
TUGboat, Volume 41 (2020), No. 3 281

Using DocStrip for multiple document
variants

Matthew Leingang∗

Abstract

I describe a method of keeping multiple variants
of the same document within a single file, using
DocStrip.

1 Introduction

As a college professor, there are several times when
I need to keep teaching materials in several different
forms. For example:

• A single class day’s lesson might consist of lec-
ture slides in the beamer class, a handout of the
same slides printed 2–3 on a page for student
notes, my own lecture notes as a manuscript, a
worksheet for in-class activity, and solutions to
that worksheet.

• A single week’s homework assignment might
consist of problem statements, with hints and
reading notes, a LATEX template for students to
fill in with their own answers, and solutions with
comments to be published after the assignment
has been graded.

Over the years I have developed a workflow for
maintaining these “bundles” of documents in the
same file, using the LATEX DocStrip utility. This
workflow allows me to programmatically vary the
content and formatting, and avoids external scripts
or filesystem hacks. In this article I will introduce
the reader to DocStrip and explain how I use it.

2 The DocStrip utility

DocStrip [5] was originally designed as a literate pro-
gramming method. LATEX package and class authors
use it to write documentation for their code in the
same file as the implementation, within commented
lines. DocStrip would strip out the comment lines
and use them to produce documentation. The slim-
mer package and class files would be installed to save
compile time. In subsequent versions DocStrip de-
veloped the ability to write lines to several different
files in one batch, through the use of options.

DocStrip batches are programmed in a TEX file
as in Listing 1. The \input line loads the DocStrip
code. The \generate line instructs TEX, effectively,
to “read foo.dtx and write foo.sty, setting the
package option”.

When generating files, DocStrip ignores all lines
beginning only with a single %. Non-commented lines

∗ The author wishes to thank the editors and reviewers
for their thoughtful and productive feedback.

Listing 1: A minimal DocStrip batch file

\input docstrip.tex

\generate{\file{foo.sty}

{\from{foo.dtx}{package}}}

\endbatchfile

are written to all destination files. Lines beginning
with a guard will be written to the destination file
depending on the options set. Each guard begins
with a % and contains a boolean expression enclosed
by angle brackets. For example, a line beginning
with %<bar> will only be passed to generated files
when the bar option is set. DocStrip can generate
more than TEX files, too; for example, BibTEX files,
data files, and shell scripts can be embedded in the
master file and extracted.

Now putting guards at the start of every line
would be cumbersome to type. So guard modifiers
are used to delimit blocks of code with the same
guard. Any expression preceded by ‘*’ will apply
the indicated guard to every line that follows, until
the identical expression is encountered with the ‘/’
modifier. This gives an almost HTML-like layer to the
DocStrip source file, where blocks of code between
lines starting with %<*bar> and %</bar> will be
written to any file generated with the bar option.

A DocStrip batch declaration such as in Listing 1
often resides in a separate file. If this code were in
foo.ins, running TEX on foo.ins would extract
foo.sty from foo.dtx and quit. But DocStrip files
can be also be configured to “self-extract” by putting
the batch declaration at the beginning of the file.
In this configuration, running TEX on foo.dtx will
instruct TEX to parse foo.dtx a second time, this
time writing foo.sty. Thus, the document content
and extraction instructions can reside in a single file.

3 Example: A problem set with answer
template and solutions

As a small but not quite minimal example, let’s
consider a DocStrip file called hw.dtx. The en-
tire file can be viewed online as part of the github
repository for this article: github.com/leingang/

tugboat-docstrip.

3.1 Batch header

Listing 2 shows the beginning of hw.dtx, which loads
docstrip.tex and declares the \generate batch.
It’s surrounded with driver guards. Since no gen-
erated file sets the driver option, this block is not
written to any file.

We generate four files:

Using DocStrip for multiple document variants

github.com/leingang/tugboat-docstrip
github.com/leingang/tugboat-docstrip

282 TUGboat, Volume 41 (2020), No. 3

Listing 2: The header block of hw.dtx, declaring \generate batch

1 %<*driver>

2 \input docstrip.tex

3 \askforoverwritefalse

4 \generate{

5 \file{\jobname.qns.tex}{\from{\jobname.dtx}{questions}}

6 \file{\jobname.ans.tex}{\from{\jobname.dtx}{questions,answers}}

7 \file{\jobname.sol.tex}{\from{\jobname.dtx}{questions,solutions}}

8 \file{\jobname.bib}{\from{\jobname.dtx}{bib}}

9 }

10 \endbatchfile

11 %</driver>

• hw.qns.tex, which sets the option questions.
This document will be the prepared questions
sheet for the instructor to distribute to the stu-
dents.

• hw.ans.tex, which sets the options questions
and answers. This file will be distributed to
students as LATEX source, so that they can fill
in their answers without having to create their
own file from scratch.

• hw.sol.tex, which sets the options questions
and solutions. This can be published once the
assignment is collected and graded.

• hw.bib, which only sets the bib option. This
is a BibTEX file that can be included in any of
the LATEX files. If the assignment needs to be
copied with only a few changes, such as the year
and the due date, only one file must be copied
from the old directory to the new.

Lines 12–89 of hw.dtx are delimited with the
<questions> guards and enclose an entire LATEX doc-
ument from \documentclass{article} through to
\end{document}. Lines 90 and onward (not shown in
this article) are delimited with <bib> and comprise
the complete hw.bib file.

3.2 Using guards to conditionally include
text

Listing 3 (following page) shows an excerpt of hw.dtx
that declares a question. Notice that the hint envi-
ronment is surrounded by a guard with a compound
boolean expression <!answers&!solutions>. The
effect is that the hint is shown when the questions

option is selected, but answers and solutions are
not selected; that is, only in the hw.qns.tex file.
The resulting block that is written to the questions
file is shown in Listing 4.

Comment lines that begin with a single % are
stripped from the input and do not get printed to
any output file. But comment lines beginning with
two % characters remain. So the comment on line 71

of hw.dtx is retained in the hw.ans.tex file (List-
ing 5). It is a note to the student where to write
their answer. Finally, the solution environment
and subsequent commentary paragraph are written
to the hw.sol.tex file (Listing 6).

3.3 Using guards to conditionally define
environments

The implementation of the environments question,
answer, hint, and solutions have to be set up in
the preambles of the generated LATEX files (or in
packages used by them). But guards can be used in
the preambles too. In this way, we can conditionally
style the document.

For instance, I prefer that the question text be
upright in the questions file and italicized in the an-
swers/solutions file. This is accomplished in Listing 7.
Line 34 is written to the answers and solutions file,
and overrides line 33. The preamble of the questions
file defines question under the definition theorem
style, with bold header and upright body font. But
in the answers and solutions file, the plain theorem
style is in force, so question sets its body in italic.

Listing 7: An excerpt of hw.dtx (lines 35–39) showing
conditional styling of the question environment

\usepackage{amsthm}

\usepackage{amssymb}

\theoremstyle{definition}

%<answers|solutions>\theoremstyle{plain}

\newtheorem{question}{Question}

3.4 Advanced tricks

If you look in the full hw.dtx file online, you’ll see a
few more automatic variations with DocStrip:

• The document title is specified in hw.qns.tex.
In hw.ans.tex, the text ‘Answers to ’ is pre-
pended to the title (using the \preto command
from the etoolbox package). In hw.sol.tex,
the phrase ‘Solutions to ’ is prepended. In

Matthew Leingang

TUGboat, Volume 41 (2020), No. 3 283

Listing 3: An excerpt of hw.dtx declaring a question (the question is from [7])

61 \begin{question}

62 \cite[Exercise 6.6]{Scheinerman}.

63 Disprove: if p is prime, then 2^p-1 is also prime.

64 \end{question}

65 %<*!answers&!solutions>

66 \begin{hint}

67 All you need is one counterexample. Guess and check, and be persistent.

68 \end{hint}

69 %</!answers&!solutions>

70 %<*answers>

71 %% Student: put your answer between the next two lines.

72 \begin{answer}

73 \end{answer}

74 %</answers>

75 %<*solutions>

76 \begin{solution}

77 Let $p=11$. Then p is prime. But $2^p-1 = 2^{11}-1 = 2047 = 23 \times 89$.
78 So the statement is false.

79 \end{solution}

80 A prime number that is equal to 2^n-1 for some n is called a \emph{Mersenne

81 Prime}. Examples of Mersenne primes are $3 = 2^2 - 1$ and $127 = 2^7-1$. It is

82 unknown whether the number of Mersenne primes is finite!

83 %</solutions>

Listing 4: The generated block in hw.qns.tex

61 \begin{question}

62 \cite[Exercise 6.6]{Scheinerman}.

63 Disprove: if p is prime, then 2^p-1 is also prime.

64 \end{question}

65 \begin{hint}

66 All you need is one counterexample. Guess and check, and be persistent.

67 \end{hint}

this way, the original title only needs to be put
in one place.

• The document author is set differently in the dif-
ferent document variants. In hw.qns.tex and
hw.sol.tex, the author is the professor. In
hw.ans.tex, the author is set to a generic stu-
dent name, and \LaTeXWarning is used to re-
mind the student to change the generic name to
their own name.

4 Comparing alternatives

The problem of maintaining the sources for different,
but closely related documents in the same file, and
specifying which documents are to be typeset at the
time of compilation, has been encountered by users
before, for instance on the Stack Exchange network
[1, 4, 6]. Let’s consider some of the alternatives in
the context of the example use case from Section 3.

4.1 Separate files

In this strawman workflow, separate, nearly identical
files are kept side-by-side. Any correction (to a prob-
lem, for instance) requires three files to be updated.
Further, copying a question to another assignment
requires copying from three different files to three
different files. This setup is ripe for inconsistency
and headache.

4.2 Option setting in pure (LA)TEX

In this workflow, certain (LA)TEX booleans are defined
and set, and code is conditionally executed depending
on those booleans. The booleans can be set by adding
TEX code on the command line as optional arguments
to the executable (e.g., pdflatex). Or, a shell file can
be created which sets options, then inputs a common
master file.

When options are set within the document, the
\jobname is the same independent of the options

Using DocStrip for multiple document variants

284 TUGboat, Volume 41 (2020), No. 3

Listing 5: The generated block in hw.ans.tex

50 \begin{question}

51 \cite[Exercise 6.6]{Scheinerman}.

52 Disprove: if p is prime, then 2^p-1 is also prime.

53 \end{question}

54 %% Student: put your answer between the next two lines.

55 \begin{answer}

56 \end{answer}

Listing 6: The generated block in hw.sol.tex

57 \begin{question}

58 \cite[Exercise 6.6]{Scheinerman}.

59 Disprove: if p is prime, then 2^p-1 is also prime.

60 \end{question}

61 \begin{solution}

62 Let $p=11$. Then p is prime. But $2^p-1 = 2^{11}-1 = 2047 = 23 \times 89$.
63 So the statement is false.

64 \end{solution}

65 A prime number that is equal to 2^n-1 for some n is called a \emph{Mersenne

66 Prime}. Examples of Mersenne primes are $3 = 2^2 - 1$ and $127 = 2^7-1$. It is

67 unknown whether the number of Mersenne primes is finite!

set. In our homework example, this would mean
the problems file and solutions file would both end
up named hw.pdf. Not only does this mean that
the problem set and solutions PDFs cannot inhabit
the same directory at the same time, one can be
mistaken for another. Imagine the poor professor
distributing what he thought was the questions-only
PDF, only to realize that he had instead shared all
the solutions!

With shell files, the \jobname is different for
each document variant, avoiding the possibility of
such a mistake. The \jobname can also be set on the
command line when invoking (LA)TEX. But either
way, extra files are needed to support this workflow.

Also, in the context of a homework assignment,
none of these methods allow the distribution of an
answer template as a LATEX source file. If the solu-
tions are in the master TEX file, and conditionally
typeset depending on options, they still remain the
source.

4.3 Symlinks

In this workflow, a single TEX file is created, and
each variant document is a symbolic link (or symlink)
to the original file with a different file name. The
operating system treats a symlink to a file as a dif-
ferent name for that file. Editing one of these “files”
affects the contents referenced by the file and all of
its symlinks. But the \jobname is determined by the
file name, so it can be tested in order to conditionally
execute certain code.

This avoids the colliding output file issue of
command-line arguments, and is more lightweight
than shell files. A new variant just requires a new
symlink. It has the same disadvantages of the master-
plus-shell files workflow, though. Code cannot be
stripped out of the master file for a template, only
gobbled and discarded. Not every operating system
and file system has this capability, either.

4.4 Other preprocessors

DocStrip functions as a preprocessor — it converts
one source file to another (or several others). There
are other tools for this job, among them GPP and m4.
Using another program requires installing, learning,
and maintaining another program, whereas DocStrip
is available wherever TEX is.

The DocStrip method described here is operat-
ing system independent. It is secure in that each
document variant gets a distinct \jobname and out-
put file name. It is lightweight in that only one
DocStrip file needs to be created for every bundle of
documents needed, and no programming other than
TEX is necessary.

4.5 Disadvantages of the DocStrip method

One drawback of this method is that it requires an
extra TEX run. First, the DocStrip file is compiled,
extracting the various TEX files. Then each of them
must be compiled. A bit of programming can au-
tomate this process (as well as decide when certain

Matthew Leingang

TUGboat, Volume 41 (2020), No. 3 285

files don’t need to be recompiled), as we’ll describe
in the next section.

Not every TEX editor can be used for DocStrip-
files. In particular, WYSIWYG or WYSIWYM editors
such as LYX and TEXmacs expect the source file to
be a regular (LA)TEX file. But any editor designed to
operate on text files can be configured for DocStrip.
Some of the most popular TEX editors (for example,
TEXShop, TEXworks, TEXstudio, AUCTEX) support
DocStrip out of the box, as does Visual Studio Code.

Another, more uncomfortable drawback is that
TEX errors are only discovered when the generated
TEX files are compiled. The line numbers reported
by TEX at the time of the error are different from
the line numbers in the DocStrip file. So diagnosing
errors needs to be done without navigating to specific
line numbers. Rather, the token list before the error
can be used for a search string.

Finally, errors in the first run of TEX (when
DocStrip is extracting) can arise from unbalanced
guard modifiers, e.g., a %<*solutions> line with no
closing %</solutions>. These are hard to isolate
since DocStrip does not log its processing with much
context, and the error isn’t discovered until the end
of the file is reached.. I have been able to find these
through a combination of retracing my steps, and
selectively commenting out blocks.

5 Automation

To recap, this workflow requires editing a DocStrip
file marked up as in Section 3, compiling that Doc-
Strip file to generate separate TEX files, then compil-
ing the desired TEX file. The first run can be done
in any TEX engine, because the batch declaration
header (and docstrip.tex) is in core TEX. The
second set of compilations require whatever engine
your destination documents require.

The latexmk program [2] works like make for
TEX projects. It examines a TEX file to find de-
pendencies, watches for warnings about re-running
LATEX, and runs the necessary commands to get the
entire document stable. latexmk is written in Perl,
distributed with TEX Live and MiKTEX, and actively
maintained.

A one-line Unix command that does both of
these is:

tex foo.dtx && latexmk

This processes foo.dtx and, upon success of that
command, runs latexmk. Without file arguments,
latexmk looks for any TEX files in the current work-
ing directory and makes them. Any command-line
options to latexmk (notably, -pdf to make sure the
pdftex engine is chosen, -pdfxe to ensure xelatex,

or -pdflua to ensure lualatex) will be passed when
making each TEX file.

The process can be further automated and in-
tegrated into various TEX editors. I have written
a .latexmkrc (configuration file for latexmk) that
looks for DocStrip files in the argument list, and when
found, parses their log files for names of generated
files to make automatically. With this configuration,
latexmk foo.dtx will take care of all generated files
in one fell swoop.

Any editor that can run a program can be con-
figured to run latexmk. For instance, I have written
a TEXShop “engine” script that wraps around la-
texmk so configured. I edit the DocStrip and press
Command-T once. I open one of the generated files
in “preview” mode, which gives the PDF window
but not the TEX window (we won’t be editing the
generated file directly, so we don’t need it). The
preview window updates each time the underlying
file is changed.

I have also gotten this workflow to succeed in
Visual Studio Code with the LATEX Workshop [3]
These script files and corresponding documentation
are in the github repository.

6 Conclusion

I will continue to maintain and update the github
repository referenced above. If you would like to try
this method, and find that additional documentation
would be useful, I will be happy to include it.

References

[1] Caramdir. Passing parameters to a document, 2010.
tex.stackexchange.com/q/1492

[2] J. Collins, E. McLean, D. J. Musliner. latexmk —
fully automated LATEX document generation, 2019.
ctan.org/pkg/latexmk

[3] J. Lelong, T. Tamura, et al. Visual Studio Code
LATEX Workshop Extension, 2020.
github.com/James-Yu/LaTeX-Workshop

[4] meduz. What Makefile to produce slides and
handouts [in] a common file?, 2014.
tex.stackexchange.com/q/170542

[5] F. Mittelbach, D. Duchier, et al. The DocStrip
program, 2006. ctan.org/pkg/docstrip

[6] reprogrammer. Passing command-line arguments to
LATEX document, 2009.
stackoverflow.com/q/1465665

[7] E. R. Scheinerman. Mathematics: A Discrete
Introduction. Thomson Brooks/Cole, Belmont, MA,
2nd edition, 2005.

� Matthew Leingang
New York University
leingang (at) nyu dot edu

www.cims.nyu.edu/~leingang/

Using DocStrip for multiple document variants

https://tex.stackexchange.com/q/1492
https://ctan.org/pkg/latexmk
https://github.com/James-Yu/LaTeX-Workshop
https://tex.stackexchange.com/q/170542
https://ctan.org/pkg/docstrip
https://stackoverflow.com/q/1465665

	Introduction
	The DocStrip utility
	Example: A problem set with answer template and solutions
	Batch header
	Using guards to conditionally include text
	Using guards to conditionally define environments
	Advanced tricks

	Comparing alternatives
	Separate files
	Option setting in pure TeX
	Symlinks
	Other preprocessors
	Disadvantages of the DocStrip method

	Automation
	Conclusion

