
TUGBOAT

Volume 41, Number 3 / 2020

General Delivery 259 From the president / Boris Veytsman

260 Editorial comments / Barbara Beeton

Passings: Janusz Nowacki, Ed Benguiat, Ron Graham;

A new Unicode-specific area in CTAN; Fonts, fonts, fonts;

Erratum: “The road to Noto”, Steven Matteson; Learning LATEX;

Graphical history in action; Followup to “old news”;

Making TUGboat more accessible

263 How TEX changed my life / Michael Barr

Typography 265 Typographers’ Inn / Peter Flynn

Fonts 269 Eye charts in focus: The magic of optotypes / Lorrie Frear

Multilingual

Document Processing

275 The Non-Latin scripts & typography / Kamal Mansour

Tutorials 281 Using DocStrip for multiple document variants / Matthew Leingang

LATEX 286 LATEX news, issue 32, October 2020 / LATEX Project Team

292 LATEX Tagged PDF — A blueprint for a large project / Frank Mittelbach,

Chris Rowley

299 Functions and expl3 / Enrico Gregorio

308 bib2gls: selection, cross-references and locations / Nicola Talbot

318 Making Markdown into a microwave meal / Vı́t Novotný

Graphics 320 User-defined Type 3 fonts in LuaTEX / Hans Hagen

324 Data display, plots and graphs / Peter Wilson

Software & Tools 327 Short report on the state of LuaTEX, 2020 / Luigi Scarso

329 Distinguishing 8-bit characters and Japanese characters in (u)pTEX /

Hironori Kitagawa

335 Keyword scanning / Hans Hagen

337 Representation of macro parameters / Hans Hagen

341 TEXdoc online — a web interface for serving TEX documentation / Island of TEX

343 MMTEX: Creating a minimal and modern TEX distribution for GNU/Linux /

Michal Vlasák

346 UTF-8 installations of TEX / Igor Liferenko

Macros 348 OpTEX — A new generation of Plain TEX / Petr Oľsák

Reviews 355 Book reviews: Robert Granjon, letter-cutter, and Granjon’s Flowers,

by Hendrik D.L. Vervliet / Charles Bigelow

358 Book review: Glisterings, by Peter Wilson / Boris Veytsman

360 Historical review of TEX3 / Peter Flynn

Hints & Tricks 368 The treasure chest / Karl Berry

TUG Business 258 TUGboat editorial information

258 TUG institutional members

369 TUG 2021 election

Advertisements 370 TEX consulting and production services

News 372 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: tug.org/TUGboat.

Individual memberships
2020 dues for individual members are as follows:

Trial rate for new members: $30.
Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Members may also choose to
receive TUGboat and other benefits electronically,
at a discount. All membership options are described
at tug.org/join.html.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership carries with it such rights
and responsibilities as voting in TUG elections. All
the details are on the TUG web site.

Journal subscriptions
TUGboat subscriptions (non-voting) are available to
libraries and other organizations or individuals for
whom memberships are either not appropriate or
desired. Subscriptions are delivered on a calendar
year basis. The subscription rate for 2020 is $115.

Institutional memberships
Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and TUG. It also provides a discounted membership
rate, site-wide electronic access, and other benefits.
For further information, see tug.org/instmem.html
or contact the TUG office.

Trademarks
Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is.

[printing date: November 2020]

Printed in U.S.A.

Board of Directors

Donald Knuth, Ur Wizard of TEX-arcana
†

Boris Veytsman, President∗

Arthur Rosendahl∗, Vice President
Karl Berry∗, Treasurer
Klaus Höppner∗, Secretary
Barbara Beeton
Johannes Braams
Kaja Christiansen
Jim Hefferon
Taco Hoekwater
Frank Mittelbach
Ross Moore
Norbert Preining
Will Robertson
Herbert Voß
Raymond Goucher, Founding Executive Director †

Hermann Zapf (1918–2015), Wizard of Fonts
∗member of executive committee
†honorary

See tug.org/board.html for a roster of all past and
present board members, and other official positions.

Addresses

TEX Users Group
P. O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone
+1 503 223-9994

Fax
+1 815 301-3568

Web
tug.org

tug.org/TUGboat

Electronic Mail

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the
Board of Directors:
board@tug.org

Copyright c© 2020 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not
be reproduced, distributed or translated without the
authors’ permission.

For the editorial and other material not ascribed to a
particular author, permission is granted to make and
distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another

language, except that the TEX Users Group must approve
translations of this permission notice itself. Lacking such

approval, the original English permission notice must
be included.

The most beautiful thing in the world
is a blank piece of paper.

Ed Benguiat (1979), quoted in
New York Times obituary,

16 October 2020

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 41, NUMBER 3, 2020

PORTLAND, OREGON, U.S.A.

TUGboat editorial information

This regular issue (Vol. 41, No. 3) is the last issue of
the 2020 volume year. The deadline for the first issue in
Vol. 42 is March 31, 2021. Contributions are requested.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG store
(tug.org/store), and online at the TUGboat web site
(tug.org/TUGboat). Online publication to non-members
is delayed for one issue, to give members the benefit of
early access.

Submissions to TUGboat are reviewed by volun-
teers and checked by the Editor before publication. How-
ever, the authors are assumed to be the experts. Ques-
tions regarding content or accuracy should therefore be
directed to the authors, with an information copy to the
Editor.

TUGboat editorial board

Barbara Beeton, Editor-in-Chief
Karl Berry, Production Manager

Robin Laakso, Office Manager

Boris Veytsman, Associate Editor, Book Reviews

TUGboat advertising

For advertising rates and information, including consul-
tant listings, contact the TUG office, or see:
tug.org/TUGboat/advertising.html

tug.org/consultants.html

258 TUGboat, Volume 41 (2020), No. 3

Submitting items for publication

Proposals and requests for TUGboat articles are grate-
fully received. Please submit contributions by electronic
mail to TUGboat@tug.org.

The TUGboat style files, for use with plain TEX
and LATEX, are available from CTAN and the TUGboat

web site, and are included in common TEX distributions.
We also accept submissions using ConTEXt. Deadlines,
templates, tips for authors, and more, is available at
tug.org/TUGboat.

Effective with the 2005 volume year, submission of
a new manuscript implies permission to publish the ar-
ticle, if accepted, on the TUGboat web site, as well as
in print. Thus, the physical address you provide in the
manuscript will also be available online. If you have any
reservations about posting online, please notify the edi-
tors at the time of submission and we will be happy to
make suitable arrangements.

Other TUG publications

TUG is interested in considering additional manuscripts
for publication, such as manuals, instructional materials,
documentation, or works on any other topic that might
be useful to the TEX community in general.

If you have such items or know of any that you
would like considered for publication, please contact the
Publications Committee at tug-pub@tug.org.

TUG

Institutional

Members

TUG institutional members

receive a discount on multiple

memberships, site-wide electronic

access, and other benefits:

tug.org/instmem.html

Thanks to all for their support!

Adobe Inc., San Jose, California

American Mathematical Society,

Providence, Rhode Island

Association for Computing

Machinery, New York, New York

Aware Software, Newark, Delaware

Center for Computing Sciences,

Bowie, Maryland

CSTUG, Praha, Czech Republic

Harris Space and Intelligence

Systems, Melbourne, Florida

Hindawi Foundation, London, UK

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

Maluhy & Co., São Paulo, Brazil

Marquette University,

Milwaukee, Wisconsin

Masaryk University,

Faculty of Informatics,

Brno, Czech Republic

Nagwa Limited, Windsor, UK

New York University,

Academic Computing Facility,

New York, New York

Overleaf, London, UK

StackExchange,

New York City, New York

Stockholm University,

Department of Mathematics,

Stockholm, Sweden

TEXFolio, Trivandrum, India

Université Laval,

Ste-Foy, Québec, Canada

University of Ontario,

Institute of Technology,

Oshawa, Ontario, Canada

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway

VTEX UAB, Vilnius, Lithuania

TUGboat, Volume 41 (2020), No. 3 259

From the president

Boris Veytsman

There is an interesting paradox in the history of tech-
nology. Early adopters start with the first variants
of the innovation. They continue to use them while
the world around them deploys newer and slicker
versions, so the former look rather old and quaint
in comparison—precisely because they have been
pioneers in the acceptance of the new ideas. This can
be seen in many examples; the quirks of the NTSC

broadcasting standard adopted in the United States
is one example. For another, I remember my sur-
prise when I first saw the inside of Mission Control at
NASA Goddard Space Flight Center: the communi-
cation devices with their cloth-covered speakers and
mother-of-pearl buttons were reminiscent of 1960s
turntables rather than futuristic visions of the latest
Star Trek. Of course these devices were installed in
that era and have never needed an upgrade.

The influence of this paradox can be seen in the
place of TEX in the free software community—or
rather in the wider free information community. TEX
users already exchanged tapes of early implementa-
tions when the proprietary character of software was
taken for granted by many actors in the field. The
subsequent appearance of the Comprehensive TEX
Archive Network, CTAN, became the model for such
archives as CPAN, CRAN, and others. Our flagship
publication, TUGboat, started publishing papers
about free TEX software decades before the Journal

of Open Source Software was conceived. However,
for many users and activists of the free software com-
munity our approach may seem definitely quaint and
strange. The fact that TEX has a dual role as a pro-
gram to typeset the texts and a language to encode
them does not help here. The need to preserve the
integrity of the language and the ability to faithfully
typeset old manuscripts led to the rather unusual
requirements of the LATEX project public license. I
remember heated discussions with some purists insist-
ing that LPPL, and the license of TEX itself, were not
free. Fortunately, since the LPPL and TEX license
requirements were accepted years ago by the GNU

Project and the Debian Free Software Guidelines as
free, we can put these discussions to rest.

There is, however, another side to the early
adopter paradox. The first versions of an innova-
tion often contain more ideas than the later ones.
By streamlining the design, the subsequent genera-
tions of engineers strip the “unnecessary” ideas and
thoughts. Thus, an innovator seeking inspiration is
well-advised to study the early works. This is well

known in the arts, where studying and copying old
classics is considered an obligatory part of an educa-
tion. Science and technology students are less keen
to study classics—albeit my advisor, Prof. Niko-
lay Malomuzh, urged us to read papers by Einstein
or Bohr rather than their summaries in textbooks.
“When you read a textbook,” he said, “you learn only
what its author understood in the original paper.”

The TEX community approach to free software
is based on ideas from Don Knuth. As a prolific
author and mathematician, Knuth followed the old
traditions of mathematics when thinking about intel-
lectual property. The way a theorem belongs to its
author is quite different from the way Mickey Mouse
belongs to Disney Studios. These ideas might be even
more relevant now since the free software approach
has become popular outside of the world of software
itself. Scientific papers are increasingly available on
preprint servers and open access journals. Many
publishers and granting agencies require the authors
to make both their data and code publicly available.
The need to significantly accelerate science due to
the COVID-19 pandemic has only accelerated these
trends. The free software community becomes a part
of a more general free information community. There
is an understanding that the old licenses and notions
based on the experience of free software, while very
important, may be not sufficient for the many new
kinds of information. The appearance of innova-
tive ideas such as the Creative Commons licenses
attests to this understanding. I wonder whether a
re-examination of TEX community practices might
be useful in the search for approaches to tackle the
new reality of the open information epoch.

Besides providing food for thought about the
approaches to the intellectual property, our commu-
nity is also in the business of providing technical
means for the free information movement. Many
scientific and technical papers—as well as works of
fiction, technical documentation, etc.—are typeset
with TEX. As always, there is more to do. I think
we should do more to aid free tools in supporting ad-
vanced features of (the ubiquitous) PDF documents.
We need free tools for creation of accessible PDFs—a
technology now being increasingly addressed by TEX
developers. A less TEXnical but perhaps equally im-
portant problem is the improvement of the free PDF

reading software, especially in handling PDF forms. I
hope our development fund (tug.org/tc/devfund)
can help with incentivizing developers to address
these problems.

⋄ Boris Veytsman

president (at) tug dot org

From the president

260 TUGboat, Volume 41 (2020), No. 3

Editorial comments

Barbara Beeton

Passings: Janusz Nowacki, Ed Benguiat,
Ron Graham

This year has not been kind to font designers.
Janusz Marian Nowacki (9 July 1951–7 June

2020) was an active participant in the e-foundry team
that created the Latin Modern family and the TEX
Gyre fonts, and an honorary member of GUST, the
Polish TEX group. He was responsible for the revival
of several traditional Polish fonts, including Antykwa
Toruńska and Antykwa Półtawskiego, which he im-
plemented using MetaType1. His attraction to TEX
was in service to his principal occupation as a rubber
stamp maker and his hobby as a fine art photogra-
pher. A more personal remembrance appears on the
GUST web site.1

The prominent U.S. font designer Ephraim Ed-
ward “Ed” Benguiat (27 October 1927–15 October
2020) is possibly best known for the font bearing his
name— ITC Benguiat,2 a decorative serif typeface
loosely based on typefaces of the Art Nouveau period.
This typeface was released in 1977 by the Interna-
tional Typeface Corporation (ITC), an independent
licensing company for type designers which he helped
establish, and for which he became vice president.
Among his other accomplishments was work on the
redesign of the New York Times logo; this was more
a “cleanup” than a full redesign, and the Times obit-
uary quotes Benguiat thus: “My thought was, ‘OK,
we’ll change it—but if we change it, nobody will
recognize it. So all I did was take it and fix it.”
The obituary contains some good advice for aspiring
typographers and is well worth reading.3

Not a font designer, but a co-author with Don
Knuth and Oren Patashnik of Concrete Mathemat-
ics, one of the first books to use the AMS Euler
font, Ronald Graham (31 October 1935–6 July 2020)
was a President of the American Mathematical So-
ciety (1993–1994) and creator of the Erdős number,
a measure of the distance from Paul Erdős in the
collaboration network of mathematical publication.

R.I.P. Messrs. Nowacki, Benguiat, and Graham.

A new Unicode-specific area in CTAN

The new directory tree CTAN:/macros/unicodetex
is meant for macro packages that work with either
X ETEX and LuaTEX, but not with ‘traditional’ TEX
engines like TEX and pdfTEX.

1 www.gust.org.pl/news/jmn-obit-en
2 www.fonts.com/font/itc/itc-benguiat
3 www.nytimes.com/2020/10/16/business/media/

ed-benguiat-dead.html

Macro packages that require LuaTEX (and work
with none of the other engines!) are stored in
CTAN:/macros/luatex.

Macro packages that require X ETEX (and work
with none of the other engines!) are stored in
CTAN:/macros/xetex.

Macro packages that work with any TEX engine,
or only with the ‘traditional’ engines, are stored,
as before, in CTAN:/macros outside the directories
mentioned above.

So far, the following packages have been relo-
cated to CTAN:/macros/unicodetex/latex:
fontsetup, fontspec, lilyglyphs, polyglossia,
quran, realscripts, texnegar, unicode-math,
xltxtra.

Feedback would be most welcome about more
packages that should be moved to another loca-
tion, according to this classification. Please email
ctan@ctan.org if you are the author, or a knowl-
edgeable user, of a package that you feel should go
to the new CTAN:/macros/unicodetex area, but is
still located elsewhere on the archive.

Fonts, fonts, fonts

Font Wars
For about half a millennium before TEX was created,
type was metal, but in the mid-20th century, metal
type began to be replaced by phototype— negative
images of letters and other symbols on film, through
which a light was flashed to record an image on a
photosensitive surface. Don Knuth had access to an
early laser printer, and realized that images could
be represented by a matrix of zeros and ones—a
bitmap — and from this idea, METAFONT was born,
as a necessary adjunct to TEX. But this was still a
specialized operation, carried out on a large shared
computer. When, in the 1980s, personal computers
became available, one of the first killer applications
was word processing. Soon after, personal-sized laser
printers appeared, and the race was on to provide
fonts that would allow any user of a PC to create
any kind of document their occupation required.

Competition among the manufacturers of PCs
and associated software was fierce, and the part of
it that dealt with the printing of documents became
characterized as the “Font Wars”. This period has
been described in a number of places, one of which
we celebrate here. Chuck Bigelow, as part of a 2017
symposium on the History of Desktop Publishing
sponsored jointly by the IEEE Computer Society
and the Computer History Museum in Mountain
View, California, tells the story of this period in a
two-part article: “The Font Wars”, IEEE Annals of

the History of Computing, 42:1. January–March

https://www.gust.org.pl/news/jmn-obit-en
https://www.fonts.com/font/itc/itc-benguiat
https://www.nytimes.com/2020/10/16/business/media/ed-benguiat-dead.html
https://www.nytimes.com/2020/10/16/business/media/ed-benguiat-dead.html

TUGboat, Volume 41 (2020), No. 3 261

2020, 7–40. Additional notes are provided as a web
supplement: history.computer.org/annals/dtp/
fw/. TUG plans to publish the entire enterprise in
book form next year, with additional material. Since
Chuck was a key participant in this saga, this is a
true first person account, well researched and lucidly
presented. Interspersed with the text are numerous
illustrations depicting various methods, old and new,
used for defining the shapes of letters.

This same subject has been covered from a differ-
ent point of view (that of someone active in the print-
ing industry) by Frank Romano in his book History
of Desktop Publishing, which was reviewed in an ear-
lier issue of TUGboat (tug.org/TUGboat/tb41-1/
tb127reviews-romano.pdf). This book character-
izes the different personalities and points of view
of the principals involved in the hardware end of
the font wars, and is notable for the presence of
some photographs that illuminate the intensity of
competition that marked the period.

Computer Modern / Latin Modern
Changing gears, visible differences between Com-
puter Modern and Latin Modern were addressed
by a question on the tex.stackexchange Q&A site
(tex.stackexchange.com/q/48369). CM has been
criticized for appearing too thin, especially on screen,
but a comparison of copies of Knuth’s The Art of
Computer Programming (TAOCP) show it to appear
more substantial than other documents produced
with (LA)TEX. An answer to this question notes that
a great deal of LATEX material is now by default set
with Latin Modern, not the original CM. It attributes
the difference in weight to the model used for LM

(and also for the Type 1 implementations of CM),
which has a lesser value for the METAFONT variable
blacker, leading to noticeably thinner stems.

Other fonts, and some related software
A productive field for font development is directed
toward assisting readers with visual disabilities. Sev-
eral new fonts and supporting software in this area
have been announced on the web.

• Luciole (French for “firefly”)4 is a sans serif
font intended to “advance research”, supporting
almost all European languages and including
many Greek and math symbols for scientific
notation.

• Lexend5 is a “variable” font (or series of varia-
tions on an underlying basic sans serif font style)
that is intended to change depending on feed-
back from the reader’s ability to comprehend a

4 luciole-vision.com/luciole-en.html
5 lexend.com

text (measured in “words correct per minute”).
Its goal is to improve reading proficiency.

• The Accessible RMarkdown Writer6 is not a font,
but “a tool that creates documents in various
formats based on RMarkdown text”. Designed
to help create “scientifically rigorous” complex
documents, it is based on the existing tool Mark-
down, with the ability to add inline R-code,
and uses pull-down menus to access symbols.
BibTEX is supported for inclusion of references.

Erratum:
“The Road to Noto”, Steven Matteson
(TUGboat 41:2, 145–154)

A question was raised regarding the relative antiquity
of Anatolian hieroglyphics compared to Egyptian,
as stated on page 152: “Anatolian hieroglyphs are
at least 4,000 years old, thus predating Egyptian
hieroglyphs.”

When Matteson was asked about this, he re-
sponded, “Whoops — yes I see looking at the timeline
I quickly sketched out for the talk I transposed the
words ‘Akkadian’ and ‘Anatolian’. Big mistake on
my part and I’m very happy it was pointed out.”

But there’s more to this story.
To begin, “Akkadian” applies to cuneiform, not

hieroglyphs. Cuneiform has traditionally been con-
sidered slightly older than hieroglyphs, but archaeol-
ogists are still digging. And the text here mentions
only hieroglyphs, not cuneiform. So, where did “Ana-
tolian” come from?

One of the goals of Noto is to support all lan-
guage scripts in Unicode; the relevant block (U+14400–

U+1467F) is named “Anatolian hieroglyphs”. The
initial request for adding this script to Unicode
(found in the Unicode archives) was submitted by
the UC Berkeley Script Encoding Initiative. This
document indicates that the script was used by mul-
tiple languages, so a regional rather than a linguistic
name was applied. Sadly, no temporal information
is included.

Elsewhere, in a Wikipedia reference for Egyptian
hieroglyphics (https://en.wikipedia.org/wiki/
Egyptian_hieroglyphs), it is stated that

Since the 1990s, [. . .] discoveries of glyphs at
Abydos [Egypt], dated to between 3400 and
3200 BCE, have shed doubt on the classical
notion that the Mesopotamian symbol system
predates the Egyptian one. However, Egyp-
tian writing appeared suddenly at that time,
while Mesopotamia had a long evolutionary

6 www.arowtool.com

https://history.computer.org/annals/dtp/fw/
https://history.computer.org/annals/dtp/fw/
https://tug.org/TUGboat/tb41-1/tb127reviews-romano.pdf
https://tug.org/TUGboat/tb41-1/tb127reviews-romano.pdf
https://tex.stackexchange.com/q/48369
https://luciole-vision.com/luciole-en.html
https://lexend.com
https://en.wikipedia.org/wiki/Egyptian_hieroglyphs
https://en.wikipedia.org/wiki/Egyptian_hieroglyphs
http://www.arowtool.com

262 TUGboat, Volume 41 (2020), No. 3

history of sign usage in tokens dating back to
circa 8000 BCE.

It is tempting to infer that the underlying idea was
“in the air”, resulting in relatively contemporaneous
development.

Learning LATEX

An introductory manual, Learning LATEX, by David
Griffiths and Desmond Higham, first published in
1997 with a second edition in 2016, has been high-
lighted by a commentary in SIAM News.7 In it, the
authors predict “future LaTeX breakthroughs, lead-
ing up to the release of LaTeX3 in 2051.” I think
that some of these have already come true.

Returning to the present, the new LATEX “in-
structional” site, learnlatex.org, has in just a few
months progressed from an idea to a full-scale opera-
tional reality. Introduced by Joseph Wright in a talk
at TUG 2020,8 the collection of elementary lessons
has already been translated into French, Portuguese,
Vietnamese and Spanish, and more translations are
underway. Each lesson contains one or more typi-
cal examples, which can be run directly from the
connected page or modified for a different view; ex-
perimentation is encouraged. Access to, and presum-
ably use of, the site has grown to several hundred
connections per day.

One of the principal goals of learnLATEX is to
keep it current, unlike many existing web sites that
have been constructed but left to lie fallow (some-
times for years), or books that represent a particular
point in time.

Graphical history in action

Not fonts, not TEX, but an art form that does utilize
fonts as an integral part of its message and consid-
erable charm, posters for the national parks of the
U.S. have been compelling advertisements for the
locations they picture. Among the most attractive of
the lot are the posters created as part of the Works
Progress Administration (WPA), an organization cre-
ated during the Great Depression as a means of
supporting artists, whose talents did not otherwise
yield a stable existence.

An article9 in the New York Times tells the story
of a retired dentist, Doug Leen, who has tracked
down original posters and reproduced them, and
also designed new posters in the distinctive style.

7 sinews.siam.org/Details-Page/

writing-learning-latex
8 tug.org/TUGboat/41-2/tb128carlisle-learnlatex.

pdf; video: youtu.be/0qTBtKr-5c0
9 www.nytimes.com/2020/08/25/style/

ranger-doug-leen-wpa-national-park-posters.html

Illustrations accompanying the article show both
original and newly created items; it’s very hard to
distinguish which is which. (Will there be anyone,
or any reason, to memorialize this year’s disaster?
The need is certainly there among artists.)

Followup to “old news”

With the cooperation of the Computer History Mu-
seum, ACM has carried out interviews with many
recipients of the Turing Award. This includes both
Don Knuth and Leslie Lamport. The interviews
(and transcripts) are online. Start with the main
announcement page for Knuth, at amturing.acm.

org/award_winners/knuth_1013846.cfm. On that
page are links for all forms of the interview, and
an alphabetical listing of award recipients. (Leslie
is listed next after Don.) The interviews are long—
more than seven hours with Don, and about five and
a half with Leslie. (I learned from Don’s interview
that his long-time secretary, Phyllis Winkler, was
able to read his handwriting, was a top-notch tech-
nical typist, and thus a superlative candidate for the
first non-DEK TEX tester.) Put this site on your list
of things to turn to when you have a few hours of
quiet time available.

TUG maintains an extensive list of Knuth videos
at tug.org/interviews/#knuthav as well as links
for other people in the TEX world elsewhere on tug.

org/interviews. If you know of anything we’ve
missed, please let us know.

Making TUGboat more accessible

No, this isn’t a claim that TUGboat will be easier for
someone with a visual disability to read, but starting
with the next issue, each article will carry a DOI — a
Digital Object Identifier. This unique identifier will
broaden digital access to TUGboat content, allowing
it to be included in major collections of bibliographic
data, starting with that of Crossref, the DOI registrar
for material like that published by TUG.

The assigned DOI prefix for TUG is 10.47397.
To this will be added the journal, volume, issue, and
article identification. For new issues, the DOI will
appear below the bottom of the first column on the
first page of each item to which a DOI is assigned.
Assignment of DOIs to earlier issues will proceed as
time permits.

The DOIs will be added to Nelson Beebe’s Bib-
TEX database of TUGboat contents.

⋄ Barbara Beeton

https://tug.org/TUGboat

tugboat (at) tug dot org

https://learnlatex.org
https://sinews.siam.org/Details-Page/writing-learning-latex
https://sinews.siam.org/Details-Page/writing-learning-latex
https://tug.org/TUGboat/41-2/tb128carlisle-learnlatex.pdf
https://tug.org/TUGboat/41-2/tb128carlisle-learnlatex.pdf
https://youtu.be/0qTBtKr-5c0
https://www.nytimes.com/2020/08/25/style/ranger-doug-leen-wpa-national-park-posters.html
https://www.nytimes.com/2020/08/25/style/ranger-doug-leen-wpa-national-park-posters.html
https://amturing.acm.org/award_winners/knuth_1013846.cfm
https://amturing.acm.org/award_winners/knuth_1013846.cfm
https://tug.org/interviews/#knuthav
https://tug.org/interviews
https://tug.org/interviews

TUGboat, Volume 41 (2020), No. 3 263

How TEX changed my life

Michael Barr

Abstract

I describe the complicated process of writing math
papers, getting them typed, and finally getting them
published in the days before TEX and how much
things changed after.

1 Introduction

As I look back on a career writing papers that started
with my 1962 PhD thesis, I am amazed how much
things changed from before Don Knuth’s amazing
program TEX to after. The process of getting math
into type was long, messy, and extremely error-prone.
It started with writing a fair copy in longhand that
a typist could hope to read, followed by correction,
submission, revision, rinse and repeat. At the end of
the line, the whole exercise had to be repeated with
typesetting, all of which changed with the coming of
TEX and LATEX.

2 My thesis

Even in retrospect, it was a mess, a long very de-
tailed computation full of Greek letters and loads
of subscripts. I was living at home, we rented a
typewriter, my mother, who could type, did most of
it (with me dictating for the most part) and I did a
little. With most of the Greek letters, we left space
and wrote them in with a pen. In a few cases, I
was able to improvise something. For example, O,
backspace, I would give a reasonable approximation
of Φ. Or +, backspace, 0 gave something like ⊕.
There were no italics; in point of fact until TEX came
along, I was not consciously aware that theorems
and the like were always set in italics and that math
symbols were also italic. I don’t believe journals used
different fonts for text and math italics, incidentally.

3 Writing papers

I never made any attempt to publish my thesis, al-
though in fact I published the results in much greater
generality and without any computation seven years
later. But I did start writing papers. To get a paper
into print was a long messy process. First write a
fair copy longhand. Give it to a department typist
and hope that she (it was always a woman) could un-
derstand it. A typescript would emerge and I would
have to correct it and give it back to the typist. After
getting it corrected, I would have to add the Greek
letters, symbols, script letters, etc. by hand.

We did have photocopiers, but copies cost ten
cents a copy, probably more like a dollar in today’s
money. Still you made a copy. In an earlier era, the

typist might have typed a mimeograph master. I
cannot imagine getting that corrected. Even earlier,
the hand-written draft would be the one submitted
for publication. I once looked up instructions for
authors and discovered that the American Math.
Society started requiring typewritten submissions
only in the early 1920s.

At any rate you submitted your masterpiece to a
journal, which sent it out for refereeing. The referee
invariably wanted revisions. Many of them involved
shortening the paper, removing details, making it
harder to read. This wasn’t perverse on their part:
mathematics was very expensive to print. The paper
would have to be revised, which meant starting the
whole process over. Assuming the paper was finally
accepted, it then got copy-edited. For mathematics,
this meant marking up the theorem-like environ-
ments for italic, likewise with all the variables, Greek
letters, script letters, Frakturs, and special symbols.
Then it was sent to a typesetter, who tried to match
the marked-up typescript as well as he could. He had
about 250 characters that he could put into his ma-
chine and he would look at the paper to decide which
ones to load. Any additional ones would have to be
inserted by hand at extra cost. While 250 sounds like
a lot, it has to include the standard alphanumeric
characters, italic, bold, large sized for headers and
whatever special characters the author might have
chosen. Once he had done his best, proofs would be
returned to the author, who had to read it again and
find and mark errors. Minor author corrections were
permitted but discouraged. And nothing that would
change the size of paragraphs was allowed. Finally,
publication!

Starting in the mid-1960s there were small im-
provements in the process. The first innovation was
things called typits. A typit was a character (symbol
or otherwise) on what looked like a typewriter key.
You would hold it against the typewriter ribbon and
hit any other key. That would hit the typit, which
would impress the character on the page. I remem-
ber one typist in my department who had a box of
typits on her desk and got very fast about finding
the required character. Still the process was slow
and error prone.

Next came the IBM Selectric typewriter with
its typing ball replacing the typewriter keys. I will
not try to describe the Selectric (you can google it),
but only mention that you could change the ball
to a symbol ball or another—there was likely an
italic ball—and use that. Still it was a slow process.
Replace the ball, find which character to type and
do so, then put back the standard ball. But the
whole process of writing a fair copy, getting it typed,

How TEX changed my life

264 TUGboat, Volume 41 (2020), No. 3

correcting it, really hadn’t changed. You didn’t have
as much hand work and the typesetter’s job must
have been somewhat easier, but it was still slow and
expensive.

I think it was in the summer of 1979 that I got
so fed up with the whole process that I and my two
older children found a book, vintage 1945, “Teach
Yourself to Type” and sat down and learned to type.
I then bought a second-hand Selectric typewriter
along with a symbol ball, determined to learn how
to do my own papers. But I never actually did that.
Still learning to type was what I would eventually
have to do.

4 The coming of TEX

In 1979 I started working on a book [TTT] jointly
with the late Charles Wells of Case Western Uni-
versity. At first, we exchanged typescripts by mail.
Unfortunately, mail between Cleveland and Mon-
treal took a minimum of two weeks. In 1980, we
discovered [T & M] and decided on the spot that we
would try to use TEX to do our book. My brother, a
computer professional, told me we were nuts until we
had access to an implementation we could use. We
did it anyway. Most readers of this article will not
realize the limitations of TEX 1. Most importantly,
there were no add, multiply, or divide instructions.
You could increment or decrement a counter by 1,
but that was all. Anything like LATEX would have
been impossible. Nevertheless we persisted. A big
problem was the commutative diagrams. We basi-
cally left TEX mode and drew them as best we could
using horizontal arrows fabricated with - signs, ver-
tical arrows drawn with | and diagonals with slash
and backslash. Arrowheads were done with <, >, v
and ^. I guess I assumed that a publisher might
do the diagrams in the old-fashioned way and insert
them in the right places.

At some point we discovered computer networks
and eventually, with much help from our computer
centres, we learned to transmit our files electronically.
Charles had bought an Apple II in 1979 and by 1982
I had an IBM PC. We once counted that we had
used 9 distinct editing programs.

I actually wrote a program that was originally
intended to just remove the TEX code and print out
a more-or-less readable manuscript. But in fact I
discovered that, using the wonderful (for the time)
abilities of the Epson FX-80 printer, I could give a
reasonable interpretation of the TEX code. I also
wrote a font generator to generate special fonts for
the nine-pin dot matrix printer. The results weren’t
pretty, but they were readable. It was all monospaced
and unjustified.

But we actually had a great stroke of good for-
tune. We sent it to Springer-Verlag, who handed it
off to the editor Roberto Mineo, who was at that
time also a graduate student in computer science
at Carnegie-Mellon University. He had discovered
a beta version of LATEX and used it to do the re-
quired formatting and also used the LATEX picture
mode to code all the diagrams. He printed it out
at CMU and Springer printed it directly from his
camera-ready text. Unfortunately, the printer he
used was not the best quality and the original is not
up to Springer’s standards. A better version is on
my website www.math.mcgill.ca/barr.

After that, PC versions of TEX appeared and I
never used a typist again. Life became so much easier.
I could typeset a paper, make the necessary revisions
in much less time and with much less effort than
the old process of getting it ready for publication
had been. I never actually used the Selectric and
eventually gave it to one of my students who used it
for a few years and then got his own computer and
learned TEX. Now I doubt there is a math journal
in the world that will accept a paper not composed
in TEX or, most likely, LATEX.

Charles and I did one more book together a
little later [CTCS]. We did the final version when
we were both on sabbatical at Penn in 1990–91. It is
interesting to compare timings. In 1990 on a 6 MHz
IBM AT computer the compilation took about an
hour. Conversion from .dvi to .hp took about an
hour and a half and printing on an HP LaserJet
took over an hour. I had occasion to recompile a
20% longer version of the book a few weeks ago and
producing a .pdf file took all of 8 seconds.

References

[TTT] M. Barr and C. Wells, Toposes, Triples,
and Theories. Springer-Verlag, 1985.

[CTCS] M. Barr and C. Wells, Category Theory for

Computing Science. Prentice-Hall Interna-
tional, 1990.

[T & M] D.E. Knuth, TEX and Metafont. Addison-
Wesley, 1979.

⋄ Michael Barr

404-865 Plymouth Ave.

Mont-Royal, QC H4P1B2

Canada

michael.barr (at) mcgill dot ca

https://math.mcgill.ca/barr

Michael Barr

www.math.mcgill.ca/barr

TUGboat, Volume 41 (2020), No. 3 265

Typographers’ Inn

Peter Flynn

To print or not to print

For over 500 years we have been surrounded by the
idea that the final act of creating text is to print
it. Then you can bind it, sell it, lend it, circulate
it, or whatever you want, because you have ‘it’ in
your hands: a book or pamphlet or leaflet, something
tangible.

That idea led to the consolidation of conven-
tions in European publishing and elsewhere, some
of which was drawn from the manuscript era, about
how documents work.

• The document is made up of rectangular pages,
held together to form the book.

• The text starts at the beginning, in the appro-
priate corner, and progresses, symbol by symbol,
until the end.

• Along the way it can be broken into divisions
according to some conceptual or logical plan
defined by the author, which can be used to
guide or inform readers.

• There can be other waypoints or milestones to
show readers where they are in the document,
and to enable them to tell others how to find
some item of interest.

• Once we moved from scrolls to pages, a human
desire for order in chaos seems to have engen-
dered some conceptions of how things conven-
tionally look:

– all the pages should be the same size;

– they should all look roughly the same, or
follow a limited set of patterns;

– they should normally have the same num-
ber of lines per page; even when intruded
upon by other material (mathematics, mu-
sic, figures, tables) the positioning of the
remaining lines should be consistent.

This is not just to make them easier to bind,
but to make them easier to read, and because
the people who printed and published the books
eventually wanted their editions to be uniform
between themselves, but still distinct from ev-
eryone else’s.

Take away the idea of printing, and you are left with
the PDF or web page on your screen. It may even
look like the printed page, but of course it’s just
a bunch of colored dots. Yet we keep most of the
features listed above because they’re useful to the
readers [5] — or we hope they are.

There is a substantial body of opinion, some
backed by research and some not, that you should not
use PDF format for non-print use (e.g. web ‘pages’)
because of the potential for severe usability problems
compared with conventional HTML:

PDFs are meant for distributing documents
that users will print. They’re optimized for
paper sizes, not browser windows or mod-
ern device viewports. We often see users get
lost in PDFs because the print-oriented view
provides only a small glimpse of the content.
Users can’t scan and scroll around in a PDF

like on a web page. Content is split up across
sheets of paper, which is fine for printed doc-
uments, but causes severe usability problems
online. [7]

Normal practice is to publish in multiple formats
anyway, with a growing recommendation for HTML5

with CSS3 Paged Media features [9]. However, the
use of PDF is in many cases unavoidable for tech-
nical or small-p political reasons, in particular the
accuracy obtainable with LATEX which is often un-
available in browsers even with HTML5/CSS3, so we
need to consider how we can overcome the legacy
problems of print. In particular, whichever format
you choose (or are required to use), it is essential
to make the document accessible according to the
prevailing guidelines in your field.

Page numbers. When the idea of the web and
other forms of networked electronic publishing caught
on, many academic journals and citation format au-
thorities, accustomed to page number references, had
serious concerns, because a web page isn’t a page
at all— it’s essentially like an endless scroll, able
to hold an entire book or even collection of books,
with never a page number to be seen. EPUB books
change page numbers every time you zoom in or out
for a better fit or font. Citation formats that made
page numbers compulsory even came under attack
for being old-fashioned by some of those who were
by now publishing electronically only. Some formats
dug their heels in and insisted on page numbers even
for pageless documents. That particular panic is
largely past, and many journals now retrofit page
numbers from the PDF back into the web version
(relatively trivial with TEX).

Margins. Printed books and journals are bound at
the left or right edge, according to writing system,
which means the inside margin needs to be more
than the outside one, to allow for the curvature
of the pages close to the spine when the book is
open. Historically the margins were a subject of

Typographers’ Inn

266 TUGboat, Volume 41 (2020), No. 3

great care and attention in book design, both in
manuscript and print, exemplified by Tschichold’s
famous diagram (Figure 1). Most printed documents
were traditionally set justified, much easier even in
hand-set type than in manuscript, so the idea of the
text occupying a rectangle of fixed dimensions on
each page was an easy convention to continue.

2

3

4

6

Figure 1: Sketch of page proportions (after Tschichold
[8], quoted in Lewis [6]).

In a format designed for on-screen reading, the
uneven but symmetrical margins are probably an
unnecessary distraction unless you can expect readers
to use facing-page software. Some publishers create
separate print-ready and display-ready PDFs so that
online readers don’t see the odd and even margins
intended for print.

Lines. While the number of lines per page can be
controlled in a PDF, it is pointless and meaningless
on the web, and makes an EPUB virtually unusable,
as both those formats are designed to be resized by
the reader. In any event, line alignment across a
double-page spread is not meaningful in a browser or
reader unless facing-page viewing is available. The
problems of ‘show-through’, where the aligned or
‘backed-up’ lines of print on the next or previous
page are visible through thin paper, are quite clearly
a print-only concept.

Questions. So what should we be looking out for
when formatting for non-print reading only? Perhaps
the following can act as a starting-point:

• ‘Page’ shape (window or viewport shape may be
a better term): portrait like an office document
or landscape like a modern screen?

• Margins: if they no longer need to be asymmet-
rical, how big should they be?

• Line length: there’s more space in landscape,
but let’s not use it at the expense of readability;

• Font size and leading: how can you use it to
compensate for longer lines?

• ‘Page’ numbering: is it needed at all?

• Number of lines per page or screen or window:
is it important?

• Consistency and similarity: do they need to be
preserved if more than one document is being
published in series?

• Document structure: some form of sectional
division will probably continue to be needed;
they will require a numbering scheme of some
kind if there are no pages to number.

Paper isn’t going away any time soon, but as we
start to change our reading habits, it’s worth starting
to think about how that will affect our document
classes.

Centering (again)

This has become a recurrent theme as people send me
more examples of poor line-breaking in centred titles
[2, 3]. In one article [4] I showed an early example
(1549) which I reproduce again in Figure 2 where the
word ‘Contents’ was broken ‘CON’ (in antiqua, large
and red, between fleurons) and ‘tents’ (in blackletter,
body text size).

Figure 2: Unusual line-breaking in a heading (Book
of Common Prayer, 1549, fragment, courtesy of The
Society of Archbishop Justus); see [4] for the original
context.

Recently I came across another early example,
this time from 1573. It was posted on Twitter as
a very low-resolution image on a bright violet back-
ground, and I am indebted to Paul W. Nash, Editor
of the Journal of the Printing Historical Society for
identifying it for me, and for providing much addi-
tional information (Figure 3). Richard Tottle (also
Tottel and other spellings, as here) was a publisher in
sixteenth century London, known for his Miscellany,
the first collection of poetry in English.

Peter Flynn

TUGboat, Volume 41 (2020), No. 3 267

Figure 3: Colophon from Sir William Staunford’s
An exposition of the kinges prerogative, collected out of

the great Abridgement of Justice Fitzherbert and other

olde writers of the lawes of England (1573) printed
by Richard Tottle. Facsimile available at https:

//books.google.co.uk/books?vid=OIQ8AAAAcAAJ.

In this colophon, however, it’s not a word broken
over a line but a phrase: the name of the location
(Hand and Star). It is subject to a change of font,
again from antiqua to blackletter, which to modern
eyes appears strange. But it was a style at the time
to alternate lines of different fonts, and Dr Nash is of
the opinion that this was the prevailing factor in an
arrangement like a colophon where it contributed to
successive lines being shorter and shorter to obtain
a triangular effect: the relation of the type to the
meaning of the text was only considered very loosely
if at all. The example is also curious for the extra ‘t’
in the printer’s name, and the accidental duplication
of the syllable ‘men’ in the impressum at the bottom.

Figure 4: Typographically reconstructed colophon
(draft, incomplete)

For a separate project I am using this as an
example for typographic reconstruction using easily
available modern fonts (Figure 4). In this case the
antiqua is Ballard, from Proportional Lime, who
specialise in modern cuttings of historical typefaces

(available from MyFonts.com). It is modeled on type
used by Henrie Ballard, who ran a press just down
the street from Tottle, the other side of Temple Bar,
a few decades later. The blackletter is Missaali, a
textura based on a much earlier typeface from the
German printer Bartholomew Ghotan in the 1480s,
and available from CTAN.

Despite the need to retain typographic unity
within the line, it is interesting that neither compos-
itors nor printers nor publishers (often the same in
those days) felt it necessary for a name or a word to
remain in the same font across a line-break. I did
at one stage think that perhaps there was a feeling
that the publisher’s name should be in a specific font,
and that there could have been a technical reason
behind this — font bodies were not of exact or even
sizes between foundries, so a font of a given size from
one foundry might not be the same depth as the
same font of the same nominal size from another,
and would require additional spacing material. But
Dr Nash has identified other mixed lines elsewhere in
the document which indicate that the smaller size of
black letter and italic were indeed cast on the same
size of body.

While we’re on the subject of mixing fonts, I was
sent the sign in Figure 5. At first glance I thought
it might be a UK placename like Ottery St Mary or
Forncett St Peter, but apparently it only refers to
Osborne Street. Ultimately, if you simply don’t have
access to the font any more, or it no longer exists
in a usable form, your options for changing font in
mid-line may be forced.

Figure 5: Garage sign in Colchester, UK

New device driver for old format

I was talking with Barbara Beeton a while ago about
a project we are both involved in, and the topic of
the durability of text came up. She was making the
point that computer files have nowhere near the per-
manence of clay tablets, which, after all, only become
more indestructible when subjected to fire [1].

Given that we can replicate a facsimile of a
clay tablet using a 3D printer, and that numerous

Typographers’ Inn

268 TUGboat, Volume 41 (2020), No. 3

Figure 6: Catalog for Artistic Bookbinding (2003)
[commemorative for Demetrios Krommydas of Chios
(1942–2001)].

cuneiform fonts can be used with LATEX, using the
polyglossia package, it should surely be possible to
create a dvi2tablet output driver (or an equivalent
for a PDF file) so that students worried about the
persistence of their dissertation would merely have
to translate it into one of the supported languages
(Akkadian, Eblaite, Elamite, Hattic, Hittite, Hurrian,
Luwian, Sumerian, Urartian, or Old Persian) and
output it to a 3D printer, bake the tablets, and store
them in a convenient cave.

Afterthought: What’s in a name

Anyone who has read documentation about TEX or
LATEX will probably have come across the description
of how to pronounce the TEX bit as ‘tecchh’ because
Knuth based it on the Greek τ ǫ́χνη, meaning ‘craft’
or ‘art’ (as in Knuth’s own Art of Computer Pro-
gramming).

Olivia Fitzpatrick, formerly of UCC’s Boole Li-
brary, has shown me a copy of the commemorative
catalog for the Greek bookbinder Demetrios Krom-
mydas (Figure 6) which shows the word in a normal
Greek context which serendipitously is a craft related
to typesetting.

References

[1] B. Beeton. The future of technical text. In
F. Hegland, ed., The Future of Text, pp. 58–59.
Future Text Publishing, London, Nov 2020.

[2] P. Flynn. Typographers’ Inn—Titling and
centering. TUGboat 33(1), May 2012.
tug.org/TUGboat/tb33-1/tb103inn.pdf

[3] P. Flynn. Typographers’ Inn—Afterthought.
TUGboat 37(3), Sep 2016.
tug.org/TUGboat/tb37-3/tb117inn.pdf

[4] P. Flynn. Typographers’ Inn—Afterthought.
TUGboat 38(1), May 2017.
tug.org/TUGboat/tb38-1/tb118inn.pdf

[5] P. Flynn. Digital Typography. In
K. Norman, J. Kirakowski, eds., Handbook
of Human-Computer Interaction, pp. 89–108.
Wiley, Hoboken, NJ, Jan 2018.
https://doi.org/10.1002/9781118976005

[6] J. Lewis. Typography: basic principles:
influences and trends since the 19th century.
Studio Books, London, Jan 1963.

[7] J. Nielsen, A. Kaley. Avoid PDF for On-Screen
Reading. NN/g Web Usability, Jun 2020.
nngroup.com/articles/avoid-pdf-for-on-

screen-reading/

[8] J. Tschichold. Designing Books: Planning a book;
a typographer’s composition rules; fifty-eight
examples by the author. Wittenborn, Schultz,
New York, NY, Jul 1951.

[9] W3C, Boston, MA. CSS Paged Media
Module Level 3: Working Draft, Jan 2018.
w3.org/TR/css-page-3/

⋄ Peter Flynn
Textual Therapy Division,

Silmaril Consultants
Cork, Ireland
Phone: +353 86 824 5333
peter (at) silmaril dot ie

blogs.silmaril.ie/peter

Peter Flynn

TUGboat, Volume 41 (2020), No. 3 269

Eye charts in focus: The magic of optotypes

Lorrie Frear

Abstract

An investigation into the optotypes used on eye
charts, with comparisons to standard typefaces.

1 Introduction

My graphic design students love to design posters
using the classic eye chart composition, and they
frequently ask “What typeface should I use for this?”
Not having a definitive answer has always been frus-
trating, so I decided to investigate to find out what
typeface is used on eye charts.

I started my quest by asking my ophthalmologist,
who enthusiastically provided a dizzying amount of
technical information about the variety of eye charts
and tests designed for different audiences and eye
conditions. Suddenly, a simple question became a
series of discoveries. Not only is there not one letter-
form design or font used for eye charts; the letterform
designs are more appropriately called optotypes, of
which there are several versions. There is a science to
the design of optotypes and their legibility at specific
distances. Since I am a graphic designer and not
an eye or vision expert, I will forgo the technical
explanations and focus on optotypes used on several
significant charts to provide a better understanding
of this complex and fascinating subject.

Eye charts are designed to test visual acuity, or
clarity of vision. Each chart design has limitations
and advantages, depending on the clinical setting,
patient profile, and diagnostic objective. To under-
stand the differences between the charts, it is helpful
to know a little historical background of standardized
visual acuity testing.

2 The first standardized tests

Heinrich Küchler, a German ophthalmologist, de-
signed a chart in 1836 using figures cut from cal-
endars, books, and newspapers glued in rows of de-
creasing sizes onto paper. These figures included can-
nons, guns, birds, farm equipment, camels, and frogs.
This system was limited because the figures were
not consistent in visual weight or style. Dr. Küchler
continued to refine his chart, and in 1843, published
a new version using 12 rows of Blackletter letters
decreasing in size (fig. 1). This chart was not widely
adopted and was published only once in 1843. [6]

The next significant development in visual acuity
chart design was the Snellen Eye Chart, which is

Originally published July 12, 2015 at ilovetypography.

com/2015/07/12/what-are-optotypes-eye-charts-fonts.

Figure 1: Kuchler Chart. Heinrich Küchler is one of
the first individuals credited with creating an eye chart
to test visual acuity.

recognizable to most Americans from visits to the
DMV (fig. 2). The Snellen Eye Chart was designed
by Dutch ophthalmologist Herman Snellen in 1862 as
a means of improving the subjective nature of vision
testing, which was usually accomplished by having
patients read a passage of text held their hands,
or held at a distance by the doctor. This test had
obvious limitations: the results were dependent upon
the reading ability of the patient, the legibility of the
typeface used, and the fact that the patient could
guess the next word by reading a sentence. According
to Dr. August Colenbrander, a scientist at the Smith-
Ketterwell Eye Research Institute and an expert on
eye chart design, Snellen began experimenting with
dingbats, or symbols such as squares and circles for
his eye chart, but found that it was difficult for test
subjects to describe the symbols accurately. [5]

So, he moved on to using letters. The characters
on the first Snellen Charts were: A, C, E, G, L, N,
P, R, T, 5, V, Z, B, D, 4, F, H, K, O, S, 3, U, Y,
A, C, E, G and L. The letters used were Egyptian
Paragons or slab serifs of contrasting line thickness
with ornamental cross strokes on terminals. Snellen
then theorized that test subjects would be able to
identify non-ornamented, monoline/equally weighted
letters of consistent visual size more easily, and so
he created optotypes.

At first glance, it may appear that the Snellen
optotypes are Lubalin Graph or Rockwell. But upon
detailed examination, it is evident that these char-
acters are rather atypical (fig. 3). Unlike typical
typefaces in which letter proportions are determined
by ‘family’ groupings (such as n, r, m, h and u),

Eye charts in focus: The magic of optotypes

https://ilovetypography.com/2015/07/12/what-are-optotypes-eye-charts-fonts
https://ilovetypography.com/2015/07/12/what-are-optotypes-eye-charts-fonts

270 TUGboat, Volume 41 (2020), No. 3

Figure 2: Snellen Chart. (Grayscaled for print; the
bar between lines 8 and 9 is red.)

Snellen optotypes are designed on a 5 x 5 grid (fig. 4).
Furthermore, they comprise a very limited character
set of just 9–10 letters. Optotypes are designed using
a simple geometry in which the weight of the lines is
equal to the negative space between lines. The height
and width of an optotype is five times the thickness
of the line weight. [13] These design considerations
create inconsistently and oddly proportioned letters.
For example, in a typical typeface, C and D would
appear wider than Z, but in the optotype scheme,
the opposite is true.

Figure 3: Snellen vs. Lubalin Graph.

Figure 4: Snellen letter E

Dr. Snellen created optotypes using minutes of
arc instead of a typographic measuring system. This
made it possible for his charts to be reproduced
easily. The first large order for Snellen Charts was
from the British Army in 1863. From there, the
Snellen Eye Chart became the standard for vision
testing for almost a century. In addition, Snellen’s
5 x 5 grid optotype design is the foundation upon
which all other eye chart systems are based. The
Snellen Eye Chart is still the most recognized design,
which can, to some extent, negate its effectiveness,
if, for example, the test subject has memorized the
chart. [5]

Most Snellen Charts contain eleven lines of block
letters. The first line consists of a single large letter,
most often an E. Subsequent rows have increasing
numbers of letters that are progressively smaller in
size. The test subject, from a distance of 20 ft, covers
one eye, and, beginning at the top, reads aloud the
letters in each row. The smallest row that can be
read accurately indicates the visual acuity in that
particular eye. [9]

Current Snellen Charts use nine letters, C, D,
E, F, L, O, P, T, Z. Note that with the exception
of E and O, the letters are all consonants. The
diverse shapes of the optoypes allow test subjects to
identify verticals, horizontals, and diagonals. These
letter shapes are also highly effective in identifying
astigmatism.

Although today’s Snellen Eye Charts may vary
in the number of rows, size gradation, and serif or
sans serif design [6], their commonalities include

Lorrie Frear

TUGboat, Volume 41 (2020), No. 3 271

the rectangular shape. This dictates the varying
numbers of optotypes appearing on each line as space
permits. [8]

As a result of continual refinements, most of
today’s Snellen Charts follow logarithmic progression,
have improved letter designs, and a uniform 25%
progression from line to line. [8]

3 Refinements and variations

In 1868, Dr. John Green of the St. Louis College
of Physicians and Surgeons in Missouri decided to
make some changes to the Snellen Eye Chart. He de-
signed a more structured grid featuring a consistent
logarithmic geometric progression of 25% for succes-
sive lines, and with proportional spacing. He also
changed the style of the optotypes from the blocky
slab serif to sans serif. His concept became known
as the “Preferred Numbers Series”, but his system
did not become widely recognized until the next cen-
tury when sans serif typography gained popularity.
Ironically, in response to criticism that his letters
looked “unfinished”, Dr. Green abandoned them in
1872, and returned to the serif optotypes. [8]

In 1959, Dr. Louise Sloan of Johns Hopkins
University created ten new optotypes using sans
serif letters preferred by Dr. Green. These optotypes
included the letters: C, D, H, K, N, O, R, S, V, and Z.
Like Snellen letters, Sloan Letters are formed within
a square, with the stroke width equal to one-fifth of
the letter height and with equal visual weight. The
Sloan Chart (fig. 5) has consistent spacing between
letters and rows that are proportional to letter size.
Spacing between letters is equal to letter width, and
spacing between rows is equal to the height of the
letters in the subsequent, smaller row. [4]

Notice that, as in the Snellen Chart, all of the
characters are consonants with the exception of O.
Also note that the letter selection used on the Snellen
Chart is not the same as that in the Sloan Chart. In
both cases, the diverse shapes of the optoypes allow
test subjects to identify verticals, horizontals and
diagonals—an aid to identifying or differentiating
individual letters. The ten Sloan Letters are con-
sidered to be the most effective letter selection for
equal legibility. What’s more, they are particularly
effective at identifying astigmatism.

The Sloan Letters may at first glance resem-
ble Microgramma or Eurostile (www.myfonts.com/
fonts/linotype/eurostile) fonts, but upon closer
examination (fig. 6), it is evident again that the grid
format imposed upon these optotypes produces some
odd and inconsistently proportioned letters.

Figure 5: Sloan Chart.

Figure 6: Sloan letters vs. Eurostile.

4 New charts and methods

In 1976, Ian Bailey and Jan E Lovie-Kitchin of the
National Vision Institute of Australia proposed a
new chart layout (fig. 7), describing their concept as
follows:

“We have designed a series of near vision

charts in which the typeface, size progression,

size range, number of words per row and spac-

ings were chosen in an endeavor to achieve a

standardization of the test task.” [11]

This layout replaces the Snellen rectangular
chart format with a variable number of letters per

Eye charts in focus: The magic of optotypes

https://www.myfonts.com/fonts/linotype/eurostile
https://www.myfonts.com/fonts/linotype/eurostile

272 TUGboat, Volume 41 (2020), No. 3

Figure 7: Bailey–Lovie Chart.

Figure 8: Snellen vs. Sloan letters; Sloan and ETDRS

letters are the same.

line with a triangular one with five proportionally
spaced letters on each line. The ten Sloan Optotypes
appear on the Bailey–Lovie Chart using the same
letter ratio of the letter-height equal to five stroke
widths, excluding serifs.

The Bailey–Lovie Chart is an example of a
LogMAR test, a term describing the geometric no-
tation used to express visual acuity: “Logarithm of
the Minimum Angle of Resolution”. Such tests were
selected in 1984 as the standard for visual acuity
testing by the International Council of Ophthalmol-
ogy. [3]

In 1982, when the National Eye Institute needed
standardized charts for its “Early Treatment of Di-
abetic Retinopathy Study” (ETDRS), Dr. Rick Fer-
ris combined the Green and Bailey-Lovie Charts’
logarithmic progression and format with the Sloan
Letters (fig. 8). ETDRS charts use equal spacing

between letters and lines, making the acuity chart
more balanced. [8] This chart format has been ac-
cepted by the National Eye Institute and the FDA,
and is mandated for many clinical trials performed
worldwide.

The ETDRS test is more accurate than either the
Snellen or Sloan versions because the rows contain
the same number of letters, the rows and letters
are equally spaced on a log scale, and individual
rows are balanced for letter difficulty. There are also
three different versions of the test available to deter
memorization. [1]

One limitation of the original ETDRS chart is its
use of the Latin alphabet, making it difficult to use
throughout all of Europe. To address this limitation,
the Tumbling E and Landolt C charts (discussed
below) are used for populations who are unfamil-
iar with letters of the Latin alphabet. Recently, a
modified ETDRS chart was developed using Latin,
Greek, and Cyrillic alphabets. For this chart, the
letters C, D, N, R, S, V and Z have been replaced
by the letters E, P, X, B, T, M, and A. These letters
are created using the same 5 x 5 grid and the Sloan
Letter design. [7]

In more recent years there has been a move
to create electronic charts, including the British-
designed Test Chart 2000, which was the world’s
first Windows-based computerized test chart. It
overcomes several difficult issues such as screen con-
trast, and provides the opportunity to change the
letter sequence, so that it cannot be memorized. [2]

These fonts, for Mac and Windows OSs, are
available for research purposes. The fonts are based
on Louise Sloan’s designs, which has been designated
the US standard for acuity testing by the National
Academy of Sciences, National Research Council,
Committee on Vision. [12]

5 Charts for non-readers

For testing patients who cannot read or for those
unfamiliar with the Latin alphabet, the Tumbling E
Eye Chart and the Landolt C or Broken Ring Chart
are used. [8]

The Tumbling E Chart was designed by Profes-
sor Hugh Taylor of the Centre for Eye Research Aus-
tralia (CERA) in 1978 to test the vision of Australian
Aborigine individuals in an attempt to identify those
with the eye disorder trachoma.

Professor Taylor, using the Snellen proportions,
designed a shape resembling an uppercase E, which
he arranged in four directions (up, down, right, and
left) in progressively smaller sizes (figs. 9 and 10).
The patient then describes the direction in which the
Tumbling E is facing.

Lorrie Frear

TUGboat, Volume 41 (2020), No. 3 273

Figure 9: Tumbling E Chart, designed by
Hugh Taylor.

Figure 10: Snellen E and Tumbling E.

Figure 11: Landolt C (Broken Ring) Chart, designed
by Edmund Landolt.

Figure 12: Snellen C and Broken Ring Eye Chart C.

The Landolt C or Broken Ring Eye Chart (see
figs. 11 and 12) is also used for illiterate individuals
or those persons unfamiliar with the Latin alphabet.
Created by Swiss ophthalmologist Edmund Landolt,
this test is now considered the European standard.
The Broken Ring (which is the same proportions as
the C from the Snellen and Sloan Charts) is rotated
in increments of 90°. The minimum perceivable angle
of the C-gap is the measurement of visual acuity. [10]

In addition to the Tumbling E and Landolt C
tests, there are charts for children in which progres-
sively smaller, simple pictograms of objects are used.
The challenge in designing these charts is creating

Eye charts in focus: The magic of optotypes

274 TUGboat, Volume 41 (2020), No. 3

recognizable pictograms of equal visual weight, con-
sistent style, and design.

6 In conclusion

This article is not an exhaustive research study into
the subject of eye charts or their efficacy. There are
many more examples of eye charts. My objective
was to explore the archetypes of optotype design in
the evolution of the eye chart as a diagnostic tool.
Now I can tell my students that there is, technically,
not a single typeface to recommend for their designs;
and I can refer them to this article for more informa-
tion! Examining optotypes has been an eye-opening
experience.

References

[1] Bailey, I., Lovie-Kitchin, J. Visual acuity
testing. From the laboratory to the clinic.
Vision Research 20 Sep. 2013; 90:2–9.
sciencedirect.com/science/article/pii/

S0042698913001259

[2] The College of Optometrists. Test charts.
college-optometrists.org/the-college/

museum/online-exhibitions/virtual-

ophthalmic-instrument-gallery/test-

charts.html

[3] International Council of Ophthalmology,
Visual Functions Committee. Visual Acuity
Measurement Standard.
icoph.org/dynamic/attachments/

resources/icovisualacuity1984.pdf

[4] Kaiser, P. Prospective Evaluation of Visual
Acuity Assessment: A Comparison of Snellen
Versus ETDRS Charts in Clinical Practice.
Trans. Am. Ophthalmol. Soc. Dec. 2009;
107:311–324. www.ncbi.nlm.nih.gov/pmc/
articles/PMC2814576

[5] Kennedy, P. Who Made That Eye Chart?
New York Times, 24 May 2013.
nytimes.com/2013/05/26/magazine/who-

made-that-eye-chart.html

[6] Miranker, E. Just My Optotype.
nyamcenterforhistory.org/2017/08/

17/just-my-optotype/

[7] Plainis, S., Moschandreas, J., et al.
Validation of a modified ETDRS chart for
European-wide use in populations that use
the Cyrillic, Latin or Greek alphabet. Journal
of Optometry Jan.–Mar. 2013; 6(1):18–24.
journalofoptometry.org/en-validation-

modified-etdrs-chart-for-articulo-

S1888429612000817

[8] Precision Vision. Snellen Eye Chart - a
Description and Explanation.
precision-vision.com/snellen-eye-

chart-a-description-and-explanation/.
Also of interest on that site: Measuring
Snellen Visual Acuity, precision-vision.
com/measuring-snellen-visual-acuity/;
Snellen Eye Test Charts Interpretation,
precision-vision.com/snellen-eye-test-

charts-interpretation/.

[9] Segre, L. What’s an eye test? Eye charts and
visual acuity explained.
allaboutvision.com/eye-test/

[10] Wikipedia. Landolt C.
en.wikipedia.org/wiki/Landolt_C

[11] Wikipedia. LogMAR chart.
en.wikipedia.org/wiki/LogMAR_chart

[12] Wikipedia. Sloan letters.
en.wikipedia.org/wiki/Sloan_letters

[13] Wikipedia. Snellen chart.
en.wikipedia.org/wiki/Snellen_chart

⋄ Lorrie Frear
Rochester Institute of Technology
lorrie dot frear (at) rit dot edu

lorriefrear.info

Lorrie Frear

https://sciencedirect.com/science/article/pii/S0042698913001259
https://sciencedirect.com/science/article/pii/S0042698913001259
https://college-optometrists.org/the-college/museum/online-exhibitions/virtual-ophthalmic-instrument-gallery/test-charts.html
https://college-optometrists.org/the-college/museum/online-exhibitions/virtual-ophthalmic-instrument-gallery/test-charts.html
https://college-optometrists.org/the-college/museum/online-exhibitions/virtual-ophthalmic-instrument-gallery/test-charts.html
https://college-optometrists.org/the-college/museum/online-exhibitions/virtual-ophthalmic-instrument-gallery/test-charts.html
https://icoph.org/dynamic/attachments/resources/icovisualacuity1984.pdf
https://icoph.org/dynamic/attachments/resources/icovisualacuity1984.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2814576
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2814576
https://nytimes.com/2013/05/26/magazine/who-made-that-eye-chart.html
https://nytimes.com/2013/05/26/magazine/who-made-that-eye-chart.html
https://nyamcenterforhistory.org/2017/08/17/just-my-optotype/
https://nyamcenterforhistory.org/2017/08/17/just-my-optotype/
https://journalofoptometry.org/en-validation-modified-etdrs-chart-for-articulo-S1888429612000817
https://journalofoptometry.org/en-validation-modified-etdrs-chart-for-articulo-S1888429612000817
https://journalofoptometry.org/en-validation-modified-etdrs-chart-for-articulo-S1888429612000817
https://precision-vision.com/snellen-eye-chart-a-description-and-explanation/
https://precision-vision.com/snellen-eye-chart-a-description-and-explanation/
https://precision-vision.com/measuring-snellen-visual-acuity/
https://precision-vision.com/measuring-snellen-visual-acuity/
https://precision-vision.com/snellen-eye-test-charts-interpretation/
https://precision-vision.com/snellen-eye-test-charts-interpretation/
https://allaboutvision.com/eye-test/
https://en.wikipedia.org/wiki/Landolt_C
https://en.wikipedia.org/wiki/LogMAR_chart
https://en.wikipedia.org/wiki/Sloan_letters
https://en.wikipedia.org/wiki/Snellen_chart

TUGboat, Volume 41 (2020), No. 3 275

The Non-Latin scripts & typography
Kamal Mansour

1 Introduction
It is quite common in typographic terminology to
divide the world’s scripts into Latin and non-Latins.
At first glance that might seem to be a reasonable
categorization until one looks a bit closer to find
that non-Latin consists of a huge number of diverse
scripts. Imagine if we were to call Latin script blue,
while calling all others non-blue. We would be gath-
ering the remaining colors of the spectrum into one
group without differentiation. Calling a color non-
blue doesn’t tell us anything about what it might
be; is it orange, green, magenta, indigo?

However strange this terminology may be, there
is good reason behind it. Gutenberg invented move-
able type for Latin script; in particular, he focused
on a certain Gothic style used at the time by Ger-
man scribes. We know things didn’t stop there. The
printed forms of Latin script moved away from the
handwritten forms over time, evolving into a dis-
tinct craft and discipline. In the process, the letter
forms underwent considerable simplification. By the
time typographic letters began to develop for other
scripts, Latin type had reached a maturity possible
only through time. Over the centuries, the machin-
ery and techniques had been refined for the needs of
Latin type and any newcomers to the game needed
to adapt to the current state of things.

In the realm of non-Latin scripts, what are the
main groups and families? Moving eastward from
the origins of Latin script, we find Greek script, and
further east, its close relative, Cyrillic. Hovering
over the Caucasus, Armenian and Georgian raise
their heads. Reaching from North Africa eastward,
Arabic script occupies a large swath of the land-
scape that reaches as far as India. Near the juncture
of Western Asia and North Africa, Hebrew has its
home. In East Africa, Ethiopic script — in ancient
times know as Ge’ez — has a sizable presence. Over
the large territory of China, as well as in Taiwan,
Chinese is the dominant script. Hangul, a syllabic
script with some Chinese visual features, dominates
in Korea. Meanwhile, further south in Japan, rules a
unique hybrid writing system consisting of two syl-
labaries (katakana and hiragana), Chinese charac-
ters, in addition to Latin. The Indian subcontinent
is home for a large family of scripts descended from
ancient Brahmi writing. Over the centuries, the de-
scendants split into two groups, northern and south-
ern scripts. In the northern group, Devanagari, Ben-
gali, and Gujarati scripts stand out. The southern

group includes Tamil, Telugu, Kannada, Malayalam,
and Sinhala. In Southeast Asia, we find more dis-
tant descendants of Brahmi in Thai, Lao, Khmer,
and Myanmar scripts.

As close relatives of Latin, the Greek and Cyril-
lic scripts had more time to develop typographically
than other non-Latins. In its earliest typographic
forms, Greek initially imitated cursive scribal form
before eventually settling on printed forms based on
its classic origins. Classical and Biblical studies fur-
ther established the need for Greek typefaces in the
late nineteenth and early twentieth centuries.

Cyrillic, originally derived from Greek, was ex-
tensively revised and “europeanized” under the hand
of Peter the Great. Then early in the twentieth cen-
tury, Cyrillic was further simplified by purging it of
unnecessary vestiges from Greek orthography and re-
dundant characters. In an effort to further unite the
huge territory of the Soviet Union, the government
extended Cyrillic script to support the many non-
Slavic languages of the various republics. Outside
the Soviet Union, a certain number of Cyrillic type-
faces were always available through the mainstream
type foundries to satisfy the needs of academics in
Slavic Studies and of emigrant communities.

Because of their common shapes and behavior,
Greek and Cyrillic have always been easily accommo-
dated on the same typesetting equipment as Latin
script. Of course, the compositor had to be familiar
with the script he was setting, with Polytonic Greek
being the most demanding because of the variety of
diacritics.

When it comes to typography, every script has
its intricate details, and consequently, its own story
of transition from handwriting to type. It would
be interesting to tell every story, but that would be
enough to fill many books. Without going into every
detail, we can gain some understanding by survey-
ing the types of problems that arose when adapting
typesetting technology developed for Latin script to
non-Latin scripts. Because scripts have developed
as families, they share many attributes with other
members of the family. We can take advantage
of the similarities to identify recurring obstacles in
the typographic development of non-Latin scripts.
By citing judiciously chosen examples from a few
scripts, we can readily present the gamut of signifi-
cant difficulties.

Before delving into the range of technical chal-
lenges, we must first recognize the most common
hurdle shared by all who endeavored to bring a non-
Latin script into the typographic age: the fear of the
exotic. Typography developed in Europe and it was

The Non-Latin scripts & typography

276 TUGboat, Volume 41 (2020), No. 3

Europeans who first strove to take this craft to dis-
tant lands. Before the advent of sociology, anthro-
pology, and linguistics, non-European cultures were
seen as foreign, exotic, and difficult to fathom. Be-
fore understanding the written form of a language,
one must first learn the spoken language and, to
some extent, understand its culture.

To explore the gamut of typographic challenges,
we will visit four scripts: Devanagari, Khmer, Ara-
bic, and Chinese. In terms of visual impression and
structure, each of these scripts differs greatly from
the others.

2 Devanagari
We begin with Devanagari — the most commonly
used script in contemporary India — that is used
primarily for the Hindi and Marathi languages. De-
vanagari has a long history of development that be-
gan with the Sanskrit language centuries ago. The
structure of Devanagari writing is based on the sylla-
ble which, in its simplest form, can be composed of
a consonant with either an inherent or explicit vowel
mark. As an example, let us consider the letter ka,
which when written as क, includes the implied vowel
a. If we want to write kī, we need to explicitly add
the ī vowel ◌ी to ka क, resulting in क . Presented
at a larger size, we can clearly show how the two
components of the kī syllable overlap on the top:

क + ◌ी −→ क
Now, if we want to write ku instead of kī, the u

vowel is placed below ka as follows:

Marks other than vowels can also appear above
and below letters; for instance, if we want to indicate
that the vowel in ka sounds nasal, we would add a
dot above (natively, anusvara) as in:

कं
Since Latin type was usually composed on a

single horizontal line with gaps between letters, De-
vanagari presented quite a challenge because of its
need for overlap between adjacent characters, in ad-
dition to upper and lower marks.

3 Khmer
Next, we consider Khmer, or Cambodian, writing.
As a remote descendant of the Brahmi script, the
structure of Khmer is also broadly based on the syl-
lable, including the presence of an implied or explicit
vowel; however, the phonetic nature of the Khmer
language has also resulted in many additional fea-
tures that go beyond the ancestral Brahmi model.

The orthographic norms of Khmer script represent
the range of simple to complex syllables by allowing
its components to stack both horizontally and ver-
tically. Like Devanagari, the simplest syllable con-
sists of a consonant with an implied or explicit vowel,
but because of the tonal nature of Khmer, marks in-
dicating tone are sometimes also required. Khmer
has the same needs as Devanagari for upper and
lower marks, which result in more height and depth
for syllable clusters. While Devanagari allows multi-
consonant syllables, it also allows them to stack hor-
izontally, if need be. On the other hand, Khmer
requires the components of a multi-consonant sylla-
ble cluster to stack vertically.

Following is an example of a relatively simple
syllable cluster consisting of a single consonant no
followed by a vowel mark i above (u1793 + u17B7):

ន + ◌ិ −→ និ
As an example where additional depth is re-

quired, the following syllable cluster consists of a
single consonantal letter followed by a subscript con-
sonant that sits to its right while partially overlap-
ping it below [pha + subscript sa]. The use of a
subscript form indicates that the preceding conso-
nant is not followed by a vowel (u1795 + u17D2 +
u179F):

ផ ◌្ ស −→ ផ្ស
The character u17D2 indicates that the follow-

ing consonantal symbol should appear in its sub-
script form.

There are also deeper cases where a vowel sym-
bol ie surrounds and subtends a consonant ko fol-
lowed by a subscript consonant lo (u1783 + u17D2
+ u179B + u17C0). Note that the right part of ie
is stretched to embrace the stacked consonants (ko+
subscript lo + ie):

ឃ ល េ◌ៀ −→ េឃ្លៀ
The above sequence could also carry an addi-

tional mark above it. Unlike Latin letters, Khmer
characters have a predominantly vertical aspect ra-
tio when arranged into syllable clusters. One can
imagine the numerous challenges posed by Khmer
script for those who wanted to implement it in metal
type. How does one stack so many vertical elements
along the baseline? If Latin and Khmer letters are
put side by side, what sort of size ratio should be
maintained between the two? Does one resort to us-
ing the largest leading needed throughout one docu-
ment, or does one increase it only when required?

Kamal Mansour

TUGboat, Volume 41 (2020), No. 3 277

In digital fonts equipped with OpenType tech-
nology — or some other shaping software — the built-
in shaping logic allows the user to enter text at the
character level only, while watching as syllable clus-
ters compose magically into their correct form. By
moving from metal to digital type, we also leave the
obstacles of metal behind while gaining new flexibil-
ity and fluidity of form.

4 Arabic
The cursive form of Arabic script is the one trait that
differentiates it from most others. Arabic writing
never developed typographic “block” letters, but has
remained cursive from its inception to this day.

Spread over many centuries and a broad geo-
graphic terrain, many different styles of Arabic script
have developed. Under Ottoman rule, when it came
time to adapt one of the Arabic styles to type, the
Naskh style prevailed. In due time, many other
styles were implemented, but Naskh has remained
the reference style for running text. Because of its
rich variety of contextually variant forms, Naskh
style could only be typeset by a compositor well
versed in the intricacies of the style. Showing a va-
riety of styles available for manual setting, the fol-
lowing image is taken from an 1873 catalog of the
Amiriyah Press in Cairo:

Each of the above styles required that the com-
positor thoroughly master its shaping rules.

Most Arabic text is set without vowel marks,
so setting fully vocalized text (with optional marks
above and below the letters) as in the above sample
was (and still is) laborious, and therefore avoided
because of the extra expense.

With the advent of mechanized typesetting in
the early to mid-twentieth century, styles had to
be simplified to fit the new size constraints of mag-
azines and keyboards. This trend to simplify per-
sisted, reaching its peak with the arrival of photo-
typesetters where the limited number of character
slots was dictated by Latin fonts.

In the present day, one can say with good con-
fidence that Arabic script stands to benefit greatly
from digital fonts equipped with OpenType technol-
ogy in several ways. First of all, the oversimplifica-
tion of the past century can be discarded because
OpenType technology is capable of emulating the
various calligraphic styles of Arabic script. Since
the global adoption of the Unicode Standard in the
1990s, Arabic text is stored as a sequence of alpha-
betic characters that are independent of style. The
embedded shaping logic of each font reflects its style,
while text input remains invariant. By setting a
string of text in a particular font, one can expect
it to take the shape mandated by the rules of that
style. For instance, in the following sample, each line
consists of the same text set in three distinct fonts.
Note that the second and third lines show words that
are set on an incline with respect to the baseline —
a calligraphic feature ably rendered in OpenType.

5 Chinese
We now take a look at the fourth script, Chinese,
which is nowadays shared mainly by the Chinese and
Japanese languages, albeit with some stylistic differ-
ences. Unlike the three previously examined scripts,
Chinese characters require no additional marks nor
any contextual shaping. Once designed, a character
can simply be typeset as is. The primary obstacle
for Chinese script lies in the thousands of characters
needed to set everyday text. Chinese writing has a

The Non-Latin scripts & typography

278 TUGboat, Volume 41 (2020), No. 3

…Inherent dignity and…inalienable rights of…the human family is the foundation of freedom

…Inherent dignity and…inalienable rights of…the human family is the foundation of freedom
Figure 1: Typesetting in a standard Latin font vs. Zapfino.

long history of exacting calligraphic styles that re-
quire great effort to master. The following sample
shows Song, one of the most common styles.

Despite the graphic complexity of its characters,
Chinese script is typically classified among the “sim-
ple” scripts because the typesetting of Chinese text
has no complexities in terms of its character shapes.

To write Japanese, Chinese characters (kanji)
are intermixed with two phonetic syllabaries called
hiragana and katakana to show grammatical affixes,
as well as foreign words and names. In typical Japa-
nese text, about half the characters consist of kana
(hiragana or katakana). The following text is taken
from the first line of the Universal Declaration of Hu-
man Rights. The more fluid and curvier character
are hiragana.

In the twentieth century, ingenious methods
and typesetting equipment were devised to handle
the large character sets needed for Chinese and Ja-
panese in their home lands. However, the keyboards
and magazines of the mechanical typesetters of Lino-
type and Monotype were designed for limited char-
acter sets. In addition, the cost of developing an ad-
equate set of Chinese characters was high enough to
stop any Western companies from entering the field
until the early era of digital typesetters in the late
1980s, when Monotype entered the marketplace.

Once digital methods prevailed in the Chinese
and Japanese markets, more local enterprises were
able to enter the typographic field and thrive. Dig-
ital text entry now depends on sophisticated soft-
ware that exploits the systematic structure of Chi-
nese character in terms of its radicals, strokes, or
phonetics to simplify the job for the user.

6 Degrees of complexity
Now that we have taken a quick glimpse at several
scripts and their traits, we need to examine what
inferences we can draw for the world of scripts.

Scripts vary greatly in their level of complexity.
A typical Latin typeface is quite simple because of its
relatively small character set and the near absence
of shaping rules, while a calligraphic font such as
Zapfino depends on a set of complex rules; see fig. 1

This example clarifies how complexity can of-
ten be based in a particular style, and is not nec-
essarily fundamental to the structure of the script
itself. Some scripts are relatively complex because
of their intrinsic shaping rules, while their input re-
quirements are simple due to a small character set.
The line composition of Chinese text is relatively
simple because all characters fit within a square and
require no additional marks. On the other hand, the
labor needed to create all the characters is dispro-
portionately high, and input methods are complex
by necessity because of the large character set. An
Arabic font whose style requires at most four shapes
for each letter is simple in comparison to one whose
style requires a rich set of contextual variants. Com-
plexity in scripts is a matter of gradation. There
is no need to simplistically put all scripts into two
heaps, simple or complex.

In this brief overview, we have seen some salient
features of each of the following scripts: Devanagari,
Khmer, Arabic, and Chinese. Although there are no
visual similarities among these scripts, they do share
a common history: each of them came into the twen-
tieth century with a typographic tradition of varying
durations and strengths. While this is also true of
other scripts, there are many others that came into
the twenty-first century with either a typographic
false start or none at all. There are many language
communities who had their own traditional script
but whose populations were too small to initiate and
sustain a typographic practice. Other communities
had established a traditional practice of metal type-
setting during the nineteenth or twentieth centuries,
but could not transition to newer technology such
as phototypesetting as metal technology became ob-
solete.

Let us now roll back the calendar by about four
decades to recount how we got to the current state
of typography. As digital technology was matur-
ing in the 1970s and 1980s, a silent software revo-
lution was starting to overtake typography. Donald
Knuth’s METAFONT and TEX started making digital

Kamal Mansour

TUGboat, Volume 41 (2020), No. 3 279

typography directly accessible to academics. This
transition enabled a wave of academic publications
that had earlier been throttled by ever-rising costs of
professional typesetters. In the mid-1980s, the wave
of WYSIWYG word-processing began at Xerox, but
was later made available to the masses through the
Apple Macintosh. The concurrent publishing of the
PostScript language, and its use as a standard font
format, wrested digital typography from the hands
of proprietary typesetting equipment and brought
it into the public arena. High-resolution printing —
well, 300 dpi at the time — suddenly appeared in
big and small offices alike, dragging along with it
the word font into everyday language.

The first stage of the typographic revolution en-
abled the definition of character shapes through soft-
ware instead of hardware. As affordable character-
drawing software became available in the early 1990s,
more typographic aficionados were drawn to the field
as new practitioners. The new software made it pos-
sible to produce consistent character sets, properly
formatted as fonts destined to create high-resolution
imprints on paper. Because of the notable differ-
ence in resolution, what appeared on the computer
screen was only an approximation of the final image
produced by a laser printer on paper. In the end,
the paper image was the more important one. After
all, until that time, typography’s aim was to leave
an imprint on the relatively permanent medium of
paper.

By making letter forms in software instead of
metal, the wall of separation between Latin and
non-Latin characters collapsed. After all, outlines
defined in the form of polynomials have no physical
barriers like molds and grooves, and are even free to
overlap and intertwine. The domain of digital char-
acter shapes proved itself to be adaptable to any
script.

As impressive as the first stage of digital typog-
raphy was, it was only a first step forward. Even
though it allowed us to produce typographic images
without resorting to metal, it still had significant de-
ficiencies which were not immediately apparent to
all. Once stored on a computer, one could use a
text document to produce numerous impressions of
it over time. In a sense, we can consider the docu-
ment a digital equivalent of the typographic galley
for metal type, but unlike the galley, the early digital
documents were somewhat unreliable. In the early
1990s, typical text documents used inherently am-
biguous character codes; for instance, the code 192
(decimal) represented À in a Latin-1 code set, while
it meant ω̄ in a Greek set. With the right software
and fonts in place, such a document could produce

a faithful image of the intended content, but it was
not a dependable, unambiguous archive of the orig-
inal text.

Around that time, a group of technologists in-
volved with multilingual computing were discussing
how to achieve the until-then elusive goal of an un-
ambiguous, global character set. They wanted a
digital environment where code 192 would represent
only one character, and every character of every lan-
guage would be assigned a unique code. Gone would
be the world of ambiguous character codes, and all
scripts, Latin and non-Latin, would be on equal foot-
ing. This group of visionaries laid down the foun-
dation for the Unicode Standard, which eventually
came to be recognized as the one global character set
by all the major makers of systems and software.

Once Unicode was accepted by Apple and Mi-
crosoft, the slow transition away from ambiguous
codes began. Before and during this transition, the
transfer of text documents between different sys-
tems was laborious. Any characters outside the 7-bit
ASCII range could be garbled in transit unless they
had been deliberately filtered. For instance, code
0xE8 in Mac Roman represented Ë, while in Win-
dows Code Page 1252 it stood for è. As the use of
personal computers continued to penetrate every as-
pect of life, it became clear that such a contradictory
situation was untenable in the long run. Change was
on the horizon, but it was slow in coming.

In the mid-1990s, as the presence of the Uni-
code Standard made itself felt across the globe, it
met resistance in many different regions because it
was perceived as foreign-born. To be accepted every-
where, advocates and practitioners of the Standard
had to demonstrate its efficacy and suitability be-
fore many different national and linguistic commu-
nities. As this defense of the Standard was mounted,
it soon became apparent that an aspect of Unicode
had turned out to be an unintended obstacle for
some non-Latin scripts.

“Characters, not glyphs” — one of Unicode’s pri-
mary design principles — was aimed at keeping plain
Unicode-encoded text free of the entanglements of
style. Characters represent abstract units such as
letters of the alphabet, while glyphs depict the par-
ticular style and size of the character, as dictated by
a specific font. Since Unicode represents only the
characters of a string, the final shape and appear-
ance of the display glyphs are relegated to the “text
rendering” process.

In the mid-1990s, competing systems had differ-
ent “rendering” processes that typically supported
only a few scripts. The rendering component of sys-
tems turned out to be a bottleneck for “complex”

The Non-Latin scripts & typography

280 TUGboat, Volume 41 (2020), No. 3

scripts such as Devanagari and Arabic; though their
texts could be readily encoded in Unicode, it was
difficult to achieve good typographic results. In
that period, Apple introduced a sophisticated ty-
pographic system called “Apple GX” which was ca-
pable of rendering many scripts and styles, but it
ran only on Apple hardware. Soon thereafter, Mi-
crosoft countered with a competing system called
“TrueType Open”.

Every practitioner in the publishing community
was faced with a difficult choice to make. It wasn’t
until 1996 that Adobe and Microsoft first agreed on
OpenType, a font specification that integrated both
PostScript Type 1 and TrueType font formats, in ad-
dition to a unified system supporting advanced typo-
graphic features. Finally, there was hope of produc-
ing cross-platform fonts in the near term, even for
non-Latin fonts. As could be expected, this poten-
tial was achieved gradually over the following years.

Today, we can rightly claim that a large num-
ber of scripts can be correctly rendered and that the
level of typographic sophistication is continually ris-
ing. Certainly, scripts such as Devanagari, Arabic,
and Khmer can be correctly rendered on multiple
digital platforms without any worry about portabil-
ity. The use of Unicode for numerous scripts, and
the languages they support, has been universally ac-
cepted. Each of the characters À, ω̄, Ë, and è is
represented by the same unique code in any docu-
ment, on any platform.

At this auspicious juncture, one must ask if
there is more to do. Have we reached a stage where
all the scripts in the world are on an even footing?
In the Internet era, what does it take for a script to
become “digitally enabled”? To prepare text docu-
ments in a particular script, all its characters must
first be listed in the Unicode Standard, each of them
assigned a unique code. Then, to make such doc-
uments humanly readable, there must be at least
one functional font that renders the text in its com-
monly recognizable form. Once these two require-
ments are met, documents in a given script — and
all the languages it supports — can be created, read,
distributed, and archived.

Even though Version 13.0 of Unicode includes
154 scripts, more than 100 scripts are known to be
under consideration for future inclusion. It might
come as a surprise to some that so many scripts re-
main unencoded. Some scripts might no longer be
in use and require considerable research to produce
a definitive character set, while others might belong
to a minority population that does not have the re-
sources to prepare the documents needed to propose
their inclusion in the Standard. Since it was estab-

lished in 2002, the Script Encoding Initiative (SEI)
has been preparing and presenting such proposals
for scores of less privileged scripts (see linguistics.
berkeley.edu/sei/scripts-encoded.html). Over
the years, SEI has been instrumental in bringing at
least 70 scripts into Unicode. Without such spon-
sorship, many scripts have little chance to enter the
digital era.

About 10 years ago, Google launched the Noto
Project (google.com/get/noto) to build OpenType
fonts for the scripts in Unicode, and to make the
fonts freely available to all under an open source li-
cense. Noto fonts were required not only to support
the character set for each script, but also to make
use of advanced typographic features that render the
script in its expected native appearance. So far, at
least 120 scripts are supported by Noto fonts. For
scripts that were already widely covered, the Noto
fonts simply broadened the variety of styles avail-
able, while for other scripts, they opened the door
to the digital domain.

Not all scripts are on even footing yet — a great
many have just begun their “digital lives”. As al-
ways, improvements will need to be made, and addi-
tional scripts will have to be encoded. All the same,
I can say with confidence that this is a fruitful and
auspicious moment for the whole spectrum of global
scripts, from red to violet.

⋄ Kamal Mansour
Kamal.Mansour (at) {monotype,me} dot com

Production notes
Karl Berry

This article was typeset with X ELATEX, using the
polyglossia package and its commands \texthindi
and \textkhmer for the Devanagari and Khmer ex-
amples. The input text was UTF-8.

We used the Noto Serif Devanagari and Noto
Serif Khmer fonts (regular weight). It was not fea-
sible or desirable to install them as system fonts, so
we specified them to polyglossia as filenames:
\setotherlanguages{hindi,khmer}
\newfontfamily\devanagarifont[Script=Devanagari]

{NotoSerifDevanagari-Regular.ttf}
\newfontfamily\khmerfont[Script=Khmer]

{NotoSerifKhmer-Regular.ttf}
With the addition of ,Renderer=HarfBuzz in

the \newfontfamily calls, the results obtained with
LuaLATEX were identical. ⋄

Kamal Mansour

TUGboat, Volume 41 (2020), No. 3 281

Using DocStrip for multiple document
variants

Matthew Leingang∗

Abstract

I describe a method of keeping multiple variants
of the same document within a single file, using
DocStrip.

1 Introduction

As a college professor, there are several times when
I need to keep teaching materials in several different
forms. For example:

• A single class day’s lesson might consist of lec-
ture slides in the beamer class, a handout of the
same slides printed 2–3 on a page for student
notes, my own lecture notes as a manuscript, a
worksheet for in-class activity, and solutions to
that worksheet.

• A single week’s homework assignment might
consist of problem statements, with hints and
reading notes, a LATEX template for students to
fill in with their own answers, and solutions with
comments to be published after the assignment
has been graded.

Over the years I have developed a workflow for
maintaining these “bundles” of documents in the
same file, using the LATEX DocStrip utility. This
workflow allows me to programmatically vary the
content and formatting, and avoids external scripts
or filesystem hacks. In this article I will introduce
the reader to DocStrip and explain how I use it.

2 The DocStrip utility

DocStrip [5] was originally designed as a literate pro-
gramming method. LATEX package and class authors
use it to write documentation for their code in the
same file as the implementation, within commented
lines. DocStrip would strip out the comment lines
and use them to produce documentation. The slim-
mer package and class files would be installed to save
compile time. In subsequent versions DocStrip de-
veloped the ability to write lines to several different
files in one batch, through the use of options.

DocStrip batches are programmed in a TEX file
as in Listing 1. The \input line loads the DocStrip
code. The \generate line instructs TEX, effectively,
to “read foo.dtx and write foo.sty, setting the
package option”.

When generating files, DocStrip ignores all lines
beginning only with a single %. Non-commented lines

∗ The author wishes to thank the editors and reviewers

for their thoughtful and productive feedback.

Listing 1: A minimal DocStrip batch file

\input docstrip.tex

\generate{\file{foo.sty}

{\from{foo.dtx}{package}}}

\endbatchfile

are written to all destination files. Lines beginning
with a guard will be written to the destination file
depending on the options set. Each guard begins
with a % and contains a boolean expression enclosed
by angle brackets. For example, a line beginning
with %<bar> will only be passed to generated files
when the bar option is set. DocStrip can generate
more than TEX files, too; for example, BibTEX files,
data files, and shell scripts can be embedded in the
master file and extracted.

Now putting guards at the start of every line
would be cumbersome to type. So guard modifiers
are used to delimit blocks of code with the same
guard. Any expression preceded by ‘*’ will apply
the indicated guard to every line that follows, until
the identical expression is encountered with the ‘/’
modifier. This gives an almost HTML-like layer to the
DocStrip source file, where blocks of code between
lines starting with %<*bar> and %</bar> will be
written to any file generated with the bar option.

A DocStrip batch declaration such as in Listing 1
often resides in a separate file. If this code were in
foo.ins, running TEX on foo.ins would extract
foo.sty from foo.dtx and quit. But DocStrip files
can be also be configured to “self-extract” by putting
the batch declaration at the beginning of the file.
In this configuration, running TEX on foo.dtx will
instruct TEX to parse foo.dtx a second time, this
time writing foo.sty. Thus, the document content
and extraction instructions can reside in a single file.

3 Example: A problem set with answer
template and solutions

As a small but not quite minimal example, let’s
consider a DocStrip file called hw.dtx. The en-
tire file can be viewed online as part of the github
repository for this article: github.com/leingang/

tugboat-docstrip.

3.1 Batch header

Listing 2 shows the beginning of hw.dtx, which loads
docstrip.tex and declares the \generate batch.
It’s surrounded with driver guards. Since no gen-
erated file sets the driver option, this block is not
written to any file.

We generate four files:

Using DocStrip for multiple document variants

github.com/leingang/tugboat-docstrip
github.com/leingang/tugboat-docstrip

282 TUGboat, Volume 41 (2020), No. 3

Listing 2: The header block of hw.dtx, declaring \generate batch

1 %<*driver>

2 \input docstrip.tex

3 \askforoverwritefalse

4 \generate{

5 \file{\jobname.qns.tex}{\from{\jobname.dtx}{questions}}

6 \file{\jobname.ans.tex}{\from{\jobname.dtx}{questions,answers}}

7 \file{\jobname.sol.tex}{\from{\jobname.dtx}{questions,solutions}}

8 \file{\jobname.bib}{\from{\jobname.dtx}{bib}}

9 }

10 \endbatchfile

11 %</driver>

• hw.qns.tex, which sets the option questions.
This document will be the prepared questions
sheet for the instructor to distribute to the stu-
dents.

• hw.ans.tex, which sets the options questions
and answers. This file will be distributed to
students as LATEX source, so that they can fill
in their answers without having to create their
own file from scratch.

• hw.sol.tex, which sets the options questions
and solutions. This can be published once the
assignment is collected and graded.

• hw.bib, which only sets the bib option. This
is a BibTEX file that can be included in any of
the LATEX files. If the assignment needs to be
copied with only a few changes, such as the year
and the due date, only one file must be copied
from the old directory to the new.

Lines 12–89 of hw.dtx are delimited with the
<questions> guards and enclose an entire LATEX doc-
ument from \documentclass{article} through to
\end{document}. Lines 90 and onward (not shown in
this article) are delimited with <bib> and comprise
the complete hw.bib file.

3.2 Using guards to conditionally include
text

Listing 3 (following page) shows an excerpt of hw.dtx
that declares a question. Notice that the hint envi-
ronment is surrounded by a guard with a compound
boolean expression <!answers&!solutions>. The
effect is that the hint is shown when the questions
option is selected, but answers and solutions are
not selected; that is, only in the hw.qns.tex file.
The resulting block that is written to the questions
file is shown in Listing 4.

Comment lines that begin with a single % are
stripped from the input and do not get printed to
any output file. But comment lines beginning with
two % characters remain. So the comment on line 71

of hw.dtx is retained in the hw.ans.tex file (List-
ing 5). It is a note to the student where to write
their answer. Finally, the solution environment
and subsequent commentary paragraph are written
to the hw.sol.tex file (Listing 6).

3.3 Using guards to conditionally define
environments

The implementation of the environments question,
answer, hint, and solutions have to be set up in
the preambles of the generated LATEX files (or in
packages used by them). But guards can be used in
the preambles too. In this way, we can conditionally
style the document.

For instance, I prefer that the question text be
upright in the questions file and italicized in the an-
swers/solutions file. This is accomplished in Listing 7.
Line 34 is written to the answers and solutions file,
and overrides line 33. The preamble of the questions
file defines question under the definition theorem
style, with bold header and upright body font. But
in the answers and solutions file, the plain theorem
style is in force, so question sets its body in italic.

Listing 7: An excerpt of hw.dtx (lines 35–39) showing
conditional styling of the question environment

\usepackage{amsthm}

\usepackage{amssymb}

\theoremstyle{definition}

%<answers|solutions>\theoremstyle{plain}

\newtheorem{question}{Question}

3.4 Advanced tricks

If you look in the full hw.dtx file online, you’ll see a
few more automatic variations with DocStrip:

• The document title is specified in hw.qns.tex.
In hw.ans.tex, the text ‘Answers to ’ is pre-
pended to the title (using the \preto command
from the etoolbox package). In hw.sol.tex,
the phrase ‘Solutions to ’ is prepended. In

Matthew Leingang

TUGboat, Volume 41 (2020), No. 3 283

Listing 3: An excerpt of hw.dtx declaring a question (the question is from [7])

61 \begin{question}

62 \cite[Exercise 6.6]{Scheinerman}.

63 Disprove: if p is prime, then 2^p-1 is also prime.

64 \end{question}

65 %<*!answers&!solutions>

66 \begin{hint}

67 All you need is one counterexample. Guess and check, and be persistent.

68 \end{hint}

69 %</!answers&!solutions>

70 %<*answers>

71 %% Student: put your answer between the next two lines.

72 \begin{answer}

73 \end{answer}

74 %</answers>

75 %<*solutions>

76 \begin{solution}

77 Let $p=11$. Then p is prime. But $2^p-1 = 2^{11}-1 = 2047 = 23 \times 89$.

78 So the statement is false.

79 \end{solution}

80 A prime number that is equal to 2^n-1 for some n is called a \emph{Mersenne

81 Prime}. Examples of Mersenne primes are $3 = 2^2 - 1$ and $127 = 2^7-1$. It is

82 unknown whether the number of Mersenne primes is finite!

83 %</solutions>

Listing 4: The generated block in hw.qns.tex

61 \begin{question}

62 \cite[Exercise 6.6]{Scheinerman}.

63 Disprove: if p is prime, then 2^p-1 is also prime.

64 \end{question}

65 \begin{hint}

66 All you need is one counterexample. Guess and check, and be persistent.

67 \end{hint}

this way, the original title only needs to be put
in one place.

• The document author is set differently in the dif-
ferent document variants. In hw.qns.tex and
hw.sol.tex, the author is the professor. In
hw.ans.tex, the author is set to a generic stu-
dent name, and \LaTeXWarning is used to re-
mind the student to change the generic name to
their own name.

4 Comparing alternatives

The problem of maintaining the sources for different,
but closely related documents in the same file, and
specifying which documents are to be typeset at the
time of compilation, has been encountered by users
before, for instance on the Stack Exchange network
[1, 4, 6]. Let’s consider some of the alternatives in
the context of the example use case from Section 3.

4.1 Separate files

In this strawman workflow, separate, nearly identical
files are kept side-by-side. Any correction (to a prob-
lem, for instance) requires three files to be updated.
Further, copying a question to another assignment
requires copying from three different files to three
different files. This setup is ripe for inconsistency
and headache.

4.2 Option setting in pure (LA)TEX

In this workflow, certain (LA)TEX booleans are defined
and set, and code is conditionally executed depending
on those booleans. The booleans can be set by adding
TEX code on the command line as optional arguments
to the executable (e.g., pdflatex). Or, a shell file can
be created which sets options, then inputs a common
master file.

When options are set within the document, the
\jobname is the same independent of the options

Using DocStrip for multiple document variants

284 TUGboat, Volume 41 (2020), No. 3

Listing 5: The generated block in hw.ans.tex

50 \begin{question}

51 \cite[Exercise 6.6]{Scheinerman}.

52 Disprove: if p is prime, then 2^p-1 is also prime.

53 \end{question}

54 %% Student: put your answer between the next two lines.

55 \begin{answer}

56 \end{answer}

Listing 6: The generated block in hw.sol.tex

57 \begin{question}

58 \cite[Exercise 6.6]{Scheinerman}.

59 Disprove: if p is prime, then 2^p-1 is also prime.

60 \end{question}

61 \begin{solution}

62 Let $p=11$. Then p is prime. But $2^p-1 = 2^{11}-1 = 2047 = 23 \times 89$.

63 So the statement is false.

64 \end{solution}

65 A prime number that is equal to 2^n-1 for some n is called a \emph{Mersenne

66 Prime}. Examples of Mersenne primes are $3 = 2^2 - 1$ and $127 = 2^7-1$. It is

67 unknown whether the number of Mersenne primes is finite!

set. In our homework example, this would mean
the problems file and solutions file would both end
up named hw.pdf. Not only does this mean that
the problem set and solutions PDFs cannot inhabit
the same directory at the same time, one can be
mistaken for another. Imagine the poor professor
distributing what he thought was the questions-only
PDF, only to realize that he had instead shared all
the solutions!

With shell files, the \jobname is different for
each document variant, avoiding the possibility of
such a mistake. The \jobname can also be set on the
command line when invoking (LA)TEX. But either
way, extra files are needed to support this workflow.

Also, in the context of a homework assignment,
none of these methods allow the distribution of an
answer template as a LATEX source file. If the solu-
tions are in the master TEX file, and conditionally
typeset depending on options, they still remain the
source.

4.3 Symlinks

In this workflow, a single TEX file is created, and
each variant document is a symbolic link (or symlink)
to the original file with a different file name. The
operating system treats a symlink to a file as a dif-
ferent name for that file. Editing one of these “files”
affects the contents referenced by the file and all of
its symlinks. But the \jobname is determined by the
file name, so it can be tested in order to conditionally
execute certain code.

This avoids the colliding output file issue of
command-line arguments, and is more lightweight
than shell files. A new variant just requires a new
symlink. It has the same disadvantages of the master-
plus-shell files workflow, though. Code cannot be
stripped out of the master file for a template, only
gobbled and discarded. Not every operating system
and file system has this capability, either.

4.4 Other preprocessors

DocStrip functions as a preprocessor —it converts
one source file to another (or several others). There
are other tools for this job, among them GPP and m4.
Using another program requires installing, learning,
and maintaining another program, whereas DocStrip
is available wherever TEX is.

The DocStrip method described here is operat-
ing system independent. It is secure in that each
document variant gets a distinct \jobname and out-
put file name. It is lightweight in that only one
DocStrip file needs to be created for every bundle of
documents needed, and no programming other than
TEX is necessary.

4.5 Disadvantages of the DocStrip method

One drawback of this method is that it requires an
extra TEX run. First, the DocStrip file is compiled,
extracting the various TEX files. Then each of them
must be compiled. A bit of programming can au-
tomate this process (as well as decide when certain

Matthew Leingang

TUGboat, Volume 41 (2020), No. 3 285

files don’t need to be recompiled), as we’ll describe
in the next section.

Not every TEX editor can be used for DocStrip-
files. In particular, WYSIWYG or WYSIWYM editors
such as LYX and TEXmacs expect the source file to
be a regular (LA)TEX file. But any editor designed to
operate on text files can be configured for DocStrip.
Some of the most popular TEX editors (for example,
TEXShop, TEXworks, TEXstudio, AUCTEX) support
DocStrip out of the box, as does Visual Studio Code.

Another, more uncomfortable drawback is that
TEX errors are only discovered when the generated
TEX files are compiled. The line numbers reported
by TEX at the time of the error are different from
the line numbers in the DocStrip file. So diagnosing
errors needs to be done without navigating to specific
line numbers. Rather, the token list before the error
can be used for a search string.

Finally, errors in the first run of TEX (when
DocStrip is extracting) can arise from unbalanced
guard modifiers, e.g., a %<*solutions> line with no
closing %</solutions>. These are hard to isolate
since DocStrip does not log its processing with much
context, and the error isn’t discovered until the end
of the file is reached.. I have been able to find these
through a combination of retracing my steps, and
selectively commenting out blocks.

5 Automation

To recap, this workflow requires editing a DocStrip
file marked up as in Section 3, compiling that Doc-
Strip file to generate separate TEX files, then compil-
ing the desired TEX file. The first run can be done
in any TEX engine, because the batch declaration
header (and docstrip.tex) is in core TEX. The
second set of compilations require whatever engine
your destination documents require.

The latexmk program [2] works like make for
TEX projects. It examines a TEX file to find de-
pendencies, watches for warnings about re-running
LATEX, and runs the necessary commands to get the
entire document stable. latexmk is written in Perl,
distributed with TEX Live and MiKTEX, and actively
maintained.

A one-line Unix command that does both of
these is:

tex foo.dtx && latexmk

This processes foo.dtx and, upon success of that
command, runs latexmk. Without file arguments,
latexmk looks for any TEX files in the current work-
ing directory and makes them. Any command-line
options to latexmk (notably, -pdf to make sure the
pdftex engine is chosen, -pdfxe to ensure xelatex,

or -pdflua to ensure lualatex) will be passed when
making each TEX file.

The process can be further automated and in-
tegrated into various TEX editors. I have written
a .latexmkrc (configuration file for latexmk) that
looks for DocStrip files in the argument list, and when
found, parses their log files for names of generated
files to make automatically. With this configuration,
latexmk foo.dtx will take care of all generated files
in one fell swoop.

Any editor that can run a program can be con-
figured to run latexmk. For instance, I have written
a TEXShop “engine” script that wraps around la-

texmk so configured. I edit the DocStrip and press
Command-T once. I open one of the generated files
in “preview” mode, which gives the PDF window
but not the TEX window (we won’t be editing the
generated file directly, so we don’t need it). The
preview window updates each time the underlying
file is changed.

I have also gotten this workflow to succeed in
Visual Studio Code with the LATEX Workshop [3]
These script files and corresponding documentation
are in the github repository.

6 Conclusion

I will continue to maintain and update the github
repository referenced above. If you would like to try
this method, and find that additional documentation
would be useful, I will be happy to include it.

References

[1] Caramdir. Passing parameters to a document, 2010.
tex.stackexchange.com/q/1492

[2] J. Collins, E. McLean, D. J. Musliner. latexmk—
fully automated LATEX document generation, 2019.
ctan.org/pkg/latexmk

[3] J. Lelong, T. Tamura, et al. Visual Studio Code
LATEX Workshop Extension, 2020.
github.com/James-Yu/LaTeX-Workshop

[4] meduz. What Makefile to produce slides and
handouts [in] a common file?, 2014.
tex.stackexchange.com/q/170542

[5] F. Mittelbach, D. Duchier, et al. The DocStrip
program, 2006. ctan.org/pkg/docstrip

[6] reprogrammer. Passing command-line arguments to
LATEX document, 2009.
stackoverflow.com/q/1465665

[7] E. R. Scheinerman. Mathematics: A Discrete

Introduction. Thomson Brooks/Cole, Belmont, MA,
2nd edition, 2005.

⋄ Matthew Leingang
New York University
leingang (at) nyu dot edu

www.cims.nyu.edu/~leingang/

Using DocStrip for multiple document variants

https://tex.stackexchange.com/q/1492
https://ctan.org/pkg/latexmk
https://github.com/James-Yu/LaTeX-Workshop
https://tex.stackexchange.com/q/170542
https://ctan.org/pkg/docstrip
https://stackoverflow.com/q/1465665

286 TUGboat, Volume 41 (2020), No. 3

LATEX News
Issue 32, October 2020

Contents

Introduction 1

Providing xparse in the format 1

A hook management system for LATEX 2

Other changes to the LATEX kernel 2

\symbol in math mode for large Unicode values 2
Correct Unicode value of \=y (ȳ) 2
Add support for Unicode soft hyphens 2
Fix capital accents in Unicode engines 2
Support calc in various kernel commands . . . 2
Support ε-TEX length expressions in picture

coordinates 2
Spaces in filenames of included files 3
Avoid extra line in \centering, \raggedleft

or \raggedright 3
Set a non-zero \baselineskip in text scripts . 3
Spacing issues when using \linethickness . . 3
Better support for the legacy series default

interface 3
Support for uncommon font series defaults . . . 3
Checking the current font series context 3
Avoid spurious package option warning 3
Adjusting fleqn 3
Provide \clap 3
Fix to legacy math alphabet interface 4
Added tests for format, package and class dates 4
Avoid problematic spaces after \verb 4
Provide a way to copy robust commands. 4
. . . and a way to \show them 4
Merge l3docstrip into docstrip 4
Support vertical typesetting with doc 4
Record the counter name stepped by

\refstepcounter 5
Native LuaTEX behavior for \- 5
Allow \par commands inside \typeout 5
Spacing commands moved from amsmath to

the kernel 5
Access raw glyphs in LuaTEX without

reloading fonts 5
Added a fourth empty argument to

\contentsline 5
LuaTEX callback new_graf made exclusive . 5

Changes to packages in the graphics category 5

Generate a warning if existing color definition
is changed 5

Specifying viewport in the graphics package . . 5
Normalizing \endlinechar 5
Files with multiple parts 5

Changes to packages in the tools category 5

array: Support stretchable glue in w-columns . . 5
array: Use math mode for w and W-cells in array 6
array: Fix for \firsthline and \lasthline . . 6
varioref: Support Japanese as a language option 6
xr: Support for spaces in filenames 6

Changes to packages in the amsmath category 6

Placement corrections for two accent commands 6
Fixes to aligned and gathered 6
Detect Unicode engines when setting

\std@minus and \std@equal 6
lualatex-math: Use LuaTEX primitives 6

Changes to the babel package 6

Introduction

The 2020-10-01 release of LATEX shows that work on
improving LATEX has again intensified. The two most
important new features are the kernel support for xparse

and the introduction of the new hook management
system for LATEX, but as you can see there are many
smaller enhancements and bug fixes added to the kernel
and various packages.

Providing xparse in the format

The official interface in the LATEX 2ε kernel for cre-
ating document-level commands has always been
\newcommand. This was a big step forward from
LATEX 2.09. However, it was still very limited in the
types of command it can create: those taking at most
one optional argument in square brackets, then zero or
more mandatory arguments. Richer syntaxes required
use of the TEX \def primitive along with appropriate
low-level macro programming.

The LATEX team started work on a comprehensive
document-command parser, xparse, in the late 1990s. In
the past decade, the experimental ideas it provides have
been carefully worked through and moved to a stable
footing. As such, xparse is now used to define a very
large number of document and package commands. It
does this by providing a rich and self-consistent syntax
to describe a wide range of interfaces seen in LATEX
packages.

The ideas developed in xparse are now sufficiently
well tested that the majority can be transferred into the
LATEX kernel. Thus the following commands have been
added

• \NewDocumentCommand, \RenewDocumentCommand,
\ProvideDocumentCommand,
\DeclareDocumentCommand

LATEX News #32

TUGboat, Volume 41 (2020), No. 3 287

• \NewExpandableDocumentCommand,
\RenewExpandableDocumentCommand,
\ProvideExpandableDocumentCommand,
\DeclareExpandableDocumentCommand

• \NewDocumentEnvironment,
\RenewDocumentEnvironment,
\ProvideDocumentEnvironment,
\DeclareDocumentEnvironment

• \BooleanTrue \BooleanFalse

• \IfBooleanTF, \IfBooleanT, \IfBooleanF

• \IfNoValueTF, \IfNoValueT, \IfNoValueF

• \IfValueTF, \IfValueT, \IfValueF

• \SplitArgument, \SplitList, \TrimSpaces,
\ProcessList, \ReverseBoolean

• \GetDocumentCommandArgSpec

\GetDocumentEnvironmentArgSpec

Most, but not all, of the argument types defined
by xparse are now supported at the kernel level. In
particular, the types g/G, l and u are not provided by
the kernel code; these are deprecated but still available
by explicitly loading xparse. All other argument types
are now available directly within the LATEX 2ε kernel.

A hook management system for LATEX

With the fall 2020 release of LATEX we provide a
general hook management system for the kernel and for
packages. This will allow packages to safely add code
to various kernel and package hooks and if necessary
define rules to reorder the code in the hooks to resolve
typical package loading order issues. This hook system
is written in the L3 programming layer and thus forms
the first larger application within the kernel that makes
use of the LATEX3 functionality now available (if we
discount xparse which has already been available for a
long time as a separate package).

The file lthooks.dtx holds the core management
code for hooks and defines basic hooks for environments
(as previously offered by etoolbox), ltshipout.dtx

provides kernel hooks into the shipout process (making
packages like atbegshi, etc., unnecessary) and the file
ltfilehook.dtx holds redefinitions for commands like
\input or \usepackage so that they offer hooks in
a similar fashion to what is provided by the filehook

package.
At the moment the integration is lightweight,

overwriting definitions made earlier during format
generation (though this will change after more thorough
testing). For that reason the documentation isn’t in its
final form either and you have to read through three
different documents:

lthooks-doc.pdf Core management interface and
basic hooks for environments provided by the kernel.

ltshipout-doc.pdf Hooks accessible while a page is
being shipped out.

ltfilehook-doc.pdf Hooks used when reading a file.

For those who wish to also study the code, replace -doc

with -code, e.g., lthooks-code.pdf. All documents
should be accessible via texdoc, e.g.,

texdoc lthooks-doc

should open the core documentation for you.

Other changes to the LATEX kernel

\symbol in math mode for large Unicode values
The LATEX 2ε kernel defines the command \symbol,
which allows characters to be typeset by entering their
‘slot number’. With the LuaTEX and X ETEX engines,
these slot numbers can extend to very large values
to accommodate Unicode characters in the upper
Unicode planes (e.g., bold mathematical capital A is
slot number "1D400 in hex or 119808 in decimal). The
X ETEX engine did not allow \symbol in math mode for
values above 2

16; this limitation has now been lifted.
(github issue 124)

Correct Unicode value of \=y (ȳ)
The Unicode slot for ȳ was incorrectly pointing to the
slot for Ȳ. This has been corrected. (github issue 326)

Add support for Unicode soft hyphens
For a long time, the UTF-8 option for inputenc made the
Unicode soft hyphen character (U+00AD) an alias for
the LATEX soft hyphen \-. The Unicode engines X ETEX
and LuaTEX behaved differently though: They either
ignored U+00AD or interpreted it as an unconditional
hyphen. This inconsistency is fixed now and LATEX
always treats U+00AD as \-. (github issue 323)

Fix capital accents in Unicode engines
In Unicode engines the capital accents such as
\capitalcedilla, etc., have been implemented as
trivial shorthands for the normal accents (because other
than Computer Modern virtually no fonts support
them), but that failed when hyperref got loaded. This
has been corrected. (github issue 332)

Support calc in various kernel commands
The \hspace, \vspace, \addvspace, \\ and other
commands simply passed their argument to a TEX
primitive to produce the necessary space. As a result it
was impossible to specify anything other than a simple
dimension value in such arguments. This has been
changed, so that now calc syntax is also supported with
these commands. (github issue 152)

Support ε-TEX length expressions in picture coordinates
Picture mode coordinates specified with (_,_) previously
accepted multiples of \unitlength. They now also allow
ε-TEX length expressions (as used by the \glueexpr

primitive although all uses in picture mode are
non-stretchy).

So, valid uses include \put(2,2) as previously, but
now also uses such as
\put(\textwidth-5cm,0.4\textheight).

Note that you can only use expressions with lengths;
\put(1+2,0) is not supported.

LATEX News #32

288 TUGboat, Volume 41 (2020), No. 3

Spaces in filenames of included files

File names containing spaces lead to unexpected
results when used in the commands \include and
\includeonly. This has now been fixed and the
argument to \include can contain a file name containing
spaces. Leading or trailing spaces will be stripped off
but spaces within the file name are kept. The argument
to \includeonly, which is a comma-separated list
of files to process, can also contain spaces with any
leading and trailing spaces stripped from the individual
filenames while spaces in the file names will remain
intact. (github issues 217 and 218)

Avoid extra line in \centering, \raggedleft or

\raggedright

If we aren’t justifying paragraphs then a very long word
(longer than a line) could result in an unnecessary extra
line in order to prevent a hyphen in the second-last
line of the paragraph. This is now avoided by setting
\finalhyphendemerits to zero in unjustified settings.

(github issue 274)

Set a non-zero \baselineskip in text scripts

As \textsuperscript and \textsubscript usually
contain only a few characters on a single line the
\baselineskip was set to zero. However, hyperref uses
that value to determine the height of a link box which
consequently came out far too small. This has been
adjusted. (github issue 249)

Spacing issues when using \linethickness

In some circumstances the use of \linethickness

introduced a spurious space that shifted objects in
a picture environment to the right. This has been
corrected. (github issue 274)

Better support for the legacy series default interface

In the initial implementation of LATEX’s font selection
scheme (NFSS) changes to any default were carried out
by redefining some commands, e.g., \seriesdefault. In
2019 we introduced various extensions and with it new
methods of customizing certain parts of NFSS, e.g., the
recommended way for changing the series default(s) is
now through \DeclareFontSeriesDefault [1]. In this
release we improved the support for legacy documents
using the old method to cover additional edge cases.

(github issues 306,315)

Support for uncommon font series defaults

If a font family was set up with fairly unusual font series
defaults, e.g.,

\renewcommand\ttdefault{lmvtt}

\DeclareFontSeriesDefault[tt]{md}{lm}

\DeclareFontSeriesDefault[tt]{bf}{bm}

then a switch between the main document families,
e.g., \ttfamily...\rmfamily did not always correctly
continue typesetting in medium or bold series if that
involved adjusting the values used by \mdseries

or \bfseries. This has now been corrected.
(github issue 291)

Checking the current font series context

Sometimes it is necessary to define commands that
act differently when used in bold context (e.g., inside
\textbf). Now that it is possible in LATEX to specify dif-
ferent “bf” defaults based for each of the three meta fam-
ilies (rm, sf and tt) via \DeclareFontSeriesDefault,
it is no longer easy to answer the question “am I type-
setting in a bold context?”. To help with this problem a
new command was provided:

\IfFontSeriesContextTF{〈context〉}
{〈true code〉}{〈false code〉}

The 〈context〉 can be either bf (bold) or md (medium)
and depending on whether or not the current font is
recognized as being selected through \bfseries or
\mdseries the 〈true code〉 or 〈false code〉 is executed.
As an example

\usepackage{bm} % (bold math)

\newcommand\vbeta{\IfFontSeriesContextTF{bf}%

{\ensuremath{\bm{\beta}}}%

{\ensuremath{\beta}}}

This way you can write \vbeta-isotopes and if
used in a heading it comes out in a bolder version.

(github issue 336)

Avoid spurious package option warning

When a package is loaded with a number of options,
say X, Y and Z, and then later another loading attempt
was made with a subset of the options or no options, it
was possible to get an error message that option X is not
known to the package. This obviously incorrect error
was due to a timing issue where the list of available
options got lost prematurely. This has now been fixed.

(github issue 22)

Adjusting fleqn

In amsmath the \mathindent parameter used with the
fleqn design is a rubber length parameter allowing for
setting it to a value such as 1em minus 1em, i.e., so that
the normal indentation can be reduced in case of very
wide math displays. This is now also supported by the
LATEX standard classes.

In addition a compressible space between formula
and equation number in the equation environment got
added when the fleqn option is used so that a very
wide formula doesn’t bump into the equation number.

(github issue 252)

Provide \clap

LATEX has inherited \llap and \rlap from plain TEX
(zero-sized boxes whose content sticks out to the left
or right, respectively) but there isn’t a corresponding
\clap command that centers the material. This missing
command was added by several packages, e.g., mathtools,
and has now been added to the kernel.

LATEX News #32

TUGboat, Volume 41 (2020), No. 3 289

Fix to legacy math alphabet interface

When using the LATEX 2.09 legacy math alphabet
interface, e.g., $\sf -1$ instead of $\mathsf{-1}$,
an extra math Ord atom was added to the formula in
case the math alphabet was used for the first time. In
some cases this math atom would change the spacing,
e.g., change the unary minus sign into a binary minus
in the above example. This has finally been fixed.

(gnats issue latex/3357)

Added tests for format, package and class dates

To implement compatibility code or to ensure that
certain features are available it is helpful and often
necessary to check the date of the format or that of a
package or class and execute different code based on
the result. For that, LATEX previously had only internal
commands (\@ifpackagelater and \@ifclasslater)
for testing package or class names, but nothing
reasonable for testing the format date. For the latter
one had to resort to some obscure command \@ifl@t@r

that, given its cryptic name, was clearly never intended
for use even in package or class code. Furthermore, even
the existing interface commands were defective as they
are testing for “equal or later” and not for “later” as
their names indicate.

We have therefore introduced three new CamelCase
commands as the official interface for such tests

\IfFormatAtLeastTF{〈date〉}
{〈true code〉}{〈false code〉}

and for package and class tests

\IfClassAtLeastTF{〈class name〉}{〈date〉}
{〈true code〉}{〈false code〉}

\IfPackageAtLeastTF{〈package name〉}{〈date〉}
{〈true code〉}{〈false code〉}

For compatibility reasons the legacy commands remain
available, but we suggest to replace them over time and
use the new interfaces in new code. (github issue 186)

Avoid problematic spaces after \verb

If a user typed \verb␣!~!␣foo instead of \verb!~!␣foo
by mistake, then surprisingly the result was “!~!foo”
without any warning or error. What happened was that
the ␣ became the argument delimiter due to the rather
complex processing done by \verb to render verbatim.
This has been fixed and spaces directly following the
command \verb or \verb* are now ignored as elsewhere.

(github issue 327)

Provide a way to copy robust commands. . .

With the previous LATEX 2ε release, several user-level
commands were made robust, so the need for a way
to create copies of these commands (often to redefine
them) increased, and the LATEX 2ε kernel didn’t have a
way to do so. Previously this functionality was provided
in part by Heiko Oberdiek’s letltxmacro package, which
allows a robust command \foo to be copied to \bar

with \LetLtxMacro\bar\foo.

From this release onwards, the LATEX 2ε kernel
provides \NewCommandCopy (and \Renew... and
\Declare... variants) which functions almost like
\LetLtxMacro. To the end user, both should work the
same way, and one shouldn’t need to worry about the
definition of the command: \NewCommandCopy should do
the hard work.
\NewCommandCopy knows about the different types of

definitions from the LATEX 2ε kernel, and also from other
packages, such as xparse’s command declarations like
\NewDocumentCommand, and etoolbox’s \newrobustcmd,
and it can be extended to cover further packages.

(github issue 239)

. . . and a way to \show them

It is sometimes necessary to look up the definition of a
command, and often one not only doesn’t know where
that command is defined, but doesn’t know if it gets
redefined by some package, so often enough looking at
the source doesn’t help. The typical way around this
problem is to use TEX’s \show primitive to look at the
definition of a command, which works fine until the
command being \shown is robust. With \show\frac

one sees

> \frac=macro:

->\protect \frac .

which is not very helpful. To show the actual com-
mand the user needed to notice that the real def-
inition of \frac is in the \frac␣ macro and do
\expandafter\show\csname frac\space\endcsname.

But with the machinery for copying robust commands
in place it is already possible to examine a command
and detect (as far as a macro expansion language allows)
how it was defined. \ShowCommand knows that and with
\ShowCommand\frac the terminal will show

> \frac=robust macro:

->\protect \frac .

> \frac =\long macro:

#1#2->{\begingroup #1\endgroup \over #2}.

(github issue 373)

Merge l3docstrip into docstrip

The file l3docstrip.tex offered a small extension over the
original docstrip.tex file supporting the %<@@=〈module〉>
This has been merged into docstrip so that it can now be
used for both traditional .dtx files and those containing
code written in the L3 programming layer language.

(github issue 337)

Support vertical typesetting with doc

The macrocode environment uses a trivlist internally
and as part of this sets up the \@labels box to contain
some horizontal skips, but that box is never used. As
a result this generates an issue in some circumstances
if the typesetting direction is vertical. This has now
been corrected to support such use cases as well.

(github issue 344)

LATEX News #32

290 TUGboat, Volume 41 (2020), No. 3

Record the counter name stepped by \refstepcounter

\refstepcounter now stores the name of the counter
in \@currentcounter. This allows packages like zref

and hyperref to store the name without having to patch
\refstepcounter. (github issue 300)

Native LuaTEX behavior for \-

LATEX changes \- to add a discretionary hyphen even if
\hyphenchar is set to −1. This change is not necessary
under LuaTEX because there \- is not affected by
\hyphenchar in the first place. Therefore this behavior
has been changed to ensure that LuaTEX’s (language
specific) hyphenation characters are respected by \-.

Allow \par commands inside \typeout

\typeout used to choke when seeing an empty line or a
\par command in its argument. However, sometimes it
is used to display arbitrary user input or code (wrapped,
for example, in \unexpanded) which may contain explicit
\par commands. This is now allowed. (github issue 335)

Spacing commands moved from amsmath to the kernel

Originally LATEX only provided a small set of spacing
commands for use in text and math; some of the
commands like \; were only supported in math mode.
amsmath normalized and provided all of them in text
and math. This code has now been moved to the kernel
so that it is generally available. (github issue 303)

command name(s) math text
\, \thinspace x x x x
\! \negthinspace xx xx
\: \> \medspace x x x x
\negmedspace xx xx
\; \thickspace x x x x
\negthickspace xx xx

Access raw glyphs in LuaTEX without reloading fonts

LATEX’s definitions for \textquotesingle,
\textasciigrave, and \textquotedbl for the TU
encoding in LuaTEX need special handling to stop
the shaper from replacing these characters with curly
quotes. This used to be done by reloading the current
font without the tlig feature, but that came with
multiple disadvantages: It behaves differently than
the corresponding X ETEX code and it is not very
efficient. This code has now been replaced with an
implementation which injects a protected glyph node
which is not affected by font shaping. (github issue 165)

Added a fourth empty argument to \contentsline

LATEX’s \addcontentsline writes a \contentsline

command with three arguments to the .toc and similar
files. hyperref redefines \addcontentsline to write a
fourth argument. The change unifies the number of
arguments by writing an additional empty brace group.

(github issue 370)

LuaTEX callback new_graf made exclusive

Corrected an incorrect callback type which caused
return values from the new_graf callback to be ignored
and paragraph indentation to be suppressed. In the
new version, only one new_graf callback handler can be
active at a time, which allows this handler to take full
control of paragraph indentation. (github issue 188)

Changes to packages in the graphics category

Generate a warning if existing color definition is changed

If a color is defined twice using \DefineNamedColor,
no info text Redefining color ... in named color

model ... was written to the log file, because of
a typo in the check. This has been corrected.

(gnats issue graphics/3635)

Specifying viewport in the graphics package

Specifying a BoundingBox does not really have meaning
when including non-EPS graphics in pdfTEX and
LuaTEX. For some years the graphicx package bb key has
been interpreted (with a warning) as a viewport key.
This feature has been added to the two-argument form of
\includegraphics, which is mostly used in the graphics

package. \includegraphics[1,2][3,4]{file} will
now be interpreted in pdfTEX and LuaTEX in the same
way as graphicx’s
\includegraphics[viewport=1 2 3 4]{file}.

Normalizing \endlinechar

If \endlinechar is set to −1 so that ends of lines are
ignored in special contexts, then a low level TEX error
would be generated by code parsing BoundingBox com-
ments. The package now locally sets \endlinechar to
its standard value while reading files. (github issue 286)

Files with multiple parts

Sometimes one has a graphics file, say, file.svg, and
converts it to another format to include it in LATEX and
ends up with a file named file.svg.png. In previous
releases, if the user did \includegraphics{file.svg},
an error would be raised and the graphics inclusion
would fail due to the unknown .svg extension. The
graphics package now checks if the given extension is
known, and if it doesn’t, it tries appending the known
extensions until it finds a graphics file with a valid
extension, otherwise it falls back to the file as requested.

(github issue 355)

Changes to packages in the tools category

array: Support stretchable glue in w-columns

If stretchable glue, e.g., \dotfill, is used in tabular

columns made with the array package, it stretches as it
would in normal paragraph text. The one exception was
w-columns (but not W-columns) where it got forced to
its nominal width (which in case of \hfill or \dotfill

is 0 pt). This has been corrected and now w-columns
behave like all other column types in this respect.

(github issue 270)

LATEX News #32

TUGboat, Volume 41 (2020), No. 3 291

array: Use math mode for w and W-cells in array

The w and W-columns are LR-columns very similar to
l, c and r. It is therefore natural to expect their cell
content to be typeset in math mode instead of text mode
if they are used in an array environment. This has now
been adjusted. Note that this is a breaking change in
version v2.5! If you have used w or W-columns in older
documents either add >{$}...<{$} for such columns or
remove the $ signs in the cells. Alternatively, you can
roll back to the old version by loading array with

\usepackage{array}[=v2.4]

in such documents. (github issue 297)

array: Fix for \firsthline and \lasthline

Replacing \hline with \firsthline or \lasthline

could lead in some cases to an increase of the tabular
width. This has now been corrected. (github issue 322)

varioref: Support Japanese as a language option

The package now recognizes japanese as a language
option. The extra complication is that for grammatical
reasons \vref, \Vref, \vrefrange and \fullref need
a structure different from all other languages currently
supported. To accommodate this, \vrefformat,
\Vrefformat, \vrefrangeformat, and \fullrefformat

have been added to all languages. (github issue 352)

xr: Support for spaces in filenames

The command \externaldocument, provided by xr, now
also supports filenames with spaces, just like \include

and \includeonly. (github issue 223)

Changes to packages in the amsmath category

Placement corrections for two accent commands

The accent commands \dddot and \ddddot (producing
triple and quadruple dot accents) moved the base
character vertically in certain situations if it was a
single glyph, e.g., $Q \dddot{Q}$ were not at the same
baseline. This has been corrected. (github issue 126)

Fixes to aligned and gathered

The environments aligned and gathered have a trailing
optional argument to specify the vertical position of
the environment with respect to the rest of the line.
Allowed values are t, b and c but the code only tested
for b and t and assumed anything else must be c. As
a result, a formula starting with a bracket group would
get mangled without warning—the group being dropped
and interpreted as a request for centering. After more
than 25 years this has now been corrected. If such
a group is found a warning is given and the data is
processed as part of the formula. (github issue 5)

Detect Unicode engines when setting \std@minus and

\std@equal

amsmath now detects the Unicode engines and uses
their extended commands to define \std@minus and

\std@equal. This avoids a package like unicode-math

having to patch the code in the begin document hook to
change the commands.

lualatex-math: Use LuaTEX primitives

For a number of years lualatex-math patched \frac,
\genfrac and the subarray environment to make use
of new luaTEX primitives. This code has now been
integrated into amsmath.

Changes to the babel package

Multilingual typesetting has evolved greatly in recent
years, and babel, like LATEX itself, has followed the
footsteps of Unicode and the W3C consortia to produce
proper output in many languages.

Furthermore, the traditional model to define and select
languages (which can be called “vertical”), based on
closed files, while still the preferred one in monolingual
documents, is being extended with a new model (which
can be called “horizontal”) based on services provided
by babel, which allows defining and redefining locales
with the help of simple ini files based on key/value
pairs. The babel package provides about 250 of these
files, which have been generated with the help of the
Unicode Common Language Data Repository.

Thanks to the recent advances in lualatex and
luaotfload, babel currently provides services for bidi
typesetting, line breaking for Southeast Asian and
CJK scripts, nonstandard hyphenation (like ff to ff-f),
alphabetic and additive counters, automatic selection of
fonts and languages based on the script, etc. This means
babel can be used to typeset a wide variety of languages,
such as Russian, Arabic, Hindi, Thai, Japanese, Bangla,
Amharic, Greek, and many others.

In addition, since these ini files are easily parsable,
they can serve as a source for other packages.

For further details take a look at the babel package
documentation [4].

References

[1] LATEX Project Team: LATEX 2ε news 31.
https://latex-project.org/news/latex2e-news/

ltnews31.pdf

[2] LATEX documentation on the LATEX Project Website.
https://latex-project.org/help/documentation/

[3] LATEX issue tracker.
https://github.com/latex3/latex2e/issues/

[4] Javier Bezos and Johannes Braams.
Babel—Localization and internationalization.
https://www.ctan.org/pkg/babel

LATEX News #32

292 TUGboat, Volume 41 (2020), No. 3

LATEX Tagged PDF—A blueprint for a large

project

Frank Mittelbach, Chris Rowley

Abstract

In Frank’s talk at the TUG 2020 online conference
we announced the start of a multi-year project to
enhance LATEX to fully and naturally support the cre-
ation of structured document formats, in particular
the “tagged PDF” format as required by accessibility
standards such as PDF/UA.

In this short article we outline the background
to this project and some of its history so far. We then
describe the major features of the project and the
tasks involved, of which more details can be found
in the Feasibility Study [8] that was prepared as the
first part of our co-operation with Adobe.

This leads on to a description of how we plan
to use the study as the basis for our work on the
project and some details of our planned working
methodologies, illustrated by what we have achieved
so far and leading to a discussion of some of the
obstacles we foresee.

Finally there is also a summary of recent, current
and upcoming activities on and around the project.

Contents

1 A short history of the project 292

2 What the project covers 293

3 Explaining the blueprint 294
3.1 The major tasks 295
3.2 The project plan 295
3.3 Timeline and other considerations . 296

4 First results 297

5 Outlook 297

1 A short history of the project

When TEX was developed by Don Knuth in the early
1980s, it was designed as a high-quality automated
typesetting system that concerned itself solely with
the production of a “printed result” from text input,
with paper as the final intended output medium.
Any other kind of typeset output was either not
supported or not directly supported.

Partially in parallel to Knuth’s work, Leslie Lam-
port developed LATEX as a complex and highly inte-
grated collection of TEX macros that “runs on top
of TEX”. Some time later, during the 1990s, some
support for graphics and color was added, but still
following the same paradigm and aimed at printing

on physical media, now including overhead projector
slides.

The move beyond paper came soon after this,
with hyperlinks and other web publishing support
getting layered on top of basic LATEX; but these
(together with many other subsequent extensions)
were never incorporated as integral parts of its de-
sign. This piecemeal development has resulted in
the extensions being very fragile so that they often
break in more complex documents, especially when
used in combination.

Even today it is the case that, in many areas,
core LATEX provides little in the way of APIs that are
robust enough to be safely used or built on by devel-
opers. Therefore most such extensions are forced to
contain a lot of code that overwrites many internal
LATEX commands: such unfortunate and unsustain-
able implementation practices being currently neces-
sary in order to implement most extra functionality.
Such methodology naturally leads to many issues, of
which a common and particularly frustrating one is
incompatibilities between extensions.

Another severe limitation of current LATEX is
that, whenever it produces an output page, it very
carefully throws away the wealth of structural infor-
mation it has used and accumulated while producing
that page.1 As a result, a PDF or DVI file produced
by basic LATEX is nothing but a stream of positioned
glyphs containing very little structural information.

As long as your intention is only to print a
document on a physical medium, then this is all that
is required. However, for quite a while now other uses
of documents have been increasing in importance so
that nowadays many documents are never printed,
or printed only as a secondary consideration.

Coming into the 21st century, for many reasons
great interest has arisen in the production of PDF

documents that are “accessible”, in the sense that
they contain information to assist screen reading soft-
ware, etc., and, more formally, that they adhere to
the PDF/UA (Universal Accessibility) standard [17],
explained further in [3]. Ross Moore has recently
written a comprehensive introduction to this sub-
ject [9].

1 This jettisoning of much useful information was abso-
lutely essential during the early decades of LATEX development
because the system would otherwise never have run in the se-
verely limited memory available on the then current computer
systems. So all information no longer needed for producing
a “printed page” was dropped immediately so as to keep the
memory footprint within reasonable limits.

But even that was not always enough: on his first PC one
author was greeted with “out of memory” while loading the
article class.

Frank Mittelbach, Chris Rowley

TUGboat, Volume 41 (2020), No. 3 293

One important requirement for such PDF docu-
ments is that they must contain a significant amount
of embedded structural information and other data.
At the moment, all methods of producing such “ac-
cessible PDFs”, including the use of LATEX, require
extensive manual labor in preparing the source or
in post-processing the PDF (maybe even at both
stages); and these labors often have to be repeated
after making even minimal changes to the (LATEX
or other) source. Such methods and their inherent
problems have been discussed and demonstrated re-
cently by developers such as Ross Moore, much of
whose work in this area can be accessed through the
web site at [10].

The LATEX Project Team have for some years
been well aware that these new usages are not ade-
quately supported by the current system architecture
of LATEX, and that major work in this area is there-
fore urgently needed to ensure that LATEX remains
an important and relevant document source format.
However, the amount of work required to make such
major changes to the LATEX system architecture will
be enormous, and definitely way beyond the regular
resources of our small team of volunteers working in
their spare time! Or maybe just about possible, but
only given a very long—and most likely too long—
period of time.

At the TUG conference 2019 in Palo Alto our
previously pessimistic outlook on this subject became
cautiously optimistic, because we were approached
by two senior engineers from Adobe to discuss the
possibility of producing structured PDF from LATEX
source without the need for the normal requirement
of considerable manual post-processing. Moreover,
they had come to ask us what it would take to make
this happen. They indicated that, if this turned out
to be a feasible project for which we could provide
them with a convincing project plan, then they would
happily advise Adobe, at a suitably influential level of
management, to support such work, both financially
and in other ways—no strings attached.2

2 Adobe’s rationale for this support is that LATEX is cur-
rently a very important document format in the STEM dis-
ciplines and is one of the formats best suited to produce
well-structured PDF “out of the box”, given that its source
already contains such a large amount of information about the
document’s structure. Thus, with LATEX capable of supporting
the straightforward production of structured PDF documents,
a large number of such documents would become available on
the Internet. In addition, many older documents could be rea-
sonably easily reprocessed to add this structural information
to their PDF form. For Adobe all this is of great interest as
the existence of large numbers of such documents forms an
important and strategic input to their Document Cloud [1]
offerings and related future services.

As a result of these discussions, towards the end
of 2019 the authors, together with Ulrike Fischer, pro-
duced an extended feasibility study for the project,
aimed primarily at Adobe engineers and decision
makers. This study [8] describes in some detail the
various tasks that will constitute the project and
their inter-dependencies. It also contains a plan cov-
ering how, and in what order, these tasks should be
tackled in order both to achieve the final goal and,
at the same time, to provide intermediate concrete
results that are relevant to user communities (both
LATEX and PDF); these latter will help in obtaining
feedback that is essential to the successful completion
of later tasks.

The project plan gained the approval of the
Adobe management and we agreed in early 2020 to
start the project with Adobe contributing a substan-
tial portion of the expected project costs. But this
was 2020, so then “Corona arrived” with its huge
spanner to throw into the works! Thus all activity
came to a halt while Adobe was forced to reassess
such external financial commitments. However, we
were quite quickly told that this was a temporary
setback, so we restarted work on the project, albeit
at a slightly slower pace, and so were able to present
our first results at the TUG 2020 online conference:
i.e., the new hook management system for LATEX.3

2 What the project covers

This project has the title “LATEX Tagged PDF” so
before discussing further its coverage we should de-
scribe the use of the word “Tagged” here. A good
starting point for this is the following quote from the
PDF standard [2, 15] which defines tagging in the
PDF context thus:

Tagged PDF ([introduced in]PDF 1.4) is a
stylized use of PDF that builds on the logical
structure framework described in Section
[. . .], “Logical Structure.” It defines a set
of standard structure types and attributes
that allow page content (text, graphics, and
images) to be extracted and reused for other
purposes. It is intended for use by tools that
perform the following types of operations:

• Simple extraction of text and graphics
for pasting into other applications

• Automatic reflow of text and associated
graphics to fit a page of a different size
than was assumed for the original layout

• Processing text for such purposes as
searching, indexing, and spell-checking

3 The project task for this is described in section 2.2.5 of
the Feasibility Study [8].

LATEX Tagged PDF—A blueprint for a large project

294 TUGboat, Volume 41 (2020), No. 3

• Conversion to other common file formats
(such as HTML, XML, and RTF) with
document structure and basic styling
information preserved

• Making content accessible to users with
visual impairments (see Section [. . .],
“Accessibility Support”)

Based on this definition we can now give a high-
level description of this project by analyzing the
quoted text from the perspective of how LATEX cur-
rently works and how we will need to change it. The
quoted text tells us that to produce a Tagged PDF

document from a LATEX source we must proceed as
follows:

First, we must exploit LATEX’s knowledge of how
the components of a document are presented in the
LATEX source file and used to describe its structure,
consisting of “structure types and attributes” such as
the paragraph text, headings, lists, items, graphics,
tables, table cells, mathematics, etc.

Then, we must use this knowledge about the
source document to add the necessary components
to the PDF we are constructing. There are two basic
ingredients of this: a tree structure whose nodes
represent the “logical components” of the document;
and a mechanism for identifying those portions of
the “page content” that correspond to each (leaf)
node in this tree.

These “tagged” portions of the content, together
with information about the corresponding structure
node, can then be used by other (consumer) applica-
tions to carry out operations like those listed at the
end of the quote above.

None of the above may sound too complicated
given that LATEX knows what kind of structures will
be in the source file that it is processing. But as we
explained earlier, for performance reasons (necessary
when LATEX was designed and implemented), cur-
rently this structural information is disposed of as
soon as possible— therefore, by the time of writing
out the content of a page to the PDF file it is no
longer available.

In addition, there are some problematic details
within these processes. For example, the main con-
tent of a PDF document is a collection of “page
objects” and the “tagged portions” of the text have
to be nested within each page object; but TEX’s asyn-
chronous pagination process does not play well with
this constraint. Dealing with this problem is there-
fore part of one of the lower-level tasks in the project,
one that may best be solved by enhancements at the
engine level.

For this reason, a large portion of the necessary
project work consists of adding to the core of LATEX
all the functionality, data structures and interfaces
that are necessary for preserving and processing the
many details of this structural information. This will
result in a much enhanced LATEX system that can
manage and transport structural information from a
source to an output format.

With all of this firmly embedded into LATEX,
the project will be able to go further to provide, for
example, appropriate document-level interfaces for
some types of data that currently are not, at least
by default, made explicit in the source file. In this
area there already exist some solutions for aspects
such as metadata, PDF bookmarks, etc., produced by
Ross Moore, Scott Pakin, Heiko Oberdiek and oth-
ers [11, 12, 14]. Wherever feasible, we shall unify and
incorporate such useful existing work. Support for
some, but not all, of the wider (beyond tagging) re-
quirements of “Accessible PDF” will also be included
in the project work.

We also want to include here some important
(to us, at least) observations concerning the process-
ing of structural information using LATEX. From the
document-level (frontend) processing to the internal
data structures and interfaces, everything we wrote in
the high-level description above is essentially indepen-
dent of the target output format (Tagged PDF in this
project). Identical processing will be needed for any
output format that needs such structural information,
including HTML, XML and other “tagged/structured
formats”.

Thus, while the project will focus primarily on
PDF output (either generated directly by the TEX
engine or through a DVI-based workflow) it will, as
a bonus, make it easy to add other such output for-
mats to the workflow by simply replacing an output
(backend) module. Instead of PDF output, HTML5 or
some other format will then get written. As of now,
such alternative backends are not part of the project
coverage, but once LATEX is able to pass structure
information with well-defined interfaces to a backend
we expect that support for other structured output
formats will follow. Such work may be undertaken
by us or by other teams, possibly in parallel to the
later phases of the project discussed in this article.

3 Explaining the blueprint

The document entitled “LATEX Tagged PDF Feasibil-
ity Evaluation” [8], available from the LATEX Project
website [5], is a forty-page study that explains in
detail both the project goals and the tasks that need
to be undertaken, concluding with a plan for how we
think the project should be undertaken. Thus it is

Frank Mittelbach, Chris Rowley

TUGboat, Volume 41 (2020), No. 3 295

divided into three parts, beginning with an “Intro-
duction” which contains an overview of the benefits
of the project and goes on to explain why LATEX docu-
ments make a good starting point for the production
of tagged PDF.

It is advisable, if you are consulting this study,
to bear in mind that it was addressed primarily to
an audience within Adobe;4 this consisted of engi-
neers and managers with a wide knowledge of digital
typography and electronic publishing but not neces-
sarily much background within the specialized world
of TEX, LATEX and friends.

3.1 The major tasks

Following the overview, the next part of the study
(“Project Overview”) documents all the major tasks
that we consider necessary to reach the project goals.
These tasks are categorized under five headings, the
two most important being “General LATEX Extension
Tasks” and “Structured PDF Tasks”.

For each task, the study describes the rationale
for its inclusion and the work that has to be under-
taken. For the larger tasks, suitable subtasks are also
identified. Furthermore, to support the project time-
line planning, all the dependencies of each task on
other tasks are documented. Each such task section
ends with a list of deliverables, which will help us to
measure, and hence monitor, our progress through
the project.

Note that in total there are twenty engineering
tasks for which we believe that the necessary work
is well understood and therefore it “only” has to be
done—but done very well! In addition there are
a few project tasks that will require more extensive
research. Their descriptions in the study are much
less complete; this is simply because the engineering
details are not as yet known, or not well enough
understood. These research tasks are, naturally,
likely to identify further engineering tasks.

Note that, since the tasks in this part are ar-
ranged by category, they are not listed in their
chronological order of execution within the overall
plan: i.e., a task’s number is no indication of how
far along in the project that task will be tackled.

3.2 The project plan

In the final major part of the study (“Project Time-
line”) we develop a complete project plan consisting
of six phases. The tasks have been sorted into these
phases in such way that the dependencies between
them are respected; but also, and more importantly,

4 The public, cited, version of the study was updated in
September 2020 with some minor redactions, corrections and
clarifications.

we have ensured that the results of each phase will
offer immediate benefits to the LATEX community.

This latter requirement is important since it
will lead to timely feedback and early adoption. As
you can see below, we expect, for example, that on
completion of phase II it will already be possible to
automatically generate tagged PDFs for a restricted
set of documents. In later phases this level of automa-
tion will be extended to a wider range of documents.

Phase I—Prepare the ground

This phase covers some tasks that are important
precursors of later work; it is already well under
way. One important deliverable here is the new
general hook management system for LATEX that was
presented at the 2020 TUG conference and which is
now part of core LATEX, starting from the October
2020 release.

Another task here is the initial work on the low-
level requirements for the creation of tagged PDF;
this is currently available in the highly experimen-
tal package tagpdf, which uses prototype code from
pdfresources-related files for the creation and man-
agement of PDF objects. This package thus supports
such tasks as the creation in the PDF of the structure
tree and adding the necessary connections between
the nodes in this tree and the “content stream” of
each page.

It currently enables the creation (with some user
intervention) of tagged PDF documents; but, please
note that this work is truly experimental and so both
the code and interfaces are likely to change, or even
vanish, at any time.

This phase is the only one that was not designed
to offer significant benefits to users/authors. Never-
theless, the standardization and interfaces provided
by the general hook management will arguably ben-
efit these groups in addition to its direct target, the
package developers.

Phase II—Provide tagging of simple

documents

The main goal of phase II is to provide basic support
for the automation of the tagging process. In this
phase the automation will cover only relatively simple
documents: those that do not contain any of the
more complicated structures such as mathematics
and tables.

At this stage, the automated tagging will be
provided by loading an add-on package rather than
its being in the kernel, and it will be only a prototype
implementation.

For this phase several “workarounds” will be
required in order to provide necessary, but missing,

LATEX Tagged PDF—A blueprint for a large project

296 TUGboat, Volume 41 (2020), No. 3

features. For example, instead of setting up (as part
of this phase) a full extended cross-reference system
(similar to the zref package by Heiko Oberdiek, but
built into core LATEX) we will either use that package
or add temporary code written to “work around” any
issues resulting from this functionality not yet being
a component of the kernel. Any such “workaround
code” will need to be removed or adjusted in a later
phase.

This ordering of the work was chosen so as to
offer tangible results reasonably early in the life of
the project, rather than taking up too much time at
this stage on making purely internal improvements
that have no immediately visible application and
therefore appear to many users to be devoid of value.

Phase III—Remove the workarounds

needed for tagging

The main goal of phase III is to extend the coverage
of automatic tagging to a wider variety of documents
by making further basic document elements “tag-
ging aware”. These extensions will also enable us to
remove the “workarounds” introduced (to provide
a working prototype) in the previous phase. This
phase will also include a metadata mechanism that
is integrated into the LATEX kernel.

Phase IV—Make basic tagging and

hyperlinking available

The main goal of phase IV is to incorporate into the
kernel all the code from the prototype packages. This
needs to be done very carefully and cautiously as
there should be no negative impact on the processing
of legacy documents. Thus we expect to need at
least one full LATEX release cycle5 to complete this
work.

Phase V—Extend the tagging capabilities

With basic tagging available, the focus of phase V is
to provide extended support for tagging by adding
tables and formulas (mathematics) to the supported
document structures.

At this stage, interfaces will also be added wher-
ever needed to support other aspects of Tagged PDF

such as the specification of alternate text (for formu-
las, illustrations, etc.).

Phase VI—Handle standards

Finally, phase VI focuses on the provision of support
for the relevant PDF standards (such as PDF/A [16],
explained further in [13]; and PDF/UA [17], see also
[3]) at least so far as this is possible using LATEX

5 See Section 3.3 for further information concerning phases
and this release cycle.

directly, i.e., without any post-processing of the PDF

file. It also covers kernel support for some further
features such as the production of outlines for a docu-
ment and the incorporation into a PDF of “associated
files”.

Research work

In addition to these six phases, which contain only
tasks that are largely understood from a technical
perspective, there are a number of other tasks that
will require preparatory research in order to under-
stand what engineering work is needed. This research
will be carried out in parallel with the other work
and, as indicated earlier, it is very likely to lead
to the specification of additional engineering tasks.
Thus the research outcomes will probably lead to
some alterations and extensions in phases IV to VI.

Alterations, adjustments and reporting

On the whole we believe that this plan offers a consis-
tent and sensible approach to attaining the intended
goals of the project. However, there will undoubt-
edly be some changes since, for example, the research
tasks will probably lead to some augmentation of the
planned tasks and changes to some of them. More-
over, we have already found that we want to move
some deliverables (from the larger tasks) forward
to earlier phases. Also, in some cases we are think-
ing about not completely finishing a task within the
planned phase because it appears more important
to first focus on other work (of course, such changes
will work only in cases where those deliverables are
not required for other tasks). Furthermore, working
through a task may identify some additional work
that is needed but not yet accounted for, leading to
new subtasks with extra deliverables.

We are therefore planning to provide an appro-
priate level of continuing (public) reports on the
project’s status and results, including any additions
or changes of direction. The Feasibility Study, with
its fairly detailed documentation and deliverables,
will provide a good starting point for this important
activity. The exact form and shape of this reporting
is not yet decided, but we will in due time announce
it on the LATEX Team website [5] and/or in TUGboat

as appropriate.

3.3 Timeline and other considerations

The time estimates we supplied (in the Feasibility
Study) for the individual tasks are based on the
assumption that there will be at least (the equivalent
of) one software developer working exclusively and
full time on a task throughout its allocated time
period, together with additional support from further

Frank Mittelbach, Chris Rowley

TUGboat, Volume 41 (2020), No. 3 297

developers as necessary. We are also very well aware
that activities such as documentation and testing
require substantial specialized professional input that
will also need to be resourced.

Whether or not this level of effort will be pos-
sible at all times will depend on various factors, an
important one being the availability of appropriate
funding that can free the responsible developers and
other key workers from the need to undertake other
work to earn a living. While the financial sponsorship
from Adobe will go a long way towards meeting the
needs of the project, it may well not be sufficient by
itself to fully sustain the work. For all the above rea-
sons, the estimates in the study should be considered
as approximations and not as definite values.

A realistic scenario would be that each phase
takes between one and two release cycles of LATEX, of
which there are two per year. This implies that the
project will stretch across four years as a minimum,
but it most probably will be somewhat longer. Addi-
tional funding will help to ensure timely delivery of
each phase and may additionally allow us to broaden
the scope in some areas. Nevertheless, given the
complexity of the topic, any expectation of earlier
delivery dates is not realistic.

It is also important to note that all the neces-
sary updates to important external packages (those
not supported by the LATEX Project Team) are ex-
pected to be done using external resources, i.e., by
the maintainers of those packages. This assumption
is probably not tenable in all cases (see, for example,
the discussion in [8, Task 2.4.3]). In such cases, addi-
tional work will have to be undertaken as part of the
project, which will also alter the timeline or require
hiring additional developers to take on such work.

Last but not least, the success of the project will
also depend very much on productive collaborations
with many people in the LATEX community: testers,
package writers, and possibly also those who tend to
the underlying TEX engines and the various utility
programs used to produce PDF output. Also, from
the wider world, we shall need input from a variety
of experts in the production of high-quality PDF

and from those with knowledge of how consumer
applications use its features in the real world.

4 First results

As mentioned earlier, we have started the project
despite COVID-19 getting in the way. So we can now
already report on some success stories:

• The new LATEX hook management system (Task
2.2.5 of [8]) presented at TUG 2020 [7] and in a
TUGboat article [6];

• PDF string support (Task 2.2.1 of [8]) which is
largely an internal enabler for later tasks;

• Initial experiments with tagpdf prototype code
(part of Task 2.2.6 of [8]). See [4] for a discussion.

5 Outlook

Right now we are in the middle of phase I and ex-
pecting it to be finished with the Spring release of
LATEX in 2021. Given that we intend to shift the
LATEX release dates next year to better align with
the yearly TEX Live distributions, we expect to start
work on some tasks of phase II already before the
next LATEX release.

In addition to the ongoing work on engineering
tasks, some effort will go into managerial tasks, e.g.,

• Setting up connections and collaboration with
external experts to gain expertise in areas where
the present team is lacking, and to ensure that
our work will continue to be focused on pertinent
goals;

• Looking for additional financial support to bring
in extra expertise and hence, we hope, speed up
the later phases;

• Setting up a professional system for the produc-
tion of documentation, high in both quality and
quantity.

Of course, LATEX development and maintenance
will not be solely restricted to this project over the
coming years. There are many other activities that
the LATEX Project Team plans to carry out in parallel.
Their results will, as in the past, appear via the usual
communication channels, e.g., our website, ltnews
newsletters, TUGboat articles and/or Internet-based
discussions on StackExchange chat, LATEX-L and
other places.

References

[1] Adobe Document Cloud.
https://en.wikipedia.org/wiki/Adobe_

Document_Cloud.

[2] Adobe Systems Inc. PDF Reference 1.7, Nov.
2006. https://www.adobe.com/devnet/pdf/
pdf_reference.html. Freely available version
of [15].

[3] O. Drümmer, B. Chang. PDF/UA in a
Nutshell—Accessible documents with PDF.
PDF Association, Aug. 2013. https://pdfa.
org/resource/pdfua-in-a-nutshell/.

[4] U. Fischer. Creating accessible pdfs
with LATEX. TUGboat 41(1):26–28, 2020.
https://tug.org/TUGboat/tb41-1/

tb127fischer-accessible.pdf

LATEX Tagged PDF—A blueprint for a large project

https://en.wikipedia.org/wiki/Adobe_Document_Cloud
https://en.wikipedia.org/wiki/Adobe_Document_Cloud
https://www.adobe.com/devnet/pdf/pdf_reference.html
https://www.adobe.com/devnet/pdf/pdf_reference.html
https://pdfa.org/resource/pdfua-in-a-nutshell/
https://pdfa.org/resource/pdfua-in-a-nutshell/
https://tug.org/TUGboat/tb41-1/tb127fischer-accessible.pdf
https://tug.org/TUGboat/tb41-1/tb127fischer-accessible.pdf

298 TUGboat, Volume 41 (2020), No. 3

[5] LATEX Project Team. Website of the LATEX
Project. https://latex-project.org/.

[6] F. Mittelbach. Quo vadis LATEX(3) Team—A
look back and at the upcoming years. TUGboat
41(2):201–207, 2020. https://latex-project.
org/publications/indexbyyear/2020/.

[7] F. Mittelbach. Video: Quo vadis LATEX(3)
Team—A look back and at the upcoming
years. 2020. Recording of the talk
given at the online TUG 2020 conference,
https://youtu.be/zNci4lcb8Vo.

[8] F. Mittelbach, U. Fischer, C. Rowley. LATEX
Tagged PDF Feasibility Evaluation. LATEX
Project, Sept. 2020. https://latex-project.
org/publications/indexbyyear/2020/.

[9] R. Moore. Implementing PDF standards
for mathematical publishing. TUGboat
39(2):131–135, 2018. https://tug.org/

TUGboat/tb39-2/tb122moore-pdf.pdf

[10] R. Moore. Website: Tagged PDF examples
and resources, 2020. http://maths.mq.

edu.au/~ross/TaggedPDF and in particular
/TUG2019-movies.

[11] R. Moore, C. V. Radhakrishnan, et al.
Generation of PDF/X- and PDF/A-compliant
PDFs with pdfTEX— pdfx.sty.
https://ctan.org/pkg/pdfx, Mar. 2019.

[12] H. Oberdiek. The bookmark package.
https://ctan.org/pkg/bookmark, Dec. 2019.

[13] A. Oettler. PDF/A in a Nutshell—PDF
for long-term archiving. PDF Association,
May 2013. https://pdfa.org/resource/

pdfa-in-a-nutshell/.

[14] S. Pakin. The hyperxmp package.
https://ctan.org/pkg/hyperxmp, Oct. 2020.

[15] Technical Committee ISO/TC 171/SC 2.
ISO 32000-1:2008 Document management—
Portable document format (PDF 1.7), July
2008. https://iso.org/standard/51502.

html. Freely available as [2].

[16] Technical Committee ISO/TC 171/SC 2.
ISO 19005-2:2011 Document management—
Document file format for long-term
preservation—Part 2: Use of ISO 32000-1
(PDF/A-2), July 2011.
https://iso.org/standard/50655.html.

[17] Technical Committee ISO/TC 171/SC 2.
ISO 14289-1:2014 Document management
applications—Electronic document file format
enhancement for accessibility—1: Use of ISO
32000-1 (PDF/UA-1), Dec. 2014.
https://iso.org/standard/64599.html.

⋄ Frank Mittelbach
Mainz, Germany
frank.mittelbach (at)

latex-project dot org

https://www.latex-project.org

⋄ Chris Rowley
Sattahip, Chonburi, Thailand
chris.rowley (at)

latex-project dot org

https://www.latex-project.org

Frank Mittelbach, Chris Rowley

https://latex-project.org/
https://latex-project.org/publications/indexbyyear/2020/
https://latex-project.org/publications/indexbyyear/2020/
https://youtu.be/zNci4lcb8Vo
https://latex-project.org/publications/indexbyyear/2020/
https://latex-project.org/publications/indexbyyear/2020/
https://tug.org/TUGboat/tb39-2/tb122moore-pdf.pdf
https://tug.org/TUGboat/tb39-2/tb122moore-pdf.pdf
http://maths.mq.edu.au/withtilde%20ross/TaggedPDF
http://maths.mq.edu.au/~ross/TaggedPDF
https://ctan.org/pkg/pdfx
https://ctan.org/pkg/bookmark
https://pdfa.org/resource/pdfa-in-a-nutshell/
https://pdfa.org/resource/pdfa-in-a-nutshell/
https://ctan.org/pkg/hyperxmp
https://iso.org/standard/51502.html
https://iso.org/standard/51502.html
https://iso.org/standard/50655.html
https://iso.org/standard/64599.html

TUGboat, Volume 41 (2020), No. 3 299

Functions and expl3

Enrico Gregorio

Abstract

In this tutorial we discuss expl3 functions, their role,
definition and variants, also touching on variables.

1 Introduction

The term function is not used in standard LATEX, but
is a very important concept in the expl3 language.
The language itself had no precise name until a couple
of years ago, when it was eventually decided that
its name would be expl3 just like the package that
provided it (now merged in the LATEX kernel).

In the language, care is taken to distinguish
between variables and functions. Variables store
some value that can change during the LATEX run,
whereas functions perform some action.

A special kind of variable is the constant, whose
value is supposed not to change during the run. Well,
the name seems to conflict with the nature, but
mathematicians are used to this kind of stretched
terminology: you who are not a mathematician, don’t
worry and carry on, just smile at mathematicians’
bizarre way of thinking.

We’ll be mostly interested in functions, but vari-
ables can be the staple food of functions, so we’ll
also need to know a bit about them.

Let me give an example using legacy concepts.
The standard document classes, and most nonstan-
dard ones as well, have the command \title. How
does this work? This very paper has

\title{Functions and \expliii}

at its start. When LATEX processes this instruction,
it will do something like

\gdef\@title{Functions and \expliii}

so it will be able to use \@title when doing its
typesetting job related to \maketitle.

There is a big conceptual difference between
\title and \@title. The former performs an action,
the latter is simply a container. In expl3 terms, the
former will be a function, the latter a variable: this
function’s action is to store a value in the specified
variable.

At the user level the distinction is blurred; with

\newcommand{\CC}{\mathbb{C}}

is \CC be a function or a variable? Fortunately, it’s
not important to decide, because this is essentially a
user’s shorthand and at this level the distinction is
almost irrelevant.

Simultaneously published in Italian for the GuIT 2020
conference, guitex.org.

The issue comes up when programming. In ‘cor-
rect’ LATEX programming we have a user level com-
mand which calls a function that performs an action:

\NewDocumentCommand{\title}{m}

{

\example_title:n { #1 }

}

%

\tl_new:N \g_example_title_tl

%

\cs_new_protected:Nn \example_title:n

{

\tl_gset:Nn \g_example_title_tl { #1 }

}

Then the user level command \maketitle will use
the value stored in the variable, via other functions.

This (imaginary) example shows many of the
concepts we’ll be discussing. We define a user-level
command in terms of a function; this function has
one argument (the given title) and its job is to set
the value of a particular variable to the specified
value. The variable has been declared in advance:

• \title is a user-level command; these are not
the subject of this paper;

• \g_example_title_tl is a variable, defined us-
ing \tl_new (tl = token list);

• \example_title:n is a function, defined using
\cs_new_protected (cs = control sequence).

We’ll be discussing all of this in detail.

2 Naming conventions

A common problem with TEX is that it has no con-
cept of namespace, which only became common in
computer science circles much later. Name conflicts
were frequent in the olden days of LATEX, and such
conflicts still appear now and then. It might be
appealing for a package to use \@x and \@y for coor-
dinates, but package authors should be aware that if
a simple name appeals to them, other authors have
probably thought the same.

In expl3, variables should have a name of the
form

\l_〈prefix〉_〈proper name〉_〈type〉
\g_〈prefix〉_〈proper name〉_〈type〉
\c_〈prefix〉_〈proper name〉_〈type〉

where the distinct parts are important and necessary:

• l, g and c declare that the variable is local,
global or constant, respectively;

• 〈prefix〉 should be a unique string of letters for
the package we’re writing or the code in the
document;

• 〈proper name〉 is an arbitrary string of letters
possibly split into parts separated by an under-
score;

Functions and expl3

300 TUGboat, Volume 41 (2020), No. 3

• 〈type〉 is the type of variable.

The most common types of variables are:

• tl, for token list;
• seq, for sequence;
• clist, for comma list;
• prop, for property list;
• int, for integer ;
• dim, for dimension;
• box, for box;
• fp, for floating point.

There are several others, but as the purpose of this
tutorial is to talk about functions, I’ll skip the more
esoteric ones for now, only touching them when need
comes.

Function names are similar:

\〈prefix〉_〈proper name〉:〈signature〉

The 〈prefix〉 and 〈proper name〉 are the same as
before, but the 〈signature〉 must be explained. It can
be an arbitrary string of characters among

c e f n N o v V w x T F

Each character given, except w, denotes an argument
to the function. We’ll be going into details soon.

Mathematical functions can depend on one or
more arguments (well, also zero, but then they’re
constant functions) and the same is true for expl3

functions. The purpose of the signature is to precisely
specify how many arguments the function depends
on and their type. For instance, the commonly used
function

\seq_set_split:Nnn

takes three arguments, one of type N and two of type
n in that order. An argument of type N should be
a single token, the nature of which depends on the
function; in the above case, it should be a sequence
variable. An argument of type n should be a braced
list of tokens. In our example, the title of the paper
is an n-type argument to \title. This is a bit
stretched, but should explain the concept.

The w type is an exception, because it specifies
nothing except that the arguments to the function
are weird, and one must refer to the package/code
documentation in order to know how many there
are and what syntax they have. Generally speaking,
w-type arguments should only appear in low-level
functions.

A call to the previously mentioned function
might be something like

\seq_set_split:Nnn

\l_example_test_seq

{ || }

{ a || b || c }

(more likely on one line in a source file; split here
because of the paper’s formatting). It doesn’t matter
now to know what this code does; seq_set_split is
usually called as part of other processing and receives
the arguments from other calls. The important thing
is to see that the arguments follow the naming con-
vention: the first one is a single token, the other two
are braced lists of tokens.

A function can have no arguments, but the colon
is still required. Although TEX will not balk if you
define a function with a nonconforming name, stick-
ing to the convention will help to avoid conflicts and
to have more easily parsable code. A typical func-
tion with no arguments is \scan_stop:, which is
nothing other than our old friend \relax. Maybe
the expl3 name is less poetic, but it expresses what
the function’s main purpose is.

3 Defining functions

There are many kernel functions which define func-
tions. All of them share the cs prefix. The main
ones are

\cs_new:Nn

\cs_new_protected:Nn

We’ll discuss the others later. According to the
naming conventions given, we can see that both have
two arguments: the first argument is a single token,
the name of the function to be defined, the second
being the replacement text, that is, the code that will
be substituted to the function’s call.

While expl3 tries hard to emulate a functional
language, it is still implemented in TEX, which only
knows primitives, macros and registers. This fact
needs to be kept in mind when programming. On the
other hand, the new language makes for simpler con-
structions, avoiding the clumsy (or fun, depending on
the programmer’s attitude) chains of \expandafter

or \noexpand often seen in traditional TEX, under-
standing which is often quite hard.

A simple example is the internal function for
managing the document’s title, which we saw earlier:

\cs_new_protected:Nn \example_title:n

{

\tl_gset:Nn \g_example_title_tl { #1 }

}

Since the function’s name has signature :n (strictly
speaking, the colon is not part of the signature, but
it’s convenient to use it as a marker), expl3 knows
that the replacement text can use #1 to refer to the
argument supplied at call time.

Why are we using the protected instruction
and not the simpler cs_new? Because our function
will set the value of a variable. This is something

Enrico Gregorio

TUGboat, Volume 41 (2020), No. 3 301

that for years has frustrated a horde of LATEX pro-
grammers and has required the distinction between
robust and fragile commands. Nowadays the issue
is less relevant because almost all fragile commands
have been ‘robustified’, but it can still bite.

What is the problem? If we define, in legacy
LATEX, something like

\newcommand{\foo}[1]{%

\renewcommand{\baz}{#1}%

}

which is the common way to store a value into a
macro, and then somehow \foo ends up in \write or
\edef, even under their wrappers \protected@write

or \protected@edef, a long list of error messages ap-
pears. The traditional way of avoiding this is to use
\DeclareRobustCommand instead of \newcommand.

Any function that works by setting variables or
calling other protected functions should generally be
protected itself. In case of doubt, protect.

Beware! The signature of the function to be
defined can only consist of the characters N or n.
Well, T and F are also allowed, but these are a special
topic that we’ll touch later on. How do the other
characters listed above get into signatures? This is
a good question!

3.1 Generating variants

Suppose we’re doing a general purpose function for
setting tl (token list) variables to contain some ma-
terial we need to use at later points. The user inter-
face would utilize \setvar for storing the value and
\usevar for delivering the value.

We face a problem: how can the user specify
the name of a variable inside the document where
the expl3 names are not allowed? Indeed, in normal
text, the underscore cannot be used in a command
name, so something like

\setvar{\l_example_var_a_tl}{something}

would bomb out. We’d like instead that the user
types in

\setvar{a}{something}

\usevar{a}

(at different points of the document, of course). Let’s
proceed at a slow pace. We’ll define the user interface
afterwards. First we define a function that allocates
a variable and stores a value in it; then a function
that delivers the contents of a variable:

\cs_new_protected:Nn \example_setvar:Nn

{

\tl_clear_new:N #1

\tl_set:Nn #1 { #2 }

}

\cs_new:Nn \example_usevar:N

{

\tl_use:N #1

}

The tl_clear_new instruction clears a possible pre-
ceding value or allocates a new variable. Then the
tl_set function does the setting job; it’s not pro-
tected because it does no dangerous processing. How-
ever, this does not solve the problem we face. Here’s
where the concept of variants comes into the scene.
We do

\cs_generate_variant:Nn \example_setvar:Nn

{ cn }

\cs_generate_variant:Nn \example_usevar:N

{ c }

which effectively defines two new functions named

\example_setvar:cn

\example_usevar:c

What does c mean? It means that the new functions
expect a braced argument, which it will build a
command name from (in this case the name of a
variable, in other cases it could be the name of a
function). So now we can define the user interface:

\NewDocumentCommand{\setvar}{mm}

{

\example_setvar:cn

{ l_example_var_#1_tl }

{ #2 }

}

\NewExpandableDocumentCommand{\usevar}{m}

{

\example_usevar:c { l_example_var_#1_tl }

}

Sites on LATEX are plagued with questions about
code doing nasty things such as \def\c{something},
asking why this breaks.

With the approach just outlined we set up a
namespace for our variables, which can just be called
by their ‘outer’ name, leaving to the implementation
the details about how to avoid conflicts.

[We could certainly define the user level commands in legacy
LATEX. A typical implementation would be

\newcommand{\setvar}[2]{%

\expandafter

\def\csname example@var@#1\endcsname{#2}%

}

\newcommand{\usevar}[1]{%

\csname example@var@#1\endcsname

}

I won’t quarrel with people maintaining this is simpler. But
I’ll remain with my opinion that it isn’t.]

Let’s add something to the game: now we want
to allow the user to copy the value of a variable into
another, say by doing \copyvar{b}{a}, where b is
the new one and a the existing one. We only need a
new variant, namely

Functions and expl3

302 TUGboat, Volume 41 (2020), No. 3

\cs_generate_variant:Nn \example_setvar:Nn

{ cv }

and then define the user interface with

\NewDocumentCommand{\copyvar}{mm}

{

\example_setvar:cv

{ l_example_var_#1_tl }

{ l_example_var_#2_tl }

}

We now have at our disposal another function, namely
\example_setvar:cv, which takes two braced argu-
ments. The second one is scanned like c, producing
a symbolic token which should be a variable of some
kind and then will deliver the contents of the variable
as a braced argument to the main function.

[I leave as an easy exercise on \expandafter how to do this
in legacy LATEX programming (hint: use \let and two
\expandafters, cleverly positioned).]

It’s not necessary to write two distinct calls for
defining the variants, we can create them both at
once with:

\cs_generate_variant:Nn

\example_setvar:Nn

{ cn, cv }

The v variant is a special case of the V variant, which
is almost the same, but the capital letter reminds
us that a single token (a variable’s name) should be
used without braces. Suppose we have a function
that does something with its argument:

\cs_new:Nn \example_foo:n { -- #1 -- }

(just some nonsense to illustrate the concept). How-
ever, in some cases we need to pass the function
something that has been stored in a tl variable:
nothing simpler, because we can do

\cs_generate_variant:Nn \example_foo:n

{ V }

allows us to do

\example_foo:V \l_tmpa_tl

If, say, \l_tmpa_tl has been set to contain abc, then
calling \example_foo:V \l_tmpa_tl is exactly the
same as doing \example_foo:n {abc}.

Bear in mind that variants do not come into
existence without first generating them. Kernel func-
tions come predefined with several variants that have
proven to be useful; they’re listed together with the
main function in interface3.pdf. What if we don’t
know whether a variant has already been defined?
No problem at all! The generation will be silently
ignored and, even if it weren’t, there should be no
problem either, because variants are generated in a
uniform way.

We could avoid generating variants. For in-
stance the job of \example_setvar:cv could be ac-
complished by

\exp_args:Ncv \example_setvar:Nn

(which is actually how the variant is defined), but
there’s no point in complicating our life this way.
Modern TEX and friends’ implementations have lots
of memory available, and the times when memory
was in very short supply and tricks saving just a
few tokens in order to spare memory were necessary
are only remembered by old dinosaurs like Frank,
Chris, David and myself. I remember well the time I
saw the dreaded “This can’t happen” error message
because I was using PICTEX.

Let’s go back to theory. Are there variants to the
function-defining functions? Yes, of course there are!
There are times when we want to define a function
whose name is decided at runtime. The example
below is a bit silly, but should give the idea: the call

\cs_new:cn { example_foo:n } { -- #1 -- }

is the same as the definition of \example_foo:n

above, because the name, including the signature,
will be formed before the underlying \cs_new:Nn

function does its job. One can use anything inside
the braces corresponding to the c argument type,
so long as the final result, after full expansion, just
consists of characters. Oh! Expansion! What is it?
Be patient. First there are other bits to discuss.

3.2 Local, global, and 〈extra〉s

Everybody should know about local and global. In
LATEX, if we perform some command definition inside
an environment, it is local to the environment and
will disappear when it ends. Other assignments of
meaning are instead global: operations on counters,
for instance. We don’t need a full discussion on local
versus global, but there are aspects of the problem
that are relevant for functions.

All \cs_new〈extra〉:Nn declarations are always
global. Even if performed inside a group, their effect
will also be carried on at the outer levels. Further,
they will check whether the function is already de-
fined and issue an error message if so. The 〈extra〉
part will be described next. Variable allocation (not
setting) is also always global: the instruction

\tl_new:Nn \l_example_foo_tl

defines the variable at all levels and will balk if the
variable already exists.

However, sometimes we need locally defined aux-
iliary functions, that have no fixed meaning and need
to be redefined according to the context. For these
there is the family:

\cs_set〈extra〉:Nn

Enrico Gregorio

TUGboat, Volume 41 (2020), No. 3 303

The syntax is exactly the same as with \cs_new, as
are the available variants.

Which one to prefer? The new or the set family?
The answer is easy: the former, unless the function
is required to change its definition according to the
context. Rarely, if ever, will a high level function be
defined with set.

Thus, the very nature of the language invites
programmers to code in layers. For instance, we
could have done:

\NewDocumentCommand{\setvar}{mm}

{

\tl_clear_new:c

{ l_example_var_#1_tl }

\tl_set:cn

{ l_example_var_#1_tl }

{ #2 }

}

without defining \example_setvar:Nn at all. I dis-
courage this kind of programming: our code should
sit on top of expl3 and provide APIs for the program-
mer to employ. As I said before, there is no point
in sparing a function, even more so if we consider
that once our API is available, we can easily define
variants thereof for particular jobs.

What’s the complete list of 〈extra〉s available
after \cs_new or \cs_set? Here it is:

\cs_new:Nn

\cs_new_protected:Nn

\cs_new_nopar:Nn

\cs_new_protected_nopar:Nn

\cs_set:Nn

\cs_set_protected:Nn

\cs_set_nopar:Nn

\cs_set_protected_nopar:Nn

\cs_gset:Nn

\cs_gset_protected:Nn

\cs_gset_nopar:Nn

\cs_gset_protected_nopar:Nn

In all cases, the first argument is the name of the
function to be defined and the second argument is
the replacement text.

You probably already have an idea of what
protected does: it arranges things so that the func-
tion is not expanded when full expansion is enforced.
In particular, a protected function cannot be used
in a c-type argument, because it wouldn’t be ex-
panded and it is not a character.

The nopar variety disallows \par tokens in the
function’s argument (when called). Unless we’re
dealing with special situations where \par does not
make sense in a function’s argument, there is no need
to use it.

The gset family is almost the same as new,
but no check is performed about the function being
defined.
[For the TEX gurus that are reading these notes, new and gset

use \gdef, whereas set uses \def; the \long prefix is added
except with nopar.]

What are the available variants? Here’s the
complete list for all of the above functions:

Nn cn Nx cx

What’s this mysterious x? It’s intended to bring to
mind fully expanded. There will be a section later
on the topic.

3.3 Parameters

Some people will now be complaining that they have
seen different ways to define functions and they’re
right. There is a whole new family like the one above
but where the signature has a strange p between
N and n, namely

\cs_new:Npn

\cs_new_protected:Npn

\cs_new_nopar:Npn

\cs_new_protected_nopar:Npn

\cs_set:Npn

\cs_set_protected:Npn

\cs_set_nopar:Npn

\cs_set_protected_nopar:Npn

\cs_gset:Npn

\cs_gset_protected:Npn

\cs_gset_nopar:Npn

\cs_gset_protected_nopar:Npn

The p is a reserved argument type just for these
functions and variants thereof: all of them come
along with the variants

Npn cpn Npx cpx

and stand for parameter text. The two lines below
are completely equivalent:

\cs_new:Nn \example_usevar:n {...}

\cs_new:Npn \example_usevar:n #1 {...}

The same for the other functions. In the second
instance, the parameter text is explicitly written
out. Remember that when the expl3 programming
conventions are in force, spaces are ignored, so for
two parameters we can have

\cs_new:Nn \example_foo:nn {...}

\cs_new:Npn \example_foo:nn #1 #2 {...}

\cs_new:Npn \example_foo:nn #1#2 {...}

\cs_new:Npn \example_foo:nn #1 #2{...}

\cs_new:Npn \example_foo:nn #1#2{...}

and the last four lines are completely equivalent.
Personally, I prefer the first way that’s ‘more logical’;
others prefer the second way. Beware! The second
way doesn’t check for consistency of the signature
with the parameter text and it even allows for ‘wrong’

Functions and expl3

304 TUGboat, Volume 41 (2020), No. 3

signatures, but this fact should not be exploited:
LATEX will not balk if you type

\cs_new_protected:Npn

\example_setvar:cn #1 #2

{...}

but this doesn’t mean that you can avoid the two-step
procedure of first defining \example_setvar:Nn and
then creating the variant. Doing the definition this
way is wrong. The second family of functions even
allows for no signature at all, actually, so they can
be used for defining user level commands, although
the path with \NewDocumentCommand (or siblings) is
recommended.1

The p way is necessary when the parameter text
is ‘nonstandard’, in the sense that we’re defining a
function with delimited arguments; in this case, the
signature should be w. If we want a function that
sets three variables to the year, month and day given
an ISO-format date such as 2020-10-15, we can do

\int_new:N \l_example_year_int

\int_new:N \l_example_month_int

\int_new:N \l_example_day_int

\cs_new_protected:Nn \example_setdate:n

{

__example_setdata:w #1 \q_stop

}

\cs_new_protected:Nn

__example_setdate:w #1-#2-#3 \q_stop

{

\int_set:Nn \l_example_year_int { #1 }

\int_set:Nn \l_example_month_int { #2 }

\int_set:Nn \l_example_day_int { #3 }

}

Here I introduce another useful convention: if the
〈prefix〉 is preceded by a double underscore, the func-
tion is considered lower level than the others and
should never be called outside its specific uses by
standard functions (without the double underscore).
The idea is that the standard functions are the ‘pro-
grammer’s interface’, whereas the others are auxiliary
whose actual implementation should not concern the
programmer. The distinction when writing personal
code is not so important, but it is crucial for pack-
age writers. Standard functions (without the double
underscore) can be used by other packages, whereas
one should not count on the lower level ones (with
the double underscore) to even be defined in later
versions of the package.

This should clarify why the code above splits
the work into two levels; we have the high level
function \example_setdate:n function which relies
on a lower level one to do the dirty work. Maybe

1 expl3 can also be used with plain TEX, and in this case
this is the only way to define user level commands.

the package writer will discover a better way to
accomplish the task, but this would only influence
the lower level and not the main function, which will
be possible to call forever. Maybe the definition of
\example_setdate:n will change in the future, but
this won’t affect code that uses it.

4 Expansion

There can be no full understanding of TEX with-
out some knowledge on how expansion works. In
functional programming languages, if g is a func-
tion of one variable returning an array of three data,
whereas f is a function of three variables, a call

f(g(x))

would be permissible (from a mathematical point
of view, at least, maybe a particular functional lan-
guage requires some tweak). This is not the same in
TEX, which goes from outside to inside, rather than
conversely.

If we have a one-argument \example_a:n func-
tion that returns three braced lists of tokens, and
another function \example_b:nnn that takes three
arguments, a call such as

\example_b:nnn { \example_a:n {x} }

would fail miserably. That’s how TEX works and no
clever code can change this. The outer function will
look for three arguments and the given braced list
of tokens is just one.

As an example of how to handle this, suppose
that \example_a:n can be fed a date in ISO format
and from 2020-10-15 it returns {2020}{10}{15},
whereas \example_b:nnn takes three arguments and
produces a date in a different format, say “day ‘name
of the month’, year”: in this case it should output
“15 October, 2020”.

We need an indirect approach, in order to allow
feeding an ISO date to the general function out-
putting the date in that format. Let’s see how the
general function might be defined:

\cs_new:Nn \example_date:nnn

{ % #1 = year, #2 = month, #3 = day

#3˜

\int_case:nn { #2 }

{

{1}{January}

{2}{February}

...

{12}{December}

}

,˜#1

}

The \int_case:nn function examines its first argu-
ment against the list given as its second argument
(the code is incomplete, but you can guess how to

Enrico Gregorio

TUGboat, Volume 41 (2020), No. 3 305

fill it in) consisting of pairs of braced items; the first
contains an integer, the second something to output
when a match is found. The ˜ here is not a nonbreak-
ing space in the expl3 programming environment, but
a normal space.

We also need a function that is given a date in
ISO format (2020-10-15) and returns it split into
the three constituent parts, {2020}{10}{15}:

\cs_new:Nn __example_isodate:n

{

__example_isodate:w #1 \q_stop

}

\cs_new:Npn

__example_isodate:w #1-#2-#3 \q_stop

{

{#1}{#2}{#3}

}

The input to the second function is split at the hy-
phens and at the terminator, so we’re using delimited

arguments, a detail I’ll skim over. Here, we just need
to know that the call
__example_isodate:n {2020-10-15}

will eventually return {2020}{10}{15} to the input
stream.

How do we combine these? There are several
ways, but all of them require understanding the con-
cept of full expansion. TEX only knows macros; when
it finds one, it knows how many arguments it takes
and looks for them in the input stream; upon finding
them, it replaces the whole sequence of tokens so
found with the replacement text of the macro.

The main problem is that most of the time we
don’t know how many steps of expansion it will take
to get from __example_isodate:n {2020-10-15}

to {2020}{10}{15}. In this case it would be easy
to count them, but this is just a simple example.
If we knew, a suitable chain of \expandafter com-
mands would suffice, but this is prone to errors and
inconsistencies if the implementation changes.

What we’d like is for __example_isodate:n

to go all the way down to the final result in one
swoop. Here’s a way:

\exp_last_unbraced:Ne

\example_date:nnn

{ __example_isodate:n {2020-10-15} }

What \exp_last_unbraced does is fully expand its
second argument and return the result in the input
stream with no braces around it.

There are other ways. One is to define a new
helper function:

\cs_new:Nn \example_date:n

{

__example_date:Ne

\example_date:nnn

{ __example_isodate:n { #1 } }

}

\cs_new:Nn __example_date:Nn

{

#1 #2

}

\cs_generate_variant:Nn

__example_date:Nn { Ne }

upon which \example_date:n {2020-10-15} would
produce the intended result.

There are still more ways, but here the idea
is to present how we can exploit the full expansion
variants.

In sum, there are three kinds of them, namely
e, x and f. The last of these is the most restricted,
because it performs recursive expansion of the to-
kens as soon as they are placed in the input stream
and ends at the first unexpandable token it finds.
Notwithstanding this limitation it has several uses.

The x type is nowadays less important because
all TEX engines supporting LATEX have the primi-
tive \expanded, which is itself expandable. Only
Knuthian TEX (the engine that one launches with
tex on the command line) lacks it, since it is kept
with no extensions, according to Knuth’s desiderata.
[What does \expanded do? It is essentially like \edef, with
the difference that no macro is defined. The argument to
it is subject to full recursive expansion which doesn’t stop
when an unexpandable token is found, but just jumps over
it and continues from the next token, until exhausting the
supplied token list. The result is then placed on the input
stream (without braces).]

4.1 Full expansion with e

The e argument type tells LATEX to first fully expand
the given argument and then supply the result to the
original function. This is very important if the argu-
ment contains a variable which we want to deliver
the value of at call time.

We can see an example in a post on TEX.Stack-
Exchange.2 The question is about adding to end-
notes, via the endnote package, the page number
where the endnote actually appears. We want to use
\pageref through an automatically supplied label:

\NewDocumentCommand{\MyEndNote}{m}

{

\polyv_myendnote:ne

{ #1 }

{ \int_eval:n { \arabic{endnote}+1 } }

}

\cs_new_protected:Nn \polyv_myendnote:nn

{

\endnote

2 https://tex.stackexchange.com/a/438715/. The code
there uses f, because e wasn’t available yet.

Functions and expl3

306 TUGboat, Volume 41 (2020), No. 3

{

#1˜(page\nobreakspace

\pageref{#2:endnote})

}

\label{\arabic{endnote}:endnote}

}

\cs_generate_variant:Nn

\polyv_myendnote:nn

{ ne }

What’s the problem to be solved? The endnote
number is incremented after the endnote is processed,
so a \label command gets this new number. So we
can’t use

\pageref{\arabic{endnote}:endnote}

because this would refer to the previous endnote.
Thus the internal function uses e expansion in order
to generate the successor to the current value of
the endnote counter. Without this full expansion,
all the endnotes declared with \MyEndNote would
contain the equivalent of

\pageref{%

\int_eval:n{\arabic{endnote}+1}:endnote

}

and so the final result would be undefined cross ref-
erences, because \arabic{endnote} would always
expand to the final value of the counter. For in-
stance, if the last endnote was number 10, we’d end
up with \pageref{11:endnote}. Instead, with full
expansion, the current value is used and passed to
the main function. At the first endnote, the counter
has value 0, so the end result is the same as

\endnote{The text of the endnote

(page\nobreakspace\pageref{1:endnote})}

\label{1:endnote}

We could as well have used f or x for this partic-
ular application, but e is the most efficient of the lot.
The difference from x is that functions using x are
not expandable, so they have to be of the protected

kind. Indeed the process is a two-step one: first a
temporary token list is set using

\tl_set:Nx \l__exp_internal_tl {...}

(which internally uses good old \edef).
The introduction of e-type full expansion has

been a significant step forward, because it allows for
things that were almost impossible before.

However, as seen above, there are uses for x:
for instance there is no \cs_new:Ne variant and it
would be less efficient than \cs_new:Nx (which is
just \edef).

5 Another essential variant: V for variables

In the list of argument types above there are V and
v, which have been touched upon briefly. Now it’s
time to discuss the former in greater detail.

Type v is nearly the same as V; it just adds
the ability of building the name of the variable by
supplying data at runtime. The main one is V.

Again, let’s suppose we have our favorite func-
tion that splits an ISO date into components and
outputs the date in another format, and that it’s
named \example_date:n. (Its implementation is
irrelevant.)

Suppose now we have a date stored in a tl

variable. Since this is just a macro under cover, at
the beginning of expl3, the way to process this was

\cs_generate_variant:Nn

\example_date:n { o }

to be called like

\example_date:o { \l_tmpa_tl }

but this is bad because it depends on the knowledge
of the implementation of tl variables. Also, it is
not generalizable to other kinds of variables. The
o variants do a single expansion step in the braced
argument; while this works with the straightforward
implementation of token list variables it would fail
spectacularly with fp variables (which contain float-
ing point numbers).

The best method is to do

\cs_generate_variant:Nn

\example_date:n { V }

to be called like

\example_date:V \l_tmpa_tl

This will deliver the contents of the variable, suitably
braced, to the main function. So if we did

\tl_set:Nn \l_tmpa_tl { 2020-10-15 }

then the call \example_date:V \l_tmpa_tl would
be equivalent to \example_date:n {2020-10-15}.

An example with a different kind of variable,
namely int. We want to feed in such a variable and
the result should pad it with zeros to get four digits:

\cs_new:Nn \example_pad:n

{

\prg_replicate:nn

{ 4 - \tl_count:n { #1 } }

{ 0 }

#1

}

\cs_generate_variant:Nn

\example_pad:n { V }

\int_set:Nn \l_tmpa_int { 43 }

\example_pad:V \l_tmpa_int

This will print 0043. This may seem of academic
interest only, but with the sibling v type, we can
transform this into

Enrico Gregorio

TUGboat, Volume 41 (2020), No. 3 307

\cs_generate_variant:Nn

\example_pad:n { v }

\example_pad:v { c@page }

knowing that \c@page is the LATEX name of the reg-
ister containing the page number and an application
can be immediately thought of. This exploits the fact
that standard TEX counters are exactly like expl3

int variables. Using the V or v variants we’re passing
the main function the actual value as a list of digits,
so we can count it, which would be impossible with
the ‘abstract value’.

What variable types can be used this way? Sev-
eral: tl, int, fp; also clist and others more eso-
teric. Essentially, all variables that can deliver some
sensible output. This cannot be expected from seq

or prop variables and, indeed, using those will crash.
I’ve sometimes found it useful to define the

\cs_set:NV variant for \cs_set:Nn in order to use
a tl variable where the desired replacement text has
been stored and modified via some regular expres-
sion replacement.3 By the way, it is not possible to
have a \cs_set:NpV variant, because the generator
\cs_generate_variant:Nn can only accept a func-
tion with a signature consisting of N or n characters.

6 True or false?

There are two other interesting argument types: T

and F, and the title of the section should suggest
that they’re connected with truth and falsehood.

Exactly so! They are argument specifiers in the
signature of conditional functions. Example:

\int_compare:nTF

is a function that takes three standard braced argu-
ments; the first is a numeric relation between integers
to test, the second the code to execute if the relation
is true, the third the code to execute if the relation
is false. So

\int_compare:nTF { 0<1 } { A } { B }

\int_compare:nTF { 0>1 } { A } { B }

will result in printing A and B respectively. So, why
isn’t it more simply \int_compare:nnn? Indeed, it
used to be this way in the first versions of expl3,
but it was realized that having different argument
specifiers is handier, because we can also have

\int_compare:nT

\int_compare:nF

3 https://tex.stackexchange.com/a/355576/

when we have nothing to execute for the false or true
branch respectively. Of course

\int_compare:nF { 〈relation〉 } { B }

\int_compare:nTF { 〈relation〉 } { } { B }

are completely equivalent, but the former shows more
clearly that we want to do nothing if the 〈relation〉
turns out to be true. With the :nnn signature, empty
arguments would be always required. Also, the pres-
ence of either T or F (or both) immediately alerts us
that the function is a conditional.

All kernel conditional functions are available
with ending TF, T or F; some conditional-like func-
tions even have the version with neither. For in-
stance we can see in interface3.pdf that there
is \str_case:nn, but also \str_case:nnTF . The
strange-looking TF means that all three combina-
tions TF, T and F available.

Why such a “pseudo-conditional”? The func-
tion \str_case:nn is not a conditional (being re-
lated to letter case), but we can use the extended
version to output something if there is, or is not, a
match. The version which is most likely to be used
is \str_case:nnF to output something in case of no
match, maybe an error message or a default output.

To generate proper conditionals, variants should
be defined with

\prg_generate_conditional_variant:Nnn

rather than with \cs_generate_variant:Nn. For
instance, if we plan to store some 〈relation〉s for
\int_compare:nTF into tl variables, the correct way
to generate the variant is

\prg_generate_conditional_variant:Nnn

\int_compare:n { V } { p, TF, T, F }

This will at once generate the variants

\int_compare:VTF

\int_compare:VT

\int_compare:VF

as well as the ‘predicate form’

\int_compare_p:V

to be used in boolean expressions. But this is outside
the scope of the present paper.

⋄ Enrico Gregorio

Dipartimento di Informatica,

Università di Verona

enrico dot gregorio (at) univr

dot it

Functions and expl3

308 TUGboat, Volume 41 (2020), No. 3

bib2gls: selection, cross-references and

locations

Nicola L. C. Talbot

Abstract

In my previous article [6], I described using index-
ing applications with LATEX, a process required by
the glossaries package to sort and collate terms, and
the development of the bib2gls command line ap-
plication, which was designed specifically for the
glossaries-extra extension package. This article de-
scribes how bib2gls differs from the other indexing
methods with respect to selection, grouping, cross-
references and invisible locations.

1 \printglossary vs \printunsrtglossary

In order to better understand how items are listed
with bib2gls [3], it’s useful to understand the prin-
cipal differences between \printglossary (which is
provided by glossaries [4] and used with makeindex

and xindy [1]) and \printunsrtglossary (which
is provided by glossaries-extra [5] and used with
bib2gls). This was briefly covered in the previous
article but is described in more detail here.

Consider the following document:

\documentclass{article}

\usepackage[style=treegroup]{glossaries}

\makeglossaries

\loadglsentries{entries}

\begin{document}

\Gls{duck}, \gls{parrot} and \gls{quartz}.

\printglossary

\end{document}

The entries are all defined in the file entries.tex,
which helps reduce clutter in the main document file
and also makes it easier to reuse the same definitions
in other documents. The contents of this file follows:

\newglossaryentry{antigen}{name={antigen},

description={toxin or other foreign substance

that induces an immune response}}

\newglossaryentry{mineral}{name={mineral},

description={solid, inorganic,

naturally-occurring substance}}

\newglossaryentry{animal}{name={animal},

description={living organism that has

specialised sense organs and nervous system}}

\newglossaryentry{bird}{name={bird},

parent={animal},

description={egg-laying animal with feathers,

wings and a beak}}

\newglossaryentry{parrot}{name={parrot},

parent={bird},

description={mainly tropical bird with bright

plumage}}

\newglossaryentry{duck}{name={duck},

parent={bird},

description={waterbird with webbed feet}}

\newglossaryentry{quartz}{name={quartz},

parent={mineral},

description={hard mineral consisting of silica}}

This defines seven glossary entries. Only three
have been referenced in the document, three are
ancestors of the referenced entries so they must be
included in the glossary as well, and one (antigen)
hasn’t been referenced and isn’t required by any
referenced entry. The document build is:1

latex myDoc

makeglossaries myDoc

latex myDoc

(assuming the document source is in the file myDoc.

tex). The makeglossaries helper script invokes
makeindex, which creates the file myDoc.gls that
contains (line breaks added for clarity throughout):

\glossarysection[\glossarytoctitle]

{\glossarytitle}

\glossarypreamble

\begin{theglossary}\glossaryheader

\glsgroupheading{A}\relax 〈reset〉
\glossentry{animal}\relax 〈reset〉
\subglossentry{1}{bird}\relax 〈reset〉
\subglossentry{2}{duck}{〈location list〉}
\subglossentry{2}{parrot}{〈location list〉}
\glsgroupskip

\glsgroupheading{M}\relax 〈reset〉
\glossentry{mineral}\relax 〈reset〉
\subglossentry{1}{quartz}{〈location list〉}
\end{theglossary}\glossarypostamble

(The 〈reset〉 code, which is omitted for clarity, deals
with counteracting the effect of \glsnonextpages.)
Note that the location list argument for the unrefer-
enced ancestor entries is just \relax. The start of
each letter group is identified with

\glsgroupheading{〈group label〉}

The argument is a label which may have a corre-
sponding title. If there’s no title associated with it
the label is used as the title. Glossary styles that
don’t support group headings define this command
to do nothing.

\printglossary effectively does:

〈setup defaults〉
\bgroup

〈process options〉
〈input glossary file if it exists〉

\egroup

The initialisation parts (〈setup defaults〉 and 〈process
options〉) deal with defining the glossary section ti-
tle (\glossarytitle and \glossarytoctitle), the

1 latex is used here to denote pdflatex, xelatex or

lualatex. Replace as appropriate.

Nicola L. C. Talbot

TUGboat, Volume 41 (2020), No. 3 309

preamble and postamble, and implementing the re-
quired glossary style (which defines theglossary

and the formatting commands used in that environ-
ment).

A few minor modifications are needed to the
example document to use \printunsrtglossary in-
stead:

\documentclass{article}

\usepackage[postdot,stylemods,style=treegroup]

{glossaries-extra}

\loadglsentries{entries}

\begin{document}

\Gls{duck}, \gls{parrot} and \gls{quartz}.

\printunsrtglossary

\end{document}

Note that \makeglossaries has been removed as
there are now no indexing files that need to be opened.
The extension package has a different set of defaults
to the base package, so the post-description punctu-
ation needs to be added (postdot) if required. The
stylemods option automatically loads glossaries-extra-

stylemods which modifies the predefined glossary
styles to provide better integration with glossaries-

extra and bib2gls and to make the styles easier to
customise.

The document build is now simply:

latex myDoc

In this case there’s no file for \printunsrtglossary
to input. Instead, it iterates over all defined entries
for the given glossary to obtain the contents. Some
glossary styles use a tabular-like environment and
loops within such environments are problematic, so
an internal control sequence (\@glsxtr@doglossary)
is used to store the contents of the glossary which is
then expanded on completion. The glossary code is
now essentially:

〈setup defaults〉
\bgroup

〈process options〉
\glossarysection[\glossarytoctitle]

{\glossarytitle}

\glossarypreamble

〈construct \@glsxtr@doglossary〉
\printunsrtglossarypredoglossary

\@glsxtr@doglossary

\glossarypostamble

\egroup

The \@glsxtr@doglossary command ends up de-
fined as:

\begin{theglossary}\glossaryheader 〈reset〉
〈content〉
\end{theglossary}

The 〈content〉 part is constructed within a loop. The
current group label is initialised to empty:

\def\@gls@currentlettergroup{}

Each iteration of the loop performs the following
steps:

1. Do the loop hook (which does nothing by default
but may be configured to skip the current entry).

2. If the current entry doesn’t have a parent, obtain
its group label (empty, if unavailable), and if
the 〈group label〉 for this entry is different from
the currently stored group label then add the
following code to 〈content〉:

\glsgroupheading{〈group label〉}

(if the current group label is empty) or

\glsgroupskip\glsgroupheading{〈group label〉}

(if the current group label isn’t empty). The
current group label is then set to 〈group label〉.

3. Add the following to 〈content〉:

\〈internal cs handler〉{〈entry label〉}

The group label is obtained as follows: if the group

key has been defined then the label is obtained from
the entry’s group field (which may be empty) other-
wise the label is obtained from the uppercase char-
acter code of the first letter of the sort field (which
is normally obtained from the name field if not set).

In this example, the entry on the first iteration of
the loop is ‘antigen’. This entry doesn’t have a parent
so the group information is queried to determine if a
new group heading should be inserted.

The group key hasn’t been defined in this doc-
ument, so the group label needs to be obtained from
the first character of the name field (since the sort

field hasn’t been provided). This character is the
letter ‘a’ so the label is set to the decimal code of its
uppercase equivalent (65). This is different from the
current group label (initially empty), so the group
header command is added:

\glsgroupheading{65}

(The decimal code is used for the group label to make
it easier to expand.)

Note that no \glsgroupskip is added at this
point because the current group label was empty.
The new current group label is updated (to 65). The
internal handler macro is then added:

\@printunsrt@glossary@handler{antigen}

This handler macro is used by all entries, regardless
of their hierarchical level, and it uses the command:

\printunsrtglossaryhandler{〈label〉}

This is the command that should be redefined (not
the internal handler macro) if you want to customize
the output. The default definition is simply

\glsxtrunsrtdo{〈label〉}

bib2gls: selection, cross-references and locations

310 TUGboat, Volume 41 (2020), No. 3

This fetches the entry’s hierarchical level and then
does either (〈level〉 = 0)

\glossentry{〈label〉}{〈location〉}

or (〈level〉 > 0)

\subglossentry{〈level〉}{〈label〉}{〈location〉}

where the location list is obtained from an internal
field. In this example those fields haven’t been set,
so the locations are all empty.

For debugging purposes, it’s possible to see the
glossary code content using:

\renewcommand{\printunsrtglossarypredoglossary}{%

\csshow{@glsxtr@doglossary}}

In the above example, the content is:

\begin{theglossary}\glossaryheader 〈reset〉
\glsgroupheading{65}

\@printunsrt@glossary@handler{antigen}

\glsgroupskip\glsgroupheading{77}

\@printunsrt@glossary@handler{mineral}

\glsgroupskip\glsgroupheading{65}

\@printunsrt@glossary@handler{animal}

\@printunsrt@glossary@handler{bird}

\@printunsrt@glossary@handler{parrot}

\@printunsrt@glossary@handler{duck}

\@printunsrt@glossary@handler{quartz}

\end{theglossary}

(There’s only one 〈reset〉 here as there’s no sense in us-
ing \glsnonextpages with \printunsrtglossary.)

The results of both methods are shown in Fig-
ures 1 and 2. Note that the letter groups show the
decimal character code (used as the group label)
because no title has been assigned. Titles may be
assigned with

\glsxtrsetgrouptitle{〈label〉}{〈title〉}

For example:

\glsxtrsetgrouptitle{65}{A}

Obviously this is quite tedious to do for the entire
alphabet.

The order of definition has created some strange
results: there are two groups with the label 65 (‘A’)
and the ‘quartz’ sub-entry is separated from its
parent (‘mineral’). The glossary style determines
whether or not the hierarchy is visible (through in-
dentation etc.). The internal loop doesn’t make any
attempt to gather child entries. The parent field is
only queried within the loop to determine whether
or not to attempt to insert the letter group headings.

The key to using \printunsrtglossary is to
ensure the entries are defined in the correct order,
defining child entries immediately after their parent,
and defining only those entries which are required. In
this case, the entries should be defined in the order:
animal, bird, duck, parrot, mineral, quartz (antigen
shouldn’t be defined as it’s not required).

The way bib2gls works is by fetching data from
.bib files and creating a file (.glstex) that defines
all required entries in the required order with the
required internal fields (for the group label and loca-
tion lists) set appropriately. Wrapper commands are
provided to make it easier to customise. For example:

\providecommand{\bibglsnewentry}[4]{%

\longnewglossaryentry*{#1}{name={#3},#2}{#4}}

(\longnewglossaryentry* is used to allow for multi-
paragraph descriptions.)

If required, the group labels are obtained by
the sort method and the code to define the corre-
sponding titles is added to the .glstex file. In other
words, bib2gls takes care of all the tedious code
that’s required with the manual method. This be-
haviour is possible to override; however, if bib2gls
is instructed to assign group labels that don’t follow
the order obtained by the given sorting method then
fragmented groups will occur. (If you find yourself
wanting to order by group title then this is an indica-
tion that you should actually be using a hierarchical
system instead [7].)

The .glstex file is input (if it exists) with:

\GlsXtrLoadResources[〈options〉]

This command also writes information to the .aux

file that’s picked up by bib2gls (for example, the
names of the .bib files that contain the data and
how to order the entries).

bib2gls comes with a helper command line util-
ity convertgls2bib which can be used to parse TEX
files for instances of \newglossaryentry and other
commands that are provided to define entries (such
as \newabbreviation). In general, it’s best to use
this tool with files that only contain entry definitions
(such as the example entries.tex) but it can also
be used on a complete document. (In this case, the
-p or --preamble-only switch may be used to limit
parsing to the document preamble.) For example:

convertgls2bib entries.tex entries.bib

This will create a file called entries.bib. The ex-
ample myDoc.tex file can now be modified to use
bib2gls:

\documentclass{article}

\usepackage[record,postdot,style=treegroup]

{glossaries-extra}

\GlsXtrLoadResources[src={entries}]

\begin{document}

\Gls{duck}, \gls{parrot} and \gls{quartz}.

\printunsrtglossary

\end{document}

Note the use of the record package option, which
is required with bib2gls. This option defines the
group key, which defaults to an empty label if not

Nicola L. C. Talbot

TUGboat, Volume 41 (2020), No. 3 311

explicitly assigned, and the location key, which is
used to store the formatted location list (another field
is available that stores each location in an internal
list, if required).

The document build is now:

latex myDoc

bib2gls -g myDoc

latex myDoc

The result is shown in Figure 3.
The -g (or --group) switch is required if you

want distinct groups. This will make the sort meth-
ods automatically assign the group label to each
top-level entry (stored in the entry’s group field). If
this switch isn’t used and the group labels aren’t
assigned in some other way, then step 2 in the loop
iteration (page 309) will be skipped.

Note there’s a difference between using the -g

switch with a style that doesn’t show the group title
and not using the -g switch. For example, if the style
is changed from treegroup to tree then when bib2gls

is invoked with -g there will be a vertical gap between
letter groups (unless the nogroupskip option is used)
whereas there won’t be a gap if bib2gls is run with
the default --no-group setting.

In the first case, the group label is set, so step 2
in the loop iteration adds the group skip and group
heading commands. The tree style redefines the
group heading command to do nothing but the group
skip is implemented. In the second case, the group
label isn’t set, so step 2 is omitted, so neither the
group skip nor the group heading command will
be inserted. If the nogroupskip option is set with
a glossary style that doesn’t show the group head-
ing, then the result will typically appear the same
as invoking bib2gls with the default --no-group

setting. However, since the group formations add to
the total document build time it’s more efficient to
simply use the default --no-group setting —unless
you have multiple glossaries where some do require
visual separation between groups.

2 The .bib file

As with BibTEX, data is defined in the .bib file in
the form:

@〈entry-type〉{〈label〉,〈key=value list〉}

If the 〈entry-type〉 is unrecognised, it will be ignored
(with a warning). Comments are slightly different:
in BibTEX, anything outside of @〈entry-type〉{...}
is considered a comment, but bib2gls is stricter and
comments need to be marked up as such. Like TEX,
bib2gls recognises % as a comment character. The
most important comment is the encoding line, e.g.:

% Encoding: UTF-8

This is best placed near the start of the file. Gen-
eral comments (but not the encoding) may also be
supplied in @comment. For example:

@Comment{jabref-meta: databaseType:bib2gls;}

(Entry type names are case-insensitive.) There are
four basic sets of entry types:

abbreviations Two primary entry types:
@abbreviation and @acronym. These have
two required fields: short and long.

symbols Two primary entry types: @symbol

and @number. The required fields are: name

or parent. If the name is missing, then the
description is also required.

index Two primary entry types: @index and
@indexplural. There are no required fields.

general One primary entry type: @entry. The
required fields are: description and either
name or parent.

There are other entry types, but they are beyond the
scope of this article.

Unknown entry types and fields can be aliased,
which can make a .bib file more adaptable to multi-
ple documents. For example, consider:

@unit{m,

unitname={metre},

unitsymbol={\si{\metre}},

measurement={length}

}

This is an unknown entry type where all the fields
are also unknown. However, the resource options

entry-type-aliases={unit=entry},

field-aliases={

unitname=name,

unitsymbol=symbol,

measurement=description

}

will make bib2gls treat this entry as though it had
been defined as

@entry{m,

name={metre},

symbol={\si{\metre}},

description={length}

}

whereas

entry-type-aliases={unit=symbol},

field-aliases={

unitname=description,

unitsymbol=name

}

will make bib2gls treat this entry as though it had
been defined as

@symbol{m,

bib2gls: selection, cross-references and locations

312 TUGboat, Volume 41 (2020), No. 3

Glossary

A

animal living organism that has specialised sense organs and nervous system.

bird egg-laying animal with feathers, wings and a beak.

duck waterbird with webbed feet. 1

parrot mainly tropical bird with bright plumage. 1

M

mineral solid, inorganic, naturally-occurring substance.

quartz hard mineral consisting of silica. 1

Figure 1: \printglossary (ordered by makeindex)

Glossary

65

antigen toxin or other foreign substance that induces an immune response.

77

mineral solid, inorganic, naturally-occurring substance.

65

animal living organism that has specialised sense organs and nervous system.

bird egg-laying animal with feathers, wings and a beak.

parrot mainly tropical bird with bright plumage.

duck waterbird with webbed feet.

quartz hard mineral consisting of silica.

Figure 2: \printunsrtglossary and stylemods (no automated ordering)

Glossary

A

animal living organism that has specialised sense organs and nervous system.

bird egg-laying animal with feathers, wings and a beak.

duck waterbird with webbed feet. 1

parrot mainly tropical bird with bright plumage. 1

M

mineral solid, inorganic, naturally-occurring substance.

quartz hard mineral consisting of silica. 1

Figure 3: \printunsrtglossary and stylemods (ordered with bib2gls --group)

Nicola L. C. Talbot

TUGboat, Volume 41 (2020), No. 3 313

description={metre},

name={\si{\metre}}

}

With the other indexing options (makeindex, xindy
or \printnoidxglossary), the general recommenda-
tion is to set the sort key for any entry that contains
commands within the name. For example:

\newglossaryentry{m}{name={\si{\metre}},

sort={m},description={metre}}

With bib2gls, the recommendation is the oppo-
site: the sort field typically shouldn’t be set [8].
For this reason, by default convertgls2bib will
skip the sort field when parsing commands like
\newglossaryentry. By omitting this field, it be-
comes possible to dynamically allocate the most
appropriate value on a per-document basis, which
makes it much easier to share .bib files across mul-
tiple documents. This will be covered in more detail
in a follow-up article.

3 Cross-referencing

When using \index with makeindex, if you want to
add a cross-reference in the index then you use the
see or seealso encap (format). For example:

\index{cross product|see{vector product}}

\index{dot product|seealso{vector product}}

\index{products|see{dot product and vector

product}}

These are treated by makeindex in the same way as
any other location format, where the content follow-
ing the encap marker (the vertical pipe | by default)
is treated as the name of a formatting command that
needs to encapsulate the page number. The argument
text {vector product} is considered all part of the
formatting command name (from makeindex’s point
of view). The above commands will be converted by
makeindex into:

\item cross product, \see{vector product}{1}

...

\item dot product, \seealso{vector product}{1}

...

\item products, \see{dot product and vector

product}{1}

(assuming the \index commands were on page 1).
The \see and \seealso commands are provided by
indexing packages such as makeidx [2] and are defined
to ignore the second argument. Naturally, you also
need to index the referenced term (‘vector product’
in this case) to avoid confusing the reader.

By analogy, you could adopt the same method
with the glossaries package (makeidx is loaded in the
example below to provide \see and \seealso):

\documentclass{article}

\usepackage{makeidx}

\usepackage{glossaries}

\makeglossaries

\newglossaryentry{product}{name={products},

description={...}}

\newglossaryentry{vector-product}{

name={vector product},description={...}}

\newglossaryentry{cross-product}{

name={cross product},description={...}}

\newglossaryentry{dot-product}{

name={dot product},description={...}}

\begin{document}

\Gls{vector-product}.

\glsadd[format=see{vector product}]

{cross-product}

\glsadd[format=seealso{vector product}]

{dot-product}

\glsadd[format=see{dot product and vector

product}]{product}

\printglossaries

\end{document}

In version 1.17 (2008-12-26) of the base glos-

saries package a new command \glssee was added
to provide a cross-referenced entry similar to this, but
instead of using makeidx’s \see and \seealso com-
mands it uses its own analogous commands that take
a label as the first argument instead of user-supplied
text. (Again the second argument containing the
location is ignored.) So the above document can be
changed to use \glssee:

\documentclass{article}

\usepackage{glossaries}

\makeglossaries

\newglossaryentry{product}{name={products},

description={...}}

\newglossaryentry{vector-product}{

name={vector product},description={...}}

\newglossaryentry{cross-product}{

name={cross product},description={...}}

\newglossaryentry{dot-product}{

name={dot product},description={...}}

\begin{document}

\Gls{vector-product}.

\glssee{cross-product}{vector-product}

\glssee[see also]{dot-product}{vector-product}

\glssee{product}{dot-product,vector-product}

\printglossaries

\end{document}

This has several advantages:

• the cross-references are identified by label so the
text produced can be obtained from the name

key, which ensures consistency;

• if the hyperref package is added then the cross-
reference can be automatically hyperlinked;

bib2gls: selection, cross-references and locations

314 TUGboat, Volume 41 (2020), No. 3

• if xindy is required instead of makeindex, then
\glssee can use xindy’s native cross-referencing
markup.

The location (which is ignored within the document
but required by makeindex) is set to ‘Z’ regardless
of where \glssee is used in the document so, with
the default makeindex settings, the cross-reference
will be pushed to the end of the location list.

In the case of synonyms, such as ‘cross prod-
uct’, that don’t need to be used in the document but
need to be added to the glossary as a cross-reference
to assist the reader, then the term only needs to
be defined and indexed with \glssee. For conve-
nience, version 1.17 also introduced the see key to
\newglossaryentry as a shortcut to enable the en-
try to be defined and indexed at the same time. For
example:

\newglossaryentry{cross-product}{

name={cross product},description={...},

see={vector-product}}

is equivalent to:

\newglossaryentry{cross-product}{

name={cross product},description={...}}

\glssee{cross-product}{vector-product}

This is the only function that the see key serves with
the base glossaries package. Since indexing can only
be performed after the associated files have been
opened an error will occur if the see key is used be-
fore \makeglossaries (otherwise the indexing will
silently fail). For draft documents (where you may
want to consider commenting out \makeglossaries
to speed compilation), you can suppress the error or
turn it into a warning with the seenoindex package
option.

As with \index, it’s necessary to ensure that the
referenced entry is also indexed (through commands
like \gls or \glsadd).

The glossaries-extra package provides a similar
command \glsxtrindexseealso, which essentially
does \glssee[\seealsoname] (unless xindy is re-
quired, in which case alternative markup is used).
There’s a corresponding key seealso that performs
this command, analogous to the see key. (Note that
the tag used for the ‘see also’ command and key is
always \seealsoname.) Although these commands
(and their corresponding shortcut keys) essentially
do the same thing but with a different tag, they are
provided both for semantic reasons and to make it
easier to apply different formatting, depending on
whether the cross-reference is a synonym or a pointer
to related terms.

The extension package modifies the see key so
that its value is also saved. The key still serves

as a shortcut for \glssee, but it may be useful to
later query the information. The seealso key also
saves its value. The extension package also provides
a related key alias which may only take a single
label as its value. This behaves much like its see

counterpart when indexing but it will also make
commands like \gls link to the alias target in the
glossary.

Now let’s switch to \printunsrtglossary:

\documentclass{article}

\usepackage{hyperref}

\usepackage[seenoindex=ignore]{glossaries-extra}

\newglossaryentry{product}{name={products},

see={dot-product,vector-product},

description={...}}

\newglossaryentry{vector-product}{

name={vector product},description={...}}

\newglossaryentry{cross-product}{

name={cross product},description={...},

alias={vector-product}}

\newglossaryentry{dot-product}{

name={dot product},description={...},

seealso={vector-product}}

\begin{document}

\Gls{vector-product} (also called

\gls{cross-product}) and \gls{dot-product}.

\printunsrtglossary

\end{document}

No indexing is performed so the see and seealso

keys have no effect. There are no location lists for
any of the entries (not even the ones used in the
document). In order to show the cross-referencing
information in the glossary, it’s necessary to either
modify the glossary style (or associated hooks) or
define the location key (which the record option
does) and then set this key for the required entries.
For example:

\usepackage[record]{glossaries-extra}

\newglossaryentry{product}{name={products},

see={dot-product,vector-product},

description={...},

location={\glsxtrusesee{product}}}

\newglossaryentry{vector-product}{

name={vector product},description={...}}

\newglossaryentry{cross-product}{

name={cross product},description={...},

alias={vector-product},

location={\glsxtrusealias{cross-product}}}

\newglossaryentry{dot-product}{

name={dot product},description={...},

seealso={vector-product},

location={\glsxtruseseealso{dot-product}}}

Again this is tedious to do manually but can be
performed automatically by bib2gls.

In .bib files, the see, seealso and alias fields
don’t perform any automated indexing but establish

Nicola L. C. Talbot

TUGboat, Volume 41 (2020), No. 3 315

dependencies. The entries that are actually selected
and added to the .glstex file depend on the selection
criteria. For example:

\usepackage[record]{glossaries-extra}

\GlsXtrLoadResources[src=entries,selection=all]

\begin{document}

\printunsrtglossaries

\end{document}

This will select all entries defined in entries.bib.
None of them will have any page numbers (because
they haven’t been indexed in the document), but
any entries with the see, seealso or alias fields
set will have the cross-reference information added
to the location field.

The default setting is selection={recorded

and deps} which selects all entries with records in
the .aux file (that is, they’ve been indexed using com-
mands like \gls) and their dependent entries (ances-
tors, cross-references and any entries that have been
referenced in certain fields, such as description).
This is straightforward for bib2gls to do (since it
has access to all data in the .bib files) but is some-
thing that makeindex and xindy can’t do (as they
only have limited information about entries that have
been indexed and no information at all about entries
that haven’t been indexed).

Consider the following example (which requires
makeindex):

\documentclass{article}

\usepackage[colorlinks]{hyperref}

\usepackage[style=tree]{glossaries-extra}

\makeglossaries

\loadglsentries{vegetables}

\begin{document}

\Gls{cauliflower} and \gls{marrow}.

\printglossaries

\end{document}

Where the file vegetables.tex contains:

\newglossaryentry{cauliflower}{

name={cauliflower},description={type of

\gls{cabbage} with edible white flower head}}

\newglossaryentry{cabbage}{

name={cabbage},description={vegetable

with thick green or purple leaves}}

\newglossaryentry{marrow}{

name={marrow},description={long

white-fleshed gourd with green skin},

seealso={courgette}}

\newglossaryentry{courgette}{name={courgette},

description={immature fruit of a \gls{marrow}}}

\newglossaryentry{zucchini}{name={zucchini},

description={},see={courgette}}

\newglossaryentry{aubergine}{name={aubergine},

description={purple egg-shaped fruit}}

\newglossaryentry{eggplant}{name={eggplant},

description={},see={aubergine}}

Two entries have been indexed in the document (cau-
liflower and marrow) and three have been implicitly
indexed via the see or seealso key (marrow, zuc-
chini and eggplant). If the file is called myDoc.tex

then the document build would normally be:

latex myDoc

makeglossaries myDoc

latex myDoc

This results in a glossary containing five items (cauli-
flower, courgette, eggplant, marrow and zucchini;
see Figure 4), and there are two warnings from
hyperref about non-existent references to targets
glo:aubergine and glo:cabbage. This is because
there are hyperlinks in the glossary to aubergine and
cabbage, but the targets aren’t defined as those en-
tries haven’t been indexed. In the case of cabbage,
makeindex isn’t aware of the reference in the descrip-
tion of cauliflower, but once the glossary has been
created this reference can be indexed on the next
LATEX run. This means that the complete document
build has to be:

latex myDoc

makeglossaries myDoc

latex myDoc

makeglossaries myDoc

latex myDoc

This ensures that the required cabbage entry appears
in the glossary but there’s still a broken link to the
unlisted aubergine (Figure 5). The cross-reference
(via see or \glssee) only indexes the source entry
(eggplant). It doesn’t index the target (aubergine).
The target must be indexed in order to resolve the
broken link, but there’s no reason for either eggplant
or aubergine to be listed in the glossary as neither
are required in the document.

The vegetables.tex file can be converted to a
.bib file:

convertgls2bib -i vegetables.tex vegetables.bib

(The -i switch converts the entries with empty de-
scriptions to use @index instead of @entry, which
is more appropriate.) The document can now be
converted to use bib2gls:

\documentclass{article}

\usepackage[colorlinks]{hyperref}

\usepackage[record,stylemods,style=tree]

{glossaries-extra}

\GlsXtrLoadResources[src={vegetables}]

\begin{document}

\Gls{cauliflower} and \gls{marrow}.

\printunsrtglossaries

\end{document}

This is with the default selection criteria which selects
recorded entries (cauliflower and marrow) and their
dependencies (cauliflower requires cabbage, since

bib2gls: selection, cross-references and locations

316 TUGboat, Volume 41 (2020), No. 3

\gls{cabbage} is in its description, and marrow
requires courgette, in order to resolve the cross-
reference). This means that the glossary ends up
with four items: cabbage, cauliflower, courgette and
marrow. Note that cabbage doesn’t have a location.
The location (if required) can only be determined
once the description is expanded in the glossary.

Neither zucchini nor eggplant have been selected
since neither of them have records and neither are
required by any of the indexed entries (or their de-
pendents). It would, however, be useful to also se-
lect zucchini to supply the synonym for courgette
(but not eggplant, since aubergine isn’t required).
This can be done with either selection={recorded
and deps and see} or selection={recorded and

deps and see not also} This will select any en-
tries that cross-reference a required entry via the
see or alias fields. The former will also include
cross-references via the seealso field. The latter
doesn’t. This will now include zucchini but not egg-
plant (Figure 7).

So with bib2gls you can use see, seealso and
alias to establish dependencies without automati-
cally forcing the entry into the glossary. With the
other methods, these keys should only be used if that
automated indexing is intended.

4 Invisible or ignored locations

Both makeindex and xindy require an associated
location (typically a page number). They are gen-
eral purpose indexing applications and indexes are
intended to direct the reader to relevant locations
in the document. Glossaries, on the other hand,
provide definitions of terms and these don’t neces-
sarily require any locations. The location list may
be suppressed with the nonumberlist option, but this
will also suppress any cross-references (since they are
placed inside the location list).

The glossaries package provides a \@gobble-like
command \glsignore which simply ignores its ar-
gument and may be used as an encap to provide an
invisible location. This only works if that is the only
location in the list. If there are other locations it
will result in spurious commas or en-dashes. This
encap is used by \glsaddallunused, which iterates
over all defined entries and indexes each unused en-
try. The aim here is to ensure all entries appear in
the glossary, while only those used in the text have
locations. The problematic spurious commas and
en-dashes occur when this command is combined
with any indexing command that doesn’t mark the
entry as used or if the first-use flag has been reset or
if any subsequent indexing occurs.

Since bib2gls is designed for glossaries where lo-
cations may not be required, it allows selection with-
out adding to the location list. The bib2gls alterna-
tive to \glsaddallunused is to use selection=all,
which will select all entries, but only those that have
been specifically indexed will have locations. It also
recognises glsignore as a special ‘ignored location’,
which indicates that the entry should be selected
but the location should be discarded (rather than
simply rendered invisible). You can even set this as
the default format with

\GlsXtrSetDefaultNumberFormat{glsignore}

This could, for example, be done at the start of the
back matter, or it could be done for the entire doc-
ument and only overridden for significant locations.
Setting up the alternative modifier can make it easier
to switch the format. For example:

\GlsXtrSetAltModifier{!}{format=glsnumberformat}

Now the principal mention of cauliflower could be
written as:

A \gls!{cauliflower} is a type of \gls{cabbage}.

If glsignore has been set as the default format this
will only add the current page to the cauliflower
location list but will ensure that cabbage is also
selected. This can help reduce lengthy location lists
into a more compact list that only includes the most
pertinent locations.

References

[1] R. Kehr, J. Schrod. xindy: a general-purpose index
processor, 2018. ctan.org/pkg/xindy.

[2] LATEX Team. The makeidx package, 2014.
ctan.org/pkg/makeidx.

[3] N. Talbot. bib2gls: Command line application
to convert .bib files to glossaries-extra.sty

resource files, 2020. ctan.org/pkg/bib2gls.

[4] N. Talbot. The glossaries package, 2020.
ctan.org/pkg/glossaries.

[5] N. Talbot. The glossaries-extra package, 2020.
ctan.org/pkg/glossaries-extra.

[6] N. Talbot. Indexing, glossaries and bib2gls.
TUGboat 40(1), 2019. tug.org/TUGboat/tb40-1/

tb124talbot-bib2gls.pdf

[7] N. Talbot. Logical glossary divisions (type vs group

vs parent), 2020. dickimaw-books.com/gallery/

?label=logicaldivisions.

[8] N. Talbot. Sorting, 2019. dickimaw-books.com/

gallery/?label=bib2gls-sorting.

⋄ Nicola L. C. Talbot
School of Computing Sciences
University of East Anglia
Norwich NR4 7TJ
United Kingdom
https://www.dickimaw-books.com

Nicola L. C. Talbot

https://ctan.org/pkg/xindy
https://ctan.org/pkg/makeidx
https://ctan.org/pkg/bib2gls
https://ctan.org/pkg/glossaries
https://ctan.org/pkg/glossaries-extra
https://tug.org/TUGboat/tb40-1/tb124talbot-bib2gls.pdf
https://tug.org/TUGboat/tb40-1/tb124talbot-bib2gls.pdf
https://dickimaw-books.com/gallery/?label=logicaldivisions
https://dickimaw-books.com/gallery/?label=logicaldivisions
https://dickimaw-books.com/gallery/?label=bib2gls-sorting
https://dickimaw-books.com/gallery/?label=bib2gls-sorting

TUGboat, Volume 41 (2020), No. 3 317

Glossary

cauliflower type of cabbage with edible white flower head 1

courgette immature fruit of a marrow

eggplant see aubergine

marrow long white-fleshed gourd with green skin 1, see also courgette

zucchini see courgette

Figure 4: makeindex can’t detect dependent entries that haven’t been indexed

Glossary

cabbage vegetable with thick green or purple leaves 1

cauliflower type of cabbage with edible white flower head 1

courgette immature fruit of a marrow

eggplant see aubergine

marrow long white-fleshed gourd with green skin 1, see also courgette

zucchini see courgette

Figure 5: A second run is required when \gls is used in the description

Glossary

cabbage vegetable with thick green or purple leaves

cauliflower type of cabbage with edible white flower head 1

courgette immature fruit of a marrow

marrow long white-fleshed gourd with green skin 1, see also courgette

Figure 6: bib2gls with selection=recorded and deps

Glossary

cabbage vegetable with thick green or purple leaves

cauliflower type of cabbage with edible white flower head 1

courgette immature fruit of a marrow

marrow long white-fleshed gourd with green skin 1, see also courgette

zucchini see courgette

Figure 7: bib2gls with selection=recorded and deps and see

bib2gls: selection, cross-references and locations

318 TUGboat, Volume 41 (2020), No. 3

Making Markdown into a microwave meal

Vı́t Novotný

Abstract

In today’s academic publishing, many venues request
LATEX source in addition to or instead of PDF docu-
ments. This is often for the purpose of editing and
improving full-text search. Services such as arXiv,
Editorial Manager, and EasyChair require LATEX
source code that can be microwaved in a single run
of pdfTEX without shell access and without invok-
ing external programs. This requires that authors
include auxiliary files and limits their selection of
LATEX packages. In this article, I will show how
LATEX documents using the Markdown, Minted, and
BibLATEX packages can be precooked and frozen to
be later microwaved in a single run of pdfTEX.

1 Introduction

Academic publishers often require that LATEX docu-
ments can be microwaved in a single run of pdfTEX
without shell access and without invoking external
programs. Precooking and freezing the documents
to this form can be a daunting task for authors, who
may opt out of using powerful LATEX packages just
to save themselves the hassle.

The Markdown package [3, 4, 5] allows the au-
thors to mix the familiar lightweight markup of Mark-
down with LATEX, but requires shell access and in-
vokes Lua. The Minted package [7] provides a simple
interface for typesetting listings with syntax high-
lighting, but also requires shell access and invokes
Python. The BibLATEX package [2] automates many
aspects of bibliography management that require
careful manual work in LATEX, such as sorting and
formatting, but requires the invocation of Perl.

In this article, I will show by example how a
LATEX document using the Markdown, Minted, and
BibLATEX packages can be precooked and frozen,
so that it can be later microwaved in a single run
of pdfTEX. This will allow the authors to quickly
prepare documents using powerful packages without
spending a thought on the publisher’s demands.

2 Technical details

Here I describe the technicalities of precooking and
freezing the outputs of the Markdown, Minted, and
BibLATEX packages before moving on to the example.
The famished may skip to the following page.

2.1 Markdown

The Markdown package extracts markdown docu-
ments from the main LATEX document to disk and
passes control to the Lunamark Lua parser. Luna-

mark converts the markdown documents to LATEX,
saves the converted LATEX documents to disk, and
then passes control back to the Markdown package.
The Markdown package then inputs the LATEX docu-
ments into the main LATEX document for typesetting.

Since version 2.9.0 (2020/09/14), the Markdown
package supports the finalizecache option that
makes Lunamark produce a LATEX document frozen-
Cache.tex (the frozen cache) mapping an enumer-
ation of markdown documents to their converted
LATEX documents, and the frozencache option that
makes the Markdown package use the frozen cache
instead of Lunamark. The resulting LATEX docu-
ment becomes portable, but further changes in the
order and content of markdown documents are not
reflected. Appearance of markdown documents can
still be adjusted by redefining the LATEX macros that
render markdown elements.

2.2 Minted

The Minted package extracts code listings from the
main LATEX document to disk and passes control to
the Pygments Python package. Pygments converts
the code listings to LATEX, saves the converted LATEX
documents to disk, and then passes control back
to the Minted package. The Minted package then
inputs the LATEX documents into the main LATEX
document for typesetting.

Since version 2.2 (2016/06/08), the Minted pack-
age supports the finalizecache option that makes
Minted produce LATEX documents listing〈listing
number〉.pygtex (the frozen cache) containing the
converted LATEX documents, and the frozencache

option that makes the package use the frozen cache
instead of Pygments. The resulting LATEX document
becomes portable, but further changes in the appear-
ance, order, and content of listings are not reflected.

2.3 BIBLATEX

The BibLATEX package extracts citations from the
main LATEX document 〈document〉.tex to disk. The
author then invokes the Biber Perl package, either
manually or using automation software such as GNU

Make, LATEXMk, Arara [1], etc. Biber converts the
citations and an external bibliography database into
a precooked bibliography file 〈document〉.bbl and
saves it to disk. The BibLATEX package then inputs
the precooked bibliography file for typesetting.

By including the precooked bibliography file
with the LATEX source, we remove the necessity of
invoking Biber. The resulting LATEX document be-
comes more portable, but further changes in the
order of citations and the appearance and content of
references are not reflected.

Vı́t Novotný

TUGboat, Volume 41 (2020), No. 3 319

3 Example

We have the following LATEX document document.tex
using Markdown, Minted, and BibLATEX:

\documentclass{article}

\usepackage[citations,fencedCode]{markdown}

\markdownSetup{renderers={inputFencedCode=%

{\inputminted{#2}{#1}\write18{#2 #1}}}}

\usepackage{minted,biblatex}

\addbibresource{bibliography.bib}

\begin{document}

\begin{markdown*}{hybrid,underscores=false}

The following code in *Python* shows how to

produce iid r.v.'s W_1, W_2, \ldots, W_k

s.t. $\prod_i W_i\sim N(0, 1)$: [@pinelis]

``` python

def pinelis(k, size, iterations=100):

import numpy as np, numpy.random as npr

arange1 = np.arange(iterations) + 1

def eps():

return (

(npr.uniform(size=size) < 0.5) *

2.0 - 1.0

)

def gamma(size):

return npr.gamma(1.0 / k, size=size)

def rv():

return eps() * np.exp(

np.log(2.0) / (2.0 * k) -

gamma(size) -

np.sum(

gamma((size, iterations)) /

(2.0 * arange1 + 1.0),

axis=-1,

) + np.sum(

np.log(1.0 + 1.0 / arange1) /

(2.0 * k)

)

)

return [rv() for _ in range(k)]

import matplotlib.pyplot as plt

fig, A = plt.subplots(1, 3)

W1, W2, W3 = pinelis(k=3, size=10**7)

W = (W1, W1 * W2, W1 * W2 * W3)

D = ('$W_1$', '$W_1W_2$', '$W_1W_2W_3$')

for ax, w, desc in zip(A, W, D):

ax.hist(w, 'auto', density=True)

ax.set_title(desc)

ax.set(xlabel='value', ylabel='pdf')

plt.savefig('plot.pdf', dpi=300)

\end{markdown*}

\includegraphics[width=\textwidth]{plot}

\printbibliography

\end{document}

In addition to the LATEX document, we also have the
following bibliography database bibliography.bib:

@article{pinelis,

author = {Pinelis, Iosif},

title = {The exp-normal distribution is

infinitely divisible},

journal = {arXiv},

year = {2018},

}

Our LATEX document may seem simple, but it
requires shell access and invokes Lua, Python, and
Perl. A publisher is likely to reject it.

First, we remove the directories _markdown_doc-
ument and _minted-document if they exist. Sec-
ond, we change line 1 of our LATEX document to
\documentclass[finalizecache]{article} and
invoke Python, pdfTEX, and Biber from the shell:

$ pip install numpy scipy matplotlib

$ pdflatex -shell-escape document.tex

$ biber document.bcf

Third, we change line 1 of our LATEX document
to \documentclass[frozencache]{article} and
we remove \write18{#2 #1} from line 4. Finally,
we create a ZIP archive document.zip with the
files document.bbl, document.tex, and plot.pdf

and with the directories _markdown_document/, and
_minted-document/:

$ zip -r document document.{bbl,tex} \

> plot.pdf {_markdown_,_minted-}document/

If our document contained forward references, we
would also include file document.aux. After the
publisher has unpacked the ZIP archive, they only
need to microwave the document in a single run
of pdflatex document.tex before savoring it and
wolfing it down.

After typesetting, our LATEX document produces
the following output. Listing was trimmed for brevity
(and colors have been grayscaled throughout in the
printed article):

Making Markdown into a microwave meal



320 TUGboat, Volume 41 (2020), No. 3

4 Conclusion

Powerful new LATEX packages are created every day.
However, authors in academia often avoid them to
steer clear of the publisher’s fury. In this article, I
have shown how authors can have their cake and eat
it too: by precooking and freezing, the authors can
quickly prepare mouth-watering documents using the
Markdown, Minted, and BibLATEX packages without
having to worry about the publisher’s demands.

Acknowledgements

This work was funded by the South Moravian Centre
for International Mobility and the Brno Ph.D. Talent
project.

References

[1] P. R. M. Cereda. The bird and the lion: arara.
TUGboat 36(1):37–40, 2015.
tug.org/TUGboat/tb36-1/tb112cereda.pdf

[2] P. Kime, P. Lehman. BibLATEX: Sophisticated
bibliographies in LATEX, 2020.
ctan.org/pkg/biblatex

[3] V. Novotný. Using markdown inside TEX
documents. TUGboat 38(2):214–217, 2017.
tug.org/TUGboat/tb38-2/tb119novotny.pdf

[4] V. Novotný. Markdown 2.7.0: Towards lightweight
markup in TEX. TUGboat 40(1):25–27, 2019. tug.
org/TUGboat/tb40-1/tb124novotny-markdown.pdf

[5] V. Novotný. Markdown: A package for converting
and rendering markdown documents inside TEX,
2020. ctan.org/pkg/markdown

[6] I. Pinelis. The exp-normal distribution is infinitely
divisible. arXiv, 2018. arxiv.org/abs/1803.09838

[7] G. Poore. Minted: Highlighted source code for
LATEX, 2017. ctan.org/pkg/minted

⋄ Vı́t Novotný
Nad Cihelnou 602
Veleš́ın, 382 32
Czech Republic
witiko (at) mail dot muni dot cz

github.com/witiko

User-defined Type 3 fonts in LuaTEX

Hans Hagen

1 Introduction

This article describe the generic mechanism that is
present in LuaTEX 1.13 and following to deal with
user-defined Type 3 fonts. The examples shown here
might not work out well in ConTEXt because it has
its own font layer, which could interfere with low
level hooks, but the same principles apply. Beware:
in ConTEXt LMTX we do things a bit differently.

In a TEX environment Type 3 fonts are normally
used for bitmap (pk) fonts. However, they can be
useful for other purposes too. In LuaTEX a relatively
simple mechanism is provided to (ab)use this font
format.

2 Creation via callback

Defining a whole font in advance when only a few
shapes are used makes no sense. Apart from a waste
of time and memory it could, as a side effect, trigger
the inclusion of all kinds of resources. Therefore,
handling is delayed to the moment that the subset
of the font actually gets written to the PDF file.

In the frontend you can create virtual characters
but their rendering gets in-lined which is often okay,
but when you need for instance graphics (using the
image virtual command) that can be sub-optimal.
One can refer to characters in another font and that
font can be a (future) Type 3 font. It is only when the
document is finalized that the exact subset of glyphs
used in the font is known so that is the moment when
we deal with what needs to be included. This is done
with a plug-in: a single callback that does several
things in sequence.

The glyphs in a Type 3 font are streams of PDF

operators, a.k.a. char procs. When these are (inline)
bitmaps or graphic operators all is relatively easy, but
what if they are images or references to shapes from
fonts? In that case we also need to make sure that
resources are dealt with. We can cook up a complex
system of additional resource management, compara-
ble to pages and reused boxes, but it doesn’t pay off.
Instead we provide a couple of calls to the same call-
back, provide_charproc_data, to deal with that.
Because we can use TEX asynchronously (using the
mechanism for executing tokens) the relevant render-
ings can be done on demand.

When a Type 3 font is specified and when its
psname property is equal to the string none, a call-
back is triggered. Actually it is triggered three times.

• The first call is a preroll. It can be used to
do the preparations needed for successive calls.



TUGboat, Volume 41 (2020), No. 3 321

Between the first two calls the used characters of
fonts are identified again. This makes it possible
to use a reference to an xform in the mentioned
char proc stream that itself uses fonts, or we
can refer to other fonts directly. As so-called
xforms objects are managed independently they
don’t interfere with the font at hand. The first
argument is 1 which indicates that a preroll is
being done. The callback function also gets the
font id and character reference passed and no
return value is expected.

• The second call gets passed the number 2, the
font id, and the character index but this time
there have to be two return values: the width
(in basepoints) and an object number of the char
proc stream object. When an object number
is returned, a reference will be added to the
resource dictionary of the font.

• The third and last call is for housekeeping. This
call gets the number 3 passed and the font id.
The two expected return values are the scale fac-
tor in the font matrix (e.g. 0.001) and a string
that has additional entries in the resource dic-
tionary.1

Mechanisms like this are normally kept hidden
from the user. An example follows in a moment, but
first we explain the steps. For sure one needs more
code to integrate it properly. Don’t do it this way
in ConTEXt and expect it to work forever, because
we wrap and overload. Anyway, in the end there are
only a few cases to cover:

• A stream of mere graphical operators with no
dependencies on resources like fonts or objects.

• A stream with a reference to an xform which has
the actual content, in which case we need to add
a reference in the xobject resource dictionary of
the font’s.

• A stream with a reference to a font, in which
case we need to add a reference font resource
dictionary of the font’s.

• A stream of operators that do have dependencies
on whatever resources one can think of, in which
case we need to be able to add these to the fonts
resource dictionary.

And, because we can have additional fonts used
(either in a created xform or in the stream) we need
to analyze the Type 3 fonts first. We assume that

1 An earlier version had four separate calls: one for the
scale, two that looped (by multiple calls) over lists of xob-
jects and used fonts, and a final one for additional resources.
But because this mechanism is not meant for general use,
assembling the right entries is now delegated to the caller.

no nested Type 3 fonts are used. We also assume
that we handle all this at the Lua end.

This mechanism is pretty low level, for a good
reason: we’re already wrapping up the PDF file so we
cannot burden the engine too much with arbitrary
actions that mess up the process. Now, one can use
TEX to typeset the stream but in practice the stream
can best be constructed manually. One can always
use TEX to construct an xobject that gets referred to.
The good thing is that this feature doesn’t change
(or add) anything to the front-end.

We could have stuck to a more automated mech-
anism, for instance by expecting xform object ref-
erence, a width, height and depth (indicating some
shift) but then we also need to pass information
about using d0 or d1 so in the end one needs to
know about charprocs anyway and then we can as
well expect stream objects. A bit of a complicated
mess is compensated for by flexibility, but a mess it
remains. In a similar fashion using one callback with
numbers indicating each call’s purpose is nicer than
three different callbacks.

3 Examples

It is now time for a few examples. These are simple
ones, as it makes no sense to come up with many
pages of how to do this in for instance ConTEXt
(MkIV that is). We define a font with several solu-
tions mixed. It is not part of some font system. The
following example will work okay in MkIV (because
we typeset the LuaTEX manual with it).

First we define a couple of token registers and
fill them with some content which as you can see can
be anything.

\newtoks \MoreCrapA

\newtoks \MoreCrapB

\newcount\MoreCrapC

\MoreCrapA{\setbox0\hbox{%

\font\foo=dejavusansmono at 10bp\foo xyz}}

\MoreCrapB{\setbox0\hbox{%

\externalfigure[cow.pdf][height=4mm]}}

We also define a simple handler mechanism but
hook into the ConTEXt one if we run that macro
package (this hook is there only for the manual).

\startluacode

if context then

RegisterTypeThreeHandler

= fonts.handlers.typethree.register

else

local typethree = { }

callback.register("provide_charproc_data",

function(action,f,...)

if typethree[f] then

return typethree[f](action,f,...)

User-defined Type 3 fonts in LuaTEX



322 TUGboat, Volume 41 (2020), No. 3

end

end)

function RegisterTypeThreeHandler(id,

handler)

typethree[id] = handler

end

end

\stopluacode

Next we hard code a font table. Later we will see
what these character definitions do. Setting psname

to none signals that we want to trigger the callback.

\startluacode

local d = 655360

local f = {

-- the minimal amount of metadata:

["name"] = "MyFancyTestFont",

["psname"] = "none", -- trigger

["format"] = "type3",

["tounicode"] = true,

-- the minimal number of parameters:

["parameters"] = {

["extra_space"] = 0,

["quad"] = d,

["size"] = d,

["slant"] = 0,

["space"] = d/2,

["space_shrink"] = d/10,

["space_stretch"] = d/6,

["x_height"] = d/2,

},

-- five characters:

["characters"] = {

[100] = {

["commands"] = {

{ "down", d/3 },

{ "rule", d, d },

},

["depth"] = d/3,

["height"] = 2*d/3,

["width"] = d,

["tounicode"] = "0064",

},

[101]={

["depth"] = 0,

["height"] = d/2,

["width"] = d,

["tounicode"] = "0065",

},

[102]={

["depth"] = d/3,

["height"] = 2*d/3,

["width"] = d,

["tounicode"] = "0066",

},

[103]={

["depth"] = d/4,

["height"] = d/2,

["width"] = d,

["tounicode"] = "0067",

},

[104]={

["depth"] = 0,

["height"] = d/2,

["width"] = d,

["tounicode"] = "0068",

},

},

}

-- normally you do this at the TeX end and

-- integrate into a font definition mechanism

id = font.define(f)

token.set_macro(

"MyTestFont",

"\\setfontid " .. tostring(id) .. "\\relax "

)

tex.setcount(

"MoreCrapC",

id

)

\stopluacode

The font is defined and as you can see, we don’t
need to have any meaningful rendering yet; that is
what we do next. Now, if you don’t get what happens
here by looking at it, this mechanism is not for you.
We’re talking rather low-level PDF combined with
the interface to PDF objects and streams.

For this example font the preroll step will
construct some boxes with content. The flushed
objects are later referenced by a name (/Xnnn in
our case) bound to a form object (m 0 R). Before
the assembly stage kicks in, the backend will check
what fonts are used again so that referenced fonts
get included. The assemble routine uses low level
Type 3 directives that are explained in the PDF

reference manuals. You have to make sure that no
tricky dependencies on other Type 3 fonts occur.
The wrapup function takes care of communicating
the used resources.

\startluacode

local usedobjects = { }

local usedfonts = { }

local usedfontid = tex.getcount("MoreCrapC")

local function preroll(f,c)

if c == 103 then

tex.runtoks("MoreCrapA")

Hans Hagen



TUGboat, Volume 41 (2020), No. 3 323

usedobjects[c]

= tex.saveboxresource(0,nil,nil,true)

elseif c == 104 then

tex.runtoks("MoreCrapB")

usedobjects[c]

= tex.saveboxresource(0,nil,nil,true)

end

end

local function assemble(f,c)

if c == 101 then

local r = pdf.immediateobj(

"stream",

"1000 0 d0 10 w 0 1 0 rg "

.. "0 0 1000 500 re F"

)

return r, 10

elseif c == 102 then

local r = pdf.immediateobj(

"stream",

"1000 0 d0 10 w 1 0 0 rg "

.. "0 -333 1000 1000 re F"

)

return r, 10

elseif c == 103 then

local r = pdf.immediateobj(

"stream",

"1000 0 d0 55 0 0 100 0 -200 cm /X103 Do"

)

return r, 10

elseif c == 104 then

local r = pdf.immediateobj(

"stream",

"1000 0 d0 55 0 0 50 60 -50 cm /X104 Do"

)

return r, 10

else

return 0, 0

end

end

local function wrapup(f,c)

local resources = ""

if next(usedobjects) then

local t = { }

for k, v in pairs(usedobjects) do

table.insert(t,"/X" .. k .. " " .. v

.. " 0 R ")

end

resources = resources .. "/XObject << "

.. table.concat(t) .. ">>"

end

if next(usedfonts) then

local t = { }

for k, v in pairs(usedfonts) do

table.insert(t,"/F" .. k .. " " .. v

.. " 0 R ")

end

resources = resources .. "/Font << "

.. table.concat(t) .. ">>"

end

return 0.001, resources

end

local function usedfonthandler(action,...)

if action == 1 then

return preroll(...)

elseif action == 2 then

return assemble(...)

elseif action == 3 then

return wrapup(...)

else

-- won’t happen

end

end

RegisterTypeThreeHandler(usedfontid,

usedfonthandler)

\stopluacode

The last thing we do is register this plug-in. An
example of using the font is this:

\MyTestFont

\char100\char101

\char100\char102

\char100\char103

\char100\char104

\char100

And the output (grayscaled for print; the second
character is a green bar and the fourth is a red
square):

So, to summarize what we do: the implemented
method lives in the backend and leaves the frontend
untouched. The backend recognizes a user Type 3
font, and just injects references to charproc streams
that can, but are not required to, refer to one xform
per charproc. This is about as simple as it could be
made with only minimal overhead but it (probably)
still has enough potential.

As with the rest of those Lua driven features of
LuaTEX, you don’t need to be a mastermind to cook
up solutions. Of course you should limit yourself
to what really makes sense. That said, practice
has shown that often whatever opening the program
provides, it will be abused, and I expect the same for
this mechanism. Just don’t blame the engine when
the produced PDF misbehaves.

⋄ Hans Hagen

http://pragma-ade.com

User-defined Type 3 fonts in LuaTEX



324 TUGboat, Volume 41 (2020), No. 3

Data display, plots and graphs

Peter Wilson

1 Introduction

Some years ago tex.stackexchange.com (TeX.SE)
seems to have taken over from comp.text.tex for
asking about (LA)TEX and friends. A perennial ques-
tion on TeX.SE seems to be asking what (LA)TEX
is useful for apart from typesetting mathematical
papers. There have been many answers to this and
I would like to suggest one more: displaying data.
In this note I’ll mention a couple of ways that I
found that LATEX could help with tables, graphs, and
plots of data. The impetus for this was when I was
strongly advised by my local hospital to keep a check
on my blood pressure (BP).

2 Practicalities

Following the consultant’s suggestion I measure my
BP three times a day (morning, afternoon, and in the
evening) and average them to get a reading for the
day. I do this every day and it is surprising, to me
at least, how it varies. I felt that I needed to keep a
record of all this so I could present it to the medical
experts in case of any problems (like blackouts or
falling downstairs — don’t ask).

I decided that I needed at least three kinds of
records: a tabulation of the BP readings; a plot of
the BP; and a graph of the BP.

In the following the data shown is for a hypo-
thetical individual I have designated as Q1 and have
no relationship with any actual BP readings.

3 Tabulation

I just used the normal table environment with the
booktabs package to produce a tabulation along the
following lines, resulting in the example below for Q
at a single day per week (Wk.).

% \usepackage{booktabs} % in the preamble

\begin{tabular}{lcllll} \toprule

Date & Wk. & Morn. & Aft. & Eve. & Average

\\ \midrule

4/4 & 1 & & & 179/109 &

179/109 \\

11/4 & 2 & 156/109 & 147/89 & 149/93 &

150/97 \\

etc. \\

\bottomrule

\end{tabular}

1 I’m a fan of the original Bond books.

Date Wk. Morn. Aft. Eve. Average

4/4 1 179/109 179/109
11/4 2 156/109 147/89 149/93 150/97
18/4 3 158/108 142/92 146/92 149/97
etc.

The higher readings are for the systolic (max-
imum) blood pressure and the lower ones for the
diastolic (minimum) pressure during the heartbeat’s
cycle.

4 Plotting

According to the user manual for my BP monitor, the
World Health Organization (WHO) have developed a
BP classification scheme. I decided that it might be
useful to plot the BP against this scheme as shown
for the Q individual.

WHO describe 6 regions in their classification.
These are: Optimal BP, Normal BP, Normal Sys-
tolic, Mild Hypertension, Moderate Hypertension,
and Severe Hypertension.

I have used the standard picture environment
for producing the plot. The only special macros that
I used were

% bored with typing \makebox(0,0)

\newcommand{\zbox}[1]{\makebox(0,0){#1}}

% plot symbol

\newcommand*{\mk}{\zbox{$\bullet$}}

% \plotit{location}{week}

\newcommand{\plotit}[2]{\put(#1){\mk}}

The first two to minimise typing and the last for
plotting a BP reading at the \put location. With
\makebox(0,0){text} the reference point for plot-
ting ‘text’ is at the center, vertically and horizontally,
of text.

This is an outline of the code I used for the
picture.

\setlength{\unitlength}{0.8cm}

\begin{picture}(8,11)

\thicklines

% the horizontal and vertical lines

\put(0,0){\line(1,0){9}}

\put(9,0){\vector(1,0){0}}

\put(0,0){\line(0,1){10}}

\put(0,10){\vector(0,1){0}}

\multiput(0,0)(1,0){9}{\line(0,1){0.1}}

\multiput(0,0)(0,1){10}{\line(1,0){0.1}}

% the axis labels

\put(1,10.3){\zbox{SYSTOLIC}}

\put(1.4,-1.0){\zbox{DIASTOLIC}}

\put(1,-0.3){\zbox{75}}

Peter Wilson



TUGboat, Volume 41 (2020), No. 3 325

% etc

\put(8,-0.3){\zbox{110}}

\put(-0.5,1){\zbox{110}}

% etc

\put(-0.5,9){\zbox{190}}

% the regions

\put(0,2){\line(1,0){2}}

\put(2,0){\line(0,1){2}}

\put(1,1){\zbox{Optimal}}

% etc

\put(0,8){\line(1,0){8}}

\put(8,0){\line(0,1){8}}

\put(4,7){\zbox{Moderate hypertension}}

\put(5,9){\zbox{Severe hypertension}}

% the BPs

\plotit{7.8,6.5}{1}

% etc

\plotit{0.8,3.6}{33}

\end{picture}

\vspace{10mm}

% caption

{\centering

\emph{Scatter plot with

WHO classification of blood˜pressure}

\vspace{\baselineskip}

\par}

SYSTOLIC

DIASTOLIC

75 80 85 90 95 100 105 110

110

120

130

140

150

160

170

180

190

Optimal

Normal

Normal systolic

Mild hypertension

Moderate hypertension

Severe hypertension

•
•
•

•

•

•

•

•

•
•

•

•

•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

Scatter plot with WHO classification of

blood pressure

The result shows that the hypothetical Q per-
son’s BP is typically in the range of Normal Systolic
to Mild Hypertension but with some outliers.2

5 Graphing

For graphing BP I used the regular picture environ-
ment. Nothing special about drawing the axes. The
thing of interest here is the use of the \polyline

macro from the curve2e package. This takes a list
of coordinates like (x,y) and draws straight lines
between them.

Weeks
5 10 15 20 25 30

60

70

80

90

100

110

120

130

140

150

160

170

180

BP

SYSTOLIC

DIASTOLIC

Graph of blood pressure over time

Here is a brief outline of the code I used for the
graph showing the use of \polyline.

\begin{center}

\setlength{\unitlength}{5.5pt}

\begin{picture}(41,81)

% draw axes, etc., then the BP graphs

% scaled to the size of the axes

% first the systolic

\polyline

2 As a non-medical person I cannot comment on what this
might mean for our imaginary person.

Data display, plots and graphs



326 TUGboat, Volume 41 (2020), No. 3

(6,65)(7,46)(8,46)(9,40)(10,38)(11,35)%

(12,37)(13,30)(14,34)(15,34)(16,34)(17,32)%

(18,42)(19,40)(20,43)(21,42)% etc

% then the diastolic

\polyline

(6,26)(7,23)(8,23)(9,18)(10,15)(11,13)%

(12,11)(13,10)(14,13)(15,13)(16,13)(17,9)%

(18,12)(19,15)(20,16)(21,16)% etc

\end{picture}

% caption

\emph{Graph of blood pressure over time}

\vspace{\baselineskip}

\end{center}

The dashed lines indicate the upper limits of
the WHO Normal Systolic regime.

The graphs show that after an initial worrying
period Q’s BP settled down to a fairly regular pattern
albeit with some fits and starts.

6 Histogram

Another way of displaying data is by a histogram
which shows the number of data points noted within
sets of ranges. The following is a histogram of Q’s
diastolic BP for 5 mg ranges.

75 80 85 90 95 100 105 110

1

2

3

4

5

6

7

8

9

Histogram of Q’s Diastolic BP

Nothing special about the code. I used the
\framebox macro for drawing the rectangular re-
gions and created a macro to reduce the number of
characters needed for specifying its location and size.

\newcommand{\histit}[2]{\put(#1,0.0)%

{\framebox(1,#2){}}}

where the first argument is the x location of the
framebox and the second is its height.

I must say that I found the scatter plot more
informative than the histogram, although the latter
highlighted the unusual high diastolic readings.

7 Summary

I have shown four different ways of displaying data.
Edward Tufte3 has shown many other ways.

There are many applications for (LA)TEX and
friends. Among those noted on TeX.SE, apart from
mathematical and scientific publications, are:

Books fiction and non-fiction

Correspondence

Games Bridge, Chess, Crosswords, Noughts and
Crosses (aka Tic-tac-toe), Sudoku

Greeting cards

Invoices

Literature Critical editions, Multilingual

Mars Rover (programmed via TEX)

Music

Newsletters

Poetry

Postcards

Presentations (slides)

. . .

I hope that my small application might give
thoughts towards suitable additions to the above
list.

⋄ Peter Wilson

12 Sovereign Close

Kenilworth, CV8 1SQ

UK

herries dot press (at)

earthlink dot net

3 Edward R. Tufte, The Visual Display of Quantitative

Information, Graphics Press, 1983.

Peter Wilson



TUGboat, Volume 41 (2020), No. 3 327

Short report on the state of LuaTEX, 2020

Luigi Scarso

Abstract

A short report on the current status of LuaTEX and
its relatives: LuaHBTEX, LuaJITTEX and LuaJITHB-
TEX.

1 Background

First, let’s summarize that there are four programs
or “flavors” of LuaTEX:

• LuaTEX, with lua;

• LuaJITTEX, with luajit (just-in-time compila-
tion capability);

• LuaHBTEX, with lua and HarfBuzz;

• LuaJITHBTEX, with luajit and HarfBuzz.

The build system manages the task of compiling
and linking the shared components and the common
components, so that, for example, they all have ex-
actly the same TEX core, and share the same version
number and development id.

On 30 May 2019 the first commit of LuaHBTEX,
a LuaTEX variant with the ability to use HarfBuzz
for glyph shaping, landed in the LuaTEX repository,
after a discussion started around mid-February about
the merging of HarfTEX by Khaled Hosny and the
upcoming LuaTEX in TEX Live 2019. By that time
LuaTEX was already frozen for the DVD and, mate-
rially, it was not possible to reopen the development.
Also in 2019, LuaTEX entered its “bug fixing” phase
(more on this below), further complicating the merge.

LuaHBTEX was integrated in the experimental
branch of LuaTEX repository on 6 July 2019 and di-
rectly after, on 8 July 2019, it landed in the TEX Live
repository; The first release of LuaHBTEX, tagged
as version 1.11.1, was on 19 October 2019, giving
a wide margin for testing for the next (i.e., now the
current) TEX Live 2020.

Together with HarfBuzz, the other component
under “observation” in 2019 was the pplib library,
the PDF reader library by Pawe l Jackowski. This
was the candidate to replace poppler in TEX Live —
this eventually happened with the first commit to the
TEX Live repository on 21 April 2020. This means
that the next TEX Live 2021 will entirely use pplib

instead of poppler, for both LuaTEX (as was the case
in previous years), and now also X ETEX; poppler is
no longer in the TEX Live repository. (By the way,
pdfTEX will continue to use its own semi-homegrown
libxpdf to read PDF files until there is some clear
reason to change.)

MetaPost gets related special treatment: the
library in LuaTEX includes only the decimal and

the floating-point mode, while the mpost program
also includes the mpfr library for arbitrary precision
support.

As result of mixing and matching all these vari-
ations, building LuaTEX and integrating it into TEX
Live is quite a complex task, but thanks to the GNU

autotools, things are manageable.

2 The current status of LuaTEX

As noted above, LuaHBTEX (version 1.12.0) shipped
for the first time with the TEX Live 2020 DVD, and it
is already supported by LuaLATEX: At the TEX Live
2020 meeting, the talk “HarfBuzz in LuaLATEX” by
Marcel Krüger has shown some differences between
the HarfBuzz text shaping and the ConTEXt text
shaping; also better memory management for large
fonts with respect to LuaTEX, especially for 32-bit
platforms.

On the other side, Petr Oľsák in 2020 has pub-
lished OpTEX, “. . . a LuaTeX format based on Plain
TeX macros (by Donald Knuth) and on OPmac
macros” (see petr.olsak.net/optex, and article
in this issue), also included in TEX Live 2020. It’s
not clear if it will eventually support LuaHBTEX.

Finally, also at the TUG 2020 online meeting,
Patrick Gundlach in his talk “Speedata Publisher— a
different approach to typesetting using Lua” (see tug.
org/TUGboat/41-2/gundlach-speedata.pdf) has
shown an example of a working workflow that uses
LuaTEX (and possibly LuaJITTEX) purely by means
of the lua API— a sort of TEX without \TeX. The
Speedata Publisher software has been actively devel-
oped for a decade.

In light of these continuing developments, it is
therefore appropriate to clarify the meaning of “bug
fixing” mode, because it is sometimes associated with
the term “frozen”.

LuaTEX is based on the lua release 5.3.5, and
it will stay on the 5.3 version at least for TEX Live
2021 and TEX Live 2022, possibly switching to the
final release 5.3.6 (in release candidate 2 at the date
of 2020-07-23) at some future point. The current
release of lua is 5.4.0, with approximately five years
between two versions; it’s good practice to have an
year of transition between two different versions, so
a rough estimation for the next lua transition is six
years from now, i.e., around TEX Live 2026.

On the side of the TEX core, the plan is for bug
fixing and marginal improvements, for example the
\tracinglostchars≥ 3 that now raises an error (a
new feature added across engines by David Jones),
but not new features. From what we have seen
previously, stressing LuaTEX in different areas (e.g.,
only with the lua API or with the new HarfBuzz

Short report on the state of LuaTEX, 2020

http://petr.olsak.net/optex
https://tug.org/TUGboat/41-2/gundlach-speedata.pdf
https://tug.org/TUGboat/41-2/gundlach-speedata.pdf


328 TUGboat, Volume 41 (2020), No. 3

shaping library) can reveal hidden bugs, but it should
be noted that bug fixing is a complex task because
the fix must be well harmonized with the rest of the
code: For example, some issues with DVI output that
need to be checked carefully are still open.

Nevertheless, there are three areas that are still
marked as “under active development”: the first is
the ffi (foreign function interface) library, that in
LuaTEX is not yet finished and not as functional as
its counterpart in LuaJITTEX. Admittedly it is not
a key feature of LuaTEX and probably useful only in
the context of automated workflows.

The second is the binding with HarfBuzz li-
brary, currently given by the luahrfbuzz module.
If necessary the binding can still be expanded and/
or modified, preserving as much as possible the cur-
rent API, because LuaHBTEX is in an early phase of
adoption.

The third area is the pplib library that surely
needs more testing.

Finally, the bug fixing phase certainly also in-
volves the MetaPost library.

3 The current status of LuaJITTEX

LuaJITTEX is (or in some way is considered) a niche
engine. One issue is that while LuaTEX is based on
Lua 5.3.5, LuaJITTEX is still based on 5.1 with
some partial coverage of 5.2. LuaJITTEX also has
some intrinsic limits, such as the fixed number of
nested tables, which has a serious impact on the
table serialization. By design, LuaTEX makes heavy
use of C functions bound via the classic Lua/C API;
the just-in-time (JIT) compiler doesn’t play well in
this situation, but this is not a serious issue, given
that it can be turned off on demand (and indeed
it’s off by default). Finally, LuaJIT doesn’t support
all of Lua’s platforms, although the most important
ones are available.

On the other hand, the LuaJIT virtual machine
is much faster than Lua and the compilation of an ar-
ticle can have a significant speed-up. For this article,
LuaJITHBTEX is 2.5 times faster than LuaHBTEX
with exactly the same LuaLATEX format; although
for complex documents the gain is smaller, around
15%–20%.

The lack of a specific format for LuaJIT does
fake the results a bit, but maintaining an additional
format in this case is not an easy task: To take
advantage of the JIT, where LuaJIT shines, one has to
write specialized Lua code and using the ffi module
requires rather in-depth knowledge of C to achieve
significant results. Currently only ConTEXtMkIV has
some support for LuaJITTEX.

Probably LuaJITTEX and LuaJITHBTEX are
better suited for specialized tasks (e.g. database pub-
lishing) or as software as service in cloud, possibly
in a containerized environment, but they should also
be considered a research tool in digital typesetting.

Currently LuaJIT in TEX Live is still using the
2.1-beta3 release (from 2017), but it is likely it will
sync with the official repository by the end of the year.
Although LuaJIT development is not proceeding at a
rapid pace, there have been important updates (e.g.,
all LuaJIT 64-bit ports now use 64-bit GC objects
by default; and there is support for more platforms).
There are some mismatches with Lua (a few functions
in Lua that are not available in LuaJIT, notably the
utf8 module) still to be fixed.

4 Conclusion

At the TEX core, LuaTEX and LuaHBTEX are exactly
the same and the choice between one or the other
depends only on whether or not one accepts HarfBuzz
as a dependency. As OpTEX has shown, LuaHBTEX
is not always the necessary choice. In any case, the
current state is better described by “bug fixing mode
with marginal improvements” rather than “frozen”,
with an emphasis on stability. The area marked
as “under active development” may change more
significantly, but this should have a minimal impact
on stability.

LuaJITTEX and LuaHBTEX are more or less still
out of the mainstream and that gives a wider range
for maneuvering; given the high efficiency of the
implementation of LuaJIT, it’s often better to code a
module directly in Lua rather than compile and link
a C module. Admittedly, it’s a rather specialized
topic, but efficiency has its costs.

⋄ Luigi Scarso

luigi.scarso (at) gmail dot com

Luigi Scarso



TUGboat, Volume 41 (2020), No. 3 329

Distinguishing 8-bit characters and Japanese
characters in (u)pTEX

Hironori Kitagawa

Abstract
pTEX (an extension of TEX for Japanese typesetting)
uses a legacy encoding as the internal Japanese en-
coding, while accepting UTF-8 input. This means
that pTEX does code conversion in input and output.
Also, pTEX (and its Unicode extension upTEX) dis-
tinguishes 8-bit character tokens and Japanese char-
acter tokens, while this distinction disappears when
tokens are processed with \string and \meaning,
or printed to a file or the terminal.

These facts cause several unnatural behaviors
with (u)pTEX. For example, pTEX garbles “ſ ” (long s)
to “顛” on some occasions. This paper explains these
unnatural behaviors, and discusses an experiment in
improvement by the author.

1 Introduction
Since TEX Live 2018, UTF-8 has been the new default
input encoding in LATEX [8]. However, with pLATEX,
which is a modified version of LATEX for the pTEX
engine, the source
%#!platex
\documentclass{minimal}
\begin{document}ſ\end{document} % long s

gives an inconsistent error message [4] (edited to fit
TUGboat’s narrow columns):
! Package inputenc Error: Unicode character顛 (U+C4CF) not set up for use with LaTeX.

Here “顛”, “ſ” and U+C4CF are all different characters.
The purpose of this paper is to investigate the

background of this message and propose patches to
resolve this issue. This paper is based on a cancelled
talk [6] in TEXConf 2019.1

In this paper, the following are assumed:
• All inputs and outputs are encoded in UTF-8.
• pTEX uses EUC-JP as the internal Japanese en-

coding (see Section 2.1).
• Sources are typeset in plain pTEX (ptex), unless

stated otherwise by %#!.
• The notation <AB> describes a byte 0xab, or a

character token whose code is 0xab.

2 Overview of pTEX
pTEX is an engine extension of TEX82 for Japanese
typesetting. It can typeset Japanese documents of

1 TEXConf 2019 (the annual meeting of Japanese TEX users,
texconf2019.tumblr.com) was canceled due to a typhoon.

professional quality [9], including Japanese line break-
ing rules and vertical typesetting.

pTEX and pLATEX were originally developed by
the ASCII Corporation2 [1]. However, pTEX and
pLATEX in TEX Live, which are our concern, are
community editions. These are currently maintained
by the Japanese TEX Development Community.3 For
more detail, please see the English guide for pTEX [3].

pTEX itself does not have 𝜀-TEX features, but
there is 𝜀-pTEX [7], which merges pTEX, 𝜀-TEX and
additional primitives. Anything discussed about
pTEX in this paper (besides this paragraph) also
applies to 𝜀-pTEX, so I simply write “pTEX” instead
of “pTEX and 𝜀-pTEX”. Note that the pLATEX format
in TEX Live is produced by 𝜀-pTEX, because recent
versions of LATEX require 𝜀-TEX features.

2.1 Input code conversion by ptexenc
Although pTEX in TEX Live accepts UTF-8 inputs,
the internal Japanese character set is limited to
JIS X 0208 (JIS level 1 and 2 kanjis), which is a
legacy character set before Unicode. pTEX uses
Shift_JIS (Windows) or EUC-JP (other) as the in-
ternal encoding of JIS X 0208.

In pTEX and related programs, the ptexenc
library [12] converts an input line to the internal
encoding. pTEX’s input processor actually reads
the converted result by ptexenc. A valid UTF-8
sequence which does not represent a JIS X 0208 char-
acter — such as <C5><BF> (“ſ”) or <C3><9F> (“ß”) —
is converted to ^^-notation, such as ^^ab.

On the other hand, an invalid UTF-8 sequence
is converted into <A2><AF> (an undefined code point
in EUC-JP) sometimes, in TEX Live 2019 or prior.
In TEX Live 2020, the sequence is always converted
into ^^-notation.

2.2 Japanese character tokens
pTEX divides character tokens into two groups: ordi-
nary 8-bit character tokens and Japanese character
tokens. The former are not different from tokens in
8-bit engines, say, TEX82 and pdfTEX. A ^^-notation
sequence is always treated as an 8-bit character.

A Japanese character token is represented by
its character code. In other words, although there
is a \kcatcode primitive, which is the counterpart
of \catcode, its information is not stored in tokens.
Hence, changing \kcatcode by users is not recom-
mended.

2 Currently ASCII DWANGO in DWANGO Co. Ltd.
3 texjp.org/. Several GitHub repositories:

github.com/texjporg/tex-jp-build ((u)pTEX),
github.com/texjporg/platex (pLATEX).

Distinguishing 8-bit characters and Japanese characters in (u)pTEX



330 TUGboat, Volume 41 (2020), No. 3

2.3 An example input
Now we look at an example. Our input line is
a<C3><9F><E6><BC><A2><C5><BF><C2><A7> (aß漢ſ§)

First, ptexenc converts this line into
a^^c3^^9f<B4><C1>^^c5^^bf<A1><F8>

which is fed to pTEX’s input processor. The final
character “§” is included in JIS X 0208.

From the result above, pTEX produces tokens
a11 <C3>12 <9F>12 漢 <C5>12 <BF>12 §
where漢 and§ are Japanese character tokens. From
this example, we can see that we cannot write “§”
directly to output this character in a Latin font (use
commands or ^^c2^^a7).

3 Stringization in pTEX
3.1 Overview
Names of multiletter control sequences, which in-
clude control sequences with single Japanese charac-
ter name, such as \あ, are stringized, that is to say,
they are stored into the string pool. Similarly, some
primitives, such as \string, \jobname, \meaning
and \the (almost always the case), first stringize
their intermediate results into the string pool, and
then retokenize these intermediate results.

Stringization of pTEX has two crucial points.
• The origin of a byte is lost in stringization. A

byte sequence, for example <C5><BF>, in the
string pool may be the result of stringization of
a Japanese character “顛”, or that of two 8-bit
characters <C5> and <BF>.

• In retokenization, a byte sequence which repre-
sents a Japanese character in the internal encod-
ing is always converted to a Japanese character
token. For example, <C5><BF> is always con-
verted to a Japanese token 顛.

These points cause unnatural behavior, namely bytes
from 8-bit characters becoming garbled to Japanese
character tokens. We look into several examples.

3.2 Control sequence name
Let’s begin with the following source:
\font\Z=ec-lmr10 \Z % T1 encoding
\expandafter\def\csname uſ\endcsname{AA}
\expandafter\def\csname u顛\endcsname{BB}
\def\ZZ#1{#1 (\string#1) }
\expandafter\ZZ\csname u^^c5^^bf\endcsname% (1)
\expandafter\ZZ\csname uſ\endcsname % (2)
\expandafter\ZZ\csname u顛\endcsname % (3)

With pTEX, (1)–(3) produces the same result
BB (\u顛)

This is because all of
\csname u^^c5^^bf\endcsname
\csname uſ\endcsname % ſ: <C5><BF> in UTF-8
\csname u顛\endcsname % 顛: <C5><BF> in EUC-JP

have the same name u<C5><BF> in pTEX, hence they
are treated as the same control sequence. Applying
\string to them, we get the same token list
\12 u12 顛

This explains the error message in the introduc-
tion. “顛 (U+C4CF)” in the message is generated
from
\expandafter\string
\csname u8:\string<C5>\string<BF>\endcsname

The inputenc package expects that applying \string
to the above control sequence produces
\12 u12 812 :12 <C5>12 <BF>12
but the result in pLATEX is
\12 u12 812 :12 顛
3.3 \meaning
The result of
\font\Z=ec-lmr10 \Z % T1 encoding
\def\fuga{^^c5^^bf顛ſ}\meaning\fuga

differs between plain TEX and plain pTEX:
plain TEX macro:->Å£éąŻÅ£
plain pTEX macro:->顛顛顛

Now we look at what happened with pTEX. The
definition of \fuga is represented by the token list
<C5>12 <BF>12 顛 <C5>12 <BF>12
This gives the following string as the intermediate
result of \meaning.
macro:-><C5><BF><C5><BF><C5><BF>

Retokenizing this string gives the final result
macro:->顛顛顛

which we have already seen.

3.4 A tricky application
The behavior described in Section 3.2 has a tricky
application: generating a Japanese character token
from its code number, even in an expansion-only
context. This can be constructed as follows:
%#!eptex
\font\Z=ec-lmr10 \Z % T1 encoding
\input expl3-generic % for \char_generate:nn
\ExplSyntaxOn
\cs_generate_variant:Nn \cs_to_str:N { c }

Hironori Kitagawa



TUGboat, Volume 41 (2020), No. 3 331

\cs_new:Npn \tkchar #1 {
\cs_to_str:c {
\char_generate:nn % upper byte
{ \int_div_truncate:nn { #1 } { 256 } }
{ 12 }

\char_generate:nn % lower byte
{ \int_mod:nn { #1 } { 256 } } { 12 }

}
}
\ExplSyntaxOff
\edef\A{\tkchar{`漢}\tkchar{`字}}
\meaning\A % ==> macro:->漢字

This \tkchar will be unnecessary as of TEX Live
2020, since the \Uchar and \Ucharcat primitives
were added into 𝜀-pTEX at that time.

4 Output to file or terminal
4.1 Output code conversion
As with input, pTEX does a code conversion from the
internal Japanese encoding to UTF-8 in outputting
to a file or the terminal. This is done in two steps:

• As with TEX82, pTEX uses the print proce-
dure for printing a string.4 In pTEX, a byte
is printable if and only if its value is between
32 (“␣”) and 126 (“~”), or it is used in the inter-
nal Japanese encoding (<A1>–<FE> in EUC-JP).

• pTEX uses the putc2 function instead of the
standard putc C function. putc2 is a variation
of putc with code conversion, and is defined in
ptexenc.

Hence pTEX may garble 8-bit characters, such as
<C5><BF>, into a Japanese character in output. We
look into two examples, one is of \write and the
other is of \message.

4.2 \write
With pTEX, the following source

\newwrite\OUT
\immediate\openout\OUT=test.dat
\immediate\write\OUT{顛ſß}
\immediate\closeout\OUT

produces a file test.dat, whose contents are

顛顛<C3>^^9f

Let’s look at what happened.
First, the argument of \write is (expanded to)

the following token list.

顛 <C5>12 <BF>12 <C3>12 <9F>12
4 In fact, slow_print is used for printing a string which

might contain unprintable characters. However, slow_print
calls print internally.

Then, pTEX prints this token list. Since <A1>–<FE>
are printable and <9F> is not, the putc2 function
receives the following string, one byte per call.

<C5><BF><C5><BF><C3>^^9f

Each <C5><BF> is converted to “顛” by putc2,
while the single <C3> remains unchanged. Hence the
final result is “顛顛<C3>^^9f”, as shown.

4.3 \message
\message is similar to \write, but differs in that it
stringizes its argument. Now consider an input line

\message{^^fe^^f3:𪚲:}

Here𪚲 (<F0><AA><9A><B2> in UTF-8) is a character
included in JIS X 0213, but not in JIS X 0208.

The argument of \message is (expanded to) the
following token list.

<FE>12 <F3>12 :12 <F0>12 <AA>12 <9A>12 <B2>12 :12
Then, this token list is stringized to

<FE><F3>:<F0><AA><9A><B2>:

This string is “printed” by print; since only <9A> is
unprintable, putc2 receives

<FE><F3>:<F0><AA>^^9a<B2>:

Now, putc2 converts <FE><F3> (an undefined
code point in EUC-JP) to the null character <00>,
and <F0><AA> to “險”. Hence the final result is

<00>:險^^9a<B2>:

4.4 Controlling printability
TEX82 and pdfTEX support TCX (TEX Character
Translation) files [2], which can be used to specify
which characters are printable. In fact, cp227.tcx
is activated in (pdf)LATEX and several other formats
in TEX Live, to make characters 128–255 and three
control characters printable. One can switch to a
different TCX file at runtime. For example, only
characters 32–126 are printable in

latex -translate-file=empty.tcx

However, pTEX was not expected to use TCX
files (no TCX files are activated in formats by pTEX
in default). inipTEX can make characters printable
by a TCX file, and that’s all. For example, to make
characters 128–255 printable in pTEX, one has to
make another format with appropriate option. There
is no method to make an arbitrary character, say
<A0>, unprintable when using this format.

Distinguishing 8-bit characters and Japanese characters in (u)pTEX



332 TUGboat, Volume 41 (2020), No. 3

5 upTEX
5.1 Overview
upTEX [10, 11] is a Unicode extension of pTEX by
Takuji Tanaka. upTEX is (almost fully) upward-
compatible with pTEX, so it is a very convenient
solution for converting existing documents to Uni-
code with minimal changes.

In upTEX, a Japanese character token is a pair
of the character code and \kcatcode. Furthermore,
\kcatcode controls whether a UTF-8 sequence pro-
duces a Japanese character token or a sequence
of 8-bit tokens. For example, <E9><A1><9B> (顛,
U+985B) in an input line is treated as three 8-bit
characters when \kcatcode"985B is 15, and as a
Japanese character otherwise.

5.2 No code conversion
Since upTEX’s internal Japanese character code is
Unicode (UTF-8 in the string pool), code conversion
by ptexenc has no effect. Hence the inconsistent
error message described in the introduction will not
be issued.

5.3 Retokenization and \kcatcode
In upTEX, \kcatcode is involved in the retokeniza-
tion process. Specifically, a UTF-8 sequence is con-
verted into a Japanese character token if and only
if its \kcatcode is not 15. This means that the
result of \meaning of the same macro depends on
\kcatcode settings, as in the following example.

%#!uptex
\font\Z=ec-lmr10 \Z % T1 encoding
%% default: \kcatcode"3042=17
\def\hoge{^^e3^^81^^82あ}
\kcatcode"3042=15
\meaning\hoge % ==> macro:->ãĄĆãĄĆ
\kcatcode"3042=17
\meaning\hoge % ==> macro:->ああ
The definition of \hoge is represented by the token
list

<E3>12 <81>12 <82>12 あ17
Hence the intermediate result of \meaning\hoge is

macro:-><E3><81><82><E3><81><82>

However, because the \kcatcode of “あ” is changed,
two calls of \meaning\hoge give different results.

We will see results of \string of multiletter
control sequences later.

6 Distinguishing bytes from 8-bit
characters and those from Japanese
characters

To resolve (u)pTEX’s behavior described so far, I
have been developing an experimental version5 of
(u)pTEX, where stringization and outputting retain
the origin of a byte — an 8-bit character (token) or
a Japanese one. I refer to these as “experimental”,
and (u)pTEX in TEX Live development repository as
“trunk”.

The implementation approach is to extend the
range of a “byte” to 0–511 (Table 1). A value between
0–255 means a byte from an 8-bit character (token),
and 256–511 means a “byte” from a Japanese one.

I tested a different approach, namely using <FF>
as a prefix to a byte 128–255 which came from an
8-bit character. But this approach caused confusion
with <FF>, so I gave up.

6.1 \write
For example, consider the source from Section 4.2:
\newwrite\OUT
\immediate\openout\OUT=test.dat
\immediate\write\OUT{顛ſß}
\immediate\closeout\OUT

with the experimental pTEX. When no TCX file is
activated, putc2 receives the string
<1C5><1BF>^^c5^^bf^^c3^^9f

because a Japanese token 顛 sends <1C5><1BF> to
putc2, and <80>–<FF> are not printable. Thus the
contents of the output test.dat are
顛^^c5^^bf^^c3^^9f

When cp227.tcx is activated, they become
顛ſß

because <80>–<FF> are printable in this case.

6.2 The string pool
Since the range of a “byte” is increased to 0–511,
the type of the string pool is changed to let each
element store a “byte”; concretely, to a 16-bit array.
For example, let’s reconsider the following source:
\font\Z=ec-lmr10 \Z % T1 encoding
\def\fuga{^^c5^^bf顛ſ}\meaning\fuga

With the experimental pTEX, the intermediate result
of \meaning\fuga is
macro:-><C5><BF><1C5><1BF><C5><BF>

Hence the result of \meaning\fuga is
5 github.com/h-kitagawa/tex-jp-build/tree/

printkanji_16bit. GitHub issue: [5]

Hironori Kitagawa



TUGboat, Volume 41 (2020), No. 3 333

Table 1: A “byte” in experimental (u)pTEX

“byte” 𝑐 0–255 256–511

origin an 8-bit character (token) a Japanese character (token)
printable characters 32–126 (“␣”–“~”)∗ all
“safe” printing of 𝑐 print(𝑐) print_char(𝑐) (not print)
putc2(𝑐, …) without code conversion with code conversion∗∗
retokenization an 8-bit character token 𝑐 a Japanese character token∗∗∗ Web2C’s default; can be extended by a TCX file.∗∗ With adjacent “bytes” which are between 256–511.

macro:->Å£顛 Å£
because only <1C5><1BF> is converted to a Japanese
character token 顛.

The change in the type for the string pool in-
creases the size of format files by about the total
length of strings, but the amount of increase is not
so large. For example, the platex-dev format is
increased by about 3.5 % (see table below). As of
TEX Live 2020, pdfTEX and (u)pTEX use compressed
format files, so the amount of increase on disk is
smaller.

platex-dev.fmt [kB] trunk experimental
uncompressed 10412 10774
compressed 2322 2380

I wanted to keep the modification as small and
simple as possible; so I left unchanged the structure
of the string pool, except for adding a “flag bit”.

6.3 Control sequence names in upTEX
In the experimental pTEX,
\csname uſ\endcsname
\csname u顛\endcsname

are treated as different control sequences. This is
because the name of the former is u<C5><BF>, while
that of the latter is u<1C5><1BF>. This behavior
seems to be natural.

However, the situation is more arguable between
the experimental upTEX and the trunk upTEX. For
example, let’s compare the results of (1) and (2) in
the following source by both versions of upTEX.
%#!uptex
\font\Z=ec-lmr10 \Z % T1 encoding
\def\ZZ#1{#1 (\string#1) }
\kcatcode"3042=15
\expandafter\def\csname あ\endcsname{AA}
\kcatcode"3042=17
\expandafter\def\csname あ\endcsname{BB}
\kcatcode"3042=17 \expandafter\ZZ

\csname あ\endcsname % (1)

\kcatcode"3042=15 \expandafter\ZZ
\csname あ\endcsname % (2)

Results are summarized in Table 2. One may feel
uneasy about both results.
trunk The results of \string for (1) and (2) differ,

while they represent the same control sequence
(as in Section 5.3).

experimental (1) and (2) represent different con-
trol sequences.

6.4 Input buffer(s)
I also introduced an array buffer2 as a companion ar-
ray to buffer , which contains an input line. buffer2[𝑖]
plays the role of the “upper byte” of buffer [𝑖]. Hence,
when (u)pTEX considers a byte sequence buffer [𝑖 . . 𝑗]
as a Japanese character, buffer2[𝑖 . . 𝑗] is set to 1.
This is needed when scanning a control sequence
name in order to distinguish a byte which consists a
part of a Japanese character from another byte.

Suppose that the category codes of <C5> and
<BF> are both 11 (letter), an input line contains

\<C5><BF>^^c5^^bf (\顛^^c5^^bf, \顛ſ) (1)

and pTEX is about to scan this control sequence (1).
Since (p)TEX converts ^^-notation in a control se-
quence name into single characters in buffer , the
contents of buffer become

\<C5><BF><C5><BF> (\顛顛)

Thus, the control sequence (1) cannot be distin-
guished from \顛顛 so far. However, the experi-
mental pTEX can distinguish the control sequence (1)
from \顛顛, because the contents of buffer2 differ (see
Table 3).

buffer2 is also useful in showing contexts in
upTEX. For example, let’s look the following input:

%#!uptex
\def\J{\kcatcode"3042=17 }
\def\L{\kcatcode"3042=15 }
\J あ\L あ\undefined あ\J あ

Distinguishing 8-bit characters and Japanese characters in (u)pTEX



334 TUGboat, Volume 41 (2020), No. 3

Table 2: Properties of \csnameあ\endcsname of TEX source in Section 6.3

trunk experimental\kcatcode
of “あ” name result of \TEST name result of \TEST

(1) 17 <E3><81><82> BB (\あ) <1E3><181><182> BB (\あ)
(2) 15 <E3><81><82> BB (\ãĄĆ) <E3><81><82> AA (\ãĄĆ)

Table 3: Contents of buffer and buffer2 when the experimental pTEX scans control sequences in an input line

\顛^^c5^^bf (\顛ſ) \顛顛
buffer \ <C5> <BF> <C5> <BF> \ <C5> <BF> <C5> <BF>
buffer2 0 1 1 0 0 0 1 1 1 1
name <1C5><1BF><C5><BF> <1C5><1BF><1C5><1BF>

With the experimental upTEX (and no TCX file), we
can know that the second “あ” is treated as three
8-bit characters from the error message. I hope this
will be useful in debugging.
! Undefined control sequence.
l.3 \J あ\L ^^e3^^81^^82\undefined あ\J あ
The third and the final “あ” is not read by upTEX’s
input processor at the error. So they are printed as if
all UTF-8 characters gave Japanese character tokens.

7 Conclusion
The primary factor of the complications discussed in
this paper is that (u)pTEX are Japanese extension of
an 8-bit engine; this causes the same byte sequence
can represent different things, namely a sequence
of 8-bit characters (token) or Japanese characters.
Although my experiment does not get rid of this
factor (only ameliorates it), I hope that it is helpful.

I thank the executive committee of TEXConf
2019, which gave me the opportunity for preparing
the original talk, and the people who discussed the
topics of this paper with me, especially Hironobu Ya-
mashita, Takuji Tanaka, Takayuki Yato, and Norbert
Preining.

References
[1] ASCII Corporation. ASCII Japanese TeX

(pTeX) (in Japanese).
asciidwango.github.io/ptex/index.html.

[2] K. Berry, O. Weber. Web2c, for version
2019. tug.org/texlive/Contents/
live/texmf-dist/doc/web2c/web2c.pdf,
Feb. 2019.

[3] Japanese TEX Development Community. Guide
to pTEX and friends.
ctan.org/pkg/ptex-manual.

[4] JulienPalard. Inconsistent error message.
github.com/texjporg/platex/issues/84.

[5] H. Kitagawa. Distinction between a byte
sequence and a Japanese character token
(in Japanese). github.com/texjporg/
tex-jp-build/issues/81.

[6] H. Kitagawa. Distinction of Latin
characters and Japanese characters in
stringization of pTEX family (in Japanese).
osdn.net/projects/eptex/docs/tc19ptex/
ja/1/tc19ptex.pdf.

[7] H. Kitagawa. 𝜀-pTEX Wiki (in Japanese).
osdn.net/projects/eptex/wiki/FrontPage.

[8] LATEX Project Team. LATEX news,
issue 28. www.latex-project.org/news/
latex2e-news/ltnews28.pdf, Apr. 2018.

[9] H. Okumura. pTEX and Japanese Typesetting.
The Asian Journal of TEX 2(1):43–51, 2008.
ajt.ktug.org/2008/0201okumura.pdf

[10] T. Tanaka. upTeX, upLaTeX — unicode
version of pTeX, pLaTeX. www.t-lab.opal.
ne.jp/tex/uptex_en.html.

[11] T. Tanaka. upTEX — Unicode version of pTEX
with cjk extensions. TUGboat 34(3):285–288,
2013.
tug.org/TUGboat/tb34-3/tb108tanaka.pdf

[12] N. Tutimura. UTF-8対応 (4) — ptetex Wiki
(in Japanese). tutimura.ath.cx/ptetex/
?UTF-8%C2%D0%B1%FE%284%29.⋄ Hironori Kitagawa

Tokyo, Japan
h_kitagawa2001 (at) yahoo dot

co dot jp

Hironori Kitagawa



TUGboat, Volume 41 (2020), No. 3 335

Keyword scanning

Hans Hagen

Some primitives in TEX can take one or more op-
tional keywords and/or keywords followed by one
or more values. In traditional TEX it concerns a
handful of primitives, in pdfTEX there are plenty
of backend-related primitives, LuaTEX introduced
optional keywords to some math constructs and at-
tributes to boxes, and LuaMetaTEX adds some more
too. The keyword scanner in TEX is rather special.
Keywords are used in cases like:

\hbox spread 10cm {...}

\advance\scratchcounter by 10

\vrule width 3cm height 1ex

Sometimes there are multiple keywords, as with
rules, in which case you can imagine a case like:

\vrule width 3cm depth 1ex width 10cm depth 0ex

height 1ex\relax

Here we add a \relax to end the scanning. If we
don’t do that and the rule specification is followed by
arbitrary (read: unpredictable) text, the next word
might be a valid keyword and when followed by a
dimension (unlikely) it will happily be read as a
directive, or when not followed by a dimension an
error message will show up. Sometimes the scanning
is more restricted, as with glue where the optional
plus and minus are to come in that order, but when
missing, again a word from the text can be picked up
if one doesn’t explicitly end with a \relax or some
other token.

\scratchskip = 10pt plus 10pt minus 10pt % okay

\scratchskip = 10pt plus 10pt % okay

\scratchskip = 10pt minus 10pt % okay

\scratchskip = 10pt plus whatever % error

% typesets "plus 10pt":

\scratchskip = 10pt minus 10pt plus 10pt

The scanner is case insensitive, so the following
specifications are all valid:

\hbox To 10cm {To}

\hbox TO 10cm {TO}

\hbox tO 10cm {tO}

\hbox to 10cm {to}

It happens that keywords are always simple
English words so the engine uses a cheap check deep
down, just offsetting to uppercase, but of course
that will not work for arbitrary UTF-8 (as used in
LuaTEX) and it’s also unrelated to the upper- and
lowercase codes as TEX knows them.

The above lines scan for the keyword to and
after that for a dimension. While keyword scanning is
case tolerant, dimension scanning is period tolerant:

\hbox to 10cm {10cm}

\hbox to 10.0cm {10.0cm}

\hbox to .0cm {.0cm}

\hbox to .cm {.cm}

\hbox to 10.cm {10.cm}

These are all valid and according to the speci-
fication; even the single period is okay, although it
looks funny. It would not be hard to intercept that
but I guess that when TEX was written anything
that could harm performance was taken into account.
One can even argue for cases like:

\hbox to \first.\second cm {.cm}

Here \first and/or \second can be empty.
Most users won’t notice these side effects of scanning
numbers anyway.

Pushing back tokens

The reason for writing up any discussion of keywords
is the following. Optional keyword scanning is kind
of costly, not so much now, but more so decades ago
(which led to some interesting optimizations, as we’ll
see). For instance, in the first line below, there is no
keyword. The scanner sees a 1 and it not being a
keyword, pushes that character back in the input.

\advance\scratchcounter 10

\advance\scratchcounter by 10

In the case of:

\scratchskip 10pt plux

it has to push back the four scanned tokens plux.
Now, in the engine there are lots of cases where
lookahead happens and when a condition is not satis-
fied, the just-read token is pushed back. Incidentally,
when picking up the next token triggered some ex-
pansion, it’s not the original next token that gets
pushed back, but the first token seen after the ex-
pansion. Pushing back tokens is not that inefficient,
although it involves allocating a token and pushing
and popping input stacks (we’re talking of a mix of
reading from file, token memory, Lua prints, etc.)
but it always takes a little time and memory. In Lua-
TEX there are more keywords for boxes, and there
we have loops too: in a box specification one or more
optional attributes are scanned before the optional
to or spread, so again there can be push back when
no more attr are seen.

\hbox attr 1 98 attr 2 99 to 1cm{...}

In LuaMetaTEX there is even more optional
keyword scanning, but we leave that for now and
just show one example:

\hbox spread 10em {\hss

\hbox orientation 0 yoffset 1mm to 2em {up}\hss

\hbox to 2em{here}\hss

\hbox orientation 0 xoffset-1mm to 2em{down}\hss

}

Keyword scanning



336 TUGboat, Volume 41 (2020), No. 3

Although one cannot mess too much with these
low-level scanners there was room for some opti-
mization, so the penalty we pay for more keyword
scanning in LuaMetaTEX is not that high. (I try
to compensate when adding features that have a
possible performance hit with some gain elsewhere.)

It will be no surprise that there can be interest-
ing side effects to keyword scanning. For instance,
using the two character keyword by in an \advance

can be more efficient because nothing needs to be
pushed back. The same is true for the sometimes
optional equal:

\scratchskip = 10pt

Similar impacts on efficiency can be found in the
way the end of a number is seen, basically anything
not resolving to a number (or digit). (For these,
assume a following token will terminate the number
if needed; we’re focusing on the spaces here.)

\scratchcounter 10% space not seen, ends \cs

\scratchcounter =10% no push back of optional =

\scratchcounter = 10% extra optional space gobble

\scratchcounter = 10 % efficient end of scanning

\scratchcounter = 10\relax % maybe less efficient

In the above examples scanning the number
involves: skipping over spaces, checking for an op-
tional equal, skipping over spaces, scanning for a
sign, checking for an optional octal or hexadecimal
trigger (single or double quote character), scanning
the number till a non-digit is seen. In the case of
dimensions there is fraction scanning as well as unit
scanning too.

In any case, the equal is optional and kind of
a keyword. Having an equal can be more efficient
then not having one, again due to push back in case
of no equal being seen, In the process spaces have
been skipped, so add to the overhead the scanning
for optional spaces. In LuaMetaTEX all that has
been optimized a bit. By the way, in dimension
scanning pt is actually a keyword and as there are
several dimensions possible quite some push back
can happen there, but we scan for the most likely
candidates first.

Catcode surprises

All that said, we’re now ready for a surprise. The
keyword scanner gets a string that it will test for,
say, to in case of a box specification. It then will
fetch tokens from whatever provides the input. A
token encodes a so-called command and a charac-
ter and can be related to a control sequence. For
instance, the character t becomes a letter command
with related value 116. So, we have three properties:
the command code, the character code and the con-
trol sequence code. Now, instead of checking if the

command code is a letter or other character (two
checks) a fast check happens for the control sequence
code being zero. If that is the case, the character
code is compared. In practice that works out well be-
cause the characters that make up a keyword are in
the range 65–90 and 97–122, and all other character
codes are either below that (the ones that relate to
primitives where the character code is actually a sub-
command of a limited range) or much larger numbers
that, for instance, indicate an entry in some array,
where the first useful index is above the mentioned
ranges.

The surprise is in the fact that there is no check-
ing for letters or other characters, so this is why the
following code will work too:1

\catcode‘O= 1 \hbox tO 10cm {...}% { begingroup

\catcode‘O= 2 \hbox tO 10cm {...}% } endgroup

\catcode‘O= 3 \hbox tO 10cm {...}% $ mathshift

\catcode‘O= 4 \hbox tO 10cm {...}% & alignment

\catcode‘O= 6 \hbox tO 10cm {...}% # parameter

\catcode‘O= 7 \hbox tO 10cm {...}% ^ superscript

\catcode‘O= 8 \hbox tO 10cm {...}% _ subscript

\catcode‘O=11 \hbox tO 10cm {...}% letter

\catcode‘O=12 \hbox tO 10cm {...}% other

In the first line, if we changed the catcode of T
(instead of O), it gives an error because TEX sees a
begin group character (category code 1) and starts
the group, but as a second character in a keyword (O)
it’s okay because TEX will not look at the category
code.

Of course only the cases 11 and 12 make sense in
practice. Messing with the category codes of regular
letters this way will definitely give problems with
processing normal text. In a case like:

{\catcode ‘o=3 \hbox to 10cm {oeps}} % \hb

{\catcode ‘O=3 \hbox to 10cm {Oeps}} % {$eps}

we have several issues: the primitive control sequence
\hbox has an o so TEX will stop after \hb which can
be undefined or a valid macro and what happens
next is hard to predict. Using uppercase will work
but then the content of the box is bad because there
the O enters math. Now consider:

{\catcode ‘O=3 \hbox tO 10cm {Oeps Oeps}}

% {$eps $eps}

This will work because there are now two O’s in
the box, so we have balanced inline math triggers.
But how does one explain that to a user? (Who
probably doesn’t understand where an error message
comes from in the first place.) Anyway, this kind of
tolerance is still not pretty, so in LuaMetaTEX we
now check for the command code and stick to letters

1 No longer in LuaMetaTEX where we do a bit more robust

check.

Hans Hagen



TUGboat, Volume 41 (2020), No. 3 337

and other characters. On today’s machines (and even
on my by now ancient workhorse) the performance
hit can be neglected.

In fact, by intercepting the weird cases we also
avoid an unnecessary case check when we fall through
the zero control sequence test. Of course that also
means that the above mentioned category code trick-
ery doesn’t work any more: only letters and other
characters are now valid in keyword scanning. Now,
it can be that some macro programmer actually used
those side effects but apart from some macro hacker
being hurt because no longer mastering those details
can be showed off, it is users that we care more for,
don’t we?

Current performance

To be sure, the abovementioned performance of key-
word and equal scanning is not that relevant in prac-
tice. But for the record, here are some timings on a
laptop with a i7-3849QM processor using MinGW bi-
naries on a 64-bit Windows 10 system. The times are
the averages of five times a million such assignments
and advancements.

one million times terminal LMTX LuaTEX

\advance\scratchctr 1 space 0.068 0.085

\advance\scratchctr 1 \relax 0.135 0.149

\advance\scratchctr by 1 space 0.087 0.099

\advance\scratchctr by 1 \relax 0.155 0.161

\scratchctr 1 space 0.057 0.096

\scratchctr 1 \relax 0.125 0.151

\scratchctr=1 space 0.063 0.080

\scratchctr=1 \relax 0.131 0.138

We differentiate here between using a space as
terminal or a \relax. The latter is a bit less efficient
because more code is involved in resolving the mean-
ing of the control sequence (which eventually boils
down to nothing) but nevertheless, these are not
timings that one can lose sleep over, especially when
the rest of a decent TEX run is taken into account.
And yes, LuaMetaTEX (LMTX) is a bit faster here
than LuaTEX, but I would be disappointed if that
weren’t the case.

⋄ Hans Hagen

http://pragma-ade.com

Representation of macro parameters

Hans Hagen

When TEX reads input it either does something di-
rectly, like setting a register, loading a font, turning
a character into a glyph node, packaging a box, or it
sort of collects tokens and stores them somehow, in a
macro (definition), in a token register, or someplace
temporary to inject them into the input later. Here
we’ll be discussing macros, which have a special token
list containing the preamble defining the arguments
and a body doing the real work. For instance when
you say:

\def\foo#1#2{#1 + #2 + #1 + #2}

the macro \foo is stored in such a way that it knows
how to pick up the two arguments and when expand-
ing the body, it will inject the collected arguments
each time a reference like #1 or #2 is seen. In fact,
quite often, TEX pushes a list of tokens (like an argu-
ment) in the input stream and then detours in taking
tokens from that list. Because TEX does all its mem-
ory management itself the price of all that copying
is not that high, although during a long and more
complex run the individual tokens that make the
forward linked list of tokens get scattered in token
memory and memory access is still the bottleneck in
processing.

A somewhat simplified view of how a macro like
this gets stored is the following:

hash entry "foo" with property "macro call" =>

match (# property stored)

match (# property stored)

end of match

match reference 1

other character +

match reference 2

other character +

match reference 1

other character +

match reference 2

When a macro gets expanded, the scanner first
collects all the passed arguments and then pushes
those (in this case two) token lists on the parameter
stack. Keep in mind that due to nesting many kinds
of stacks play a role. When the body gets expanded
and a reference is seen, the argument that it refers
to gets injected into the input, so imagine that we
have this definition:

\foo#1#2{\ifdim\dimen0=0pt #1\else #2\fi}

and we say:

\foo{yes}{no}



338 TUGboat, Volume 41 (2020), No. 3

then it’s as if we had typed:

\ifdim\dimen0=0pt yes\else no\fi

So, you’d better not have something in the ar-
guments that messes up the condition parser! From
the perspective of an expansion machine it all makes
sense. But it also means that when arguments are
not used, they still get parsed and stored. Imagine
using this one:

\def\foo#1{\iffalse#1\oof#1\oof#1\oof#1\oof#1\fi}

When TEX sees that the condition is false it
will enter a fast scanning mode where it only looks
at condition related tokens, so even if \oof is not
defined this will work ok:

\foo{!}

But when we say this:

\foo{\else}

it will bark! This is because each #1 reference will
be resolved, so we effectively have (line breaks in the
following are editorial)

\def\foo#1{\iffalse\else\oof\else\oof\else\oof

\else\oof\else\fi}

which is not good. On the other hand, since no
expansion takes place in quick parsing mode, this
will work:

\def\oof{\else}

\foo\oof

which to TEX looks like:

\def\foo#1{\iffalse\oof\oof\oof\oof\oof\oof\oof

\oof\oof\fi}

So, a reference to an argument effectively is just
a replacement. As long as you keep that in mind,
and realize that while TEX is skipping ‘if’ branches
nothing gets expanded, you’re okay.

Most users will associate the # character with
macro arguments or preambles in low level align-
ments, but since most macro packages provide a
higher level set of table macros the latter is less well
known. But, as often with characters in TEX, you
can do magic things:

\catcode‘?=\catcode‘#

\def\foo #1#2?3{?1?2?3}

\meaning\foo\space=>\foo{1}{2}{3}\par

\def\foo ?1#2?3{?1?2?3}

\meaning\foo\space=>\foo{1}{2}{3}\par

\def\foo ?1?2#3{?1?2?3}

\meaning\foo\space=>\foo{1}{2}{3}\par

Here the question mark also indicates a macro
argument. However, when expanded we see this as
result:

macro:#1#2?3->?1?2?3 =>123

macro:?1#2?3->?1?2?3 =>123

macro:?1?2#3->#1#2#3 =>123

The last used argument signal character (offi-
cially called a match character, here we have two that
fit that category, # and ?) is used in the serialization!
Now, there is an interesting aspect here. When TEX
stores the preamble, as in our first example:

match (# property stored)

match (# property stored)

end of match

the property is stored, so in the later example we
get:

match (# property stored)

match (# property stored)

match (? property stored)

end of match

But in the macro body the number is stored
instead, because we need it as reference to the pa-
rameter, so when that bit gets serialized TEX (or
more accurately: LuaTEX, which is what we’re using
here) doesn’t know what specific signal was used.
When the preamble is serialized it does keep track of
the last so-called match character. This is why we
see this inconsistency in rendering.

A simple solution would be to store the used
signal for the match argument, which probably only
takes a few lines of extra code (using a nine integer
array instead of a single integer), and use that instead.
I’m willing to see that as a bug in LuaTEX but when I
ran into it I was playing with something else: adding
the ability to prevent storing unused arguments. But
the resulting confusion can make one wonder why
we do not always serialize the match character as #.

It was then that I noticed that the preamble
stored the match tokens and not the number and
that TEX in fact assumes that no mixture is used.
And, after prototyping that in itself trivial change I
decided that in order to properly serialize this new
feature it also made sense to always serialize the
match token as #. I simply prefer consistency over
confusion and so I caught two flies in one stroke. The
new feature is indicated with a \#0 parameter:

\bgroup

\catcode‘?=\catcode‘#

\def\foo ?1?0?3{?1?2?3}

\meaning\foo\space=>\foo{1}{2}{3}\crlf

\def\foo ?1#0?3{?1?2?3}

\meaning\foo\space=>\foo{1}{2}{3}\crlf

\def\foo #1#2?3{?1?2?3}

\meaning\foo\space=>\foo{1}{2}{3}\crlf

\def\foo ?1#2?3{?1?2?3}

\meaning\foo\space=>\foo{1}{2}{3}\crlf

\def\foo ?1?2#3{?1?2?3}

\meaning\foo\space=>\foo{1}{2}{3}\crlf

\egroup

shows us:

Hans Hagen



TUGboat, Volume 41 (2020), No. 3 339

macro:#1#0#3->#1#2#3 =>13

macro:#1#0#3->#1#2#3 =>13

macro:#1#2#3->#1#2#3 =>123

macro:#1#2#3->#1#2#3 =>123

macro:#1#2#3->#1#2#3 =>123

So, what is the rationale behind this new #0

variant? Quite often you don’t want to do something
with an argument at all. This happens when a macro
acts upon for instance a first argument and then
expands another macro that follows up but only deals
with one of many arguments and discards the rest.
Then it makes no sense to store unused arguments.
Keep in mind that in order to use it more than once
an argument does need to be stored, because the
parser only looks forward. In principle there could
be some optimization in case the tokens come from
macros but we leave that for now. So, when we don’t
need an argument, we can avoid storing it and just
skip over it. Consider the following:

\def\foo#1{\ifnum#1=1 \expandafter\fooone

\else\expandafter\footwo\fi}

\def\fooone#1#0{#1}

\def\footwo#0#2{#2}

\foo{1}{yes}{no}

\foo{0}{yes}{no}

We get:
yes no

Just for the record, tracing of a macro shows
that indeed there is no argument stored:

\def\foo#1#0#3{....}

\foo{11}{22}{33}

\foo #1#0#3->....

#1<-11

#2<-

#3<-33

Now, you can argue, what is the benefit of not
storing tokens? As mentioned above, the TEX engines
do their own memory management.1 This has large
benefits in performance especially when one keeps
in mind that tokens get allocated and are recycled
constantly (take only lookahead and push back).

However, even if this means that storing a cou-
ple of unused arguments doesn’t put much of a dent
in performance, it does mean that a token sits some-
where in memory and that this bit of memory needs
to get accessed. Again, this is no big deal on a com-
puter where a TEX job can take one core and basically
is the only process fighting for CPU cache usage. But
less memory access might be more relevant in a sce-
nario of multiple virtual machines running on the
same hardware or multiple TEX processes on one

1 An added benefit is that dumping and undumping is

relatively efficient too.

machine. I didn’t carefully measure that so I might
be wrong here. Anyway, it’s always good to avoid
moving around data when there is no need for it.

Just to temper expectations with respect to
performance, here are some examples:

\catcode‘!=9 % ignore this character

\firstoftwoarguments

{!!!!!!!!!!!!!!!!!!!}{!!!!!!!!!!!!!!!!!!!}

\secondoftwoarguments

{!!!!!!!!!!!!!!!!!!!}{!!!!!!!!!!!!!!!!!!!}

\secondoffourarguments

{!!!!!!!!!!!!!!!!!!!}{!!!!!!!!!!!!!!!!!!!}

{!!!!!!!!!!!!!!!!!!!}{!!!!!!!!!!!!!!!!!!!}

In ConTEXt we define these macros as follows:

\def\firstoftwoarguments #1#2{#1}

\def\secondoftwoarguments #1#2{#2}

\def\secondoffourarguments#1#2#3#4{#2}

The performance of 2 million expansions is the
following (probably half or less on a more modern
machine):

macro total step
\firstoftwoarguments 0.245 0.000000123
\secondoftwoarguments 0.251 0.000000126
\secondoffourarguments 0.390 0.000000195

But we could use this instead:

\def\firstoftwoarguments #1#0{#1}

\def\secondoftwoarguments #0#2{#2}

\def\secondoffourarguments#0#2#0#0{#2}

which gives:

macro total step
\firstoftwoarguments 0.229 0.000000115
\secondoftwoarguments 0.236 0.000000118
\secondoffourarguments 0.323 0.000000162

So, no impressive differences, especially when
one considers that when that many expansions hap-
pen in a run, getting the document itself rendered
plus expanding real arguments (not something de-
fined to be ignored) will take way more time com-
pared to this. I always test an extension like this on
the test suite2 as well as the LuaMetaTEX manual
(which takes about 11 seconds) and although one
can notice a little gain, it makes more sense not to
play music on the same machine as we run the TEX
job, if gaining milliseconds is that important. But,
as said, it’s more about unnecessary memory access
than about CPU cycles.

This extension is downward compatible and its
overhead can be neglected. Okay, the serialization

2 Currently some 1600 files that take 24 minutes plus or

minus 30 seconds to process on a high end 2013 laptop. The

260 page manual with lots of tables, verbatim and MetaPost

images takes around 11 seconds. A few milliseconds more or

less don’t really show here. I only time these runs because I

want to make sure that there are no dramatic consequences.

Representation of macro parameters



340 TUGboat, Volume 41 (2020), No. 3

now always uses # but it was inconsistent before, so
I’m willing to sacrifice that (and I’m pretty sure no
ConTEXt user cares or will even notice). Also, it’s
only in LuaMetaTEX (for now) so that other macro
packages don’t suffer from this patch. The few cases
where ConTEXt can benefit from it are easy to isolate
for MkIV and LMTX so we can support LuaTEX and
LuaMetaTEX.

I mentioned LuaTEX and how it serializes, but
for the record, let’s see how pdfTEX, which is very
close to original TEX in terms of source code, does
it. If we have this input:

\catcode‘D=\catcode‘#

\catcode‘O=\catcode‘#

\catcode‘N=\catcode‘#

\catcode‘-=\catcode‘#

\catcode‘K=\catcode‘#

\catcode‘N=\catcode‘#

\catcode‘U=\catcode‘#

\catcode‘T=\catcode‘#

\catcode‘H=\catcode‘#

\def\dek D1O2N3-4K5N6U7T8H9{#1#2#3 #4#5#6#7#8#9}

{\meaning\dek \tracingall \dek don{}knuth}

The meaning gets typeset as (again, line break
is editorial):

macro:D1O2N3-4K5N6U7T8H9->H1H2H3 H4H5H6H7

H8H9don knuth

while the tracing reports:

\dek D1O2N3-4K5N6U7T8H9->H1H2H3 H4H5H6H7H8H9

D1<-d

O2<-o

N3<-n

-4<-

K5<-k

N6<-n

U7<-u

T8<-t

H9<-h

The reason for the difference, as mentioned, is
that the tracing uses the template and therefore uses
the stored match token, while the meaning uses the
reference match tokens that carry the number and
at that time has no access to the original match
token. Keeping track of that for the sake of tracing
would not make sense anyway. So, traditional TEX,
which is what pdfTEX is very close to, uses the last
used match token, the H. Maybe this example can
convince you that dropping that bit of log related
compatibility is not that much of a problem. I just
tell myself that I turned an unwanted side effect into
a new feature.

A few side notes

The fact that characters can be given a special mean-
ing is one of the charming properties of TEX. Take
these two cases:

\bgroup\catcode‘\&=5 &\egroup

\bgroup\catcode‘\!=5 !\egroup

In both lines there is now an alignment character
used outside an alignment. And, in both cases the
error message is similar:

! Misplaced alignment tab character &

! Misplaced alignment tab character !

So, indeed the right character is shown in the
message. But, as soon as you ask for help, there is a
difference: in the first case the help is specific for a
tab character, but in the second case a more generic
explanation is given. Just try it.

The reason is an explicit check for the amper-
sand being used as tab character. Such is the charm
of TEX. I’ll probably opt for a trivial change to be
consistent here, although in ConTEXt the ampersand
is just an ampersand so no user will notice.

There are a few more places where, although in
principle any character can serve any purpose, there
are hard coded assumptions, like $ being used for
math, so a missing dollar is reported, even if math
started with another character being used to enter
math mode. This makes sense because there is no
urgent need to keep track of what specific character
was used for entering math mode. An even stronger
argument could be that TEXies expect dollars to be
used for that purpose. Of course this works fine:

\catcode‘€=\catcode‘$

€ \sqrt{xˆ3} €

But when we forget an € we get messages like:

! Missing $ inserted

or more generic:

! Extra }, or forgotten $

which is definitely a confirmation of “America first”.
Of course we can compromise in display math be-
cause this is quite okay:

\catcode‘€=\catcode‘$

$€ \sqrt{xˆ3} €$

unless of course we forget the last dollar in which
case we are told that

! Display math should end with $$

so no matter what, the dollar wins. Given how ugly
the Euro sign looks I can live with this, although
I always wonder what character would have been
taken if TEX was developed in another country.

⋄ Hans Hagen

http://pragma-ade.com

Hans Hagen



TUGboat, Volume 41 (2020), No. 3 341

TEXdoc online—a web interface for serving

TEX documentation

Island of TEX (developers)

Abstract

When looking for TEX-related documentation, users
have many options, including running texdoc on
their local machine, looking up the package at CTAN,
or using a service like texdoc.net. As the latter is
known for lacking regular updates, the Island of TEX
decided to take the opportunity to provide a complete
rewrite of the provided service using a RESTful API

and a self-updating Docker container.

1 Core features of texdoc.net

The most important feature of texdoc.net is the
documentation search as the prominent first item on
the landing page (cf. fig. 1). Searching for a package
yields a table with the entries a user could retrieve
locally by executing texdoc -l 〈package〉. Each en-
try is linked to the corresponding document and the
user is able to either view (if there is browser view
support for the file type) or download the documen-
tation file. This is especially useful for users without
a local TEX installation like Overleaf users.

Figure 1: Screenshot of (top portion of) texdoc.net

A little bit more direct is the use of the HTTP

endpoint https://texdoc.net/pkg/〈package〉; this
responds with the file that texdoc <package> would
open if executed locally. The user does not get to
choose what to open but in most cases texdoc is good
at determining the proper documentation if given
the package name, so users get what they want.

The aforementioned feature of creating simple
references to the documentation is what makes the
service well suited for writing posts on web forums or
sites like the TEX StackExchange. Linking to CTAN

mirrors gives far longer urls with many unnecessary
path components compared to the short syntax of
texdoc.net.

The last noteworthy feature allows users to
browse packages by topics. The list is retrieved from
the (unmaintained) texdoctk.dat file available in
the underlying TEX Live distribution. Within each
topic a selection of packages is shown with the name,
description and link to the main documentation for
each. The topics and presented packages are not
exhaustive and many packages on CTAN or even in
TEX Live will not be presented to the user.

2 Providing a RESTful API for texdoc

A RESTful API is a stateless interface to web appli-
cations responding to typical HTTP requests with
uniform responses. Usually, JSON is used for the
response format. Following this principle, our soft-
ware responds to HTTP GET requests with JSON

representing documentation-related objects.
The endpoints you can access are described as

follows. Keep in mind that these requests will return
either HTTP status code 200 (OK) or, in the case
of any error, HTTP status code 422 (Unprocessable
Entity). The only endpoint that is guaranteed not
to fail is located at /version.

/version This endpoint returns the versions of the
API and data format (api), the installed version
of texdoc (texdoc) and the date of the last
TEX Live update as an ISO date string (tlpdb).
Make sure your client software always expects
the correct API version to avoid problems. Our
API versions follow semantic versioning with all
its consequences.

/texdoc/〈name〉 On this path, the list of entries is
returned that a local call to texdoc -l would
produce. For each entry, there are two fields:
path, containing the path to the documenta-
tion file relative to the doc subfolder of the
TEXMFDIST directory; and description contain-
ing the file’s description if there is one (empty
otherwise). The application will always return
a JSON array of such entries.

/serve/〈name〉/〈index 〉 This call results in the doc-
umentation file at index 〈index 〉 of the result of
/texdoc/〈name〉 being returned to the client.

/pkg/〈name〉 This endpoint is a shortcut for the
/serve/〈name〉/0 endpoint, defined to preserve
compatibility with the API of texdoc.net.

/topics/list This endpoint returns the list of top-
ics known to the application specified by their
key and a caption called details. This is a direct
interface to CTAN’s API for topics. Network
access for the server software is required.

/topic/〈name〉 This endpoint returns details for a
topic by returning the key (what is passed as

TEXdoc online—a web interface for serving TEX documentation

https://texdoc.net
https://texdoc.net
https://texdoc.net
https://texdoc.net
https://texdoc.net
https://texdoc.net


342 TUGboat, Volume 41 (2020), No. 3

〈name〉), a string with a short description called
details and a list of package names (strings)
called packages. This is a direct interface to
CTAN’s API for topics. Network access for the
server software is required.

3 The new front end

The front end of TEXdoc online is structured in
a similar way to texdoc.net. The main feature
is still searching for packages. This is based on
the /texdoc/〈package〉 endpoint presented in the
previous section. The results will be the same as on
texdoc.net.

Figure 2: Screenshot of (top portion of) texdoc-online

Topics are handled differently, though. We use
CTAN’s JSON API to fetch their topics and pack-
ages belonging to these topics. Any user visiting the
landing page will be shown six random categories
with a few packages each. If a category holds sev-
eral packages, four of them are selected at random.
Users have the option to show all topics and list the
packages for any topic they are interested in. Also,
each package entry can be automatically queried for
documentation. This covers many more packages
than the old texdoctk.dat file, though it does have
the disadvantage that some of CTAN’s topics are
sparsely populated.

The front page also offers a “jump to documen-
tation” section introducing the API and options to
host the software yourself. These are covered in the
next section.

4 Deploying the software

The source code for TEXdoc online is hosted at Git-
Lab and may be found at https://gitlab.com/

islandoftex/images/texdoc-online. There are
also download options to get an executable JAR file
with all dependencies included that you can simply

run using your local Java installation. Running the
JAR bundle will open a local web server that can
be accessed using the url http://127.0.0.1:8080
from your browser. It will not work without Internet
access (because of how it fetches topics) or a local
TEX installation (for TEXdoc) though.

As an alternative to running the JAR file we
also provide a dockerized image that users can pull
using (line break is editorial; this is a one-line string)

registry.gitlab.com/islandoftex/images/

texdoc-online:latest

This image is based on our TEX Live images, which
makes it quite large in terms of file size but also elim-
inates the need for a local TEX installation. Using
Docker is the preferred solution for hosting your own
instance of TEXdoc online.

The Docker image also provides daily updates.
The container will update daily at midnight (con-
tainer time) and thus stays up to date as long as the
current version of TEX Live is supported. Our con-
tinuous integration ensures that you can always pull
the latest tag and receive the latest and greatest
TEX documentation, which when pulled and run will
update itself.

To ease deployment we provide a ready-made
docker-compose.yml configuration for Docker Com-
pose (https://docs.docker.com/compose/), an or-
chestration tool for Docker containers. It uses the
Caddy web server to provide automatic HTTPS with
local certificates or, on public domains, Let’s Encrypt
certificates. Alter the localhost line within that
file to suit your needs and docker-compose up will
start a production-ready instance of TEXdoc online.

5 Final remarks

In cooperation with Stefan Kottwitz we are working
on providing a hosted solution as a future replace-
ment of texdoc.net. Stay tuned for seeing this
transition happen within the next months.

TEXdoc online is still a work in progress and
there is room for improvement. We are working on
new features as well as considering ways to extend
the current front-end for additional, hosting-based
content. The RESTful API, through the endpoints
presented in section 2, allows external applications
and services to easily query TEX package documen-
tation from an updated lookup system.

Feedback can be provided through the project
repository in GitLab. We look forward to hearing
from you!

⋄ Island of TEX (developers)
https://gitlab.com/islandoftex

Island of TEX (developers)

https://texdoc.net
https://texdoc.net
https://gitlab.com/islandoftex/images/texdoc-online
https://gitlab.com/islandoftex/images/texdoc-online
http://127.0.0.1:8080
https://docs.docker.com/compose/
https://texdoc.net


MMTEX: Creating a minimal and modern
TEX distribution for GNU/Linux

Michal Vlasák

MMTEX stands for “minimal modern TEX” and is a
simple, small and legacy-free distribution of TEX for
GNU/Linux. It has the form of a installable package,
offers full functionality of OpTEX and plain LuaTEX
formats, allows use of system fonts and resources in
external TEXMF trees.

This article explains my motivation for creating
it, describes some aspects of a distribution in general
and how they are handled in MMTEX. My goal is to
show that things can be done simply, and that TEX
can integrate better into a Unix system and not be
the odd one out.

Motivation

I find TEX Live huge and complicated. Its “full
scheme” installation, which is the default, takes up
about 7GiB. Though with “minimal” (plain TEX
only) scheme and no documentation you can get to
about 50MiB. I also think that it doesn’t fit very
neatly into a Unix system. It isolates itself more or
less in a single directory tree and doesn’t follow the
hier(7) standard; as two examples, it doesn’t store
configuration files in /etc and doesn’t permit read-
only mount of /usr.

My end goal was to create something that:

• is a single package that can be installed using
an operating system’s package manager,

• integrates well into a system (respecting filesys-
tem hierarchy, using system fonts),

• includes only core functionality, but could eas-
ily be pointed to external TEXMF tree(s) with
additional packages/files,

• doesn’t complicate things with legacy, dynamic
regeneration of various files, . . .

The intended users are those who want a small
(34MiB) but functional TEX system, one compara-
ble to LATEX and its many packages. Because of its
small size and ability to install using a package man-
ager it can also be useful for Docker images or CI/CD
scripts that need to set up a TEX environment.

Engine

Nowadays support for PDF output and OpenType
fonts is a must. That leaves the choice of engine be-
tween LuaTEX and X ETEX. LuaTEX was chosen, be-
cause it is extensible with Lua, has better support of
micro-typographical extensions, and has integrated
METAPOST in the form of mplib.

TUGboat, Volume 41 (2020), No. 3 343

Compiling LuaTEX. Originally LuaTEX started
with pdfTEX’s sources (mostly written in WEB), but
was translated to C. LuaTEX is somewhat confus-
ingly developed in a repository that is essentially a
subset of TEX Live’s repository, but separate. TEX
Live’s build infrastructure is based on GNU Auto-
tools and is able to compile all of TEX Live and
external libraries for a lot of platforms, but is very
slow and does a lot of checks for things that have
been standardized in C or POSIX for years.

After preparing replacements of build-time gen-
erated files it is however possible to compile LuaTEX
in more or less a single call to the compiler— the
only catch is mplib. It is written in CWEB, which it-
self is written in CWEB, so bootstrapping is needed.

External libraries. LuaTEX uses several external
C libraries. The most prominent one is of course
Lua, but it also uses, for example, libpng to handle
PNG images. There are two choices for how to use
a library—either compile its source into the binary
(“statically link”) or on each run of the program
find and load the compiled library file somewhere
on the file system (“dynamically link”). The usual
choice for most systems is dynamic linking—this
allows reuse of a single library file for more programs
(making updates easier) and saves disk space. It is
a bit slower, because of the searching and loading.

The libpng and zlib libraries, for example, are
often already present on systems or can easily be
installed using a package manager. For these the
dynamic linking approach is better. Other libraries
have LuaTEX’s modifications (Lua) or are specific
to TEX (Kpathsea) so sharing them would not be
especially useful. These are statically linked.

Formats

The obvious choice of format for a minimal TEX
would be plain TEX. Or rather its adaptation for
LuaTEX which for example outputs to PDF by de-
fault. While it can be called minimal, it isn’t “mod-
ern”. Most users today expect a format to be able
to easily create documents with numbered sections,
tables of contents, bibliographies, hyperlinks, source
code listings with syntax highlighting, etc. A recent
format, based on LuaTEX, which provides these fea-
tures, but still keeps plain’s simplicity is OpTEX. In
a sense it is even more powerful than LATEX—where
LATEX needs a package or an external binary, OpTEX
has it built in.

Both formats are included in the distribution,
OpTEX is the primary one, while plain is for now
included more or less just to allow running luatex

without getting an error about a missing format.

MMTEX: Creating a minimal and modern TEX distribution for GNU/Linux



Finding files

LuaTEX uses the Kpathsea library for finding files.
Kpathsea uses path specifications and variables sim-
ilar to the Unix PATH environment variable, but dif-
ferentiates between file types. For each file type it
maintains one or more associated variable names, a
list of possible suffixes and most importantly a calcu-
lated search path (directories separated by colons).
For example bib_format’s variables are BIBINPUTS
and TEXBIB, while the suffix list contains .bib.

In a simple case a search path is determined in
one of three ways, in order of significance:

• value of associated variable set in the environ-
ment (that is, an environment variable),

• value of associated variable from a texmf.cnf

configuration file,
• default value set at compilation time.

For finding .cnf files the same path searching
mechanism is used; the variable is TEXMFCNF, but as
it cannot be set from a configuration file, only the
first and last way applies. All texmf.cnf files that
are found are read. Order is important—earlier as-
signments in configuration files override later ones.

I set all the useful file types to have defaults
that work without any configuration file, and respect
standards like hier(7), TDS and XDG. For example,
the search path for .cnf files is:

• TEXMFDOTDIR (more on this later),
• ~/.config/mmtex (or more precisely its XDG

equivalent),
• /etc/mmtex,

to allow local (“project”), user and system configu-
ration files respectively.

In Kpathsea, default (compile-time) values for
search paths can be set, but not variables. For this
I created a patch that “injects” default values for a
few variables, as if they were read from a configura-
tion file.
TEXMFDOTDIR variable was inspired by TEX Live

and is normally the current directory (“.”), but is
useful for temporary overrides on the command line,
using environment variables. Every search path con-
tains TEXMFDOTDIR as the first entry, even the one
for .cnf files (allowing for project-specific settings).
TEXMF is the most important variable for MMTEX.

It should contain roots of all TEXMF trees. It is sup-
posed to be set by the user or system administrator
at any level of configuration they need at the mo-
ment, and doesn’t have a default value (preferences
of users and system administrators vary widely).

344 TUGboat, Volume 41 (2020), No. 3

Language support

Previous TEX engines had the limitation of being
able to load hyphenation patterns only at format
creation time—when running iniTEX. LuaTEX has
no such limitation; by using Lua, it is possible to
load hyphenation patterns at runtime.

Today virtually all hyphenation patterns and
exceptions that have been used by TEX users are
distributed in the hyph-utf8 package. hyph-utf8

also provides patterns and exceptions in UTF-8 en-
coded text files, which are preferred for LuaTEX.

TEX Live’s approach is to provide hyphenation
patterns and exceptions for each language in a sep-
arate package. Each package then hooks itself using
the TEX Live execute AddHyphen directive. An ex-
ample for French:

execute AddHyphen \

name=french synonyms=patois,francais \

lefthyphenmin=2 righthyphenmin=2 \

file=loadhyph-fr.tex \

file_patterns=hyph-fr.pat.txt \

file_exceptions=

This information is also written to files used by
ε-TEX’s language mechanism, which is used by plain
LuaTEX. This gets added to language.def:

\addlanguage{french}{loadhyph-fr.tex}{}{2}{2}

and this is written to language.dat.lua:

[’french’] = {

loader = ’loadhyph-fr.tex’,

lefthyphenmin = 2,

righthyphenmin = 2,

synonyms = { ’patois’, ’francais’ },

patterns = ’hyph-fr.pat.txt’,

hyphenation = ’’, },

etex.src reads language.def at format creation
time. Listed languages are registered and their hy-
phenation patterns loaded into the format. This en-
ables their use later with \uselanguage.

In LuaTEX, it is discouraged to load patterns
into the format, so the mechanism is changed by
hyph-utf8’s own etex.src. Instead of loading each
pattern or exception file on \addlanguage, the lan-
guage is only registered and the files are loaded at
the first \uselanguage. Both commands use Lua
code in luatex-hyphen.lua, which uses informa-
tion in language.dat.lua for handling synonyms
and finding the names of pattern files.

In OpTEX the situation is simpler. It doesn’t
read language.def because it already has that in-
formation, but it still uses luatex-hyphen.lua.

To support all languages in hyph-utf8, MM-
TEX generates the files language.def and language.
dat.lua from the hyph-utf8 sources.

Michal Vlasák



Fonts

To fully use the potential of LuaTEX, OpenType
fonts should be used. These are the same fonts
that are used by other programs, and as such some
of them are already preinstalled on operating sys-
tems. And probably many more are additionally
installed by users or administrators. To also not
duplicate any effort with packaging of fonts, the dis-
tribution doesn’t provide any OpenType fonts. The
idea is to let users use the fonts they already have
or can get on their system, as well as the fonts they
have in their TEXMF tree(s). For example Latin
Modern, the GUST e-foundry adaptation of Com-
puter Modern which includes OpenType, is avail-
able as fonts-lmodern on Debian-based systems
and otf-latin-modern on Arch Linux.

8-bit fonts. Only 8-bit fonts can be preloaded into
a TEX format. Both OpTEX and plain LuaTEX do
this. To support this, MMTEX includes a minimal
set of Type 1 fonts and their respective metric and
encoding files. A pdftex.map file is needed, as it is
used to map names of TFMmetric files to font names
and font files, with optional reencodings. This file
contains lines like:

cmr5 CMR5 <cmr5.pfb

ec-lmr5 LMRoman5-Regular <lm-ec.enc <lmr5.pfb

The first line connects the cmr5.tfm font metric
file, the cmr5.pfb Type 1 font and the CMR5 font
name inside the .pfb. (CMR5 stands for Computer
Modern Roman in 5 point optical size). The second
line is similar, but additionally refers to a so-called
encoding vector stored in file lm-ec.enc. This is
necessary because lmr5.pfb contains many glyphs,
while TEX can use only 256 of them and expects
the order to correspond with ec-lmr5.tfm, which
contains metric information for those selected 256
glyphs. In this particular case the Cork (“EC”) en-
coding (set of glyphs) is used.

Engines only read one pdftex.map file, but each
font package usually provides one or more .map files.
This is why an aggregate pdftex.map is usually gen-
erated (in TEX Live using the updmap script). As
MMTEX supports only a limited number of Type 1
fonts, a minimal pdftex.map was created by hand.

OpenType fonts. In order to handle OpenType
fonts Lua code is needed. luaotfload is included
for this purpose as it is already used internally by
OpTEX. It can also be used from plain LuaTEX,
with \input luaotfload.sty.
luaotfload is able to find all system fonts, be-

cause it reads fontconfig’s configuration. There-
fore, there is no need to set the OSFONTDIR variable.

TUGboat, Volume 41 (2020), No. 3 345

The standard TDS directories for font files also work:
$TEXMF/fonts/{opentype,truetype}.

MetaPost

METAPOST is integrated into LuaTEX as mplib and
available via a Lua interface. luamplib adapts the
code from ConTEXt for plain (and LATEX), making
it possible to use METAPOST in a .tex file. To use
it, \input luamplib.sty.
mplib proved to be useful even as a METAFONT

replacement. “Ralph Smith’s Formal Script” font
(required by OpTEX) doesn’t have prebuilt TFM

files on CTAN. Normally one would use META-
FONT to generate the metrics, but with a few lines
of Lua mplib can, just like METAPOST, use the
mfplain.mp format to function as METAFONT and
do the job.

Implementation of MMTEX

MMTEX itself is a few supporting files and a script
called build which contains instructions for building
MMTEX to a given directory. The script in this form
allows a wrapper that packs together the directory
and some metadata to create an installable pack-
age. The included package-builder script demon-
strates this, and as of now can create packages in
Debian’s .deb, Arch Linux’s pkg and classic tarball
(.tar.gz) formats.

The sources (which are merely the build logic),
documentation, and prebuilt packages are available
at https://github.com/vlasakm/mmtex.

The result

The resulting package, installed, takes up 34MiB
(around 15MiB compressed). Most of this is Type 1
fonts (11MiB), the luatex binary (6.5MiB), data
related to Unicode codepoints (about 5MiB) and
hyphenation patterns/exceptions (3.2MiB).

Not included are macro source files (.dtx) and
package documentation , both of which are of course
available on CTAN. Documentation is also easily
accessible on https://texdoc.net.

At present there is no support for getting or
managing packages from CTAN—MMTEX expects
to be pointed to already-prepared TEXMF trees. Op-
TEX hopefully provides enough functionality to not
require a large number of other macros.

⋄ Michal Vlasák
Proboštov, Czech Republic
lahcim8 (at) gmail dot com

MMTEX: Creating a minimal and modern TEX distribution for GNU/Linux



UTF-8 installations of TEX

Igor Liferenko

Abstract

In its design TEX has the concepts of “internal
encoding” and “external encoding”. This fact allows
TEX to work with any encoding.

We use Unicode as TEX’s external encoding.
Then we change the necessary parts of TEX to use
UTF-8 as the input/output encoding.

The resulting implementation passes the trip

test.

1. Initialization

Note: we use the web2w [1] implementation of TEX,
but the ideas described here can be applied to any
implementation.

First, we change the data type of characters
in text files to wchar_t to accommodate Unicode
values.

Background: this predefined C type allocates
four bytes per character (on most systems). Char-
acter constants of this type are written as L’...’

and string constants as L"...".
(For brevity, in the diffs following, the original

code from web2w ’s ctex.w source is preceded with
< characters, and the new code with >. Both are
sometimes reformatted for presentation in this arti-
cle, and for readability we sometimes leave a blank
line between the pieces. The actual implementation
uses the file utex.patch [2].)

< @d text_char unsigned char

> @d text_char wchar_t

Use values from the basic multilingual plane
(BMP) of Unicode.

< @d last_text_char 255

> @d last_text_char 65535

Then we change the size of the xord array [3]
to 216 bytes.

< ASCII_code xord[256];

> ASCII_code xord[65536];

Elements in the xchr array [3] are overridden
using the file mapping.w.

@i mapping.w

This file specifies the character(s) required for a par-
ticular installation of TEX, for example:

xchr[0xf1] = L’ë’;

A complete example of mapping.w is here:

346 TUGboat, Volume 41 (2020), No. 3

https://github.com/igor-liferenko/cweb

TEX format default is in TEX’s external encod-
ing.

< ASCII_code TEX_format_default

< [1+format_default_length+1]

< =" TeXformats/plain.fmt";

> wchar_t TEX_format_default

> [1+format_default_length+1]

> =L" TeXformats/plain.fmt";

It remains to set the LC_CTYPE locale category,
on which depends the behavior of the C library func-
tions used below

setlocale(LC_CTYPE, "C.UTF-8");

and to add the necessary headers.

#include <wchar.h>

#include <locale.h>

2. Input

For automatic conversion from UTF-8 to Unicode,
text files (including the terminal) must be read with
the C library function fgetwc [4].

In ctex.w the macro get is used for reading text
files, as well as font metric and format files.

Text files are read in the functions a open in

and input ln. In a open in we replace the macro
reset with its expansion and then in both functions
we change get((*f)) to (*f).d=fgetwc((*f).f)

3. Output

For automatic conversion from Unicode to UTF-8,
text files (including the terminal) must be written
with the C library function fwprintf [4].

In ctex.w the macro write is used for writing
text files in all cases but one. So, we change fprintf
to fwprintf in the definition of write. The one case
where write is used is for writing DVI files— there
we just use its old expansion.

In addition to redefining the macro write, we
need to add the ‘L’ prefix to strings which are used in
the macros that call the macro write. These changes
are trivial and there are quite a few of them so we
will not list them here. Instead, we show the fol-
lowing cases, where the conversion specifier in the
printf-style directives also needs to change:

< wterm("%c",xchr[s]);

> wterm(L"%lc",xchr[s]);

< wlog("%c",xchr[s]);

> wlog(L"%lc",xchr[s]);

Igor Liferenko



< write(write_file[selector],"%c",xchr[s]);

> write(write_file[selector],L"%lc",xchr[s]);

4. The file name buffer

The name of the file to be opened, which is stored in
the name of file buffer, must be encoded in UTF-8.
Therefore, each character passed to append to name,
before being added to name of file, must be con-
verted to UTF-8. This is done using the C library
function wctomb [4].

In the append to name macro, the variable k is
used as the index into the name of file buffer where
the last byte was stored. Originally, k was always
increased and provisions were made that charac-
ters will not be written beyond the end of buffer
(which has the index file name size); name length

was then set to the minimal value between k and
file name size.

We cannot do the same in our implementation,
because we may reach the end of the buffer in the
midst of a multibyte character. Instead, if the next
multibyte character does not fit into the buffer, we
prevent k from being increased by negating its value:

< @d append_to_name(X) { c=X;incr(k);

< if (k <= file_name_size)

< name_of_file[k]=xchr[c]; }

> @d append_to_name(X) { c=X;

> if (k >= 0) { /* try to append? */

> char mb[MB_CUR_MAX];

> int len = wctomb(mb, xchr[c]);

> if (k+len <= file_name_size)

> for (int i = 0; i < len; i++)

> name_of_file[++k] = mb[i];

> else

> k = -k; /* freeze k */ } }

In pack file name and pack buffered name (the
functions that call append to name), we have to “un-
freeze” its value if it was “frozen”.

if (k < 0) k = -k;

In make name string, each (multibyte) charac-
ter from name of file must be converted from UTF-8
to Unicode, before being converted to TEX’s internal
encoding. This is done using the C library function
mbtowc [4].

< append_char(xord[name_of_file[k]]);

> { wchar_t wc;

> k += mbtowc(&wc, name_of_file+k,

> MB_CUR_MAX) - 1;

> append_char(xord[wc]); }

TUGboat, Volume 41 (2020), No. 3 347

In the code checking format default length for
consistency, we use the C library function wcstombs

[4] to count the number of bytes in the UTF-8 rep-
resentation of TEX format default .

< if (format_default_length >

< file_name_size)

> if (wcstombs(NULL,

> TEX_format_default+1,0) >

> file_name_size)

In the function pack buffered name, the code
that drops excess characters assumes that each char-
acter is one byte:

if (n+b-a+1+format_ext_length >

file_name_size)

b=a+file_name_size-n-1-format_ext_length;

But the number of bytes used to represent a char-
acter in UTF-8 may be more than one. Therefore,
we use an equivalent method to drop excess charac-
ters, the one which will work with multibyte charac-
ters: After appending the contents of buffer [a . . b]
to name of file, we roll back in it character by char-
acter until the format extension fits in it. We use the
C library function mblen [4] to determine the start
of the next (multibyte) character to be discarded.

while (k+wcstombs(NULL,TEX_format_default+

format_default_length-

format_ext_length+1,0) >

file_name_size) {

k--;

while (mblen(name_of_file+k+1,MB_CUR_MAX)

==-1)

k--;

}

References

[1] Ruckert, Martin. WEB to cweb.
mruckert.userweb.mwn.de/hint/web2w.html

[2] Source of the present implementation.
https://github.com/igor-liferenko/tex

[3] Knuth, Donald E. TEX: The Program, 1986.
ISBN 0201134373.

[4] Single Unix Specification. Introduction to
ISO C Amendment 1 (Multibyte Support
Environment).
http://unix.org/version2/whatsnew/

login_mse.html

⋄ Igor Liferenko

igor.liferenko (at) gmail dot com

UTF-8 installations of TEX



OpTEX—A new generation of Plain TEX

Petr Oľsák

Introduction

OpTEX [1] is a new format prepared for LuaTEX.
It keeps Plain TEX’s simplicity, adds the power of
the OPmac macros [2] and leaves behind the old ob-
scurities with non-Unicode fonts and with various
TEX engines. It provides a powerful font selection
system, colors, graphics, references, hyperlinks, syn-
tax highlighting, preparing indexes and bibliography
listings. All these features are implemented at TEX
macro level and they are ready to use without any
external program. OpTEX is a new Plain TEX suit-
able for the present.

OpTEX was introduced in February 2020 and
uploaded to CTAN. Now, it is ready to use in both
TEX Live and MiKTEX with the basic command
optex document. It underwent significant develop-
ment in the first half of 2020, so please take the most
recent version of it (from CTAN or a distribution) if
you want to experiment with it.

First example

A question was given on TeX.StackExchange [3]:
“How can I write the symbol t

ˇ
in TEX?” Unfor-

tunately, the accepted answer is typical for the old
days of TEX: use a macro package which loads a
font in an obscure 8-bit encoding and use the com-
mand \textsubwedge{t}. For me, the question has
no sense and the answer sounds like something from
the last millennium. Imagine a little modification
of this question: “How can I write the symbol K in
TEX?” And the answer should be: use package XY,
then you can use \printthischarK command. But
the normal answer is: “Use K in your text.”

My answer, second on that StackExchange
page, was: “Use OpTEX and then use normally the
symbol t

ˇ
. If a Unicode font supporting this charac-

ter is loaded* then there is no more problem.” For
example:

\fontfam[Linux Libertine]

Symbol t
ˇ

\bye

There was an addendum to my answer, essentially
this: You can define \def\t{t

ˇ
} if your text editor

or keyboard does not comfortably support making

* More precisely: it is not a single character in this
case but this is only a technical detail.

348 TUGboat, Volume 41 (2020), No. 3

the t
ˇ
. Of course, TEX supports the command \def

for such situations (among many others).
Unfortunately, there are many similar “prob-

lems”; you can see them at StackExchange or else-
where. These “problems” shouldn’t exist if we leave
the old way of thinking about TEX. Today, there
are plenty of good Unicode fonts. Simply, use them.

The second typical matter can be found in
the accepted answer of that same StackExchange
thread: “If you are using a special TEX engine then
you must do \ifsomething ...\fi and you must
load a package XY supporting this \ifsomething.”
This is absurd. OpTEX eliminates the need to deal
with such issues. It supports only one modern TEX
engine: LuaTEX. Simplicity is power.

The three-line source file from the previous ex-
ample shows another very important characteristic
of Plain TEX. You need not code your document,**
you don’t need to adapt yourself to a special com-
puter language for your source files where are many
\begin{foo}...\end{foo}, for example. Simply
write what you want. Of course, you have to decide
what font family is used (the \fontfam command)
and then just write the text. And use \bye if you
want to say goodbye to TEX.

Main principles of OpTEX

There are three main principles.

• The first one was mentioned in the previous
paragraph. The author can write the docu-
ment, he or she need not code the document
in a computer language. The source text of the
OpTEX document keeps the basic rules about
tagging documents (chapters, sections, empha-
sized text, footnotes, listings of items, etc.), but
there are minimal tagging marks, because we
want to keep the text human-readable. There
is a minimum of braces {...}, for example.

• The second principle of OpTEX says: don’t
hide TEX. Don’t declare new parameters and
new syntax constructions. If a user needs
or wants to use TEX then he or she sim-
ply uses TEX. For example, we have the
\hsize primitive register, and we don’t de-
clare a new one like \textwidth. If you need
to set a value to the register then use simply
\hsize=15cm; there is no alternative syntax
like \setlength{\textwidth}{15cm}. Basic
knowledge of the TEX primitive syntax is ex-
pected when using OpTEX. But it pays off.

** Many questions at StackExchange begin with “My
code is . . . ”.

Petr Oľsák



• LATEX, ConTEXt and their many packages give
users plenty of new parameters and options,
and they create a new level of language (on
top of TEX). When we are using or develop-
ing OpTEX, we don’t need to go that same
way. There is TEX for controlling the docu-
ment, without new options and parameters.
The macros of OpTEX are more straightfor-
ward and simple because they do not create a
new level of syntax but only what is explicitly
needed. If you need to make a change in the
design of the document (for example) then you
can copy the appropriate macro from OpTEX
to your macro file and make the changes di-
rectly there. For example, there are macros
\_printchap, \_printsec in OpTEX. Do you
need a different design? Copy such macros to
your macro file and declare your design there.
This is the third principle of OpTEX which es-
tablishes a significant difference from LATEX or
ConTEXt and which keeps the macros simple.

Summary of features provided by OpTEX

The user manual of OpTEX is 21 pages. It con-
tains hundreds of hyperlinks to a second part of
the manual: technical documentation (about 140
pages). The technical documentation is generated
directly from the OpTEX sources. There are listings
of all OpTEX codes with extensive technical notes
about the code.

We introduce a few features of the OpTEX sys-
tem here, giving just short overviews.

The font selection system. You can use basic
variant selectors \rm, \bf, \it and \bi as in Plain
TEX, i.e. {\bf text}. Plain TEX does not define the
\bi selector for bold italic, but OpTEX does because
almost all font families used today provide this font
variant.

You can choose the font family by the \fontfam
command. WYSIWYG systems typically offer a
menu for selecting the font family and this menu
shows how text looks in listed fonts. This is a great
advantage of such systems. You can get similar
information by writing \fontfam[catalog]. Then
all font families registered with the OpTEX macros
are printed like a font catalog. Each font family is
shown in all provided variants and the font modifiers
given for each family are listed too. This “almost
instantaneous” font catalog provides a sort of sub-
stitute for the interactive menus used in WYSIWYG

systems.

TUGboat, Volume 41 (2020), No. 3 349

Many font families provide font modifiers, for
example \cond for condensed variants or \caps for
capitals and small capitals. Usage of such font mod-
ifiers change a font context, but does not select the
new font directly. This is done only when a vari-
ant selector is used. The variant selector respects
the font context given by previous font modifiers.
For example \cond\it selects condensed italics and
if someone uses \bf in the same TEX group scope
where \cond was declared then the bold condensed
variant is selected.

There are many font modifiers declared among
the font families. The set of available font modifiers
depends on the selected font family. These modifiers
can be independent of each other if the font family
provides all such shapes. For example, \cond and
\caps are independent, so you can set four font con-
texts by these two selectors and you can use four
basic variant selectors: this gives 16 font shapes.

The settings of Unicode font features are im-
plemented as font modifiers. This means that the
current setting of font features is a part of the font
context.

The setting of the font size is implemented as
another font modifier. It means that the font size
is the part of the font context too. If the family
provides optical sizes, these sizes are respected by
the OpTEX font selection system.

The font families are declared and registered
by the font selection system in font family files. The
family-dependent font modifiers are declared here.
You can load more font families (by more \fontfam
commands) and you can select between them by the
family selectors like \Termes, \Heros, \LMfonts,
etc. The font modifiers and variant selectors be-
have independently in each family, and they respect
the selected family. For example if you want to mix
Heros with Termes, you can declare:

\fontfam[Heros]

\fontfam[Termes] % Termes is current

\def\exhcorr{\setfontsize{mag.88}}

\famvardef\ss {\Heros\exhcorr\rm}

\famvardef\ssi{\Heros\exhcorr\it}

Compare ex-height of Termes

\ss with Heros \rm and Termes again.

This example shows several things:

• If multiple font families are loaded then the last
one is selected as the current family.

• More variant selectors can be defined by the
\famvardef command. The example shows a
declaration of new \ss (sans serif) and \ssi

(sans serif italic) variant selectors.

OpTEX—A new generation of Plain TEX



• The font size can be set by the \setfontsize

command. It provides more syntactic rules but
one of them is the keyword mag: the new font
size is calculated as a factor of the font size
currently selected.

• The Termes and Heros families have visually
incompatible x-heights. We need to do the cor-
rection Termes = 0.88 Heros.

Macro programmers can declare font selec-

tors directly with the \font primitive if the font
name or font file name and its font features is
known. Or the font selector can be declared by
the \fontlet\new=\ori 〈sizespec〉 if another font
selector is known, and we need only to set another
font size of the same font. Finally, the font selector
can be declared by the \fontdef macro if you can
set the font by variant selector and font modifiers.

The last case (by the \fontdef macro) respects
the actual font family and font context when the
\fontdef macro is used. If you change the font
family before a set of \fontdef declarations then all
declarations are re-calculated to the new font family.
Another example: you can set a new default font
size by \typosize[11/13.5] and all fonts declared
by \fontdef will respect this new font size.

OpTEX loads only a few 8-bit Latin Modern
fonts when its format is initialized. The Unicode
fonts cannot be here due to a technical limitation of
LuaTEX. It is supposed that these pre-loaded fonts
will be used only for short experiments with OpTEX
macros, not for processing real documents. A user
should specify the font family with \fontfam first.
This macro loads the Unicode variant of the fonts.

A lot of font families provided by OpTEX have
registered the appropriate Unicode math font too.
For example Latin Modern fonts have Latin Modern
Math, Termes has TEX Gyre Termes Math, etc. The
\fontfam macro loads this Unicode math font too
unless the user says \noloadmath.

Tagging the document. All the typical tags
for documents are borrowed from OPmac. The
op-demo.tex document shows the basics of such
tagging. Chapters are marked by \chap 〈title〉,
sections by \sec 〈title〉 and subsections by \secc

〈title〉. The 〈title〉 ends at the end of the current line
(unless the line ends with the % character; then the
title continues). This decision mainly respects user
needs: to write the document simply. Today, long
lines (more than 80 characters) are quite common.
Macro writers have a little complication if they use
\chap, etc., in their macros because the end of line
is changed locally only at the input processor level,
but this can be handled.

350 TUGboat, Volume 41 (2020), No. 3

Labels for cross-references can be declared
by \label[〈label〉] or by \sec[〈label〉] 〈title〉,
etc. The labels can be used by the commands
\ref[〈label〉] or \pgref[〈label〉].

Lists of items look like:

\begitems

* First idea.

* Second idea.

\begitems \style i

* First subidea.

* Second subidea.

\enditems

\enditems

Auto-generated listings. The table of contents
can be printed by the \maketoc command and the
index by the \makeindex command. The alphabet-
ical sorting of the index is done at the TEX macro
level with respect to the rules of the current language
selected. No external software is needed. Thus, you
don’t need to do more than specify the words to be
indexed and write \makeindex. The index is reini-
tialized in each TEX run.

The situation is similar with bibliographies.
OpTEX reads .bib database files directly without
the need of any external program and creates these
listings with respect to a big set of rules declared
in the bib-style files. These rules and customizing
possibilities are described in [4]. OpTEX provides
simple and iso690 bib-style files now.

Colors. Colors can be simply used, for example,
{\Red something} or {\Magenta text}. They can
be defined in three possible ways:

\def \Red {\setrgbcolor {1 0 0}}

\def \Magenta {\setcmykcolor {0 1 0 0}}

\def \Brown {\setcmykcolor {0 0.67 0.67 0.5}}

\def \Black {\setgreycolor {0}}

and the user can define more such colors. The re-
spective color model (RGB or CMYK) is used in
low-level PDF commands. If you need not mix
color models in the PDF output then you can say
\onlyrgb or \onlycmyk. Then the colors are re-
calculated to the desired color model as needed.
This calculation is done only via simple math formu-
lae; the visual feeling of the color may be changed.
These two color models are not transformable from
one to the other without loss of information.

OpTEX initializes two color stacks: one for nor-
mal text and a second for footnotes. Footnotes can
span from one page to another independently on the
main text, so we need two independent color stacks.
You can create a long footnote in green, for exam-
ple, with the main text in red at the same point.

Petr Oľsák



The next page continues with the red main text and
green footnote. All colors work without problems on
the next page. (If you try to do the same in LATEX,
you realize that it does not work without special
care.)

The color blender macro \colordef is provided
by OpTEX. It enables color mixing in the subtrac-
tive (CMYK) or additive (RGB) color model.

Graphics. The \inspic {〈file name〉} includes a
graphics file in JPEG or PNG or PDF format (the
last can be a vector graphic) at the current typeset-
ting point as an \hbox. The width or height of the
picture can be given by \picwidth or \picheight
parameters. Other parameters accepted by the
\pdfximage primitive can be specified too. For ex-
ample, you can select a given page from the included
PDF file.

Inkscape (a free vector graphics editor) is able
to save a vector graphic to a PDF file and labels
to a LATEX file. OpTEX is able to read both these
files (the LATEX commands used by Inkscape must
be emulated here). You can do this by \inkinspic

macro which outputs the PDF graphic plus the la-
bels. They are printed in the current fonts selected
in the document.

OpTEX supports linear transformations using
commands \pdfrotate, \pdfscale and (in general)
\pdfsetmatrix. All compositions of these opera-
tions are allowed too. The \transformbox macro
does linear transformations and the real boundaries
of the box are calculated in respect of the trans-
formed material.

If the graphics need to interact with the text,
then TikZ can be used (\input tikz). This works
in Plain TEX too. But simple tasks can be done
using OpTEX macros without TikZ (we are happy
when TikZ is not loaded because TikZ is a very big
package). For example, putting the text into an oval
or into an ellipse (its size depends on the amount
of the text) can be done directly by \inoval or
\incircle OpTEX macros. A clipping path can be
declared by \clipinoval or \clipincircle.

Hyperlinks. There are four types of internal links:
cross-references, citations (bibliography), links from
the table of contents or index, and hyperlinks
to/from footnotes. There is one type of external
link generated by \url or \ulink macros. The
hyperlinks can be activated by the \hyperlinks

or \fnotelinks commands. The user or macro
programmer can declare more types of hyperlinks.

Structured outlines (for PDF viewers) are auto-
matically generated by the \outlines macro.

TUGboat, Volume 41 (2020), No. 3 351

Verbatim text. Code listings can be placed be-
tween a \begtt and \endtt pair, or they can be in-
cluded from an external file with, e.g., \verbinput
(〈fromline〉-〈toline〉) filename.c. Inline verbatim
text can be surrounded by an arbitrary character
declared by the \activettchar macro. Nowadays,
the most common usage is \activettchar‘ as a
declaration. Then you can type ‘\relax‘ to print
\relax. This tagging is inspired by the Markdown
language and is used very commonly at StackEx-
change, for example.

Sometimes you need to use inline verbatim in
titles or parameters of other macros. This doesn’t
work when the \activettchar character is used be-
cause there is a “catcode movement” in the param-
eter of ‘...‘. OpTEX provides a robust alternative
command for such situations: \code{〈text〉}. The
〈text〉 is printed detokenized with \escapechar set
to −1. From the user point of view, all “sensitive”
characters in the \code parameter 〈text〉 should be
escaped. For example, \code{\\relax\{} prints
\relax{. This can be used in titles of sections, etc.,
without problems.

Listings can be printed with highlighted syn-
tax (typically colored). Such syntax highlighting is
defined in hisyntax macro files and can be activated
with \begtt \hisyntax{C} ... \endtt, for exam-
ple. All processing is done at the TEX macro level
without using any external programs. These hisyn-

tax files are easily customizable. They support C,
XML/HTML, TEX and Python syntax at this time;
others may be added in the future. Users can declare
more such files.

Languages. LuaTEX is the only TEX engine which
enables loading hyphenation patterns for a selected
language on demand inside the document. Thus, we
need not preload all hyphenation patterns in the for-
mat. Hooray! OpTEX provides the language selec-
tors \〈isocode〉lang (for example \enlang, \frlang,
\delang, \eslang, \cslang). These commands
load the hyphenation patterns of a given language
when they are first used in the document, and switch
to the loaded hyphenation patterns when they are
used subsequently. Macro programmers can set
more language-dependent macros; these macros are
processed when an \〈isocode〉lang language selector
is used.

Language-dependent phrases like “Chapter”,
“Figure”, “Table” are automatically selected by
the current value of the \language primitive regis-
ter (this is used for hyphenation patterns). These
phrases are declared in OpTEX via:

OpTEX—A new generation of Plain TEX



\_langw en Chapter Table Figure Subject

%-----------------------------------------------

\_langw cs Kapitola Tabulka Obrázek Věc

\_langw de Kapitel Tabelle Abbildung Betreff

\_langw es Capı́tulo Tabla Figura Sujeto

Quotation mark pairs can be declared by
\quoteschars〈clqq〉〈crqq〉〈clq〉〈crq〉, for example
\quoteschars“ ”‘’ for English. The first type of
quotation marks can be printed by \"text" and the
second type by \’text’.* Several languages have
their \quoteschars predefined in OpTEX.

Styles in OpTEX. The default design style of the
document is inspired by Plain TEX: 10 pt/12 pt size
of basic text, 20 pt \parindent, zero \parskip.

The command \report at the beginning of the
document sets some typesetting parameters differ-
ently, suitable for reports. The \letter command
sets a design convenient for letters.

If you write \slides then you can create pre-
sentation slides. This style is documented in the file
op-slides.tex which also serves as an example of
usage of this style.

Name spaces for control sequences. Suppose
that the user writes \def\fi{Finito} into the doc-
ument. What happens? When LATEX, ConTEXt or
original Plain TEX is used then the document pro-
cessing crashes. When OpTEX is used, then nothing
critical happens. The user name space of control
sequences allows names where only letters are used.
If such sequences are redefined by users then this
only affects their own usage and macros; it’s not
a problem for the internal macros of OpTEX. The
internal macros of OpTEX do not use such control
sequences.**

When OpTEX initializes, all TEX primitives
and OpTEX macros have two representations, pre-
fixed: \_hbox and unprefixed: \hbox. OpTEX uses
only the prefixed versions. This is the OpTEX name
space. A user can work with the non-prefixed ver-
sions of control sequences. If he or she redefines
them nothing happens with the OpTEX internal
macros.

* When \quoteschars are declared, then the original
Plain TEX macros \" and \’ are redefined. This prob-
lem is discussed further in the following section about
compatibility with Plain TEX.

** There is only one exception: the control sequence
\par is (unfortunately) hardwired to the TEX internal
algorithms— it is the output of the tokenizer when an
empty line occurs in the input. If the user redefines \par
by mistake then processing may crash.

352 TUGboat, Volume 41 (2020), No. 3

The internal OpTEX macros not intended for
direct usage by the user have only a prefixed form.
And the control sequences never used in the OpTEX
macros but offered to the user (\alpha and other
sequences for math symbols) are defined only in un-
prefixed form (in the user name space).

The character _ always has category code 11
(letter) in OpTEX. You aren’t forced to write
\makeatletter or anything similar when you need
to access the control sequences from the OpTEX
name space. Simply use them. You can redefine
these control sequences, but then presumably you
know what you are doing. An example of when
it’s expected to redefine macros from the OpTEX
name space was given above where the macros
\_printchap and \_printsec were mentioned.

The character _ has category code 11 in math
mode too. It is defined as math-active for doing
subscripts in math formulae. Cases like \int_a^b

work too because they are handled in the LuaTEX
input processor.

OpTEX uses the _ character only as the first
character of control sequences. We suppose that
macro package writers will use internal control se-
quences in the form \_pkg_foo. This is a pack-
age name space. Moreover, the macro writer does
not need to see repeated \_pkg_foo, \_pkg_bar,
\_pkg_other control sequences in the code because
there is the command \_namespace{pkg}. When
it is used then the macro writer can use \.foo,
\.bar, \.other in the code which is much more
human-readable. These control sequences are con-
verted to internal \_pkg_foo, etc., automatically by
the LuaTEX input processor.

Odds and ends. Logos are defined with an op-
tional / character which can follow the control se-
quence; it is ignored if present. You can write, for
example:

\OpTeX/ is a new generation of Plain \TeX/

with features comparable to \LaTeX.

But \LaTeX/ needs to load about ten additional

packages to have comparable features.

This source looks more attractive. We needn’t sep-
arate such control sequences by {} or some similar
construction.

The command \lorem[〈from〉-〈to〉] produces
the text “Lorem ipsum dolor sit”. There is an inter-
esting implementation of this macro: the 150 para-
graphs of the text are not loaded into the OpTEX
format. Rather, the first usage of the \lorem com-
mand loads the external file lipsum.ltd.tex from

Petr Oľsák



the LATEX package lipsum and prints the given para-
graphs. The second and subsequent usage of the
\lorem macro prints the desired text from memory.

Compatibility with Plain TEX. All Plain TEX
macros were re-implemented in OpTEX; nearly all
features of Plain TEX are essentially preserved. But
there are some differences.

• The internal control sequences like \p@ or \f@@t
were renamed or completely removed. We don’t
support the “catcode dancing” with the @ char-
acter.

• The Latin Modern 8-bit fonts in the EC encod-
ing are preloaded instead of the Computer Mod-
ern 7-bit fonts.

• The math fonts are preloaded in 7-bit ver-
sions comparable to Plain TEX plus AMSTEX.
But if the \fontfam command is used then
the preloaded 8-bit text fonts and 7-bit math
fonts are not used; instead, Unicode text and
Unicode math fonts are used.

• The control sequences for characters defined by
\mathhexbox or in a similarly obscure way are
not defined (for example \P, \L). We suppose
that such characters should be used directly in
Unicode. Only the \copyright macro is kept
but it is defined by \def\copyright{ c©}.

• The accent macros \", \’, \v, \u, \=, \^, \.,
\H, \~, \‘, \t are undefined in OpTEX. We
are using Unicode, so all accented characters
can be written directly and this is the only rec-
ommended way. You can use these control se-
quences for your own purposes. For example
\" and \’ are used for quotation marks when
\quoteschars are declared, as mentioned ear-
lier. If you insist on using old accents from
Plain TEX then you can use the \oldaccents

command.

• The default paper size is A4 with 2.5 cm mar-
gins, not letter with 1 in margins. You can de-
clare the default Plain TEX margins by the com-
mand \margins/1 letter (1,1,1,1)in.

• The page origin is at the top left page corner,
not at the coordinates [1 in, 1 in] as in Plain
TEX. This is a much more natural setting.
These “1 in” values brought only unnecessary
complications for macro programmers.

• The \sec macro is reserved for sections, not the
math secant operator.

Tips and tricks. The web page [5] has a section
Tips and Tricks when using OpTEX. This is inspired
by Tips and Tricks of OPmac [6]. OpTEX users can
give a problem and I’ll try to put the solution here.

TUGboat, Volume 41 (2020), No. 3 353

My path from TEX to OpTEX

My first attempts at TEX were with Plain TEX in
1991. I realized that it was unusable with the Czech
language until 8-bit support of fonts was ready. The
concept of writing Ol\v s\’ak instead of directly
Olšák is not viable for real Czech texts. And Czech
hyphenation patterns cannot work in the former case
either.

I became a member of the development team
of CSTEX. The 8-bit fonts with Czech and Slovak
alphabet (CSfonts) were created using METAFONT,
derived from the Computer Modern fonts. I cre-
ated a macro to read the plain.tex file without
the part of loading Computer Modern fonts. This
part was replaced by loading CSfonts. The Czech
and Slovak hyphenation patters were added and the
CSplain format was originated. I was (and still am)
a maintainer of CSplain. In the mid-1990s, I added
PostScript support to CSfonts and Czech and Slovak
accents for the 35 base Adobe fonts.

I read The TEXbook and felt that the descrip-
tion of all TEX algorithms could be done more sys-
tematically and clearly. This was the reason why I
wrote the TEXbook naruby (“TEXbook inside out”,
in Czech only) [7]. This book became a standard
for TEX manuals in Czech. For example, computer
science students were using it to help welcome their
new colleagues.

LATEX was not the center of my interest because
it seems to be more complicated. I wrote an article
“Why I don’t like using LATEX” (1997, in Czech) [8].
I have reread this article recently and I found that
all its arguments are still valid. The main problem is
that LATEX offers a “coding language” not a “human
language” for writing documents. The second prob-
lem is that it tries to hide TEX by creating a new
level of language. But this is impossible because
TEX was not designed for such a task. LATEX users
will still see the TEX messages like “extra alignment
tab has been changed to \cr”. This language is dif-
ferent from the language used in LATEX manuals, so
LATEX users are lost. From my point of view, it is
unfair to TEX users to hide TEX.

I created encTEX in 2003 [9]. It is a pdfTEX
extension which supports input of UTF-8 encoded
documents directly. The Unicode characters (rep-
resented by multi-byte sequences in UTF-8) are
mapped by encTEX to one 8-bit character or to a
control sequence which can be defined arbitrarily.
The most important advantage is that each Unicode
character is represented as only one token in TEX.
This is the main difference from the LATEX package
\inputenc.

OpTEX—A new generation of Plain TEX



I have been giving lessons about TEX to our
students and learning from them. They represent a
new generation and their point of view and require-
ments to TEX are very important to me. One of
the results of these discussions is: at present, only
Unicode makes sense. I decided that encTEX devel-
opment was a dead end. We have a sufficient number
of quality Unicode fonts today, we don’t need to do
special mappings and complicated macros, we can
use Unicode fonts directly.

As a maintainer of CSplain and (of course) user
of Plain TEX, I created many typical macros needed
for document processing: creating the table of con-
tents, fonts in different sizes, references, hyperlinks,
etc. I released these home-made macros in 2013 as
an additional package in CSplain called OPmac [2].
It works with CSplain or Plain TEX with all typical
TEX engines. The great disadvantage of OPmac is
that its technical documentation, though extensive,
is only in the Czech language, because it was cre-
ated as home-made documentation of home-made
macros.

I created the template for student theses at our
university based on OPmac and CSplain [10]. There
are hundreds of satisfied users. It shows that Plain
TEX is still viable today.

I planned to make a re-implementation of
OPmac with new English documentation and with
new features and internals. What TEX engine would
be suitable for such a plan? X ETEX does not support
all of the micro-typographic extensions introduced
by pdfTEX, and does not offer the extensive cus-
tomization of LuaTEX. Furthermore, it seems that
X ETEX is no longer significantly developed, while
LuaTEX has been declared substantively stable as of
version 1.10 (http://www.luatex.org/roadmap.html).
LuaTEX won.

I finished my reimplementation of OPmac by
May 2020 and the result is called OpTEX.* The
documentation of OpTEX expects knowledge of TEX
basics. This is the main reason why I wrote a short
encyclopedic document “TEX in a Nutshell” [11] (in
English). The big reference “TEXbook naruby” [7]
and short summary “TEX pro pragmatiky” [12] are
available only in the Czech language, unfortunately.

I hope that OpTEX will find many users and
thus gain more respect. I hope that it will be a good
alternative to other currently used formats. It can
show that the native principles of TEX do not have
to be covered by new levels of computer languages,
and they can live at present: 40 years after the birth

* You can guess why I had more time to do it in
the year 2020.

354 TUGboat, Volume 41 (2020), No. 3

of TEX. My dream is to eliminate the widespread
notion among TEX users that TEX is equal to LATEX.
Will you help me with it?

References

1. http://petr.olsak.net/optex

2. P. Oľsák: OPmac: Macros for Plain
TEX. TUGboat 34:1, 2013, pp. 88–96.
petr.olsak.net/opmac-e.html

tug.org/TUGboat/tb34-1/tb106olsak-opmac.pdf

3. tex.stackexchange.com/questions/541064

4. P. Oľsák: OPmac-bib: Citations using
*.bib files with no external program.
TUGboat 37:1, 2016, pp. 71–78.
tug.org/TUGboat/tb37-1/tb115olsak-bib.pdf

5. petr.olsak.net/optex/optex-tricks.html

6. petr.olsak.net/opmac-tricks-e.html

7. P. Oľsák: TEXbook naruby, 1996, 2000. 468
pp., ISBN 80-7302-007-6. Freely available.
petr.olsak.net/tbn.html

8. P. Oľsák: Proč nerad použ́ıvám LATEX, 1997.
petr.olsak.net/ftp/olsak/bulletin/nolatex.pdf

9. petr.olsak.net/enctex.html (2003–)

10. P. Oľsák: The CTUstyle template for
student theses. TUGboat 36:2, 2015,
pp. 130–132. petr.olsak.net/ctustyle.html
tug.org/TUGboat/tb36-2/tb113olsak.pdf

11. ctan.org/pkg/tex-nutshell (2020–)

12. P. Oľsák: TEX pro pragmatiky, 2013, 2016.
148 pp, ISBN 978-80-901950-1-1. Freely
available. petr.olsak.net/tpp.html

⋄ Petr Oľsák
Czech Technical University
in Prague
http://petr.olsak.net

Petr Oľsák



TUGboat, Volume 41 (2020), No. 3 355

Book reviews: Robert Granjon, letter-cutter, and
Granjon’s Flowers, by Hendrik D.L. Vervliet

Charles Bigelow

Hendrik D.L. Vervliet, Robert Granjon, letter-cutter;
1513–1590: an oeuvre catalogue.
Oak Knoll Press, New Castle, DE, 2018, hc,
200 pp., US$75.00, ISBN 978-1584563761,
oakknoll.com/pages/books/131957.

Hendrik D.L. Vervliet, Granjon’s Flowers: An Enquiry
Into Granjon’s, Giolito’s, and De Tournes’ Ornaments,
1542–1586.
Oak Knoll Press, New Castle, DE, 2016, hc,
248 pp., US$65.00, ISBN 978-1584563556,
oakknoll.com/pages/books/127576.

These two books tell us essentially all that we know of
the illustrious sixteenth century French type designer
Robert Granjon. Thanks to six decades of meticulous
research by Hendrik D. L. Vervliet, Granjon can now
be ranked not only among the finest letter-cutters1 of
the French Renaissance but among the greatest of all
time. Granjon was both astonishingly versatile and
amazingly productive, cutting around ninety fonts, in-
cluding romans, italics, and cursive blackletters in the
Latin alphabet, as well as Greek, Cyrillic, Arabic, Ar-
menian, Hebrew, and Syriac among non-Latin scripts.
He also cut music fonts and ornamental printers’ flow-
ers. Vervliet quotes Giambattista Bodoni, writing two
centuries after Granjon’s death, that: “Maestro Robert
Granjon was the best letter-cutter ever.” Bodoni, a

1 Granjon would today be called a “type designer”, but that
term was not used until the twentieth century. Vervliet instead uses
“letter-cutter” signifying the material technology of type employed
from the fifteenth through the nineteenth century, when types were
created by skilled artists who used hard steel engraving tools and files
to cut and shape the forms of letters at actual size in steel punches.
The punches were struck into copper matrices, producing concave
impressions of the letters. From the matrices, types were cast in lead
alloy, with the letter forms in relief, to be inked and impressed onto
paper in printing. A common term for those type artists has been
“punch-cutter”, which denotes the technique but omits the art. A
sculptor analogously described might be called a “marble cutter” or
“clay shaper”, and a painter, a “color dauber” or “pigment brusher”.

preeminent type artist himself, prized regularity, clarity,
good taste, and grace in type design and evidently saw
those qualities in Granjon’s work.

The sixteenth century has been called the Gold-
en Age of Typography; the most famous letter-cutter
of the era was Claude Garamond, renowned for his
roman types. More than fifty digital type families today
are named Garamond or Garamont, though many are
not based on Garamond’s actual designs.

Granjon’s name, though well known in his time,
is borne today by only one type family, which com-
bines a roman based on a Garamond design with an
italic based on a Granjon design. The only type family
today that authentically, and brilliantly, embodies both
Granjon’s roman and his italic designs is not named
“Granjon” but “Galliard”, the English spelling of “Gail-
lard”, the original name of a small (around 8 point)
roman that Granjon cut around 1570. (This review is
typeset in Galliard, both roman and italic.) Before and
during Granjon’s early career, italic was often used in
body text instead of roman, but later, italic was used in
subordination to roman—usually a Garamond roman
with a Granjon italic. By the seventeenth century, italic
was commonly paired with roman in type families, a
practice continuing to present. Hence, though Gran-
jon’s italics have often been imitated in Garamond type
revivals, they are typically known as “Garamond Italic”.

Perhaps paradoxically, the subordination of italic
to roman gave Granjon greater freedom of expression
and invention in cutting italics, which could be more
exuberant and stylish because they did not need to sup-
port fluent reading of long texts. Granjon cut some
thirty different italics in at least three different styles.
His “pendante” or “couchée” is a strongly slanted
style that has most often been revived as a compan-
ion to Garamond romans. His “droite” is a narrower
and more upright style, revived and modified by Jan
Tschichold for Sabon, a modern revival of Garamond
roman and Granjon italic, produced for Monotype
and Linotype hot-metal composition machines and
then adapted to photo- and digital type. A third italic
style of Granjon resembled models of Italian chancery
cursive like those of writing manuals by Arrighi and
Tagliente. This chancery style is the italic in the Gal-
liard family.

In addition to plentiful details, dates, and exam-
ples of Granjon’s typefaces, Vervliet provides a biog-
raphy of the man. Robert Granjon was born around
1513 in Paris, son of a bookbinder and publisher. He
was apprenticed to a goldsmith and afterward turned
to letter cutting. The earliest types reliably attributed
to him are a Roman on “Long Primer” body (≈ 10

point today) in 1542 and an Italic on “English” body
(≈ 14 point today). Though working in Paris from

Book reviews: Robert Granjon, letter-cutter, and Granjon’s Flowers, by Hendrik D.L. Vervliet

https://oakknoll.com/pages/books/131957
https://oakknoll.com/pages/books/127576


356 TUGboat, Volume 41 (2020), No. 3

around 1542 to 1552, Granjon traveled to Lyons and
sold types to printers there, especially Jean de Tournes,
for whom he also cut some exclusive types. Around
1553, Granjon moved to Lyons and later married An-
toinette Salomon, daughter of Bernard Salomon, an
eminent illustrator, engraver, and book designer for
De Tournes. He apparently left Lyons around 1562,
worked for a time in Geneva and Strasbourg, and in
1564 moved to Antwerp, where he sold types and cus-
tom cuttings to Christophe Plantin, known as the king
of printers. Granjon moved back to Paris in 1570, to
Lyons from 1575 to 1578, and then to Rome, where
he cut punches for some two dozen non-Latin types
and printers’ flowers for the Vatican, until a fewmonths
before his death in 1590.

The types of Granjon became internationally pop-
ular when French romans and italics, betokening fash-
ionable Renaissance humanism, became popular not
only in France, but also in Italy, Switzerland, Spain,
and the Low Countries. In his first ten years of letter-
cutting in Paris, Granjon cut around 24 fonts: 11 ro-
mans, 9 italics, 2 Greeks, and 2 musics, and 12 fleurons
(typographic “flowers” or ornaments). These amount
to some 2,500 punches, averaging 250 punches per
year, an impressive number considering that he also
cast (“founded”) some of his types and was also a pub-
lisher, producing around 14 books, including works
of religion, science, history, music, and literature. He
spent nine years in Lyon, cutting around 2600 punches,
including 10 fonts of italic, 4 Greeks, 2 Civilités (a cur-
sive French blackletter), 4 musics, 12 sets of fleurons,
and two sets of large script initials (the models cut in
wood and cast in sand).

By the time of his death, Granjon’s italics domi-
nated European humanist (non-blackletter) typogra-
phy. In Christophe Plantin’s 1585 Folio Specimen,
twelve of thirteen italics are by Granjon. In the 1592
Egenolff-Berner type foundry specimen produced in
France, seven of the eight italics are by Granjon.

There is no known portrait nor physical descrip-
tion of Granjon the man, but his career seems all the
more impressive and romantic when we consider his
travels. As a free-lance letter-cutter, Granjon presum-
ably rode on horseback from city to city, carrying his
gravers and files in a box, along roads sometimes rough
and hazardous. The gunslinger Paladin in a 1950s
American television show had a calling card that read,
“Have Gun Will Travel”. Granjon’s card could have
read, “Have Graver Will Travel”.

Granjon’s Flowers

In addition to alphabetic and music types, Granjon cut
ornamental printers flowers or “fleurons”. Ornamen-
tal flowers, presumably inspired by Islamic patterns or

“arabesques” in metal work, bookbinding, and other
crafts, had been used in European printing long before
Granjon. In Granjon’s Flowers, Vervliet provides a con-
cise historical analysis of four stylistic phases of French
ornamental typography in the sixteenth century, plac-
ing Granjon’s work in the fourth phase. Beginning
in the 1540s, Granjon was cutting single ornaments,
and by the mid-1560s, he was creating complex sets
of modular flowers that could be combined into a
wide variety of patterns. As Vervliet puts it, these were
“arabesque patterns based on a continuous repetition
of non-figurative foliated elements and undulating, in-
tertwined, schematized and denaturalized stems”. The
cutting of flowers gave Granjon a golden, or leaden,
opportunity for abstract expression in typography, and
he obviously reveled and excelled in it, cutting around
fifty elegant, graceful, and original abstractions, which
Vervliet has painstakingly tracked down, identified, and
documented in an impressive display of typographic
detective work.

This definitive study provides examples, dates,
and notes of all the Granjon flowers that Vervliet has
identified, accompanied by an extensive bibliography.

Several of Granjon’s flower designs were revived
by Monotype in the 1920s and have been known
as “Granjon Arabesques”. For decades, they have in-
trigued and delighted typographers who have explored
myriad possible combinations by rearranging the ele-
ments. Most of these works were printed letterpress in
limited-edition books now unobtainable or astronomi-
cally priced, but Jacques André has made a brilliant dig-
ital edition and translation of Swiss typographer Max
Caflisch’s playful explorations of Granjon’s Arabesque,
“Kleines Spiel mit Ornamenten” (in French translation:
“Petits jeux avec des ornements”). It includes examples
of the ornaments in use in historical books along with
reproductions of Caflisch’s studies, not by scanning dig-
itization but by new compositions using digital fonts
of Monotype’s Granjon Arabesques. It is available at
jacques-andre.fr/ed/caflisch-jeux.pdf.

Both books were handsomely designed by Alas-
tair Johnston, fine printer and typographic scholar.
Robert Granjon, letter-cutter is composed in Stempel
Garamond, which has a Granjon italic, and Granjon’s
Flowers in Linotype Granjon, with a Garamond roman
and Granjon italic.

In closing, two references; and sample pages are
reproduced following.
Bigelow, C. On Type: Galliard. Fine Print 5(1):27–30,
1979. Reprinted in Fine Print on Type, 1990.

Carter, M. Galliard: a modern revival of the types of
Robert Granjon. Visible Language 19(1):77–97, 1985.

⋄ Charles Bigelow
https://lucidafonts.com

Charles Bigelow

https://jacques-andre.fr/ed/caflisch-jeux.pdf


TUGboat, Volume 41 (2020), No. 3 357

All pages reproduced from Robert Granjon, letter-cutter.

Book reviews: Robert Granjon, letter-cutter, and Granjon’s Flowers, by Hendrik D.L. Vervliet



358 TUGboat, Volume 41 (2020), No. 3

Book review: Glisterings, by Peter Wilson

Boris Veytsman

Peter Wilson, Glisterings. LATEX and Other

Oddments. TEX Users Group, Portland, Oregon,
USA, 2020, paperback, 130pp., US$15.00, ISBN
978-0982462621.

Many many years before people were reading tex.

stackexchange.com on their smartphones, the pri-
mary forums for asking TEX questions were the list
texhax@tug.org (still in lively existence) and the
Usenet group comp.text.tex (also still in existence,
though not so lively), or ctt as it was known to
aficionados. I guess that before texhax and ctt, in
the prehistoric times when people exchanged TEX
tapes and freshly knapped stone axes, there were
TEX-related BBSes, but I do not have reliable infor-
mation about those. Anyway, many of old timers
remember these long Usenet discussions about TEX
tricks, where Peter Wilson was prominent with his
clever solutions and lucid explanations. Even more
people know Peter Wilson for his memoir class—a
great example of exquisite typesetting. The manual
of the class is a great introduction not only to the
class itself, but also to the typesetting of books in
general.

Starting in 2001, Peter published a column Glis-

terings in TUGboat. The articles consisted of fairly

short discussions of tricky LATEX problems and their
solutions. Some material of this column was based on
the discussions in ctt and texhax. For many years
these articles were the favorite part of the journal
for me—and, I guess, for numerous other readers.

Now TUG has published these columns in a
book, and one can reread them collected together.
After doing this myself, I recognized how much my
TEX style was shaped over the years by them. It
was a joy to recall the times when I discovered these
little gems of TEX programming—and to find the
things overlooked at the first reading.

The subjects in the articles vary from complex
problems like string parsing to the textbook-like
explanation of subjects like the ways of defining
new macros in TEX and LATEX. The columns about
paragraphs and their shapes are probably among the
most useful in the book. The TEX way of dealing with
paragraphing is rather complex, and Peter explains it
with his characteristic lucidity and clearness. Besides
TEX and LATEX, the book discusses fonts, ornaments
and other printer devices, MetaPost (the image on
the cover, a spidron, is created with MetaPost; see
Figure 1), and many other topics. As another proud
owner of Lanston Type Company’s LTC Fleurons

Granjon (LTC is now a division of P22 Type Foundry,
p22.com), I was especially interested in the chapter
about using the Fleurons in LATEX. It gives very
useful advice on getting the glyphs aligned.

Of course TEX has changed over these years.
While some problems discussed in the book now
have somewhat more straightforward solutions (for
example, string manipulations today would be prob-
ably based on the xstring package), it is surprising
how much of the book is still very relevant today
and is required reading for an aspiring TEXnician.

The style of Peter’s writing is fascinating. The
author’s subtle British humor makes the reading
pleasant and far from the dry stuff filling many tech-
nical books. The reader meets this self-deprecating
humor on the first page of the Introduction:

For many years Jeremy Gibbons edited a very
successful column in the TEX Users Group
journals TEX and TUG NEWS and TUGboat

called Hey—It works! [52]. I learnt much
from this but apparently not enough to decline
when asked to take over the column. On the
other hand I have learnt to my cost that the
quickest way to get a correct answer to a ques-
tion on the comp.text.tex (ctt) newsgroup
is to give an incorrect answer. In order not
to sully Jeremy’s reputation my first thought
was to change the title to Hey—It might work

but after some consideration the new title is

Boris Veytsman

https://tex.stackexchange.com
https://tex.stackexchange.com
https://p22.com


TUGboat, Volume 41 (2020), No. 3 359

9.2. Spidrons

Figure 9.5: Tilings: (left) Spidrons can do it alone; (right) Hornflakes need spidrons

What was missing from this article was any hint
as to what those ‘right combinations’ of folds might
be to create these effects. After some searching on
the web I found the following remarks by Erdély [40].

I folded every second edge, reaching to the
centre of the created hexagon in the given
Spidron system, as a spine and folded ev-
ery first edge as a groove. The resulting
relief-like surface, under the impact of an
external deforming force, does not show
simple linear displacements, such as those
produced with an accordion; instead, the
edges between the vertices and the centres
of the original hexagonal system move in a
vortex within each hexagon.

After a lot of cogitation and physical experimen-
tation I came to believe that among the ‘right com-
binations’ are the ones shown in Figure 9.6, which
shows half a hexagon with three semi-spidrons. The
dotted lines indicate ‘valley’ folds (paper on either
side of the fold, or crease, is bent upwards) and the
full lines indicate ‘mountain’ folds (paper on either
side of the crease is bent downwards).

If you want to create a large construct for fold-
ing, here is the code for generating the spidron tiling
shown in Figure 9.5. You can, of course, modify this
to meet your needs.

% glstr9.mp MP spidron figures

% earlier pictures

beginfig(5); % spidron tiling

Figure 9.6: Folding. [Editor’s note: We gratefully
acknowledge Jeremy Gibbons’ paper “Dotted and
dashed lines in METAFONT”, TUGboat 16:3 (1995),
https://tug.org/TUGboat/tb16-3/tb48gibb.pdf,
which aided us in finalizing this figure, and a fasci-
nating read in itself.]

31

Figure 1: A page from the column about spidrons

as you see it earlier—Glisterings —implying
that there might be some dross among the
nuggets.

and continues to walk along with it during the jour-
ney through the book.

Another part of the book’s charm are the epi-
graphs throughout. They are funny and wise, pro-
viding a surprising counterpoint to the point of the
text. For example, the section about changing the
layout starts with a note by Samuel Johnson,

Change is not made without inconvenience,

even from worse to better.

The section about the “superstitious” version of enu-
merate designed to eliminate an item no. 13 is ac-
companied by the apt passage from George Orwell’s
1984:

It was a bright cold day in April, and the

clocks were striking thirteen.

The book is lovingly typeset by Peter, reminding
us that the author is a TEX wizard and typesetter of
a very high caliber. The techniques discussed in the
book are illustrated by the book itself; for example,
a page of the column about ornaments has a nice
frame around it (Figure 2).

14. TUGBOAT 32:2, 2011

\wbc{\wsp}{24pt}{\wupit{-19pt}{o}%

\llap{\wupit{35pt}{\rotpi{n}}}\kern-14pt p}

o

n

p

Defining a macro for each assembly will let us mix
and match.

\newcommand*{\qno}{q\kern-14pt\wupit{-19pt}{n}%

\llap{\wupit{35pt}{\rotpi{o}}}}

\newcommand*{\onp}{\wupit{35pt}{\rotpi{n}}%

\kern-14pt p}

Now,
\wbc{\wsp}{24pt}{\onp\qno\onp\qno\onp\qno}

produces

n

pq
n

on

pq
n

on

pq
n

o

and
\wbc{\wsp}{24pt}{\qno\onp\qno\onp}

displays

q
n

on

pq
n

on

p

I had to experiment to decide on the various
distances to move things to create the \onp and
\qno assemblies. These distances would have to be
changed if something other than 24pt was used as
the font size. However, it is always possible to use
\scalebox from the graphicx package to appropri-
ately size a pattern. This gives a half-size result
compared with the previous ones.

\wbc{\wsp}{24}{\scalebox{0.5}{\qno\onp}}

q
n

on

p

Except for the simplest scheme of just putting
the glyphs in a row, experimentation will nearly al-
ways be required to obtain sympathetic relationships
among the elements of the pattern. They don’t have
to be mathematically exact but must look good to
the eye.

Moving on, here is another set of four glyphs,
which would normally be used at the corners of a
page, that can be combined in interesting ways.
\wbc{\wsp}{24pt}{E F G H}

E F G H
One simple way is just using two lines, which re-
minds me of a row of gilt mirrors.
\wbc{\wsp}{24pt}{EFEFEF\\GHGHGH}

EFEFEF
GHGHGH

We can add some further decorative elements, re-
ducing the size at the same time:

\wbc{\wsp}{12pt}{HGHGHGHGHGHG\\[-3pt]

EFEFEFEFEFEF\\GHGHGHGHGHGH\\[-3pt]

EFEFEFEFEFEF}

HGHGHGHGHGHG
EFEFEFEFEFEF
GHGHGHGHGHGH
EFEFEFEFEFEF

and add more and more if desired. On the other
hand, joining the four elements in a different manner
can lead to something even fancier.

In the days of lead type, a sort (a single charac-
ter) was a rectangular bar of lead with the glyph in
relief on the end that was to be inked and printed.
There was no way of stretching or shrinking a piece
of type, and neither was there any way of getting one
piece of type to overlap another, except by printing
twice, once with one sort and then with the second
sort. With digital fonts these restrictions no longer
apply. In the next example, the bounding boxes of
the glyphs overlap, although the glyphs themselves
do not.

fgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgi

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

k

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

lfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfgfg

Figure 2: A page from the column about ornaments

When compiling the columns in the book, the
author gathered the references from each into a joint
bibliography, and added an index—a very useful
device for a compendium of disjoint materials like
this one. He also rearranged epigraphs and deleted
the repeated ones. The resulting book is a welcome
addition to a library of a (LA)TEX student or even
TEXnician— indeed, even for those of us who have
a collection of TUGboat issues for the last twenty
years. I wholeheartedly recommend it.

Glisterings is the third book published by TUG,
after a volume of interviews (2009) and the 25 an-
niversary collection of papers (2010). This is a fit-
ting continuation of the series. They are all available
from tug.org/books, as well as in the general online
stores. I hope that we keep publishing the books
under our own imprint—perhaps next time without
a 10 year hiatus.

⋄ Boris Veytsman

Systems Biology School,

George Mason University

Fairfax, VA

borisv (at) lk dot net

http://borisv.lk.net

ORCID 0000-0003-4674-8113

Book review: Glisterings, by Peter Wilson

https://tug.org/books


360 TUGboat, Volume 41 (2020), No. 3

Historical review of TEX3

Peter Flynn

Abstract

While clearing out cupboards during lockdown, I
came across several oddities, including this review
of TEX3 which .exe magazine asked me for in April
1991, during negotiations into being taken over. They
subsequently collapsed as a print publication, and
the article was therefore never published, meaning
it’s still my copyright. It was interesting to see what
I had picked up on for them, as they had asked me
to write it from the point of view of a new TEX user
with experience in other systems.

It referenced five figures which were long since
lost, but which I have reconstructed from memory
and the descriptions. The original was formatted in
unmarked monospace, according to the publisher’s
requirements. This version has been used without
substantive textual change for TUGboat, but the
plaintext symbolic notations like \TeX\ have been
replaced with the genuine logos, acronyms and URIs
have been marked, some previously unnoticed ty-
pos have been corrected, and oddities of plaintext
markup have been converted to LATEX.

Most companies, addresses, electronic access,
etc., mentioned no longer exist. The references are
kept as a matter of nostalgia and history. The article
begins below the rule.

The grand-daddy of DTP systems offers a radically

different approach to typography on the desktop.

Peter Flynn investigated and found it still has a lot

to offer.

Introduction

Out of the current soup of DTP systems, a few leaders
have emerged among the visual packages. Ventura,
Pagemaker, and Quark XPress each has its own bene-
fits and peculiarities, as any user will have discovered,
but there is another form of DTP altogether, known
as ‘logical’, which is where systems like TEX fit in.

Contrary to popular opinion, DTP was not in-
vented in the mid-80s on the Apple Mac, but in 1978
on a DEC-20 minicomputer. The program was TEX,
and it allowed users for the first time to produce
printers’ quality typesetting from their terminals,
using the new ‘laser-beam’ printers.

Heady stuff indeed at the time, given that word-
processing had barely yet been given a name.

The difference between visual and logical sys-
tems is straightforward enough once you understand

what it is you’re trying to do (the terms ‘visual’ and
‘logical’ were coined ca. 1988 [4]).

Visual systems rely on the operator’s skill in
manipulating a bitmapped screen image, usually by
hand, eye and mouse. The relationship between text
structure and appearance is undefined, or specified
by simple tags in style sheets. The method allows
freehand adjustment to appearance, such as position-
ing, scaling, distorting or overlaying of graphics and
text, but places a high degree of reliance on manual
dexterity and the visual judgment of the user. Each
page is normally made up individually, so that any
knock-on effect of changes must also be attended to.

Logical systems rely on the author’s or editor’s
skill to bind structure tightly to appearance, using
commands specified in a style file or embedded in
the text to define positioning and typography. The
text file is edited externally, and processed in its
entirety to ensure the effect of changes is properly
accounted for from page to page. Adjustments to
appearance are made by changing the commands
in the text, and by the use of fully programmable
macros. This largely removes the need for manual
or visual intervention in long or repetitive texts,
or in applications where automation, regularity or
dimensional accuracy is required.

Origins

TEX is, in effect, a document compiler, taking a
piece of source ‘code’ (your text) and acting on the
instructions you embedded in it. The original pro-
gram was written by Don Knuth to typeset a new
edition of his famous Art of Computer Programming

series, because ordinary commercial typesetters ei-
ther couldn’t handle the technical matter, or charged
too much. (The lowered ‘E’ in the TEX logotype
distinguishes it in print from TEX, an old Honeywell
editor, for copyright reasons, and emphasizes the
relationship with typography.)

He generously made TEX publicly available, so
it can be had in commercial and non-commercial
versions for almost every machine in existence from
Apple IIGS, Amiga, and Archimedes, up through PC

and Mac, to Sun and other UNIX systems, VAX/VMS,
IBM and other mainframes, and even the Cray (that
should shift some lead!). All implementations are
compatible with each other, differing only in mem-
ory capacity and speed, depending on the operating
environment. This level of availability must make it
the most widely-spread DTP system in use: certainly
in today’s increasingly networked environment it is
a significant factor to be able to establish completely
compatible DTP across almost every platform with
no need for investment in special hardware.

Peter Flynn



TUGboat, Volume 41 (2020), No. 3 361

TEX has had a mixed reception in the past. It
has variously been criticised for being difficult to use,
lacking graphics, only having one typeface, for not
being WYSIWYG and for not being a visual-based
system (about as sensible as criticising a fish for not
being a chicken). Part of the reason is that, com-
ing from the public domain, there was no one to
trumpet its abilities or explain its working. Some
reviewers who should know better have not distin-
guished between visual and logical systems, and some
were making their comments based on old versions,
hearsay, and incomplete information. However, as
we shall see, it is in fact quite easy to use, can handle
plenty of graphics, lots of typefaces, and has some
of the best screen displays around.

Quality is one area that has always been com-
mented on favourably, and it is carefully guarded:
for an implementation to call itself TEX it must pass
a stringent test specified by Knuth.

Availability

Perhaps one of the reasons for the ‘well-kept secret’
ethos surrounding TEX is the fact that the original
source code was placed in the public domain. Anyone
can have this code for the asking: it was written in
WEB, a ‘literate programming language’ also devised
by Knuth, which produces Pascal source. There are
many commercial versions of TEX as well, written
by companies or individuals who have optimised the
code for specific operating systems, and ship the
system as a package. Because of its popularity and
heavy use in research and technical typesetting, and
in publishing trade and the academic field, there
has been little need for glossy full-colour whole-page
adverts for it in magazines aimed at the domestic or
office market. This is perhaps a pity, as many visual
DTP users who need reliable, accurate and auto-
mated formatting are still doing their work manually,
unaware that TEX exists!

Those who have anxiety attacks at the mention
of the phrase ‘public domain’ can take comfort in
the fact that it is the source code itself which is
available, so if you have misgivings about viruses,
you can check it and compile it yourself. There are
no known instances of an infected copy of TEX being
distributed, and all the public versions available from
the regular sources are checked out before being made
available. If in doubt, of course, buy a commercial
copy.

My review commercial copy (PC-TEX) came
from UniTEX Systems (for details see end) and my
public-domain ones (emTEX and SBTEX) came from
the TEX server archive (TEX.AC.UK) at Aston Univer-
sity, Birmingham, via the email network. I also used

an older commercial VAX/VMS version (Kellerman
& Smith) and a PD one for the Macintosh called
OzTEX. I didn’t have a UNIX machine available,
so I was unable to investigate UNIX-flavoured TEX
personally, but given the rigorous quality control, it
is reasonable to assume it performs as claimed.

There are other public-domain and shareware
versions too, from a variety of bulletin boards (e.g.
CIX), user groups and file server hosts on the wide-
area networks all over Europe and the United States.
UK, Irish and continental European users of normal
internetwork email can order from Aston or Heidel-
berg (for details see end) but if you’re trapped on BT

Gold or EirMail, forget it and contact your national
User Group. In addition there are other regular
commercial versions such as Textures and TurboTEX
(for the Mac and PC respectively) and a low-cost
commercial version for the PC (DOSTEX).

Installation

TEX for desktop machines needs about 5MB of disk
space to live in, and runs in 512KB of memory. On
larger machines, where there has traditionally been
more disk space, implementations tend to spread
themselves around a bit more. If you want to add
more fonts, design packages, CAD, specialist macros,
foreign-language hyphenation and the endless other
goodies, you will need more room. On the other
hand, if all you want to do is publish, say, a typeset
database listing, you can trim right down to just over
1MB (plus your own data/text storage, of course).

PC-TEX came in the usual style of PC software
binder: the INSTALL routine worked perfectly and
took around 15 minutes to unpack everything from
the nine disks. emTEX arrived as several .BOO archive
files (encodings into printable characters which allow
8-bit binary to traverse the 7-bit email networks)
which DEBOOed and unZIPped (with the -d option)
to recreate all the files and the whole directory struc-
ture, in about 20 minutes. I wish some other software
I could mention unpacked with even half the care and
intelligence that has been spent on organising both
these versions. The Mac version I unpacked in a sim-
ilar manner from BINHEXed STUFFIT archives with-
out problems. The VAX software originally came on
standard half-inch magtape and took rather longer,
because of the need to establish logical names and
pathways to cater for multiuser operation.

Drivers are available for most printers (i.e. those
emulating IBM Graphics and ProPrinters, Epson FX

and LQ, NEC Pinwriter, PostScript and HP LaserJet)
and you can get or make drivers for almost anything
which puts marks on paper, even a fax: if you have

Historical review of TEX3



362 TUGboat, Volume 41 (2020), No. 3

something esoteric, there is generic driver code avail-
able for you to roll your own. There’s even a driver
for a CalComp pen plotter if you want letters sev-
eral feet high! Because TEX produces an output file
which is entirely device-independent, you aren’t tied
to using any particular supplier’s driver, or even any
particular machine.

TEX itself knows nothing about fonts except
the height and width of each character, plus a few
other parameters, which it reads from font metric
files. The print drivers, however, normally use bit-
map font files, not outlines, so you need to order
the right resolution with your printer driver (usually
180, 240, 300 or 360 dpi depending on your printer).
Using bitmaps is a two-edged sword: you tend to
get far better quality, but you are restricted to those
sizes you have on disk. However, there is a compan-
ion type-design program for TEX called METAFONT,
which can create additional optimised font files at
any resolution for any dot-matrix or laser printer
(and some typesetters). METAFONT is well worth
having if you want extra odd font files at specific
sizes, and if you’re into type design, this is probably
one of the most powerful tools around. If you use
PostScript, of course, you don’t need any bitmaps,
just the font metrics. I shall have more to say about
fonts later.

\noindent This is a very short test, to make

sure the program is working correctly. This

paragraph starts flush left, and shows the

appearance of {\bf bold face} type.

This paragraph is indented, and shows the

appearance of {\it italics}. It contains the

math formula $z*n=x*n+y*n$. Such a formula

might also be displayed $$z*n=x*n+y*nS$$ to

make it more prominent.

\bye

Figure 1: Source text of the file TEST.TEX

Documentation

The manual for all implementations of TEX is The

TEXbook by Donald Knuth, published by Addison-
Wesley [2]. This explains everything, in progressively
finer detail. The early chapters are excellent, and
can get even a total novice producing the goods very
quickly. Learning TEX is not difficult, but like any
DTP system, it is nevertheless not trivial, and the
later chapters need some careful reading, as there is
a lot in them. There are plenty of worked examples,
though, far more than in any other manual I have
ever seen (you can never have enough, in my view).

The documentation accompanying PC-TEX is
a more digestible spiral-bound manual which sum-
marises all the introductory matter of The TEXbook

and looks less forbidding for a beginner [5].
The PD versions came with documentation on

how to set up and run the programs (in most cases
better explained than most ‘professional’ manuals)
but they do assume you have The TEXbook for details
of how to format text.

For the user who just wants to produce some-
thing with a relatively simple standardised layout,
the LATEX macro package which comes with TEX is
the easiest route, as it has several carefully-designed
sample document styles. The LATEX book which de-
scribes these is also an Addison-Wesley publication
but comes free with PC-TEX [3].

There are some very good introductory booklets
available free as TEX input files, so you just process
and print them. The best two I found were A Gentle

Introduction to TEX by Michael Doob [1] and Intro-

duction to TEX on VAX/VMS by Joe St Sauver [6].
This last one sounds a bit operating-system specific,
but if you just ignore the VMS bits it is a very good
guide. There are others covering the many add-ons
to TEX, again usually supplied on disk as .TEX files
for you to print yourself.

This is a very short test, to make sure the program is

working correctly. This paragraph starts flush left,

and shows the appearance of bold face type.

This paragraph is indented, and shows the ap-

pearance of italics. It contains the math formula

z ∗ n = x ∗ n+ y ∗ n. Such a formula might also be

displayed

z ∗ n = x ∗ n+ y ∗ nS

to make it more prominent.

Figure 2: Output of TEST.TEX (HP LaserJet III)

Operation

TEX operates in a radically different manner to visual
DTP. You create your document in a plain ASCII

file, embedding formatting commands in the text.
When you run the program, it processes your file
and makes a compact, portable device-independent
typeset file, which is used by the preview and print
drivers to produce the output. Because it doesn’t
use a graphic display during processing, repetitive
production jobs such as database publishing can run
unattended once they are set up.

A test file (test.tex) which demonstrates the
method of operation is supplied as standard (see

Peter Flynn



TUGboat, Volume 41 (2020), No. 3 363

Figure 1 and Figure 2 for the input and output).
The DVI (DeVice-Independent) file can be printed on
any supported printer without the need to reprocess
your source text: just run the relevant print driver.
The concept is similar to PostScript, in that once
you have the final version off your laser or dot-matrix
printer, you don’t have to reformat or reprocess for
a higher-resolution device. Unlike PS, however, you
are not restricted to specific output devices or fonts.

All the formatting commands are mnemonic,
so they are fairly straightforward to learn. They
all begin with a backslash (e.g. \parindent=2em or
\baselineskip=15pt, see Figure 1). The use of
an ASCII file means you can continue to use your
favourite editor (or wordprocessor in ‘non-document’
or ‘ASCII export’ mode), so there are no new menus
or keystrokes to learn. No editor is supplied, as it is
assumed that every machine already has one in some
form or another. I’m uncertain about this: although
it is easy to get many excellent editor/wordprocessor
programs, it surely could have been possible to throw
in a good public-domain editor, or license a shareware
one, even if only for beginners. I suppose you could
even use EDLIN if you were a masochist.

If you’ve got existing wordprocessor files, there
are converter programs from WordPerfect and MS-
Word into TEX and LATEX.

As with any DTP system, once you go beyond
elementary formatting you do need to be aware of
what you want to do. Typographical training is a
much-neglected part of office life so far, although it is
noticeably easier to get good typographic quality in
your output using TEX than with some visual systems.
However, as I mentioned earlier, there are so many
predefined layouts available that many users don’t
bother to delve into the deeper recesses of TEX’s
abilities.

The macro facilities mean there is a lot of under-
lying power available. TEX is in fact a typographical
programming language, which means you can pro-
gram decision-making \if statements to modify the
appearance depending on the text being processed.
The effect of this is to dramatically increase the
reusability of your text: using LATEX’s predefined
styles, for example, you can turn a text file into
a business report by marking the component parts
(title, sections, subsections etc.) and adding three
commands at the top and one at the bottom. If
your analysis was so good you wanted to turn it into
a chapter of your new book, change the document
style report to book and that’s it. To publish it as
an article, change book to article, and change the
chapters into sections. This is the whole essence of
logic-based DTP: once the structure of the text is

marked, formatting and reformatting becomes rela-
tively trivial — just change the macro definitions.

There are some tricks and traps of course. One
small confusion for beginners arises over the use of
curly braces: TEX uses them to group together text
which you want treated in a particular way, so for
example, to italicise text you type {\it your text}

in curly braces, with the ‘\it’ command immediately
inside the opening brace: this restricts the effect of
italics to the text in the braces. So far so good. But
curly braces are also used to delimit arguments, so for
example, typing \centerline{some text} centres
the text between the margins. There are very cogent
reasons for this, but it means a second or so’s thought
until you get used to it.

Once you’ve processed your file, you will want
to see the results. The WYSIWYG screen in emTEX
is one of the best I have seen. It is configurable for
all the conventional PC screens from mono CGA to
the 64/256 colour VGA display, and on the higher
resolution devices it uses grey-scaling to give the
image better definition. You can shrink the image
small enough to fit two A4 pages on a single screen,
or enlarge it big enough to see only a few words
at a time. An on-screen ruler lets you measure di-
mensions, and the image can be rotated, mirrored
and inverted. Despite the fact that TEX drivers use
bitmap fonts, the previewer does not require its own
set of fonts at screen resolution: it can use whatever
you have around for your printer, reducing your disk
storage needs. Other suppliers also have very good
previewers, especially the Preview program from Ar-
bortext.

The print drivers have similar facilities for po-
sitioning the output on the page, so it is possible
to print portrait or landscape, mirrored or inverted,
even on dot-matrix printers. You can easily print
selected pages in any order, with multiple pages per
sheet in various orientations, so it is possible to make
booklets correctly paginated for folding straight off
the printer.

The only thing that causes an initial stumbling
block is the sequence of edit–process–view–print.
This is common to all logical systems, in that the
entire file has to be processed before it can be seen.
The reason is partly historical, in that TEX grew up
before bitmapped screens were commonplace; and
partly inherent in a logic-based system, in that type
placement on the page naturally depends on what
fit onto previous pages. PC-TEX does in fact sell a
version which displays as you go, and similar ver-
sions are available for the Amiga and some other fast
machines, but these are very much the exception.

Historical review of TEX3



364 TUGboat, Volume 41 (2020), No. 3

Timings

TEX is fast: I clocked just over one-and-a-half seconds
per page on a 16MHz 80386 clone with 640KB and
a 28ms unfragmented hard disk for processing plain
continuous text in emTEX. By comparison, PC-TEX’s
80386-specific executable on the same machine but
using 2MB of memory gave me under half a second
per page on the same file.

Printing speed is limited by the throughput of
the printer itself. The HP LaserJet driver printed at
the full eight pages a minute, with only a brief pause
at the start to download the font glyphs.

Printing full-page graphics on a dot-matrix print-
er is always tedious, but I counted 34 seconds per
A4 page of solid text on an Epson LQ800, which is
acceptable for short drafts.

emTEX runs very happily under DesqView/386,
my own preference for a working environment, with
PC-Write in one window, the TEX engine in another
and the WYSIWYG screen in another (plus my usual
assortment of comms, spreadsheet and database).
I haven’t tested it under Windows, but there’s a
Windows (Microsoft Paintbrush-style) screen driver
in emTEX, and the TEX program and print drivers
should cause no problems as DOS tasks.

When something goes wrong

TEX’s error messages are explicit but technical. Press-
ing H when it pauses at an error gives some fur-
ther explanation, and often points you to the rel-
evant section of The TEXbook. It is assumed that
you have read some of this, or similar explanatory
documentation, because otherwise a message such
as ‘Overfull \hbox at line 432’ is not going to
mean much (in fact it refers to a justification or hy-
phenation problem, the h(orizontal) box being the
page element it is trying to justify).

‘Errors’ in this sense means one of two things:
either you have mistyped a command word, which
is easy to correct, as it tells you what and where;
or there is a fault in the logic of your instructions,
which is harder to spot. Unfortunately, computers
cannot guess your intentions, although TEX makes
a damn good try. Missing a closing curly-brace is
a common typing error, and so is forgetting to turn
off a special mode, such as mathematical setting,
but this is not logically determinable until your text
tries to do something that TEX knows cannot be
done in whatever mode you were in, like finding a
paragraph-end in the middle of text supposed to be
centred. All the program can do is report what went
wrong and where: it’s up to you to find out why, and
this can be tricky in complex work, as there may
be a considerable amount of innocuous text between

the cause of the problem and the actual place where
TEX spotted things going astray.

Justification and hyphenation problems are rare
in normal text, because TEX justifies an entire para-
graph at one go, rather than line by line. This results
in a wonderfully smooth and professional finish com-
pared with the woefully ragged and uneven spacing
found in some systems, but there are occasions when
you have to fix an obtuse word with a discretionary
hyphen.

The most common mistake I made was forget-
ting to turn off a typestyle such as boldface, resulting
in the remainder of the document being in bold type,
but that is easy to spot and easy to fix, as it is ob-
vious from the display or printout where the error
starts. Omitting or wrongly delimiting an argument
causes unexpected results for the unwary: typing
\centerline and then omitting any argument and
carrying on with the text makes TEX centre the first
character of the next word and then complain that it
can’t fit the surrounding text on the line. Perfectly
reasonable, but a strong case for RTFM (Read The
Flaming Manual).

Fortunately the results of RTFM are well worth
it: after the learning curve had flattened a little
(an afternoon), doing some automated formatting,
even including some mathematics, produced such a
professionally-formatted page that the idea of going
back to placing everything with the mouse by hand
is one I can’t contemplate.

TEX has extremely few bugs, as Don Knuth has
been offering hard cash to anyone who can find one,
starting at 1 cent and doubling on each occasion. As
the current rate is only $40.96 after 12 years, you
are not likely to find that many more.

When you need more serious help, therefore, it
will be with typography, not bugs, and you will need
access to a design or typographic expert fluent in
TEX. In the case of commercial software, this is often
provided by the supplier, and either included in the
price or charged as support. In the case of public-
domain TEX, you can either call your user group
(see details at end), or if you have email access, send
a message to one of the many support conferences,
where there are hundreds of experts who will gladly
help. For specialist or large-scale development, there
are also many TEX consultants who charge normal
commercial rates.

Fonts

The default font is Computer Modern (see Figure 2),
a redrawing (by Knuth) of Monotype Modern 8A,
and resembling Century Schoolbook, but less bulky.
It suits excellently for continuous text, which is what

Peter Flynn



TUGboat, Volume 41 (2020), No. 3 365

TEX was originally designed for. Because of this,
and because Computer Modern has all the scientific
and mathematical symbols built-in (many more than
in your average DTP system), a lot of TEX users
never bother to get away from it. This is a pity, as
it has led to the myth that TEX only works with the
CM typeface. A browse through TUGboat, the TEX
Users Group journal, soon explodes the myth: TEX
works fine with Bitstream fonts, PostScript, and
anything from the Hewlett-Packard downloadable
stable, as well as with other METAFONT designs.

Mind you, you have to pay money for some of
these, but I used Bitstream Swiss and Humanist (Hel-
vetica and Optima), the Type 1 Adobe PostScript
fonts, and some HP softfonts generated by Glyphix,
all without problems (although Glyphix doesn’t pro-
vide a pound [sterling] sign, being American). These
fonts have to be in TEX format, which means a small
conversion program from PC-TEX Inc. for Bitstream
outlines. If you don’t have a PostScript printer, you
can buy the Adobe fonts as bitmaps from the Kinch
Computer Company, and there is a public-domain
HPtoTeX program available to convert HP download-
ables. The Austin Code Works also has a whole
stash of fonts already in TEX format, and as I said
earlier, if you restrict yourself to a PostScript printer,
you can do away with bitmaps entirely, although you
lose some of the mathematical and scientific symbols,
and the interletter spacing is a little poxy in places.

A
lleŊ VergŁngliĚe / IĆ nur ein GleiĚniŊ; /
DaŊ UnzulŁngliĚe, / Hier wird’Ŋ EreigniŊ; /
DaŊ UnbesĚreibliĚe, / Hier iĆ’Ŋ getan; /
DaŊ Ewig-WeibliĚe / Zieht unŊ hinan.

N�il aon tinte�an
mar do xinte�an f�ein

Figure 3: Fraktur with decorated initial, and an Irish
text typeface

METAFONT is a programming language for mak-
ing your own fonts. Font design itself is a decidedly
non-trivial activity, but the program can be used
with several public-domain font definitions to create
font files. There is an increasing number of new fonts
being done in METAFONT, and I tested a mixture:
some well-established ones like Pandora by Neenie
Billawala and Hermann Zapf’s Euler (from the Amer-
ican Mathematical Society); Helvetica and Times
(more akin to Morison’s original, not Times New

Roman) from the MetaFoundry (Dublin, Ohio); and
two new ones, a modern Irish typeface by Micheál
Ó Searcóid of University College, Dublin; and a new
Fraktur and Schwabacher by Yannis Haralambous
of CITI Lille, which has some stunning decorated
initials (see Figure 3 and Figure 4).

The quick brown fox jumped over the lazy Pandora

The quick brown fox jumped over the lazy Concrete

The quick brown fox jumped over the lazy Helvetica

The quick brown fox jumped over the lazy Times

Figure 4: Comparison of some text fonts used in TEX

Interestingly, TUGboat says that the resident
‘Wizard of Fonts’ is Hermann Zapf himself, so they
clearly have some good high-level advice on tap.
There are many non-Latin fonts available: Cyrillic,
Greek, Devanagari, Arabic, Turkish, and Japanese,
even a Tengwar script for Tolkien fans! The Schol-
arTEX package provides Persian, Ottoman, Pashto,
Urdu, Hebrew, Yiddish, Syriac, Armenian, Greek,
Ancient Greek and Latin, Fraktur and Schwabacher,
Anglo-Saxon, Irish, Glagolitic, Coptic, Calligraphic
Arabic and Sanskrit. There’s a CM-compatible In-
ternational Phonetic Alphabet (IPA) from the Uni-
versity of Washington.

Computer Modern Roman 5pt design at natural size

Computer Modern Roman 17pt design scaled down to 5pt

Computer Modern Roman 17pt design
at natural size

Computer Modern Roman
5pt design scaled up to 17pt

Figure 5: Difference between design sizes

TEX provides the ability to scale any individual
font or the whole document to any size (but you
still need the bitmaps at the right dot-density in
order to print), but The TEXbook makes it clear
that 5pt type is best done with a real 5pt design,
and 50pt type with a 50pt design, rather than by
scaling another design size up or down (see Figure 5).
This is of course exactly what typographers have
been doing since Gutenberg, but some authors of
modern systems failed initially to understand the
need, and gave only outline fonts. This was partly
acknowledged by Adobe’s use of ‘hints’, but it has led
to some disastrous results in terms of legibility and

Historical review of TEX3



366 TUGboat, Volume 41 (2020), No. 3

appearance, as anyone who has tried scaling 110pt
type down to 5pt can see. Using bitmaps of fonts
at different design sizes does place some restrictions
on users’ disk space, but the selection of Computer
Modern shipped with TEX provides a good everyday
working subset as a mixture of design sizes and scaled
fonts. It is clear that the reason for METAFONT is
that you can generate fonts at the size required in
a few minutes and then junk the bitmaps when you
are finished, if you are short of space (some systems,
such as the version for Amiga, do the font generation
automatically when you reference a font which is not
on disk).

Graphics

The TEX typesetting engine itself, of course, is not
a graphics processor: no logical system is, and even
most visual DTP systems make poor drawing pack-
ages. Most DTP users are accustomed to scanning
artwork and then embedding it into the document,
and the same applies to TEX, although you can also
use the more elementary line-drawing abilities of
the LATEX macro package, and the more advanced
facilities of PICTEX or TEXCAD.

Scanning artwork usually means touching it up
in a paintbox program such as PC Paintbrush, and
you can then make it into a character in a font file,
using a neat little routine from Micro Programs Inc,
or if your printer can’t handle large downloadable
glyphs, you can use the same routine to make a
printstream output file which the print driver can
handle itself.

This means you can also embed printstream
output of some other application in the TEX output
(e.g. Encapsulated PostScript, or HP’s PCL generated
by spreadsheets, business graphics packages, CAD,
drawing programs etc.). There are also several rou-
tines developed for using half-tones (photographs),
in monochrome or colour, although the 300 dpi reso-
lution of a normal laser printer scarcely does them
justice.

Extras

Most implementations of TEX include the macro
package LATEX, which provides the facilities for struc-
tured documents, with variations on autonumbering
sections, subsections, paragraphs etc.; automated
table-of-contents and indexes; simple diagram and
graph-drawing; forward and backward references and
a whole stack of other stuff, including BibTEX, a bib-
liographic database program.

There’s PICTEX, for drawing more complex di-
agrams such as flowcharts or organisation charts;
TEXCAD, a little CAD package which produces LATEX

source code as output; and SliTEX for making multi-
colour overhead transparency separations. This has
recently been extended by David Love of the Dares-
bury Labs to produce output on colour PostScript
printers — what he terms TEXnicolor.

METAFONT, the font-making program, is sup-
plied with emTEX plus the complete source code
for all the Computer Modern fonts, and some font
manipulation tools to go with it. With most com-
mercial implementations, though, METAFONT is a
chargeable extra.

The public-domain bolt-ons are legion. In addi-
tion to the wide range of styles under LATEX, assorted
generous people have written and donated macro
packages to do circuit diagrams, molecular (hydro-
carbon) diagrams, critical text editions, style files
for journals, music typesetting, dictionaries, data-
base output, newsletters, calendars; TEX has been
used for most things at one time or another over the
last dozen years, so there is a wealth of experience
to draw on. There are also plenty of agencies and
consultants who will design styles in TEX to your
specifications.

Conclusion

The gripes I referred to earlier (lack of fonts, graphics
and styles, visual presentation and perceived diffi-
culty of use) seem to have been a problem of users’
perception, rather than any deficiency in the TEX
system itself. TEX is, however, something of an ac-
quired taste, but has the capability to outperform
most other systems in its field in quality, flexibility
and automation.

Directly comparing TEX with a visual system is
not strictly valid, as the two kinds of DTP are usually
aimed at different requirements, although there is a
large area of overlap. Those users who feel uneasy
with an asynchronous visual feedback are probably
more productive with a visual system, but they may
have to spend more effort to achieve the same level
of quality.

Equally, there are tasks more suited to visual
systems than to logical ones: attention-grabbing
advertising and newsletters which need to rely on
a complex blend of overlapping colour graphics and
type for optical appeal are far faster to produce using
a visual system than a logical one.

In the end it comes down to suiting the facilities
offered to the typographic skill and knowledge of the
user, as well as to the demands of the task. Despite
the initial appeal of visual systems, TEX is still worth
a careful look.

Peter Flynn



TUGboat, Volume 41 (2020), No. 3 367

A Original biography

Peter Flynn is in charge of research and academic
computing at University College Cork, Ireland. He
has been Technical Consultant to a large City com-
puter bureau, deputy DP manager for one of the
UK Training Boards, and a teacher of programming
and systems analysis. His hobbies are early music,
reading and surfing. He can be reached by email as
pflynn on BIX and CIX, and through the wide-area
networks as cbts8001@iruccvax.ucc.ie.

B Network sources of public-domain

software

Email users (e.g. CIX, JANET, HEANET, BITNET,
UUCP etc.) can retrieve files from the Aston archive
of TEXware: send a one-line electronic mail message
to texserver@tex.ac.uk saying
send[tex-archive]00directory.list

(this is a large file containing a directory of everything
in the archive). Individual files can then be retrieved
by the same method.

A one-line mail to listserv@dhdurzl.bitnet

saying just index will retrieve the file list from the
server in Heidelberg (files are got by sending get

followed by the filename). Some additional TEX
material is kept at mailserv@ymir.claremont.edu.

All network servers respond to the single-word
command help by sending you a help file about
what is in them and how to access them. BT Gold
and EirMail are unfortunately not connected to the
international email networks, but Gold 400 is.

In case of difficulty, contact the UKTEX Users
Group, c/o Aston University Computer Centre, Birm-
ingham (email uktex@aston.ac.uk).

C Commercial software

• PC-TEX. UniTEX Systems, 12 Dale View Road,
Sheffield.

• µTEX. Arbortext Inc, 535 West William Street,
Ann Arbor, Michigan 48103, USA (fax +1 313
996 3573).

• Textures (Mac), £350; CM fonts as PostScript
outlines, £300. TEXpert Systems, PO Box 1897,
London NW6 1DQ (fax +44 71 433-3576).

• For other operating systems, contact the UK
TEX Users Group (address above) for details of
suppliers.

• WordPerfect-to-TEX converter, $249. K-Talk
Communications, 30 West First Avenue, Suite
100, Columbus, Ohio 43201, USA (fax +1 614
294 3704).

• TurboTEX, $150; Adobe bitmaps, $200. Kinch
Computer Company, 501 South Meadow Street,
Ithaca, NY 14850, USA (fax +1 607 273 0484).
Kinch also provides a fax driver for TEX.

• Bitmap fonts. Austin Code Works, 11100 Leaf-
wood Lane, Austin, Texas 78750-3464, USA (fax
+1 512 258 1342, email info@acw.com);

• Capture, $100; TEXPIC (graphics), $79. Micro
Programs, Inc, 251 Jackson Avenue, Syosset NY

11791-4117, USA (tel +1 516 921 1351).

• ScholarTEX (out shortly): Yannis Haralambous,
rue Breughel 101/11, FR-59650 Villeneuve
d’Ascq, France (tel +33 20.05.28.80, email
yannis@FRCITL81.bitnet).

D Pull quotes

1. All implementations are compatible with each
other, differing only in memory capacity and
speed, depending on the operating environment.

2. Omitting or wrongly delimiting an argument
causes unexpected results for the unwary: a
strong case for RTFM (Read The Flaming Man-
ual).

3. Despite the initial appeal of visual systems, TEX
is still worth a careful look.

References

[1] M. Doob. A Gentle Introduction to TEX. As-
ton University, UK: UK TEX Archive, Jan. 1990.
ctan.org/pkg/gentle.

[2] D. Knuth. The TEXbook. Addison-Wesley, Boston,
MA, 18th edition, May 1990.

[3] L. Lamport. LATEX: A Document Preparation

System. Addison-Wesley, Boston, MA, Jan. 1986.

[4] L. Lamport. Document Production: Visual or
Logical? TUGboat 9(1):8, Jan. 1988.
tug.org/TUGboat/tb09-1/tb20lamport.pdf

[5] M. Spivak. The PC-TEX Manual. Personal TEX,
Inc., San Francisco, CA, 01 1985.

[6] J. St Sauver. Introduction to TEX on VAX/VMS.
Claremont University, CA: YMIR TEX Archive,
Jan. 1991.

⋄ Peter Flynn
Textual Therapy Division,

Silmaril Consultants
Cork, Ireland
Phone: +353 86 824 5333
peter (at) silmaril dot ie

blogs.silmaril.ie/peter

Historical review of TEX3



368 TUGboat, Volume 41 (2020), No. 3

TheTreasure Chest

These are the new packages posted to CTAN (ctan.
org) from August–October 2020, along with a few
notable updates. Descriptions are based on the an-
nouncements and edited for extreme brevity.

Entries are listed alphabetically within CTAN

directories. More information about any package
can be found at ctan.org/pkg/pkgname. A few
entries which the editors subjectively believe to be
of especially wide interest or otherwise notable are
starred (*); of course, this is not intended to slight
the other contributions.

We hope this column helps people access the vast
amount of material available through CTAN and the
distributions. See also ctan.org/topic. Comments
are welcome, as always.

⋄ Karl Berry

tugboat (at) tug dot org

dviware

dvivue in dviware

Windows viewer for PDF or DVI.

fonts

cmathbb in fonts

Computer Modern math blackboard bold,
with complete alphabet and numerals.

doulossil in fonts

The Doulos SIL font for IPA typesetting.

josefin in fonts

Josefin fonts with LATEX support, a geometric
sans.

plimsoll in fonts

Access to the Plimsoll symbol used in chemistry.

spectral in fonts

Spectral fonts with LATEX support, a serif face.

fonts/utilities

ot2woff in fonts/utilities

Convert OpenType or TrueType to WOFF.

t1subset in fonts/utilities

C++ library to subset Type 1 fonts.

woff2ot in fonts/utilities

Convert a WOFF file to OpenType or TrueType.

macros/latex/contrib

centerlastline in macros/latex/contrib

“Spanish” paragraphs with last line centered.

decision-table in macros/latex/contrib

Decision tables in Decision Model and Notation
(DMN) format.

docutils in macros/latex/contrib

Support for Docutils reStructuredText sources
(docutils.sourceforge.io).

leftindex in macros/latex/contrib

Left indices (sub/superscripts) with improved
spacing.

nnext in macros/latex/contrib

Extensions for the gb4e linguistics package.
oup-authoring-template in macros/latex/contrib

Template for Oxford University Press journals.
qyxf-book in macros/latex/contrib

Book template for Qian Yuan Xue Fu club.
realtranspose in macros/latex/contrib

90 degree character transposition.
runcode in macros/latex/contrib

Execute any command line tool and typeset
its output.

semtex in macros/latex/contrib

Deal with stripped SemanTEX documents.
swfigure in macros/latex/contrib

Five display modes for handling figures too
large to fit on a single page.

totalcount in macros/latex/contrib

Typeset total values of counters (from caption).
xmuthesis in macros/latex/contrib

Thesis for Xiamen University.

macros/latex/required

latex-firstaid in macros/latex/required

Late-breaking compatibility fixes for packages,
provided by the LATEX team.

macros/luatex/latex

lua-physical in macros/luatex/latex

Pure Lua library providing functions and
objects for computing physical quantities.

stricttex in macros/luatex/latex

Strictly balanced brackets; allow numbers in
command names.

unitipa in macros/luatex/latex

Typesetting TIPA fonts with Unicode input.

macros/unicodetex/latex

Barbara Beeton’s column in this issue (p. 260) describes
the new CTAN area macros/unicodetex.

texnegar in macros/unicodetex/latex

Kashida justification improved wrt xepersian.

support

light-latex-make in support

A build tool for LATEX documents.

https://ctan.org
https://ctan.org
https://ctan.org/pkg/
https://ctan.org/topic
https://ctan.org/pkg/dvivue
https://ctan.org/pkg/cmathbb
https://ctan.org/pkg/doulossil
https://ctan.org/pkg/josefin
https://ctan.org/pkg/plimsoll
https://ctan.org/pkg/spectral
https://ctan.org/pkg/ot2woff
https://ctan.org/pkg/t1subset
https://ctan.org/pkg/woff2ot
https://ctan.org/pkg/centerlastline
https://ctan.org/pkg/decision-table
https://ctan.org/pkg/docutils
https://docutils.sourceforge.io
https://ctan.org/pkg/leftindex
https://ctan.org/pkg/nnext
gb4e
https://ctan.org/pkg/oup-authoring-template
https://ctan.org/pkg/qyxf-book
https://ctan.org/pkg/realtranspose
https://ctan.org/pkg/runcode
https://ctan.org/pkg/semtex
https://ctan.org/pkg/swfigure
https://ctan.org/pkg/totalcount
caption
https://ctan.org/pkg/xmuthesis
https://ctan.org/pkg/latex-firstaid
https://ctan.org/pkg/lua-physical
https://ctan.org/pkg/stricttex
https://ctan.org/pkg/unitipa
https://ctan.org/pkg/texnegar
xepersian
https://ctan.org/pkg/light-latex-make


TUGboat, Volume 41 (2020), No. 3 369

2021 TEX Users Group election

TUG Elections Committee

The terms of TUG President and ten other members of
the Board of Directors will expire as of the 2021 Annual
Meeting, expected to be held in July or August 2021.

The terms of these directors will expire in 2021:
Karl Berry, Johannes Braams, Kaja Christiansen,
Taco Hoekwater, Klaus Höppner, Frank Mittelbach,
Ross Moore, Arthur Rosendahl, Will Robertson,
Herbert Voß.

Continuing directors, with terms ending in 2023:
Barbara Beeton, Jim Hefferon, Norbert Preining.

The election to choose the new President and Board
members will be held in early Spring of 2021. Nomina-
tions for these openings are now invited. A nomination
form is on this page; forms may also be obtained from
the TUG office or via tug.org/election.

The Bylaws provide that “Any member may be
nominated for election to the office of TUG President/
to the Board by submitting a nomination petition in
accordance with the TUG Election Procedures. Election
. . . shall be by . . . ballot of the entire membership, carried
out in accordance with those same Procedures.”

The name of any member may be placed in nomina-
tion for election to one of the open offices by submission
of a petition, signed by two other members in good stand-
ing, to the TUG office; the petition and all signatures
must be received by the deadline stated below. A can-
didate’s membership dues for 2021 must be paid before
the nomination deadline. The term of President is two
years, and the term of TUG Board member is four years.

An informal list of guidelines for TUG board mem-
bers is available at tug.org/election/guidelines.html.
It describes the basic functioning of the TUG board,
including roles for the various offices and ethical consid-
erations. The expectation is that all board members will
abide by the spirit of these guidelines.

Requirements for submitting a nomination are listed
at the top of the form. The deadline for receipt of com-
pleted nomination forms and ballot information is

07:00 a.m. PST, 1 March 2021

at the TUG office in Portland, Oregon, USA. No excep-
tions will be made. Forms may be submitted by fax, or
scanned and submitted by email to office@tug.org; re-
ceipt will be confirmed by email. In case of any questions
about a candidacy, the full TUG Board will be consulted.

Information for obtaining ballot forms from the TUG

website will be distributed by email to all members within
21 days after the close of nominations. It will be possible
to vote electronically. Members preferring to receive a
paper ballot may make arrangements by notifying the
TUG office; see address on the form. Marked ballots must
be received by the date noted on the ballots.

Ballots will be counted by a disinterested party not
affiliated with the TUG organization. The results of the
election should be available by mid-April, and will be
announced in a future issue of TUGboat and through
various TEX-related electronic media.

2021 TUG Election—Nomination Form

Eligibility requirements:

• TUG members whose dues for 2021 have been paid.

• Signatures of two (2) members in good standing at
the time they sign the nomination form.

• Supplementary material to be included with the
ballot: passport-size photograph, a short biography,
and a statement of intent. The biography and state-
ment together may not exceed 400 words.

• Names that cannot be identified from the TUG mem-
bership records will not be accepted as valid.

The undersigned TUG members propose the nomination of:

Name of Nominee:

Signature:

Date:

for the position of (check one):

� TUG President

� Member of the TUG Board of Directors

for a term beginning with the 2021 Annual Meeting.

1.
(please print)

(signature) (date)

2.
(please print)

(signature) (date)

Return this nomination form to the TUG office via postal
mail, fax, or scanned and sent by email. Nomination
forms and all required supplementary material (photo-
graph, biography and personal statement for inclusion
on the ballot, dues payment) must be received at the
TUG office in Portland, Oregon, USA, no later than

07:00 a.m. PST, 1 March 2021.

It is the responsibility of the candidate to ensure
that this deadline is met. Under no circumstances will
late or incomplete applications be accepted.

Supplementary material may be sent separately from
the form, and supporting signatures need not all appear
on the same physical form.

� 2021 membership dues paid
� nomination form
� photograph
� biography/personal statement

TEX Users Group
Nominations for 2021 Election

P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

(email: office@tug.org; fax: +1 815 301-3568)



The information here comes from the consultants
themselves. We do not include information we
know to be false, but we cannot check out any of
the information; we are transmitting it to you as it
was given to us and do not promise it is correct.
Also, this is not an official endorsement of the
people listed here. We provide this list to enable
you to contact service providers and decide for
yourself whether to hire one.

TUG also provides an online list of consultants
at tug.org/consultants.html. If you’d like to be
listed, please see there.

Dangerous Curve

+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

We are your macro specialists for TEX or LATEX
fine typography specs beyond those of the average
LATEX macro package. We take special care to
typeset mathematics well.

Not that picky? We also handle most of your
typical TEX and LATEX typesetting needs.
We have been typesetting in the commercial and

academic worlds since 1979.
Our team includes Masters-level computer

scientists, journeyman typographers, graphic
designers, letterform/font designers, artists, and a
co-author of a TEX book.

Dominici, Massimiliano

Email: info (at) typotexnica.it

Web: http://www.typotexnica.it
Our skills: layout of books, journals, articles;
creation of LATEX classes and packages; graphic
design; conversion between different formats of
documents.

We offer our services (related to publishing in
Mathematics, Physics and Humanities) for
documents in Italian, English, or French. Let us
know the work plan and details; we will find a
customized solution. Please check our website
and/or send us email for further details.

370 TUGboat, Volume 41 (2020), No. 3

TEXConsultants

Latchman, David

2005 Eye St. Suite #6
Bakersfield, CA 93301
+1 518-951-8786
Email: david.latchman (at)

texnical-designs.com

Web: http://www.texnical-designs.com
LATEX consultant specializing in the typesetting of
books, manuscripts, articles, Word document
conversions as well as creating the customized
LATEX packages and classes to meet your needs.
Contact us to discuss your project or visit the
website for further details.

Monsurate, Rajiv

India
Email: tex (at) rajivmonsurate.com

Web: https://www.rajivmonsurate.com
I have over two decades of experience with LATEX
in STM publishing working with full-service
suppliers to the major academic publishers. I’ve
built automated typesetting and conversion
systems with LATEX and rendered TEX support for
a major publisher.
I offer design, typesetting and conversion

services for self-publishing authors. I can help with
LATEX class/package development, conversion tools
and training for publishers and typesetters for
book and journal production. I can also help with
full-stack web development.

Sofka, Michael

8 Providence St.
Albany, NY 12203
+1 518 331-3457
Email: michael.sofka (at) gmail.com

Personalized, professional TEX and LATEX
consulting and programming services.
I offer 30 years of experience in programming,

macro writing, and typesetting books, articles,
newsletters, and theses in TEX and LATEX:
Automated document conversion; Programming in
Perl, Python, C, C++, R and other languages;
Writing and customizing macro packages in TEX or
LATEX, knitr.

If you have a specialized TEX or LATEX need,
or if you are looking for the solution to your
typographic problems, contact me. I will be happy
to discuss your project.



Veytsman, Boris

132 Warbler Ln.
Brisbane, CA 94005
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net
TEX and LATEX consulting, training, typesetting
and seminars. Integration with databases,
automated document preparation, custom LATEX
packages, conversions (Word, OpenOffice etc.) and
much more.

I have about two decades of experience in TEX
and three decades of experience in teaching &
training. I have authored more than forty packages
on CTAN as well as Perl packages on CPAN

and R packages on CRAN, published papers in
TEX-related journals, and conducted several
workshops on TEX and related subjects. Among
my customers have been Google, US Treasury,
FAO UN, Israel Journal of Mathematics, Annals of
Mathematics, Res Philosophica, Philosophers’
Imprint, No Starch Press, US Army Corps of
Engineers, ACM, and many others.

We recently expanded our staff and operations
to provide copy-editing, cleaning and
troubleshooting of TEX manuscripts as well as
typesetting of books, papers & journals, including
multilingual copy with non-Latin scripts, and more.

TUGboat, Volume 41 (2020), No. 3 371

Warde, Jake

Forest Knolls, CA 94933
+1 650-468-1393
Email: jwarde (at) wardepub.com

Web: http://myprojectnotebook.com
I have been in academic publishing for 30+ years.
I was a Linguistics major at Stanford in the
mid-1970s, then started a publishing career. I
knew about TEX from Computer Science editors at
Addison-Wesley who were using it to publish
products. Beautiful, I loved the look. Not until I
had immersed myself in the production side
of academic publishing did I understand the
contribution TEX brings to the reader experience.

Long story short, I started using TEX for
exploratory projects (see the website referenced)
and want to contribute to the community. Having
spent a career evaluating manuscripts from many
perspectives, I am here to help anyone who seeks
feedback on their package documentation. It’s a
start while I expand my TEX skills.

TUG 2020: Reprise

Videos for all talks: tug.org/l/tug20-video

YouTube channel: youtube.com/c/TeXUsersGroup

Conference schedule and abstracts: tug.org/tug2020/program.html

Proceedings (open access): tug.org/TUGboat/tb41-2



2020

Oct 27 – 31 Association Typographique Internationale,
ATypI All Over, www.atypi.org

Oct 31 GuIT Meeting 2020,

17th Annual Conference, online,
hosted by SISSA medialab, Trieste, Italy.
www.guitex.org/home/en/meeting

Nov 5 – 8 AwayzGoose, an online gathering
for lovers of type and letterpress,
Hamilton Wood Type &
Printing Museum and

American Printing History Association,
Two Rivers, Wisconsin.
woodtype.org/pages/wayzgoose

2021

Mar 1 TUG election: nominations due,
07:00 a.m.PST. tug.org/election

Mar 10 – 12 DANTE 2021 Frühjahrstagung and

64th meeting, 32 Jahre DANTE e.V.,
Otto-von-Guericke Universität,
Magdeburg, Germany.
www.dante.de/veranstaltungen

Mar 31 TUGboat 42:1, submission deadline.

May 2 – 5 CODEX VIII, “EXTRACTION:
Art on the Edge of the Abyss”,
Richmond, California.
www.codexfoundation.org

Jun ? –
Jul ?

TypeParis21,
intensive type design program,
Paris, France. typeparis.com

Jun 30 –
Jul 2

Nineteenth International Conference
on New Directions in the Humanities,
“Critical Thinking, Soft Skills,
and Technology”,
Universidad Complutense Madrid, Spain.
thehumanities.com/2021-conference

372 TUGboat, Volume 41 (2020), No. 3

Calendar

Jul ?? International Society for the History and
Theory of Intellectual Property (ISHTIP),

12th Annual Workshop,
“Landmarks of Intellectual Property”.
Bournemouth University, UK.
www.ishtip.org/?p=1027

Jul 20 – 21 Centre for Printing History & Culture,
CPHC/Print Networks Conference,
“A visitor attraction: printing
for tourists”,
Appleby-in-Westmorland, Cumbria, UK.
www.chpc.org.uk/events

Jul 26 – 30 Digital Humanities 2021, Alliance of
Digital Humanities Organizations,
Tokyo, Japan. adho.org/conference

Jul 26 – 20 SHARP 2021, “Moving texts:
from discovery to delivery”.
Society for the History of Authorship,
Reading & Publishing. Hosted virtually
by the University of Muenster.
www.sharpweb.org/main/news

Aug 1 – 5 SIGGRAPH 2021, Los Angeles, California.
s2021.siggraph.org

Aug 2 – 6 Balisage: The Markup Conference,
Rockville, Maryland. www.balisage.net

Aug 18 – 22 TypeCon 2021,
Philadelphia, Pennsylvania.
typecon.com

Sep 10 The Updike Prize for Student Type Design,
application deadline, 5:00 p.m. EST.
Providence Public Library,
Providence, Rhode Island.
prov.pub/updikeprize

Oct 1 – 3 Oak Knoll Fest XXI,
“Women in the Book Arts”,
New Castle, Delaware.
www.oakknoll.com/fest

Owing to the COVID-19 pandemic, schedules may change. Check the websites for details.

Status as of 15 October 2020

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568, email: office@tug.org). For events sponsored by
other organizations, please use the contact address provided.

User group meeting announcements are posted at tug.org/meetings.html. Interested
users can subscribe and/or post to the related mailing list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.html.



TUGBOAT Volume 41 (2020), No. 3

Introductory
263 Michael Barr / How TEX changed my life

• math writing, typing, and typesetting

260 Barbara Beeton / Editorial comments
• typography and TUGboat news

265 Peter Flynn / Typographers’ Inn
• To print or not to print; Centering (again); New device driver for old format; What’s in a name

360 Peter Flynn / Historical review of TEX3
• a 1991 review of TEX, written for those experienced in other typesetting systems

259 Boris Veytsman / From the president
• the paradox of early adoption; moving free software forward

Intermediate
368 Karl Berry / The treasure chest

• new CTAN packages, August–October 2020

269 Lorrie Frear / Eye charts in focus: The magic of optotypes
• history and design of the optotypes used on eye charts

286 LATEX Project Team / LATEX news, issue 32, October 2020
• xparse in the format; hook management system; changes in graphics, tools, amsmath, babel

281 Matthew Leingang / Using DocStrip for multiple document variants
• step-by-step example of homework assignments with questions, solutions, and more

275 Kamal Mansour / The Non-Latin scripts & typography
• examples of the wide range of typesetting and font requirements beyond Latin

327 Luigi Scarso / Short report on the state of LuaTEX, 2020
• development status and comparison of LuaTEX and its relatives: LuaHBTEX, LuaJITTEX and LuaJITHBTEX

324 Peter Wilson / Data display, plots and graphs
• simple example of using tables, scatter plots, line graphs, histograms

Intermediate Plus
341 Island of TEX / TEXdoc online — a web interface for serving TEX documentation

• HTTP API for texdoc and CTAN topics

292 Frank Mittelbach, Chris Rowley / LATEX Tagged PDF— A blueprint for a large project
• background and task summary of an extended feasibility study on the LATEX web site

318 Vı́t Novotný / Making Markdown into a microwave meal
• freezing Markdown, Minted, and BibLATEX output for single-run processing

308 Nicola Talbot / bib2gls: selection, cross-references and locations
• selecting, grouping, referencing glossary items with LATEX’s index facilities

348 Petr Oľsák / OpTEX — A new generation of Plain TEX
• modern LuaTEX format with full Unicode support

343 Michal Vlasák / MMTEX: Creating a minimal and modern TEX distribution for GNU/Linux
• a small TEX distribution with LuaTEX and OpTEX that integrates easily on modern systems

Advanced
299 Enrico Gregorio / Functions and expl3

• an introduction to LATEX3 programming with functions and variables

335 Hans Hagen / Keyword scanning
• peculiarities of parsing keywords, catcodes, and performance

337 Hans Hagen / Representation of macro parameters
• considers making unused arguments more efficient and tracing output more consistent

320 Hans Hagen / User-defined Type 3 fonts in LuaTEX
• constructing a font on the fly that can reference images, other fonts, graphics

329 Hironori Kitagawa / Distinguishing 8-bit characters and Japanese characters in (u)pTEX
• analysis and solutions for differing interpretations of byte sequences

346 Igor Liferenko / UTF-8 installations of TEX
• changing TEX’s encoding to support reading/writing Unicode

Reports and notices
258 Institutional members

355 Charles Bigelow / Book reviews: Robert Granjon, letter-cutter, and Granjon’s Flowers, by Hendrik D.L. Vervliet
• detailed review of these two books from Oak Knoll Press on 17th century type designer Robert Granjon

358 Boris Veytsman / Book review: Glisterings, by Peter Wilson
• review of this volume of collected columns from TUGboat, published by TUG

369 TUG Elections committee / TUG 2021 election

370 TEX consulting and production services

372 Calendar


