).

As an overall result, life for LATEX users was again
fairly easy after 1994 and remained this way well into
this century, because by simply specifying which font
encoding to use, documents would normally be typeset
without defects, regardless of the font family that got
used. Further, due to the fact that for users writing
in Latin-based languages essentially every interesting
font available was provided in the T1 encoding, it was
also clear which glyphs were available and those were
available almost universally.

Pitfalls with missing input encodings

There was still the need to specify the input encoding—
at least if one wanted to input accented characters di-
rectly from the keyboard instead of using TEX constructs
like \"a. One problem in this respect was that, depend-
ing on the language you were writing in, it sometimes
worked even without specifying the input encoding. This
was possible because the T1 font encoding was nearly
identical to the quite common latin1 input encod-
ing.2 Years later, omitting the input encoding declara-
tion even when it worked initially finally backfired: once
LATEX moved on to make UTF-8 the default encoding, doc-
uments stored in legacy encodings failed if they didn’t
contain an input declaration.3

Pitfalls with the TS1 encoding

When 8-bit fonts became more common, the TEX com-
munity defined two font encodings during a conference
at Cork in 1990. The first is T1, which holds common
Latin text glyphs that play a role in hyphenation and
therefore have to be present in the same font when seen
by TEX. The second is TS1, which contains other sym-
bols, such as oldstyle numerals or currency symbols;
these can be fetched from a secondary font without
harm to the hyphenation algorithm, because they do
not appear as part of words to be hyphenated.

1 Well, more like 99% since sometimes fonts claimed to be in one
encoding but didn’t faithfully follow its specification, e.g., didn’t pro-
vide all glyphs or sometimes even placed wrong glyphs at some slots.

2 For example, with French texts it worked throughout. However,
with German only the “umlauts” worked, but the sharp s “ß” generated
a different character.

3 The remedy for such old documents is to either add the missing
declaration or re-encode the old source and store it in UTF-8.

On the whole, the glyphs in the T1 encoding were
well-chosen and it is usually possible to arrange any
commercial or free font to be presented in this encod-
ing to TEX.4 As a result, substituting T1-encoded fonts
means that you can be fairly sure that there will be no
tofu in your output afterwards.

Unfortunately, this is not at all true for the TS1
encoding. Here the community made a big mistake by
going overboard in adding several “supposedly” useful
glyphs to the encoding that could be produced in theory
(and for Computer Modern and similar TEX fonts were
in fact produced), but that simply did not exist in any
font that had its origin outside the TEX world.

As a result, to use such glyphs from the TS1 en-
coding meant that you had to stay with a very limited
number of font families. Alternatively, you had to be
very careful not to use any of the problematic symbols
to avoid tofu.

To ease this situation, the TS1 encoding was sub-
divided into five sub-encodings and a LATEX interface
was established to identify that a font family with a cer-
tain NFSS name belonged to one of the sub-encodings.
This way LATEX was enabled to make “reasonable” ad-
justments when a requested symbol was not available
in the current font, either by substituting it from a dif-
ferent font or by giving you an error message that the
symbol is not there—not perfect but better than tofu in
the end. This was implemented in the textcomp pack-
age which provided the LATEX commands to access the
symbols from TS1.

In one of the recent LATEX releases the code from
textcomp was moved to the LATEX format, so that these
extra symbols are now available out of the box without
the need to load an additional package. At the same
time, the classification of fonts into TS1 sub-encodings
was reworked. We now support nine sub-encodings and
the LATEX format contains close to 200 declarations that
sort the commonly available font families into the right
sub-encodings. Thus these days the situation is fairly
well under control again—at least with pdfTEX.

2 Unicode

One of the goals of Unicode is to uniquely identify each
and every character used in different languages and
scripts around the world, thereby avoiding some of the
possible translation problems that occurred because a
text was written under the assumption of one (8-bit) en-
coding, but interpreted later under a different encoding.

While this was a huge step forward for correctly
interpreting any source document (because it elimi-
nated all of the the different input encodings—all is now

4 There are a few exceptions where some seldom used glyphs are
missing, e.g., \textpertenthousand or \textcompwordmark.

Preventing tofu with pdfTEX and Unicode engines

286 TUGboat, Volume 42 (2021), No. 3

Unicode), it unfortunately reintroduced a new helping
of tofu through the back door.

The reason is simple: with Unicode as the means
to reliably address a glyph to be typeset in a font, such a
font has to contain glyphs for all characters available in
Unicode, because TEX just takes the Unicode number and
tells the current font “typeset this glyph”. While this
is in theory possible in the TrueType or OpenType font
formats (using font collections), there is no single font
(or collection) that offers anything close to this.5 LATEX
has no way to identify if glyphs are missing, because the
typesetting of paragraph text is a very low-level process
in TEX and in contrast to the pdfTEX engine where LATEX
can reliably assume that a font in T1 encoding imple-
ments the whole encoding, in Unicode engines all fonts
are in the TU encoding (the whole of Unicode), which no
font provides.

In theory it would have been possible to devise sub-
encodings of TU and assign each and every font to the
appropriate sub-encoding, as was done with TS1, but in
practice this would be a hopeless undertaking, because
each and every font implements its own set of glyphs,
so no useful classification is possible.

Thus when you typeset in X ETEX or LuaTEX and you
request using a certain font family with something like

\setmainfont{Alegreya}

you just have to hope your chosen family contains glyphs
for all characters that you intend to use in your docu-
ment; if not, you will end up with tofu.

To give you some figures: Latin Modern Roman (the
default font in LATEX on Unicode engines) implements
794 characters, the ParaType font used for this article 717,
the Optima font on the Mac just 264, the free Alegreya
font 1251 and Noto Serif 2840. Regardless, there can
be no guarantee that the characters contained in your
document are covered.

Letting TEX tell you about your tofu

The TEX program offers one tracing parameter, called
\tracinglostchars, that, if set to a positive value,
reports missing glyphs (a.k.a. tofu) in the log file, e.g.,

Missing character: There is no
È (U+00C8) in font cmr10!

5 The font I know that comes closest is Code2000 [2], which pro-
vides around 90K characters in its latest incarnation—but even that
is only a fraction of the Unicode universe (over 140K characters).
Google’s Noto project [1], which stands for “no tofu”, was established
to develop fonts for typesetting text in any of the world’s languages
and scripts. It currently has almost 64K characters, which are split
across nearly two hundred font families, e.g., if you want to typeset
in Latin you can use Noto Sans, but for Japanese you need Noto Sans
Japanese and so forth.

Interestingly enough, this information is not even given
by default, but only when you explicitly ask for it—ob-
viously, Don Knuth did not foresee that TEX is used with
fonts other than those carefully crafted for TEX and con-
taining all the characters you may want.

Recently all TEX engines were enhanced to make
tofu reporting a little better: you can now set this pa-
rameter to 2, after which it reports its finding also on
the terminal (the new default value in LATEX), or you can
set it to 3, after which it will throw an error rather than
the easy-to-miss warning. With Unicode engines we
strongly recommend to always set

\tracinglostchars=3

in the preamble of your document—it is much better
to get errors when writing your documents instead of
getting reports by others about tofu in your published
work. As explained before, when typesetting with pdfTEX
there is little danger of ending up with tofu, so there
it is less important to change the parameter, though it
obviously doesn’t hurt.

3 Typesetting Unicode font tables

When I worked on the font chapter for the new edi-
tion of The LATEX Companion, third edition [5], I wanted
to produce glyph tables for various fonts to examine
which characters they encode and how they looked. To
my surprise I could not find any TEX tool to do this for
me. There is, of course, the old nfssfont which I had
adapted from work by Don Knuth, but that is of no help
with Unicode fonts as it can only display tables of the
first 256 characters, i.e., 8-bit fonts. So during my last
stay at Bachotek (before the pandemic) I sketched out
some code, the result of which is now available as the
unicodefonttable package (see companion article).

References
[1] Google Fonts. Noto: A typeface for the world.

fonts.google.com/noto

[2] J. Kass. Code2000. Font resource implementing much
of Unicode. en.wikipedia.org/wiki/Code2000

[3] D.E. Knuth. The TEXbook, vol. A of Computers and
Typesetting. Addison-Wesley, Reading, MA, USA, 1986.

[4] F. Mittelbach, R. Schöpf. The new font
family selection—User interface to standard
LATEX. TUGboat 11(1):91–97, Apr. 1990.
tug.org/TUGboat/tb11-1/tb27mitt.pdf

[5] F. Mittelbach with U. Fischer. The LATEX Companion.
Pearson Education, Boston, MA, USA, third ed.,
to appear in 2022.

⋄ Frank Mittelbach
Mainz, Germany
https://www.latex-project.org
https://ctan.org/pkg/unicodefonttable

Frank Mittelbach

TUGboat, Volume 42 (2021), No. 3 287

The unicodefonttable package∗

Frank Mittelbach

Abstract

A package for typesetting font tables for larger fonts, e.g., TrueType or OpenType
Unicode fonts. To produce a one-off table, a standalone version is available as well.

Contents

1 Introduction 287
2 The user interface 288

2.1 Keys and their values . 289
2.2 A standalone interactive version . 291

3 Notes on the table data 291
A Index 292
B Examples 292

B.1 Computer Modern Sans — 7-bit font 292
B.2 TEX Gyre Heros — 8-bit font . 293
B.3 Latin Modern Math — 8-bit fonts 293
B.4 Latin Modern Math compared to New Computer Modern Math . . 295
B.5 Garamond Libre’s Byzantine Musical Symbols 303

1 Introduction

When I started to write a new chapter for the third edition of The LATEX Companion
on modern fonts available for different LATEX engines, I was a bit surprised that I
couldn’t find a way to easily typeset tables showing the glyphs available in TrueType
or OpenType fonts. The nfssfont package available with LATEX only supports fonts
from the 8-bit world, but modern fonts that can be used with X ETEX or LuaTEX can
contain thousands of glyphs and having a method to display what is available in them
was important for me.
I therefore set out to write my own little package and what started as an afternoon
exercise ended up being this package, offering plenty of bells and whistles for typesetting
such font tables.
As there can be many glyphs in such fonts a tabular representation of them might run
for several pages, so the package internally uses the longtable package to handle that.
In most cases the glyphs inside the fonts are indexed by their Unicode numbers so it is
natural to display them sorted by their position in the Unicode character set.
Unicode is organized in named blocks such as “Basic Latin”, “Latin-1 Supplement”,
etc., typically consisting of 265 characters each.1 It is therefore helpful to use these
block names as subtitles within the table, to more easily find the information one is
looking for.
A common way to represent the number of a single Unicode character is U+ followed by
four (or more) hexadecimal digits. For example, U+0041 represents the letter “A” and
U+20AC the Euro currency symbol “€”. We use this convention by showing a Unicode
range of sixteen characters at the left of each table row, e.g., U+0040 - 004F, followed
by the sixteen glyphs in the range. Thus that particular table row from the “Basic

∗ This is version v1.0e of the package, dated 2021/10/29; the license is LPPL.
1 Some blocks are smaller, while those containing the Asian ideographs are much larger.

doi.org/10.47397/tb/42-3/tb132mitt-unicodefonttable

The unicodefonttable package

https://doi.org/10.47397/tb/42-3/tb132mitt-unicodefonttable

288 TUGboat, Volume 42 (2021), No. 3

Latin” block would show something like

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+0040 - 004F @ A B C D E F G H I J K L M N O

If a Unicode character has no glyph representation in a given font then this is indicated
by a special symbol (by default a colored hyphen). By default some color is used, but
we’ve grayscaled the output for TUGboat.
In order to easily locate any Unicode character the table shows by default sixteen hex
digits as a column heading. For example, to find Euro currency symbol (U+20AC) one
first finds the right row, which is the range U+20A0 - 20AF, and then the C column in
that row, and the glyph is there (or an indication that the font is missing that glyph;
the line shows that for some of the other slots).

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+20A0 - 20AF - ₡ - - ₤ - ₦ - - ₩ - ₫ € - - -

It can be useful to compare two fonts with each other by filling the table with glyphs
from a secondary font if the primary font is missing them. For example, the next
display shows two rows of Latin Modern Math (black glyphs) and instead of showing a
missing glyph symbol in most slots, we use the glyphs from New Computer Modern
Math, which has a much larger glyph set (normally red glyphs with gray background
but again, grayscaled for TUGboat).

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+2A00 - 2A0F ⨀ ⨁ ⨂ ⨃ ⨄ ⨅ ⨆ ⨇ ⨈ ⨉ ⨊ ⨋ ⨌ ⨍ ⨎ ⨏
U+2A10 - 2A1F ⨐ ⨑ ⨒ ⨓ ⨔ ⨕ ⨖ ⨗ ⨘ ⨙ ⨚ ⨛ ⨜ ⨝ ⨞ ⨟

2 The user interface
The package offers one command to typeset a font table. The appearance of the table
can be customized by specifying key/value pairs.

\displayfonttable * [〈key/value-list〉] {〈font-name〉} [〈font-features〉]

The 〈font-name〉 is the font to be displayed. This and the 〈font-features〉 argument
are passed to fontspec, thus they should follow the conventions of that package for
specifying a font. The 〈key/value-list〉 offers customization possibilities discussed below.
The \displayfonttable* is a variant of the command, intended for use with 8-bit
legacy fonts. It presets some keys, but otherwise behaves identically. The preset values
are:

nostatistics, display-block=none, hex-digits=head, range-end=FF

For details see the next section.

\displayfonttable

\fonttablesetup {〈key/value-list〉}

Instead of or in addition to specifying key/values to \displayfonttable it is possible
to set them up as defaults. Inside \displayfonttable the defaults are applied first,
so one can still overwrite their values for an individual table.

\fonttablesetup

\fonttableglyphcount

While typesetting a font table the package keeps track of the number of glyphs it finds in
the font. After the table has finished, this value is available in \fonttableglyphcount
and it is, for example, used when statistics are produced. At the start of the next table
it is reset to zero.

\fonttableglyphcount

Frank Mittelbach

TUGboat, Volume 42 (2021), No. 3 289

2.1 Keys and their values
Several of the available keys are booleans accepting true or false. They usually exist
in pairs so that one can specify the desired behavior without needing to provide a value,
e.g., specifying header is equivalent to specifying header=true or noheader=false,
etc. In the lists below the default settings are indicated by an underline.

The first set of keys is concerned with the overall look and feel of the generated table.
header, noheader These keys determine whether a header to the table is produced.
title-format, title-format-cont These keys define what is provided as a header

title or continuation title if the table consists of several pages. They expect code
as their value. This code can contain #1 and #2 to denote the 〈font-name〉 and
〈font-features〉 arguments, respectively.
By default a title using the \caption command is produced; on continuation titles,
the 〈font-features〉 are not shown. This is typeset as a longtable header row,
so you either need to use \multicolumn or a \caption command — otherwise
everything ends up in the first column.

header
noheader
title-format
title-format-cont

These keys handle the inner parts of the table.
display-block The Unicode dataset is organized in named blocks that are typically

128 or 256 characters, though some are noticeably larger and a few are smaller.
With the display-block key it is possible to specify if and how such blocks should
be made visible. The following values are supported:
titles Above each display block that contains glyphs the Unicode title of the

block is displayed.
rules Display blocks are indicated only by a \midrule.
none Display blocks are not indicated at all.

hex-digits To ease reading the table, rows of hex digits are added to it. Where or if
this happens is controlled by this key. Allowed values for it are the following:
block A row of hex digits is placed at the beginning of each Unicode block

containing glyphs in the displayed font.
foot A row is added to the foot of each table page.
head A row is added to the top of each table page.
head+foot A row is added to the top and the foot of each table page.
none All hex digit rows are suppressed.

hex-digits-font The font to use for the hex digits, by default \ttfamily\scriptsize.
color This key determines the color for parts of the table (hex digits and Unicode

ranges). It can be either none or a color specification as understood by the \color
command. The default is blue.

display-block
hex-digits
color

The next set of keys allows altering the statistics that are produced.
statistics, nostatistics These keys determine whether some statistics are listed

at the end of the table.
statistics-font The font used to typeset the statistics; the default is

\normalfont\small.
statistics-format Code (text) to specify what should be typeset in the statistics.

One can use #1 for the 〈font-name〉 and #2 for the glyph count. The material is
typeset on a single line at the end of the table. If several lines are needed you
need to use \parbox or a similar construct.

statistics
nostatistics
statistics-font
statistics-format

The unicodefonttable package

290 TUGboat, Volume 42 (2021), No. 3

Another set of keys deals with customization on the glyph level.
glyph-width All glyphs are typeset in a box with the same width, the default value

is 6pt which is suitable for most 10pt fonts and make the table fit comfortably
into the text width of a typical document.

missing-glyph If a slot in a row doesn’t have a glyph in the font you may still want
display something to indicate this state. By giving the key a value any arbitrary
glyph or material can be typeset. The default is to typeset a - (hyphen) in a
special color.
Rows that contain no glyph whatsoever are not displayed at all. Instead a small
vertical space is added to indicate the one or more rows are omitted.

missing-glyph-font The font used for the missing glyphs (the default value is
\ttfamily\scriptsize).

missing-glyph-color If not specified it uses the value specified with the color key.
If you want a different color, e.g., red, you can use a color value or you can specify
none to use no coloring.

glyph-width
missing-glyph
missing-glyph-font
missing-glyph-color

You can make comparisons between two fonts, which is useful, for example when
dealing with incomplete math fonts and you need to see how well the symbols from
one font blend with the supplementary symbols from another font.
compare-with If given, the value is a 〈comparison-font-name〉 that is used to supply

missing glyphs. This means that if the 〈font-name〉 to be displayed is missing
a glyph in a slot, then the 〈comparison-font-name〉 is checked, and if that font
has the glyph in question, it will be displayed instead of showing a missing glyph
indicator.

compare-color, compare-bgcolor To distinguish real glyphs from missing but sub-
stituted glyphs, they can be colored specially (default red) and/or you can have
their background colored (default is black!10, i.e., a light gray).

statistics-compare-format Code (text) to specify what should be typeset in the
statistics when comparing two fonts. One can use #1 for the 〈font-name〉 and #2
for its glyph count, #3 is the name of the comparison font, #4 its glyph count, #5
for the number of glyphs missing in this font and #6 the number of extra glyphs in
it. This code is used instead of statistics-format when comparisons are made.
The material is typeset on a single line at the end of the table. If several lines are
needed you need to use \parbox or a similar construct.

compare-with
compare-color
compare-bgcolor
statistics-compare-format

Finally there are two keys for restricting the display range.
range-start, range-end The full Unicode set of characters is huge and checking

every slot to see if the current font contains a glyph in the slot takes a long time.
If you know that font contains only a certain subset then you can speed up the
table generation considerably by limiting the search (and consequently the output
generation). The range-start specifies where to start with the search (default
0000) and range-end gives the last slot that is tested (default FFFF).
Thus, by default we restrict the display to slots below 10000, because text fonts
seldom contain glyphs in the higher planes. But if you want to see everything of
the font (as far as supported by this package) and are prepared to wait for the
higher planes to be scanned, you can go up to a value of FFFFF.
These keys are also quite useful in combination with the previous compare-with
key, to display only, for example, the Greek letters and see how glyphs from two
fonts blend with each other.

range-start
range-end

Frank Mittelbach

TUGboat, Volume 42 (2021), No. 3 291

2.2 A standalone interactive version

If you want to quickly display a single font, you can run unicodefont.tex through
LuaTEX (or X ETEX). Similar to nfssfont.tex (which is for 8-bit fonts with pdfTEX)
it asks you a few questions and then generates the font table for you. There are fewer
configuration options available, but this workflow saves you writing a document to get
a one-off table.
Most font tables need several runs due to the use of longtable, which has to find the
right width for the columns across several pages. The unicodefont file therefore
remembers your selection from the previous run and asks you if you want to reapply it
to speed up the process.

3 Notes on the table data

If you look at some parts of a Unicode font table you see a number of slots that do not
show a “missing glyph” sign, but nonetheless appear to be empty. For example:

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+0020 - 002F ! " # $ % & ' () * + , - . /
U+0030 - 003F 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
U+0040 - 004F @ A B C D E F G H I J K L M N O
U+0050 - 005F P Q R S T U V W X Y Z [\] ^ _
U+0060 - 006F ` a b c d e f g h i j k l m n o
U+0070 - 007F p q r s t u v w x y z { | } ~ -

U+00A0 - 00AF ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ® ¯
U+00B0 - 00BF ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿

The reason is that Unicode contains a lot of special spaces or otherwise invisible
characters, e.g., U+0020 is the normal space, U+00A0 is a non-breaking space, U+00AD
is a soft-hyphen (what LATEX users would indicate with \-), and so forth. Especially
the row U+2000-200F in Table 6 looks strange as it appears to be totally empty, but
in fact most of its slots contain spaces of different width.

General Punctuation
U+2000 - 200F                       - -

U+2010 - 201F ‐ - ‒ – — ― ‖ ‗ ‘ ’ ‚ - “ ” „ -

U+2020 - 202F † ‡ • - - - … - - - - - - - -  
0 1 2 3 4 5 6 7 8 9 A B C D E F

Another somewhat surprising area is the “Mathematical Alphanumeric Symbols” block
in math fonts, starting at U+1D400. There you see a number of missing characters, the
first two being U+1D455 (math italic small h) and U+1D49D (math script B).

Mathematical Alphanumeric Symbols
U+1D400 - 1D40F 𝐀 𝐁 𝐂 𝐃 𝐄 𝐅 𝐆 𝐇 𝐈 𝐉 𝐊 𝐋 𝐌 𝐍 𝐎 𝐏
U+1D410 - 1D41F 𝐐 𝐑 𝐒 𝐓 𝐔 𝐕 𝐖 𝐗 𝐘 𝐙 𝐚 𝐛 𝐜 𝐝 𝐞 𝐟
U+1D420 - 1D42F 𝐠 𝐡 𝐢 𝐣 𝐤 𝐥 𝐦 𝐧 𝐨 𝐩 𝐪 𝐫 𝐬 𝐭 𝐮 𝐯
U+1D430 - 1D43F 𝐰 𝐱 𝐲 𝐳 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻 𝐼 𝐽 𝐾 𝐿
U+1D440 - 1D44F 𝑀 𝑁 𝑂 𝑃 𝑄 𝑅 𝑆 𝑇 𝑈 𝑉 𝑊 𝑋 𝑌 𝑍 𝑎 𝑏
U+1D450 - 1D45F 𝑐 𝑑 𝑒 𝑓 𝑔 - 𝑖 𝑗 𝑘 𝑙 𝑚 𝑛 𝑜 𝑝 𝑞 𝑟
U+1D460 - 1D46F 𝑠 𝑡 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 𝑨 𝑩 𝑪 𝑫 𝑬 𝑭 𝑮 𝑯
U+1D470 - 1D47F 𝑰 𝑱 𝑲 𝑳 𝑴 𝑵 𝑶 𝑷 𝑸 𝑹 𝑺 𝑻 𝑼 𝑽 𝑾 𝑿

0 1 2 3 4 5 6 7 8 9 A B C D E F

The unicodefonttable package

292 TUGboat, Volume 42 (2021), No. 3

U+1D480 - 1D48F 𝒀 𝒁 𝒂 𝒃 𝒄 𝒅 𝒆 𝒇 𝒈 𝒉 𝒊 𝒋 𝒌 𝒍 𝒎 𝒏
U+1D490 - 1D49F 𝒐 𝒑 𝒒 𝒓 𝒔 𝒕 𝒖 𝒗 𝒘 𝒙 𝒚 𝒛 𝒜 - 𝒞 𝒟
U+1D4A0 - 1D4AF - - 𝒢 - - 𝒥 𝒦 - - 𝒩 𝒪 𝒫 𝒬 - 𝒮 𝒯

0 1 2 3 4 5 6 7 8 9 A B C D E F

In this case the reason is not that the font fails to implement the characters, but that
these characters have already been defined in earlier revisions of the Unicode standard
in the lower Unicode plane. For example, the “h” is the Planck constant U+210E and
U+212C is the script capital B, etc. The Unicode Consortium decided not to encode
the same character twice, hence the apparent holes.

A Index

Numbers written in italic refer to the page where the corresponding entry is described
or mentioned.

\- . 291

\caption . 289
\color . 289
color . 289
compare-bgcolor 290
compare-color 290
compare-with 290

display-block 289
\displayfonttable 288, 288, 292
\displayfonttable* 288

\fonttableglyphcount 288
\fonttablesetup 288

glyph-width 290

header . 289
hex-digits 289

\midrule . 289
missing-glyph 290

missing-glyph-color 290
missing-glyph-font 290
\multicolumn 289

noheader . 289
\normalfont 289
nostatistics 289

\parbox 289, 290

range-end . 290
range-start 290

\scriptsize 289, 290
\small . 289
statistics 289
statistics-compare-format 290
statistics-font 289
statistics-format 289

title-format 289
title-format-cont 289
\ttfamily 289, 290

B Examples

In this section we show the results of a few calls to \displayfonttable. The tables
are a bit easier to navigate if they use color in some places, but for TUGboat this is
not practical, so we use black and gray.

B.1 Computer Modern Sans — 7-bit font

Our first example is the original Computer Modern Sans, with character codes ≤ 127.
Command used:

\displayfonttable*[color=none, range-end=7F]{cmss10}

Table 1: cmss10

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+0000 - 000F Γ ∆ Θ Λ Ξ Π Σ Υ Φ Ψ Ω ff fi fl ffi ffl

Frank Mittelbach

TUGboat, Volume 42 (2021), No. 3 293

Table 1: cmss10 cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+0010 - 001F ı ` ´ ˇ ˘ ¯ ˚ ¸ ß æ œ ø Æ Œ Ø
U+0020 - 002F ! ” # $ % & ’ () * + , - . /
U+0030 - 003F 0 1 2 3 4 5 6 7 8 9 : ; ¡ = ¿ ?
U+0040 - 004F @ A B C D E F G H I J K L M N O
U+0050 - 005F P Q R S T U V W X Y Z [“] ˆ ˙
U+0060 - 006F ‘ a b c d e f g h i j k l m n o
U+0070 - 007F p q r s t u v w x y z – — ˝ ˜ ¨

B.2 TEX Gyre Heros — 8-bit font

This example shows the TEX Gyre Heros 8-bit font, in the T1 encoding, with character
codes ≤ 255. Command used:
\displayfonttable*[color=none]{ec-qhvr}

Table 2: ec-qhvr

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+0000 - 000F ` ´ ˆ ˜ ¨ ˝ ˚ ˇ ˘ ¯ ˙ ¸ ˛ ‚ ‹ ›
U+0010 - 001F “ ” „ « » – — � � ı ff fi fl ffi ffl
U+0020 - 002F ␣ ! " # $ % & ’ () * + , - . /
U+0030 - 003F 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
U+0040 - 004F @ A B C D E F G H I J K L M N O
U+0050 - 005F P Q R S T U V W X Y Z [\] ^ _
U+0060 - 006F ‘ a b c d e f g h i j k l m n o
U+0070 - 007F p q r s t u v w x y z { | } ~ -
U+0080 - 008F Ă Ą Ć Č Ď Ě Ę Ğ Ĺ Ľ Ł Ń Ň Ŋ Ő Ŕ
U+0090 - 009F Ř Ś Š Ş Ť Ţ Ű Ů Ÿ Ź Ž Ż Ĳ İ đ §
U+00A0 - 00AF ă ą ć č ď ě ę ğ ĺ ľ ł ń ň ŋ ő ŕ
U+00B0 - 00BF ř ś š ş ť ţ ű ů ÿ ź ž ż ĳ ¡ ¿ £
U+00C0 - 00CF À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï
U+00D0 - 00DF Ð Ñ Ò Ó Ô Õ Ö Œ Ø Ù Ú Û Ü Ý Þ ß
U+00E0 - 00EF à á â ã ä å æ ç è é ê ë ì í î ï
U+00F0 - 00FF ð ñ ò ó ô õ ö œ ø ù ú û ü ý þ ß

B.3 Latin Modern Math — 8-bit fonts

The traditional Latin Modern Math Italic, Symbol and Extension fonts. The symbol
font (lmsy10) has two characters added to the Computer Modern symbol repertoire,
seen in the last row of the table. Commands used:
\displayfonttable*[color=none]{lmmi10}
\displayfonttable*[color=none]{lmsy10}
\displayfonttable*[color=none]{lmex10}

Table 3: lmmi10

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+0000 - 000F Γ ∆ Θ Λ Ξ Π Σ Υ Φ Ψ Ω α β γ δ ǫ
U+0010 - 001F ζ η θ ι κ λ µ ν ξ π ρ σ τ υ φ χ
U+0020 - 002F ψ ω ε ϑ ̟ ̺ ς ϕ ↼ ↽ ⇀ ⇁ ֒ ֓ ⊲ ⊳
U+0030 - 003F 0 1 2 3 4 5 6 7 8 9 . , < / > ⋆
U+0040 - 004F ∂ A B C D E F G H I J K L M N O

The unicodefonttable package

294 TUGboat, Volume 42 (2021), No. 3

Table 3: lmmi10 cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+0050 - 005F P Q R S T U V W X Y Z ♭ ♮ ♯ ⌣ ⌢
U+0060 - 006F ℓ a b c d e f g h i j k l m n o
U+0070 - 007F p q r s t u v w x y z ı ℘ ~ ⁀

Table 4: lmsy10

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+0000 - 000F − · × ∗ ÷ ⋄ ± ∓ ⊕ ⊖ ⊗ ⊘ ⊙ © ◦ •
U+0010 - 001F ≍ ≡ ⊆ ⊇ ≤ ≥ � � ∼ ≈ ⊂ ⊃ ≪ ≫ ≺ ≻
U+0020 - 002F ← → ↑ ↓ ↔ ր ց ≃ ⇐ ⇒ ⇑ ⇓ ⇔ տ ւ ∝
U+0030 - 003F ′ ∞ ∈ ∋ △ ▽ 6 7 ∀ ∃ ¬ ∅ ℜ ℑ ⊤ ⊥
U+0040 - 004F ℵ A B C D E F G H I J K L M N O
U+0050 - 005F P Q R S T U V W X Y Z ∪ ∩ ⊎ ∧ ∨
U+0060 - 006F ⊢ ⊣ ⌊ ⌋ ⌈ ⌉ { } 〈 〉 | ‖ l m \ ≀
U+0070 - 007F √ ∐ ∇ ∫ ⊔ ⊓ ⊑ ⊒ § † ‡ ¶ ♣ ♦ ♥ ♠
U+00A0 - 00AF - - - - - - - - - - - - ¬ - -

Table 5: lmex10

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+0000 - 000F () [] ⌊ ⌋ ⌈ ⌉ { } 〈 〉 ∣ ∥ / ∖

U+0010 - 001F () () [] ⌊ ⌋ ⌈ ⌉ { } 〈 〉 / ∖

U+0020 - 002F () [] ⌊ ⌋ ⌈ ⌉ { } 〈 〉 / ∖ / ∖

U+0030 - 003F

U+0040 - 004F 〈 〉 ⊔ ⊔ ∮ ∮ ⊙ ⊙ ⊕ ⊕ ⊗ ⊗

U+0050 - 005F ∑ ∏ ∫ ⋃ ⋂ ⊎ ∧ ∨ ∑ ∏ ∫ ⋃ ⋂ ⊎ ∧ ∨

U+0060 - 006F ∐ ∐ ̂ ̂ ̂ ˜ ˜ ˜ [] ⌊ ⌋ ⌈ ⌉ { }

U+0070 - 007F √ √ √ √ √ √ √ w x y ︷ ︷ ︸ ︸ ~ �

Frank Mittelbach

TUGboat, Volume 42 (2021), No. 3 295

B.4 Latin Modern Math compared to New Computer Modern Math

This example shows the extra symbols available in New Computer Modern Math
in comparison to Latin Modern Math as the base font. We use the following setup
(including settings for the grayscaled TUGboat output, as an example of color overrides):
\displayfonttable[hex-digits=head+foot, range-end=1FFFF,

compare-with=New Computer Modern Math,
title-format=\caption{Latin Modern Math compared to

New Computer Modern Math},
title-format-cont=\caption{LM Math vs.\ NewCM Math,

\emph{cont.}},
compare-color=black, compare-bgcolor=black!5,
missing-glyph-color=black!50, color=black!75]

{Latin Modern Math}

That is, glyphs only in NewCM are shown with a light gray background.
We also extended the range to cover U+10000 to U+1FFFF in order to include the
Unicode Math alphabets.

Table 6: Latin Modern Math compared to New Computer Modern Math

0 1 2 3 4 5 6 7 8 9 A B C D E F

Basic Latin
U+0020 - 002F ! " # $ % & ' () * + , - . /
U+0030 - 003F 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
U+0040 - 004F @ A B C D E F G H I J K L M N O
U+0050 - 005F P Q R S T U V W X Y Z [\] ^ _
U+0060 - 006F ` a b c d e f g h i j k l m n o
U+0070 - 007F p q r s t u v w x y z { | } ~ �

Latin-1 Supplement
U+00A0 - 00AF ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ® ¯
U+00B0 - 00BF ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼ ½ ¾ ¿
U+00C0 - 00CF À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï
U+00D0 - 00DF Ð Ñ Ò Ó Ô Õ Ö × Ø Ù Ú Û Ü Ý Þ ß
U+00E0 - 00EF à á â ã ä å æ ç è é ê ë ì í î ï
U+00F0 - 00FF ð ñ ò ó ô õ ö ÷ ø ù ú û ü ý þ ÿ

Latin Extended-A
U+0100 - 010F Ā ā Ă ă Ą ą Ć ć Ĉ ĉ Ċ ċ Č č Ď ď
U+0110 - 011F Đ đ Ē ē Ĕ ĕ Ė ė Ę ę Ě ě Ĝ ĝ Ğ ğ
U+0120 - 012F Ġ ġ Ģ ģ Ĥ ĥ Ħ ħ Ĩ ĩ Ī ī Ĭ ĭ Į į
U+0130 - 013F İ ı IJ ij Ĵ ĵ Ķ ķ ĸ Ĺ ĺ Ļ ļ Ľ ľ Ŀ
U+0140 - 014F ŀ Ł ł Ń ń Ņ ņ Ň ň ŉ Ŋ ŋ Ō ō Ŏ ŏ
U+0150 - 015F Ő ő Œ œ Ŕ ŕ Ŗ ŗ Ř ř Ś ś Ŝ ŝ Ş ş
U+0160 - 016F Š š Ţ ţ Ť ť Ŧ ŧ Ũ ũ Ū ū Ŭ ŭ Ů ů
U+0170 - 017F Ű ű Ų ų Ŵ ŵ Ŷ ŷ Ÿ Ź ź Ż ż Ž ž ſ

Latin Extended-B
U+0180 - 018F ƀ - - - - - - - - - - - - - - -

0 1 2 3 4 5 6 7 8 9 A B C D E F

The unicodefonttable package

296 TUGboat, Volume 42 (2021), No. 3

Table 6: LM Math vs. NewCM Math, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+01A0 - 01AF Ơ ơ - - - - - - - - - - - - - Ư
U+01B0 - 01BF ư - - - - Ƶ - - - - - - - - - -

U+0210 - 021F - - - - - - - - Ș ș Ț ț - - - -

U+0230 - 023F - - - - - - - ȷ - - - - - - - -

Spacing Modifier Letters
U+02C0 - 02CF - - - - - - ˆ ˇ - - - - - - - -

U+02D0 - 02DF - - - - - - - - ˘ ˙ ˚ ˛ ˜ ˝ - -

Combining Diacritical Marks
U+0300 - 030F ̀ ́ ̂ ̃ ̄ ̅ ̆ ̇ ̈ ̉ ̊ ̋ ̌ - - ̏
U+0310 - 031F ̐ ̑ ̒ - - ̕ - - - - ̚ - - - - -

U+0320 - 032F - - - ̣ - - ̦ - - - - - ̬ ̭ ̮ ̯
U+0330 - 033F ̰ ̱ ̲ ̳ - - - - ̸ - - - - - - ̿
U+0340 - 034F - - - - - - - - - - - - - ͍ - -

Greek and Coptic
U+0390 - 039F - Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο
U+03A0 - 03AF Π Ρ - Σ Τ Υ Φ Χ Ψ Ω - - - - - -

U+03B0 - 03BF - α β γ δ ε ζ η θ ι κ λ μ ν ξ ο
U+03C0 - 03CF π ρ ς σ τ υ φ χ ψ ω - - - - - -

U+03D0 - 03DF - ϑ - - - ϕ ϖ - - - - - Ϝ ϝ - -

U+03F0 - 03FF ϰ ϱ - - ϴ ϵ ϶ - - - - - - - - -

Latin Extended Additional
U+1EA0 - 1EAF Ạ ạ Ả ả Ấ ấ Ầ ầ Ẩ ẩ Ẫ ẫ Ậ ậ Ắ ắ
U+1EB0 - 1EBF Ằ ằ Ẳ ẳ Ẵ ẵ Ặ ặ Ẹ ẹ Ẻ ẻ Ẽ ẽ Ế ế
U+1EC0 - 1ECF Ề ề Ể ể Ễ ễ Ệ ệ Ỉ ỉ Ị ị Ọ ọ Ỏ ỏ
U+1ED0 - 1EDF Ố ố Ồ ồ Ổ ổ Ỗ ỗ Ộ ộ Ớ ớ Ờ ờ Ở ở
U+1EE0 - 1EEF Ỡ ỡ Ợ ợ Ụ ụ Ủ ủ Ứ ứ Ừ ừ Ử ử Ữ ữ
U+1EF0 - 1EFF Ự ự Ỳ ỳ Ỵ ỵ Ỷ ỷ Ỹ ỹ - - - - - -

General Punctuation
U+2000 - 200F                       - -

U+2010 - 201F ‐ ‑ ‒ – — ― ‖ ‗ ‘ ’ ‚ ‛ “ ” „ ‟
U+2020 - 202F † ‡ • ‣ ․ ‥ … ‧ - - - - - - -  
U+2030 - 203F ‰ ‱ ′ ″ ‴ ‵ ‶ ‷ ‸ ‹ › ※ ‼ ‽ ‾ ‿
U+2040 - 204F ⁀ ⁁ ⁂ ⁃ ⁄ ⁅ ⁆ ⁇ ⁈ ⁉ ⁊ ⁋ ⁌ ⁍ ⁎ ⁏
U+2050 - 205F ⁐ ⁑ ⁒ ⁓ ⁔ ⁕ ⁖ ⁗ ⁘ ⁙ ⁚ ⁛ ⁜ ⁝ ⁞  
U+2060 - 206F - - - - - - - - - - -

Currency Symbols
U+20A0 - 20AF - ₡ - - - - - - - - - - € - - -

Combining Diacritical Marks for Symbols
U+20D0 - 20DF ⃐ ⃑ ⃒ ⃓ ⃔ ⃕ ⃖ ⃗ ⃘ - - ⃛ ⃜ ⃝ ⃞ ⃟

0 1 2 3 4 5 6 7 8 9 A B C D E F

Frank Mittelbach

TUGboat, Volume 42 (2021), No. 3 297

Table 6: LM Math vs. NewCM Math, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+20E0 - 20EF - ⃡ - - ⃤ ⃥ ⃦ ⃧ ⃨ ⃩ ⃪ ⃫ ⃬ ⃭ ⃮ ⃯
U+20F0 - 20FF ⃰ - - - - - - - - - - - - - - -

Letterlike Symbols
U+2100 - 210F ℀ ℁ ℂ ℃ ℄ ℅ ℆ ℇ ℈ ℉ ℊ ℋ ℌ ℍ ℎ ℏ
U+2110 - 211F ℐ ℑ ℒ ℓ ℔ ℕ № ℗ ℘ ℙ ℚ ℛ ℜ ℝ ℞ ℟
U+2120 - 212F ℠ ℡ ™ ℣ ℤ ℥ Ω ℧ ℨ ℩ K Å ℬ ℭ ℮ ℯ
U+2130 - 213F ℰ ℱ Ⅎ ℳ ℴ ℵ ℶ ℷ ℸ ℹ ℺ ℻ ℼ ℽ ℾ ℿ
U+2140 - 214F ⅀ ⅁ ⅂ ⅃ ⅄ ⅅ ⅆ ⅇ ⅈ ⅉ ⅊ ⅋ ⅌ ⅍ ⅎ ⅏

Arrows
U+2190 - 219F ← ↑ → ↓ ↔ ↕ ↖ ↗ ↘ ↙ ↚ ↛ ↜ ↝ ↞ ↟
U+21A0 - 21AF ↠ ↡ ↢ ↣ ↤ ↥ ↦ ↧ ↨ ↩ ↪ ↫ ↬ ↭ ↮ ↯
U+21B0 - 21BF ↰ ↱ ↲ ↳ ↴ ↵ ↶ ↷ ↸ ↹ ↺ ↻ ↼ ↽ ↾ ↿
U+21C0 - 21CF ⇀ ⇁ ⇂ ⇃ ⇄ ⇅ ⇆ ⇇ ⇈ ⇉ ⇊ ⇋ ⇌ ⇍ ⇎ ⇏
U+21D0 - 21DF ⇐ ⇑ ⇒ ⇓ ⇔ ⇕ ⇖ ⇗ ⇘ ⇙ ⇚ ⇛ ⇜ ⇝ ⇞ ⇟
U+21E0 - 21EF ⇠ ⇡ ⇢ ⇣ ⇤ ⇥ ⇦ ⇧ ⇨ ⇩ ⇪ ⇫ ⇬ ⇭ ⇮ ⇯
U+21F0 - 21FF ⇰ ⇱ ⇲ ⇳ ⇴ ⇵ ⇶ ⇷ ⇸ ⇹ ⇺ ⇻ ⇼ ⇽ ⇾ ⇿

Mathematical Operators
U+2200 - 220F ∀ ∁ ∂ ∃ ∄ ∅ ∆ ∇ ∈ ∉ ∊ ∋ ∌ ∍ ∎ ∏
U+2210 - 221F ∐ ∑ − ∓ ∔ ∕ ∖ ∗ ∘ ∙ √ ∛ ∜ ∝ ∞ ∟
U+2220 - 222F ∠ ∡ ∢ ∣ ∤ ∥ ∦ ∧ ∨ ∩ ∪ ∫ ∬ ∭ ∮ ∯
U+2230 - 223F ∰ ∱ ∲ ∳ ∴ ∵ ∶ ∷ ∸ ∹ ∺ ∻ ∼ ∽ ∾ ∿
U+2240 - 224F ≀ ≁ ≂ ≃ ≄ ≅ ≆ ≇ ≈ ≉ ≊ ≋ ≌ ≍ ≎ ≏
U+2250 - 225F ≐ ≑ ≒ ≓ ≔ ≕ ≖ ≗ ≘ ≙ ≚ ≛ ≜ ≝ ≞ ≟
U+2260 - 226F ≠ ≡ ≢ ≣ ≤ ≥ ≦ ≧ ≨ ≩ ≪ ≫ ≬ ≭ ≮ ≯
U+2270 - 227F ≰ ≱ ≲ ≳ ≴ ≵ ≶ ≷ ≸ ≹ ≺ ≻ ≼ ≽ ≾ ≿
U+2280 - 228F ⊀ ⊁ ⊂ ⊃ ⊄ ⊅ ⊆ ⊇ ⊈ ⊉ ⊊ ⊋ ⊌ ⊍ ⊎ ⊏
U+2290 - 229F ⊐ ⊑ ⊒ ⊓ ⊔ ⊕ ⊖ ⊗ ⊘ ⊙ ⊚ ⊛ ⊜ ⊝ ⊞ ⊟
U+22A0 - 22AF ⊠ ⊡ ⊢ ⊣ ⊤ ⊥ ⊦ ⊧ ⊨ ⊩ ⊪ ⊫ ⊬ ⊭ ⊮ ⊯
U+22B0 - 22BF ⊰ ⊱ ⊲ ⊳ ⊴ ⊵ ⊶ ⊷ ⊸ ⊹ ⊺ ⊻ ⊼ ⊽ ⊾ ⊿
U+22C0 - 22CF ⋀ ⋁ ⋂ ⋃ ⋄ ⋅ ⋆ ⋇ ⋈ ⋉ ⋊ ⋋ ⋌ ⋍ ⋎ ⋏
U+22D0 - 22DF ⋐ ⋑ ⋒ ⋓ ⋔ ⋕ ⋖ ⋗ ⋘ ⋙ ⋚ ⋛ ⋜ ⋝ ⋞ ⋟
U+22E0 - 22EF ⋠ ⋡ ⋢ ⋣ ⋤ ⋥ ⋦ ⋧ ⋨ ⋩ ⋪ ⋫ ⋬ ⋭ ⋮ ⋯
U+22F0 - 22FF ⋰ ⋱ ⋲ ⋳ ⋴ ⋵ ⋶ ⋷ ⋸ ⋹ ⋺ ⋻ ⋼ ⋽ ⋾ ⋿

Miscellaneous Technical
U+2300 - 230F ⌀ ⌁ ⌂ ⌃ ⌄ ⌅ ⌆ ⌇ ⌈ ⌉ ⌊ ⌋ ⌌ ⌍ ⌎ ⌏
U+2310 - 231F ⌐ ⌑ ⌒ ⌓ ⌔ ⌕ ⌖ ⌗ ⌘ ⌙ ⌚ ⌛ ⌜ ⌝ ⌞ ⌟
U+2320 - 232F ⌠ ⌡ ⌢ ⌣ ⌤ ⌥ ⌦ ⌧ ⌨ 〈 〉 ⌫ ⌬ ⌭ ⌮ ⌯
U+2330 - 233F ⌰ ⌱ ⌲ ⌳ ⌴ ⌵ ⌶ ⌷ ⌸ ⌹ ⌺ ⌻ ⌼ ⌽ ⌾ ⌿
U+2340 - 234F ⍀ ⍁ ⍂ ⍃ ⍄ ⍅ ⍆ ⍇ ⍈ ⍉ ⍊ ⍋ ⍌ ⍍ ⍎ ⍏
U+2350 - 235F ⍐ ⍑ ⍒ ⍓ ⍔ ⍕ ⍖ ⍗ ⍘ ⍙ ⍚ ⍛ ⍜ ⍝ ⍞ ⍟
U+2360 - 236F ⍠ ⍡ ⍢ ⍣ ⍤ ⍥ ⍦ ⍧ ⍨ ⍩ ⍪ ⍫ ⍬ ⍭ ⍮ ⍯

0 1 2 3 4 5 6 7 8 9 A B C D E F

The unicodefonttable package

298 TUGboat, Volume 42 (2021), No. 3

Table 6: LM Math vs. NewCM Math, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+2370 - 237F ⍰ ⍱ ⍲ ⍳ ⍴ ⍵ ⍶ ⍷ ⍸ ⍹ ⍺ ⍻ ⍼ ⍽ ⍾ ⍿
U+2380 - 238F ⎀ ⎁ ⎂ ⎃ ⎄ ⎅ ⎆ ⎇ ⎈ ⎉ ⎊ ⎋ ⎌ ⎍ ⎎ ⎏
U+2390 - 239F ⎐ ⎑ ⎒ ⎓ ⎔ ⎕ ⎖ ⎗ ⎘ ⎙ ⎚ ⎛ ⎜ ⎝ ⎞ ⎟
U+23A0 - 23AF ⎠ ⎡ ⎢ ⎣ ⎤ ⎥ ⎦ ⎧ ⎨ ⎩ ⎪ ⎫ ⎬ ⎭ ⎮ ⎯
U+23B0 - 23BF ⎰ ⎱ ⎲ ⎳ ⎴ ⎵ ⎶ ⎷ ⎸ ⎹ ⎺ ⎻ ⎼ ⎽ ⎾ ⎿
U+23C0 - 23CF ⏀ ⏁ ⏂ ⏃ ⏄ ⏅ ⏆ ⏇ ⏈ ⏉ ⏊ ⏋ ⏌ ⏍ ⏎ ⏏
U+23D0 - 23DF ⏐ ⏑ ⏒ ⏓ ⏔ ⏕ ⏖ ⏗ ⏘ ⏙ ⏚ ⏛ ⏜ ⏝ ⏞ ⏟
U+23E0 - 23EF ⏠ ⏡ ⏢ ⏣ ⏤ ⏥ ⏦ ⏧ ⏨ ⏩ ⏪ ⏫ ⏬ ⏭ ⏮ ⏯
U+23F0 - 23FF ⏰ ⏱ ⏲ ⏳ ⏴ ⏵ ⏶ ⏷ ⏸ ⏹ ⏺ ⏻ ⏼ ⏽ ⏾ ⏿

Control Pictures
U+2420 - 242F - - ␢ ␣ - - - - - - - - - - - -

Box Drawing
U+2500 - 250F ─ ━ │ ┃ ┄ ┅ ┆ ┇ ┈ ┉ ┊ ┋ ┌ ┍ ┎ ┏
U+2510 - 251F ┐ ┑ ┒ ┓ └ ┕ ┖ ┗ ┘ ┙ ┚ ┛ ├ ┝ ┞ ┟
U+2520 - 252F ┠ ┡ ┢ ┣ ┤ ┥ ┦ ┧ ┨ ┩ ┪ ┫ ┬ ┭ ┮ ┯
U+2530 - 253F ┰ ┱ ┲ ┳ ┴ ┵ ┶ ┷ ┸ ┹ ┺ ┻ ┼ ┽ ┾ ┿
U+2540 - 254F ╀ ╁ ╂ ╃ ╄ ╅ ╆ ╇ ╈ ╉ ╊ ╋ ╌ ╍ ╎ ╏
U+2550 - 255F ═ ║ ╒ ╓ ╔ ╕ ╖ ╗ ╘ ╙ ╚ ╛ ╜ ╝ ╞ ╟
U+2560 - 256F ╠ ╡ ╢ ╣ ╤ ╥ ╦ ╧ ╨ ╩ ╪ ╫ ╬ ╭ ╮ ╯
U+2570 - 257F ╰ ╱ ╲ ╳ ╴ ╵ ╶ ╷ ╸ ╹ ╺ ╻ ╼ ╽ ╾ ╿

Block Elements
U+2580 - 258F ▀ ▁ ▂ ▃ ▄ ▅ ▆ ▇ █ ▉ ▊ ▋ ▌ ▍ ▎ ▏
U+2590 - 259F ▐ ░ ▒ ▓ ▔ ▕ ▖ ▗ ▘ ▙ ▚ ▛ ▜ ▝ ▞ ▟

Geometric Shapes
U+25A0 - 25AF ■ □ ▢ ▣ ▤ ▥ ▦ ▧ ▨ ▩ ▪ ▫ ▬ ▭ ▮ ▯
U+25B0 - 25BF ▰ ▱ ▲ △ ▴ ▵ ▶ ▷ ▸ ▹ ► ▻ ▼ ▽ ▾ ▿
U+25C0 - 25CF ◀ ◁ ◂ ◃ ◄ ◅ ◆ ◇ ◈ ◉ ◊ ○ ◌ ◍ ◎ ●
U+25D0 - 25DF ◐ ◑ ◒ ◓ ◔ ◕ ◖ ◗ ◘ ◙ ◚ ◛ ◜ ◝ ◞ ◟
U+25E0 - 25EF ◠ ◡ ◢ ◣ ◤ ◥ ◦ ◧ ◨ ◩ ◪ ◫ ◬ ◭ ◮ ◯
U+25F0 - 25FF ◰ ◱ ◲ ◳ ◴ ◵ ◶ ◷ ◸ ◹ ◺ ◻ ◼ ◽ ◾ ◿

Miscellaneous Shapes
U+2600 - 260F ☀ - - - - ★ ☆ - - ☉ - - - - - -

U+2620 - 262F - ☡ - - - - - - - - - - - - - -

U+2630 - 263F - - - - - - - - - ☹ ☺ ☻ ☼ ☽ ☾ -

U+2640 - 264F ♀ - ♂ - - - - - - - - - - - - -

U+2660 - 266F ♠ ♡ ♢ ♣ ♤ ♥ ♦ ♧ - ♩ ♪ ♫ - ♭ ♮ ♯
0 1 2 3 4 5 6 7 8 9 A B C D E F

Frank Mittelbach

TUGboat, Volume 42 (2021), No. 3 299

Table 6: LM Math vs. NewCM Math, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+2670 - 267F - - - - - - - - - - - - - - ♾ -

U+2680 - 268F ⚀ ⚁ ⚂ ⚃ ⚄ ⚅ ⚆ ⚇ ⚈ ⚉ - - - - - -

U+26A0 - 26AF - - - - - ⚥ - - - - ⚪ ⚫ ⚬ ⚭ ⚮ -

U+26B0 - 26BF - - ⚲ - - - - - - - - - - - - -

Dingbats
U+2710 - 271F - - - ✓ - - - - - - - - - - - -

U+2720 - 272F ✠ - - - - - - - - - ✪ - - - - -

U+2730 - 273F - - - - - - ✶ - - - - - - ✽ - -

U+2750 - 275F - - - - - - - - - - ❚ - - - - -

U+2770 - 277F - - ❲ ❳ - - - - - - - - - - - -

U+2790 - 279F - - - - - - - - - - - ➛ - - - -

U+27A0 - 27AF - ➡ - - - - - - - - - - - - - -

Miscellaneous Mathematical Symbols-A
U+27C0 - 27CF ⟀ ⟁ ⟂ ⟃ ⟄ ⟅ ⟆ ⟇ ⟈ ⟉ ⟊ ⟋ ⟌ ⟍ ⟎ ⟏
U+27D0 - 27DF ⟐ ⟑ ⟒ ⟓ ⟔ ⟕ ⟖ ⟗ ⟘ ⟙ ⟚ ⟛ ⟜ ⟝ ⟞ ⟟
U+27E0 - 27EF ⟠ ⟡ ⟢ ⟣ ⟤ ⟥ ⟦ ⟧ ⟨ ⟩ ⟪ ⟫ ⟬ ⟭ ⟮ ⟯

Supplemental Arrows-A
U+27F0 - 27FF ⟰ ⟱ ⟲ ⟳ ⟴ ⟵ ⟶ ⟷ ⟸ ⟹ ⟺ ⟻ ⟼ ⟽ ⟾ ⟿

Supplemental Arrows-B
U+2900 - 290F ⤀ ⤁ ⤂ ⤃ ⤄ ⤅ ⤆ ⤇ ⤈ ⤉ ⤊ ⤋ ⤌ ⤍ ⤎ ⤏
U+2910 - 291F ⤐ ⤑ ⤒ ⤓ ⤔ ⤕ ⤖ ⤗ ⤘ ⤙ ⤚ ⤛ ⤜ ⤝ ⤞ ⤟
U+2920 - 292F ⤠ ⤡ ⤢ ⤣ ⤤ ⤥ ⤦ ⤧ ⤨ ⤩ ⤪ ⤫ ⤬ ⤭ ⤮ ⤯
U+2930 - 293F ⤰ ⤱ ⤲ ⤳ ⤴ ⤵ ⤶ ⤷ ⤸ ⤹ ⤺ ⤻ ⤼ ⤽ ⤾ ⤿
U+2940 - 294F ⥀ ⥁ ⥂ ⥃ ⥄ ⥅ ⥆ ⥇ ⥈ ⥉ ⥊ ⥋ ⥌ ⥍ ⥎ ⥏
U+2950 - 295F ⥐ ⥑ ⥒ ⥓ ⥔ ⥕ ⥖ ⥗ ⥘ ⥙ ⥚ ⥛ ⥜ ⥝ ⥞ ⥟
U+2960 - 296F ⥠ ⥡ ⥢ ⥣ ⥤ ⥥ ⥦ ⥧ ⥨ ⥩ ⥪ ⥫ ⥬ ⥭ ⥮ ⥯
U+2970 - 297F ⥰ ⥱ ⥲ ⥳ ⥴ ⥵ ⥶ ⥷ ⥸ ⥹ ⥺ ⥻ ⥼ ⥽ ⥾ ⥿

Miscellaneous Mathematical Symbols-B
U+2980 - 298F ⦀ ⦁ ⦂ ⦃ ⦄ ⦅ ⦆ ⦇ ⦈ ⦉ ⦊ ⦋ ⦌ ⦍ ⦎ ⦏
U+2990 - 299F ⦐ ⦑ ⦒ ⦓ ⦔ ⦕ ⦖ ⦗ ⦘ ⦙ ⦚ ⦛ ⦜ ⦝ ⦞ ⦟
U+29A0 - 29AF ⦠ ⦡ ⦢ ⦣ ⦤ ⦥ ⦦ ⦧ ⦨ ⦩ ⦪ ⦫ ⦬ ⦭ ⦮ ⦯
U+29B0 - 29BF ⦰ ⦱ ⦲ ⦳ ⦴ ⦵ ⦶ ⦷ ⦸ ⦹ ⦺ ⦻ ⦼ ⦽ ⦾ ⦿
U+29C0 - 29CF ⧀ ⧁ ⧂ ⧃ ⧄ ⧅ ⧆ ⧇ ⧈ ⧉ ⧊ ⧋ ⧌ ⧍ ⧎ ⧏
U+29D0 - 29DF ⧐ ⧑ ⧒ ⧓ ⧔ ⧕ ⧖ ⧗ ⧘ ⧙ ⧚ ⧛ ⧜ ⧝ ⧞ ⧟
U+29E0 - 29EF ⧠ ⧡ ⧢ ⧣ ⧤ ⧥ ⧦ ⧧ ⧨ ⧩ ⧪ ⧫ ⧬ ⧭ ⧮ ⧯
U+29F0 - 29FF ⧰ ⧱ ⧲ ⧳ ⧴ ⧵ ⧶ ⧷ ⧸ ⧹ ⧺ ⧻ ⧼ ⧽ ⧾ ⧿

0 1 2 3 4 5 6 7 8 9 A B C D E F

The unicodefonttable package

300 TUGboat, Volume 42 (2021), No. 3

Table 6: LM Math vs. NewCM Math, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

Supplemental Mathematical Operators
U+2A00 - 2A0F ⨀ ⨁ ⨂ ⨃ ⨄ ⨅ ⨆ ⨇ ⨈ ⨉ ⨊ ⨋ ⨌ ⨍ ⨎ ⨏
U+2A10 - 2A1F ⨐ ⨑ ⨒ ⨓ ⨔ ⨕ ⨖ ⨗ ⨘ ⨙ ⨚ ⨛ ⨜ ⨝ ⨞ ⨟
U+2A20 - 2A2F ⨠ ⨡ ⨢ ⨣ ⨤ ⨥ ⨦ ⨧ ⨨ ⨩ ⨪ ⨫ ⨬ ⨭ ⨮ ⨯
U+2A30 - 2A3F ⨰ ⨱ ⨲ ⨳ ⨴ ⨵ ⨶ ⨷ ⨸ ⨹ ⨺ ⨻ ⨼ ⨽ ⨾ ⨿
U+2A40 - 2A4F ⩀ ⩁ ⩂ ⩃ ⩄ ⩅ ⩆ ⩇ ⩈ ⩉ ⩊ ⩋ ⩌ ⩍ ⩎ ⩏
U+2A50 - 2A5F ⩐ ⩑ ⩒ ⩓ ⩔ ⩕ ⩖ ⩗ ⩘ ⩙ ⩚ ⩛ ⩜ ⩝ ⩞ ⩟
U+2A60 - 2A6F ⩠ ⩡ ⩢ ⩣ ⩤ ⩥ ⩦ ⩧ ⩨ ⩩ ⩪ ⩫ ⩬ ⩭ ⩮ ⩯
U+2A70 - 2A7F ⩰ ⩱ ⩲ ⩳ ⩴ ⩵ ⩶ ⩷ ⩸ ⩹ ⩺ ⩻ ⩼ ⩽ ⩾ ⩿
U+2A80 - 2A8F ⪀ ⪁ ⪂ ⪃ ⪄ ⪅ ⪆ ⪇ ⪈ ⪉ ⪊ ⪋ ⪌ ⪍ ⪎ ⪏
U+2A90 - 2A9F ⪐ ⪑ ⪒ ⪓ ⪔ ⪕ ⪖ ⪗ ⪘ ⪙ ⪚ ⪛ ⪜ ⪝ ⪞ ⪟
U+2AA0 - 2AAF ⪠ ⪡ ⪢ ⪣ ⪤ ⪥ ⪦ ⪧ ⪨ ⪩ ⪪ ⪫ ⪬ ⪭ ⪮ ⪯
U+2AB0 - 2ABF ⪰ ⪱ ⪲ ⪳ ⪴ ⪵ ⪶ ⪷ ⪸ ⪹ ⪺ ⪻ ⪼ ⪽ ⪾ ⪿
U+2AC0 - 2ACF ⫀ ⫁ ⫂ ⫃ ⫄ ⫅ ⫆ ⫇ ⫈ ⫉ ⫊ ⫋ ⫌ ⫍ ⫎ ⫏
U+2AD0 - 2ADF ⫐ ⫑ ⫒ ⫓ ⫔ ⫕ ⫖ ⫗ ⫘ ⫙ ⫚ ⫛ ⫝̸ ⫝ ⫞ ⫟
U+2AE0 - 2AEF ⫠ ⫡ ⫢ ⫣ ⫤ ⫥ ⫦ ⫧ ⫨ ⫩ ⫪ ⫫ ⫬ ⫭ ⫮ ⫯
U+2AF0 - 2AFF ⫰ ⫱ ⫲ ⫳ ⫴ ⫵ ⫶ ⫷ ⫸ ⫹ ⫺ ⫻ ⫼ ⫽ ⫾ ⫿

Miscellaneous Symbols and Arrows
U+2B00 - 2B0F ⬀ ⬁ ⬂ ⬃ ⬄ ⬅ ⬆ ⬇ ⬈ ⬉ ⬊ ⬋ ⬌ ⬍ ⬎ ⬏
U+2B10 - 2B1F ⬐ ⬑ ⬒ ⬓ ⬔ ⬕ ⬖ ⬗ ⬘ ⬙ ⬚ ⬛ ⬜ ⬝ ⬞ ⬟
U+2B20 - 2B2F ⬠ ⬡ ⬢ ⬣ ⬤ ⬥ ⬦ ⬧ ⬨ ⬩ ⬪ ⬫ ⬬ ⬭ ⬮ ⬯
U+2B30 - 2B3F ⬰ ⬱ ⬲ ⬳ ⬴ ⬵ ⬶ ⬷ ⬸ ⬹ ⬺ ⬻ ⬼ ⬽ ⬾ ⬿
U+2B40 - 2B4F ⭀ ⭁ ⭂ ⭃ ⭄ ⭅ ⭆ ⭇ ⭈ ⭉ ⭊ ⭋ ⭌ ⭍ ⭎ ⭏
U+2B50 - 2B5F ⭐ ⭑ ⭒ ⭓ ⭔ ⭕ ⭖ ⭗ ⭘ ⭙ ⭚ ⭛ ⭜ ⭝ ⭞ ⭟
U+2B60 - 2B6F ⭠ ⭡ ⭢ ⭣ ⭤ ⭥ ⭦ ⭧ ⭨ ⭩ ⭪ ⭫ ⭬ ⭭ ⭮ ⭯
U+2B70 - 2B7F ⭰ ⭱ ⭲ ⭳ - - ⭶ ⭷ ⭸ ⭹ ⭺ ⭻ ⭼ ⭽ ⭾ ⭿
U+2B80 - 2B8F ⮀ ⮁ ⮂ ⮃ ⮄ ⮅ ⮆ ⮇ ⮈ ⮉ ⮊ ⮋ ⮌ ⮍ ⮎ ⮏
U+2B90 - 2B9F ⮐ ⮑ ⮒ ⮓ ⮔ ⮕ - ⮗ ⮘ ⮙ ⮚ ⮛ ⮜ ⮝ ⮞ ⮟
U+2BA0 - 2BAF ⮠ ⮡ ⮢ ⮣ ⮤ ⮥ ⮦ ⮧ ⮨ ⮩ ⮪ ⮫ ⮬ ⮭ ⮮ ⮯
U+2BB0 - 2BBF ⮰ ⮱ ⮲ ⮳ ⮴ ⮵ ⮶ ⮷ ⮸ ⮹ ⮺ ⮻ ⮼ ⮽ ⮾ ⮿
U+2BC0 - 2BCF ⯀ ⯁ ⯂ ⯃ ⯄ ⯅ ⯆ ⯇ ⯈ ⯉ ⯊ ⯋ ⯌ ⯍ ⯎ ⯏
U+2BD0 - 2BDF ⯐ ⯑ ⯒ ⯓ ⯔ ⯕ ⯖ ⯗ ⯘ ⯙ ⯚ ⯛ ⯜ ⯝ ⯞ ⯟
U+2BE0 - 2BEF ⯠ ⯡ ⯢ ⯣ ⯤ ⯥ ⯦ ⯧ ⯨ ⯩ ⯪ ⯫ ⯬ ⯭ ⯮ ⯯
U+2BF0 - 2BFF ⯰ ⯱ ⯲ ⯳ ⯴ ⯵ ⯶ ⯷ ⯸ ⯹ ⯺ ⯻ ⯼ ⯽ ⯾ ⯿

Supplemental Punctuation
U+2E10 - 2E1F - - - - - - - - ⸘ - - - - - - -

0 1 2 3 4 5 6 7 8 9 A B C D E F

Frank Mittelbach

TUGboat, Volume 42 (2021), No. 3 301

Table 6: LM Math vs. NewCM Math, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

CJK Symbols and Punctuation
U+3010 - 301F - - 〒 - - - 〖 〗 - - - - - - - -

U+3030 - 303F 〰 - - - - - - - - - - - - - - -

Private Use Area
U+E000 - E00F � � � � � � � � � � � � � � � �
U+E010 - E01F � � � � � � � � � � � � � � � �
U+E020 - E02F � � � � � � � � � � � � � � � �
U+E030 - E03F � � � � - - - - - - - - - - - -

U+E040 - E04F - � � � � � � � � � � � � � � �
U+E050 - E05F � � � � � � � � � � � � � � � �
U+E060 - E06F � � � � � � � � � � � � � � � �
U+E070 - E07F � � � - - - - - - - - - - - - -

U+E370 - E37F - - - - - - ⨕ ⨖ - - - - - - - -

U+E390 - E39F - - - - - ⨐ - ⨒ ⨓ ⨔ ⨗ ⨑ - - - -

U+E3D0 - E3DF - - - ⨏ - - - - - - - - - - - -

U+EA50 - EA5F - - - - - - - ⨋ - - - - - - - -

Alphabetic Presentation Forms
U+FB00 - FB0F ff fi fl ffi ffl - - - - - - - - - - -

Arabic Presentation Forms-B
U+FEF0 - FEFF - - - - - - - - - - - - - - -

Mathematical Alphanumeric Symbols
U+1D400 - 1D40F 𝐀 𝐁 𝐂 𝐃 𝐄 𝐅 𝐆 𝐇 𝐈 𝐉 𝐊 𝐋 𝐌 𝐍 𝐎 𝐏
U+1D410 - 1D41F 𝐐 𝐑 𝐒 𝐓 𝐔 𝐕 𝐖 𝐗 𝐘 𝐙 𝐚 𝐛 𝐜 𝐝 𝐞 𝐟
U+1D420 - 1D42F 𝐠 𝐡 𝐢 𝐣 𝐤 𝐥 𝐦 𝐧 𝐨 𝐩 𝐪 𝐫 𝐬 𝐭 𝐮 𝐯
U+1D430 - 1D43F 𝐰 𝐱 𝐲 𝐳 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺 𝐻 𝐼 𝐽 𝐾 𝐿
U+1D440 - 1D44F 𝑀 𝑁 𝑂 𝑃 𝑄 𝑅 𝑆 𝑇 𝑈 𝑉 𝑊 𝑋 𝑌 𝑍 𝑎 𝑏
U+1D450 - 1D45F 𝑐 𝑑 𝑒 𝑓 𝑔 - 𝑖 𝑗 𝑘 𝑙 𝑚 𝑛 𝑜 𝑝 𝑞 𝑟
U+1D460 - 1D46F 𝑠 𝑡 𝑢 𝑣 𝑤 𝑥 𝑦 𝑧 𝑨 𝑩 𝑪 𝑫 𝑬 𝑭 𝑮 𝑯
U+1D470 - 1D47F 𝑰 𝑱 𝑲 𝑳 𝑴 𝑵 𝑶 𝑷 𝑸 𝑹 𝑺 𝑻 𝑼 𝑽 𝑾 𝑿
U+1D480 - 1D48F 𝒀 𝒁 𝒂 𝒃 𝒄 𝒅 𝒆 𝒇 𝒈 𝒉 𝒊 𝒋 𝒌 𝒍 𝒎 𝒏
U+1D490 - 1D49F 𝒐 𝒑 𝒒 𝒓 𝒔 𝒕 𝒖 𝒗 𝒘 𝒙 𝒚 𝒛 𝒜 - 𝒞 𝒟
U+1D4A0 - 1D4AF - - 𝒢 - - 𝒥 𝒦 - - 𝒩 𝒪 𝒫 𝒬 - 𝒮 𝒯
U+1D4B0 - 1D4BF 𝒰 𝒱 𝒲 𝒳 𝒴 𝒵 𝒶 𝒷 𝒸 𝒹 - 𝒻 - 𝒽 𝒾 𝒿
U+1D4C0 - 1D4CF 𝓀 𝓁 𝓂 𝓃 - 𝓅 𝓆 𝓇 𝓈 𝓉 𝓊 𝓋 𝓌 𝓍 𝓎 𝓏
U+1D4D0 - 1D4DF 𝓐 𝓑 𝓒 𝓓 𝓔 𝓕 𝓖 𝓗 𝓘 𝓙 𝓚 𝓛 𝓜 𝓝 𝓞 𝓟
U+1D4E0 - 1D4EF 𝓠 𝓡 𝓢 𝓣 𝓤 𝓥 𝓦 𝓧 𝓨 𝓩 𝓪 𝓫 𝓬 𝓭 𝓮 𝓯
U+1D4F0 - 1D4FF 𝓰 𝓱 𝓲 𝓳 𝓴 𝓵 𝓶 𝓷 𝓸 𝓹 𝓺 𝓻 𝓼 𝓽 𝓾 𝓿
U+1D500 - 1D50F 𝔀 𝔁 𝔂 𝔃 𝔄 𝔅 - 𝔇 𝔈 𝔉 𝔊 - - 𝔍 𝔎 𝔏
U+1D510 - 1D51F 𝔐 𝔑 𝔒 𝔓 𝔔 - 𝔖 𝔗 𝔘 𝔙 𝔚 𝔛 𝔜 - 𝔞 𝔟
U+1D520 - 1D52F 𝔠 𝔡 𝔢 𝔣 𝔤 𝔥 𝔦 𝔧 𝔨 𝔩 𝔪 𝔫 𝔬 𝔭 𝔮 𝔯

0 1 2 3 4 5 6 7 8 9 A B C D E F

The unicodefonttable package

302 TUGboat, Volume 42 (2021), No. 3

Table 6: LM Math vs. NewCM Math, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+1D530 - 1D53F 𝔰 𝔱 𝔲 𝔳 𝔴 𝔵 𝔶 𝔷 𝔸 𝔹 - 𝔻 𝔼 𝔽 𝔾 -

U+1D540 - 1D54F 𝕀 𝕁 𝕂 𝕃 𝕄 - 𝕆 - - - 𝕊 𝕋 𝕌 𝕍 𝕎 𝕏
U+1D550 - 1D55F 𝕐 - 𝕒 𝕓 𝕔 𝕕 𝕖 𝕗 𝕘 𝕙 𝕚 𝕛 𝕜 𝕝 𝕞 𝕟
U+1D560 - 1D56F 𝕠 𝕡 𝕢 𝕣 𝕤 𝕥 𝕦 𝕧 𝕨 𝕩 𝕪 𝕫 𝕬 𝕭 𝕮 𝕯
U+1D570 - 1D57F 𝕰 𝕱 𝕲 𝕳 𝕴 𝕵 𝕶 𝕷 𝕸 𝕹 𝕺 𝕻 𝕼 𝕽 𝕾 𝕿
U+1D580 - 1D58F 𝖀 𝖁 𝖂 𝖃 𝖄 𝖅 𝖆 𝖇 𝖈 𝖉 𝖊 𝖋 𝖌 𝖍 𝖎 𝖏
U+1D590 - 1D59F 𝖐 𝖑 𝖒 𝖓 𝖔 𝖕 𝖖 𝖗 𝖘 𝖙 𝖚 𝖛 𝖜 𝖝 𝖞 𝖟
U+1D5A0 - 1D5AF 𝖠 𝖡 𝖢 𝖣 𝖤 𝖥 𝖦 𝖧 𝖨 𝖩 𝖪 𝖫 𝖬 𝖭 𝖮 𝖯
U+1D5B0 - 1D5BF 𝖰 𝖱 𝖲 𝖳 𝖴 𝖵 𝖶 𝖷 𝖸 𝖹 𝖺 𝖻 𝖼 𝖽 𝖾 𝖿
U+1D5C0 - 1D5CF 𝗀 𝗁 𝗂 𝗃 𝗄 𝗅 𝗆 𝗇 𝗈 𝗉 𝗊 𝗋 𝗌 𝗍 𝗎 𝗏
U+1D5D0 - 1D5DF 𝗐 𝗑 𝗒 𝗓 𝗔 𝗕 𝗖 𝗗 𝗘 𝗙 𝗚 𝗛 𝗜 𝗝 𝗞 𝗟
U+1D5E0 - 1D5EF 𝗠 𝗡 𝗢 𝗣 𝗤 𝗥 𝗦 𝗧 𝗨 𝗩 𝗪 𝗫 𝗬 𝗭 𝗮 𝗯
U+1D5F0 - 1D5FF 𝗰 𝗱 𝗲 𝗳 𝗴 𝗵 𝗶 𝗷 𝗸 𝗹 𝗺 𝗻 𝗼 𝗽 𝗾 𝗿
U+1D600 - 1D60F 𝘀 𝘁 𝘂 𝘃 𝘄 𝘅 𝘆 𝘇 𝘈 𝘉 𝘊 𝘋 𝘌 𝘍 𝘎 𝘏
U+1D610 - 1D61F 𝘐 𝘑 𝘒 𝘓 𝘔 𝘕 𝘖 𝘗 𝘘 𝘙 𝘚 𝘛 𝘜 𝘝 𝘞 𝘟
U+1D620 - 1D62F 𝘠 𝘡 𝘢 𝘣 𝘤 𝘥 𝘦 𝘧 𝘨 𝘩 𝘪 𝘫 𝘬 𝘭 𝘮 𝘯
U+1D630 - 1D63F 𝘰 𝘱 𝘲 𝘳 𝘴 𝘵 𝘶 𝘷 𝘸 𝘹 𝘺 𝘻 𝘼 𝘽 𝘾 𝘿
U+1D640 - 1D64F 𝙀 𝙁 𝙂 𝙃 𝙄 𝙅 𝙆 𝙇 𝙈 𝙉 𝙊 𝙋 𝙌 𝙍 𝙎 𝙏
U+1D650 - 1D65F 𝙐 𝙑 𝙒 𝙓 𝙔 𝙕 𝙖 𝙗 𝙘 𝙙 𝙚 𝙛 𝙜 𝙝 𝙞 𝙟
U+1D660 - 1D66F 𝙠 𝙡 𝙢 𝙣 𝙤 𝙥 𝙦 𝙧 𝙨 𝙩 𝙪 𝙫 𝙬 𝙭 𝙮 𝙯
U+1D670 - 1D67F 𝙰 𝙱 𝙲 𝙳 𝙴 𝙵 𝙶 𝙷 𝙸 𝙹 𝙺 𝙻 𝙼 𝙽 𝙾 𝙿
U+1D680 - 1D68F 𝚀 𝚁 𝚂 𝚃 𝚄 𝚅 𝚆 𝚇 𝚈 𝚉 𝚊 𝚋 𝚌 𝚍 𝚎 𝚏
U+1D690 - 1D69F 𝚐 𝚑 𝚒 𝚓 𝚔 𝚕 𝚖 𝚗 𝚘 𝚙 𝚚 𝚛 𝚜 𝚝 𝚞 𝚟
U+1D6A0 - 1D6AF 𝚠 𝚡 𝚢 𝚣 𝚤 𝚥 - - 𝚨 𝚩 𝚪 𝚫 𝚬 𝚭 𝚮 𝚯
U+1D6B0 - 1D6BF 𝚰 𝚱 𝚲 𝚳 𝚴 𝚵 𝚶 𝚷 𝚸 𝚹 𝚺 𝚻 𝚼 𝚽 𝚾 𝚿
U+1D6C0 - 1D6CF 𝛀 𝛁 𝛂 𝛃 𝛄 𝛅 𝛆 𝛇 𝛈 𝛉 𝛊 𝛋 𝛌 𝛍 𝛎 𝛏
U+1D6D0 - 1D6DF 𝛐 𝛑 𝛒 𝛓 𝛔 𝛕 𝛖 𝛗 𝛘 𝛙 𝛚 𝛛 𝛜 𝛝 𝛞 𝛟
U+1D6E0 - 1D6EF 𝛠 𝛡 𝛢 𝛣 𝛤 𝛥 𝛦 𝛧 𝛨 𝛩 𝛪 𝛫 𝛬 𝛭 𝛮 𝛯
U+1D6F0 - 1D6FF 𝛰 𝛱 𝛲 𝛳 𝛴 𝛵 𝛶 𝛷 𝛸 𝛹 𝛺 𝛻 𝛼 𝛽 𝛾 𝛿
U+1D700 - 1D70F 𝜀 𝜁 𝜂 𝜃 𝜄 𝜅 𝜆 𝜇 𝜈 𝜉 𝜊 𝜋 𝜌 𝜍 𝜎 𝜏
U+1D710 - 1D71F 𝜐 𝜑 𝜒 𝜓 𝜔 𝜕 𝜖 𝜗 𝜘 𝜙 𝜚 𝜛 𝜜 𝜝 𝜞 𝜟
U+1D720 - 1D72F 𝜠 𝜡 𝜢 𝜣 𝜤 𝜥 𝜦 𝜧 𝜨 𝜩 𝜪 𝜫 𝜬 𝜭 𝜮 𝜯
U+1D730 - 1D73F 𝜰 𝜱 𝜲 𝜳 𝜴 𝜵 𝜶 𝜷 𝜸 𝜹 𝜺 𝜻 𝜼 𝜽 𝜾 𝜿
U+1D740 - 1D74F 𝝀 𝝁 𝝂 𝝃 𝝄 𝝅 𝝆 𝝇 𝝈 𝝉 𝝊 𝝋 𝝌 𝝍 𝝎 𝝏
U+1D750 - 1D75F 𝝐 𝝑 𝝒 𝝓 𝝔 𝝕 𝝖 𝝗 𝝘 𝝙 𝝚 𝝛 𝝜 𝝝 𝝞 𝝟
U+1D760 - 1D76F 𝝠 𝝡 𝝢 𝝣 𝝤 𝝥 𝝦 𝝧 𝝨 𝝩 𝝪 𝝫 𝝬 𝝭 𝝮 𝝯
U+1D770 - 1D77F 𝝰 𝝱 𝝲 𝝳 𝝴 𝝵 𝝶 𝝷 𝝸 𝝹 𝝺 𝝻 𝝼 𝝽 𝝾 𝝿
U+1D780 - 1D78F 𝞀 𝞁 𝞂 𝞃 𝞄 𝞅 𝞆 𝞇 𝞈 𝞉 𝞊 𝞋 𝞌 𝞍 𝞎 𝞏
U+1D790 - 1D79F 𝞐 𝞑 𝞒 𝞓 𝞔 𝞕 𝞖 𝞗 𝞘 𝞙 𝞚 𝞛 𝞜 𝞝 𝞞 𝞟
U+1D7A0 - 1D7AF 𝞠 𝞡 𝞢 𝞣 𝞤 𝞥 𝞦 𝞧 𝞨 𝞩 𝞪 𝞫 𝞬 𝞭 𝞮 𝞯
U+1D7B0 - 1D7BF 𝞰 𝞱 𝞲 𝞳 𝞴 𝞵 𝞶 𝞷 𝞸 𝞹 𝞺 𝞻 𝞼 𝞽 𝞾 𝞿
U+1D7C0 - 1D7CF 𝟀 𝟁 𝟂 𝟃 𝟄 𝟅 𝟆 𝟇 𝟈 𝟉 𝟊 𝟋 - - 𝟎 𝟏
U+1D7D0 - 1D7DF 𝟐 𝟑 𝟒 𝟓 𝟔 𝟕 𝟖 𝟗 𝟘 𝟙 𝟚 𝟛 𝟜 𝟝 𝟞 𝟟
U+1D7E0 - 1D7EF 𝟠 𝟡 𝟢 𝟣 𝟤 𝟥 𝟦 𝟧 𝟨 𝟩 𝟪 𝟫 𝟬 𝟭 𝟮 𝟯
U+1D7F0 - 1D7FF 𝟰 𝟱 𝟲 𝟳 𝟴 𝟵 𝟶 𝟷 𝟸 𝟹 𝟺 𝟻 𝟼 𝟽 𝟾 𝟿

Arabic Mathematical Alphabetic Symbols
U+1EE00 - 1EE0F �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��
U+1EE10 - 1EE1F �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� ��

0 1 2 3 4 5 6 7 8 9 A B C D E F

Frank Mittelbach

TUGboat, Volume 42 (2021), No. 3 303

Table 6: LM Math vs. NewCM Math, cont.

0 1 2 3 4 5 6 7 8 9 A B C D E F

U+1EE20 - 1EE2F �� �� �� - �� - - �� - �� �� �� �� �� �� ��
U+1EE30 - 1EE3F �� �� �� - �� �� �� �� - �� - �� - - - -

U+1EE40 - 1EE4F - - �� - - - - �� - �� - �� - �� �� ��
U+1EE50 - 1EE5F - �� �� - �� - - �� - �� - �� - �� - ��
U+1EE60 - 1EE6F - �� �� - �� - - �� �� �� �� - �� �� �� ��
U+1EE70 - 1EE7F �� �� �� - �� �� �� �� - �� �� �� �� - �� ��
U+1EE80 - 1EE8F �� �� �� �� �� �� �� �� �� �� - �� �� �� �� ��
U+1EE90 - 1EE9F �� �� �� �� �� �� �� �� �� �� �� �� - - - -

U+1EEA0 - 1EEAF - �� �� �� - �� �� �� �� �� - �� �� �� �� ��
U+1EEB0 - 1EEBF �� �� �� �� �� �� �� �� �� �� �� �� - - - -

U+1EEF0 - 1EEFF 𞻰𞻱 - - - - - - - - - - - - - -

Geometric Shapes Extended
U+1F780 - 1F78F 🞀 🞁 🞂 🞃 🞄 🞅 🞆 🞇 🞈 🞉 🞊 🞋 🞌 🞍 🞎 🞏
U+1F790 - 1F79F 🞐 🞑 🞒 🞓 🞔 🞕 🞖 🞗 🞘 🞙 🞚 🞛 🞜 🞝 🞞 🞟
U+1F7A0 - 1F7AF 🞠 🞡 🞢 🞣 🞤 🞥 🞦 🞧 🞨 🞩 🞪 🞫 🞬 🞭 🞮 🞯
U+1F7B0 - 1F7BF 🞰 🞱 🞲 🞳 🞴 🞵 🞶 🞷 🞸 🞹 🞺 🞻 🞼 🞽 🞾 🞿
U+1F7C0 - 1F7CF 🟀 🟁 🟂 🟃 🟄 🟅 🟆 🟇 🟈 🟉 🟊 🟋 🟌 🟍 🟎 🟏
U+1F7D0 - 1F7DF 🟐 🟑 🟒 🟓 🟔 🟕 🟖 🟗 🟘 - - - - - - -

U+1F7E0 - 1F7EF 🟠 🟡 🟢 🟣 🟤 🟥 🟦 🟧 🟨 🟩 🟪 🟫 - - - -

Supplemental Arrows-C
U+1F800 - 1F80F 🠀 🠁 🠂 🠃 🠄 🠅 🠆 🠇 🠈 🠉 🠊 🠋 - - - -

U+1F810 - 1F81F 🠐 🠑 🠒 🠓 🠔 🠕 🠖 🠗 🠘 🠙 🠚 🠛 🠜 🠝 🠞 🠟
U+1F820 - 1F82F 🠠 🠡 🠢 🠣 🠤 🠥 🠦 🠧 🠨 🠩 🠪 🠫 🠬 🠭 🠮 🠯
U+1F830 - 1F83F 🠰 🠱 🠲 🠳 🠴 🠵 🠶 🠷 🠸 🠹 🠺 🠻 🠼 🠽 🠾 🠿
U+1F840 - 1F84F 🡀 🡁 🡂 🡃 🡄 🡅 🡆 🡇 - - - - - - - -

U+1F850 - 1F85F 🡐 🡑 🡒 🡓 🡔 🡕 🡖 🡗 🡘 🡙 - - - - - -

U+1F860 - 1F86F 🡠 🡡 🡢 🡣 🡤 🡥 🡦 🡧 🡨 🡩 🡪 🡫 🡬 🡭 🡮 🡯
U+1F870 - 1F87F 🡰 🡱 🡲 🡳 🡴 🡵 🡶 🡷 🡸 🡹 🡺 🡻 🡼 🡽 🡾 🡿
U+1F880 - 1F88F 🢀 🢁 🢂 🢃 🢄 🢅 🢆 🢇 - - - - - - - -

U+1F890 - 1F89F 🢐 🢑 🢒 🢓 🢔 🢕 🢖 🢗 🢘 🢙 🢚 🢛 🢜 🢝 🢞 🢟
U+1F8A0 - 1F8AF 🢠 🢡 🢢 🢣 🢤 🢥 🢦 🢧 🢨 🢩 🢪 🢫 🢬 🢭 - -

U+1F8B0 - 1F8BF 🢰 🢱 - - - - - - - - - - - - - -

0 1 2 3 4 5 6 7 8 9 A B C D E F

Total number of glyphs in Latin Modern Math: 2046
Comparison font New Computer Modern Math has 0 missing and 1958 extra glyphs

B.5 Garamond Libre’s Byzantine Musical Symbols

As a final example we exhibit the Byzantine Musical Symbols as provided by Garamond
Libre. Command used:

The unicodefonttable package

304 TUGboat, Volume 42 (2021), No. 3

\displayfonttable[range-start=1D000, range-end=1D0FF,
hex-digits=block,
missing-glyph-color=black!50, color=black!75,
statistics-format=Total number of glyphs in
this block of #1 is #2]

{Garamond Libre}

Note that we have altered the text produced by the statistics, because the default
is somewhat misleading if only a portion of the font is displayed. This produces the
following table:

Table 7: Garamond Libre

Byzantine Musical Symbols
U+1D000 - 1D00F 𝀀 𝀁 𝀂 𝀃 𝀄 𝀅 𝀆 𝀇 𝀈 𝀉 𝀊 𝀋 𝀌 𝀍 𝀎 𝀏
U+1D010 - 1D01F 𝀐 𝀑 𝀒 𝀓 𝀔 𝀕 𝀖 𝀗 𝀘 𝀙 𝀚 𝀛 𝀜 𝀝 𝀞 𝀟
U+1D020 - 1D02F 𝀠 𝀡 𝀢 𝀣 𝀤 𝀥 𝀦 𝀧 𝀨 𝀩 𝀪 𝀫 𝀬 𝀭 𝀮 𝀯
U+1D030 - 1D03F 𝀰 𝀱 𝀲 𝀳 𝀴 𝀵 𝀶 𝀷 𝀸 𝀹 𝀺 𝀻 𝀼 𝀽 𝀾 𝀿
U+1D040 - 1D04F 𝁀 𝁁 𝁂 𝁃 𝁄 𝁅 𝁆 𝁇 𝁈 𝁉 𝁊 𝁋𝁌 𝁍 𝁎 𝁏
U+1D050 - 1D05F 𝁐 𝁑 𝁒 𝁓 𝁔 𝁕 𝁖 𝁗 𝁘 𝁙 𝁚 𝁛 𝁜 𝁝 𝁞 𝁟
U+1D060 - 1D06F 𝁠 𝁡 𝁢 𝁣 𝁤 𝁥 𝁦 𝁧 𝁨 𝁩 𝁪 𝁫 𝁬 𝁭𝁮𝁯
U+1D070 - 1D07F 𝁰𝁱 𝁲 𝁳 𝁴𝁵𝁶 𝁷 𝁸 𝁹 𝁺 𝁻 𝁼 𝁽 𝁾 𝁿
U+1D080 - 1D08F 𝂀 𝂁 𝂂 𝂃 𝂄 𝂅 𝂆 𝂇 𝂈 𝂉 𝂊 𝂋 𝂌 𝂍 𝂎 𝂏
U+1D090 - 1D09F 𝂐 𝂑 𝂒 𝂓 𝂔 𝂕 𝂖 𝂗 𝂘 𝂙 𝂚 𝂛 𝂜 𝂝 𝂞 𝂟
U+1D0A0 - 1D0AF 𝂠 𝂡 𝂢 𝂣 𝂤 𝂥 𝂦 𝂧 𝂨 𝂩 𝂪 𝂫 𝂬 𝂭 𝂮 𝂯
U+1D0B0 - 1D0BF 𝂰 𝂱 𝂲 𝂳 𝂴 𝂵 𝂶 𝂷 𝂸 𝂹 𝂺 𝂻 𝂼 𝂽 𝂾 𝂿
U+1D0C0 - 1D0CF 𝃀 𝃁 𝃂 𝃃 𝃄 𝃅 𝃆 𝃇 𝃈 𝃉 𝃊 𝃋 𝃌 𝃍 𝃎 𝃏
U+1D0D0 - 1D0DF 𝃐 𝃑 𝃒 𝃓 𝃔 𝃕 𝃖 𝃗 𝃘 𝃙 𝃚 𝃛 𝃜 𝃝 𝃞 𝃟
U+1D0E0 - 1D0EF 𝃠 𝃡 𝃢 𝃣 𝃤 𝃥 𝃦 𝃧 𝃨 𝃩 𝃪 𝃫 𝃬 𝃭 𝃮 𝃯
U+1D0F0 - 1D0FF 𝃰 𝃱 𝃲 𝃳 𝃴 𝃵 - - - - - - - - - -

0 1 2 3 4 5 6 7 8 9 A B C D E F

Total number of glyphs in this block of Garamond Libre is 246

⋄ Frank Mittelbach
Mainz, Germany
https://www.latex-project.org
https://ctan.org/pkg/unicodefonttable

Frank Mittelbach

TUGboat, Volume 42 (2021), No. 3 305

LATEX News
Issue 34, November 2021

Contents

Introduction 1

Hook business 1

Provide \ActivateGenericHook 1
Standardized names for the generic hooks . . . 2
Some Ąle hooks made one-time 2
Clearing extra hook code for the next invocation 2
Cleaning up after \UseOneTimeHook 2
\RemoveFromHook with a missing code label . . 2
Patching commands with parameter tokens . . 2

New or improved commands 3

\NewCommandCopy and \ShowCommand extended 3
Undo math alphabet allocations if necessary . . 3
New default value for \tracinglostchars . . . 3
\PackageNote and \ClassNote added 3
New \ShowFloat command 3
New argument for \counterwithin/without . 3
Tests for package and class loading 4
Better handling for a misuse of \include . . . 4

Code improvements 4

Use OpenType version of Latin Modern
Upright Italic font 4

Additional Extended Latin characters predeĄned 4
Check \endfoo in \NewDocumentEnvironment . 4
Improve the error message \begin ended by ... 4
Pick up all arguments to \contentsline . . . 4
Allow dropping a math list in LuaTEX callback 4
Extended label handling in package code 4
Better message if text accent used in math mode 4

Bug Ąxes 5

Replicate argument processors for all
embellishments in command declarations . 5

Correct case changing of \ij and \IJ 5
Legacy font series default changes 5
Use of # in \textbf and similar commands . . 5

Changes to packages in the amsmath category 5

Improved compatibility with hyperref 5

Changes to packages in the graphics category 5

graphicx: New key, for alt text 5

Changes to packages in the tools category 5

array: No \mathsurround around a tabular . . 5
longtable: Improvements after a section heading 5
multicol: Better column break control 5
varioref: Improved handling of missing labels . 6

Introduction

This release of LATEX does not contain any major
new modules, but is focused around consolidation and
improvements of the functionality introduced in previous
releases. In addition, various smaller enhancements and
bug Ąxes have been added to the kernel and the core
packages.

Hook business

Since the introduction of the hook management system
in the 2020 release of LATEX [4] package developers
have started to make more and more use of this new
functionality. One result of this increased activity has
been a number of queries which show that some of the
documentation was not precise enough and that some
clariĄcations were needed; these deĄciencies have now
been addressed in the documentation. The increased
usage has also revealed a small number of errors that
we thought should be corrected now, while the adoption
rate is still relatively small; the following problems have
therefore been addressed in this release.

Provide \ActivateGenericHook

The hook management system offers a number of
generic hooks, i.e., hooks whose names contain a
variable component such as the name of an environment.
Predeclaring such hooks is not feasible, so these
hooks use a different mechanism: they are implicitly
available, springing into life the moment a package,
or the document preamble, adds any code to one by
using \AddToHook. The kernel offers such hooks for
environments (env/...) and commands (cmd/...),
and also for Ąles, packages and classes (file/...,
include/..., package/..., class/...).

It is also possible to offer such generic hooks in
packages if, for example, hooks are needed that depend
on the current language and therefore need the language
name as part of the hook name (but you probably donŠt
know beforehand all the necessary names).

If you want to offer such generic hooks, you can
now do this by using \UseHook or \UseOneTimeHook

in your (package) code, but without declaring the

hook with \NewHook. However, without further work,
a call to \UseHook with an undeclared hook name
will do nothing; so, as an additional setup step, it is
necessary to explicitly activate the generic hook by using
\ActivateGenericHook.1

1Note that in the previous release we offered \ProvideHook as

a means to achieve this effect, but the name was badly chosen so

we decided to deprecate it and now offer \ActivateGenericHook

instead.

doi.org/10.47397/tb/42-3/tb132ltnews34

LATEX News #34

306 TUGboat, Volume 42 (2021), No. 3

Assuming that you donŠt know all the different hook
names up front, it will remain the task of the users of
your package to activate the hook themselves before
adding code to it. For example, Babel offers hooks such
as babel/⟨language⟩/afterextras that enable a user
to add language speciĄc declarations to these ŞextrasŤ.
One can then write

\ActivateGenericHook

{babel/ngerman/afterextras}

\AddToHook{babel/ngerman/afterextras}

{\color{blue}}

after which all German words would be colored blue in
the text.

Note that a generic hook produced in this way is
always a normal hook.

Standardized names for the generic hooks

The initial set of generic hooks provided by the kernel
had two patterns of names: ones like env/⟨name⟩/after,
with the variable, ⟨name⟩, part in the middle position;
and ones like file/after/⟨name⟩, with the variable part
in the third position. The coexistence of these two types
caused confusion because the user had to remember in
which position the variable part was supposed to go;
and it also made the code more complicated and slower.

The Ąle-related hooks have therefore been renamed so
that the variable part of the name is in the middle, as
with all other hooks. The changes are listed here:

Old name New name

file/before/⟨name⟩ → file/⟨name⟩/before

file/after/⟨name⟩ → file/⟨name⟩/after

package/before/⟨name⟩ → package/⟨name⟩/before

package/after/⟨name⟩ → package/⟨name⟩/after

class/before/⟨name⟩ → class/⟨name⟩/before

class/after/⟨name⟩ → class/⟨name⟩/after

include/before/⟨name⟩ → include/⟨name⟩/before

include/end/⟨name⟩ → include/⟨name⟩/end

include/after/⟨name⟩ → include/⟨name⟩/after

Since this is a breaking change, the old names will still
work for a while so that users and package authors have
enough time to adjust; but a warning will be issued
when the old names are used. Eventually the deprecated
names will be turned into errors and then removed
completely. (github issue 648)

Some file hooks made one-time

Classes, packages and included Ąles can only be loaded
once in a LATEX document. For this reason, the hooks
that are speciĄc to loading such Ąles have been made
one-time hooks. Beside being more efficient, this
supports the following important use case

\AddToHook{package/varioref/after}

{... apply when the package gets loaded,

or apply now (if it is already loaded) ...}

without the need to Ąrst test whether the package is
already loaded. (github issue 623)

Clearing extra hook code for the next invocation

There are a few use cases where it is helpful if one can
cancel an earlier use of \AddToHookNext: for example,
when a page is discarded with \DiscardShipoutBox

because only some pages of the document are printed.
For such situations the new command \ClearHookNext

is now provided. (github issue 565)

Cleaning up after \UseOneTimeHook

Some hooks are meant to be used only once in a
document, and any further attempt to add code to one
of these will cause the code to be executed immediately
instead of being added to the hook. The initial
implementation of this concept was very simple and
didnŠt anticipate that packages may try to execute a
one-time hook several times, resulting in the hook code
being executed repeatedly. Thus the implementation
was Ąne for simple cases (such as the begindocument

hook) but it causes trouble if the one-time hook was
intended, for example, as an initialization hook that is
used just once (when a command is Ąrst called) but is
then ignored in further calls.

This deĄciency has been addressed, and now a
one-time hook will only be executed once, with its
code being removed after use to free up some memory.

(github issue 565)

\RemoveFromHook with a missing code label

In the Ąrst version of \RemoveFromHook, when the
code label to be removed didnŠt exist in the hook a
Şremoval orderŤ would be queued; and then, the next
time something tried to add that label to the hook,
this \AddToHook action would be cancelled by the
removal order, so that no code would be added that one
time. This was so that, in principle, package loading
order wouldnŠt matter. However, this implementation
didnŠt work as intended because, while two \AddToHook

actions with a given label would be removed by a
single \RemoveFromHook, one \RemoveFromHook could
not cancel two \AddToHook actions for that label; this
caused confusion and also led to further problems.

The implementation has now been changed, so that
\RemoveFromHook removes only code labels that already
exist in a hook: it will display a warning if there is no
such code label.

Note that, whereas when working with a single
package you should use \RemoveFromHook to remove a
code label, when working with more than one package,
the voids relation should preferably be used. This is
best because this relation is non-destructive (meaning
that it can be reverted later by using another relation),
and it is also truly independent of package loading order.

(github issue 625)

Patching commands with parameter tokens

In the last release, LATEXŠs hook mechanism was
extended to add support for hooking into commands
using generic cmd hooks (see [5]). That version of the
extension had a bug: the patching of some commands

LATEX News #34

TUGboat, Volume 42 (2021), No. 3 307

that contained a parameter token (normally #) in their
deĄnition would fail with a low-level TEX error. This
has now been Ąxed so that patching now works for those
commands as well. (github issue 697)

New or improved commands

\NewCommandCopy and \ShowCommand extended
Since the 2020-10-01 release (see [4]), LATEX has
provided \NewCommandCopy to copy robust commands,
and \ShowCommand to show their deĄnitions on the
terminal. In that same release, the xparse package
was integrated into the kernel (as ltcmd) to offer
\NewDocumentCommand, etc. However, the extended
support for \NewCommandCopy and \ShowCommand was
not implemented in ltcmd. The present LATEX release
implements this support, so now commands deĄned
with \NewDocumentCommand and friends can also be
copied, and their deĄnitions can be easily shown on the
terminal without the need for Ş\csname gymnasticsŤ.

(github issue 569)

Undo math alphabet allocations if necessary
TEX, or more exactly the 8-bit versions of TEX, such
as pdfTEX, have a hard limit of 16 on the number of
different math font groups (\fam or \mathgroup) that
can be used in a single formula. For each symbol font
declared (by a package or in the preamble) an extra
math group is allocated, and the same happens for
each math alphabet, (such as \mathbf) once it gets
used anywhere in the document. Up to now, these
math alphabet allocations were permanent, even if they
were used only once; the result was that in complex
documents you could easily run out of available math
font groups. The only remedy for this was to deĄne
your own math version, which is a complicated and
cumbersome process.

This situation has now been improved by the
introduction of a new counter localmathalphabets:
this counter governs how many of the math group slots
are assigned locally when a new math alphabet (and a
new math group) is needed. Once the current formula is
Ąnished, every such further (local) allocation is undone,
giving you a Ąghting chance of being able to use different
new math alphabets in the next formula.

The default value of localmathalphabets is 2, but if
you need more local alphabets because of the complexity
of your document, you can set this to a higher value
such as 4 or 5. Setting it even higher is possible, but
this would seldom be useful because many group slots
will be taken up by symbol fonts and such slots are
always permanently allocated, whether used or not.

(github issue 676)

New default value for \tracinglostchars

In 2021 all TEX engines were enhanced so that
\tracinglostchars supported the value 3 to turn
missing characters into errors and not just warnings.
This engine change made us realize that LATEX should
set a better default value for this parameter (previously,

the warning was written only to the transcript Ąle).
Using the now available value of 3 as the default would
be ideal, but for compatibility reasons we have only
increased it to 2 in the kernel. However, we recommend
setting \tracinglostchars=3, in either a package or
the preamble of your documents: this is because having
missing glyphs in the output is deĄnitely an error and
should therefore be Ćagged as such (to ensure that it gets
proper attention). Further reasons, related especially to
Unicode engines, for making this recommended change
are explained later in this newsletter (in connection with
the misuse of text accents in math mode).

\PackageNote and \ClassNote added

LATEX offers these three commands: \PackageError to
signal errors that stop the processing; \PackageWarning

to generate a warning message on the terminal but
continue with the processing; and \PackageInfo to
provide some information that is only written to the
.log Ąle but not sent to the terminal. What has not
existed up to now is a way to provide information on the
terminal that identiĄes itself as coming from a speciĄc
package but which does not claim to be a warning.
(Packages that wanted to write to the terminal used
\PackageWarning even though the information was not
in fact a warning.)

We have therefore now added \PackageNote (and
the closely related \PackageNoteNoLine); these identify
themselves as ŞinformationalŤ, but they still go to
the terminal and not only to the .log Ąle. Similar
commands exist for classes and so there too we have
new commands: \ClassNote and \ClassNoteNoLine.

(github issue 613)

New \ShowFloat command

The package fltrace offers a (fairly low-level but very
detailed) way to trace LATEXŠs Ćoat mechanism. This
can help in understanding why a certain Ćoat is placed
into a certain region, or why it shows up unexpectedly
on a later page. LATEX stores Ćoats in registers named
\bx@A, \bx@B, etc., and these names show up in the
tracing information.

To display the contents of a Ćoat register, you can
now say \ShowFloat{identifier} where identifier is the
uppercase letter (or letters) after bx@ in the register
name shown in the tracing. If additional registers have
been allocated (with \extrafloats), the identifier can
also be a number. The command is generally available,
whether or not you have loaded fltrace, because it is
also useful when interpreting the tracing output of the
fewerfloatpages package.

New argument for \counterwithin/without

The commands \counterwithout and \counterwithin

each now has an additional optional argument, similar
to that of the command \numberwithin from amsmath,
for which these are now the preferred replacements. This
optional argument speciĄes the format of the counter,
such as \roman; the default value is \arabic.

LATEX News #34

308 TUGboat, Volume 42 (2021), No. 3

Tests for package and class loading

To test whether a package has been loaded you can
now use \IfPackageLoadedTF {⟨package⟩} {⟨true⟩}
{⟨false⟩} and, based on the result, execute different
code. It is also possible to check whether the package
was loaded with certain options. This is done with
\IfPackageLoadedWithOptionsTF. It takes four
arguments: {⟨package⟩}{⟨option-list⟩}{⟨true⟩}{⟨false⟩}.
It uses the ⟨false⟩ code if one or more options in
the ⟨option-list⟩ were not speciĄed when loading the
package, or if the package has never been loaded. Both
commands can be used anywhere in the document, i.e.,
they are not restricted to the preamble.2

For classes, similar commands, with Package replaced
by Class in the name, are provided. (github issue 621)

Better handling for a misuse of \include

The command \include has by now been used quite
often, but erroneously, to input a variety of Ąles in the
preamble of the document (before \begin{document}).
Therefore LATEX now warns about such bad use of
\include. As a recovery action it will nevertheless input
the speciĄed Ąle if it exists (this is as before). Note,
however, that this is now done without any adjustments
to the .aux Ąle settings and without running the
\include Ąle hooks (only the generic Ąle hooks from
\InputIfFileExists are run). (github issue 645)

Code improvements

Use OpenType version of Latin Modern Upright Italic font

When a Latin Modern font is used with the TU encoding
under X ETEX or LuaTEX and fontshape ui is requested,
LATEX now uses the OpenType version of the font instead
of substituting the (T1-encoded) Type 1 version.

Additional Extended Latin characters predefined

More characters, such as ḱ (U+1E131), are now pre-
deĄned and do not need a \DeclareUnicodeCharacter

declaration. (github issue 593)

Check \endfoo in \NewDocumentEnvironment

The \newenvironment command has always checked
that neither \foo nor \endfoo exists before creat-
ing a foo environment. In contrast (for historical
reasons) the more recently introduced command
\NewDocumentEnvironment checked only for \foo. The
behavior of \NewDocumentEnvironment now aligns with
that of \newenvironment, except that it gives distinct
errors concerning the existence of \foo and \endfoo.

Improve the error message \begin ended by ...

In the past it was possible to get an error message
along the lines of Ş\begin{foo} ended by \end{foo}Ť.
This could happen when the environment name was
partly hidden inside a macro. It happened because the
test was comparing the literal strings, whereas in the
error message these got fully expanded. This has now

2This is now also true for the corresponding internal commands,

e.g., \@ifpackageloaded, that had this restriction in the past.

been changed to show a more sensible error message.
(github issue 587)

Pick up all arguments to \contentsline

A \contentsline command in the .toc Ąle is al-
ways followed by four arguments, the last one being
empty except when using the hyperref package. The
\contentsline command itself only used the Ąrst three
arguments and it relied on the fourth being empty (and
thus doing no harm). But this assumption is not always
correct: e.g., if you at Ąrst decide to load hyperref but
then later you remove this loading from the preamble.
So now all four arguments are picked up, with the fourth
being saved away so that it can be used by hyperref.

(github issue 633)

Allow dropping a math list in LuaTEX callback

The LuaTEX callbacks pre_mlist_to_hlist_filter

and post_mlist_to_hlist_filter no longer create an
error when the callback handler indicates removal of the
entire math list. (github issue 644)

Extended label handling in package code

Since 2020, as noted in LATEX News 32 [4], LATEX
has recorded the name of the counter associated
with the current label in the internal command
\@currentcounter. This facility (originally from the
zref package of Heiko Oberdiek) can be used to generate
preĄxes such as ŞFigureŤ before the reference text, as
long as the counter is not counting different objects
in a single sequence (e.g., lemmas and theorems).
In the most common cases the current label is set
by \refstepcounter, which automatically stores the
counter name; but some constructs (alignments and
footnotes) may need to store the current label directly
and so for these it is useful to update additionally
\@currentcounter so as to store this counter name.

In this release both the footnote command in the
kernel and also some of the environments in the amsmath

package have been updated in this way. We encourage
the maintainers of any class or package Ąles that deĄne
\@currentlabel to also set \@currentcounter at the
same point. (github issue 300, 687)

Better message if text accent used in math mode

Using text accents like \^ in math does not work (and
TEX explicitly provides math accents such as \hat for
accessing such symbols in math mode). Therefore LATEX
issued a warning when such a wrongly placed accent was
encountered and this was often followed by a strange,
and apparently unrelated, low-level error. This has now
been changed so that the message from this error is at
least about accents, which we hope is less puzzling.

Discussion of such warnings or errors reminds us
to reinforce here a recommendation from earlier in
this newsletter, as part of the item on the value of
\tracinglostchars. Using TEX implementations
from 2020 onwards, any warning that concerns missing
characters can be converted to an error by setting

LATEX News #34

TUGboat, Volume 42 (2021), No. 3 309

\tracinglostchars to 3; we therefore now recommend
changing this setting to 3, especially for Unicode engines
where such missing characters are common (because no
font supports the full Unicode range). (github issue 643)

Bug fixes

Replicate argument processors for all embellishments in

command declarations

There was a bug in ltcmd (formerly xparse) that caused
commands to misbehave if they were deĄned with
embellishments and argument processors. In that case,
only one (possibly void) argument processor would
be added to the full set of embellishment arguments,
resulting in too few processors in some cases and thus
leading to unpredictable behavior. This bug has been
Ąxed by applying the same argument processors to all
the embellishments in a set, so that a declaration like:

\NewDocumentCommand\foo{>{\TrimSpaces}e{_^}}

{(#1)[#2]}

\foo^{ a }_{ b }

will now correctly apply \TrimSpaces to both arguments.
(github issue 639)

Correct case changing of \ij and \IJ

The ligatures ŞĳŤ and ŞĲŤ, as used in Dutch, are
available (for most TEX fonts) only when the commands
\ij or \IJ are used, or when you enter them as the
Unicode characters U+0133 or U+0132. However, when
using OT1 or T1 encoded fonts in pdfTEX, the upper or
lower casing with \MakeUppercase and \MakeLowercase

would always fail regardless of the input method. This
has now been corrected. At the same time we improved
the hyphenation results for words containing this ligature
(when using the OT1 encoding). (github issue 658)

Legacy font series default changes

In the past, changes to the font series defaults were made
by directly altering \bfdefault or \mddefault. Since
2020 there is now \DeclareFontSeriesDefault that
allows more granular control: with this declaration you
can alter the default for individual meta font families
by, for example, changing the bold setting only for the
sans serif family, without changing it for \rmfamily or
\ttfamily. See [3] for more details.

For backwards compatibility, changing \bfdefault

with \renewcommand remained possible; if used, this
alters the setting for all meta families in one go. This
alteration cannot be done when the \renewcommand

happens and it was therefore delayed until the next
time \bfseries or \mdseries was executed. However,
the problem with that approach was that any call to
\DeclareFontSeriesDefault in the meantime was
overwritten; thus, these two approaches didnŠt work well
in combination. There was a problem because older font
packages use the legacy method while newer ones use
\DeclareFontSeriesDefault.

This has now been resolved by changing
\DeclareFontSeriesDefault to do any necessary reset-
ting prior to setting the new defaults. (github issue 663)

Use of # in \textbf and similar commands

Previously you could not use the macro parameter
character # in inline functions within the argument of
\texbf or similar text font commands. An internal
deĄnition is now guarded with \unexpanded so that
the use of # here no longer generates an error.

(github issue 665)

Changes to packages in the amsmath category

Improved compatibility with hyperref

This change in amsmath Ąxes a spacing problem caused
by the method used in hyperref to change the equation

environment. For simplicity, an explicit, low-level (hence
possibly temporary) patch has been added to amsmath:
this consists of an extra, empty (hence invisible)
\mathopen atom (with no mathematical meaning) at
the start of the environmentŠs mathematical content.

(github issue 652)

Changes to packages in the graphics category

graphicx: New key, for alt text

A new key, alt, has been added to \includegraphics to
support the addition of descriptive text that is important
for accessibility. This key is unused by default; it can be
deployed by extension packages and it will provide useful
support for other future possibilities. (github issue 651)

Changes to packages in the tools category

array: No \mathsurround around a tabular

A tabular environment is typeset (internally) as an
array environment with special settings, and it therefore
uses (hidden) math mode. Since it is not in fact a math
formula, no extra space from \mathsuround should be
added (the spacing around the tabular should not get
changed). Note that this bug has been present ŞforeverŤ,
which shows that \mathsurround is never used, or at
least its use is never noticed. At any rate, this bug has
now Ąnally been Ąxed. (github issue 614)

longtable: Improvements after a section heading

The longtable environment now sets the
\@nobreakfalse Ćag to correct the typesetting when
a table immediately follows a heading. Previously
the spacing and indentation changes that are required
immediately after a section heading were incorrectly
triggered within the next paragraph (if any) following
the table. A similar test for \if@noskipsec has been
added, so that a table is correctly placed after a run-in
heading rather than appearing before that heading.

(github issues 131 and 173)

multicol: Better column break control

From version 1.9 onwards \columnbreak accepts an
optional argument (like \pagebreak) in which you can
specify the desirability of breaking the column after the
current line: supported values are 0 to 4, with higher
numbers indicating increased desirability. This version
also adds \newcolumn, which forces a break but runs

LATEX News #34

310 TUGboat, Volume 42 (2021), No. 3

the column short (comparable to \newpage for pages).
(github issue 682)

varioref: Improved handling of missing labels

If an undeĄned label is referenced, varioref makes a
default deĄnition so that later processing Ąnds the
right structure (two brace groups inside \r@⟨label⟩)
However, if nameref or hyperref is loaded, this data
structure changes to having Ąve arguments; this could
cause low-level errors in some cases. The code has
therefore now been changed to avoid these errors.

(https://tex.stackexchange.com/603948)

References

[1] Frank Mittelbach and Chris Rowley: LATEX Tagged

PDFŮA blueprint for a large project.
https://latex-project.org/publications/

indexbyyear/2020/

[2] LATEX documentation on the LATEX Project Website.
https://latex-project.org/help/documentation/

[3] LATEX Project Team: LATEX 2ε news 31.
https://latex-project.org/news/latex2e-news/

ltnews31.pdf

[4] LATEX Project Team: LATEX 2ε news 32.
https://latex-project.org/news/latex2e-news/

ltnews32.pdf

[5] LATEX Project Team: LATEX 2ε news 33.
https://latex-project.org/news/latex2e-news/

ltnews33.pdf

Production notes

Karl Berry

As you may have noticed, this issue mainly consists
of a few longer-than-usual articles. We didn’t plan it
that way, but we were glad to have them, since the
regular variety of shorter submissions did not happen
for this issue. So we’d like to greatly encourage
articles for the next issue, which will be in the spring
of next year (deadline March 31, 2022)! Please, if
you have any TEX-related projects or experiences
you’ve been thinking about writing up, it’s a good
time. Early submissions are especially welcome.

A few TEXnical words about some of the ar-
ticles in this issue. First, for Charles Bigelow’s
“Form, pattern & texture . . . ”, the biggest complica-
tion was using the (unreleased) Lucida Book variant
for the main font. I did this by the simple expe-
dient of loading Lucida OpenType as usual, with
\setmainfont{LucidaBrightOT}, but copying the
Lucida Book .otf file into the current directory as
LucidaBrightOT.otf.

For Amine Anane’s article on Arabic typeset-
ting, it was necessary to use Amine’s modified (and
renamed) luahbtex engine and luaotfload pack-
age. Fortunately, Amine had carefully documented
his development process and I was able to make a
binary without too much trouble. I built the .fmt

file by hand, in the current directory, and then set
TEXMFDOTDIR=.//, and unset TEXMFSYSVAR, to use
that .fmt file and Amine’s modified packages. So
I’d like to thank Linas Stonys for suggesting the
TEXMFDOTDIR feature for TEX Live, not so long ago.

For Herbert Voß’s article on his remarkable
hvfloat package, the main complication was en-
suring that it started on an odd page; otherwise, the
floats that spread across two pages would not have
worked. A judicious choice for article ordering, plus
a test \ifodd\count0\else \errmessage{...}\fi

for explicit notification of the problem, did the trick.
Of course figure placements here, as in all the arti-
cles (as in all articles), was a challenge, but Herbert
had carefully designed his material to work for the
TUGboat layout, for which I was extremely grateful.

If anyone is extra-curious, a few macro files and
scripts used for TUGboat production are available
from TUG’s GitHub page, linked below.

I would like to thank all the authors, not just
those mentioned above, for their invaluable assistance
in finalizing their articles, even beyond writing them
in the first place.

⋄ Karl Berry

github.com/TeXUsersGroup

doi.org/10.47397/tb/42-3/tb132prod

LATEX News #34

TUGboat, Volume 42 (2021), No. 3 311

A new unit for LMTX: The dk

Hans Hagen

At the ConTEXt 2021 meeting I mixed my TEX talks
with showing some of the (upcoming) LuaMetaTEX
source code. One evening we had a extension party
where a new unit was implemented, the dk. This
event was triggered by a remark Hraban [Ramm]
made on the participants list in advance of the meet-
ing, where he pointed to a Wikipedia article from
which we quote:

In issue 33, Mad published a partial table
of the ŞPotrzebie System of Weights and
MeasuresŤ, developed by 19-year-old Donald E.
Knuth, later a famed computer scientist.
According to Knuth, the basis of this new
revolutionary system is the potrzebie, which
equals the thickness of Mad issue 26, or
2.2633484517438173216473 mm [. . .].

So, as the result of that session, the source code now
has this comment:

We support the Knuthian Potrzebie, cf.
en.wikipedia.org/wiki/Potrzebie, as
the dk unit. It was added on 2021-09-22
exactly when we crossed the season during
an evening session at the 15th ConTEXt
meeting in Bassenge (Boirs) Belgium.
It took a few iterations to Ąnd the best
numerator and denominator, but Taco
Hoekwater, Harald Koenig and Mikael
Sundqvist Ągured it out in this interactive
session. The error messages have been
adapted accordingly and the scanner in
the Lua tex library also handles it. One
dk is 6.43985pt. There is no need to make
MetaPost aware of this unit because there
it is just a numeric multiplier in a macro
package.

When compared to the already present units
the dk nicely Ąlls a gap:

unit points scaled visual

sp 0.00002 1
pt 1.0 65536
bp 1.00374 65781
dd 1.07 70124
mm 2.84526 186467
dk 6.43985 422042
pc 12.0 786432
cc 12.8401 841489
cm 28.45274 1864679
in 72.26999 4736286

Deep down, the unit scanner uses a numerator
and denominator in order to map the given value
onto the internally used scaled points, so the relevant
snippet of C code is:

*num = 49838; // 152940;

*denom = 7739; // 23749;

return normal_unit_scanned;

The impact on performance of scanning an ad-
ditional unit can be neglected because the scanning
code is a bit different from the code in LuaTEX and
(probably the) other engines anyway.

Under consideration are a few extra units in
the relative_unit_scanned category that we see
in CSS: vw (relative to the \hsize), vh (relative to
the \vsize), maybe a percentage (but of what) and
ch (width of the current zero digit character). As
usual with TEXies, once itŠs there it will be (ab)used.

⋄ Hans Hagen

http://pragma-ade.com

doi.org/10.47397/tb/42-3/tb132hagen-dk

A new unit for LMTX: The dk

en.wikipedia.org/wiki/Potrzebie
https://doi.org/10.47397/tb/42-3/tb132hagen-dk

312 TUGboat, Volume 42 (2021), No. 3

TheTreasure Chest

These are the new packages posted to CTAN (ctan.
org) from September–October 2021. Descriptions
are based on the announcements and edited for ex-
treme brevity.

Entries are listed alphabetically within CTAN

directories. More information about any package can
be found at ctan.org/pkg/pkgname.

A few entries which the editors subjectively be-
lieve to be especially notable are starred (*); of
course, this is not intended to slight the other con-
tributions.

We hope this column helps people access the vast
amount of material available through CTAN and the
distributions. See also ctan.org/topic. Comments
are welcome, as always.

⋄ Karl Berry

https://tug.org/TUGboat/Chest

fonts

bboldx in fonts

More weights for blackboard board.

nahuatl in fonts

Render Nahuatl (native Mexican writing
system) glyphs.

* notocondensed in fonts

Support for the condensed variants of the
Noto fonts. This package is available through
https://contrib.texlive.info.

graphics

luapstricks in graphics/pstricks/contrib

Use PSTricks in LuaLATEX with no need for
special environments or external commands.

tikz-bagua in graphics/pgf/contrib

Draw Yijing (I Ching) or Zhouyi symbols in
TikZ.

zx-calculus in graphics/pgf/contrib

TikZ library to typeset ZX Calculus diagrams.

info

tex-vpat in info

TEX accessibility conformance report.

macros/latex/contrib

cdcmd in macros/latex/contrib

Expandable conditional commands for LATEX.

clicks in macros/latex/contrib

Simulate animation in slide deck.

debate in macros/latex/contrib

Insert notes in the form of dialogues.

linenoamsmath in macros/latex/contrib

Use lineno package together with amsmath.

phfcc in macros/latex/contrib

Inline commenting for collaborative documents.

phfextendedabstract in macros/latex/contrib

Typeset extended abstracts, e.g., for conferences.

* unicodefonttable in macros/latex/contrib

Font tables for Unicode fonts. See articles in
this issue.

uwa-colours in macros/latex/contrib

Colour palette of the Univ. of Western Australia.

macros/luatex/generic

lua-widow-control in macros/luatex/generic

Automatically remove widows and orphans
from any document.

lutabulartools in macros/luatex/generic

Support commands for tabular material.

penlight in macros/luatex/generic

The Penlight pure-Lua library for LuaLATEX.

macros/luatex/latex

truthtable in macros/luatex/latex

Automatically generate truth tables for given
variables and statements.

yamlvars in macros/luatex/latex

YAML parser (Lua package tinyyaml) and
support functions to make LATEX definitions
using YAML.

macros/unicodetex/latex

njuthesis in macros/unicodetex/latex

LaTeX thesis template for Nanjing University.

uwa-letterhead in macros/unicodetex/latex

Letterhead of the Univ. of Western
Australia.

uwa-pcf in macros/unicodetex/latex

Participant Consent Form for human research
protocols at the Univ. of Western Australia.

uwa-pif in macros/unicodetex/latex

Participant Information Form for same.

macros/xetex/latex

hanzibox in macros/xetex/latex

Simplify input of Chinese characters.

zitie in macros/xetex/latex

CJK character calligraphy practice sheets.

doi.org/10.47397/tb/42-3/tb132chest

macros/latex/contrib/cdcmd

TUGboat, Volume 42 (2021), No. 3 313

Abstracts

La Lettre GUTenberg 41–44, 2020–2021

La Lettre GUTenberg is a publication of
GUTenberg, the French-language TEX user group
(www.gutenberg.eu.org).

La Lettre GUTenberg #41

Published December 18, 2020.

Patrick Bideault & Céline Chevalier,
Éditorial [Editorial]; pp. 1–2

Céline Chevalier, Journée GUTenberg 2020
[GUTenberg 2020 meeting]; p. 2

A summary of the GUTenberg 2020 meeting, the
first held since June 2013. A record of the discussions
is published in the same issue. The proceedings of
the conference have not yet been published.

Arthur Reutenauer, Compte rendu de
l’assemblée générale du 14 novembre 2020
[GUTenberg 2020 annual meeting]; pp. 2–4

The report of the discussions and elections, by
the meeting’s chairman.

Céline Chevalier, Compte rendu du conseil
d’administration du 21 novembre 2020 [Report of
the board’s meeting]; pp. 5–6

The report of the first meeting of the newly-
elected board.

Maxime Chupin, Décomposition en série de
Fourier d’un caract ère avec LuaTEX et MPLIB

[Animating Fourier series decomposition of a
character with LuaTEX and MPLIB]; pp. 6–16

The English translation of this article was pub-
lished in TUGboat 42:1, 2021, pages 67–71.

Jérémy Just, Campus du libre, édition 2020
[Free software campus 2020 meeting]; p. 16

A brief report on GUTenberg’s presence at this
annual French free software community gathering.

Maxime Chupin, Notes de lecture [Book review];
p. 17

A review about Christian Tellechea’s book Ap-

prendre à programmer en TEX (How to program

with TEX). This book is now a CTAN package.

La Lettre GUTenberg #42

Published March 13, 2021.

Patrick Bideault & Céline Chevalier,
Éditorial [Editorial]; pp. 1–2

Jérémy Just, En souvenir d’Hervé Choplin
[R.I.P. Hervé Choplin]; p. 2

Céline Chevalier, Moment d’échange avec les
adhérents [Meeting with GUTenberg’s members];
pp. 3–12

A report about an online meeting held at the
end of January. The talks were about the projects
developed by GUTenberg.

Maxime Chupin, Compte rendu du conseil
d’administration du 8 février 2021 [The report of
the board’s meeting on February 8]; pp. 12–15

Maxime Chupin, Une très courte histoire de
notre logo [A brief history of our logo]; pp. 15–16

Denis Bitouzé, Et maintenant, une bonne
vieille veille technologique ! [Technology watch];
pp. 17–21

New CTAN packages, November 2020–March
2021.

Patrick Bideault, La fonte de ce numéro :
kpfonts-otf [This issue’s font: kpfonts-otf];
p. 22

A brief presentation about the OTF conversion
of the KP-fonts, used for this issue.

Christian Hinque, TEX et moi : mon système
de production, structure et nextcloud [TEX and I:
my personal production système, file structure and
nextcloud]; pp. 23–28

The author reports about the way he uses next-
cloud to access his .tex files on several devices.

Patrick Bideault, Dernières nouvelles :
un compilateur en ligne sur texnique.fr !
[Breaking news: online compilation available on
texnique.fr!]; pp. 28–29

A report about the online compilation tool
texlive.net, now usable from the French Q&A

website texnique.fr.

Patrick Bideault, De l’importance des
cotisations [About the significance of financial
contributions.]; p. 30

La Lettre GUTenberg #43

Published April 10, 2021.

Patrick Bideault, Éditorial [Editorial]; pp. 1–2

GUTenberg, Journée GUTenberg 2021
[GUTenberg 2021 conference program]; pp. 2–4

Announcement of the upcoming GUTenberg con-
ference with presentation of its program.

doi.org/10.47397/tb/42-3/tb132lettre

https://ctan.org
https://ctan.org
https://ctan.org/pkg/
https://ctan.org/topic
https://ctan.org/pkg/bboldx
https://ctan.org/pkg/nahuatl
www.gutenberg.eu.org
https://texnique.fr
https://texnique.fr
https://texlive.net
https://texnique.fr
https://doi.org/10.47397/tb/42-3/tb132lettre

314 TUGboat, Volume 42 (2021), No. 3

Maxime Chupin, Bilan moral : novembre 2020 —
avril 2021 [Activity report, November 2020–April
2021]; pp. 5–7

Flora Vern, Rapport financier pour l’année 2020
[Financial report 2020]; pp. 8–9

Flora Vern, Proposition de statuts pour
GUTenberg [Proposal for GUTenberg’s new
bylaws]; pp. 9–16

Flora Vern, the treasurer of GUTenberg, is a
lawyer. She publishes a draft of new bylaws, hope-
fully more suitable, to be discussed by the members.

Jean-Michel Hufflen, Du côté d’autres groupes
d’utilisateurs de TEX [Other TEX user groups’
activities]; pp. 17–18

Reports about the GuIT and DANTE annual
meetings.

Denis Bitouzé, Et maintenant, une bonne
vieille veille technologique ! [Technology watch];
pp. 18–21

New CTAN packages, March–April 2021.

Donald E. Knuth, La mise au point de TEX de
2021 [The TEX tuneup of 2021]; pp. 22–26

The French translation, by Maxime Chupin, of
the article published in TUGboat 42:1, 2021, pages
7–10.

Patrick Bideault, La fonte de ce numéro :
Schola [This issue’s font: Schola]; pp. 28–31

About Schola and the other TEX Gyre fonts
provided by the GUST e-foundry.

Antoine Leblanc, TEX et moi : à propos d’un
tableau. . . [TEX and I: About a table]; pp. 32–33

About TEX, chemistry, beautiful documents and
the relationship between a father and his daughter.

La Lettre GUTenberg #44

Published August 12, 2021. Without modifying its
design, the document class was completely renewed
by Denis Bitouzé.

Patrick Bideault, Éditorial [Editorial]; pp. 1–2

Denis Bitouzé, Compte rendu des conférences
de la journée GUTenberg [GUTenberg 2021
proceedings]; pp. 2–16

Report on the three talks at the 2021 meeting:

• Literate programming with org-mode, by Fabrice
Niessen

• New PDF support for LATEX, by Ulrike Fischer

• Introduction to the TikZducks and TikZlings
packages, by samcarter

Céline Chevalier, Compte rendu de l’assemblée
générale de l’association GUTenberg [GUTenberg
2021 annual meeting notes]; pp. 16–25

Patrick Bideault, Les différents travaux de
l’association [The various works of the group];
pp. 26–27

Patrick Bideault, Quelques nouvelles de
Pologne [Some news about Poland]; p. 28

After the article in the previous issue, a follow-
up report about the GUST e-foundry.

François Pantigny, Aperçu du package
nicematrix [Overview of the nicematrix

package]; pp. 29–36

GUTenberg, Publicité [Advertising]; p. 37

Patrick Bideault, Denis Bitouzé, Maxime

Chupin, Et maintenant, une bonne vieille veille
technologique ! [Technology watch]; pp. 38–44

New CTAN packages, April–August 2021.

Harald Lichtenstein, Utiliser des boucles avec
TikZ [How to use loops with TikZ]; pp. 45–49

The French translation, by Patrick Bideault,
of the article Schleifen in TikZ published in Die

TEXnische Komödie 2021/2, pages 48–52.

Patrick Bideault, Brèves typographiques
[Typographic news]; pp. 50–51

About the international graphic design biennial
exhibition in Chaumont, France; R.I.P. Wolfgang
Weingart.

Maxime Chupin & Patrick Bideault, La
fonte de ce numéro : Libertinus [This issue’s font:
Libertinus]; pp. 52–55

Small review of the Libertinus font, its history
and presentation of some of its properties.

Jérémy Just, Compte rendu de lecture [Book
review]; p. 56

About Christophe Aubry’s refcard LATEX – Con-

ception de documents élaborés et structurés, ENI,
2021.

Patrick Bideault, Compte rendu de lecture
[Book review]; pp. 56–57

About Fred Smeijers’ book Les Contrepoinçons

(Counterpunch, Hyphen Press, 1996), published in
French in 2014 by B42.

[Received from Patrick Bideault.]

TUGboat, Volume 42 (2021), No. 3 315

Les Cahiers GUTenberg 58 (2021)

Les Cahiers GUTenberg is the journal of
GUTenberg, the French-language TEX user group
(gutenberg.eu.org). After a break of some years,
it has resumed publication with a new editor and a
new committee.

Jean-Michel Hufflen, Éditorial [Editorial];
pp. 3–4

Sandrine Chenevez, Myriam Hamla,

Stéphanie Louison, Donald Knuth : des
mathématiques à la typographie [Donald Knuth:
From mathematics to typography]; pp. 5–33

This article traces first the main stages of Don-
ald Ervin Knuth’s life, then his contributions to
computer science and typography, mainly through
his book series The Art of Computer Programming

and the TEX/METAFONT pair. Reading it does not
require special technical knowledge.

Peter Flynn, Imprimer ou ne pas imprimer [To
print or not to print]; pp. 35–40

Translation by Patrick Bideault of this item
published in TUGboat 41:3 (2021).

Christophe Poulain, LATEX au collège ? Une
avancée [LATEX at middle school? Some advances];
pp. 41–54

Commands that ease the writing of theorems,
as part of teaching mathematics in middle school,
are shown. All these commands are grouped into the
ProfCollege package, available on CTAN.

Maxime Chupin, LuaLATEX et METAPOST avec
luamplib, une introduction [An introduction
to LuaLATEX and METAPOST with luamplib];
pp. 55–80

This article is an introduction to the use of the
mplib library of LuaTEX, which is an embedded ver-
sion of the METAPOST program. This library can be
used with the LATEX format thanks to the luamplib
package and we present its main features. This pack-
age has become mature and suitable for intensive
use, and we illustrate this with some examples.

Jean-Michel Hufflen, Histoire des altérations
musicales [History of accidentals in music];
pp. 81–105

Revised and extended translation by the author
of the article published in TUGboat 38:2 (2017),
pp. 147–156.

[Received from Jean-Michel Hufflen.]

doi.org/10.47397/tb/42-3/tb132cahi

ConTEXt Group Journal 2020

The ConTEXt Group publishes proceedings of the
ConTEXt meetings: articles.contextgarden.net.

Henning Hraban Ramm, Editorial Note; p. 4

Day Plan; pp. 5ś6

Hans Hagen, MkII MkIV LMTX: where does it
end?; pp. 8ś9

This meeting was special because of the COVID

situation. It forced us to adapt and think about how
to deal with this. But, we had a very nice meeting
as usual. The őrst talk was a summary of where we
started and where we are now. The other talks were
more specialized.

Hans Hagen, LuaMetaTEX: where do we stand?;
pp. 10ś13

History and overview of the LMTX engine.

Hans Hagen, Extensions related to programming
macros; pp. 14ś28

Published in TUGboat 42:1.

Hans Hagen, Low-level: tokens; pp. 29ś40
Detailed description of token parsing in LMTX

and original TEX.

Hans Hagen, ECMAScript: just because it can be
done; pp. 41ś44

Using the standalone ECMAScript interpreter
from mupdf in LMTX. The document interface is
somewhat similar to handling Lua.

Hans Hagen, Lost in fonts; pp. 45ś47
A case study of restoring ligature support in

LMTX, with no TFM loaded.

Hans Hagen, Simple fonts with MetaFun;
pp. 48ś52

Deőning shapes using MetaPost and MetaFun
and adding them as new glyphs in fonts.

Taco Hoekwater, MetaPost deőnitions;
pp. 53ś72

Writing deőnitions in MetaPost: macros, opera-
tors, variables, grouping, and more.

Mikael P. Sundqvist, Scrutinized paths: A new
path transformation in MetaPost; pp. 73ś81

In this article, I discuss a problem that occurred
while trying to őnd directionpoints of joined paths
in MetaPost. We found that when joining two paths
where the őnal point of the őrst path is the same as,
or at least very close to, the őrst point of the second
path, numerical problems might appear. Finally, we
present different solutions that appeared on the Con-
TEXt mailing list on how to avoid the issue; the most

doi.org/10.47397/tb/42-3/tb132ctxg

316 TUGboat, Volume 42 (2021), No. 3

generic solutions work by sanitizing the joined graph.
In fact, this resulted in a new path transformation
called scrutinized.

Hans Hagen, UTF-8 in MetaPost; pp. 82ś86
Using UTF-8 in MetaPost source code.

Hans Hagen, SVG graphics: some demos and
discussion; pp. 87ś88

Overview and examples of scalable vector graph-
ics (SVG) images.

Michal Vlásak, Multimedia, PDF and ConTEXt;
pp. 89ś96

The possibility of inserting multimedia (audio,
video, 3D) into PDF őles has been here for a long
time, albeit in different forms. Traditionally Con-
TEXt has had support for it, but the support in PDF

viewers was dubious. What is the situation today,
and is it worth all the hassle?

Willi Egger, Book production; pp. 97ś106
Producing a book is comparable to making a

wooden window. Yes, in both cases you need a
plan/strategy, a list of requirements, and informa-
tion in order to be able to get the desired result. After
presenting the window project there are a couple of
thoughts gathered which concern the work of the
typographer, the printer and the bookbinder. With
regard to the typographer using ConTEXt, three ex-
amples of special cases are described and illustrated
with pictures and sample code.

Ton Otten, Prooőng and production with
ConTEXt; pp. 107ś117

ConTEXt has several built-in tools that can help
you during the prooőng stage of your project. Fur-
thermore there are a few ConTEXt features you can
invoke in your style that gives you visual feedback of
inconsistencies or errors. And then there are modes.
Below I will describe a number of the techniques I
use in the prooőng stage of the Math4All project.

Harald König, 14th ConTEXt meeting 2020:
6.ś12. September in Sibřina near Prague;
pp. 118ś124

The year is 1 after COVID-19. The TEX world
is entirely occupied by corona viruses and thwarted.
Well, not entirely. . . One small group of indomitable
TEXies still met completely offline, on-site, face to
face, but conforming to Corona regulations nonethe-
less. And since it was apparently the only TEX
conference that went ahead as planned, it was, with
only twelve participants, the biggest TEX conference
worldwide! The meeting took place, as in 2018, at
the former nicely renovated farm of the Škoda family,
that also grows many herbs, keeps honey bees and

offers all kinds of tasty products from honey, nuts
and herbs. A wonderful quiet place that we had all
to ourselves and where we could engross ourselves
undisturbed in TEXnical and other thoughts.

Abstracts without papers; pp. 125ś126

CG Secretary, 2020 Annual General Meeting
Minutes; pp. 127ś130

Participant list of the 14th ConTEXt meeting;
p. 131

[Received from Taco Hoekwater.]

Comic by John Atkinson
(https://wronghands1.com).

https://wronghands1.com/
https://wronghands1.com

The information here comes from the consultants

themselves. We do not include information we know

to be false, but we cannot check out any of the

information; we are transmitting it to you as it was

given to us and do not promise it is correct. Also, this

is not an official endorsement of the people listed here.

We provide this list to enable you to contact service

providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at

tug.org/consultants.html. If you’d like to be listed,

please see there.

Dangerous Curve

Email: typesetting (at) dangerouscurve.org

Typesetting for over 40 years, we have experience
in production typography, graphic design, font
design, and computer science, to name a few
things. One of us co-authored, designed, and
illustrated a TEX book (TEX for the Impatient).

We can: convert your documents to LATEX
from just about anything, type your documents
from handwritten pages, proofread, copyedit,
and structure documents in English; apply
publishers’ specs; write custom packages and
documentation; resize and edit your images for a
better aesthetic effect; make your mathematics
beautiful, produce commercial-quality tables with
optimal column widths for headers and wrapped
paragraphs; modify bibliography styles, make
images using TEX-related graphic programs; design
programmable fonts using METAFONT; and more!
(Just ask.)

Our clients include high-end branding and
advertising agencies, academics at top universities,
leading publishers. A member of TUG, we also
have supported the GNU Project for decades (and
even have worked for them).

All quote work is complimentary.

Hendrickson, Amy

57 Longwood Avenue Apt. 8
Brookline, MA 02446
+1 617-738-8029
Email: amyh (at) texnology.com

Web: http://www.texnology.com
Full time LATEX consultant for more than 30
years—Our macro packages are used by thousands
of authors. See our site for many samples:
texnology.com.

TUGboat, Volume 42 (2021), No. 3 317

TEXConsultants

Macro packages for books, journals, slides,
posters, e-publishing and more.

Design as well as LATEX implementation for
e-publishing or print books and journals, or
specialized projects.

Data visualization, database publishing.
LATEX training via Zoom: Many years

experience in on-site training, now
offering scheduled Zoom classes! See
www.texnology.com/train.htm.

I’ll be glad to hear from you!

Dominici, Massimiliano

Email: info (at) typotexnica.it

Web: http://www.typotexnica.it
Our skills: layout of books, journals, articles;
creation of LATEX classes and packages; graphic
design; conversion between different formats of
documents.

We offer our services (related to publishing in
Mathematics, Physics and Humanities) for
documents in Italian, English, or French. Let us
know the work plan and details; we will find a
customized solution. Please check our website
and/or send us email for further details.

Latchman, David

2005 Eye St. Suite #6
Bakersfield, CA 93301
+1 518-951-8786
Email: david.latchman (at)

texnical-designs.com

Web: http://www.texnical-designs.com
LATEX consultant specializing in the typesetting of
books, manuscripts, articles, Word document
conversions as well as creating the customized
LATEX packages and classes to meet your needs.
Contact us to discuss your project or visit the
website for further details.

Monsurate, Rajiv

Web: https://www.rajivmonsurate.com
https://latexwithstyle.com

I offer: design of books and journals for print
and online layouts with LATEX and CSS;
production of books and journals for any layout
with publish-ready PDF, HTML and XML from
LATEX (bypassing any publishers’ processes);
custom development of LATEX packages with
documentation; copyediting and proofreading for

English; training in LATEX for authors, publishers
and typesetters.

I have over two decades of experience in
academic publishing, helping authors, publishers
and typesetters use LATEX. I’ve built typesetting
and conversion systems with LATEX and provided
TEX support for a major publisher.

Sofka, Michael

Email: michael.sofka (at) gmail.com

Personalized, professional TEX and LATEX
consulting and programming services.

I offer 30 years of experience in programming,
macro writing, and typesetting books, articles,
newsletters, and theses in TEX and LATEX:
Automated document conversion; Programming in
Perl, Python, C, R and other languages; Writing
and customizing macro packages in TEX or LATEX,
knitr.

If you have a specialized TEX or LATEX need,
or if you are looking for the solution to your
typographic problems, contact me. I will be happy
to discuss your project.

Veytsman, Boris

132 Warbler Ln.
Brisbane, CA 94005
+1 703-915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net
TEX and LATEX consulting, training, typesetting
and seminars. Integration with databases,
automated document preparation, custom LATEX
packages, conversions (Word, OpenOffice etc.) and
much more.

I have about two decades of experience in TEX
and three decades of experience in teaching &
training. I have authored more than forty packages
on CTAN as well as Perl packages on CPAN

and R packages on CRAN, published papers in
TEX-related journals, and conducted several
workshops on TEX and related subjects. Among
my customers have been Google, US Treasury,
FAO UN, Israel Journal of Mathematics, Annals of
Mathematics, Res Philosophica, Philosophers’
Imprint, No Starch Press, US Army Corps of
Engineers, ACM, and many others.
We recently expanded our staff and operations

to provide copy-editing, cleaning and
troubleshooting of TEX manuscripts as well as
typesetting of books, papers & journals, including
multilingual copy with non-Latin scripts, and more.

318 TUGboat, Volume 42 (2021), No. 3

Warde, Jake

90 Resaca Ave.
Box 452
Forest Knolls, CA 94933
+1 650-468-1393
Email: jwarde (at) wardepub.com

Web: http://myprojectnotebook.com
I have been in academic publishing for 30+ years.
I was a Linguistics major at Stanford in the
mid-1970s, then started a publishing career. I
knew about TEX from editors at Addison-Wesley
who were using it to publish beautifully set math
and computer science books.

Long story short, I started using LATEX for
exploratory projects (see website above). I have
completed typesetting projects for several journal
articles. I have also explored the use of multiple
languages in documents extensively. I have a
strong developmental editing background in STEM

subjects. If you need assistance getting your
manuscript set in TEX I can help. And if I cannot
help I’ll let you know right away.

Hello from TEXnology!
Macro writing, Design, Data Visualization,
E-Publishing, Innovations, and more

We’ve been writing macro files and teaching
LATEX for more than 30 years.

Now offering LATEX classes via
See www.texnology.com/train.htm for class
dates, description of course and sample of
hyperlinked course notes.

See you on-line!

– Amy Hendrickson
amyh@texnology.com

And, come visit our site for many and diverse
examples of our LATEX projects, with perhaps
some ideas for projects you’d like to develop:

WWW.TEXNOLOGY.COM

TUGboat, Volume 42 (2021), No. 3 319

Computers & Typesetting
Jubilee Editions

35 years after the first edition, Donald Knuth has spent several
months inspecting every page thoroughly. We believe that
every “i” has been properly dotted, every “t” has been properly
crossed, and every bug has been properly exterminated.

eBooks Now Available

Donald Knuth has also overseen the creation of PDF eBooks
for these volumes, and they are available for the first time.

TUGboat reader EXCLUSIVE - Save 40% off books/eBooks

Visit informit.com/jubilee and use code JUBILEE during
checkout.*

* Discount code JUBILEE confers a 40% discount off the list price only when purchased on informit.com. Apply code during

checkout to receive savings. Ineligible titles include book + eBook “Best Value” or “Additional Savings” bundles. Discount code may

not be combined with any other offer and is not redeemable for cash. Discount offer expires 11:59 p.m. EDT December 31, 2021.

Offer subject to change.

2021

Nov 13 TeXConf 2021
(Japan; online)
texconf2021.tumblr.com

Dec 2 – 4 ATypI 2021 All Over (virtual).
atypi.org/home/atypi-all-over-2021

Dec 14 – 17 SIGGRAPH Asia 2021,
Tokyo, Japan. sa2021.siggraph.org/en

2022

Feb 12 Centre for Printing History & Culture,
CPHC,
Broadside Day,
Birmingham, UK.
www.cphc.org.uk/events

Mar 31 TUGboat 43:1, submission deadline.

Apr 10 – 13 CODEX VIII, “Words on the Edge”,
Richmond, California.
www.codexfoundation.org

Jun 8 – 10 Grapholinguistics in the 21st century—
From graphemes to knowledge,
Paliseau, France.
grafematik2022.sciencesconf.org

320 TUGboat, Volume 42 (2021), No. 3

Calendar

Jun 20 – 22 International Society for the History and
Theory of Intellectual Property (ISHTIP),

13th Annual Workshop,
“Machines of Law and Intellectual
Property as Legal Machinery”,
University of Gothenburg, Sweden.
www.ishtip.org/?p=1210

Jun 20 – 22 Twentieth International Conference
on New Directions in the Humanities,
“Data, Media, Knowledge:
Re-Considering Interdisciplinarity
and the Digital Humanities”,
University of the Aegean, Rhodes, Greece.
thehumanities.com/2022-conference

Jul 11 – 15 SHARP 2022, “Power of the written word”,
Society for the History of Authorship,
Reading & Publishing.
University of Amsterdam,
The Netherlands
www.sharpweb.org/main/conferences

Jul 25 – 29 Digital Humanities 2022, Alliance of
Digital Humanities Organizations,
“Responding to Asian Diversity”,
Tokyo, Japan, and Online.
dh2022.adho.org

Owing to the COVID-19 pandemic, schedules may change. Check the websites for details.

Status as of 1 November 2021

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568, email: office@tug.org). For events sponsored by
other organizations, please use the contact address provided.

User group meeting announcements are posted at tug.org/meetings.html. Interested
users can subscribe and/or post to the related mailing list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.html.

TUGBOAT Volume 42 (2021), No. 3

Introductory

224 Barbara Beeton / Editorial comments
• typography and TUGboat news

226 Barbara Beeton / Michael D. Spivak, 1940–2020
• memoriam for the author of AMSTEX, The Joy of TEX , and much more

228 Barbara Beeton / How to keep your sanity when preparing a transcript of an online interview

for publication
• difficulties with interview transcriptions, and suggestions for easing them

311 Hans Hagen / A new unit for LMTX: The dk
• the potrzrebie unit (6.43985pt) now available in LMTX

223 Boris Veytsman / From the president
• on stability, licensing, and continuing maintenance of packages

Intermediate

312 Karl Berry / The treasure chest
• new CTAN packages, September–October 2021

231 Charles Bigelow / Form, pattern & texture in the typographic image
• the interaction of typographic size and combination leading to form, pattern, and texture

305 LATEX Project Team / LATEX news, issue 34, November 2021
• hooks; new or improved commands and code; changes in amsmath, graphics, tools

284 Frank Mittelbach / Preventing tofu with pdfTEX and Unicode engines
• input and font encodings, missing characters, Unicode, \tracinglostchars

287 Frank Mittelbach / The unicodefonttable package
• customizable font tables for OpenType/TrueType Unicode fonts

Intermediate Plus

310 Karl Berry / Production notes
• custom fonts, engines, page counts

258 Hans Hagen / Rendering open street maps
• generating graphics from openstreetmap.com data with MetaPost and ConTEXt

267 Herbert Voß / Controlling captions, fullpage and doublepage floats: hvfloat
• extensive examples of floating layouts, complex and simple

Advanced

247 Amine Anane / Arabic text justification using LuaLATEX and the DigitalKhatt OpenType variable font
• towards high-quality Arabic typesetting using Lua, OpenType, and METAFONT

Reports and notices

222 Institutional members

313 From other TEX journals:

La Lettre GUTenberg 41–44 (2020–2021);

Les Cahiers GUTenberg 58 (2021);

ConTEXt Group Journal: 14th meeting (2020)

316 John Atkinson / Comic: Fontzie

317 TEX consulting and production services

318 TEXnology Inc.

319 Pearson | Addison-Wesley

320 Calendar

