
TUGboat, Volume 41 (2020), No. 3 327

Short report on the state of LuaTEX, 2020

Luigi Scarso

Abstract

A short report on the current status of LuaTEX and
its relatives: LuaHBTEX, LuaJITTEX and LuaJITHB-
TEX.

1 Background

First, let’s summarize that there are four programs
or “flavors” of LuaTEX:

• LuaTEX, with lua;

• LuaJITTEX, with luajit (just-in-time compila-
tion capability);

• LuaHBTEX, with lua and HarfBuzz;

• LuaJITHBTEX, with luajit and HarfBuzz.

The build system manages the task of compiling
and linking the shared components and the common
components, so that, for example, they all have ex-
actly the same TEX core, and share the same version
number and development id.

On 30 May 2019 the first commit of LuaHBTEX,
a LuaTEX variant with the ability to use HarfBuzz
for glyph shaping, landed in the LuaTEX repository,
after a discussion started around mid-February about
the merging of HarfTEX by Khaled Hosny and the
upcoming LuaTEX in TEX Live 2019. By that time
LuaTEX was already frozen for the DVD and, mate-
rially, it was not possible to reopen the development.
Also in 2019, LuaTEX entered its “bug fixing” phase
(more on this below), further complicating the merge.

LuaHBTEX was integrated in the experimental
branch of LuaTEX repository on 6 July 2019 and di-
rectly after, on 8 July 2019, it landed in the TEX Live
repository; The first release of LuaHBTEX, tagged
as version 1.11.1, was on 19 October 2019, giving
a wide margin for testing for the next (i.e., now the
current) TEX Live 2020.

Together with HarfBuzz, the other component
under “observation” in 2019 was the pplib library,
the PDF reader library by Pawe l Jackowski. This
was the candidate to replace poppler in TEX Live —
this eventually happened with the first commit to the
TEX Live repository on 21 April 2020. This means
that the next TEX Live 2021 will entirely use pplib

instead of poppler, for both LuaTEX (as was the case
in previous years), and now also X ETEX; poppler is
no longer in the TEX Live repository. (By the way,
pdfTEX will continue to use its own semi-homegrown
libxpdf to read PDF files until there is some clear
reason to change.)

MetaPost gets related special treatment: the
library in LuaTEX includes only the decimal and

the floating-point mode, while the mpost program
also includes the mpfr library for arbitrary precision
support.

As result of mixing and matching all these vari-
ations, building LuaTEX and integrating it into TEX
Live is quite a complex task, but thanks to the GNU

autotools, things are manageable.

2 The current status of LuaTEX

As noted above, LuaHBTEX (version 1.12.0) shipped
for the first time with the TEX Live 2020 DVD, and it
is already supported by LuaLATEX: At the TEX Live
2020 meeting, the talk “HarfBuzz in LuaLATEX” by
Marcel Krüger has shown some differences between
the HarfBuzz text shaping and the ConTEXt text
shaping; also better memory management for large
fonts with respect to LuaTEX, especially for 32-bit
platforms.

On the other side, Petr Oľsák in 2020 has pub-
lished OpTEX, “. . . a LuaTeX format based on Plain
TeX macros (by Donald Knuth) and on OPmac
macros” (see petr.olsak.net/optex, and article
in this issue), also included in TEX Live 2020. It’s
not clear if it will eventually support LuaHBTEX.

Finally, also at the TUG 2020 online meeting,
Patrick Gundlach in his talk “Speedata Publisher— a
different approach to typesetting using Lua” (see tug.
org/TUGboat/41-2/gundlach-speedata.pdf) has
shown an example of a working workflow that uses
LuaTEX (and possibly LuaJITTEX) purely by means
of the lua API— a sort of TEX without \TeX. The
Speedata Publisher software has been actively devel-
oped for a decade.

In light of these continuing developments, it is
therefore appropriate to clarify the meaning of “bug
fixing” mode, because it is sometimes associated with
the term “frozen”.

LuaTEX is based on the lua release 5.3.5, and
it will stay on the 5.3 version at least for TEX Live
2021 and TEX Live 2022, possibly switching to the
final release 5.3.6 (in release candidate 2 at the date
of 2020-07-23) at some future point. The current
release of lua is 5.4.0, with approximately five years
between two versions; it’s good practice to have an
year of transition between two different versions, so
a rough estimation for the next lua transition is six
years from now, i.e., around TEX Live 2026.

On the side of the TEX core, the plan is for bug
fixing and marginal improvements, for example the
\tracinglostchars≥ 3 that now raises an error (a
new feature added across engines by David Jones),
but not new features. From what we have seen
previously, stressing LuaTEX in different areas (e.g.,
only with the lua API or with the new HarfBuzz

Short report on the state of LuaTEX, 2020

http://petr.olsak.net/optex
https://tug.org/TUGboat/41-2/gundlach-speedata.pdf
https://tug.org/TUGboat/41-2/gundlach-speedata.pdf


328 TUGboat, Volume 41 (2020), No. 3

shaping library) can reveal hidden bugs, but it should
be noted that bug fixing is a complex task because
the fix must be well harmonized with the rest of the
code: For example, some issues with DVI output that
need to be checked carefully are still open.

Nevertheless, there are three areas that are still
marked as “under active development”: the first is
the ffi (foreign function interface) library, that in
LuaTEX is not yet finished and not as functional as
its counterpart in LuaJITTEX. Admittedly it is not
a key feature of LuaTEX and probably useful only in
the context of automated workflows.

The second is the binding with HarfBuzz li-
brary, currently given by the luahrfbuzz module.
If necessary the binding can still be expanded and/
or modified, preserving as much as possible the cur-
rent API, because LuaHBTEX is in an early phase of
adoption.

The third area is the pplib library that surely
needs more testing.

Finally, the bug fixing phase certainly also in-
volves the MetaPost library.

3 The current status of LuaJITTEX

LuaJITTEX is (or in some way is considered) a niche
engine. One issue is that while LuaTEX is based on
Lua 5.3.5, LuaJITTEX is still based on 5.1 with
some partial coverage of 5.2. LuaJITTEX also has
some intrinsic limits, such as the fixed number of
nested tables, which has a serious impact on the
table serialization. By design, LuaTEX makes heavy
use of C functions bound via the classic Lua/C API;
the just-in-time (JIT) compiler doesn’t play well in
this situation, but this is not a serious issue, given
that it can be turned off on demand (and indeed
it’s off by default). Finally, LuaJIT doesn’t support
all of Lua’s platforms, although the most important
ones are available.

On the other hand, the LuaJIT virtual machine
is much faster than Lua and the compilation of an ar-
ticle can have a significant speed-up. For this article,
LuaJITHBTEX is 2.5 times faster than LuaHBTEX
with exactly the same LuaLATEX format; although
for complex documents the gain is smaller, around
15%–20%.

The lack of a specific format for LuaJIT does
fake the results a bit, but maintaining an additional
format in this case is not an easy task: To take
advantage of the JIT, where LuaJIT shines, one has to
write specialized Lua code and using the ffi module
requires rather in-depth knowledge of C to achieve
significant results. Currently only ConTEXtMkIV has
some support for LuaJITTEX.

Probably LuaJITTEX and LuaJITHBTEX are
better suited for specialized tasks (e.g. database pub-
lishing) or as software as service in cloud, possibly
in a containerized environment, but they should also
be considered a research tool in digital typesetting.

Currently LuaJIT in TEX Live is still using the
2.1-beta3 release (from 2017), but it is likely it will
sync with the official repository by the end of the year.
Although LuaJIT development is not proceeding at a
rapid pace, there have been important updates (e.g.,
all LuaJIT 64-bit ports now use 64-bit GC objects
by default; and there is support for more platforms).
There are some mismatches with Lua (a few functions
in Lua that are not available in LuaJIT, notably the
utf8 module) still to be fixed.

4 Conclusion

At the TEX core, LuaTEX and LuaHBTEX are exactly
the same and the choice between one or the other
depends only on whether or not one accepts HarfBuzz
as a dependency. As OpTEX has shown, LuaHBTEX
is not always the necessary choice. In any case, the
current state is better described by “bug fixing mode
with marginal improvements” rather than “frozen”,
with an emphasis on stability. The area marked
as “under active development” may change more
significantly, but this should have a minimal impact
on stability.

LuaJITTEX and LuaHBTEX are more or less still
out of the mainstream and that gives a wider range
for maneuvering; given the high efficiency of the
implementation of LuaJIT, it’s often better to code a
module directly in Lua rather than compile and link
a C module. Admittedly, it’s a rather specialized
topic, but efficiency has its costs.

� Luigi Scarso
luigi.scarso (at) gmail dot com

Luigi Scarso


	Background
	The current status of LuaTeX
	The current status of LuaJITTeX
	Conclusion

