
TUGBOAT

Volume 41, Number 2 / 2020

TUG 2020 Conference Proceedings

TUG 2020 118 Conference information, sponsors, program

120 Barbara Beeton / Random musings on TUG 2020 online

121 David Walden / Observations on the TEX Users Group’s 41st Annual Conference—
TUG 2020 in the COVID-19 era

123 Paulo Ney de Souza / TUG 2020: A report and future recommendations

126 Jonathan Fine / TEX conferences and General Meetings, this year and next

127 Paulo Ney de Souza / Interview with Javier Bezos

132 Paulo Ney de Souza / Interview with Philip Kime

Multilingual
Document
Processing

139 Hussain KH, Rajeesh KV, Aravind Rajendran / Beyond Roman fonts:
Extra dimensions in Malayalam fonts

145 Steven Matteson / The road to Noto—TUG 2020 keynote address

155 Jennifer Claudio / Typographical explorations in two unicase alphabets

Graphics 157 Peter Flynn / Your personal LATEX bookshelf: Improving your background
in a time of lockdown

Humanities 160 David Walden / Noticing history—a personal view

168 Paulo Cereda / TEX in church: A typographical adventure

Education 171 Astrid Schmölzer, Sarah Lang / Empowerment and teaching LATEX

173 Sarah Lang / Didactical reduction versus references: How to better teach LATEX

Software & Tools 175 Yoan Tournade / LaTeX-on-HTTP: LATEX as a commodity web service
for application developers

179 Boris Veytsman / Using Overleaf for collaborative projects:
First impressions and lessons learned

182 Island of TEX / The Island of TEX: Developing abroad, your next destination

185 Takuto Asakura / The design concept for llmk—Light LATEX Make

188 Patrick Gundlach / Typesetting product catalogs and other database-driven documents
with the speedata Publisher

LATEX 194 Jim Hefferon / A first set of LATEX packages

196 Susan DeMeritt, Cheryl Ponchin / Presenting our LATEX workshop online

197 David Carlisle, Paulo Roberto Massa Cereda, Joseph Wright / learnlatex.org:
Taking LATEX training fully interactive

199 Jennifer Claudio / A review of learnlatex.org

201 Frank Mittelbach and the LATEX Project Team / Quo vadis LATEX(3) Team—
A look back and at the upcoming years

Electronic
Documents

208 Martin Ruckert, Gudrun Socher / The HINT Project: Status and open questions

212 James Carlson / MiniLaTeX: A subset of LATEX for the Web

215 William Hammond / Why the LATEX community should care about SGML

219 Rishikesan Nair T., Aravind Rajendran, Rajagopal C.V., Radhakrishnan C.V. /

LATEX technologies at work—aesthetically beautiful PDFs on the fly from
XML input: XML Page Composition (XPC) micro-service in the cloud

223 Ross Moore / Tagging with LATEX—Part 1: Author considerations

Abstracts 243 TUG 2020 abstracts (Fine, Hugill-Fontanel, Gessler, Ion, Krüger, MacFarlane, Moore,
Mc Sween, Preining, Price, Rhodes, samcarter, Sharpe, de Souza)

246 Die TEXnische Komödie: Contents of issues 2–3/2020

247 Zpravodaj : Contents of issue 2020/1–2

Hints & Tricks 249 Karl Berry / The treasure chest

News 251 Calendar

TUG Business 252 TUG 2021 election

253 TUG institutional members

Advertisements 253 TUG 2020 sponsors

255 TEX consulting and production services

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: tug.org/TUGboat.

Individual memberships

2020 dues for individual members are as follows:
Trial rate for new members: $30.
Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Members may also choose to
receive TUGboat and other benefits electronically,
at a discount. All membership options are described
at tug.org/join.html.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership carries with it such rights
and responsibilities as voting in TUG elections. All
the details are on the TUG web site.

Journal subscriptions

TUGboat subscriptions (non-voting) are available to
libraries and other organizations or individuals for
whom memberships are either not appropriate or
desired. Subscriptions are delivered on a calendar
year basis. The subscription rate for 2020 is $110.

Institutional memberships

Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and TUG. It also provides a discounted membership
rate, site-wide electronic access, and other benefits.
For further information, see tug.org/instmem.html
or contact the TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is.

[printing date: September 2020]

Printed in U.S.A.

Board of Directors

Donald Knuth, Ur Wizard of TEX-arcana
†

Boris Veytsman, President∗

Arthur Rosendahl∗, Vice President

Karl Berry∗, Treasurer
Klaus Höppner∗, Secretary
Barbara Beeton
Johannes Braams
Kaja Christiansen
Jim Hefferon
Taco Hoekwater
Frank Mittelbach
Ross Moore
Norbert Preining
Will Robertson
Herbert Voß
Raymond Goucher, Founding Executive Director †

Hermann Zapf (1918–2015), Wizard of Fonts
∗member of executive committee
†honorary

See tug.org/board.html for a roster of all past and

present board members, and other official positions.

Addresses

TEX Users Group

P.O. Box 2311

Portland, OR 97208-2311

U.S.A.

Telephone

+1 503 223-9994

Fax

+1 815 301-3568

Web

tug.org

tug.org/TUGboat

Electronic Mail

General correspondence,

membership, subscriptions:

office@tug.org

Submissions to TUGboat,

letters to the Editor:

TUGboat@tug.org

Technical support for

TEX users:

support@tug.org

Contact the

Board of Directors:

board@tug.org

Copyright c© 2020 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not

be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a

particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another

language, except that the TEX Users Group must approve

translations of this permission notice itself. Lacking such

approval, the original English permission notice must

be included.

2020 Conference Proceedings

TEX Users Group

Forty-first annual TUG conference

Online

July 24–26, 2020

COMMUNICATIONS OF THE TEX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

PROCEEDINGS EDITOR KARL BERRY

VOLUME 41, NUMBER 2, 2020

PORTLAND, OREGON, U.S.A.

118 TUGboat, Volume 41 (2020), No. 2

The forty-first annual TUG conference

https://tug.org/2020 tug2020@tug.org

Conference committee

Karl Berry
Jennifer Claudio
Rohit Goswami
Robin Laakso
Ross Moore
Norbert Preining
Will Robertson
Paulo Ney de Souza, principal organizer
Boris Veytsman

Sponsors

TEX Users Group
DANTE e.V.
Adobe Inc.
Cary Graphic Arts Collection
Overleaf
STM Document Engineering Pvt Ltd
The University of Adelaide
with generous assistance from many

individual contributors.
Thanks to all!

DANTEe.V.
TEXFolio

TUG2020 program

(All times and days here are PDT=UTC−7.) (* = presenter)

Thursday

July 23

09:00– Cheryl Ponchin*, IDA/CCR-P;

Sue DeMeritt*, IDA/CCR-

La Jolla

Introductory LATEX workshop

Friday

July 24

08:55 Paulo Ney de Souza Welcome

09:00 Steven Matteson, Monotype The road to Noto—TUG 2020 keynote address

10:00 Michael Sharpe, UC San Diego The newest changes to newtx and its relatives and

codependents

11:30 Jennifer Claudio, San Jose, CA Typographical expression of emotions in a variety

of alphabet systems

13:00 Amelia Hugill-Fontanel,

Cary Graphic Arts Collection

at RIT

The creative evolution of type specimens

13:45 David Walden, E. Sandwich, MA Noticing history, a personal view

14:30 Paulo Cereda, Island of TEX The Island of TEX: Developing abroad—your next

destination

15:15 Boris Veytsman, Chan

Zuckerberg Initiative and

George Mason Univ.

Using Overleaf for collaborative projects: First

impressions and lessons learned

16:00 Ross Moore, Macquarie

University, Sydney, Australia

CMaps, Virtual fonts, ActualText for reliable text

extraction and accessibility

16:45 Paulo Ney de Souza*, UC

Berkeley and BooksInBytes;

Vadim Ponomarev, PetrSU

dePSFrag, the final nail in the coffin

TUG2020—Online—July 26–28, 2020

TUGboat, Volume 41 (2020), No. 2 119

TUG2020 program (continued)

Saturday

July 25

00:00 Astrid Schmölzer*, U. Bamberg;

Sarah Lang*,

Karl-Franzens-U. Graz

Empowerment and teaching LATEX

00:45 Jonathan Fine Learning LATEX (and other languages) online

01:30 Joseph Wright, LATEX Project learnlatex.org: Taking online training LATEX
fully interactive

02:15 samcarter TopTeX, a new Q&A site for TEX

03:45 Patrick Gundlach, speedata,

Germany

Speedata Publisher—a different approach to
typesetting using LuaTEX

04:30 Peter Flynn, Silmaril Consultants Your personal LATEX bookshelf: Improving your
background in a time of lockdown

05:15 Frank Mittelbach, LATEX Project Quo vadis LATEX(3) Team—A look back and at
the upcoming years

06:45 Rajeesh KV*,

Aravind Rajendran,

STM Document Engineering

Beyond Roman fonts: Extra dimensions
in Malayalam fonts

07:30 Marcel Krüger, LATEX Project HarfBuzz in LuaLATEX

08:15 Paulo Ney de Souza Interview with Javier Bezos

09:45 Sarah Lang Didactical reduction versus references. How to
better teach LATEX

10:30 Jim Hefferon, St. Michael’s Coll. A first set of LATEX packages

11:15 Paul Gessler, Overleaf Teaching with LATEX and Overleaf

12:00 Paulo Ney de Souza Interview with Philip Kime

21:00 Rishi T*,

Aravind Rajendran,

STM Document Engineering

LATEX technologies at work—aesthetically
beautiful PDFs on the fly from XML input:
XML page composition (XPC) microservice in
the cloud

21:45 Takuto Asakura, U. of Tokyo The design concept for llmk—Light LATEX Make

22:30 Norbert Preining, Accelia,

TEX Live

TEX Live 2020 news; texlive.info services

Sunday

July 26

06:00 Eric Mc Sween Making a new TEX Live release available on
Overleaf

06:45 Yoan Tournade, YtoTech, France Latex-on-HTTP: LATEX as a cloud document
edition service for webapp developers

07:30 Jonathan Fine TEX and LATEX: The user experience

08:15 James Carlson Interactive compilation of LATEX for web browsers

09:45 Martin Ruckert, Munich

University of Applied Sciences

The HINT project: Status and open questions

10:30 Marcel Krüger MetaPost-based, dynamic extensible delimiters
for LuaTEX

11:15 Brandon Rhodes, RhodesMill.org Typesetting with Python

12:00 Patrick Ion TEX and global mathematics

13:30 William Hammond, San Diego Why the LATEX community should care
about SGML

14:15 John MacFarlane, Department of

Philosophy, UC Berkeley

Pandoc for TEXnicians—TUG 2020
keynote address

≈ 15:15 end

120 TUGboat, Volume 41 (2020), No. 2

Random musings on TUG 2020 online

Barbara Beeton

It happened! It worked!
The coronavirus pandemic threw a monkey

wrench in the plans to hold TUG 2020 at the
Rochester Institute of Technology. So a decision
to hold it online was inevitable, if the conference
was to be held at all. With the help of many people,
everything came together and an exciting program
was presented with remarkably few glitches.

First of all, thanks to everyone who worked so
hard to make the conference a success. Will Robert-
son obtained permission from his institution, the
University of Adelaide, for use of their Zoom license.
Paulo Ney de Souza’s experience with online pre-
sentations was invaluable in putting together the
technical setup; Paulo was also the most visible host
during the program, introducing presentations and
conducting two live interviews. Other hosts included
Arthur Rosendahl (né Reutenauer), Ross Moore, Nor-
bert Preining, Tom Hejda, and probably others while
I was asleep. Jennifer Claudio produced the poster,
and helped in many ways with the new online world.
Paulo Cereda created the attendance certificates and
provided feedback on many fronts, as well as his
usual much-needed good cheer. Thanks to all!

Arrangement of the schedule was done largely
by Karl Berry, with consideration given to the time
zone inhabited by each speaker, so that their presence
would be slotted in a “comfortable” time, not when
they would normally be asleep. Since speakers were
located in almost all parts of the world, with the
largest gap being the watery expanse of the Pacific
Ocean, the relevant time zone was requested at the
time of registration. The schedule as presented to
potential viewers was tailored to give times in their

local time zone. (This feature also worked for some
who hadn’t registered, as my husband determined
when he added the schedule to his calendar so he
would know when he could interrupt me for dinner.)

Most speakers made videos of their presenta-
tions. This provided some insurance against unfore-
seen scheduling problems (in the event, only one
speaker was unable to be present at the scheduled
time), and also makes it relatively straightforward
to reprocess what was seen by online viewers, for a
permanent presence on YouTube. Reprocessing is ex-
pected to take some time, perhaps a few weeks, but,
with luck, it should be possible to watch via YouTube
links by the time the proceedings are published.

In addition to the primary Zoom feed, the entire
conference (including “dead” hours) was streamed to
YouTube, and I believe there was another secondary
feed. (Using a new laptop, not fully configured, I
wasn’t able to connect via Zoom, but watched the
YouTube feed, and was thus unable to post interac-
tive questions or participate in the apparently active
chat.) Chat rooms were set up (on Zulip and Gather
Town) for asking questions during talks as well as
for social interaction; this was managed by Rohit
Goswami in Iceland.

The backgrounds shown in most speakers’ videos
were either obviously book-rich or rather minimal —
this latter being recommended for video presenta-
tion. But one background stood out: Dave Walden
sitting on his porch with his back to an enticing
marsh. Unfair to those of us sweltering at 30+

◦C
with humidity.

The wide geographic distribution was made real
in views of two of the hosts, during setup and shut-
down time: Ross, wrapped in a hoodie, commenting
that it’s cold during the Australian winter! And
Arthur, saying goodnight in Sweden at local time
heading on to midnight, with bright sun still stream-
ing in the window.

I heard after the fact that one of the talks had
been Zoom-bombed. Although a disruption at the
time, the talk had been pre-recorded, so later viewers
won’t have to suffer the indignity. Oh, for the days
when politeness was the norm, and not a rarity.

When the videos are posted, I shall first watch
the talks that I missed—too many of them that I
really wanted to see but just couldn’t stay awake.
Then I shall watch the others again, starting with
the virtual tour of the Cary Library at RIT. (It’s
posted at https://youtu.be/7Cm2AcQiUuk.) I’ve
been there before, but it’s a little different every
time, and I’ve never had a fully guided tour; Amelia
Hugill-Fontanel clearly loves her charges, and I’m
hoping that we’re free enough of this virus by next
summer that we can visit in person. For the rest,
there’s something interesting to be learned from every
talk, so I won’t pick favorites here.

Finally, an unintentional feature appearing dur-
ing the live interludes between talks was the presence
of cats insinuating themselves into camera range with
many of the speakers and hosts; cats have their own
imperatives, namely curiosity and being “in the way”.
I think I’ll miss that when we can all get together in
person again.

⋄ Barbara Beeton

https://tug.org/TUGboat

tugboat (at) tug dot org

https://youtu.be/7Cm2AcQiUuk

TUGboat, Volume 41 (2020), No. 2 121

Observations on the TEX Users Group’s

41st Annual Conference—TUG 2020 in the

COVID-19 era

David Walden

The 41st annual conference of the TEX Users Group
(TUG, tug.org) was scheduled to be at the Cary
Graphic Arts Collection of the Rochester Institute
of Technology this past summer.

Like so many other organizations in 2020, TUG’s
board of directors had to cancel its in-person con-
ference on account of the 2020 COVID-19 epidemic.
After a short period of indecision, the board decided
to try to have a Zoom-based conference, and they
asked TUG member Paulo Ney de Souza to organize
the online conference. Paulo had substantial prior
experience organizing online conferences in response
to cancellation of in-person conferences.

I am partially writing this report for people
outside the TUG community and TUGboat readers
who may be interested in how organizations handled
moving from an in-person to an online conference.
Of course, it is also written for TUGboat readers who
attended or may have missed the conference.

Figure 1: Left: Poster for original conference,

designed by Maggie Blaisdell, an RIT graphic design

student. Right: for the online conference, designed by

Jennifer Claudio, a science teacher in San Jose.

The event

The virtual conference was held July 24–26, the same
days for which the in-person conference had been
scheduled; people already had those days blocked out
in their calendars. In partnership with the University
of Adelaide, where TUG board member Will Robert-
son is on the faculty and made the arrangements, the
conference was broadcast on Zoom. The conference
was also streamed on YouTube because it was easier
for some people to watch via YouTube than Zoom;
it also provided a back-up access path.

Conference registration was required, free (un-
like TUG in-person conferences), but with encour-
agement to contribute to TUG. About a seventh of
registered attendees did contribute, as did several
institutions.

The online conference worked as follows:

1. Conference presenters were encouraged to record
their presentations on video in advance and to
pass them to the conference organizers for broad-
cast during the presenter’s slot in the conference
schedule. Participants were given excellent infor-
mation about putting a presentation on video,
available at tug.org/tug2020/pres.html. Af-
ter the presentation was shown, the presenter
was available live to answer questions.

2. On July 23 (the day before the main confer-
ence talks started), an online introductory LATEX
workshop was held; Overleaf generously pro-
vided support for online TEX usage at the work-
shop. The workshop leaders, Sue DeMeritt and
Cheryl Ponchin, had held similar workshops
in person at many previous TUG conferences.
About 30 people joined for more than half of the
workshop; many others were present for shorter
amounts of time.

3. The daily conference schedule was organized so
presenters could give their talks at a reason-
able time within their own time zone (tug.org/
tug2020/program.html). The conference was
run more or less around the clock; times here
are US EDT: day 1, Friday noon to 8:30pm;
day 2, Saturday, 3am to 4pm and 9:45pm to
3am Sunday; day 3, Sunday, 9am to 7pm.

4. For every session, there were declared hosts or
co-hosts with Paulo being the primary host when
he was not taking a break to sleep. The hosts
moderated the sessions.

5. During the sessions about a dozen and a half peo-
ple—usually other speakers, but occasionally
attendees—were designated to be “panelists”
within Zoom. Panelists could unmute and speak
(as the hosts could); the rest of the people watch-
ing a session could not unmute. Everyone par-
ticipating in a session could send questions and
chats (in a text box) which everyone on Zoom
could see.

6. Presenters’ videos or slides resided with multiple
hosts so, when they didn’t work from one host’s
location, they could be shared from another
host’s location. A few presenters showed their
slides and gave their presentations live.

7. There were also virtual breakout rooms where
people could meet for technical discussion or

Observations on the TEX Users Group’s 41st Annual Conference—TUG 2020 in the COVID-19 era

122 TUGboat, Volume 41 (2020), No. 2

socially, using Zulip (zulipchat.com, around
80 people over the course of the conference) and
Gather Town (gather.town, up to 15–20 peo-
ple). These were organized by Rohit Goswami
of the University of Iceland. Both remain active
indefinitely and anyone is welcome to join.

The content

There were presentations on quite a variety of topics.
See again tug.org/tug2020/program.html. As is
typical of TUG conferences, there are a number of
presentations not closely related to TEX.

I saw the presentations as falling into a number
of areas: creating accessible PDF output; TEX com-
munity infrastructure and resources and their use,
including new and commercial ones; teaching TEX
and the user experience; typography; applications of
TEX et al.; connections between TEX and other sys-
tems and formats; extending use into other domains
and to other devices; variations and improvements
on traditional TEX capabilities; and the future of
(LA)TEX, etc., both plans and opinions of where else
to go. There were two keynote presentations and
two live interviews.

There were lots of very fine presentations, and
there are links to the videos of the presentations
at tug.org/tug2020. Readers who did not attend
the conference should take a look. Two that I par-
ticularly enjoyed were by Amelia Hugill-Fontanel
and Paulo Cereda. Peter Flynn’s presentation on
creating virtual bookshelves for use as background
while Zooming was a lot of fun (they can be seen in
the background of Jennifer’s poster on the previous
page). The conference proceedings, the present issue
of TUGboat in which this report is included, will
be entirely open access towards the end of this year.
The proceedings includes papers or abstracts from
all the presentations.

I was struck by the evolution of who is involved
with what in the TEX world since I first attended
a TUG meeting in 2003. Projects go on and evolve,
while who is maintaining or developing them slowly
changes. It is clear that TEX et al. remain in wide-
spread use, there is a vibrant community, and that
the end of TEX is not imminent.

Reflections

There were over 250 participants; in-person TUG

conferences rarely reach 100 participants, more com-
monly 50–60. Being free and not requiring travel for
participation are two evident reasons for the greater
attendance. Twice there were 130 people in a presen-
tation, split roughly two-thirds/one-third between
Zoom and YouTube. There were seldom less than

40 people in a session regardless of the time of day.
(Many more people registered than attended; pre-
sumably some will watch at a later time.)

The conference ran impressively even through
occasional little glitches. Over the course of the
three days, the hosts knew better what glitches to
anticipate and to try to avoid. Non-host panelists
could also unmute briefly to provide helpful ideas of
getting around glitches. There was one unpleasant
Zoom bomb—hard to avoid with free registration.

Recording presentations in advance was prob-
ably a first experience for most participants. They
seemed up to the task. In addition to decreasing the
chances for Internet problems, prerecording tended
to result in graphically nicer presentations which
may have been better organized than without pre-
recording. Also, very usefully, they didn’t overrun
their time slots as live presentations can do.

Having the conference be virtual had other ad-
vantages. It was nice to be able to leave the “meeting
room” without anyone knowing. It was nice to do
other things while in the meeting without appearing
rude to the speaker, for instance, to eat, do other
computer work, or tune into a baseball game on a
separate screen.

There was lots of side chat during presentations,
mostly extending from something a speaker had said.
This did not seem disrespectful to the speaker as it
would have in a live meeting room. The chat was
often useful, such as someone giving the url of a great
example of something the speaker had mentioned.

Holding this online conference on short notice re-
quired massive volunteer dedication and effort, which
I am sure was greatly appreciated by the TUG board
and conference participants.

Futures

There is hope that the 2021 TUG conference can be
held at the Cary Graphic Arts Collection at RIT; of
course it will depend on the global health situation.
If not, TUG has learned a lot about how to have a
successful online conference and the next one can
be even better. If it can be live at the Cary, some
observations from this year, such as the benefit of
recording presentations in advance, could still be
applied; there would likely be provision for some
remote presentations.

The world is moving increasingly to digital com-
munications. Recovering from having to cancel this
year’s in-person conference gave TUG a start to where
the world is moving.

⋄ David Walden

walden-family.com/texland

David Walden

TUGboat, Volume 41 (2020), No. 2 123

TUG 2020: A report and

future recommendations

Paulo Ney de Souza

This document expresses my own opinions, and lack-
ing, due to time constraints, are opinions of viewers
and attendees of the conference. These are my rec-
ommendations for future online meetings and even
in-person meetings with an online component.

The organization

The entire conference committee, Karl Berry, Jen-
nifer Claudio, Rohit Goswami, Robin Laakso, Ross
Moore, Will Robertson and Boris Veytsman worked
very closely and diligently due to the time constraints,
the cancellation of other TEX meetings and the wish
to deliver a good quality program, despite the uncer-
tainties of the COVID-19 pandemic around us. Two
other TUG board members, Norbert Preining and
Arthur Rosendahl, joined us for diligent work and
late night meetings that made this all possible. I
am forever indebted to them all and several other
volunteers.

Early on we were grateful to attract an inno-
vative and strong program, creating a series of con-
versations online and two keynote addresses with a
broader appeal. Steven Matteson from Monotype
and John MacFarlane from the University of Califor-
nia, Berkeley joined us with two master addresses.
Javier Bezos and Philip Kime participated with inti-
mate conversations on what it is like to do work on
TEX and how it really gets done.

A field of very strong lecturers followed and I
am very thankful to all of them for making such a
nice meeting.

Hard work is required, especially if we are not
able to pay hundreds of thousands of dollars for
meeting organization, as some societies are doing
right now. As might be expected, there are many
areas that we need to improve, especially “reaching
out” to a public that have not been able to attend a
TEX conference before.

This report is a humble attempt to try to start
that conversation.

The workshop

We started out by organizing the traditional work-
shop in Beginning LATEX as TUG has done for many
years. About 40% of the enrollees in the conference
said they planned to participate; it was attended
by 60 people at its peak. Cheryl Ponchin and Sue
DeMeritt have recorded many hours of video lec-
tures showing basic techniques and usage in both

TEXmaker and Overleaf. We played three hours of
it as part of the workshop.

Thirty out of the total stayed for the whole
three hours, with a clear over-representation of Latin
America among the attendees—most likely due to
the timezone we used for this part of the conference.
Attendees were engaged and the chat was used for
discussion not only of the lecture, but of the methods
and tools used by Cheryl and Sue.

A few of the students have commented that
they watched and engaged the workshop with closed
captions and automatic translation on YouTube.

My recommendations would be:

¶1. Include an Intermediate Course, expanding on
the collection of videos we have started to build.

¶2. Replay the lectures in intervals of 6-hours and
12-hours later to cover most of the globe. The
challenge here is to find able bodies to answer the
chat, especially outside Cheryl–Sue timezones.

¶3. Create a special parallel session on Zulip, pos-
sibly named “Ask the Expert” where people
would for a certain number of hours be able to
engage and talk to experts on specific topics of
interest, for example, BibLATEX, TikZ, . . .

¶4. Create a library of instructional videos on LATEX.

¶5. Create a video about help resources for LATEX:
tex.stackexchange.com, learnlatex.org,
TopTEX, . . .

¶6. Develop a library of instruction on specific top-
ics, for instance, typesetting CJK languages in
TEX.

The conference had a non-trivial share of talks
on “learning LATEX”. TUG could promote a special in-
terest group in Learning LATEX to analyze these and
possibly expand the reach of the Workshop. Needless
to say, even though it is not on the mind of most
TEXnicians, the beginner’s workshop is an extremely
important component of disseminating TEX. With
that comes one further recommendation:

¶7. Build a SIG on Learning LATEX.

The conference

The program was strong and the eventual schedule
of (more or less) 3 timezones in 3 days pleased all the
speakers and especially the European audience. The
presentation schedule, worked out mostly by Karl
Berry, not only placed talks together by subject, but
also offered them to speakers at a reasonable time.

The manual for chairs written by Will Robertson
was fundamental to the smooth operation of the
conference.

TUG 2020: A report and future recommendations

tex.stackexchange.com
https://learnlatex.org

124 TUGboat, Volume 41 (2020), No. 2

I was happy to be able to offer a document for
speakers on creating and recording online presenta-
tions. With Ross Moore’s processing into an accessi-
ble PDF, it remains available at tug.org/tug2020/
pres.pdf.

Attendance

A total of 360 people enrolled for the conference
and attendance at a peak was about 130, a mix of
many old timers and some new faces, and quite a high
percentage of anonymous viewers. (So the benefits of
requiring a validated registration, mentioned below,
need to be balanced against the reduced participation
if anonymous viewing is not allowed.)

Coordinating a social scene complementary to
the conference proved to be a bit harder than we
expected. Most platforms imposed unnecessary re-
striction on enrollment, assignment and use. We
moved from Zoom to Google Meet to GoToMeeting
and finally settled on Zulip and Gather Town.

The entire social scene was set up by Rohit
Goswami. We did not have much time to publicize
it properly and redirect people there, but despite
that, the Zulip instance had 80 people on it, some
spirited discussion and hopefully people will continue
to discuss there.

We ran a single ad for Gather Town at the top
of the schedule page and it was well used given the
timing. Groups of up to 15 people hanging out while
some stragglers roamed free in the map (peak usage
of around 23 people).

¶8. Evaluate the social interaction platforms to find
something to complement the main platform
used by the conference.

Technicalities

Next I move over to some technical issues that we
should address in the interest of consistency, de-
creasing the workload and put more reliability in
the process, by introducing more automation. This
section and the next three are intrinsically related.

Zoom decides on the resolution at which to
record a meeting depending on several factors in-
cluding the resolution of the original source material,
the server that is playing the material, and even
available bandwidth. Because of this and some other
limitations—one being the impossibility of muting
yourself while playing any material—Zoom should
be run on a server by itself, and not mixed with other
tasks of the chair such as tending to email, chat or
keeping the schedule of the conference.

We ran the whole conference on a flatfile data-
base, but the frequent need to deal with:

• different roles for the same person

• talks being given by more than one person
• frequent calculations with time
• connection with Zoom API for controlling access

points to the need for an RDBMS that would simplify
and automate various tasks. It would also system-
atize the development of support tools by different
contributors and be more maintainable in the end.

We ended up having to deal with time in 4 differ-
ent timezones: PDT, UTC, CEST and the attendee’s
own timezone. Most of this would have been easier
with an RDBMS.

This time around, integration with Zoom and
researchseminars.org required intense copy/paste
of data, treatment of spreadsheets, etc., all of which
would be simplified. So proceeding with the list:

¶9. Run the Zoom server on a dedicated machine—
not laptops.

¶10. An RDBMS to make some of the services easier
to implement and maintain.

¶11. Tighter integration with Zoom.

¶12. Better integration with researchseminars.org.

Given the short time to prepare for the confer-
ence, we did not have time to evaluate the alter-
natives to Zoom and Google Meet, especially open
source platforms like Jitsi. Since Zoom was made
available in partnership with the University of Ade-
laide, it is quite possible that other options are not
going to be a match for that, due to the necessity to
rent, set up, and maintain a good server. Nonethe-
less, since we are strong open source supporters, it
behooves us to:

¶13. Evaluate the use of Jitsi (jitsi.org),
MIT Unhangout (unhangout.media.mit.edu),
and Apache OpenMeetings (openmeetings.
apache.org) vs. Zoom.

Automation

We did automate many tasks, but need to go much
further. Examples are the prompter for the talks, the
schedule page and the generation of the title-cards.

The work that is needed live at the conference,
such as beginning/ending a talk and running of the
announcements for the upcoming lecture, required
manual labor and login privileges by the chair, and
so took noticeable time and was prone to error. In
addition, the list of participants, issuing of certifi-
cates, and arrangements and classifications of paper,
slides and videos was done by hand. They can all be
automated with cron and a submission suite, and the
chairs should only need to act in case the schedule
gets late or some other altering occurrence, ideally
via a web interface.

Paulo Ney de Souza

https://tug.org/tug2020/pres.pdf
https://tug.org/tug2020/pres.pdf
https://researchseminars.org
https://researchseminars.org
https://jitsi.org
https://unhangout.media.mit.edu
https://openmeetings.apache.org
https://openmeetings.apache.org

TUGboat, Volume 41 (2020), No. 2 125

We should expand the prompter display inter-
face to be a full dashboard showing all the aspects
of what is happening automated in the background
and how to revert anything, including small tasks
like record and stop recording.

The line of thought here is to free the chair and
hosts for the work of chairing and hosting. Recom-
mendations are:

¶14. Automate the live talk on/off.

¶15. Automate displaying of the title-cards.

¶16. Automate list of participants.

¶17. Automate issuing of certificates.

¶18. Our server should automatically receive submis-
sions from speakers and classify slides, preprints
and movies for the talks, put them in the right
places and update the schedule accordingly.

Redundancy

All chairs had access to all files necessary via Dropbox
and this worked well, but last-minute impossibilities
and even an unsuitable network connection can make
the work of a chair very painful. To accommodate
for that we should train and should always have
available a replacement chair and a co-host:

¶19. We should have redundancy of chairs for every
session—disasters can happen!

The website

The website now has a huge lack of conformity. Dis-
playing the times in the reader timezone did require
a bit more information on the page and a framework.
This discrepancy should be resolved and some confor-
mity brought to the display of this new information.

¶20. Make all pieces of the website consistent.

Social media strategy

We did not have much time to build a social media
strategy, either for advertising the conference or to
promote the meeting among possible attendees, and
a last-minute emergency with one of the organizers
almost spelled disaster. We were rescued by Rohit
Goswami, who quickly built on the efforts by Jennifer
Claudio and added the social rooms to the meeting.
These should all be tied to the usernames used to
enroll for the conference.

¶21. A social media strategy for publicizing the con-
ference in at least four channels:

(a) TEX user groups worldwide

(b) Our own TUG membership

(c) Facebook

(d) Twitter

¶22. Automated Twitter and Facebook feed for every
talk.

¶23. Ads on StackExchange.

I also emailed every author of articles in TUG-

boat over the last two years and that was an arduous
task. Having a submission sequence would make that
an easy operation.

¶24. Invite submissions by authors of TUGboat and
other TEX publications.

More volunteer help

More volunteers with the conference are always wel-
come. We can use help managing the chat streams
on Zoom, YouTube and Zulip during the workshop
and conference:

¶25. Manage the chat in YouTube and feed back into
the Q&A.

¶26. Help with the chat on Workshop.

¶27. Help with “Ask an Expert”.

Work coordination

Assignment and cooperation of work among volun-
teers is always a hard issue because of people’s avail-
ability and set of skills, nonetheless we should use
systems that permit a more transparent and easier
to deal with list of assignments and expectations.

The back room chat of organizers in WhatsApp
was fundamental to solve a few problems. Same goes
for sharing all files for the conference in Dropbox.

¶28. Use a task management like Asana, Trello, etc.,
for work coordination.

¶29. Use preset online meetings for touching base on
difficult issues.

¶30. Texting on WhatsApp for backroom of the con-
ference organizers.

Speakers

The work and interaction with speakers is not simple.
We have spent more time processing 5 (problematic)
talks than the other 35 added together. Some stricter
guidelines are called for because of the added work
necessary to check the videos.

The live talks worked wonderfully well, but
to keep things consistent in Zoom, we should give
stricter directions to speakers on setting the reso-
lution of their monitors. That will help obtain a
smoother and consistent recording of all talks.

Some talks are written to be pre-recorded (Paulo
Cereda’s were two excellent examples of that) and
some are best live (for example, Ross Moore’s talks).
Thus the choice should be left to the speaker, but

TUG 2020: A report and future recommendations

126 TUGboat, Volume 41 (2020), No. 2

with the request for a pre-recording whenever possi-
ble to cover for a no-show or technical problems at
the time of the talk.

We should also invest in identifying pre-recorded
talks that can be used to fill-in for something unex-
pected in the schedule.

The speaker–prompter built by Norbert Prein-
ing worked well in reminding all speakers of their
slots as their time approached, and should be ex-
panded, as noted above.

¶31. Move up deposit date for video recordings.

¶32. Strongly suggest prerecording, even if for backup
purposes.

¶33. Stricter technical guidelines for online talks shar-
ing video.

¶34. Meet with the speaker over Zoom on the setup
that will be used for the talk.

Preservation

At present, the original videos are archived by Nor-
bert Preining (who did much of the processing work
on them). This is fine, but we should probably make
it official:

¶35. Define an explicit strategy to archive videos.

Video processing

The processing of the videos should start immediately
after the recording is made available by Zoom so we
can shorten the time to get them up on YouTube.
And some of that could involve the speaker, namely:

¶36. Allow speakers to edit their own closed captions.

Live discussions

The interviews seems to have worked, despite the
lack of a good interviewer. Perhaps we could do
the interviews in advance, and find a knowledgeable
transcriber/editor to help make them available as
text at the conference. We should make that a staple
of all meetings, and even go further, with some panel
discussions, as has happened at past TUG meetings.

¶37. Continue with the interview sessions.

¶38. Organize round table discussions.

⋄ Paulo Ney de Souza

paulo (at) berkeley dot edu

TEX conferences and General Meetings,

this year and next

Jonathan Fine

I’m writing about our TEX Conference next year
(2021), and our TEX Conference and General Meeting
this year (2020). A satisfactory result in difficult
circumstances counts as a success, or perhaps even
better. So adverse were the conditions for this year’s
TEX Conference that it must be counted as a success,
even though flawed in several important ways.

A major flaw is that ordinary participants had
little opportunity to speak after the talks, or with
each other at other times. In short, for most partic-
ipants the social aspects were limited. In addition,
there was not a TUG General Meeting. So far as I
know, every previous TUG conference had a General
Meeting as part of the event.

On 5 May 2020 the TUG Board decided unani-
mously to cancel both the TEX conference and the
TUG General Meeting (both scheduled to take place
in-person at RIT, Rochester, New York). On 2 June
we were told that the TEX conference would go ahead
online. (There’s no recorded Board decision enabling
this.)

It would be unfortunate if, in 2020, TUG does
not have a General Meeting. Such a meeting is, I
believe, a formal legal requirement arising from our
bylaws and also our non-profit status. However, it’s
not too late. We can hold the General Meeting later
this calendar year!

Many were surprised that our community was
able to hold an online conference, for the first time,
and in these adverse circumstances. I’m so pleased
that so many of us, including myself, went outside
our comfort zone, and contributed what we could.
This includes a wider than usual range of speakers.

And together, this was enough. Once it became
clear we would overcome adversity, and the confer-
ence would happen, then doubt and fear reduced,
and we became stronger and more capable.

Much of the credit must go to Paulo Ney de
Souza, particularly his calm and supportive presence,
his commitment and initiative. It seems to me he
was the main force and lead for the organisation
of the conference this year. He did the same for
the 2018 TEX conference that coincided with the
International Congress of Mathematicians in Rio de
Janeiro. Paulo has never been on the TUG Board. I
think this energy and view from outside was helpful.

Whatever the public health situation, having a
large on-line component to the 2021 TEX Conference
would be very valuable. It will increase attendance

TUGboat, Volume 41 (2020), No. 2 127

and diversity. It will enlarge the community. And
where allowed, as part of the Conference we can
meet in small socially distanced events. This would
help restore the social element to all of us. I’d like
an international on-line General Meeting and social
events to be part of next year’s Conference.

I can think of nothing more important now, for
ensuring success next year for both Conference and
General Meeting, than there being an online General
Meeting this year, to follow on from the Conference.
Let our present success be the foundation for better
circumstances and outcomes next year!

⋄ Jonathan Fine

jfine2358 (at) gmail dot com

jfine2358.github.io

Interview with Javier Bezos

Paulo Ney de Souza

Editor’s note: This interview took place on 25 July
2020, during the TUG 2020 online conference.

Paulo Ney de Souza: Nice to meet you, Javier.
Your first time, and half in person.

Javier Bezos: You’re welcome.

PN: First let me introduce Javier to the people here
that may not know him. 10 years ago he has assumed
maintenance of one of the most basic and most fa-
mous packages of LATEX, which is Babel, and is also
someone deeply interested in issues of production
and use of TEX in production, and so forth.

Welcome to TUG 2020. Let me see if I can start
shooting you some questions.

First thing I’d like to hear is your background.
How did you grow up, how did you get here? Can
you tell us a little bit about your background, inde-
pendent of TEX?

JB: Well, I was born in the Canary Islands, al-
though I spent most of my life in Madrid. I think

there is nothing special to tell, or it doesn’t seem so
to me.

My liking for language issues and the world of
books, go back to my high school days because I
was one of the founders of the school paper, and I
was passionate about having a nice look with all the
letters in their places, are the types right, . . .

Then my parents asked me if I’d like a Spec-
trum.1 And this changed my life in many ways,
because I discovered something for which I had a
natural intuition. I wasn’t interested in games. They
quickly bore me, and I began to program. I pro-
grammed a little word processor, and then I started
to write in assembly language. When I remember
now how much my parents spent in books on the
Spectrum—; they were difficult to find, and very
expensive. I’m very grateful to them for supporting
me in almost anything when I wanted to dedicate
myself to something.

When I had to decide what to study, the first
thing I thought was physics, physical science. But I
suddenly changed my mind. And finally, although
it seems a bit strange, I decided to study radio, and
that’s what I did for seven years in a classical music
radio station.

But even then, I didn’t stop my TEX jobs and
other subjects and actually right now my main ac-
tivity is as linguistic advisor, which has little to do
with the radio, but I am a person with very broad
tastes.

PN: Can you tell us how did you meet TEX for the
first time?

JB: Thanks to my wife’s thesis. Wife now; she was
my girlfriend then. Before, I already worked with
Ventura, an incredible program, and I must confess
that at first, LATEX seemed incomprehensible to me.

I got the Knuth book and it looked to me like a
mess. But I could cope with the book by Kopka and
Daly, and there I began to understand what it’s all
about.

In Spain, there was no TEX group, so I signed up
for DANTE. So in addition to learning more about
TEX, I practiced a little German.

I already said I like programming. So I started
writing small macros, then not so small macros, and
finally packages. I usually say that there are those
who solve Sudoku to entertain themselves, and I
program. Especially, but not exclusively, with TEX.

PN: Interesting, interesting. What changes have
you seen in the document production world and in
the TEX world during your career, since this time
that you began, all the way to now?

1 An early UK home computer from Sinclair.

128 TUGboat, Volume 41 (2020), No. 2

JB: The love for a well-made book at all levels,
doesn’t seem as popular as it was years ago. The
phrase “Go forth now and create masterpieces of
digital typography” doesn’t make a big impression
today. I also notice there is a great tendency to be-
lieve that typographic skills are built on the handling
of a program when that’s just the starting point. The
point is, design is regarded more as the creative as-
pect than the practical one for the needs of actual
documents.

But let’s be fair. We can’t say the love for a
well-made book was universal formerly, either.

PN: Aha. I had an interesting discussion with Boris
yesterday, and it seems that TEX, what with the size
of the user base, TEX is one of the world’s oldest
subsystems. And that is 1977 to now, quite a few
years. Do you think that it will continue forever?

JB: I think now there may be a little revolution
going on with the arrival of LuaTEX. It has its
loose ends, but it’s an important advance, and its
possibilities remain to be seen.

In fact, I’m using it a lot in Babel, because it has
allowed me to introduce functions for non-standard
hyphenation and for transliterations. Not to mention
bidi writing and line breaking where we can have
almost absolute control.

PN: What packages, what kind of tools do you
find essential to your work right now as a document
author, as well as a producer; what do you do use
on a daily basis?

JB: I don’t think that there’s a simple answer for
this. When I start reading LATEX package manuals
to see what they are all about, I’m still amazed at
what they can do. And sometimes I wonder how I’ve
been able to live without a certain package.

The packages I use the most are the standard
ones: hyperref, graphicx, my own packages, and
also a package by Zdeněk Wagner for the page layout
(zwpagelayout).

PN: And so when you’re producing a book do you
use exactly the same thing as an author?

JB: No, it depends on the project. . .

PN: And what do you use mostly with that flow, to
produce your own work? Do you use LuaTEX mostly
for producing your own work?

JB: I usually write my own macros. So I like to
reinvent the wheel.

PN: [laughter] Let me ask you this. You are a guy
that knows a lot about other issues, especially things
like typography and orthotypography. Do you think
it’s worth spending a lot of time on certain issues in
typography, even though very few people notice?

JB: Oh, sure, they notice it, although without real-
izing it. I want to look at books which invite reading.

The problem is there are publishers who believe
the opposite, and not only in the field of typesetting,
but also, for example, in copyediting. I don’t know
how the situation is in other countries, but in Spain,
many media have dispensed with copyediting.

PN: Aha, so the production is substandard, as we
evolve into the 21st century.

JB: Yeah.

PN: Do you use other tools besides TEX in your
work?

JB: In my day job, no, technically no. As I’m
mainly a linguistic advisor, I use it for complementary
tasks. I work at a foundation called Fundéu, directly
linked to the Efe news agency, and partly to the
Spanish Royal Academy, whose function is to help
the media in their use of Spanish.

But there can be a connection, because writing
and pronunciation of names from other languages
is another of the tasks of the foundation, and I’m
something like the specialist in romanizations. So
I can see there is a connection, even if it’s more
between my daily work and what I’m doing in Babel.

PN: You do a lot of work on a certain area where
not very many people understand exactly what it is,
which is orthotypography. How did that come about,
how did you become interested in such a specific area
of typography? But first, would you explain to us
what orthotypography is?

JB: Basically, it is not very different from a com-
bination of orthography, style and typography. I’m
not sure exactly what orthotypography is, but well,
in Spain it is a concept you should use very often.
And if I’m right, in French too.

PN: On this point of orthotypography, I want to
bring an issue which is very dear to mathematicians.

There are two camps in mathematics in terms of
punctuation and in formulas which are central to a
page. There’s the people that believe that it should
be punctuated, and there’s the people that believe
it should not, that punctuation is to use a pause,
and that, and that if you have a formula which is
centered on the page, that pause already exists.

What is your idea on that?

JB: If you put it when the formula is in line, at
the end of a sentence, why shouldn’t we put it when
displayed?

Anyway, in typography, what matters is to have
good taste. Good taste and good eye. Then we
can have your rules of style. But if they don’t work
for us in a certain context, you shouldn’t hesitate
to think of other possibilities. After all, it’s still

Paulo Ney de Souza

TUGboat, Volume 41 (2020), No. 2 129

an art, like painting, like composing music. Music
may follow many rules when we are learning, but the
masterworks are being created by breaking the rules.

PN: Interesting. Very interesting.
Let’s talk about Babel a little bit. I mean about

10 years ago, a little bit more than 10 years I think,
you took over as the main lead maintainer of one of
the most used packages. How has it been? Tell us.

JB: My interest in the localization issues came from
much earlier. Already in 1997 I was considering cre-
ating an alternative to Babel, which I called Polyglot,
but it wasn’t long before I realized it was a futile
effort because Babel, after all, mostly did the job,
and it was the standard.

Then came another opportunity, Omega, by Yan-
nis Haralambous and John Plaice, and I started work-
ing on it. This time, the package was named Mem, a
Hebrew letter, but we know that Omega sadly didn’t
develop its full potential. So Mem also failed.

Then Frank Mittelbach proposed to me to join
the LATEX team (I think that was in Brest, EuroTEX
2003), which I gladly accepted because that way I
could help in this area, and possibly others as well.
And I still continue.

PN: How do you do your work on Babel? How do
you connect to authors, languages, and the produc-
tion of the .ldf files . . . could you tell us a little
bit more about that workflow? How do you find the
people to help out with the languages?

JB: In many cases, I generally don’t like interfering
with the work of those who develop national styles,
some of which are supported by their respective
user groups. But I’m always willing to help and
collaborate. Also, if I discover there is someone
interested in supporting some language, I contact
him, as I did for example with the group for Kurdish.

On the other hand, I like to investigate by myself.
I’m self-taught, self-taught by nature. And I like to
learn things by myself. I think I’m good at it and I
really enjoy doing it.

Sometimes it means you end up reinventing the
wheel. Sometimes that wheel is worse than the others.
Other times it turns out to be better. Of course,
that doesn’t mean I don’t like suggestions, help or
whatever. Quite the opposite.

PN: I was doing some research a few weeks ago
on Babel and other things that you have written in
order to understand your work a little bit more, and
I came across with a package that you maintain for
the language of Guarańı. This is my mother’s tongue.
Literally. My mother was a speaker. . .

I was extremely surprised to see this. This lan-
guage is spoken by a lot of people, but without formal

production of books. It’s a language spoken in South
America, from the north of the Amazon, all the way
to the south, by indigenous people of South America.

How did you connect with this language?

JB: So many years ago. I just don’t remember why
I did it. It’s true that for a time, I was interested in
the languages of the Spanish-speaking countries, but
I don’t remember more details, unfortunately.

PN: Ok. I guess one question that a lot of people are
interested in is about HarfBuzz, how LuaHarfBuzz
is changing, and may change Babel.

JB: Very little, with relation to the original LuaTEX
which I have been working on for some years.

Mainly because HarfBuzz is about fonts, not
about languages, and sure, the fonts contain the
information about how to render a script, but I think
HarfBuzz is not exactly part of Babel. More of the
LATEX kernel.

There is a possibility to make HarfBuzz the
default shaper, but as Marcel [Krüger] explained, I
think it’s not a good idea. Because there is a problem
with how HarfBuzz deals with hyphenation points in
the Latin, Cyrillic and Greek scripts, because many
hyphenation points are lost. It depends on the font,
but in those scripts in most cases the best option is
to stick to the default renderer.

PN: Where do you see the future of Babel?

JB: Serving as a framework to localize and inter-
nationalize documents at several levels. Until now,
Babel has followed a model which I call vertical,
based on language styles which are basically self-
contained black boxes. That’s fine in monolingual
documents, and in fact is and will continue being the
recommended method in these cases.

But when we need to combine several languages,
we can have serious internal relationship problems.
So I’m working on a new model, which I call hori-
zontal, where languages can be defined in a descrip-
tive way, with the help of .ini files based on key–
value pairs.

That allows us to reuse a solution for one script
in another without too much hassle. For example,
traditional line breaking in Amharic turns out to be
almost identical to that of a southeast Asian script.
So it was enough to adjust the keys to get the right
result.

PN: I have a specific question that comes from
the mathematicians’ camp. . . will there be a day
in which we will be able to choose mathematical
functions based on their own languages?

JB: It’s something that has been requested some-
times, but on the other hand, it’s a controversial
issue—should they really be translated? And after

Interview with Javier Bezos

130 TUGboat, Volume 41 (2020), No. 2

all, it can be solved easily with \renewcommand, so I
wonder if it’s something necessary in Babel. Well, I
think it should not be ruled out beforehand, but it’s
not one of my priorities.

PN: The biggest complaint I hear, Javier, is that if
you have a big shoe, your foot grows, and then you
start seeing books in Portuguese with “sine” instead
of “seno”.

JB: The same in Spanish, yes. And there are vari-
ous others written with an acute accent, traditionally.

PN: So let me ask you about some modern questions.
One of them is about Polyglossia. Polyglossia was
sort of started right around the time that you became
a development leader on Babel, and Polyglossia got
started as a replacement for Babel for X ETEX and
LuaTEX. Then the development of Babel picked back
up again with your work. Do you see some synergy
happening between the two packages?

JB: Well, actually Polyglossia is older, about five
years I think, and on the X ETEX list some people even
suggested I take charge of it, but I did not for several
reasons. One of them was my personal situation at
the moment, but another was my experience with
Polyglot, which I mentioned earlier.

By the way, if you wonder if these names are
related, the answer is yes, they are. There was
discussion about a multilingual package for X ETEX
and I proposed this name because I wasn’t going
to use it any more. And that name, but in Greek
instead of English, stayed. I don’t remember who
proposed the translated name, but it was a good idea.

When I created all the new .ini files, I did it
thinking they could be useful for both Babel and
Polyglossia as a shared resource, and not only for
them, but also for other packages.

Well, this work was done and now we need to
fill it, which I’m doing gradually. There are already
about 200 more-or-less completed languages or easily
completable, and there are also templates for about
500 languages, and they can be a starting point.

PN: So I see that you are, you seem to be fully
BCP 47 compliant, at least on the naming of the files
and so forth.

JB: Yes, sure, we can already deal with BCP 47.
What’s more, you don’t even need to declare lan-
guages in the preamble, because Babel can load the
locales on the fly, with some limitations.

Thinking about use cases, I realized there are
texts generated externally, and the main document
may not have the slightest clue of the languages
needed. An example can be a bibliography, with
many names and titles from a multitude of languages.

PN: Let me ask you a question now about prepro-
duction and production using PDF. The open source
community tools seem to be completely unprepared
for dealing with prepress. We have ways to check
PDFs, we have problems with resolution, colorspace,
flattening, transparency, overpainting, and I see that
you started doing some embryonic work on the pack-
age colorspace. Can you tell us where were you
going then?

JB: Yes, this is a problem. I’m sure the work in
progress will bear fruit. For example, Joseph Wright
and Ulrike Fischer are working on improving the
color support in LATEX, so that what colorspace

does will be better done and avoiding the conflicts
between different packages trying to generate PDF

code directly.
On the other hand, we should never think a doc-

ument created with, say, InDesign is automatically
ready for printing. I myself have suffered from poorly
created documents by designers who think it’s all
about creating frames and things like that. They may
not even know how to correctly import a PDF image.

Here again, I think that LuaTEX could be of
great help. For example, I think it should be possible
to write a utility to convert calibrated colorspaces.
I’m not sure, but I think ConTEXt can do it.

PN: That’s great news. LuaTEX can be used for
reproduction. So do you plan to take colorspace

into a full color production package for PDF?

JB: For the moment, my work on colorspace has
stopped. There is no point in continuing with it if
its features will be supported directly in the LATEX
kernel.

PN: Thank you. We have a question from Michael
Topp, on the net. What compilation engine do you
generally use or recommend?

JB: I use LuaTEX since many years ago.

PN: Thank you very much, Javier. I really appreci-
ate your coming for this interview with us.

JB: Thank you.

⋄ Paulo Ney de Souza

tug.org/tug2020

A Addendum: Recent advances in babel

Javier Bezos

The purpose of this addendum is to highlight some
of the progresses made in babel for it to become,
as explained in the interview, a localization frame-
work. New features are announced and explained in
some detail in the babel wiki, github.com/latex3/
babel/wiki.

Paulo Ney de Souza

TUGboat, Volume 41 (2020), No. 2 131

No program can be considered finished. The
world continues to evolve, and there will be areas
deserving improvements. So, expect new features in
the future. For example, at the time of this writing,
there is work in progress to deal in a coordinate way
with chapter counters (Hungarian, CJK), lists and
other labels.

Locale data. There is a large database with .ini

files directly usable by babel, based in data taken
from several sources, including the Unicode Common
Language Data Repository.

I think these files will help to solve what I think
is one of the most common problems when creating
a language style based on TEX code, namely, there
are linguistic communities without a TEXnician at
hand to develop it. There are templates for about
500 languages in the GitHub repository, which can
be used as a starting point.

One of the main advantages of the .ini files
is that the data is provided in a descriptive way.
For example, the file for German (babel-de.ini),
contains things like:

[identification]

...

name.local = Deutsch

name.english = German

name.babel = german

name.polyglossia = german

tag.bcp47 = de

language.tag.bcp47 = de

tag.bcp47.likely = de-Latn-DE

tag.opentype = DEU

script.name = Latin

script.tag.bcp47 = Latn

script.tag.opentype = latn

...

[captions]

preface = Vorwort

ref = Literatur

abstract = Zusammenfassung

bib = Literaturverzeichnis

...

[date.gregorian]

date.long = [d].[][MMMM] [y]

date.short = [dd].[MM].[yy]

months.wide.1 = Januar

months.wide.2 = Februar

...

I invite all linguistic communities to complete
them, and to make suggestions and feature requests
for any language to improve the LATEX support in
the three main engines. Feel free to fork the GitHub
repository and to make pull requests.

BCP 47. BCP 47 tags can be optionally used to
select languages, but note since a two- or three-letter

word can be a legitimate language name, BCP 47
codes are not activated by default. In fact, the
BCP 47 tags have been defined in babel for years,
but they were not easily accessible nor usable. In
the most recent versions, you can select a language
(its most basic features) merely by writing something
like \foreignlanguage{zh-Hans}{...}.

I wouldn’t like to go too fast in a more or less
complete implementation of the subtleties of BCP 47
tags. I prefer to go step by step, much in the spirit
of continuous development, but now the most basic
tags are already there.

Line breaking and bidi writing. Thanks to
LuaTEX, babel supports bidi writing without ex-
plicit markup and the three basic methods for line
breaking: CJK, southeast Asian and Western. You
can even change the properties related to them for
specific characters; for example, the direction may
be changed from ‘Arabic letter’ to ‘Other neutral’.

Automatic font and language selection.

Sometimes, you need to insert short pieces of text
in a different script from the main one; for example,
some Bangla words inside Bulgarian. Now, language
identifiers (\language and \localeid, which cur-
rently apply mainly to line breaking) and fonts can
be automatically set based on script blocks, without
explicit markup.

Transformations. Another feature related to
LuaTEX, still under development, although the ba-
sic features are already usable, are the commands
\babelprehyphenation& \babelposthyphenation,
which allow transliterations and non-standard hy-
phenation. For example, with the following settings
“ff” is automatically divided as “ff-f”, and also “mm”,
“tt”, “rr”, “pp”:

\babelposthyphenation

{german}{([fmtrp]) | {1}}

{

{ no = {1}, pre = {1}{1}- },

remove,

{}

}

Counters. They can be defined in ini files by enu-
merating the elements:

lower = a b c d e f g h i l m n o p q r s

The same applies to additive numerals; examples are
Greek, Syriac and Japanese.

⋄ Javier Bezos

jbezosl (at) gmail dot com

Interview with Javier Bezos

132 TUGboat, Volume 41 (2020), No. 2

Interview with Philip Kime

Paulo Ney de Souza

Editor’s note: This interview took place on 25 July
2020, during the TUG 2020 online conference.

Paulo Ney de Souza: Nice to meet you.

Philip Kime: Yes, a pleasure. It’s nice to put faces
to all the names I see on the StackExchange.

PN: Exactly, exactly. Can I go for the first ques-
tion?

PK: Absolutely, please do.

PN: Well, I’d like to start out with some of the
stuff that I really learned from David Walden, which
is to ask people first to tell us a little bit about your
background.

PK: Well, it is a fairly straight sort of academic
background in Philosophy. I graduated in Philosophy
in, gosh, 1988, the University of Warwick in the
UK. Then I went on to teach in mostly Analytic
Philosophy and Logic, Metaphysics, Philosophy of
Science, that sort of thing, and then I went on to
do Artificial Intelligence, in Edinburgh, a Master’s
degree, and then I went on to do a Cognitive Science
PhD in Edinburgh. After that, I sort of had the
usual pile of student debt. And so I went on to do
IT consultancy to pay off the debts.

This was in the boom period, mid, late 90s in
the UK where, if you had a keyboard, you could
become an IT consultant. So I did that, and I sort of
bluffed my way into a consultancy job with British
Telecom, by literally reading a Nutshell book on TCP

on the bus on the way to the interview. Luckily they
asked me questions to do with what I had just read
in the book on the way there. I got the job but I
don’t remember well what I was doing. We were
hacking some Unix systems for British Telecom, and
this was 1998.

So I stayed in that sort of area for several years
to pay off debts and moved around and did a few
years at HP as an external consultant—not as an HP

consultant, but as an external contractor working
on an HP site in Scotland. And I knew I didn’t
particularly want to be doing that forever. It was
just useful to pay off bills and then I, I mean my
background is Philosophy and I’d been reading a lot
of Philosophy, a lot of Psychology, and I ended up
looking into becoming a Psychoanalyst. So at that
point I went through the stages of looking at where
to go to do this. After a lot of reading, I wanted to
follow the general Jungian approach.

It turned out the best place to do this if you
wanted to still work and actually earn a living was
to go to Switzerland to the original Jung Institute.
So that’s what I eventually planned to do. So I
started to do the preliminary work for this. And
then there was an IT crash in the UK, early 2000s.
And so basically I just ran out of money and then I
just had to give up the idea of going to Switzerland
and I went to work in the Netherlands and then in
Belgium for a while, saving up money and then I
eventually said, well, it’s now or never. And then
I moved to Switzerland and started the training at
the Jung Institute which went on for quite a few
years with me working in IT, and going back there
in rotation. I eventually managed to find a job in
Switzerland in IT, so I could do both at the same
time. That went on for a few years, and I got married
and moved to the US for a few years and did clinical
work there and then moved back to Switzerland
and a lot of back and forth and messing around. I
settled back in Switzerland in 2008. I still did some
consultancy IT work, but I finished off the training
there at the Institute and eventually I was on the
board of directors of the Institute and then became
the Vice President for a while.

Now, as a second career, I have a private practice
as a Jungian Psychoanalyst in Zürich. So, yes, that’s
my somewhat peculiar background.

PN: Wow, that’s quite a journey.

PK: A lot of moving around. I’m sick of moving
countries. I hate it, I really hate it.

PN: How does TEX fit into it? When did you get
interested in TEX?

PK: That was in ’91 when I moved to do my
Masters degree in the AI department in Edinburgh
at the time . . . It’s funny to think of it because
the department actually burned down years after I
had left. It was a big story at the time. It was one
of the oldest AI departments in the world, one of
the first, and it burned to the ground. I think this
was, this was quite a few years ago now. Everything,
including the only copy of my Master’s thesis, went

Paulo Ney de Souza

TUGboat, Volume 41 (2020), No. 2 133

up in smoke. Everything! This was a big disaster at
the University as I recall.

Because they were a very traditional sort of AI

department, they had only HP Unix machines. There
were no Windows machines, no Word, just old HP

Unix machines, and everything, all documentation
had to be done in TEX, in LATEX. There were no nice
GUIs anywhere, only X Windows. It was all running
in black and white; there were no color screens. It
was a very hard core, old school AI department.
Everything had to be done in LATEX. I mean it was
just assumed, that was how we were trained to write
all documentation, do your thesis, everything. So it
was just sort of from day one, we were just pushed
into that and I quite liked it because it was, you
know, it was documents as code and I quite like
that. And so, and this was in the early days before
LATEX2ε, so that was my Master’s degree. We were
just forced to do it. We were forced to do it and it
was, you know, relatively fun really, and it was the
same when I did my PhD in the Centre for Cognitive
Science at Edinburgh, that was the same. The only
difference was they had Sun workstations instead of
HP workstations and everything was LATEX, my PhD
was in LATEX, everything. And so there was a very,
very hardened LATEX community there with lots of
hackers. And so it was an easy environment to get
into it with.

But when I left that, then you know this was
in the days before there were any reasonable home
distributions of LATEX. There was no MikTEX really
at the time and no MacTEX on Mac. Nobody had
Macs at that time in the UK anyway, it was too
expensive. So I went back to using Word, which was
just horribly painful. I mean, I remember just hating
it for years, and it wasn’t until I started writing the
thesis for the Jung Institute in about 2007, that I
thought I’d investigate LATEX again. So those are
significant years in the wilderness of not using LATEX.

When I went back to it, I found these marvelous
distributions. I found MiKTEX. I moved to Macs
because of the Unix subsystem. I found MacTEX and
said, Oh! And I got back into Emacs again. And so
I started using it, there was a whole phase where I
moved away from it, and then I came back to it—
redemption in about 2007.

PN: How do you mix the two things? You work in
psychiatry and you work in TEX?

PK: I don’t; I don’t really. I mean, I still do IT

consulting. So, but even there, you know, it’s not
used in most large companies anyway. So I don’t. It’s
a totally separate thing and it’s quite nice because I
always considered the sort of IT side of things and

sort of computing to be a nice concrete non-abstract
compensation to Philosophy.

I still do quite a lot of work in Philosophy; Phi-
losophy and Psychoanalytic work is very nonlinear,
and you don’t generally get nice clean solutions in
anything. So it’s nice to come to a computer where
somebody says, here’s a bug report and you can
just pick something and it’s fixed, unlike with peo-
ple. And so this is, it’s a nice compensation, but
it has literally nothing to do with the other side of
things. I mean, I do all my invoicing and things for
my practice myself in TEX, but it’s not part of work.

PN: Aha! Are you are you doing e-consultations
during the pandemic? Are you. . .

PK: Oh, yes, yes. I mean, in Switzerland, they did
it all quite well, they planned it quite well, they’re
very, very organized in Switzerland, so the health
authority immediately got on top of this and autho-
rized, you know, remote sessions immediately for
everybody. So yes, I basically stayed at home a
lot and did remote sessions with Skype with people,
which was actually relatively straightforward.

PN: Can you take a consultation right now?

PK: For you? Yes, yes, what’s up, what’s wrong?

PN: Well, I mean, I feel extremely tired attending
these lectures online.

PK: Oh, yes.

PN: Probably my fourth or fifth conference, and I
kind of blame it on the lack of connection with, the
lack of seeing the full body language of the person.

PK: It is absolutely, I mean there’s research on this.
Yes, it’s clear that the problem is with, with engaging
with the screen. It’s that, I mean, for example, I
mean, I’m looking outside from my office and now
my peripheral vision. . .

Well, most of my vision of what’s going on is
peripheral vision. I mean, I can see the whole room—
the windows, the trees outside, everything. Right.
And when you’re physically in a conference and
you’re physically watching someone, you’re gener-
ally just watching the person, and you’re listening
to what’s going on in the room. But if you start
watching a screen, this isn’t the case. There’s ambi-
ent noise and peripheral noise and distractions, and
this takes. . . So you’re basically parallel processing
a lot when you’re looking at online things, which just
takes a lot more energy and it’s not a little more,
it’s quite a lot of energy. I mean, you know, multi-
tasking and multi-focusing and maintaining a sort
of peripheral awareness of what’s going on semicon-
sciously, just takes up energy. And so, I mean, online

Interview with Philip Kime

134 TUGboat, Volume 41 (2020), No. 2

seminars and online courses, it’s all very nice, but
they actually. . . There’s some quite good research
that shows that they’re actually more exhausting in,
in terms of concentration in cognitive effort because
there’s just an awful lot more peripheral distraction.

PN: Talking about peripheral distraction and pe-
ripheral noise, I have seen some other interviews of
yours, where there is a beautiful sound of a clock
that interferes when. . .

PK: Yes, the church. That’s the church opposite.
This is a very Swiss thing.

I live in a small village and I live right opposite
the church, and this is one of those churches that
makes no concessions to the modern world whatso-
ever, so it rings every single quarter of an hour. It
rings once on the quarter hour, twice on the half
hour, three times on the three quarters, and then it
rings the hour, and it does that 24 hours a day with-
out exception. And not only that, the special times
which coincide with what used to be farming signals—
that is, a lot of rural Switzerland is farming, it’s still
very farming oriented—so for example, if it rings, it
rings a two-minute ring at six o’clock in the morn-
ing, again at 23 minutes past seven. And these tiny
Swiss churches have GPS in them so that— I’m not
joking—they have GPS, so they ring exactly at 23
minutes after. I mean, you can set your watch by the
movement. And they do that also at one o’clock and,
sorry, 23 minutes past one— I don’t know what the
23 minutes past thing is—five o’clock, eight o’clock
and 11 o’clock, and so it’s constant bells. And I
really like it now. I mean actually people visiting
just said it drives them mad.

But when it stops and they do maintenance on
the clock, I think that there is something wrong
with the world. I think something’s missing. What’s
going on? And you don’t know what it is for a few
hours. Oh, the bells are not ringing. So it’s, you get
used to it. So I really like it, but some people, it
drives them absolutely mad.

PN: I just don’t want to, I just want to advise our
listeners that if it rings, you know, whoo! Stay put!

PK: Well, what time is it now? No, you’re all right.
It’s only going to ring the hours and you won’t really
hear it in this room, but if there’s a, you know, if it
was 23 minutes past you’d hear it for a while.

PN: That’s absolutely beautiful, absolutely beauti-
ful.

PK: Oh, it’s lovely. Yes.

TEX, BIBLATEX, and Biber

PN: So moving over to TEX. You already said a
little bit about, you know, how your relationship to
TEX evolved, but I want to ask a more specific ques-
tion, how production of documents evolved during
your lifetime. To me the first time that you started
producing documents, up to now, because I see that
you do produce a lot of documents yourself and. . .

PK: It’s strange, because I, in some respects, I
feel, I mean, apart from sort of development work
on Biber and BibLATEX, I don’t actually. . . I’m not
much of a sort of TEX, you know, power user really.
I mean, I have a set of templates. I use bits and
pieces for publishing papers and things, but, you
know, I feel a bit of embarrassed sometimes when
I see some of the incredibly complicated questions
coming in for BibLATEX, and I think, I have no need
for this feature at all. I will never, ever use this,
nothing even close. But I’m happy to, you know,
make it work for somebody else. But I will never
need anything that complicated because my needs
are quite basic, really.

And in the humanities publishing world in jour-
nals and books, I do everything in LATEX. But then
I always end up having to use some dreadful piece
of software from Adobe or something that converts
it into a Word file from PDF, because nobody will
accept, you know, they won’t even accept PDF. A
lot of humanities publishers, you have, you have
to send them Word documents, which is just aw-
ful. My document production went from doing a
lot of complicated LATEX stuff for my PhD, with all
sorts of stuff with this special logic system which
required this special. . . It was a very odd notation,
called (what was it called?) Discourse Representation
Theory and Situation Theory, which had all these
boxes and stuff. And we did all of it in LATEX. And
the lecturers would provide special macro packages
and it was quite complicated. And now, I mean,
you know, if I have to put something in bold, it’s
exciting. I don’t really do particularly exciting type-
setting any more. So I get my sort of fix and exciting
typesetting from working on BibLATEX and reading
TEX.StackExchange.

PN: I wanted to ask you a question about. . . You
seem to have come to Biber first and then. . .

PK: Now that was a bit of a strange story, because
I. . . So in about 2000 and. . . So when I was writing
my thesis for the Jung Institute I needed to . . . oh,
no, no, it wasn’t that. I was sending a paper to a
journal and they required American Psychological
Association bibliography format. And so, you know,
I went back into BibTEX for the first time in years,

Paulo Ney de Souza

TUGboat, Volume 41 (2020), No. 2 135

and I was looking around. I quite quickly came
across BibLATEX and thought, this is better, I’ll use
this instead.

And this was in the days when a chap called
Philipp Lehman, the original author of BibLATEX was
around but he mysteriously disappeared about ten
years ago. This is why I took it over. He was heavily
involved in it when I started and I looked for an APA

BibLATEX style that would work but there wasn’t one.
So I thought, well, okay, I’ll write the style for that.
I started to write the style for the APA and then I
came across some things that needed to be done to
implement the APA style which I just couldn’t work
out how to do. And I contacted Philipp Lehman,
then we had a discussion, and he said, well, you can’t
really do this in BibLATEX, it has to be done by the
backend, which currently is BibTEX. He then said
that there was another chap who was implementing a
special backend for BibLATEX called Biber, this chap,
François Charette, who originally started Biber, the
very early phases of it. And he said, why don’t you
contact him and see how that’s going. So I contacted
him. And it turned out that he was, he was writing
this custom back end for BibLATEX called Biber, and
so I tried it out. I found a bug with it and I submitted
a bug report and he said, why don’t you help me
develop this because we need this. BibTEX’s too
limited for what BibLATEX needs. So I said yes, and
this was in 2009, early 2009.

And so I started helping him develop Biber a bit.
Then it really snowballed and we started developing
that together heavily in 2009 and that went on for a
year or so, with us collaborating with Philip Lehmann
on BibLATEX.

And then François Charette didn’t have the
time any more, and he just left it to me. So I, . . .
and eventually it got completely rewritten, so there
isn’t a line of the original code left in Biber any more.
That was sort of late 2009, early 2010, I believe. And
so, yes, I was involved in Biber first, and then for a
few years, it was just Philipp Lehman on BibLATEX,
and me on Biber. We were just collaborating on
timing releases of both of them for a while.

And then he disappeared. He just stopped an-
swering emails and I tried to contact him, and I
still don’t know to this day what happened. He just
disappeared. And because I knew more about the
BibLATEX code than most people, because I’ve been
closely involved with him working on it, there was
really no choice. And I sort of, you know, did the
whole messing around with GitHub and SourceForge
at the time to get ownership of the project, and took
it over in about 2012, something like that.

I want to say one thing, quickly here, before
I forget. I want to say a big thank you to Moritz
Wemheuer. I think he’s probably watching us. I saw
his name on the participant list. In the last couple
of years, he’s come on board the BibLATEX team and
he’s done fantastic work, particularly with localiza-
tion and styles and things like this. So he’s really
taken on, I mean, a serious load of the BibLATEX
development in the last couple of years, and without
that it wouldn’t have been possible, because it was
getting too much.

PN: Are the two entities married to each other,
Biber and BibLATEX today? Or are there other clients
for Biber?

PK: There are. There are other clients because
Biber has this. . . I mean, basically, they are mar-
ried, I mean they, they developed in lockstep and
they’re. . . I mean, you know it’s, 90% of it is, is a
complete marriage of technology. So it’s not really
Biber as a standalone tool. It’s possible because we
implemented quite a few years ago now a Tool Mode
in Biber which allows you to take in .bib files and
spit out .bib files and do various things to them
in the process. So you can mess around with your
bibliography databases without actually typesetting
anything, and this is known as Tool Mode in Biber
and it’s reasonably sophisticated now. You can do all
sorts of things to read, format and mess around with
the data semantically. So there is a user base outside
of that, but it’s not particularly large, I would say.

Unicode and publishing

PN: Let me move over to Unicode and ask you a
few questions. What are the hardest parts of dealing
with Unicode and implementing sorting and making
both of them understand Unicode well?

PK: That was one of the hardest things. However,
I can’t claim much virtue in this respect, because
I use a very nice Perl module, which is part of the
standard Perl distribution—the Unicode::Collate
module—which was written by a Japanese chap, and
it’s very, very good. And that follows the Unicode
updates and standards quite closely so the actual
implementation of the Unicode collation algorithm,
I have not done that because that would be insane.
I submitted some enhancements and bug reports
over the years just to get some of the features we
wanted into Biber, but I basically use a library that
implements the Unicode collation algorithm.

The difficulty was implementing a reasonable
multi-field sorting algorithm for bibliography data.
You want to have it so that people can sort bibli-
ographies on arbitrary bibliography data in the most

Interview with Philip Kime

136 TUGboat, Volume 41 (2020), No. 2

flexible way possible, which means you have to have a
proper multi-field sorting algorithm. So you want to
be able to sort, for example, by author, then by title,
then by year, then by volume, then by whatever, all
of those. You want to be able to do those descending
and/or ascending on each of the fields. You want
to be able to turn off case sensitivity in each of the
fields independently. You want to be able to switch
your sorting locale, which we need, of those fields
independently, all of which you can do with it.

And the difficult part also is, for names, basically
constructing the data. The data structure for sorting
is quite hard. The Unicode collation algorithm is very
nice, and allows you to just sort arbitrary strings,
but you have to somehow construct a data structure
and the strings in that data structure in order to sort
them. And that was the difficult bit, in order to do
this in a consistent way. That took a few iterations.
It’s now quite a complicated data structure with a
lot of optimizations in it so that we can short circuit
sorting. It’s by far the most compute-intensive thing
that Biber does.

If you profile it, most of the time is spent in
the collation algorithms for any large bibliography,
so it took a bit of a while to get that sorted out.
It was one of those painful excursions into sorting
algorithms and things like this. I’m not really, you
know, a low-level algorithmic hacker at all. So it was
somewhat painful to have to do that.

But it’s reasonably nice now and all I really have
to do now is follow updates in this, in the modules
that implement the Unicode collation algorithm and
release new versions of Biber with the updated mod-
ules. And I don’t have to mess about too much with
the actual sorting algorithms themself inside Biber
because they’re quite stable now. As of about four
or five years ago, I settled on a particular way of
doing it, which seems to be fairly stable.

PN: And any updates, you just import through
the Perl package maintained by this Japanese guy?

PK: Yes, yes. I mean, because all that really does
is it just pulls in the latest UCA updates and the
latest key generation algorithm in the key generation
data files and so I don’t really maintain any of that.
That would be, that would be an awful job to do.

PN: Do you think the ecosystem, the TEX ecosys-
tem needs a revolution to stay relevant or do you
think that this is going to exist forever?

PK: Well, I think there’s there’s pretty much a
good underground movement that requires a certain
level of typesetting, and there always will be. And
that, so it’s not going to go away.

From my point of view, the thing that’s re-
ally made a difference is things like Overleaf and
ShareLATEX, historically. You need GUIs. I mean,
you just, you have to make it appealing to people
with GUIs. And that’s the way the world is now,
and has been for some time. So, in general terms, I
think you’re going to need to hide code from people.
I mean, that’s just the way everything goes now.

But, in terms of academic publishing and spe-
cialist publishing, which will always be there, then I
think it’s always going to be relevant. Because you
just can’t do certain things outside of that ecosystem.
It’s incredibly difficult to do decent typesetting in
any of the standard High Street packages for any of
this stuff. It’s just awful and, and. . .

So I don’t see it’s going to particularly grow
until you can just isolate people from seeing any
code at all, because the last couple of generations of
kids, I mean, they’re used to apps. And there, you’re
just tapping stuff, tapping bright colorful buttons,
and that’s not going to change for generations. So I
don’t see any particular growth there.

One thing that would make a big difference,
which I’m not seeing a lot of movements on but I’m
not particularly familiar with what’s going on there,
in terms of journal publishing, academic publishing,
when I know a lot of technical journals, for example,
use TEX workflows, but for bibliography manage-
ment, a lot of those are based on BibTEX and that’s
partly because it’s very hard to change, you know,
historically complicated pipelines for journal pub-
lishing. But also there’s a technical limitation with
LATEX because when you run BibTEX, you get a file
that is the typeset representation of your bibliogra-
phy. Your .bbl is just a document and you include
it. And that’s it. That’s the typeset bibliography.

BibLATEX does this completely differently, and
the .bbl that you get out of it is not a typesettable
document. It’s effectively a TEX macro database of
your bibliography and then you have to still apply a
style to that during the final PDF output. And that
makes it an awful lot more flexible, and you can do
things you can’t do in BibTEX, but it also makes it
very difficult for people, for journals to implement in
their pipeline when they want someone to just send
them the typeset bibliography. There are hacks to
sort of do this I’ve been kicking around, but there’s
no easy way of doing this.

Your bibliography is not a standalone typeset-
table file. It’s all pulled in from, you know, various
bits and pieces during the final processing.

PN: So that, that’s what, that’s what keeps the
publishers away from BibLATEX?

Paulo Ney de Souza

TUGboat, Volume 41 (2020), No. 2 137

PK: It certainly will keep some of them away, yes,
because when you submit the bibliography they just
want a typesettable file that’s using one of their
.bst files, and there’s really no easy way of doing
that with BibLATEX unfortunately, unless they redid
their whole pipeline, which for most publishers, given
that the margins are so small, particularly academic
publishers, that motivation for redoing their entire
publishing pipeline is incredibly small.

PN: Do you use TEX to submit your papers?

PK: I write them all in TEX, but I almost always
have to convert them from PDF to Word or something
horrible in order to send them because they just
won’t. . .

If a lot of them are using, particularly for exam-
ple, Routledge or Blackwell, they use these very quite
sophisticated online submission things for journals
now, and they’re quite nice and they work very well.
But you have to send it all in Word. They work
natively with Word, and that’s it.

PN: How do you feel, putting this work into a
document and it’s not coming out in the finished
product?

PK: Well, I don’t think any of us like that. I mean
it’s a bigger topic, about certain types of cultural
phenomena that I often have with, sometimes with
patients and often with students in the past that. . .

There are a certain sort of sophistications and
discriminated positions that matter independently
of whether they are practical or not. And so it, yes,
it would be easier for me to just write all this stuff
in Word and just submit it, but. . . There are some
things that, typesetting and making things look nice
is intrinsically, it’s intrinsically more structured and
more developed than not doing it. And so there’s an
intrinsic value in that, which it doesn’t really matter
to me whether it’s practical or not. I know it sounds
a little bit abstract, but I tend to think that’s a
rather important principle in general.

You shouldn’t try to be too efficient in life.
There are consequences for doing that. So I’m quite
happy with, you know, “wasting” time typesetting
something in a really nice way and then having to
export it to Word which loses everything. That’s all
right.

PN: I am a producer of publishers’ workflows and
for the first time in my life I’m producing a work for
a publisher down in Brazil, which uses BibLATEX.

PK: Aha!

PN: . . . exactly because they have problems sorting
bibliographies which use Portuguese and they are

sick of BibTEX because of the sorting algorithms,
and they have this explicitly asked for BibLATEX and
this was my first. I was in fact very, very surprised.
I thought they were. . .

PK: Nice to hear it. I’m glad to hear it.

PN: But is there anything that can be done to ease
the path? Because it’s really painful to be able to
use the facilities of programmable bibliographies and
not seeing some of the results later on.

PK: Yes.

PN: Anything that we can do to ease that?

PK: I’ve thought about it a little bit. I mean,
there have been some suggestions I’ve noticed on
StackExchange of trying to, you know, extract the
processing of the bibliography out to a file, to a
separate file, but this is. . . I’ll be honest, I’m not
a particularly brilliant TEX hacker. I think Philipp
Lehman, the original author of BibLATEX, was a lot
better at it than I am, and a lot of other people are.
I think there have been some comments. . . I don’t
know if Joseph Wright is on here but I mean it will
require Joseph Wright levels of skill to do that kind
of hacking on the underlying page, page dumping
algorithms to actually get, you know, something like
BibTEX’s output from BibLATEX. I don’t think I’ve
got the skill to do that. But maybe we will be able
to, you know, have some kind of thought about this,
but as I remember, it somewhat depends on some of
the LATEX3 stuff coming out. So, and we’ve already
started to move BibLATEX toward LATEX3 a little bit
but. . .

Yeah, that’s going to be a bit of a job to get
it all over. And once it is, I think there’s a few
more options in that direction. But right now it’s a
discussion thread for StackExchange.

Q&A

PN: Well, I’d like to invite people that if they have
any questions to ask you to come and join us. I
mean, the panelists can do that by themselves, and
the attendees all over the world can wave and I can
upgrade them to a panelist so that they can ask the
question themselves, would you mind that?

PK: That’s fine.

PN: So, if you have any questions, just please
unmute yourself.

PK: I can say while we’re waiting that I did make
a vague promise last October at the DANTE talk in
Germany that we would be releasing an experimental
multi-script version of BibLATEX and Biber early
this year, and support much more multilingual stuff.

Interview with Philip Kime

138 TUGboat, Volume 41 (2020), No. 2

So you can have bibliography entries that contain
different scripts in the same field, which has been a
long requested thing for multilingual use and that
now does exist.

PN: OK, I can attest to that. I am the author of a
book here in Berkeley called “Berkeley problems in
mathematics” which is sort of the entrance exam for
the PhD in mathematics. And the book recommends,
you know, cites a lot of other books that you should
read in order to prepare for this particular exam. And
this book exists in many translations, to Vietnamese,
Chinese, Korean. . .

PK: Right, right.

PN: Spanish, sometimes Portuguese, French and
German, and then we cite all those. And what I
have, the hoops that I have to jump through to do
that in BibTEX, are tremendous.

PK: Yeah, it’s painful. Well, the whole point of
the multilingual stuff is supposed to be to make that
possible. We have an experimental branch, it should
be, it was an awful job to actually implement it
and it should be completely backwards compatible,
but it has a whole new syntax in the .bib file for
multilingual data database entries. So, we have a
manual for it and everything. So this is going to be
a bit of a push probably early next year.

PN: Thank you. Thank you. There’s one question
that came up. How are people with social anxiety
doing with remote sessions? I guess somebody is
trying to get an e-consultation out of you!

PK: Well, it’s a good question.
Generally speaking, people with social anxiety

do better with remote sessions because they’re less
social. The remote sessions are a different beast
entirely. They are, I generally don’t like them that
much because the kind of depth psychology I do, it’s
not, it’s not just purely sort of chatting, there’s a
lot more of what you call tracking, a lot more of a
kind of feeling tension in the room and things like
transferential considerations which is very difficult
to do remotely.

But there also are benefits. I mean, one thing
you find, I found when I was training and seeing
patients in the US, it was quite funny. One thing
you find quite quickly is when you’re having a phone
conversation, particularly with no video, just a phone
conversation with somebody, instead of being in the
room. One thing you find is people are prepared to
say things they would never, ever say to you face to
face. And it’s also, to a lesser extent, through video.
There are research papers on the fact that, working
with social anxiety, doing it remotely, doing it by

telephone, it’s actually better very often because it’s
a way to lead people in because there’s simply less
social signaling going on, and there’s just less in the
environment to trigger anxiety. So generally quite
well is the response to that.

PN: People stay in their own environment.

PK: Right. Yes. And they are not exposed to
unpredictability and other environments. And so it’s
generally not so bad.

PN: Interesting.
This has been quite a nice conversation. I loved

the interview and I hope we can do this in person at
some point in time.

PK: Yes. When the world stops burning and being
crazy. Yes. Maybe.

PN: There is a question by Michael Topp, and
he asks, “Philip. I’m going to translate a couple of
books and I want to do it with LATEX, of course, and
bibliography, and it’s an art book. So is it really
hard to sell them to publishers?”

PK: Well, not necessarily. I mean, it just depends
on what their workflow is. I mean, I mean some
publishers will just be perfectly happy if you provide
them with a very nice PDF. And so it doesn’t matter
how you create that. So then you’re fine, it just
depends. If they have a LATEX workflow that you
have to somehow fit into, the chances of them using
the packages you want are quite small usually, but it
just depends what they want. I mean, it’s not that
hard to sell them. . . I mean, look at what I do. I
mean, I don’t even tell them I use LATEX, they just
want some kind of, you know, Word thing at the
end. And generally, I just produce a nice PDF and
then I just use some sort of Adobe tool that creates,
that turns PDF into Word. And while that’s a fairly
unpleasant thing to do, I mean, I get it to work in
the way I want, and then I get to deliver it in the
format they want. So it’s not so bad.

But it just depends what they do. I mean, no it’s
not, it’s only hard to sell it to people who have very
particular requirements and their own .bst styles
with BibTEX usually. Then it’s a bit hard to sell it
to them.

PN: Well, on that note, I’d like to thank you very,
very much and hope to join you in person, when
there’s some time for a continuation.

PK: Thank you very much.

⋄ Paulo Ney de Souza

tug.org/tug2020

Paulo Ney de Souza

TUGboat, Volume 41 (2020), No. 2 139

Beyond Roman fonts: Extra dimensions in
Malayalam fonts

Hussain KH, Rajeesh KV, Aravind Rajendran

Abstract

The Malayalam alphabet consists of 51 basic char-
acters which combine to form more than 900 con-
juncts (ligatures) in traditional script. Unlike Ro-
man scripts, Malayalam has two kinds of ligatures,
namely Horizontal and Vertical conjuncts. Vertical
conjuncts in Malayalam are unusual among other In-
dic scripts, and almost never seen in Roman scripts.
Anatomically there are two parts in vertical con-
juncts — Above Character and Below Character.

Vertical conjuncts demand careful attention in
space management in Malayalam types. Accommo-
dating the below character in the below-base(line)
space when adhering to Roman metrics poses seri-
ous inconveniences. Compressing all levels into a
single level harms the shapes of around 700 vertical
conjuncts, as Malayalam poses extreme cases of di-
vergence while dealing with vertical conjuncts. De-
signing vertical conjuncts results in many deviations
from the accepted norms of Roman typography. De-
viating from Roman metrics poses problems of point
sizes when typesetting documents using Malayalam
and Latin text together.

Thus, creating original Malayalam script fonts
while satisfying dimensions of Roman fonts exerts
formidable pressure on the designers. Malayalam
typography looks at geometrical consistency in a dif-
ferent way than Roman typography.

1 Malayalam script and Rachana

Malayalam, the mother tongue of 45 million peo-
ple in Kerala, the southernmost state in India, is
one of the 22 official languages of India. It is a
1600-year-old Dravidian language, and its script is
classified as abugida, or alphasyllabary. Unicode
support for Malayalam script was in GNU/Linux
systems around 2002 and MS Windows XP added
support in 2004. Since then Malayalam language
technology has seen significant advances, thanks to
Swathanthra Malayalam Computing (http://www.

smc.org.in) and its Rachana font based on the tra-
ditional script.

Figure 1: Ligatures

Figure 2: Horizontal and vertical conjuncts.

Unicode encodes the basic characters in Mala-
yalam [1] while all the complex conjunct characters
are supported by OpenType shaping rules (see Ap-
pendix A for information about the glyphs in the
Rachana font). The Malayalam script also requires
‘complex text shaping’ support from shaping engines
(notably HarfBuzz, used by X ETEX and (as of 2020)
LuaLATEX) to properly shape its conjuncts and vowel
symbol combinations.

1.1 Old vs. New script

‘New lipi’ or Reformed script of Malayalam, which
tried to simplify the original script by breaking many
conjuncts and vowel combinations, appeared in the
1970s as an official government effort to use Mala-
yalam with English typewriters and Linotype type-
setting. ASCII fonts with 140 characters based on
the New script were later popularized by desktop
publishing (DTP). New script is still in vogue in
typesetting, though it is only a subset of the original
script with 900 conjuncts standardized for printing
by Benjamin Bailey in 1824. New lipi with its lim-
ited conjuncts can easily be accommodated in fonts
with Roman font metrics/dimensions.

1.2 Rachana

The language campaign named ‘Rachana’ in 1999
began advocating for use of the traditional script in
Malayalam computing. After the advent of Unicode
Malayalam in 2002, the traditional script (Original
Script), popularly known as ‘Old Script’, has had a
steadily growing presence in the Web and in type-
setting and printing. The traditional orthography
demands more space beneath the baseline for ver-
tical conjuncts. Designing fonts for original script

Figure 3: Metrics of below base character.

Beyond Roman fonts: Extra dimensions in Malayalam fonts

140 TUGboat, Volume 41 (2020), No. 2

Figure 4: Below-base parts and space in Roman and
Malayalam (basic characters) type metrics.

satisfying dimensions of Roman fonts exerts a lot of
pressure on the designers.

In this discussion typography of Original Script
(Old Lipi) is considered, since it is a superset of all
variations of New Lipi that exist in various fonts
used for DTP. Typesetting is now shifting from
New Lipi to Old Lipi, thanks to growing usage of
Unicode.

As mentioned, the Malayalam alphabet consists
of 51 basic characters which combine to form more
than 900 conjuncts (ligatures) in traditional script.
The Rachana font, first designed in 1999 (so-called
ASCII1) for the campaign for traditional script, un-
derwent major modifications in 2000 and especially
in 2006 when the font became Unicode-compliant
and distributed under the GNU GPL. Now, after a
long period of 15 years, all 1000+ glyphs in Rachana
have been totally redesigned, taking more graphical
liberties with fewer constraints exerted by Roman
typography. This paper explores new possibilities in
Malayalam typography and how far beyond Roman
typography it can go without compromising either
aesthetics or functionality.

1 Before the advent of Unicode, Indic script fonts followed

an encoding similar to that of Latin scripts by laying out

characters in an 8-bit table, known as ISCII. To accommodate

the 900+ characters needed, Rachana was originally designed

as a set of six fonts. The typesetter then manually switches

fonts in a DTP program to pick specific characters.

Figure 5: Beyond Roman type metrics.

Figure 6: Below-base levels 1–5.

(a) Below-base levels 1–3.

(b) Below-base levels 4 and 5.

2 Ligatures/Conjuncts

Similar to Roman types, Malayalam also has liga-
tures, known as conjuncts. They are formed by com-
bining basic characters (see an example in Fig. 1).
The considerations of moving away from Roman ty-
pography mainly relate to conjuncts, which amount
to nearly 20 times the number of basic characters.

2.1 Conjuncts: horizontal and vertical

Differing from Roman fonts, conjuncts in Malayalam
are formed in two ways — horizontal and vertical.
For example, Basic characters ത (tha) and സ (sa)
combine horizontally to form ത്സ (thsa) i.e., ത + സ
→ ത്സ, whereas സ and ത combine vertically, സ +

ത → സ്ത (stha). See Fig. 2 for a depiction of this.

2.2 Below-base characters

2.2.1 AChar and BChar

Vertical conjuncts demand careful attention in space
management of Malayalam types. Anatomically,
there are two parts in vertical conjuncts — Above

Figure 7: Below-base levels 6–9.

(a) Below-base levels 6–8.

(b) Below-base level 9.

Hussain KH, Rajeesh KV, Aravind Rajendran

TUGboat, Volume 41 (2020), No. 2 141

Figure 8: Below-base levels 10–18.

(a) Below-base levels 10–12.

(b) Below-base levels 13–15.

(c) Below-base levels 16–18.

Character (AChar) and Below Character (BChar).
While designing glyphs, AChars are placed above
the baseline, filling the x-height. BChars are placed
below the baseline and are always smaller in size
than AChars, following the pattern in handwriting
and calligraphy (see Fig. 3).

2.2.2 Below-base space

Parts of glyphs going below the baseline occurs in
Roman glyphs, e.g., the letters ‘g’ and ‘j’. This hap-
pens in Malayalam as well and its basic characters
(adopted in the Malayalam Unicode chart) are fit
well in the above and below spaces allocated as in
normal Roman types (see Fig. 4).

3 Objective of the paper

When it comes to vertical conjuncts in Malayalam,
accommodating BChars in the below-base space al-
located in Roman metrics poses significant prob-
lems. The peculiar behaviour of ‘space grabbing’ of
vertical conjuncts, as we’ll see, is in perpetual colli-
sion with the Roman below-base space and BChars
often go below the Roman descent boundary (an ex-

Figure 9: Extra descent in Rachana.

Figure 10: Below base space: varying vs. constant.

Figure 11: Equalizing levels 1, 4 and 6.

ample is in Fig. 5). The main objective of the paper
is to show how this is circumvented in the typogra-
phy of Rachana, going beyond Roman metrics.

3.1 Levels in below-base

The large vertical space demanded by BChars below
the baseline is a challenge in Malayalam typogra-
phy which in principal should be specially treated
for appropriate leading (interline space). Owing to
consonant-vowel pairing, BChars have 18 different
heights/levels, explored in Figs. 6, 7 and 8.

3.2 Treating BChar levels

From Figs. 6a to 8c, it is evident that the verti-
cal space between baseline and descent allotted in
normal Roman fonts is too little to accommodate
BChars. Malayalam glyphs require nearly the same
space above and below the baseline (shown in Fig. 9).
Below-base space cannot be compensated by taking
from the Above-base space since some of the Mala-
yalam vowel signs use the full cap-height; i.e., space
above the base is needed exactly as in Roman fonts.
Below-base space allocations in Roman type is woe-
fully inadequate for Malayalam, leading to some un-
fortunate treatments in designing vertical conjuncts.

One of the solutions for accommodating BChars
in Roman-descent is to squeeze all levels into a sin-
gle level. This is graphically possible but produces
distorted heterogeneous characters totally unaccept-
able to Malayalam aesthetics. In fact this kind of
deformative practice is unacceptable to the typog-
raphy of any script in the world. For instance, see
the single-level BChars in Fig. 10.

Figure 12: Equalizing levels 7–9.

Beyond Roman fonts: Extra dimensions in Malayalam fonts

142 TUGboat, Volume 41 (2020), No. 2

Figure 13: Equalizing below-base levels 10 and 13.

Figure 14: Equalizing below-base levels 11, 12, 14
and 15.

3.2.1 Equalizing near heights

Compressing all levels into one obviously harms the
shapes of most vertical conjuncts in Malayalam. Re-
ducing the number of levels can be achieved by an-
other method. In earlier versions of Rachana, at-
tempts were made to reduce vertical levels by equal-
izing near-heights, which reduced the number of ver-
tical levels from 18 to 6. By this it was hoped to
attain almost evenly sized BChars in vertical con-
juncts. It could be a potential way to contain the
unusual leading in Malayalam typesetting caused
by lacunae in vertical conjuncts (Figs. 11, 12, 13
and 14).

3.3 Typographic deviations of BChar

Even though vertical conjuncts have two parts, it
must be remembered that both are integral parts of
a single character. Naturally one may expect both
parts to follow the same typographic characteristics,
but in reality they differ (rather, are forced to dif-
fer). Unfortunately, it is found to be impossible to
keep the same types in above and below parts. The
practice adopted in designing Rachana results in vi-
olations of basic rules of Roman typography (see
Fig. 15).

Let us consider creating the vertical conjunct
സ്സ which consists of the same character സ in above
and below parts.

Figure 15: Typographic deviations of single
conjunct സ്സ .

Figure 16: Typographic deviation of same character
സ in the conjunct സ്സ .

(a) Superimposed AChar (red) and BChar (gray).
Notice the curves marked with 1, 2 and 3.

(b) Enlarged parts of Fig. 16a.

As seen in Fig. 15(1), when a same-sized AChar
is placed in the below-base area, the conjunct pro-
duced is strikingly disproportional. The same shape
with the same size produces an optical illusion of
an oversized BChar. A BChar should invariably be
smaller than the AChar in Malayalam orthography.

In Fig. 15(2), a 60% uniformly scaled BChar
strictly adheres to the type design of AChar, but
produces an unbalanced shape. The small BChar
appears to suffer from pressure under the big AChar.

Fig. 15(3) shows a more balanced shape, achiev-
ed with non-uniform scaling. This BChar is designed
with 70% horizontal and 60% vertical scaling. It
produces a more pleasing effect compared to uni-
form scaling, at the same time not increasing the
vertical size. More or less this proportion is followed
in all versions of Rachana. Here a wider BChar ‘sup-
ports’ its counterpart in AChar and helps to achieve
legibility at lower point sizes (10pt or 11pt) while
typesetting.

Please observe, non-uniform scaling of BChar
produces a different type! This can be verified by
superimposing a same-sized AChar and BChar. As
seen in Figs. 16a and 16b, the curve of BChar (light
gray in colour) often varies from AChar (red online,
dark gray in print) due to non-uniform scaling. This

Figure 17: An extreme case of below base conjunct.

Hussain KH, Rajeesh KV, Aravind Rajendran

TUGboat, Volume 41 (2020), No. 2 143

Figure 18: Scaling adjustments for glyph in Fig. 17.

(a) BChar with 70%–60% scaling.

(b) BChar with 45%–50% scaling
improves intercharacter spacing.

is a clear instance of typographic deviation between
AChar and BChar.

This kind of typography with two kinds of types
in the same glyph is almost unheard of in Roman
types. Rachana takes the liberty to deviate from
these accepted norms.

3.3.1 Extreme cases

Some vertical conjuncts are shaped deviating more
from the usual 70%–60% proportion, depicted in
Fig. 17.

If 70%–60% scaling is applied, the BChar ex-
tends far beyond the left bearing and right bear-
ing, resulting in collisions with neighbour charac-
ters (Fig. 18a). If kerning is adjusted to avoid this,
white space to the left and right of AChar produces
a ‘space effect’ (Fig. 19b).

The only solution for these extreme cases is to
apply a different proportion to BChar. In Rachana,
45%–50% scaling instead of the usual 70%–60% is
applied in designing these types of vertical conjuncts
to preserve normal character spacing (see Fig. 18b).
This kind of elasticity applied in Malayalam breaks
all established rules of typography. It perhaps does
not occur even in typography of other Indic scripts.

All these considerations show that Malayalam
fonts cannot be designed according to the metric
calculations of Roman typography. This is more or
less the case with all Indic scripts, due to the abun-
dance of conjuncts. Malayalam poses extreme cases
of divergence while dealing with vertical conjuncts.
Different proportions applied to different conjunct
formations in the same font completely contravenes

Figure 19: Design adjustments for an extreme case
of BChar.

(a) Collision.

(b) Larger intercharacter space.

(c) Unconventional reduction.

principles formulated for Roman text types; how-
ever, these complexities are perhaps comparable to
Roman typography employed in typesetting mathe-
matics (see Fig. 20). There too, different types in a
single set are not tolerated.

3.3.2 A page typeset in Rachana

The Rachana font is reimagined and redesigned us-
ing many levels of descent, and yet this doesn’t cause
serious issues with leading. The overall aesthetics
and readability are in fact improved. A sample doc-
ument typeset using X ETEX is shown in Fig. 21.

4 Conclusions

Vertical conjuncts in Malayalam are unique com-
pared to Roman scripts and other Indic scripts. De-
signing vertical conjuncts results in many deviations
from accepted norms of Roman typography. Even

Figure 20: Typesetting mathematics using the
Monotype 4-line system. Source: Daniel Rhatigan.

Beyond Roman fonts: Extra dimensions in Malayalam fonts

144 TUGboat, Volume 41 (2020), No. 2

Figure 21: Malayalam text typeset with Rachana.

within a font, difficult situations arise when follow-
ing a single type or rule.

‘Leading’ in Malayalam typesetting is a serious
concern, especially when using fonts like Rachana
based on traditional orthography. Leading should
be kept as small as possible, and as a result it ex-
erts pressure on Malayalam font designers due to
abundant height variations in BChars. Holding a
fixed proportion in BChar hurts leading. The ‘ne-
gotiations and adjustments’ in proportion are of-
ten applied in BChars but this results in different
calculations for ascent–descent and point size esti-
mates. That is why Malayalam font makers are of-
ten forced to explore different metrics. Other Indic
scripts with moderate below characters/diacritical
marks are luckier in this aspect. Deviating from Ro-
man dimensions poses problems of point sizes when
typesetting documents using Malayalam and Latin
fonts together.

Rachana in earlier versions attempted to group
and equalize many below-base levels but later pro-
moted natural proportions in shapes rather than
‘forced’ proportions. For all intents and purposes
Malayalam typography deviates from geometrical
consistency set for Roman typography. Proper bal-
ance in glyph composition in Malayalam can only
be achieved by embracing a different mindset, going
beyond Roman typography.

Figure 22: Sample glyphs of Rachana.� � �

A Glyphs in the Rachana traditional
orthography font

A sample of the glyph set designed for the Rachana
font is shown in Fig. 22. The complete list, which
contains the comprehensive character set for tradi-
tional orthography is available at http://rachana.

org.in/docs/Rachana-conjuncts.pdf.

References

[1] Unicode Consortium. Malayalam Unicode
chart, Unicode standard 13.0 [online].
https://www.unicode.org/charts/PDF/

U0D00.pdf

⋄ Hussain KH
Rachana Institute of Typography
hussain (at) rachana dot org dot in

http://rachana.org.in/

⋄ Rajeesh KV
Rachana Institute of Typography
rajeesh (at) rachana dot org dot in

http://rachana.org.in/

⋄ Aravind Rajendran
STM Document Engineering
aravind (at) stmdocs dot in

https://stmdocs.in/

Hussain KH, Rajeesh KV, Aravind Rajendran

TUGboat, Volume 41 (2020), No. 2 145

The road to Noto

Steven Matteson

Editor’s note: This is a lightly edited transcript of the
talk given at the TUG 2020 conference. Some of the
illustrations are omitted here; for the full set, and the
video of the talk, see tug.org/tug2020.

The Noto family of fonts is one of the largest
undertakings in the history of type founding. It
certainly has not been a straight line from point A
to B. I’ve been involved on and off for 14 years, and
there are about 60 others who have contributed to
it up to this day. This doesn’t include the efforts
on the Chinese, Japanese and Korean fonts, which
people from Adobe would have to tell you about.

For the purposes of this talk the road to Noto
begins with the Rosetta Stone:

Figure 1: The Rosetta Stone, 196 BCE.

a 3.5-foot tablet fragment, similar to granite, with
the remarkable workings of hand and chisel, carefully
spelling out an imperial decree in three different
writing systems. The stone’s historical significance is
legendary. I clearly remember studying it in seventh
grade World History. We had to make our own
version out of modeling clay and mark it with our
own messages with a toothpick. We even had a
contest to try and translate each other’s messages.
Thank you Oak Park, Illinois Public Schools.

The markings are King Ptolemy V’s “Memphis
Decree”, given in 196 BCE during turbulent political
times and cultural upheaval. The Rosetta Stone is a
fascinating example of the painstaking efforts made
to produce a document in multiple languages— in
this case Hieroglyphs, Demotic Script and Ancient
Greek—all with the aim that multiple cultures and
generations understand this single message.

Fast forward to 1573 to Christophe Plantin’s
Polyglot Bible printed in Antwerp and funded by
King Philip II of Spain.

Figure 2: Christophe Plantin’s polyglot Bible, 1573.

It was printed in six volumes of the different books
of scripture and two additional volumes which con-
tained translation dictionaries to accompany them.
The text is translated into Hebrew, Greek, Aramaic,
Syriac and Latin texts. The typography is stunning
in its beauty, simplicity and painstaking planning.

The spread above shows Hebrew script on the
far left with Latin in an upright roman typeface.
The far right is a beautiful flowing cursive-looking
Greek text; the accompanying Latin is in italic to
complement the look and texture of the Greek. This
typographic detail helps unify and bring harmony to
the page despite the differences in the multilingual
writing systems.

For me the achievement here, the complexity of
the formatting and quality of printing, is inconceiv-
ably beautiful.

Starting around 1654, about 70 years later, in
England, Bishop Brian Walton began work on his
polyglot bible (next page). He published nine trans-
lations—Aramaic, Hebrew, Syriac, Arabic, Samari-
tan, Ethiopic, Greek and Latin. This production was
funded by subscription rather than a grant from a
government or church body. In just a year the bishop
had found 400 private contributors anticipating the
finished book.

Some consider this the least beautiful of all the
polyglot bibles. It may be because it was not a royally
funded project with commensurate royal flourish. Or
maybe because of the complexity of nine translations
vs. the four or five of previous works, which challenges
the typographer to assemble a harmonized page.

The road to Noto

146 TUGboat, Volume 41 (2020), No. 2

Figure 3: Bishop Brian Walton’s polyglot bible, 1654.

Figure 4: A common contemporary polyglot page.

But for me, Walton’s achievement, the com-
plexity of the formatting and quality of printing, is
inconceivably beautiful. Particularly compared to
where we are 400 years later with a standard insur-
ance company’s explanation of benefits statement
(above).

This polyglot page is now commonplace and easy
to do with our current typesetting tools. However,
like many generic or institutional forms we see day to
day, this page can be vastly improved upon. The line
lengths are excessive for most of the text represented
here. The variety of type styles makes it appear to be
a ransom note rather than a serious document. The
boldness of some of the translations makes them ap-
pear far more important than other languages, so not
very egalitarian. And, from a branding standpoint,
the visual identity of this company is not maintained.

I don’t want to negate the complexity happening
behind the scenes to make this page possible. It is
far more intense than the reader will ever, or should
ever, know or worry about. Just the ability to shape

text right to left was a big step in computing, let
alone the other magic going on here to typeset in all
these languages.

Multilingual, or polyglot, typographic pages can
get worse than this. An author’s worst nightmare
might be for his or her reader to come upon a page
that looks like this:

Figure 5: Tofu.

This page is full of missing glyphs. I received
this image from Google’s Bob Jung, who orchestrated
much of the early part of the Noto project on Google’s
side. If a computer system is missing a character
that was entered by the author, the reader sees the
undefined glyph—typically an empty square. As
Bob told me, “The squares remind a lot of people,
particularly in Asia, of packaged bean curd. Tofu.”

And that’s where the Noto fonts got their name:
No To(fu) = Noto.

My road to Noto began in 1985 when I started
at RIT’s school of printing. In my typography classes
I was introduced to hot metal typesetting juxtaposed
with the latest computer typesetting equipment of
the day, i.e., bitmap fonts.

All human beings are born free and

Figure 6: My road to Noto starts, 1985.

Prof. Archie Provan was working as a consul-
tant to Xerox on their efforts to gather bitmap fonts
from many different foundries that would be able to
typeset all the world’s languages. He was working

Steven Matteson

TUGboat, Volume 41 (2020), No. 2 147

with Ed Smura on the AFII standard—the Associa-
tion for Font Information Interchange. This included
other aspects related to typography, including type-
face classifications, but the bitmap font project was
probably the most ambitious aspect.

With these bitmap fonts, the Xerox Star pub-
lishing system, a precursor to the Macintosh, was to
be able to produce documents in any language. The
pipe dream was for the fonts to be beamed via satel-
lite to a Xerox Star installed anywhere in the world.

When describing the project to me, Archie gave
a romantic notion about how, if people around the
world could communicate more accurately and easily,
they might spend less time fighting.

Homely as they were, these monochrome bitmap
shapes would carry the power of our own messages,
our own ‘Memphis decrees’, all around the world.

By the time I graduated, outline vector fonts
that we use today were becoming more viable. Single-
sized jaggy bitmap shapes were suddenly no longer
sufficient when you could infinitely scale a letterform
for more expressive typography.

N

Figure 7: Early outline fonts.

I began working on the TrueType system fonts
for Microsoft in 1990. The fonts all had a modest
character set of around 300 characters, already more
than earlier font formats could handle. TrueType
fonts could handle more characters, and thereby type-
set more languages, because Unicode became the
standard way of encoding or ‘organizing’ all the let-
ters in all the alphabets in the world, allowing (at
that time) 65,536 characters in all. The previous en-
coding schemes, including such as ISO 8859, typically
allowed only 256 characters in a single file.

With Unicode every character in the world gets
a unique identifier. For example, the G-breve for
Turkish gets a name and a Unicode number (Ğ,
U+011E); as does the Greek Omega (Ω, U+03A9), etc.
The Unicode registry is constantly being updated. In
1999, for example, Unicode consortium scrambled to
put the Euro symbol (€, U+20AC) into its directory
so font foundries like Monotype could update their
massive font libraries to support the new currency.

Between 1990 and 93, foundries continued de-
veloping a steady stream of Unicode-encoded fonts,
ever growing in size. The WGL (or Windows Glyph
List) character set, defined by Microsoft, raising ex-
pectations for fonts to having support for about 90
languages with around 600 unique characters in a
font file.

Bigelow and Holmes built their Lucida Sans
Unicode font to coincide with the publication of
Unicode’s 1.0 specification. Lucida Sans Unicode
was released by Microsoft in 1993 and added Greek,
Cyrillic and Hebrew to the Latin Character set. The
font also included support for phonetic and math
symbols which Unicode had defined for version 1.0.

ASCII 0000 ->

! " # $ % & ' () * + , - . / 0 1 2 3 4

5 6 7 8 9 : ; < = > ? @ A B C D E F G H

I J K L M N O P Q R S T U V W X Y Z [\

] ^ _ ` a b c d e f g h i j k l m n o p

q r s t u v w x y z { | } ~

Latin1 00A0 ->

! " # $ % & ' () * + , - . / 0 1 2 3 4
5 6 7 8 9 : ; < = > ? @ A B C D E F G H
I J K L M N O P Q R S T U V W X Y Z [\
] ^ _ ` a b c d e f g h i j k l m n o p
q r s t u v w x y z { | } ~ Ä

European Latin 0100 ->

! " # $ % & ' () * + , - . / 0 1 2 3 4
5 6 7 8 9 : ; < = > ? @ A B C D E F G H
I J K L M N O P Q R S T U V W X Y Z [\
] ^ _ ` a b c d e f g h i j k l m n o p
q r s t u v w x y z { | } ~ Ä Å Ç É Ñ Ö
Ü á à â ä ã å ç é è ê ë í ì î ï ñ ó ò ô
ö õ ú ù û ü † ° ¢ £ § • ¶ ß ® © ™ ´ ¨ ≠

Æ Ø ∞ ± ≤ ≥

Extended Latin 0180 ->

0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C
D E F G H I J K L M N O P Q R S T U V W
X Y Z [\] ^ _ ` a b c d e f g h i j k
l m n o p q r s tuv w x y z { | } ~ Ä
Å Ç É Ñ Ö Ü á à â ä ã å ç é è ê ë í ì î
ï ñ ó ò ô ö õ ú ù û ü † °

Standard Phonetic 0250 ->

0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C
D E F G H I J K L M N O P Q R S T U V W
X Y Z [\] ^ _ ` a b c d e f g h i j k
l m n o p q r s t u v w x y z { | } ~ Ä
Å Ç É Ñ Ö Üá à â

Modifier Letters 02B0 ->

0 1 2 3 4 5 6 7 8 9 : ; < = > ? @ A B C
D E F G H I J K L M N O P Q R S T U V W
X Y Z [\] ^ ` a b c d e f g h i

Greek 0370 ->

$ % * . 4 5 6 8 9 : < > ? @ A B C D E F
G H I J K L M N O P Q S T U V W X Y Z [
\] ^ _ ` a b c d e f g h i j k l m n o

Cyrillic 0400 ->

1 2 3 4 5 6 7 8 9 : ; < >
F G H I J K L M N O P Q R
Z [\] ^ _ ` a b c d e f
n o p q r s t u v w x y z
É Ñ Ö Ü á à â ä ã å é è í
ƒ ≈ ∆ « » … À Ã Õ Œ œ –
ÿ Ÿ ⁄ ¤ ‹ › fi fl ‡ · ‚ „ ‰
Ï Ì Ó Ô Ò Ú Û Ù ˜ ¯ ˚ ¸

Hebrew 0590 ->

. 0 3 A B C D E F G H I J

R S T U V W X Y Z [a b c

General 2000 ->

Punctuation

@ A B C D E F G H I J K L

T U V W ` ab c d e f g h

q r s

Superscripts 2070 ->

& Subscripts

0 1 2 3 4 5 6 7 8 9 : ; < =

D E F G H I J K L M N

Currency Symb. 20A0 -> 0 1 2 3 4 5 6 78 9 : g

Letterlike Symbols 2100 ->

0 1 2 3 4 5 6 7 8 9 : ; <
D E F G H I J K L M N O P
X Y Z [\] ^ _ ` a b c d

Mathematical 2200 ->

operators

 ! " # $ % & ' () * + ,

4 5 6 7 8 9 : ; < = > ? @ A B C

H I J K L MN O PQ R S T U V

\] ^ _ ` a b c d e f g h i j k l m n o

p q r s t u v w x y z { | } ~ Ä Å Ç É Ñ

Ö Ü á à â äãå ç é è ê ë í ì î ï ñ ó ò

ô ö õ ú ù û ü † ! " # $ % & ' () * +

, - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

@ A B C D E F G H I J K L M N O P Q R S

T U V W X Y Z [\] ^ _ ` a b c d e

h i j k l m n o p q r s t

| } ~ Ä Å Ç É Ñ Ö Ü á à â ä ã å ç é è ê

ë †

Pictures for 2400 ->

Control Code

` a b c d e f g h i j k l m n o p q r s

t u v w x y z { | } ~ Ä Å Ç É

Figure 8: Bigelow&Holmes Lucida Sans Unicode, 1993.

In 1997 Monotype was tasked by Microsoft to
extend Arial to cover all of Unicode 2.0—a mere
50,000 letterforms weighing in at 22Mb for the single
font file. While the TrueType font format could
theoretically support all of these characters in a
single font file, it was a tricky process to make it
work. We had to build many small ‘fontlets’ and then
stitch them all together at the end of the process.
My colleague of many years, Kamal Mansour, saw to
it that the design was, as much as could be expected
at that time, harmonious with Arial.

Figure 9: Monotype Arial for Unicode 2.0, 1997.

The road to Noto

148 TUGboat, Volume 41 (2020), No. 2

We included many more Chinese ideographs
than were defined by Unicode. The extra ‘glyphs’
were included to support both simplified and tradi-
tional Chinese, so the actual number of letterforms
in the font exceeded that of the Unicode standard.

對 → 对
 →

Traditional Chinese Simplified Chinese

Figure 10: Same Unicode, different shapes.

The illustration above shows how the same Uni-
code character can be represented by two different
glyph shapes. A Western equivalent might be to show
the letter g in both a single loop and double loop
form— it’s the same Unicode character represented
by two different glyph shapes.

In 2006 Google approached me to create a type-
face family for a new mobile phone platform. Google
wanted a unique UI experience for branding Android.
A unique interface experience starts, of course, with
the kind of typeface you interact with.

Because of Google’s and Android’s somewhat
quirky branding I needed to draw an approachable
typeface that was ‘left of neutral’. Being too neutral
wouldn’t stand out as being unique to the brand.
But if it was too cute or techno-looking the legibility
and functionality would suffer.

Cute Neutral Techno

Figure 11: New typeface design goal for Android.

Also, Android has a very specific rendering envi-
ronment. Recall that cell phone screens were nowhere
near the resolution of today’s devices.

Hamburgefonstiv
Black and

White

Windows XP

FreeType

Figure 12: Different screens, different results, 2006.

This next example shows how the same design
can be very different looking depending on the screen
it’s being viewed on. The thin parts of letters can
look like they are disappearing or slightly too heavy,
depending on how the software interprets and draws
the letters.

These are some early drawings and experiments
which were put into testing.

Figure 13: Early drawings for the Android font.

We had to create fonts and install them into
devices to view the effects of small changes in de-
sign and proportion of individual letters. This was
a laborious process because the user interface was
being designed at the same time as the typeface
was being developed. To complicate things further,
the hardware which would become the first Android
phones was also in the process of being designed and
manufactured.

I designed the fonts with an eye on how they
would render in various Android screens. I worked
back and forth with their UI team to make sure
there was enough contrast between regular and bold
weights to aid in establishing a hierarchy in the in-
terface. I made sure that detailing in each design
was working well at these limited resolutions.

Once we were on the right track with the de-
sign we did some weight tests to see how much con-
trast was necessary between the regular and the bold
weights.
Phone
Web
Search
Contacts
Recent calls
Text messages
Voicemail
Email

Phone
Web
Search
Contacts
Recent calls
Text messages
Voicemail
Email

Phone
Web
Search
Contacts
Recent calls
Text messages
Voicemail
Email

Phone
Web
Search
Contacts
Recent calls
Text messages
Voicemail
Email

Home Phone Web Search Contacts Recent calls Text messages Voicemail Email
Home Phone Web Search Contacts Recent calls Text messages Voicemail Email
Home Phone Web Search Contacts Recent calls Text messages Voicemail Email
Home Phone Web Search Contacts Recent calls Text messages Voicemail Email

Phone
Web
Search
Contacts
Recent calls
Text messages
Voicemail
Email

Figure 14: Weight tests for the Android font.

Steven Matteson

TUGboat, Volume 41 (2020), No. 2 149

Only two weights were required; italics would
be synthesized by Android in order to save storage
space. On the other hand, after much discussion it
was determined that a serif typeface should be part
of the basic set of fonts. The serif fonts would be
for reading news feeds and extended text. The sans
would be for UI elements and menus.

Droid Sans
abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Droid Sans Bold
abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Droid Serif
abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Droid Serif Bold
abcdefghijklmnopqrstuvwxyz

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Figure 15: Original Droid font family.

All of the fonts supported the WGL-4 character
set but there was a sense that this was going to be
expanded on if Android was successful.

The goal of course was to create a family of
fonts which held up at small screen sizes and gave
the platform an approachable, friendly appearance.
We may have actually achieved this as a writer for
Wired’s online edition called the fonts ‘googly’.

Figure 16: Droid display test.

When the time came to expand on what could
be displayed in the Android UI, Google thought it
was clear they did not want it to look like the left
side below, regrettably similar to the insurance ben-
efits statement shown earlier (fig. 4). Rather, they
wanted a harmonized ‘Android brand’ look and feel
across all the languages they were supporting. All
of the scripts should have a contemporary, approach-
able and ergonomic feeling, closer to the right side.
(Apologies for the typo in the Arabic text.)

DROID SANS

На всей земле был один язык и одно наречие
หอบ บลทว ผนดน ลกมภ ษ ดยว ล มส นยง ดยวกน

And all the earth had one language and one tongue

ة واحدة سان واحد و ن أو ب ت عأ رض ج وآان أ ا
Es hatte aber alle Welt einerlei Zunge und Sprache

ויהי כל-הארץ, שפה אחת, ודברים, אחדים
Byla pak všecka země jazyku jednoho a řeči jedné

Και ητο πασα η γη μιας γλωσσης και μιας φωνης
Và cả thiên hạ đều có một giọng nói và một thứ tiếng.

GENESIS 11

DROID SANS

На всей земле был один язык и одно наречие
หอบาเบลทั่วแผ่นดินโลกมีภาษาเดียวและมีสำเนียงเดียวกัน
And all the earth had one language and one tongue

 وكان أمل الأرض جميعأ يتكلمون أولا بلسان واحد ولغة واحدة
Es hatte aber alle Welt einerlei Zunge und Sprache

ויהי כל-הארץ, שפה אחת, ודברים, אחדים
Byla pak všecka země jazyku jednoho a řeči jedné
そのころ、人類はみな同じことばを話していました。

Και ητο πασα η γη μιας γλωσσης και μιας φωνης
Và cả thiên hạ đều có một giọng nói và một thứ tiếng.

那时，天下人的口音言语，都是一样
GENESIS 11

Figure 17: Unharmonized scripts on left;
harmonized on right.

Making harmonized designs for scripts which
have no historical relationship to each other is a
bit tricky and in some cases nothing but a compro-
mise of making things roughly the same weight. In
Arabic, for example, the weight is on the horizon-
tals rather than the vertical stems like Latin. This
alone makes an enormous difference in balancing the
weights. Visual cues can be picked up from the Latin
shapes—the soft terminals and weight of the thin
protrusions and the general contrast of thick to thin
can be harmonized.

a e g n s
Figure 18: Harmonizations between Arabic and Latin.

The Arabic fonts were designed by Pascal Zoghbi
with some art direction from me. The style that best
matches Latin serif types is called Naskh. In most
Naskh typefaces the counters are tiny, but in this
case we exaggerated their size to mimic the Latin
type’s openness and aid legibility on screen.

In the example below, the top line of Arabic is
in a style called Kufi which complements a Latin sans
serif more closely. Typically, however, Arabic readers
prefer the Naskh style (bottom line) for extended
reading. I feel that it’s similar to the resistance
Western readers used to have for reading books set
in sans serif typefaces. It really wasn’t until the
1950s and 1960s that people started accepting this
new typographic approach.

Working on this project I learned that Arabic
readers were very accustomed to having to pinch-
zoom text as soon as a page loaded. One of the goals

The road to Noto

150 TUGboat, Volume 41 (2020), No. 2

of exaggerating the proportions was to help prevent
the need to zoom in to read default Arabic sizes. My
understanding from Google was we achieved this in
Droid and Noto.

Figure 19: Kufi style (top), Naskh style (bottom).

Beyond Arabic, a Thai design was another early
need for Android. This is serif style and it can be
noted where some of the details are hinting toward
the Latin serif typeface. (This and following exam-
ples are truncated on the left and/or right so details
can be better seen.)

Figure 20: Droid Thai, with Latin for comparison.

A sample of the Droid Serif Hebrew—another
script where the challenge is in the weight distribu-
tion being opposite that of the Latin.

Figure 21: Droid Hebrew.

The Ethiopic script is often seen in a slanted
form similar to an italic. I decided that an upright
form would be most legible and useful for Android’s
user interface.

Figure 22: Droid Ethiopic.

Armenian takes many cues from the Latin low-
ercase shapes making it considerably easier to har-
monize.

Figure 23: Droid Armenian.

Similarly, Georgian takes many cues from the
round shapes found in the Latin. An entirely different
texture than Armenian, but clearly a member of the
Droid typeface family.

Figure 24: Droid Georgian.

Some may be wondering why I’m talking about
Android at this point on the road to Noto.

Steven Matteson

TUGboat, Volume 41 (2020), No. 2 151

Droid Sans Droid
Open Sans
Noto Sans Noto

Figure 25: Succession of designs.

In 2009 I was asked to adapt Droid Sans into a
branding typeface for Chrome. This design became
Open Sans, a slightly wider proportioned version of
Droid more suitable for regular text in documents.

Roughly in parallel to this, the Chrome and
Android groups at Google were discussing the idea of
combining efforts on the development of a super font
which would cover all of Unicode. The problem of
‘tofu’ displaying in Internet searches was becoming
more problematic as the world’s Internet usage was
climbing dramatically.

With the joint packing of Chrome and Android,
Open Sans then became the basis for Noto Sans and
Droid Serif became Noto Serif.

By 2011 it was decided to expand on the Latin
family for Noto so that it would include a full typo-
graphic palette of styles of weight and width. The
sans and serif would have condensed and narrow ver-
sions added, additional weights from thin to black.
The serif had an added range of contrast from su-
per high contrast to low contrast. That’s about 72
font styles per family—no longer would the polyglot
typographic palette be limited by just regular and
bold styles!

Noto Sans Noto Sans

Noto Sans Noto Sans

Noto Serif Noto Serif

Noto Serif Noto Serif
Noto Sans Monospaced

Figure 26: Noto, ca. 2011.

Unicode had by this time accounted for around
3400 characters to support Latin, Cyrillic, Greek and
phonetic writing. This complement of characters
supports over 500 languages. With these additional
characters being added in all the additional weights,
widths and style of Latin fonts meant drawing about
230,000 characters.

By now it was beyond clear that Noto would
never ship as a single font binary with all of Unicode.

Remember the old Arial Unicode font alone was
22Mb in size with just 55,000 characters. Instead,
the Noto fonts are built as individual modules cov-
ering one or a few related Unicode script, or writing
system, ranges.

Aside from the file size problem, writing systems
beyond the Thai we drew become quite complex in
form. Vertically, Thai is just barely able to squeeze
into the vertical metrics of a Latin typeface. Below,
you can see that Javanese (on the left) and Khmer
(on the right) are even more complex vertically, and
simply could not reasonably squeeze into the dimen-
sions of the Latin script.

Égx

Figure 27: Beyond Latin metrics: Javanese (left),
Khmer (right).

Another example is the Nastaliq style of Arabic
used for Urdu, Pashto and Persian languages. While
the commonly used Naskh follows a flat baseline,
Nastaliq’s baseline slopes downward to the left. The
longer the word, the taller the dimensions become.

Noto Naskh

Noto Nastaliq

Figure 28: Noto Naskh (flat baseline) and
Noto Nastaliq (sloped baseline).

The road to Noto

152 TUGboat, Volume 41 (2020), No. 2

One of the ways we looked at this enormous
project was to break down the writing systems into
categories. This way we could classify related scripts,
either by their region, complexity, or relative use in
the modern world.

Here, the orange boxes denote scripts that may
have been dead for hundreds of years or more, while
the greens are scripts used in India, and so on. This
aided in prioritizing and organizing the expertise
needed to complete each piece of the project.

Figure 29: Organizing scripts for Noto.

Cuneiform is a good example of the ‘dead scripts’
just mentioned; it may be as old as 5,000 years.
While not in practical use, it is certainly useful for
scholars and linguists to have encoded in a font file.

Figure 30: Cuneiform, original and Noto.

Anatolian hieroglyphs are at least 4,000 years
old, thus predating Egyptian hieroglyphs. They
are therefore represented as slightly more crude and
smoothed over.

Figure 31: Anatolian hieroglyphs, original and Noto.

Egyptian hieroglyphs are much more crisp and
refined in design than their Anatolian ancestors.

Figure 32: Egyptian hieroglyphs, original and Noto.

Many of the scripts are categorized as ‘complex’
scripts, requiring a great deal of programming to
assemble words in the proper manner. Arabic, being
right to left and having many forms of the same
letter, falls into this class, as do the scripts used in
India. Jelle Bosma is Monotype’s creative lead in
creating the Indic scripts, and is working on updates
for Unicode version 13.

In the illustration below, the word on the right
is the word ‘Hindi’ spelled out in Devanagari script.
The top line is how it looks with plain Unicode
characters set together, spelling out the word. On
each successive line, you can see how the script is
‘re-shaped’ as advanced typography tables rearrange
the letters as they are typed. In the second line, the
green characters change places. In the third line, the
green and pink characters form a ligature.

Steven Matteson

TUGboat, Volume 41 (2020), No. 2 153

Figure 33: Designer Jelle Bosma (left); the right
shows the word ‘Hindi’ being shaped as it is typed.

The Indic writing systems appear quite different
from each other but we’ve designed them to harmo-
nize as much as possible. The rectangular Devanagari
contrasts quite a lot with the fluid Sinhala, but their
color and proportion are preserved to keep them in
sync. It’s the same with Telugu and Tamil; they
contrast a great deal in overall texture, but their
proportions and color tie them together.

Devanagari

Sinhala

Telugu

Tamil

Figure 34: Indic scripts in Noto.

Just as I mentioned there were technical issues
to resolve way back with Arial Unicode; the same
has been true with Noto. My colleague Toshi Oma-
gari is shown below orienting his laptop to design
Mongolian, a connected script which reads top-down,
left-to-right.

The tool developers for GlyphsApp have been
incredibly supportive in updating their product to
make these complex scripts in Noto possible. It
wasn’t long before they delivered a fix which allowed
Toshi to see his work in a way it would be used.

Figure 35: Toshi Omagari working on Mongolian.

Earlier I mentioned dead scripts. On the flip
side is Adlam, a script developed in the late 1980s by
the brothers Ibrahima and Abdoulaye Barry. This
writing system transcribes the Fulani language spo-
ken in Guinea, Nigeria and Liberia. Before Adlam,
Fulani was written in either Arabic or Latin script.

Figure 36: Adlam, developed in the 1980s.

By 2018 the Noto fonts covered nearly 64,000
characters and in the last 2 years there have been
many updates. Unicode 13.0 adds 4 new scripts and
5,000 new characters to this count. “What could
possibly be left?” you might ask.

Khitan, a language once spoken in Manchuria
has been added, as has Chorasmian, a language of
ancient Persia.

Sutton Signwriting, a notation system used to
teach sign language has been added. It requires thou-
sands of icons necessary to show hand gestures and
facial expressions used by sign language interpreters.

The road to Noto

154 TUGboat, Volume 41 (2020), No. 2

And the Noto symbol font is getting many new
characters including the long-awaited accordion and
fondue dish symbols. The list keeps growing.

Figure 37: Added in Unicode 13.0: Khitan and
Chorasmian scripts (top), Sutton Signwriting (middle),
assorted symbols (bottom).

Noto will continue to be polished and refined
to reflect the demands of the community of people
using the fonts.

In addition to about 30 people within Mono-
type that have worked on the Noto project, we’ve
been working with more than 30 outside linguists,
consultants and designers around the world, notably
including Fiona Ross, Tiro Typeworks, and Kigali
Design.

Other people I’d like to thank here: Abdoulaye
& Ibrahima Barry; Jo De Baerdemaeker; Cadson De-
mak Ltd; Diane Collier; Fontef Type Foundry; Kalapi
Gajjar-Bordawekar; Yanone Gerner; Gajjar & Vilh-
jamsson Private Limited; Kimya Gandhi; Patrick
Giasson; John Hudson; Indian Type Foundry; Yanek
Iontef; Letterjuice Ltd.; Ben Mitchell; James Montal-
bano; Elena Papassissa; Rainer Erich Scheichelbauer;
Zachary Scheuren; Georg Seifert; Vaibhav Singh;
Anuthin Wongsunkakon; Pascal Zoghbi.

The community of users and testers who have
provided feedback is, of course, much larger. It is an
honor to be working for them to make this enormous
undertaking a possibility.

In the end Noto may not be used for retranslat-
ing the bible or imperial decrees. It might be very
simple messages that we can convey with this enor-
mous tool we have at our disposal. And maybe Noto
is another step towards that romantic notion I heard
as a student—that people around the world could
spend more time communicating instead of fighting.

 Носить Mаску תלבש מסכה

મા# પહેરા ે マスクを着⽤

WEAR A MASK ଏକ ମାସ& ପି)*u |

नकाब पहिनए Φορέστε Mάσκα

戴⼜罩 !க#$ அ&'(கll

एउटा मास्क लगाउनुहोस् البس قناعا

മാസ്ക് ധരിkുക !ក#$%ស
Translations unedited via Google Translate

Figure 38: Translations unedited,
via Google Translate.

⋄ Steven Matteson
Monotype
monotype.com/studio/steve-matteson

Steven Matteson

TUGboat, Volume 41 (2020), No. 2 155

Typographical explorations in two

unicase alphabets

Jennifer Claudio

Abstract

We take for granted the convenience of expressing
emotions in typography for Latin-based writing, such
as using capital letters. This submission explores the
use of a variety of type attributes including color,
typeface, size, and distortion as they are used to
convey emotional charge in Hangul (Korean) and
Arabic writing.

1 Introduction

The written word has a rich history ranging from
engravings through brush calligraphy and into digital
typography. While typography itself is defined as
“the art and technique of arranging type to make
written language legible, readable, and appealing
when displayed” (Wikipedia), therein exists a deeper
psychological contribution to the emotional charge
of words. Likewise, the developing methods and
needs of written communication demand attention
to typographical methods of expression, which are
sometimes limited by alphabetic constraints for some
language families.

The purpose of this exploration is to draw atten-
tion to typographic methods needed to nurture con-
nections between the spoken and written language,
as well as to their associated cultures, to broaden the
range of expression used in more world languages.

2 Unicase alphabets

Two unicase alphabet systems will be addressed
to provide specific background, Hangul and Ara-
bic. Unicase systems do not have a differentiation of
letterforms between upper- and lowercase letters, ter-
minology that traces roots to the early typographic
systems where moveable typecasts were stored in
drawers with capital letters traditionally in the lit-
eral upper case.

Hangul is the writing system of the Republic
of Korea, and it currently uses an alphabet con-
stituent of fourteen consonants and ten vowels. The
Hangul alphabet is described as an alphabetic syl-
labary, meaning that although alphabet units consist
of vowels and consonants working together to depict
a sound, letter and syllable combinations have both
a vertical and horizontal relationship. This relation-
ship is in contrast to a language such as English,
where each alphabetic letter has only a horizontal
relationship with the ones that precede or follow it.

Arabic script, comprised of twenty-eight stan-
dard letters, is used for writing several languages,
including Farsi (Persian), Urdu, and Pashto, and
has variations that have incorporated modifications
to the syllabary such as for the Uyghur language.
Although Arabic forms, including the number of rec-
ognized letters or letterforms, may vary slightly by
country or culture, all Arabic script is written from
right to left and has letters that change form depend-
ing on positioning within a word. Some, but not all,
scripts include diacritic markers.

3 Emotion in language

Words carry only as much meaning as their context
can convey. A standalone word, “what”, can mean
any number of things, yet when written as What,
what, or WHAT—even without punctuation— it
can elicit varying emotions or response from the
reader. Whether the visual imagery of the word
conveys surprise, doubt, even potentially anger, de-
pends on the typographic elements of the word. Here,
emotions relevant to emphasis (shouting) and endear-
ment will be discussed in the context of typographic
needs.

Shouting, or a greater volume when speaking,
tends to be written with capital letters, bold face, or
a size increase, and it typically occurs when a user
expresses anger, assertiveness, demands, or surprise.
(Tangentially, this becomes more pronounced in the
realms of social media and game chat media.) While
it is easy to shout using the Latin alphabet, this
cannot be the case in a language such as for the
Korean Hangul or Arabic. In these alphabets, besides
using extra exclamation marks, shouting must then
be conveyed through other typographic adjustments.

Two ways of demonstrating “louder” text that
may immediately come to mind are size increases and
color highlights. In comics, this is convenient, but it
poses difficulty for in-line text. Although both Ko-
rean and Arabic can use italics as a usable option for
emphasis, it seems that Arabic font kerning is some-
times disrupted by italicizing. Some typographic
elements already serve other functions. Although
characters that do not disturb the flow of the sentence
can be stretched horizontally, this is not a method of
changing the emotional charge of the word. A letter
is more typically elongated to emphasize strokes that
differentiate letters, rather than to imply a different
emotional setting of the word.

Endearment or “cute” writing often incorporates
letters with softer curves, and graphic designers and
artists might choose to modify letters into bubbly
forms or dot i’s with hearts. As with the situation for
capital letters, some of these modifications cannot

Typographical explorations in two unicase alphabets

156 TUGboat, Volume 41 (2020), No. 2

occur in other alphabet systems. Hangul does not
have diacritics, although some of its vowels could
be heart-morphed. An Arabic phrase of endearment
would also not likely find itself with heart-shaped
“dots”, and furthermore, using baseline shifts would
also be inconvenient, if possible at all, mainly due
to the necessity for cursive script and due to the
changes of letter shape dependent upon position.

4 Upcoming work

A second phase of this exploratory project will exam-
ine typographic methods and modifications in more
detail, based on data relevant to perceived emotions
conveyed by typographic samples in children’s books,
advertising media, and social media in English, Cyril-
lic, Hangul, Arabic, and Bangla. Future work will
also address complexities and typographic modifica-
tions specific to Quranic writing.

5 Acknowledgments

Special thanks to AbdulBaqi Matrook for provid-
ing information about speaking and reading native
Arabic, and for providing examples of print media
that were used in the TUG 2020 presentation. I also
acknowledge the creators of the AlifBee mobile app
for helpful lessons on an introduction to basic Ara-
bic and Yusuf Alam for providing early samples of
Arabic calligraphy.

⋄ Jennifer Claudio
San Jose, California
claudioj (at) esuhsd dot org

Example 1: Elongations are not used to convey
emotion in the titles for children’s books, “I’m Sorry”
(left) and “Thank You” (right).

Example 2: The text in red is used to emphasize
talking rather than narration.

Example 3: Boldface and type-play are used in
comics for emotional emphasis.

Example 4: The Korean phrase “hangsang” meaning
“always” (left), and Korean “yeonin” and Arabic
“habibati” (right) for “sweetheart” (when addressed
to a female), with hearts to express endearment, and
without hearts, for comparison, in green.

Jennifer Claudio

TUGboat, Volume 41 (2020), No. 2 157

Your personal LATEX bookshelf: Improving
your background in a time of lockdown

Peter Flynn

Abstract
This paper describes the development of a LATEX
package to create a bookshelf image from a BibTEX
file, suitable for use as a background for a video call
in Zoom, Skype, or similar. Each entry is typeset as
the spine of a book with title and author, using a
randomly-selected font, color, and size. The paper
describes the problems of random choice with both
fixed-length and [potentially] endless lists, and the
algorithm used to fit the author and title onto the
spine. The package is available as bookshelf on CTAN
for inspection and testing.

Background (literally)
It started on Twitter, when several people were com-
menting on the way people appeared when suddenly
faced with having to do a Skype or Zoom video call
during the COVID-19 lockdown. Apart from the
lack of a camera crew, makeup team, sound crew,
and production control, there were a lot of hastily-
cleared walls, bookcases, window-ledges, and even
whole rooms on view behind the talking head.

In particular, people who read and write, par-
ticularly academics, have lots of bookcases with lots
of books, often in a state of considerable disarray.
This doesn’t look good — people may laugh about
notoriously untidy professors, but when you need
to sit up and be interviewed about epidemiology, or
seroprevalence, or the 1918 influenza pandemic, you
need to look calm and professional, and that jumble
of books doesn’t cut it.

It suddenly dawned on me that in the BibTEX
users’ environment, we have title and author for prac-
tically everything we have ever cited — somewhere.
What was needed was a virtual bookcase, an image
generated from life’s collection of reading.

Publishers do keep images of their books, but
usually the front cover, not the spine; and even so,
they would not be available to the public, nor would
they ever be in a sensible, uniform location on their
web sites. No, it would need to be random: a random
color for background and font; a random font from
the huge range available to TEX users; and a random
height and width of spine. In fact the only non-
random data available would be the BibTEX entries,
and rather than sort them, the order could be left
to the user.

‘Actually it turns out to be rather easy, but it would need
an algorithm for colour-pairing, and a few assorted layouts
for title an author. But basically, it works.’ (May 1st)

Figure 1: First pass

Start-up
In the traditional Internet ethos of ‘rough consen-
sus and running code’ it didn’t take too long to
come up with a proof-of-concept, which I ran past
@latex_ninja, @damienmulley, and a few of the
usual suspects (Figure 1).

By this time the requirements were becoming
more apparent:
Randomness There needed to be a way to generate

random values to select at least five aspects:
a) colors (font and background); b) height and
width; and c) font (well, typeface).

Data The need for selection meant that LATEX some-
how had to be provided with a list of available
typefaces and available colors, and that minima
and maxima for the book spine height and width
needed to be set; and that those would need to
be floating-point (lengths) whereas the font and
color selection would need to be integer.

Color-pairing It was clear from early on that just
picking two random colors was a recipe for con-
flict. What was needed was a way to say if one
color was sufficiently in contrast with the other
one to be legible.

Format It would be nice if there was some variation
in spine layout, rather than having all the books
look the same.

Your personal LATEX bookshelf: Improving your background in a time of lockdown

158 TUGboat, Volume 41 (2020), No. 2

The randomness was easily fixed with Donald Arse-
neau’s wonderful random package, which can gener-
ate both random integers and random dimensions.

However, if this was to deal with anyone’s Bib-
TEX files, some way to deal with character encodings
would be needed, some way to overcome the assorted
weirdnesses of old bibtex .bst files, and some way to
choose from the user’s installed fonts. That most use-
ful of devices, Occam’s Razor, was employed: UTF-8
only, X ELATEX only, using biblatex and biber. I’ve
been using this method for a couple of years now, and
while I’m aware of the need for more development,
it works for me, and the time has probably come to
put the old .bst system out to grass.

Implementation
A shell script was created that extracted all en-
try keys from the user’s BibTEX file and formatted
each as a command to call the \makebook command,
which the class defines to handle one entry. This can
be \input by the user’s document.
cat "$BIBFILE" |\

grep '^@' |\
grep -viE '(@Preamble|@String)' |\
awk -F\{ '{print $2}' |\
awk -F, '{print "\\makebook{" $1 "}%"}' \

>entries.tex
That left basically three main actions: pick a font,
pick the colors, and size the spine.

Font selection LATEX has no way to create a list
of installed fonts. Operating systems provide this
information, so an external preprocessor was going
to be needed. A TEX \ifcase structure was con-
sidered, but the number of installed fonts on many
systems would be too large. The method chosen
was to create a set of files numbered 1.tex, 2.tex,
etc., in a subdirectory, each one containing a font
selection command. The numbering is easily scripted
on Unix-like systems (including GNU/Linux and Ap-
ple macOS) by using fc-list and the standard text
utilities to create the files, simply numbered in order
of occurrence.

The final action is to place a command setting
the maximum bound for the random choice into
another file that gets \input. Selection can then be
done with \setrannum between 1 and the maximum,
and then using \input to execute the font selection.

Colors In the case of colors, there is again a theoreti-
cal infinity of choice. However, practicality suggested
one of the named palettes in the xcolor package, and
svgnames was chosen as a representative sample. It
also had the advantage of being small enough to
be instantiated as an \ifcase structure. Extending

the script was straightforward to extract the color
names from svgnam.def and write the \ifcase into
a file that can be \input. As with font selection,
\setrannum is used to pick a number to apply to
the \ifcase for the background, and again for the
foreground.

Height and width Random dimensions sounded
fine, but needed taming: for any given length of title
and author, a certain amount of space is needed. In
LATEX, this tends to be like the choice of column type
in a tabular environment: left, right, and center only
handle single lines of data: for longer data you need
a paragraphic cell. So long titles need to be allowed
to wrap naturally in a \vbox, whereas shorter ones
don’t, so this is going to affect how much width and
height is needed. The starting-point was a height
and width set with \setrandimen between 5–20mm
wide and 70–110mm high.

In addition, an alternative layout was created:
author name across the top, rather than run-in with
the title. The sizing algorithm was therefore:

1. an author name shorter than the randomly-
chosen width of the spine would be typeset hor-
izontally across the width of the spine, at the
top, and its height deducted from the randomly-
chosen height of the spine;

2. measure the width of the typeset title (or the
title and author, joined by an em dash);

3. if the result was longer than the available height,
typeset the title (and author, if needed) into a
box of width at the available height in ragged-
right mode so that it will run naturally to as
many lines as needed;

4. measure the height of that box and if neces-
sary increase the chosen width of the spine to
accommodate it.

Theoretically you could then cycle round and see
those that affected the choice of where the author
was typeset, but this was felt to be a step too far for
an initial solution.

Adjustments
One immediate problem was known — colour clash or
brightness and contrast in pairing — but its effect was
not apparent until a large bookshelf was created. A
workable solution is due to Nir Dobovizki [1], which
proposes the formula

brightness =
√

.241r2 + .691g2 + .068b2

where r, g, and b are the red, green, and blue values
expressed as integers between 0 and 255.

Code to compute this was added to the script
so that color selection and brightness selection could

Peter Flynn

TUGboat, Volume 41 (2020), No. 2 159

‘Fixed the colour-pairing and random font selection and
picked two layouts. Basically working but needs more test
data. Thid is my thesis bibliography’ [sic] (May 16th)

Figure 2: Working solution

be done in parallel, and a clash rejected, within a
loop. By inspection of the gamut, the approximate
location of the median brightness value appeared to
be 0.7, so the code ensures that each of the two colors
chosen falls either side of this value. A notional value
of 10 was used for regulating loop exit, after which
the current values are used regardless; this appears
to be sufficient.

This created a working solution (Figure 2), but
left an unresolved issue: the data-preparation script
was including all TTF and OTF fonts regardless of
their type, whereas it needed limiting to text type-
faces with a Latin register (that is, excluding math,
symbols, and display fonts). In addition, on the au-
thor’s system, some directories of older, experimental,
and test fonts needed to be excluded.

Some inspection and experimentation showed
that a reasonable list could be created by excluding
any font name with a match in a regular expression
containing suitable strings:
(Bitmap|Emoji|Dingbats|Jazz|STIX|dings|
Symbol|Numeric|DIN|Ornament|OCR|CJK|
Awesome|Dummy|Math)

A cyclical pattern of test-as-you-go had been estab-
lished, and I am grateful to the numerous people
who sent me their thesis BibTEX files. One late addi-
tion was to shade the background to a dark color for
the inside of the bookshelf, and to color the shelves
themselves a pale cream, for which I used a technique
suggested by Ulrike Fischer [2].

The final stage, left to the user, is to convert the
PDF to image format. The default size is a landscape
A0 page, which is huge, but accommodates a few
hundred volumes. It shrinks well to a screen size.

Conclusions
The most recent step was to put the package on
CTAN and see if there were suggestions (none so far).
By this time a number of helpful suggestions had
been received, and offers of testing were accepted.
By May 24 I was able to report on Twitter:

May 24 • Replying to @latex_ninja
@TeX4Publication @erdmaennchen42 It has
just been uploaded to CTAN. Thank you.

What could be done better?
• The script works in bash (Linux) and zsh (Mac).

It needs extending to Windows (cygwin? Power-
shell?);

• The colors currently are too bright on-screen,
although reportedly OK for printing: perhaps
the color selection algorithm needs revising;

• Some more spine layouts would be interesting,
as would more bookshelf layouts: books at an
angle, or stacked horizontally;

• Can something from the biblatex field selection
provide for a place to store color, font, layout,
and size as one would for bibliometrics or a
catalogue raisonné;

• 180° rotation for spine titles is needed for some
non-English languages, and math in titles needs
more testing;

• In essence, this is just an output format from
a .bbl file. Perhaps it would be more useful
rewritten as a biblatex style option.

References
[1] N. Dobovizki. Calculating the Perceived

Brightness of a Color. Making Time-Tracking
Software, Apr 2008. https://www.nbdtech.
com/Blog/archive/2008/04/27/Calculating-
the-Perceived-Brightness-of-a-Color.
aspx

[2] U. Fischer. How to set a certain
color (other than white) to margin
areas? tex.stackexchange.com, Dec 2010.
https://tex.stackexchange.com/questions/
7725/how-to-set-a-certain-color-other-
than-white-to-margin-areas

⋄ Peter Flynn
Textual Therapy Division,

Silmaril Consultants
Cork, Ireland
Phone: +353 86 824 5333
peter (at) silmaril dot ie
blogs.silmaril.ie/peter

Your personal LATEX bookshelf: Improving your background in a time of lockdown

160 TUGboat, Volume 41 (2020), No. 2

Noticing history—a personal view*

David Walden

Abstract

I presume most of us who participated in or watched
the TUG 2020 conference are not professional histori-
ans but rather are computing practitioners or users
of computing technology such as TEX and friends.
We have access to memories, papers, and flexibility
in what we study, and how we present what we learn,
that won’t all be available to professional historians.
I believe it is our job to help the computing history
world capture more computing history while it still
exists to be captured.

Introduction

Although I am speaking today about how computing
history is done, I am not a formally trained historian.
I come to the views expressed in the rest of this
paper from a thirty year career in the technology
and business of computing and now 25 years of ama-
teur research and writing about computing history.
During this time I have been a near-constant user of
computing technology—since retirement from busi-
ness, including LATEX and other components of the
TEX-based-or-derived infrastructure.

Over the past 15 or 20 years of my involvement
in researching computing history, I have become
acquainted with a number of professional, often aca-
demic, historians and have learned something about
what they typically do. I have come to believe that
the professional historian can’t do it alone, and his-
tory work might use some help from the likes of us.

For much of this paper I will talk about comput-
ing history and the people who work or have worked
in computing. Everything I say is equally applicable
to typography, typesetting, and printing history and
the people who work or have worked in those activ-
ities. In this paper I will refer to “we” or “us”; by
this I will mean people such as are at this conference
and who are typical readers of TUGboat —people
who are involved in the development of computing,
typography, typesetting, and printing technology or
closely observe or seriously use it.

A recurring theme of the rest of this article is the
distinction and separation of amateur historians who
themselves actually experienced, participated in, and

∗This paper is derived from a presentation at the TEX
Users Group’s 2020 annual conference (carried out via Zoom).
The slides that went with this presentation are at tug.org/
tug2020/preprints/Walden-history-slides.pdf. This writ-
ten version of the presentation does not closely follow the
slides.

understood the formations and transformations of
various computer-related fields, from the professional
historians who report, translate, and interpret the
histories of those fields.1

I don’t mean to be critical of professional com-
puting historians. They have had added essential
scholarship, stability, and validation to the field of
computing history. While collecting and writing com-
puting history initially was pioneered by computer
people themselves who were afraid the history of
their field was being lost, it would not have become
the vibrant and distinct field it now is had it not
become a branch of academic history. I do mean to
encourage people from the computing field to engage
more in capturing and recording computing history
in ways that complement and supplement the work
of the professionals and may be valuable in their own
right. I also hope to suggest to the professionals how
valuable, even essential, our amateur history efforts
can be.

In the rest of this paper I will discuss three topics.

1. History is moving fast, and many memories and
materials from history are being lost; official
historians can’t capture and document enough
computing history by themselves; and thus the
history world needs our help.

2. We have useful skills and abilities to contribute.

3. There are many ways in which we can help.

1 The need

Things have been changing fast in the decades since
the 1940s and 1950s.

After centuries of using essentially Gutenberg
technology and about 70 years of dependence on
Linotype, Monotype, and other forms of mechanical
composition, the history of phototypesetting zipped
by in a couple of decades, and desktop publishing
went from infancy to ubiquity in another couple of
decades.

Several generations of people who participated
in developments in those years have died or are
getting old as are people who closely observed the
early developments. While many important pioneers
have been interviewed and have sent their papers to
archives such as the Charles Babbage Institute (CBI),
the Computer History Museum (CHM) or their uni-
versity or corporate archive, there are other major
pioneers and many lesser pioneers whose histories
need to be captured—now. (As history continues
to run along, there will always be more people and
projects whose histories should be captured.)

We also need the documents of computing de-
velopments: hardware diagrams, program listings,

David Walden

TUGboat, Volume 41 (2020), No. 2 161

project plans, company plans, and so on. In some
cases such materials have been archived. For exam-
ple, lots of materials from the Control Data Corpo-
ration are in the Charles Babbage Institute archive
(www.cbi.umn.edu). Some of the Aldus (PageMaker)
company’s annual reports and other documents are
in the archive of the Computer History Museum
(computerhistory.org). Perhaps more typically,
few of the materials of Interleaf Inc., a rival of Aldus
in the 1980s, are in a formal archive. Some of the
archiving may come from a person possessing mate-
rial volunteering it to an archive; in perhaps fewer
cases, an archive recruits materials from a company
or individual. Whatever the case, there is much more
that should be collected for which there may be no
current plans for collection.

In this digital age, it is more important than
ever to capture such materials now. Before, when
everything was on paper, there was at least a chance
that the material would eventually be able to be col-
lected. Today companies’ and individuals’ computers
get discarded with no one thinking about what they
may contain of historical significance that was never
on paper.

Professional computing historians cannot possibly
do all the desirable history work.

The professionals of course do lots of collection,
research into, and publishing of history, including
interviewing people from the historian’s historical
era of interest. But there are many more people who
might be interviewed or who might be encouraged
to write their memoirs.

Computing historians tend to work on history
that is some number of years in the past. I suppose
that it is not history unless it is sufficiently in the past.
Thus professional historians often won’t be involved
in what’s happening now and won’t be collecting it
as it happens.

Professional historians also often write for a
specialized audience. Computing history for the
masses tends to be the domain of authors of books
and articles working in a more journalistic style, for
instance books such as The Soul of a New Machine by
Tracy Kidder; Where Wizards Stay up Late by Katie
Hafner and Matthew Lyon; The Dream Machine by
M. Mitchell Waldrop; and The Innovators by Walter
Isaacson. The professionals sometimes are dismissive
of such journalistic writing when it comes out; and
later, naturally, the historians will consider such
writing less useful than primary sources, however
contemporaneously written or thoroughly researched
a book or article may have been.

There are other problems that lead to computing
history not being collected by the professionals.

To some extent the traditional academic history
world looks upon computing history as belonging in
some other academic department, and computing
historians sometimes have had a hard time getting
jobs in those academic history departments. They
sometimes are in informatics departments or maybe
library departments.2

Even computer science departments, which one
would think should be interested in computing his-
tory, are not interested enough to spend a faculty
position on a professional historian of computing.
Some more-or-less history books come out of com-
puter science departments, for instance The Multics
System by Elliott Organick and The Origins of Dig-
ital Computers—Selected Papers edited by Brian
Randell, but these tend to come from computer peo-
ple rather than from official historians.

There is also a lot of history that the profession-
als tend not to focus on. They are less likely to do
research aimed at writing straightforward accounts
about what happened with a project or technology—
what many of us may think of as the usual way tech-
nology history is written. Historians mostly are more
interested in the political, social, etc., context of a
technology development rather than in the details
of the technology.3 They also tend to work on that
for which they can get grant funding and which is
done in a way which gains them the respect of other
professional historians and eventually tenure at their
academic institutions.

There are business forces that lead to computing
history being lost.

When new management comes into a company,
it may discard lots of historic material as part of its
push to clean up the company (Figure 1). Or the
new management may not care at all about histor-
ical value. I can hear a new owner in the business
of asset stripping saying, “We are in this to sell off
the company’s assets. A bunch of long ago published
technical reports done on government contracts and
therefore in the public domain aren’t worth anything.
We are not in the business of saving stuff for its intan-
gible historical value. Shred it.” Also, when a project
ends, a company is sold, or a when a company goes
out of business, the company’s materials are often
discarded— I have seen this in person; probably you
have too. The use of off-site storage by companies as
a way to hold onto materials despite limited storage
space can be another problem. Boxes of documents
that go to off-site storage sometimes are never found
again—this also has happened to me.

Noticing history—a personal view

162 TUGboat, Volume 41 (2020), No. 2

Figure 1: Sights we have seen all too often.

After my talk, Chuck Bigelow noted to me that
much of what I am saying is not new. In the history
of printing the older information technology was lost.

In the first centuries of printing, most typo-
graphic materials other than books were lost.
Books were preserved as valuable information
containers accessible to general readers, but
book-making tools understood only by a few
specialists were rarely preserved. Printers
went out of business, type wore out and was
melted down to make newer type, presses wore
out and were replaced. Technical know-how
kept as trade secrets was often lost when the
keepers of the secrets passed away. Early type
designers, typographers, and printers didn’t
write about the details of their work. It wasn’t
until near the end of the 16th century that
printing types, matrices, molds, presses, and
account books began to be preserved with
greater frequency. Historians now pore over
ancient records and surviving materials, try-
ing to extract facts from indirect evidence.4

The professional historians can’t cover history alone.
They are not in a position to gather primary source
material as it happens; there are materials they may
never learn about; and there are aspects of history
work they are not motivated to do. The history world
needs our help. In his book History Hunting (I will
say more about it later), James Cortada notes that
writing real history always means going to primary
documents. People like us are well positioned to
collect primary documents. Now is the time to collect
them.

2 Our special qualifications

Computing, typography, typesetting, and printing
technologists and technology developers and users
(like us here at this conference) have some special
qualifications that can let us supplement what the
professionals are able to cover.

First, there are lots of us and we are in lots of
places. Also, more of us are being trained or oth-
erwise going into our fields all the time— in much
greater numbers than historians are being trained.
There are few of them and they tend to be in aca-
demic institutions rather than in the locations where
the history is happening.

Second, we are or have been part of or close
observers of history unfolding. Today’s historian
may research and interpret how, for instance, 18-bit
minicomputers were used in the 1960s or the impact
of early digital typesetting systems. Some of us used
those systems, which gives us a different, perhaps
complementary, perspective on the history of the
technologies.

Third, we have knowledge, skills, or resources
the professional computing historians may not have
(just as they have skills we do not have). We can
write computer programs. We can read computer
program and circuit diagrams. Some of us have led or
been part of big computer-based projects in business
or may be leading or part of significant open source
projects, perhaps giving us deeper perspectives on
how technology is developed and more able to apply
the power of teamwork to get bigger things done
(my feeling is that academic historians tend to work
more individually or in smaller teams). If retired,
we may have time that the professional historians do
not have. Some of us may even have money we can
contribute to history work or institutions.

Examples of computing history projects that
technologists have accomplished, and historians prob-
ably would not have, are Zbigniew Stachniak’s project
to recover what was on Micro Computer Machines
cassette tapes5 and Len Shustek’s project for recov-
ering what was on the Computer History Museum’s
large collection of vintage magnetic tapes.6

One might argue that the historians know how to
do a lot of things we do not know how to do. But
maybe we can learn, for instance from books such
James Cortada’s History Hunting—A Guide to Fel-
low Adventurers (Figure 2).7 Cortada had a long
successful career at IBM after he was trained in col-
lege as a PhD historian. In the later years of his
IBM career and since he retired from business, he
has done a vast amount of writing about the history
of the computer business. His History Hunting book
provides encouragement and guidance appropriate
to other people who have become amateur historians
after a technology or technology business career.

More specifically, we can learn to do oral history
interviewing. It’s one way to ease into collecting
history. There are lots of us who have been part

David Walden

TUGboat, Volume 41 (2020), No. 2 163

Figure 2: History Hunting by James Cortada.
This book was highly inspiring to me and first got
me thinking seriously about how we can contribute
usefully to collecting and distributing computing
history.

of interesting computing, typography, typesetting,
printing, or publishing history and we can interview
each other. Donald Ritchie’s book Doing Oral His-
tory—A Practical Guide is a good reference as one
starts doing oral history interviewing.8,9 (At least
in the TEX/TUG world, there are ready places for
publishing an interview one has done: our Interview
Corner, tug.org/interviews, or TUGboat and jour-
nals of other TEX user groups.)

We can also read history by the professionals
and learn about doing history work from that. For
instance, take a look at history written by Thomas
Haigh (tomandmaria.com/Tom/AboutMe); he writes
history that is highly scholarly and also lots of fun
to read. Take a look at his paper on the history of
word processing10 or the book he co-authored on the
history of the ENIAC computer.11

Ideally one might hope to collaborate with a
professional historian as a way of gaining new skills,
but that typically is not the way history is done even
when both collaborators are professional historians.12

More generally, some professional historians seem
dismissive of amateur efforts even though we lived
through it and we may be as academically qualified
in our fields as they are in theirs. They may value
hearing about what we saw but not our ability to
properly interpret the history.

Historians at museums and archives such as the Com-
puter History Museum, Charles Babbage Institute,
the MIT Museum, or MIT Archive (to name just a
few) may be more interested in the contributions of

amateurs as well as providing service to amateurs.
Naturally they may want some of our papers or arti-
facts. They may also give guidance about collecting
history. When a computer person wants to pass
historical materials to the museum or archive, the
person may be put in contact with an archivist who
will be receptive but also enforce the organization’s
policies regarding ownership, copyright, and so on.

We also can help each other learn. In particular
some of us are slightly into the official computing
history world, as a history journal editorial board
member or leader of a small museum such as the
Vintage Computer Festival Museum (vcfed.org/wp/
vcf-museum) or doing a history project which put
a person in touch with the professionals and thus
better able to provide pointers for getting involved
with collecting and recording history.

3 What we can do

We can create history content.
For instance, we can interview people, even

lesser contributors to computing history or the nar-
rower history of the TEX world. We can and should
write our memories down rather than just telling
them to each other on discussion lists. Much in-
teresting history is exchanged, for instance, on the
Internet History list (elists.isoc.org/mailman/
listinfo/internet-history), but it is not being
processed to make it better organized or more ac-
cessible beyond the raw messages being exchanged.
I believe there are many interesting volunteer or
academic projects that could be developed out of
the ih archive. TUGboat ’s editors seem receptive
to history-oriented papers— I can point you to ex-
amples. The IEEE Annals of the History of Com-
puting is all about history and always looking for
submissions; quite a few Annals publications have
been on topics close to what TUG is about. Some
of those have been peer reviewed publications (in-
cluding from practitioners of computing rather than
historians), but the Annals also has a department for
non-academic submissions— the Anecdotes Depart-
ment (annals-extras.org/anecdotes); I will be
happy to talk to anyone about a possible anecdote
submission to the Annals. Finally, non-academic
historians among us who are serious enough and
research deeply enough can write papers that are
just as scholarly as those by professional historians,
albeit perhaps a somewhat different kind of history
writing. Charles Bigelow, who is well known to the
TEX community, has provided a recent example of
scholarly writing with his history of digital fonts.13

If writing is hard, we instead can record memories
with digital audio or digital video.

Noticing history—a personal view

164 TUGboat, Volume 41 (2020), No. 2

We can create a website and post things there.
For instance, take a look at Tom Van Vleck’s wonder-
ful multicians.org website. Spend some time look-
ing around it if you don’t know it already. It includes
discussion about how to maintain a history website.
If you do create a website, think about inheritance
planning for your website and the valuable history
material you collect. Another example of creating
useful history material is Nelson Beebe’s massive
database of bibliographic information (math.utah.
edu/~beebe/bibliographies.html). A third ex-
ample is Luc Devroye’s encyclopedic website com-
pilation on typography (luc.devroye.org/fonts.
html). If a website is too big a job, we can at least
create web pages and find somewhere to post them.
For instance, a web archive of material uncovered in
writing a history of (the previously-mentioned) Inter-
leaf is at annals-extras.org/dtp/interleaf. An-
other example is Paul McJones’s web page of research
into the history of Fortran (softwarepreservation.
org/projects/FORTRAN). We can make unpublished
or public domain materials we uncover in writing
history easily available to the next researcher—not
just cite existence of the materials.

We can give presentations. The Vintage Com-
puter Festivals are annual conferences with inter-
esting presentations. Someone has to give those
presentations. It could be you. Of course, TUG also
has an annual conference at which history presen-
tations could be made, and there are half a dozen
other annual TEX user group conferences that may
be seeking presentations.14

An example I recently became aware of tech-
nologists collecting and publishing history is the
Tampere International Center for Signal Process-
ing (annals-extras.org/pubs/TICSP.pdf) where
they have collected copious histories in various areas
related to signal processing and published what they
have collected. Radomir Stanković writes:

We were guided by the general idea that look-
ing into past helps to determine roads to the
future. We believe this also is correct in the
more specific case of technology—knowing
the ways of thinking of scholars in the past
might help reveal new ideas or avoid unfruit-
ful approaches. We believe that a researcher
needs to know the work and activities of cur-
rent colleagues—equally important, know the
work of “previous” colleagues—to know to
some level of depth the history of the field.

We can save and/or organize historical content to
which we have access, either formally or informally.

Save your papers, and find a place to send them
or at least scan them and offer the scan to a stable
archive.15 Post scans of your papers and stories you
write on the web in an organized way; then it at least
goes to the Internet Archive (you can tell them to
do a pass over your stuff).

Grab stuff when a project or system is being
shut down. Roger Roach, the last CTSS system ad-
ministrator, captured all of the CTSS documentation
and digitized it when MIT’s CTSS system was shut
down in 1973. Grab stuff being thrown out. Jake
Feinler was with the Network Information Center at
the Stanford Research Institute. When the activity
was shut down, she took all the documentation the
NIC had collected over the years home to her garage.
Eventually she was able to give this extensive and
valuable part of Internet history to the Computer
History Museum where she spent time organizing
the material for the user of future researchers.16

Gather material that other people contribute;
for instance, become the website maintainer for an
organization so you can organize the organization’s
materials and make sure it has some place to go in
the long term. Gathering other people’s materials
may seem like second class work, but I think I have
heard at least three great people, Daniel Boorstin,
Stephen Jay Gould, and E.O. Wilson, make the
observation that aggregation and taxonomy can be
just as valuable as original work.

Place the history you have or can capture in
some stable location. David Brock of CHM and Jeff
Yost of CBI assure me that they accept paper doc-
uments, scans of paper documents, and documents
born digital. CHM also accepts non-paper artifacts.

Whatever you collect, organizing it to make it
more accessible is important. Maybe you can take
the time to create a finding guide, or organize it so
it is searchable in a more sophisticated way than a
Google-type search.

Regarding documents that are created as part
of an effort on which you are working, numbering
them sequentially with a listing of all their titles,
authors, and dates that gets updated every time a
new document is written improves the odds of the
material being saved. The RFC list is an example
of this. Had they not been numbered and rather
just been a lot of documents, I doubt they would
have been as successful and long lived as they are.
While the documents may never be important enough
to collect, if the project turns out to have been
important its numbered documents have a bigger
change of still existing.

David Walden

TUGboat, Volume 41 (2020), No. 2 165

We can publish historical content more or less for-
mally. I already mentioned submitting papers to
TUGboat or the Annals. We also can self-publish
monographs; one example is the “commemorative
brochure” written for the 50th anniversary of the
CTSS system (tug.org/l/walden-ctss).

Another possibility is to post your memories
at the Engineering, Technology, and History Wiki
(ethw.org/Main_Page). This history resource is
sponsored by half a dozen or so professional soci-
eties and is managed by the IEEE History Center.
They want technologists to contribute to the site.
Go look at it.

The TEX community is world wide. Among us,
we are in a good position to report histories from
each of our counties. More of this would be highly
interesting.

We can also self-publish our memoirs; for exam-
ple see the memoir of Severo Ornstein, Computing
in the Middle Ages—A View from the Trenches,
1955–1983, which is posted at the Computer History
Museum.17 The Engineering, Technology, and His-
tory Wiki mentioned just above is very welcoming
of memories of people who come from the work the
wiki covers. I posted a partial memoir there. You
can too.

We can join relevant organizations and do what we
can to help.

We can subscribe to journals such as the Annals,
contribute, and perhaps one day be appointed to the
editorial board (this happened for me18). SIGCIS

(sigcis.org) (nominally a part of the Society for the
History of Technology19) is where professional and
amateur computing historians from all over the world
communicate with each other about their projects,
post calls for papers, discuss book releases, and so on.
If you are researching a history topic and wanted to
know where to find something or how other people
view what you are thinking, SIGCIS is the place to
ask your question. Britain’s Computer Conserva-
tion Society (computerconservationsociety.org)
is a good organization to know about, and it has
an excellent free journal called Resurrections. It is
loaded with examples of stories from history that
demonstrate that any of us can write up a bit of
history.

One can become a docent, or join a committee,20

or help with a project at someplace like the Computer
History Museum.21 A few years ago, my friend Guy
Fedorkow began thinking about what he would do
after he retired from his position as a computer
system architect in a router company. Work took
him between home in Boston where he lives and

Silicon Valley many times each year. He introduced
himself to the curators of the Computer History
Museum and did a volunteer project with the IBM

1401 restoration team.22 Having understood Guy’s
capabilities, the CHM curators introduced him to
curators at the MIT Museum. From there, a project
evolved to combine the many Whirlwind computer
paper and magnetic tapes in the CHM archive with
MIT’s deep collection of Whirlwind project reports
and notes in order to learn more about the history
of software on the machine.23,24,25

Guy, with help of many others at both MIT and
CHM, has figured out how to read the old magnetic
tapes,6 has written a Whirlwind simulator, and now
is writing a paper about the effort which he is sub-
mitting for publication to the IEEE Annals of the
History of Computing. This is another project that
most professional historians probably would not have
undertaken.

Let me make explicit the underlying theme of my
presentation at TUG 2020 and this paper derived
from it. Much can be done to capture and publish
history (e.g., of computing generally or TEX/TUG-
related topics more specifically) if someone wants to
do it. It is no different than any of the projects we
heard about at TUG 2020. Someone got interested
in a topic, eventually put lots of time into it, perhaps
recruited some help, and got something big done,
e.g., Pandoc or LATEX2ε and its successors.

Another good examples of this comes from the
activities of Luanne Johnson and Burt Grad (Fig-
ure 3). They saw a need a few decades ago to save the
histories of companies in various software business.
Companies came and went and their histories were be-
ing lost. They started working on it. They organized
meetings of pioneers in various software business
areas. They interviewed them. They transcribed
meeting discussions. They got software business pio-
neers to write papers for the Annals of the History
of Computing. Of course, they didn’t do it alone;
over time they developed a little organization. There
is a website at annals-extras.org/pubs/2020-06-
22-lij-sisig-website.pdf that summarizes their
activities over the years.26 Now, as they grow older,
they have arranged for the Computer History Mu-
seum to take over their archive and some of their
work. Being from the computing industry, they saw
the need and they did something about it which even-
tually became a major computing history research
resource. Their most recent effort (2017–2020) was
in a TEX-related area—the history of desktop pub-
lishing (annals-extras.org/dtp).

Noticing history—a personal view

166 TUGboat, Volume 41 (2020), No. 2

Figure 3: Len Shustek, Chairman of the Computer
History Museum, presenting an Achievement award to
Burt Grad (remotely in the Beam robot) and Luanne
Johnson in March 2017—photo credit to ©Douglas
Fairbairn Photography. (Photo used with permission
of the individuals in the picture.)

The third person in the image is Len Shustek,
who founded the Computer History Museum—an-
other example of an individual who is not a profes-
sional historian but who has had a major effect on
the world of computing history (the CHM founding
is described at tug.org/l/shustek-museum).

In the typography and printing field, Frank Ro-
mano started his career at Linotype, continued it
in phototypesetting, and now is collecting history—
now of digital typesetting.27 Most of us will not
do as much history work as Frank; he can be an
inspiration to us to do what we can.

The entire TEX infrastructure (CTAN, TEX Live,
LATEX, TUGboat, conferences on all manner or topics,
and so on) is an example of one or a few people
deciding to do something, doing it, being joined
by other people, and the result being an important
contribution to the world. Maybe there could be a
bit more explicit infrastructure for collecting history.
More specifically, perhaps it could be an explicit goal
to have more history articles in TUGboat and more
history presentations, panels, and sessions at TUG

conferences.

People like us can make contributions to capturing,
organizing, and publicizing computing history or
the history of our special area of interest. These
contributions may be big or small.

No one can know what aspects of computing
history and how it has been collected and interpreted
will be important in the future. Ultimately it may
not matter who managed to save the historical record.
As the Bigelow quote on page 162 suggests, it just

matters that somehow the history gets passed along
from the people who “experienced, participated in,
and understood the technological formations and
transformations”.28 I claim that we practitioners
and users are in as good a position as anyone to
decide what should be saved and may be in the best
position to contribute to the passing along. System-
atically collecting, organizing, somehow archiving,
and writing about what seems important to us is
(1) better than indiscriminate collection of every-
thing (for instance the Library of Congress’s effort
through 2017 to collect every public Twitter tweet),
and (2) better than collecting nothing because it’s
the job of someone else.

Acknowledgments

I have learned what I know about doing history
from a succession of editors-in-chief, associate editors,
and editorial board members of the IEEE Annals of
the History of Computing and from the activities in
which they involved me. I have especially benefitted
from near-constant collaboration since 2014 with cur-
rent associate editor-in-chief David Hemmendinger.
My connections through the Annals have led to in-
teraction and learning from many other historians
of computing.

Paulo Ney de Souza helped me prepare my TUG

2020 presentation for online showing; I am sure there
are others on the program committee that I should
be thanking.

I greatly appreciate information, insights, and
corrections as I created the presentation and drafted
this paper from Barbara Beeton, Karl Berry, Chuck
Bigelow, David Brock, David Hemmendinger, Kris
Holmes, Alex Magoun, and Jeff Yost.

Notes

1 Paraphrasing slightly an observation made by Charles
Bigelow, email of 2020-08-01.

2 David Hemmendinger has reminded me that university
history departments being fussy about what constitutes
“real” history goes beyond computing history. History
of science and history of technology scholars sometimes
have been relegated to a department different than the
main history department. Alex Magoun noted further to
me that History of Science departments initially did not
want technology history tainting their departments. It’s
human nature, I suppose. Each established discipline is
unwelcoming to new branches of the discipline.

3 Something about how writing computing history has
evolved may be found in Martin Campbell-Kelly’s pa-
per The History of the History of Software (IEEE An-

nals of the History of Computing, vol. 29, no. 4, 2007,
pp. 40–51). In it he notes that over time writing about
software history moved from writing primarily about

David Walden

TUGboat, Volume 41 (2020), No. 2 167

technology to increasingly writing about what he called
“supply-side industry”, applications, or institutional, so-
cial, political aspects of software. Donald Knuth took
exception to Campbell-Kelly’s view in public lectures in
2009 and 2014, preferring the more traditional technol-
ogy focused approach and worried about the “dumbing
down” of computing history writing. The 2014 lecture
(youtube.com/watch?v=gAXdDEQveKw) in which Knuth
said the changed direction of history caused him to cry
also caused a big stir among computing historians and
was extensively discussed and denigrated in discussions
at sigcis.org. Campbell-Kelly explained in a follow-up
comment (Knuth and the Spectrum of History, IEEE

Annals of the History of Computing, vol. 36, no. 3, 2014,
p. 96) that he felt he was halfway between what Knuth
wanted and what people with a more social science per-
spective want. Thomas Haigh wrote a follow-up article
on the debate: The Tears of Donald Knuth, Commu-

nications of the ACM, vol. 58, no. 1, 2015, pp. 44–44,
tomandmaria.com/Tom/Writing/CACMKnuthTears.pdf.

4 Email of 2020-07-24.
5 Software Recovery and Beyond, IEEE Annals of the

History of Computing, vol. 41, no. 4, 2019, pp. 110–118.
6 Magnetic Tape Data Recovery, Vintage Computer Fes-

tival West 2020, August 1, 2020, streamed via YouTube,
available at youtube.com/watch?v=sKvwjYwvN2U.

7Published by M.E. Sharpe in 2012; a review is at
tug.org/l/cortada-review.

8 Oxford University Press, paperback edition 2014.
9 There is also various online instruction in interviewing,

for instance from the IEEE History Center: ieee.org/
about/history-center.

10 Remembering the Office of the Future: The Origins
of Word Processing and Office Automation, IEEE Annals

of the History of Computing, vol. 28 no. 4.
11Thomas Haigh, Mark Priestley and Crispin Rope,

ENIAC in Action—Making and Remaking the Modern

Computer, MIT Press, 2016.
12Thomas Haigh, mentioned in the prior paragraph,

has been increasingly working in the non-traditional col-
laborative way, and his co-author Mark Priestly comes
from the practitioner rather than professional historian
world. Maybe it’s the beginning of a trend.

13 Charles Bigelow, The Font Wars, parts 1 and 2, IEEE
Annals of the History of Computing vol. 42, no. 1, 2020,
pp. 7–40, computer.org/csdl/magazine/an/2020/01.

14 Presentations at our various TEX-related conferences
(e.g., for ConTEXt, DANTE e.V., etc.) may be more varied
and thus easier to become a speaker at than at conferences
of more specialized groups such as the American Print-
ing History Association or the Society of Typographic
Aficionados. Our TEX-related journals may also be easier
to get published in than more specialized journals. TEX
of course is a fairly specialized topic, but we appear to
use it as a jumping off point to whatever we want to talk
or write about.

15 Lots of famous people, knowing their papers are im-
portant, have sent their papers to archives. Less famous
people can also contribute. We can too. My friend Alex
McKenzie was involved in the early days of the Internet—
not at the level of impact of Bob Kahn or Vint Cerf—
but still his papers get plenty of use at the Charles Bab-
bage Institute (archives.lib.umn.edu/repositories/
3/resources/242)

16 Elizabeth Feinler, The Network Information Center
and its Archives, IEEE Annals of the History of Comput-

ing, vol. 32, no. 3, 2010.
17 Severo Ornstein, Computing in the Middle Ages,

computerhistory.org/collections/catalog/

102785079. Ornstein started computing on MIT’s pio-
neering Whirlwind computer, was part of the team that
developed the LINC computer, was an Internet pioneer,
was involved in developing one of the earliest music
transcription programs (Mockingbird, computerhistory.
org/blog/rediscovering-mockingbird-a-composers-

amanuensis/), and was part of the Alto development
team at Xerox PARC.

18 walden-family.com/ieee/my-history.html
19 The Society for the History of Technology itself has

an interesting history with respect to what this paper
is about: vqronline.org/essay/technology-history-

and-culture-appreciation-melvin-kranzberg
20 See for instance softwarepreservation.org.
21 As I sat in the virtual TUG 2020 conference, I won-

dered, “How is what a docent does going to change in
this days of COVID-19 and Zoom-based communication.
Will docents only be leading virtual tours of museums?”

22Guy Fedorkow, About the Computer History Mu-
seum’s IBM 1401 Machines, tug.org/l/fedorkow-1401;
IBM 1401, A Modern Theory of Operation, ibm-1401.
info/IBM-1401-Theory-of-Operation-GF.pdf

23Guy Fedorkow, The Whirlwind Computer at CHM,
computerhistory.org/blog/the-whirlwind-computer-

at-chm
24Guy Fedorkow and David Brock, Jingle Bits: Audi-

tory Maintenance, Whirlwind Holiday Songs & the Dawn
of Computer Music, tug.org/l/fedorkow-jingle

25Guy Fedorkow, Gambling on Whirlwind: How the
US Navy Spent $3 Million+ and Got a Computer Game,
tug.org/l/fedorkow-whirlwind-gambling

26 Luanne and Burt also recently had descriptions of
their work published in the third 2020 issue of the IEEE

of the Annals of Computing : Preserving the History of
the Software History by Luanne Johnson; In Search of
Software History by Burt Grad; and Finding Software
Industry History also by Burt Grad.

27 tug.org/TUGboat/tb36-1/tb112reviews-romano.pdf

and tug.org/TUGboat/tb41-1/tb127reviews-romano.pdf
28 Charles Bigelow email of 2020-07-31.

⋄ David Walden
walden-family.com/texland

Noticing history—a personal view

168 TUGboat, Volume 41 (2020), No. 2

TEX in church: A typographical adventure

Paulo Roberto Massa Cereda

Abstract

This article presents the author’s typographical ad-
venture when producing material for masses and
church-related activities.

1 Introduction

As a result of the Second Vatican Council, the Consti-
tution on the Sacred Liturgy, promulgated by Pope
Paul VI, in articles 28 and 30, states that, to promote
active participation, the people should be encouraged
to take part by means of acclamations, responses,
psalmody, antiphons, and songs.

The author chose two topics, which are related to
each other, to cover in this article, namely songsheets
and song booklets, describing how TEX and friends
are used in producing them. It is worth mentioning
that there is yet plenty of room to cover in other
areas of the church as well. Keep in mind that there
is more to the subject than meets the eye.

2 Songsheets

Sheet music is a handwritten or printed form of mu-
sical notation that uses musical symbols to indicate
the pitches, rhythms or chords of a song or instru-
mental musical piece. The term score is a common
alternative and more generic term for sheet music.
The author uses the term songsheet which typically
refers to a document containing the lyrics of a song
alongside its musical representation.

So, a liturgical songsheet is a particular instance
of the broad, general sheet music in a religious con-
text, right? In a manner of speaking, yes, but there
is something very important to be addressed. In
this case, text and melody cannot be dissociated as
in secular music. Some scholars consider the text
to be food for the mind and melody to be food for
the heart. Hence, both contribute to the complete
fulfillment of a person’s relationship with God. So
a liturgical songsheet is not a mere score, it offers
a special bond between human and divine and thus
its typesetting deserves dedication to the best of its
typographer’s heart and soul.

Since the 1960s, permission has been granted to
celebrate the Mass in vernacular languages, as seen
in the Constitution on the Sacred Liturgy from the
Second Vatican Council. It has been emphasized that
the language used should be known to the gathered
people. In the author’s parish, only a very reduced
number of hymns still remain their original Latin
form, such as Tantum ergo, Panis angelicus, Salve

Regina and Anima Christi. Several other hymns
were composed or translated using the vernacular
language, which is, in the author’s case, Brazilian
Portuguese.

However, in small communities, the liturgical
music tradition was devotedly kept through verbal
heritage. There were no songsheets available or mu-
sically knowledgeable people to interpret them. The
author’s community had to ensure that newer gener-
ations learn songs by constant repetition and usage
as a means to perpetuate them. This was basically
the continuity of hermeneutics for future generations
employed since the 1960s to the present day.

The community had nothing documented. The
author being a music hobbyist, he decided to take a
step further and transcribe as many liturgical songs
as he possibly could. Transcription, for those unfa-
miliar with the term, is the practice of notating a
piece which was previously unnotated (that is, not
recorded in musical notation) as written music. The
author takes some freedom regarding the pitch and,
of course, due to the nature of verbal heritage, some
melodic inaccuracies might arise. Such inaccuracies
are mitigated with access to reliable audio sources,
but that is not always the case.

A typical transcription session starts with pick-
ing up the song. The author hears it a couple of
times and then proceeds to notate the song in his
music notebook. Sometimes, he is in front of a digital
piano or holding an acoustic guitar to help him locate
the notes in the staff more easily (Fig. 1). After a
few tweaks, he plays and sings the complete melody
for proofreading. The first part of the transcription
session is complete.

Figure 1: A typical transcription session environment.

Now the author needs to convert the songsheet
sketched in his music notebook into a proper digital

Paulo Roberto Massa Cereda

TUGboat, Volume 41 (2020), No. 2 169

version through computer music engraving, the art
of drawing music notation at high quality for the
purpose of mechanical reproduction. Although there
are several TEX packages for music engraving, his
approach goes towards LilyPond.

LilyPond’s primary goal is to produce output
comparable to professionally engraved scores instead
of output that looks mechanical. Some of its features
include:

• Optical font scaling: depending on the staff size,
the design of the music font is slightly altered;
this is a feature that the Computer Modern
typeface is known for. As a result, note heads
become more rounded, and staff lines become
thicker.

• Optical spacing: stem directions are taken into
account when spacing subsequent notes.

• Special ledger line handling: ledger lines are
shortened when accidentals are nearby, thus
enhancing readability.

• Proportional spacing: notes can be positioned
in such a way that exactly reflects their dura-
tion. For example, with this setting, the space
between consecutive quarter notes is four times
greater than between consecutive sixteenth notes.

However, LilyPond solves only half of the task.
The author also wants his liturgical songsheets to
have text blocks with proper hyphenation, beautiful
fonts, scripture verses and background images as well.
This is a typical scenario where LilyPond’s syntax
and commands become a nuisance.

Surely, the best solution to this task is neither
LilyPond or TEX, it is LilyPond and TEX. One
can benefit from the best of two worlds: LilyPond
with professional music engraving and TEX with its
unparalleled text capabilities. So that is how the
second part of the author’s transcription session goes:
he converts the songsheet sketch from his notebook
into the corresponding LilyPond format and sets up
the score in a TEX file.

When converting songsheets into the LilyPond
format, the author typically uses a free software
editor named Frescobaldi. This editor offers many
templates to ease the writing of complex scores, as
well as dictionary-based lyrics hyphenation and other
engraving tweaks. The editor also features a score
preview with point and click, which lets you find
notes in the input by clicking on them. Observe that
there is no need to handle paper size and margins in
the LilyPond file, as such adjustments will be done
later on, inside the TEX file.

For the TEX document, the author usually uses
the standard article class with A4 paper and 12-

point size font options. For margins, the geometry

package is used. If the text is too long, the author also
includes the multicol package; otherwise, a simple
minipage suffices. Finally, the author also loads
the background and graphicx packages to provide
watermark features and image support, respectively.

The LilyPond magic inside these TEX docu-
ments happens thanks to a fantastic package named
lyluatex, available out of the box from your typ-
ical TEX Live and MiKTEX installations. As the
name implies, this package can only be used with
the LuaLATEX engine. Some of its features include:

• LilyPond is used to compile music scores directly
from within the LuaLATEX engine run. Music
scores are created in real time, so shell escape
is required during the compilation.

• Intelligent caching of engraved scores, avoiding
recompilation when possible.

• Matching of layout and appearance to perfectly
fit the scores into the text document.

• Comprehensive configuration through global and
per-score options.

Another important feature is the automatic font
handling, which is disabled by default. As this ap-
proach uses LuaTEX engine, system fonts are avail-
able and lyluatex can handle them as well by pass-
ing such metrics to LilyPond.

It is worth mentioning that this workflow can
be further automated by using a template tool like
TEXplate to generate the code boilerplate that han-
dles both text and score, merging them into a coher-
ent document structure.

So this is how a typical transcription session
goes. There are always manual adjustments, usually
minor, during proofreading, both in textual and mu-
sic typography. It is an art, after all. The author
will spare the reader details of such adjustments, but
they do happen.

3 Booklets

A booklet is typically the name given to a very thin
book with a small number of pages and sometimes
a paper cover, giving information about something.
In this case, a song booklet contains liturgical songs.
Since almost no one in the author’s community can
read sheet music, he decided to just put the song
lyrics in the booklets. Granted, it is rather unusual to
spot sheet music in today’s liturgical booklets, unless
the reader is lucky enough to live near Rome and
can attend the Holy Mass in Saint Peter’s Basilica.
The Vatican website contains lots of mass booklets
for download.

Finding a good layout for a song booklet is
challenging. The author did several experiments

TEX in church: A typographical adventure

170 TUGboat, Volume 41 (2020), No. 2

throughout the years with page size and margins,
font shapes and colours, number of columns and other
typographical aspects, in the hopes of finding the
perfect balance between aesthetics and ergonomics.
A good booklet project for a parish has to be useful
without taking the person’s focus from the liturgical
celebrations.

The author found A5 to be the best paper size
for his booklets, as it is easier for people to hold
during masses and saves on printing resources. An
A5 is equivalent to half of an A4 paper, so this
approach gets the four pages instead of the usual
two from a typical printing.

For these TEX documents, the author again usu-
ally uses the standard article class with A5 paper
and either an 11 or 12-point size font for options. He
also enjoys fonts with round shapes, as a means to
improve reading, so bookman is a good choice. For
margins, the geometry package is used. The author
found two columns to be a good balance between
aesthetics and ergonomics, so the multicol pack-
age is also used. Since titles are added to songs,
the fantastic tcolorbox package is loaded as well.
And at last, but not least, the graphicx package is
used to provide image support. A sample booklet is
presented in Fig. 2.

Figure 2: A sample booklet.

The author rarely applies a cover, so all pages
are available for content. The number of pages can
be one, two or any multiple of four. For the final
document, he uses the pdfpages package to help him
distribute the A5 pages into a set of A4 pages. A
simple Python script is used to organize the page
order.

There is a reason for this specific page order:
the author can produce song booklets without page
cutting. He just needs to print the A4 papers, fold
and group them. A very special stapler is used to
prepare these booklets in a couple of minutes (Fig. 3).
This workflow is surprisingly efficient.

Figure 3: A very special stapler.

These song booklets do require work and final
adjustments, but the layout and content disposi-
tion are usually straightforward. However, there are
songbooks that require a significant amount of rear-
rangement of elements as a means to achieve better
aesthetics and ergonomics.

4 Final remarks

This article presented the author’s typographical
adventures on producing songsheets and song book-
lets with TEX and friends. It is worth mentioning
that Gregorian chants can be typeset as well, using
the gregoriotex package and a file containing the
corresponding chant in the GABC format.

The author is interested in solutions for automat-
ing either all or part of the layout process, determin-
ing sizes and positions of visual elements. This field
of research seems to lie at the crossroads between ar-
tificial intelligence and human-computer interaction.
So far, the author is trying constraint-based methods.
Preliminary results are promising, but there is still
a long road to walk.

⋄ Paulo Roberto Massa Cereda

São Paulo, Brazil

paulocereda (at) gmail dot com

Paulo Roberto Massa Cereda

TUGboat, Volume 41 (2020), No. 2 171

Empowerment and teaching LATEX

Astrid Schmölzer, Sarah Lang

Abstract

This talk addresses the question of how empower-
ment (and lack thereof) influences teaching and learn-
ing LATEX, on the example of creating collaborative
solutions between Humanities scholars and LATEX
consultants. It recounts the backstory behind the
personas of Noob and Ninja. It teaches four lessons
on empowerment in teaching LATEX:

1. Empowerment is much more than providing
motivation

2. Being welcoming

3. Focusing on teaching the basics extremely well

4. Empowering new users to find their own
solutions

The backstory

After an unsuccessful attempt at typesetting a mas-
ter’s thesis in LATEX in 2013, it took four more years
until Astrid’s LATEX story finally started. As a Hu-
manities scholar and archaeologist, there wasn’t a
lot of online support geared towards her needs. Nor
were people willing to help her because, most likely,
they were prejudiced against her for coming from the
Humanities and not a technical field. Her encounters
didn’t go well. They tended to be aggressive or de-
grading in some way, both on the internet and in real
life. This is why, in 2018 when the LATEX Ninja blog
launched, we soon partnered up as Noob and Ninja
to post this story of rejection.1 The blog post was
welcomed very warmly by the (LA)TEX community
and a first article about it appeared in TUGboat in
2019.2

In our talk at TUG 2020, we explained typical
typesetting needs of Humanities scholars using the
example of an archaeological catalogue, which es-
sentially requires setting up an environment which
features non-floating images, tabular data and a
description which can be a longer text. These cata-
logues are not exactly standardized, they can be very
different from one individual to another and thus, of
course, there are many possible LATEX implementa-
tions for them. However, the typesetting solution
chosen is not the point of this paper. Here, we want
to draw more general conclusions about what can
be learned from this scenario about empowerment in
teaching LATEX.

One part of this empowerment is to transform
the term “newbie” or “noob” which is very often used
in a negative way into a positive idea of a beginner
of LATEX (or any other technical area one might start

as a Humanities student or scholar). The Ninja and
the Noob stand for this positive way of using the
term “noob” and we go back to the very meaning of
the word itself: a beginner. And all (LA)TEX users
were beginners once.

Lesson No. 1: Empowerment is much more

than providing motivation

In fact, it’s mostly about eliminating or reducing
sources of potential demotivation. After all, motiva-
tion doesn’t last but demotivation does, so we want
to avoid it like the plague. It also doesn’t mean that
we need to “entertain” new users. They can take on
a challenge. They don’t require a circus of fun tuto-
rials. They just require tutorials which don’t confuse
them more than they help. They might need to be
taught how to create a minimal working example to
ask questions effectively on StackExchange. It might
not be immediately obvious for them how the lipsum
text seemingly appeared from nothing. They might
need the pre-tutorial tutorial. You need completely
different didactic approaches for teaching newbies
than for other users.3

Lesson No. 2: Being welcoming4

Don’t be imposing. Don’t expect newbies to follow
you like a hero. Empower them to create their own
solutions but also don’t stop talking to them because
they decided to go for an implementation which you
recommended they shouldn’t use. The goal is to
keep them using LATEX. As long as they continue
using it, they will get better. Only a user who stops
using LATEX is a “bad user”. Failures are part of the
learning process. Indeed, there can’t be any learning
without mistakes made. (This is also a reason why we
need to teach coping with error messages, including
psychologically!)5

But part of being welcoming also means to write
that follow-up email if you said you would. About
summing up recommendations given in oral form
again in writing—because it’s so easy to get lost with
just one single typo or misunderstanding. Part of
being welcoming could also be giving a newbie good
keywords for a web search—after all, their search
engine is probably not trained to spit out great LATEX
resources like yours probably is. Give suggestions on
how to best find good search results, which terms
or packages to look for rather than patronizing new
users for “not looking up the problem on their own”.
Maybe they did. Maybe the problem is ridiculously
easy in your eyes. If they didn’t find a solution
even though you think a quick web search yields
tons of good results, don’t assume they didn’t look.
Maybe they did but didn’t find anything because

Empowerment and teaching LATEX

172 TUGboat, Volume 41 (2020), No. 2

they didn’t know how to formulate the problem (just
as they might not know how to “correctly” formulate
a problem for posting the question on a forum).

All this requires previous knowledge, and ab-
straction isn’t easy, just because it comes naturally
to you as an experienced user. Maybe they found
a solution but didn’t understand it or they didn’t
realize a search hit was relevant to them (or how it
could be relevant to them). Also, don’t bother with
useless reprimands instead of answering the question.
You are not in the newbie’s shoes so it is not your
place to judge them. Make sure to be welcoming
instead.

Lesson No. 3: Focusing on teaching the

basics extremely well

When teaching people from the Humanities, the first
obstacle is the very different idea they have for why to
use LATEX and what to use it for. The Humanities are
a complex gathering of fields with their own methods
and research questions. Therefore, their interests in
using LATEX include a lot of possible requests.

Because of the problems and barriers the noob
experienced, we decided to choose the production
of an archaeological catalogue as a project to start
with.6 Knowing the basic outline for the needs of
the Noob, the Ninja could start working and think-
ing about it. Every Humanities problem demands
another field of basics— some are fairly similar to
other research questions and requests for the use of
LATEX, while others are unique. So the basics you
have to teach depend on the specific needs of your
Humanities noob. Focusing on teaching is thus fo-
cusing on individual needs and on talking about the
individual needs and concerns.

But it also means you don’t need complicated
solutions. Just make sure people get the basics right.
Often this consists of a process of extreme simpli-
fication after the first brainstorming phase. Then
you need to patiently and persistently reinforce the
concepts.

Lesson No. 4: Empowering new users to find

their own solutions

This can mean teaching which packages might be rel-
evant for them because there is a whole flood of pos-
sibilities out there on CTAN.7 As mentioned above,
suggesting to new users which search terms typed
into a search engine are likely to yield the desired

results: Often, newbies cannot search for their own
problems effectively because firstly, they’re using
much less targeted or relevant keywords, and sec-
ondly, the engine doesn’t remember all sorts of useful
online LATEX resources for them, like yours probably
does.

Finding your own solutions for a newbie means
finding imperfect solutions and that’s ok. Learning
how to write one’s own first command or environ-
ment is an important milestone on the path to LATEX
empowerment. This also relates to hammering the
basics home. Small successes are essential for em-
powerment. And understanding the basics well is
the best way of scoring small wins to be able to move
forward.

Notes

1Astrid Schmölzer, Guest Post, Confessions of a

LaTeX Noob, in The LaTeX Ninja Blog, 26 February

2019, latex-ninja.com/2019/02/26/guest-post-

confessions-of-a-latex-noob
2 Sarah Lang and Astrid Schmölzer, “Noob to Ninja:

The challenge of taking beginners’ needs into account

when teaching LATEX”, TUGboat 40:1, 2019, pp. 5–9,

https://tug.org/TUGboat/tb40-1/tb124lang-

newbie.pdf.
3 For more detail on the didactics, see Sarah Lang’s

article in this issue, “Didactical reduction versus

references”, pp. 173–175.
4Discussed in detail in the “Noob to Ninja”

TUGboat article cited above.
5 See for example the posts “Learning to program:

What to do if the program doesn’t compile”,

latex-ninja.com/2020/01/12/learning-to-program-

what-to-do-if-the-program-doesnt-compile, and

“Learning to program: Failing fast and error messages”,

latex-ninja.com/2020/05/31/learning-to-program-

failing-fast-and-error-messages.
6We won’t go into detail here, but in this post

are some of the insights we learned from the

experience: latex-ninja.com/2020/05/04/latex-

for-archaeologists-an-archaeological-catalogue-

using-latex.
7During the conference, a discussion started on

whether it would be possible to filter packages by

utility.

⋄ Astrid Schmölzer, Sarah Lang

the.latex.ninja (at) gmail dot com

https://latex-ninja.com

Astrid Schmölzer, Sarah Lang

https://latex-ninja.com/2019/02/26/guest-post-confessions-of-a-latex-noob
https://latex-ninja.com/2019/02/26/guest-post-confessions-of-a-latex-noob
https://tug.org/TUGboat/tb40-1/tb124lang-newbie.pdf
https://tug.org/TUGboat/tb40-1/tb124lang-newbie.pdf
https://latex-ninja.com/2020/01/12/learning-to-program-what-to-do-if-the-program-doesnt-compile
https://latex-ninja.com/2020/01/12/learning-to-program-what-to-do-if-the-program-doesnt-compile
https://latex-ninja.com/2020/05/31/learning-to-program-failing-fast-and-error-messages
https://latex-ninja.com/2020/05/31/learning-to-program-failing-fast-and-error-messages
https://latex-ninja.com/2020/05/04/latex-for-archaeologists-an-archaeological-catalogue-using-latex
https://latex-ninja.com/2020/05/04/latex-for-archaeologists-an-archaeological-catalogue-using-latex
https://latex-ninja.com/2020/05/04/latex-for-archaeologists-an-archaeological-catalogue-using-latex

TUGboat, Volume 41 (2020), No. 2 173

Didactical reduction versus references:
How to better teach LATEX

Sarah Lang

Abstract

This paper discusses didactical principles (such as
didactical reduction) and their relationship to com-
mon modes of technical (and (LA)TEX) knowledge
transmission, mainly the genre of technical refer-
ences and documentation. It leverages ideas from
personal development for suggesting new, more di-
dactically suitable modes of knowledge transmission
for (LA)TEX education. It discusses how teaching con-
cepts (like didactical reduction) and common modes
of knowledge transmission (such as references and
documentation) could be reconciled in LATEX teach-
ing contexts.

The problem: Informal knowledge about how
to act in a learning setting and how to procure the
knowledge one needs is often linked to different forms
of privilege. Using references to acquire knowledge
requires a relatively big amount of tech literacy or
familiarity with the medium. People with non-tech
backgrounds often lack this tacit knowledge. This pa-
per proposes ways to provide different sorts of LATEX
education to different types of learners, using the
efforts made on the LATEX Ninja blog as an example.

This paper is not an exact replica of the contents
of the talk. The paper contains an example discussion
of Kopka and Daly’s Guide to LATEX which came
from the discussion after the original talk; and the
original talk contains information about the LATEX
Ninja blog and other examples which will not be
discussed further in the paper.

1 What is didactical reduction?

Didactical reduction is the art of reducing unneces-
sary detail.1 By this, I don’t mean at all that the
difficulty level of materials necessarily needs to be
reduced. Dumbing things down so much that there
is no content left is not good practice either, and
reducing information to the purely superficial is not
at all what I mean. One can present difficult material
but still leave out detail to make the contents more
digestible didactically. This entails that producers of
didactical materials need to become aware of their
tacit knowledge and “tech privilege” before writing
up learning materials. For example, passive knowl-
edge of packages becomes a dominant issue when
numerous packages are included in tutorials—pack-
ages which aren’t part of the topic and could have
been left out. This overcomplicates the subject and
provides examples which are far more than minimal.

2 Different starting points: “Tech
privilege” and tacit knowledge in the
(LA)TEX learning setting

I argue there exists “tech privilege” which is a form
of privilege analogous to other forms of privilege,
such as male or white privilege, but concerns the
subject matter of technology. It is known nowadays
that we are taught lots of tacit knowledge implic-
itly according to certain stereotypes. For example,
studies involving cross-dressing in small children,
e.g., female toddlers dressed in stereotypically male
clothes and vice versa, have shown that adults are
conditioned societally to pass the “female passing”
children dolls and such, whereas they give “male
passing” children stereotypically “male connotated”
toys, which tend to teach more logic, technical and
mathematical skills. Such early conditioning causes
children’s “talents” to develop much more in the area
favoured by society, generating an apparent divide
that we all know: It indicates that men are supposed
to be better at logic and maths, whereas women are
better at languages—a wholly incorrect stereotype
according to science!

Children (and adults too) thus get more praise
for engaging in stereotypically gender- and class-
suited activities. They will also be trusted more to
be successful and apt at those. It is known that praise
and expectations, as in the so-called Pygmalion or
Rosenthal effect have an influence on learning.2 This
means that those who already have a certain “tech
privilege” or are in a socially accepted position as
a tech nerd have a much easier path learning tech
knowledge than those who lack this “tech privilege”.
Also, those with “tech privilege” will implicitly learn
certain skills pertaining to tacit knowledge—say,
knowing how to post a successful question on Stack-
Overflow or the simple fact of what a Lorem Ipsum
is.

A person without a background in technology
might never have come across such concepts which
makes their learning process all the more difficult
if learning resources don’t provide this information.
To those who aren’t already part of a larger tech
community, typical technical modes of knowledge
transmission, such as references and documentation,
are largely inaccessible.

3 The ability to abstract and the
“superuser mindset”

Apart from that, references often require a large
amount of abstraction which is also a skill outsiders
might not yet have. They don’t know how to sum up
their problem in an abstracted way. For example, in
the talk, I mentioned that a newbie might not realize

Didactical reduction versus references: How to better teach LATEX

174 TUGboat, Volume 41 (2020), No. 2

their problem is spacing. They might just think, “I
want this page to look like I know it from MS Word.”
They also might not be familiar with non-GUI ap-
plications, having seen only applications which are
extremely targeted to fulfilling a user’s (presumed)
needs, giving them a user experience which requires
no background knowledge at all. Moving from a
passive user experience to—what we could call—a
“superuser perspective” is a big step which is not at
all an obvious or easy path for a newbie without a
tech support network or in-person teaching.

4 The difference between reference and
didactical reduction, with the example of
Kopka and Daly’s Guide

I was asked about my opinion on the generally well-
liked reference of Kopka and Daly.3 Therefore, I have
chosen it as an example on which I can illustrate
my point about references versus didactical reduc-
tion. I was asked whether I would recommend it and
my opinion is: as far as references go, this a go-to
resource—but it is still a reference. My argument
is that for effective and efficient teaching, we need
to detach teaching resources and technical reference
documents. Kopka and Daly explicitly say their
guide is a mixture of both, which is exactly what I
take issue with.4 Thus, I would not fully recommend
it. This does not mean I don’t like the Guide—I
just think it was written under a different paradigm
from the one I invite the (LA)TEX community to use
in the future.

Let’s examine this in the context of the Guide.
The first thing we notice: it’s over 600 pages long.
So, either you’re not expected to read it all (i.e., it
is a reference), or it’s going to be a long read. I
think it’s a good beginner’s reference but I also find
there’s an inherent problem with references. I would
expect a beginner’s text to only cover things that
they will ubiquitously need, so that’s either “theory”
or a focus on the absolute basics. For example, if
you know how a document class works, why would a
reader be shown the example of letters which they
might not even need? If they wanted to learn about
them, they could just look it up with a quick web
search. Thus, I think there would be lots of room
for cutting out detail.

A suggestion for improvement would be to per-
haps write a beginner’s part with things actually
everybody will need and then diverging into “spe-
cializations”.

For example, as has been addressed elsewhere
during the TUG 2020 conference, TEX people tend
to assume everybody needs math. But I never need

math. These little “divergences” might be starting
points to find elements which a general reference
should exclude or put into an appendix. Kopka and
Daly for example put “Programming with LATEX”
into the appendix which I think should go into the
main section, just like the text on “Error messages”.
On the other hand, in my opinion, Kopka and Daly
should have put lots of the material presented in
part II “Beyond the Basics” into the appendix. A re-
source following the paradigm of didactical reduction
would put all the relevant background information
(“theory”) into the main part and move the infor-
mation about packages or special purpose document
classes into the appendix.

References are not usually didactically suitable.
Apart from the format being less than optimal for
teaching purposes, references also lack certain ele-
ments which are relevant to teaching, i.e., explaining
theoretical backgrounds.

5 Leveraging concepts from personal
development: Different goals

In theory, learners from every different skill level
and background would each need their own learning
resource, which is why I suggest that complete be-
ginners should get extremely short resources with
lots of practical applications, such as my attempt at
a “3 minutes to LATEX” tutorial.5

On the other hand, it can often be difficult to
find information on the skills which lead to true ad-
vanced LATEX skills or LATEX mastery—because this
also includes “soft skills” such as knowledge about
the publishing industry, an understanding of typog-
raphy or how to monetize your LATEX skills. Leaning
on different concepts of skill acquisition of expertise
from personal development, I have argued that mas-
tery might not be for everybody, which is why we
shouldn’t make it the goal of learning.6 Josh Kauf-
man’s The First 20 Hours: How to Learn Anything

. . . Fast, for example, points out that with popular
skill acquisition discussions like the so-called “10,000
hour rule”, the implicit assumption was made that
everybody wants to achieve real mastery.7 Kaufman
argues that is quite the misconception; in reality,
many people just want the skill level equivalent of
being able to strum along with a four-chord song
on the guitar. Certainly some will want to achieve
mastery, but by no means all.

The (LA)TEX community should acknowledge
this diversity not only of background in different
learners, addressed in the discussion on tech privilege
and tacit knowledge, but also the diversity of possible
goals a (LA)TEX learner might have in mind.

Sarah Lang

TUGboat, Volume 41 (2020), No. 2 175

Notes

1 I have addressed the topic in the following blog
posts:
latex-ninja.com/2018/11/05/on-didactical-

reduction-especially-in-the-dh

latex-ninja.com/2019/01/12/didactical-

reduction-part-ii

latex-ninja.com/2019/04/14/improve-your-

teaching-10-simple-tricks
2The effect describes a self-fulfilling prophecy that

learning effects get better with higher expectations
and worse with lower expectations.

3Helmut Kopka and Patrick Daly, A Guide to LATEX,
4th edition, Addison-Wesley Professional, 2003.

4 “This Guide is meant to be a mixture of textbook
and reference manual.”; page 10, Kopka and Daly.

5 latex-ninja.com/2018/12/11/jumpstarting-

learn-latex-in-3-minutes
6 In the talk, I also brought up the concept of the

Minimum Effective Dose (MED) from Tim Ferriss’
The 4-Hour Chef. This was discussed in our earlier
TUGboat article: Sarah Lang and Astrid Schmölzer,
“Noob to Ninja: The challenge of taking beginners’
needs into account when teaching LATEX”, TUGboat

40:1, pp. 5–9, https://tug.org/TUGboat/tb40-
1/tb124lang-newbie.pdf.

7Malcolm Gladwell’s book Outliers made the
so-called 10,000 hour rule popular. However, please
note that this was an incorrect interpretation of
research done by Anders Ericsson. The best resource
about the science of expertise and skill acquisition
using deliberate practice is Ericsson’s Peak: Secrets

from the New Science of Expertise. A commenter also
suggested the book Range: Why Generalists Triumph

in a Specialized World by David Epstein.

⋄ Sarah Lang
the.latex.ninja (at) gmail dot com

https://latex-ninja.com

LaTeX-on-HTTP: LATEX as a commodity

web service for application developers

Yoan Tournade

Abstract

Although LATEX is widely used in academia and edu-
cation, only a few developers use it to create PDFs in
web applications or IT systems. This seems strange
considering that many developers are well exposed
to these academic and scientific milieux—and that
many recognize LATEX for its superior typesetting
qualities.

In this paper, we try to answer two questions:

• Why use of LATEX in IT systems is not wide-
spread—and not even common?

• How can we change this state of affairs?

In this article we give an overview of LaTeX-on-
HTTP (github.com/YtoTech/latex-on-http), an
attempt to commodify and simplify LATEX use in web
applications or IT systems, and to ease its adoption
by modern developers.

1 Introduction

LATEX has its indisputable niches, like academic and
scientific publications. Thanks to web projects like
Overleaf (overleaf.com), it has also become more
readily accessible for the lay computer user to com-
plete common editing chores.

I found it strange then that one of the popu-
lations most exposed to LATEX, and also the most
likely to recognize its merits, the computer engineers,
do not use LATEX in the applications they develop—
and that they may not even think to do so.

Currently a modern application developer that
needs PDF output for a project will find an abun-
dance of solutions by searching the web:

1. HTML/CSS to PDF converters, e.g.,
wkhtmltopdf (wkhtmltopdf.org) and
WeasyPrint (weasyprint.readthedocs.io);

2. instruction-based PDF generators, e.g.,
PDFKit (pdfkit.org) in Node, and
FPDF (fpdf.org) in PHP;

3. headless calls to browsers or office software,
e.g., Puppeteer (github.com/puppeteer)
is an example of a headless API to run
Chrome/Chromium browsers with no GUI.

Browsing a couple of Stack Overflow entries will give
our hypothetical developer copy-paste ready initial
working code, in his language of interest. LATEX will
not appear in the results; and may well not pop up
in our developer’s mind as an eligible solution.

176 TUGboat, Volume 41 (2020), No. 2

All these tools provide decent results, but we
argue they are far from the typesetting quality at-
tainable by LATEX. While we can understand the
prevalence of the first class of solutions above by the
opportunity to leverage existing HTML and CSS code,
this does not explain why LATEX would be virtually
absent from the common set of solutions.

2 Why LATEX is uncommon in modern

applications for PDF creation

We explain this state of affairs from three viewpoints:
techniques, customs and knowledge.

2.1 Technical barriers: the not-so-accessible

LATEX runtime

It is easy enough to install a LATEX distribution on a
personal computer. Modern browser-based services
like CoCalc (cocalc.com) [4] and Overleaf have even
removed this need and drastically reduced the time
required to first interact with LATEX [2, 3]. Tools
such as MathJax (mathjax.org) and LaTeX Base
(latexbase.com) [1] have even demonstrated that
LATEX (or a subset) can be run in a browser.

However the requirements of an application de-
veloper are different: he does indeed want conve-
nience, but even more importantly he needs repro-
ducibility and scaling—and he certainly does not

want to battle with his infrastructure team to explain
why it would be pertinent to add many hundred of
megabytes of complex runtime requirements to gen-
erate PDFs in their applications. Many developers
do not even fully control their runtime environment
(restricted cloud, etc.).

When the developer has only a few hours, or
at best days, to automate PDF creation, he will
shy away from the complexities of adding the LATEX
runtime in his application—he has to go for the
safer and more recognized solutions.

2.2 Cultural glass walls: mental buckets of

use cases

Developers, often coming or having been exposed to
academic and scientific milieux, know of LATEX and
recognize its typesetting superiority. They are the
people who might tease one of their mates for not

using LATEX in their latest technical publication.
However, for them LATEX is in a mental bucket

that excludes their web application development or
IT system integration activities. More often than
not, they will not think about LATEX for making a
PDF document in their application: a glass wall of
custom separates their need from the LATEX solution.

2.3 Imperfect knowledge bases: learning

by copying

Even if our developer considers LATEX as a prospec-
tive solution, he must then learn about its implemen-
tation.

As developers, we try not to reinvent the wheel
with each task. We search and we find shared knowl-
edge about recommended tool usage and common
patterns. Generally, we use readily available and
copy-pasteable code samples for our needs; and tweak
our custom solution from there.

Our developer could easily find a proper LATEX
template to start from for his PDF application—
there are great resources on the web for that. But
then? Our developer will need the code to compile
their LATEX template to a PDF, which they will not
easily find on the web. Compile a LATEX document
on my computer or on the web? Easy. Compile a
LATEX template from a web application—either from
a server or from any browser1 —in a couple of lines
of code and without adding potentially problematic
requirements? Not so easy.

Few pertinent examples are available to lead
our developer to a way to implement LATEX in his
application. If he has the time to be curious and is
up for a challenge, he can find a path [5, 6]. This is
especially so in the niches where the need for very
high-quality or specialized document creation will
justify the cost of bringing LATEX into the infrastruc-
ture. But this is not the typical case that interests
us here: we consider the common modern web devel-
oper that at first just wants to create a rather simple
PDF document in his application.

3 Introducing LaTeX-on-HTTP

LaTeX-on-HTTP first emerged when I needed a way
to compile LATEX documents to automate invoicing,
without installing the whole LATEX stack.2

The basic requirements for LaTeX-on-HTTP

were rather straightforward: take the TEX Live run-
time, put it on a server, and add an HTTP-based
API between the user and the server so we can pass
the files to be compiled. Voilà—now users just need
Internet access to generate their PDF documents;
they do not even need to know that they are using
LATEX.

1 And considering the disparate array of web browsers,
this is not the least of requirements.

2 After converting my quotes-and-invoices consulting tem-
plates to LATEX, I was glad of the result, but I wanted my
other team members to be able to make these PDF documents
without them having to install gigabytes of additional soft-
ware, or me having to support them for managing missing
CTAN packages.

Yoan Tournade

https://cocalc.com
https://mathjax.org
https://latexbase.com

TUGboat, Volume 41 (2020), No. 2 177

3.1 HTTP: the web lingua franca

The HTTP API is an important part of the solution;
it gives us several desirable properties:

• as HTTP is ubiquitous in modern applications,
the service is accessible from most of the techni-
cal stacks: no more need for complex runtime
requirements, a simple HTTP client suffices;

• the HTTP protocol is well-known to most devel-
opers;

• it clearly advertises the solution as intended for
automation and integration.

LaTeX-on-HTTP is not the first solution to put
the LATEX stack behind an HTTP API,3 but it may
be the first designed with developers as first-class
users.

3.2 Hello world: specifying a compilation

job with JSON

Let’s now present how to use the LaTeX-on-HTTP

for compiling documents in applications.
The following JSON4 code is sent in a POST

HTTP request to the /builds/sync endpoint:5

{

"compiler": "lualatex",

"resources": [

{

"main": true,

"content": "\\documentclass{article}

\\usepackage{graphicx}

\\begin{document}

Hello World

\\includegraphics[width=5cm]{logo.png}

\\end{document}"

},

{

"path": "logo.png",

"url": "https://www.ytotech.com/static/

images/ytotech_logo.png"

}

]

}

(The line break in the url value is editorial.)
This request will return a PDF file if the com-

pilation succeeds. If there is an error, the API will
return a JSON payload including the compiler logs.

3 ShareLaTeX/Overleaf’s CLSI (github.com/
overleaf/clsi) and Andrey Lushnikov’s LaTeX-Online
(github.com/aslushnikov/latex-online) are significant
open source precedents.

4
JSON (json.org) has become a dominant force in data

serialization languages in web applications and APIs, rivaling
or surpassing XML.

5 You can easily try a similar example on the command
line of your computer by using curl. A snippet is available
on the project page: github.com/YtoTech/latex-on-http.

As we can see, we pass two main things to the
LaTeX-on-HTTP endpoint:

• a set of resources—or source files— to be com-
piled, with the path specified for each;

• the engine selected—and other potential op-
tions— to control the compilation environment.

We may also remark that we can use different
means to transfer the resources to be compiled: here,
by passing the string content directly, or by provid-
ing a url pointing to a file. We can imagine and
provide several other ways, for convenience and for
supporting various use cases.

It is essential to normalize as much as possible
the LATEX compilation job input for ensuring the
reproducibility of the process and to provide further
capabilities, such as caching of input resources or
output documents.

3.3 Real-life example: editing a letter

A developer can use this API to construct a real-life
application. Let’s say our developer wants to edit
a personal letter from a bank IT system, notifying
customers of their account opening. Using Python as
our language, the code could look like the following:

Open and read the template LaTeX file.

with open("opening-letter-template.tex") as f:

template_str = f.read()

Replace the dynamic content.

template_str = template_str.replace(

"<<letter-title>>, "Your account...")

template_str = template_str.replace(

"<<letter-body>>, "Dear Mr...")

Loads a binary image file.

with open("duck_logo.png", "rb") as f:

logo_binary = f.read()

Convert to base64.

logo_b64 = base64.b64encode(

logo_binary).decode("utf-8")

Generate the PDF file,

using an HTTP client (requests).

r = requests.post(

"https://latex.ytotech.com/builds/sync",

json={

"compiler": "pdflatex",

"resources: [

{

"main": true,

"content": template_str

},

{

"path": "logo.png",

"file": logo_b64,

},

LaTeX-on-HTTP: LATEX as a commodity web service for application developers

https://github.com/overleaf/clsi
https://github.com/overleaf/clsi
https://github.com/aslushnikov/latex-online
https://json.org
https://github.com/YtoTech/latex-on-http

178 TUGboat, Volume 41 (2020), No. 2

]

}

)

Save the PDF output.

with open("opening-letter.pdf", "wb") as f:

f.write(r.content)

In this example, the string interpolation is man-
aged directly with Python: the templating could
have been done with LATEX tools, but it is easier
and faster for our developer to inject the dynamic
content in his main programming language.6

We can also note that we used another resource
transfer mechanism: the local image file is passed as
a binary object (with a base64 encoding required by
the string-based JSON API).

From this simple base example, our developer
can easily inject his application data in the letter to
be edited; he can then take the resulting generated
PDF to return it in a web page, in his own application
API and/or to save it in a persistent storage system
for later use.7

4 The road ahead

LaTeX-on-HTTP is still a project in development; it
must be enhanced to meet more developers’ needs
and use cases. We have already received excel-
lent feedback, but we actively encourage and need
prospective users to try it and let us know their
observations and feelings.

Several subjects have been left aside in this intro-
ductory paper—or are still not properly dealt with
by the current LaTeX-on-HTTP implementation:

• providing an asynchronous compilation endpoint;

• bringing alternative output modes to the PDF

binary, like DVI for advanced uses or PDF.js
(mozilla.github.io/pdf.js) for universal web
embedding;

• securing and isolating the compilation jobs;

• advanced and reliable run configurations;

• caching output documents for dealing with du-
plicated jobs;

• caching input resources for minimizing band-
width usage;

• discovering and managing the instance capabili-
ties (fonts, packages, etc.).

In addition, to further aid adoption and reduce
the time to first interaction, library wrappers and

6 In a more complex case, we could have used a dedi-
cated templating engine, such as Jinja2 (github.com/pallets/
jinja). For more about combining LATEX and Python, see [7].

7 Complete demo code can be found for Python at
github.com/YtoTech/talk-TUG2020-LaTeX-on-HTTP and in
JavaScript at github.com/YtoTech/latex-on-http-demo.

utilities need to be provided for the popular program-
ming languages.

The next important work, however, is not in
further development but rather writing high-level
documentation and presentation material.

5 Conclusion

By bringing the runtime requirement to use LATEX
to a familiar HTTP API, we remove the main friction
preventing developers from adopting LATEX in their
applications for PDF document creation.

To bolster the prospective success of LATEX and
LaTeX-on-HTTP as a reference solution for devel-
opers, we must address the cultural glass wall and
knowledge barriers by:

• publicizing this usage of LATEX in web applica-
tions and IT systems with ready-to-use demon-
stration code and libraries;

• publishing attractive documentation and presen-
tations of the LaTeX-on-HTTP API.

Only then can we hope to see better typeset
PDF documents in our daily applications as a result.

References

[1] G. Aye. Introducing LaTeX Base. TUGboat

37(3):275–276, 2016. https://tug.org/TUGboat/

tb37-3/tb117aye.pdf

[2] S. Lang, A. Schmölzer. Noob to Ninja: The
challenge of taking beginners’ needs into account
when teaching LATEX. TUGboat 40(1):5–9,
2019. https://tug.org/TUGboat/tb40-1/

tb124lang-newbie.pdf

[3] P. Lupkowski. Online LATEX editors and other
resources. TUGboat 36(1):25–27, 2015. https:

//tug.org/TUGboat/tb36-1/tb112lupkowski.pdf

[4] H. Snyder. SageMathCloud for collaborative
document editing and scientific computing.
TUGboat 38(1):44–47, 2017. https://tug.org/

TUGboat/tb38-1/tb118snyder.pdf

[5] B. Veytsman, L. Akhmadeeva. TEX in the GLAMP
world: On-demand creation of documents online.
TUGboat 31(2):236–239, 2010. https://tug.org/

TUGboat/tb31-2/tb98veytsman-glamp.pdf

[6] B. Veytsman, M. Shmilevich. Automatic report
generation with Web, TEX and SQL. TUGboat

28(1):77–79, 2007. https://tug.org/TUGboat/

tb28-1/tb88veytsman-report.pdf

[7] U. Ziegenhagen. Combining LATEX with Python.
TUGboat 40(2):126–128, 2019. https://tug.org/

TUGboat/tb40-2/tb125ziegenhagen-python.pdf

⋄ Yoan Tournade
Soubeyrac
Le Laussou, 47150 France
y (at) yoantournade dot com

https://yoantournade.com

Yoan Tournade

https://mozilla.github.io/pdf.js
https://github.com/pallets/jinja
https://github.com/pallets/jinja
https://github.com/YtoTech/talk-TUG2020-LaTeX-on-HTTP
https://github.com/YtoTech/latex-on-http-demo
https://tug.org/TUGboat/tb37-3/tb117aye.pdf
https://tug.org/TUGboat/tb37-3/tb117aye.pdf
https://tug.org/TUGboat/tb40-1/tb124lang-newbie.pdf
https://tug.org/TUGboat/tb40-1/tb124lang-newbie.pdf
https://tug.org/TUGboat/tb36-1/tb112lupkowski.pdf
https://tug.org/TUGboat/tb36-1/tb112lupkowski.pdf
https://tug.org/TUGboat/tb38-1/tb118snyder.pdf
https://tug.org/TUGboat/tb38-1/tb118snyder.pdf
https://tug.org/TUGboat/tb31-2/tb98veytsman-glamp.pdf
https://tug.org/TUGboat/tb31-2/tb98veytsman-glamp.pdf
https://tug.org/TUGboat/tb28-1/tb88veytsman-report.pdf
https://tug.org/TUGboat/tb28-1/tb88veytsman-report.pdf
https://tug.org/TUGboat/tb40-2/tb125ziegenhagen-python.pdf
https://tug.org/TUGboat/tb40-2/tb125ziegenhagen-python.pdf

TUGboat, Volume 41 (2020), No. 2 179

Using Overleaf for collaborative projects:

First impressions and lessons learned

Boris Veytsman

1 Introduction

The COVID19 pandemic has changed many things.
Among them are the ways scientific papers are writ-
ten. In the past, an author could assume to have
physical meetings with the coauthors, to exchange
written pages, ideas and thoughts. Unfortunately to-
day these meetings also may mean exchanging virion
particles. Thus many collaborations now rely exclu-
sively on virtual meetings. Anybody who has partic-
ipated in such meetings knows they cannot compare
with the lively back and forth of in-person interac-
tion. This puts a heavy burden on the technology
involved: we need to compensate for the deficiency
of the virtual collaboration with our tools.

In the first months of the pandemic I partici-
pated in two completely virtual collaborations, re-
sulting in the papers [1, 2]. One paper has seven
coauthors, the other has four. The proper orga-
nization of the writing process was therefore very
important for us.

Collaboration tools should have several impor-
tant features. At a minimum they should track the
changes in the manuscript and the contributions by
the different authors. They should be able to typeset
the manuscript at each stage of the preparation. Ide-
ally they ought to provide a way for the coauthors
to exchange metacomments about the text.

In the past my tool of choice was the combina-
tion of a local TEX installation (TEX Live) and a
version control system (git, svn, cvs). This is a very
good solution for typesetting and change tracking.
On the other hand, it is not a good solution for meta-
comments, unless one was willing to put the paper
on GitHub and use their issue-tracking system. Fre-
quent physical meetings between the coauthors some-
what alleviated the lack of metacomments: the coau-
thors could always give their comments in person.

The big disadvantage of this workflow is the
rather demanding requirements on the coauthors.
They need to be not only comfortable with TEX (this
is something to be expected from math and science
people); they also need to have and maintain a lo-
cal TEX installation and be familiar with a version
control system. Personally, I think the ability to
use version control is an essential skill for anybody
working professionally with texts. Unfortunately, the
reality is that this knowledge is rare outside the pro-
gramming community (and even in this community
it is often rudimentary; see Figure 1).

Figure 1: Git, from https://xkcd.com/1597/

Overleaf (overleaf.com) was suggested as a col-
laboration tool. We used it for the papers mentioned
above. In this paper I discuss our experience and
the lessons learned.

2 Overleaf workflows

There are several ways of working with Overleaf.
First, one can use its native interface; each coauthor
logs into the site, uses its online editor to create TEX
files, uploads the images for the figures, and uses
the cloud TEX installation for compilation. Some
of my collaborators chose this workflow. However,
it was not convenient for me. As a person who
has spent countless hours with my trusty Emacs,
I cannot imagine writing texts with anything else
(an obligatory aside: I have complete respect for my
vi -using friends). Also, I did not trust the Overleaf
version control system, so I wanted to use my own.

Fortunately, Overleaf provides another workflow
(currently only for paid accounts—but see below).
Namely, it can serve as a git remote server. You can
do a git clone for an Overleaf repository, and then
use the familiar git push & git pull commands to
sync the local git repository with the one at Overleaf.
This workflow has the additional advantage of being
very flexible; some coauthors can use the native
Overleaf interface, while some coauthors can use git,
and the two are smoothly integrated.

It should be noted that Overleaf offers yet an-
other workflow: integration with GitHub rather than
a local user’s repository. However, we considered
this scheme too complex, and we did not use it.

Using Overleaf for collaborative projects: First impressions and lessons learned

https://xkcd.com/1597/
https://overleaf.com

180 TUGboat, Volume 41 (2020), No. 2

3 Overleaf access control

Whether the resulting paper is freely distributed or
not, most authors would not like to show the world
their unfinished work, with all its embarrassing errors,
vague ideas postponed for the future papers, heedless
statements, etc. Thus it is crucial for a collaboration
tool to support defining who has the right to read
and edit the manuscript.

Overleaf has two modes of access control. The
first mode, available for both free and paid accounts,
is based on link sharing. A project has a link for
read/write access and a link for read-only access.
Anybody in possession of these links (each being a
long combination of random letters and digits) has
the corresponding rights.

In the second mode, one can give the rights
(read/write or read-only) to the chosen Overleaf users
(who must log in to Overleaf to participate). The
maximum number of collaborators for each project
depends on the account tier: from one collaborator
for free accounts to unlimited collaborators for “Pro-
fessional” ones. It is important to note that the limit
is determined by the tier of the project owner: if
the owner has a “Professional” account, any number
of other collaborators can have free accounts. The
same is true for the git integration discussed above:
if the project owner has a paid account, all other
collaborators can use git.

In general, the Overleaf access control model
seems to be mature and corresponds to the cur-
rent industry best practices. The possibility to use
third parties’ credentials to login to Overleaf (IEEE,
Google, Twitter, and ORCID) is also a convenient
feature.

4 Overleaf TEX

To tell the truth, I had my doubts about the Over-
leaf TEX installation. My TEX is sometimes rather
complex, and I wondered whether Overleaf could
tackle it. These doubts proved to be wrong. I was
quite impressed by the fast and correct typesetting
on Overleaf servers.

The installation is rather complete. Currently
the user can choose between pdflatex, xelatex, and
lualatex, and the site has TEX Live installations from
2014 to 2019. Both bibtex and biber are supported.

In general, Overleaf has solved the problem that
has always bugged novice TEX users: administration-
free maintenance of the installation.

5 Comments system

In the old times manuscripts and books had large
margins because coauthors, editors, and sometimes
even readers used them for metacomments (Figure 2).

Figure 2: Annotations by Linus Pauling made

to a passage in the book Disturbing the Universe,

by Freeman Dyson, from http://scarc.library.

oregonstate.edu/coll/pauling/dna/notes/unpb17.

1-automata.html

When word processors appeared, they featured “com-
ments”: a user could click on a document and insert
a special text, which was not part of the main flow,
but a note for other authors. Web collaboration tools
kept this feature and added integration with e-mails,
messaging and task recording software; the comment
could be “assigned” to a coauthor as a new task, and
the assignee would be notified electronically with the
corresponding record made in the task list.

TEX (or LATEX) by itself lacks this sophistication.
Of course, one can add comments in the code using,
for example, the percent sign convention, as in

\begin{equation}

2\times 2 = 5 %%% Are you sure?

\end{equation}

Unfortunately, sometimes these comments are over-
looked by coauthors. For better visibility, LATEX
packages like todo may typeset them in the PDF

output, for example, as marginal paragraphs.
The use of version control servers like GitHub

allows one to employ a modern issue-tracking sys-
tem which has all the functionality of the integrated
comments, including notifications, assignments, etc.
Moreover, the issues become part of the version con-
trol archive, so one can look at the history and es-
tablish that the given change in the manuscript was
made by author A as a response to the comment
made by author B—complete with the dated his-
tory of all responses.

For a user accustomed to these goodies, the
Overleaf system of comments seems to be rather
old-fashioned. Overleaf allows the users to create

Boris Veytsman

http://scarc.library.oregonstate.edu/coll/pauling/dna/notes/unpb17.1-automata.html
http://scarc.library.oregonstate.edu/coll/pauling/dna/notes/unpb17.1-automata.html
http://scarc.library.oregonstate.edu/coll/pauling/dna/notes/unpb17.1-automata.html

TUGboat, Volume 41 (2020), No. 2 181

a “comment” in the style of early word processors.
These comments can be answered and “resolved”.
However, they are not shown in the PDF, cannot
be addressed to a specific coauthor, and are not
integrated with emails or the version history. While
relatively easy to use, these comments are probably
not adequate for a sophisticated user.

6 Overleaf version control system

An important feature of a collaboration tool is the
ability to establish who wrote what, when and why.
This is one of the tasks for a version control system.
A version control system keeps track of the changes in
the files, noting their authorship, dates, and, through
commit messages, the reason for change. Ideally,
it allows easy mixing of versions; a good program
should understand a command like “Please delete all
changes made in June, but keep the ones made in
July”.

The native version control system in Overleaf
can do some of these tasks. It allows the user to
compare the states of the document at the different
stages of editing, find the changes, establish their
authors and download the files at a previous version.
This makes the work with Overleaf easier than with
typical office software.

Unfortunately, the Overleaf version control sys-
tem lacks branching capabilities. This means that
major changes in a project require copying and re-
naming files— something that a version control sys-
tem is intended to prevent. I thought initially that
only the Overleaf interface to version control was
deficient, and I could use branching in my git reposi-
tory, and then synchronize with the Overleaf one. I
was wrong; sadly, Overleaf allows only one branch
to be uploaded to its repository.

Overleaf also lacks tags, and does not allow one
to push them from the local git repository.

Reverting to a previous version is not a self-
evident task in Overleaf. One of the coauthors in-
advertently deleted a large portion of our TEX file
in Overleaf. We found that the simplest way to re-
cover was to use the tools provided by git on a local
repository.

I was able to perform non-trivial merging of two
different versions only by downloading them to the
local computer, and using the tools there.

Overleaf version control system has “labels”.
They are mapped into commit messages rather than
tags. They are also not enforced, so most changes
in the files are not commented (in contrast, most
version control systems refuse to accept commits
without comments).

Of course, many git users complain it is too
complex. The simplified version control of Overleaf
might be a clever decision. While a sophisticated
version control system allows an advanced user to
perform many non-trivial tasks, it is indeed complex
exactly because it has a rich feature set. An ideal
system would be the one that works simply for a
novice, but can do complex things. Clearly, designing
such a system is not a trivial task. On the other
hand, Overleaf solved the highly non-trivial problem
of creating an intuitive interface for TEX—maybe it
can create an intuitive interface for git as well?

7 Conclusions

Overleaf as a collaboration platform is a viable so-
lution for coauthoring scientific manuscripts. Its
strong features are a good access control model and
underlying TEX installation. On the other hand, its
system of metacomments can be improved, and its
version control system is probably too simplistic.

Acknowledgments and disclaimers

I am deeply indebted to my colleagues who allowed
me to observe their work with Overleaf.

Being a TUG officer, I acknowledge the generos-
ity of Overleaf in their support of the organization
through their institutional membership and several
donations, including their help with TUG 2020, es-
pecially the LATEX workshop held there. The work
described in this paper was done using a Professional
level account, paid by Chan Zuckerberg Initiative.

The opinions in this article belong to me, and
do not necessarily reflect the opinions of TUG, Chan
Zuckerberg Initiative or George Mason University.

References

[1] G. Huber, M. Kamb, K. Kawagoe, L. Li, B. Veyts-
man, D. Yllanes, and D. Zigmond. A mini-
mal model for household effects in epidemics.
medRxiv, 2020.
doi:10.1101/2020.07.09.20150227

[2] S. Satish, Z. Yao, A. Drozdov, and B. Veytsman.
[A paper under blind review]. In [Not disclosed],
2020. We were asked to suppress all information
about the paper until it is reviewed.

⋄ Boris Veytsman

Chan Zuckerberg Initiative

& George Mason University

& TEX Users Group

borisv (at) lk dot net

Using Overleaf for collaborative projects: First impressions and lessons learned

http://dx.doi.org/10.1101/2020.07.09.20150227

182 TUGboat, Volume 41 (2020), No. 2

The Island of TEX: Developing abroad,

your next destination

Island of TEX (developers)

Abstract

The Island of TEX is a collaborative effort to provide
a home to community-based TEX projects. This
article discusses the Island’s long-term goals and
how the worldwide community can come aboard and
help the organization enhance the TEX experience
for everybody, from newbies to power users.

1 The beginning

Once upon a time, a group of friends decided to
create an organization as a means to systematize
and concentrate our efforts in developing the TEX
ecosystem. Thus, the Island of TEX, a collabora-
tive endeavour to provide a home to community-
based open source TEX-related projects, was finally
charted in the TEX world map. Island residents in-
clude Paulo Cereda, Ben Frank, Brent Longborough,
Marco Daniel, Nicola Talbot, and Enrico Gregorio.

So far, the Island holds four main groups of
projects: Docker images, programming libraries, as-
sorted tools, and TEX editors. We plan more groups
for the near future.

2 Docker images

The first group to be discussed refers to Docker
images. Docker is an open platform for developing,
shipping, and running applications, enabling a clear
decoupling of applications from infrastructure.

A Docker image itself is similar to a snapshot of a
lightweight virtual machine. When running an image,
it shares the same kernel as the host system but
provides a complete and independent infrastructure
of operating system and software packages, as well
as configuration files and environment variables.

The island provides Docker images for TEX Live
repositories. It is important to note that we also
provide the necessary tooling to execute common
helper tools. We have two groups: historic, which,
as the name implies, contains releases from 2014 on,
and latest, which refers to the current stable release
plus all updates available as weekly snapshots.

For every TEX Live release, from historic to
latest, we provide four flavours: binaries only, bina-
ries and documentation, binaries and sources, and
the full pack, binaries, sources and documentation.
When in doubt, choose binaries only and only pull
the larger images if you have to. Keep in mind that
sources and especially documentation files do add
a significant payload. If you need an image for an

older TEX Live feel free to file a feature request. We
might consider adding older distributions if there is
a user base.

The Island also provides Docker images for the
ConTEXt distribution (full installation with all mod-
ules). It also provides the necessary tooling to ex-
ecute common helper tools. We have three groups:
MkIV current (updated monthly), MkIV beta and
LMTX (updated weekly). If you need a different
image for ConTEXt as well, feel free to file a feature
request.

3 Programming libraries

The second group to be contemplated refers to pro-
gramming libraries. The Island currently provides
three libraries: a SyncTEX parser, a TEXdoc API

and a TEX log analyzer (which will be omitted here
due to its pre-alpha stage).

3.1 SyncTEX parser

SyncTEX is a synchronization technology supported
by all the major engines. It maps the input to boxes
and point positions in the output. Therefore, it can
be used for forward and backward synchronization,
that is, finding the appropriate point in the output
PDF for the current input line, or finding the respec-
tive input line for the current point in the output.

While collecting ideas for other tools, we came
to the conclusion that there is no comprehensible
and up-to-date structure definition of a SyncTEX
file, so we started to implement a parser, partially
as an exercise to know the file format and partially
to provide some structured representation to the
community.

It is important to note that we have not looked at
the official SyncTEX parser while implementing this
component and we do not intend to. We read only the
man page and started to look at real world examples.
Hence this is neither official nor guaranteed to parse
all SyncTEX files. That said, you are most welcome
to open issues and merge requests, contributing test
cases where it fails.

3.2 TEXdoc API

The next library in the Island is an API for the
texdoc command line interface. Hence, it is only
one layer of abstraction; we currently require the
presence of texdoc on the target machine.

The API provides two classes: the Entry class
which represents an entry in texdoc’s list of results
and the TeXdoc class, presented here, which is a
singleton, providing an interface to the actions of the
command line utility. The most important methods
and attributes of TeXdoc are:

Island of TEX (developers)

TUGboat, Volume 41 (2020), No. 2 183

isAvailable to check whether texdoc is in the
system path,

version to get the version string of the texdoc

installation,

getEntries to get a list containing all entries
from the result set of a texdoc query given
the provided keyword, and

view to view the resource specified by an entry;
it returns a boolean to report whether the
process exited successfully.

4 TEX-related tools

The third group in the Island refers to TEX-related
tools. We currently hold four projects: TEXprinter,
TEXplate, checkcites and arara.

4.1 TEXprinter

TEXprinter is an application designed for the pur-
pose of printing threads from the TEX community at
StackExchange. It can print threads in PDF and TEX
formats. The PDF output is provided by the iText
library. It is a quick option if you do not intend to
customize the output. If the thread has images, they
are embedded in the final result.

The TEX option is recommended if you want to
format the code the way you like. It basically uses the
article document class, the listings package and
a fairly straightforward approach. If the thread has
images, they are downloaded to the current directory
and correctly referenced in the document. Of course,
you need to compile it.

TEXprinter ships as a standalone JAR file with
dependencies. There is no need to install it, simply
download the JAR file from the project repository
and execute it. Keep in mind that it needs the Java
virtual machine installed.

4.2 TEXplate

The next project in the Island is TEXplate, a tool
for creating document structures based on templates.
The application name is a word play on TEX and
template, so the purpose may be clear: we want to
provide an easy and straightforward framework for
reducing the typical code boilerplate when writing
TEX documents. Also note that one can easily ex-
trapolate use beyond articles and theses.

The application is powerful enough to generate
any text-based structure given that a corresponding
template exists. TEXplate can also be used for pack-
age writers in generating automated tests. The tool
is already available in your favourite TEX distribu-
tion.

4.3 checkcites

The third project in the Island is checkcites, a Lua
script written for the purpose of detecting unused or
undefined references from both auxiliary or bibliogra-
phy files. We use the term unused reference to mean
a reference present in the bibliography file but not
cited in the TEX file. The term undefined reference

is exactly the opposite, that is, the item cited in the
TEX file, but not present in the bibliography file. The
script supports two backends, BibTEX and biber,
and can detect files from your TEX tree.

4.4 arara

Finally, the fourth project in the Island is arara,
the cool TEX automation tool. This is probably our
most well-known and widespread project, as well as
the oldest one.

arara is a TEX automation tool based on rules
and directives. It gives you a way to enhance your
TEX experience. The tool is an effort to provide a
concise way to automate the daily TEX workflow for
users and also package writers. Users might write
their own rules when the provided ones do not suffice.
arara is currently at version 5.1.3; some noteworthy
features of version 5 include:

• Support for working directory: users may now
specify their working directory by specifying a
command line option, so commands will run
from a different directory than the directory
arara launched in. This is especially useful
when calling a TEX engine as they resolve files
against the working directory.

• Support for processing multiple files: arara is
able to compile multiple files at once by provid-
ing multiple files as arguments. Please note that
they should reside in the same working directory.
Every other kind of compilation of multiple files
is restricted by the mechanisms of the running
programs.

• Updated rule pack: arara features more than
60 rules ready for use, including TEX engines
(with support for both stable and development
branches) and assorted tools for graphics, bibli-
ography, indexing, cleaning and conversion be-
tween file formats. A typical user might rely
just on this pack, without the need of writing a
custom rule.

Version 5.1 of arara is already available in TEX
Live 2020. Simply execute arara in your terminal
and have fun. The Island has an interesting workflow
for arara. When a new version is ready to be re-
leased, we simply tag it and GitLab will build a CTAN

release. Our build script compiles and packages the

The Island of TEX: Developing abroad, your next destination

184 TUGboat, Volume 41 (2020), No. 2

application binary, typesets the documentation using
our Docker images, assembles the CTAN tree, as well
as the accompanying TDS ZIP, and provides a full
CTAN ZIP file artifact ready for download. Then we
simply send this file to our friends at CTAN.

We are discussing some new features and devel-
opment paths for the next major version of arara.

• We plan to split our tool into an API, a core
implementation (that is, a library) and the im-
plementation of the executable (that is, a com-
mand line interface). Projects relying on code in
the arara JAR distributions have to be updated
(which might be a potentially breaking change).

• Languages will have to be passed as IETF BCP 47
codes. The old system will be removed.

• Localization will be provided by classes as a
library instead of property files in arara’s re-
sources. We want to decouple localization from
the core implementation and make it easy for
users to contribute their own messages.

• The log file shall be specified as path anywhere
on the file system. This behaviour, however,
may be altered for a future safe mode.

• We are working on a Kotlin DSL (domain specific
language) to gradually supersede the YAML-
based rule format. The new format aims at
being significantly more expressive, easier to
write and debug, and less error-prone.

• Elements marked as deprecated in version 5.0
are effectively removed, such as the <arara>

shorthand notation. This will be a breaking
change.

• We are working on a project configuration file
format based on a Kotlin DSL as a means to
provide resource dependency management, en-
hanced automation and several additional fea-
tures. As a consequence, the preamble com-
mand line option and corresponding configura-
tion map entry will be replaced.

You can follow the progress of version 6.0 in our
repository, under the development branch. You can
also join our Gitter chat room to learn more about
our plans for this major milestone. And of course
you are invited to contribute.

5 Editors

The fourth and last group in the Island refers to TEX
editors. We currently hold one project which is an
application named ArTEXmis.

ArTEXmis aims at being an opinionated, pow-
erful TEX editor designed for all users, especially
for package writers and kernel developers. We want
to provide an elaborate, immersive user experience
when writing TEX code, with a comprehensive and
extensive set of features and actions. This project is
still under development and we have not provided
any public releases so far. We are working on it, so
stay tuned for updates.

6 Final remarks

The Island of TEX is hosted at GitLab. Some projects
originally hosted at GitHub, such as arara and
checkcites, are now simply mirrored, so the de-
velopment is consolidated under our organization.
Issues and merge requests are welcome.

The TEX ecosystem is a very challenging yet ex-
citing place. We have plans to migrate more tools to
the organization in an organic way. At the moment,
we have a new project being discussed with the core
team. You can learn more about us from our official
GitLab repository as well as TUGboat articles and
electronic mail.

⋄ Island of TEX (developers)
https://gitlab.com/islandoftex

Island of TEX (developers)

TUGboat, Volume 41 (2020), No. 2 185

The design concept for llmk—Light LATEX

Make

Takuto Asakura

Abstract

It is a matter of joy that we have many options for
processing a LATEX document. We can choose the
most suitable TEX engine and external programs,
such as for bibliography and for indexing, depending
on one’s needs. However, now it is hard or even
impossible in some cases to know what is the ‘right’
workflow to process a document only by seeing doc-
ument sources.

Light LATEX Make (llmk) is yet another build
tool specific for LATEX documents, intended to remove
such ambiguity in the workflows. Its aim is to provide
a simple way to write down a workflow for document
authors and encourage people to always explicitly
show the right workflow for each document. For this
goal, the design of llmk gives primary consideration to
convenience and portability. For example, it supports
multiple magic comment formats to enable users
to easily write the workflows and it requires only
texlua, so that it will work under any environment
which has LuaTEX.

1 The goal and design concept

TEX, LATEX, and their friends have a long history
and a variety of related software has been developed,
including variations of TEX engines, DVIware, and
supporting programs such as BibTEX, MakeIndex,
and their alternatives. Thanks to such a rich ecosys-
tem, we have numerous options for TEX workflow
to create a document. However, on the other hand,
there are so many possible workflows for processing
a LATEX document, and therefore it is not necessar-
ily easy to detect the right workflow only from the
document sources. In addition, there is no ultimate
general workflow that can be used for every purpose.
Using pdfTEX is one of the typical choices for cre-
ating a document in English, but in some cases, it
is reasonable to choose X ETEX or LuaTEX, e.g., if
you want to use fonts installed in your system inde-
pendent of TEX systems. For these reasons, LATEX
users should clearly specify the workflow for each
document, at least for those documents where the
sources will be seen by someone else.

There are a number of existing well-established
generic build tools, such as (GNU) Make, that can
be used to explicitly specify the workflows. However,
for many simple LATEX documents, such as those that
require only a single pdfTEX run, it might be rather
overkill to utilize such tools. As a matter of fact,

people often neglect using them for small documents
and leave the right workflows as mysteries. Also, it
is difficult to regard knowledge of such generic build
tools as an essential skill for all LATEX users, especially
considering light users and non-programmers.

Focusing on such casual use cases, I began a new
project named “Light LATEX Make” (llmk). Its goal
is to encourage people to always explicitly show the
workflow for each document by providing convenient
ways to do it. The design of the tool is all about this
purpose. First, it supports multiple magic comment
formats to specify the workflows in addition to ex-
ternal configuration files. Magic comments are an
easier way than external files, though the difference
is small. It should be compatible with most LATEX
use cases, including using it on cloud services and
LATEX-specific IDEs.

Second, it is fully cross-platform. It requires
only texlua, and thus it should work in almost all
TEX environments. For instance, one does not need
to install any dependency other than the TEX Live
distribution.

Third, it behaves exactly the same in any envi-
ronment. At this moment, llmk intentionally does
not provide any method for user configuration, so
that a LATEX document with a supported workflow
specification should be processed exactly in the same
way, no matter where you run the program.

Overall, llmk is a tool to provide a convenient
way to describe the workflow for an individual LATEX
document. It is designed more or less for simple doc-
uments and might not be suitable for large projects
that require complicated workflows. For such cases,
more sophisticated tools are better suited. A well-
written document that already has a Makefile or
similar is not the target of this project. In such a
document, the right workflow is already explicitly
shown. The major targets of llmk are small docu-
ments without unusual requirements.

There are other LATEX-specific build tools with
aims similar to llmk. The differences from such tools
will be discussed later (Section 3).

2 How llmk works

In this section, only a brief summary of the usage
and the mechanism in llmk is given. The details are
shown in the bundled documentation.

2.1 How to write the workflows

A user of llmk can write a document’s workflow in a
special external file (llmk.toml) or in the TEX file
(*.tex) itself. When the llmk command is executed
without any argument, it loads the llmk.toml file in
the working directory. If one or more names of TEX

The design concept for llmk—Light LATEX Make

186 TUGboat, Volume 41 (2020), No. 2

files are specified as arguments for llmk, it reads the
TOML fields in the files— these are special comment
areas that are given by comment lines containing
only three or more consecutive + characters:

1 % +++

2 % latex = "xelatex"

3 % +++

4 \documentclass{article}

Either way, you can write the workflow in the
TOML format [5]—a small configuration-oriented
language. This language is designed to be human-
friendly and is used in numerous projects.1

General-purpose programming languages, such
as Perl and Lua, can also be used for writing work-
flows and are in fact used in some TEX-related build
tools, but they are too powerful and have large spec-
ifications. Smaller languages designed specifically for
configuration, which are easier to learn, are better
for llmk. Among the various configuration languages,
including JSON and YAML, TOML is easy to parse
and thus a built-in parser can be written in reason-
able lines of code in pure Lua. These are the reasons
why TOML was chosen for llmk.

2.2 Simple keys

There are only a few important keys for llmk configu-
ration for casual users. For simple documents where
the default configuration is applicable, using some
of these keys should be enough:

latex (string) specifies the LATEX command to use.
The default value is "lualatex". Since llmk

runs on texlua, the installation of LuaTEX is
guaranteed. This is the reason that LuaTEX
is chosen for the default engine. Similar keys
dvipdf, bibtex, etc., are also available.

max_repeat (integer) sets the maximum number of
repetitions. For various reasons, such as solving
cross-references, llmk has a feature to repeat
command executions. This key exists to prevent
potential infinite loops. The default value is 5.

source (string or array of strings) sets the source
TEX files to process. This key is effective, and
required, only in llmk.toml.

The following is a small example of a configuration
for llmk which overrides the defaults:

1 # source TeX files

2 source = ["test1.tex", "test2.tex"]

3 # software to use

4 latex = "xelatex"

5 bibtex = "biber"

1 You can find the list of projects using TOML in its official

wiki: https://github.com/toml-lang/toml/wiki.

6 # misc

7 max_repeat = 7

When a value of a wrong type is given for a key,
it will result in a type error before llmk tries actual
document processing. It is designed to produce help-
ful error messages as much as possible, not to add
confusing errors in addition to those produced by
TEX engines.

2.3 Flexible control

For most simple LATEX documents, just using simple
keys described in the previous section should work
fine. Though such documents are the main targets
of llmk, it has features to process more complicated
documents if users desire to do so.

The core of flexible control in llmk is a pair
of keys: sequence (array of strings) and programs

(table of tables). The sequence array holds the
names of programs in the order of execution, and
the programs table contains detailed configuration
for each program in the sequence.

The default configuration of llmk is designed to
work without changes for typical LATEX documents.
Users are required to write only the differences from
the default, so that they do not have to write all
configurations from scratch every time. The default
value of the sequence array is as follows:

["latex", "bibtex",

"makeindex", "dvipdf"]

Under this configuration, llmk tries to convert *.tex
files to *.pdf. In case *.dvi is generated in the
process, the dvipdf program (by default DVIPDFMx)
is executed to convert it to a PDF. The bibtex

and makeindex programs are executed only if the
corresponding files (*.bib and *.idx respectively)
exist, and the latex program is set as postprocess
in order to make sure to rerun the LATEX command
after those executions.

2.4 Supports for other formats

For the convenience of the users, llmk supports other
existing magic comment formats. At present, the
so-called shebang-like magic comment, which is sup-
ported by a few existing tools, notably the YaTeX
mode for Emacs,2 is supported by llmk. Writing
%#!pdflatex in the first line of a *.tex file is equiv-
alent to specifying "pdflatex" to the latex key.
Other formats are also planned to be supported.

3 Differences from other tools

In response to the most frequently asked question, I
will briefly explain the differences from other similar

2 https://www.yatex.org/

Takuto Asakura

https:%20//github.com/toml-lang/toml/wiki
https://www.yatex.org/

TUGboat, Volume 41 (2020), No. 2 187

LATEX-specific build tools. Please note that most
of these differences are just the result of different
design concepts, and I would not call them ‘advan-
tages’. Though the aims and concepts that each tool
prioritizes are a bit different from each other, they
all have longer histories than llmk and thus have
sophisticated designs and implementation. I have
been greatly inspired from them and will continue to
learn. I hope llmk can provide another useful option
for LATEX users and some new ideas and inspiration
for the developers.

3.1 Latexmk and rubber

Latexmk [2] and rubber [3] are two well-known LATEX-
specific build tools. They have their own character-
istics and have stable sophisticated implementations,
but their purposes are slightly different from that
of llmk. Their goals are to provide easy ways to
process LATEX documents; they guess how to process
a document by analyzing the log files, for instance,
and implicitly determine the process. In other words,
they try hard to ‘hide’ the specific workflow from
users as much as possible. In addition, for both tools,
users are allowed to choose some variations, e.g., a
favorite TEX engine from pdfTEX, X ETEX, LuaTEX,
etc., with the command-line options. It is a use-
ful feature, but this makes it harder to reproduce
the same process for colleagues without being told
another piece of information, i.e., runtime command-
line options, from authors of documents.

On the other hand, llmk takes a different ap-
proach: it requires users to explicitly show the work-
flow to process a document either in an external
configuration file (llmk.toml) or in a *.tex file.
Thanks to its default configuration, it appears as if
llmk determines the workflow automatically for sim-
ple configuration, often consisting of a single latex
key, but in fact this is just a ‘shorthand’ for one
of the typical workflows and nothing is implicitly
determined. Thus, once you want to process a more
complex document for which the default configura-
tion is unsuitable, llmk will require you to specify
everything explicitly. In this way, we can take ad-
vantage of both convenience and portability.

3.2 Arara and spix

Arara [1] is a newer build automation tool for LATEX
documents that has become quite popular. Its aim
is close to ours: arara provides a way to describe the
workflow explicitly for each document. It has a set
of rules indicating the ways to process typical LATEX
documents and a user can specify which rules with
a directive, which is a magic comment in the *.tex
file. It also enables users to create their own rules by

writing the details in external files, in case a suitable
built-in rule is missing. Arara is a big project and
is capable of processing large documents that need
complicated workflows, while llmk is small and more
or less focusing on simple documents.

Spix [4] identifies itself as a simpler version of
arara. It also follows the idea of explicit workflow
description for each document and generally focuses
on simple documents. Therefore, the goals of spix
and llmk are almost the same, though there are a few
differences in concrete syntaxes and specifications.

One apparent strength of llmk as compared to
these two tools is that llmk can be executed without
installing any dependency other than from TEX sys-
tems. While arara and spix are implemented in Java
and Python respectively and thus require external
programs in order to use them,3 llmk is written in
pure Lua and thus can work with only texlua avail-
able. The specification and features of llmk are far
smaller than those of arara. Instead, llmk prioritizes
a uniform way to describe the workflows available
for nearly all TEX environments.

4 Acknowledgements

This project has been supported by the TEX Develop-
ment Fund created by the TEX Users Group (No. 29).
I would like to thank all contributors and the people
who gave me advice and suggestions for new features
for the llmk project. I am grateful to Yusuke Kuroki
for helping with the manuscript.

References

[1] Paulo Cereda, et al. arara—The cool TEX

automation tool.
https://ctan.org/pkg/arara

[2] John Collins. latexmk—generate LATEX

document. https://ctan.org/pkg/latexmk

[3] Sebastian Kapfer. rubber—a building system

for LATEX documents.
https://launchpad.net/rubber/

[4] Louis Paternault. SpiX—Yet another TEX

compilation tool: simple, human readable, no

option, no magic.
https://ctan.org/pkg/spix

[5] Tom Preston-Werner. TOML: Tom’s Obvious

Minimal Language. https://toml.io/

⋄ Takuto Asakura

The University of Tokyo

Department of Computer Science

tkt.asakura (at) gmail dot com

3 Neither the Java virtual machine nor the Python inter-

preter are included in TEX Live, or in MiKTEX.

The design concept for llmk—Light LATEX Make

https://ctan.org/pkg/arara
https://ctan.org/pkg/latexmk
https://launchpad.net/rubber/
https://ctan.org/pkg/spix
https://toml.io/

188 TUGboat, Volume 41 (2020), No. 2

Typesetting product catalogs and other

database-driven documents with the

speedata Publisher

Patrick Gundlach

Abstract

The speedata Publisher is a database publishing
system based on LuaTEX. Although it is a fully
commercial-driven development, it is available under
an open source license (AGPL). The main goal of
the speedata Publisher is to provide the high quality
of TEX’s typesetting output while fulfilling the needs
of database publishing. The speedata Publisher im-
plements its own language for defining layout rules.
This language is inspired by HTML, XSL and CSS,
and specializes in layout generation and excels in
optimizing layout such as rearranging objects on the
page, whitespace optimization, copyfitting and other
means.

LuaTEX has the ability to manipulate and build
the internal data structure that TEX uses to assemble
the pages and to break paragraph into lines. It
provides an extremely powerful environment for non-
standard typesetting tasks by allowing all necessary
steps to be done programmatically while still falling
back to TEX’s algorithms.

1 Introduction

LATEX is great if you want to write articles or books.
But how about if you want to publish product cata-
logs or data sheets? Is TEX still the tool of choice?

Normal text vs. data from databases

Product catalogs and similar documents are at best
created from data stored in a database. But what
distinguishes normal text from data retrieved from
databases?

Texts in a TEX document could look like this

The quick\footnote{yes, really quick} brown

fox jumps...

while data from the database has a rather schematic
structure:

<productdata>

<articlegroup

name="interior lights"

number="123">

<article number="123-12345">

<property1>...</property1>

<property2>...</property2>

</article>

<article number="123-12346">

<property1>...</property1>

<property2>...</property2>

</article>

</articlegroup>

</productdata>

Data processed in such systems is almost ex-
clusively formulated in XML, regardless of how it is
stored on disk. Textual descriptions are generally
stored either as plain text or as HTML formatted
text, rarely as Markdown formatted text.

A fundamentally different approach is therefore
necessary to process data from databases. The pro-
cessing of documents is no longer linear, i.e. from
‘top to bottom’. Instead, the data must be assembled
according to a logic that differs from application to
application. From the data above, it is not possible
to see how it should be represented. Whether it is
intended to be typeset as a table, a nicely designed
page with several products, or as a data sheet— this
cannot be seen from the data alone.

1.1 Strict separation of data and layout

Apart from a few exceptions, no information about
the appearance is found in the data. While the strict
separation is in theory a good concept, it makes
the typesetting part much harder. Sometimes the
separation is even impossible to maintain. For exam-
ple: when having a full page background image and
text to be placed in a good position, you need some
information coming from a human decision.

So how do you arrange the data on a page? Ac-
cording to which rules must the elements be placed?
To get to the solution, it helps to look over the shoul-
der of a graphic designer when creating a document
(e.g., a product catalogue). Professional graphic de-
signers work according to rules: How is a catalog
structured? Which products should be displayed in
which way? How many products fit on one page?
Which colors and fonts are used? Where is a page
break inserted?

The same rules are usually applied when filling
the pages, even if pages often look very different. If
you can manage to write these often formal rules in
text form or in a programming language, you are
often already very close to the goal.

1.2 Software used for product catalogs

Adobe InDesign is certainly the software most often
used to create documents with non-linear layout. It
is professional desktop publishing software for Win-
dows and Mac. This very powerful program has
excellent graphic qualities and can be automated by
plugins. There is also QuarkXPress, which works
similarly. However, these programs have limitations
in automation. In practice, these programs usually
work by using a database interface and page tem-
plates to fill pages. When finished, the pages need

Patrick Gundlach

TUGboat, Volume 41 (2020), No. 2 189

to be finalized via a tedious manual process. This
workflow is suitable for documents that change only
occasionally, but quickly reaches its limits if the data-
base changes very frequently or if documents are to
be generated fully automatically.

1.3 TEX as an alternative?

For the readers of TUGboat, the question is of course
how far TEX can be used here. The advantages of
TEX are well-known to us:

• Full automation. You can set up the process so
that a document is generated at the push of a
button or at a given time.

• Free software. No dependence on proprietary
software. TEX can be used on any number of
computers without any additional license fees.

• High output quality. We all know that TEX’s
line breaking algorithm is superb.

• High speed. TEX can output up to 300 pages
per second on my old 2015 laptop with almost
no startup time. (Less than that with more
complex documents and lots of fonts.)

A few difficulties remain, however:

• XML encoded in UTF-8 as input format. TEX is
neither made for XML input nor for UTF-8 pro-
cessing. LuaTEX allows more than 256 glyphs
in a font, so that helps significantly. Since April
2018 LATEX defaults to UTF-8 input, so this part
is getting better.

• Assembling the data. As seen, the input is not
linear. You have to go back and forth within the
data and fetch data from different XML elements
in the input.

• Output of HTML sources. Text in database pub-
lishing is usually stored as plain text or as HTML

fragments. To render HTML, a CSS+HTML

parser is needed.
• Optimization of pages. Many applications de-

mand some kind of whitespace optimization such
as adding images to the page until the text com-
pletely occupies the space. Other applications
require, for example, reducing the text size until
the text fits on one page (copyfitting).

2 speedata Publisher

I have developed the speedata Publisher precisely
for the purpose of non-linear documents with high
demands for layout flexibility. It is open source soft-
ware based on LuaTEX. You can download it from
the homepage [1] and use it immediately without any
further installation of dependencies (not even TEX
is required; it is included in the ZIP file). A compre-
hensive manual [2] describes in detail how to use the
software.

In addition to the data, which must be avail-
able in XML format, the layout instructions are also
formulated in XML. This has several advantages.

• You stay in the XML environment, which is
required for handling the data anyway.

• With a schema, editing XML in a text editor is
also fun.

• You see syntax errors immediately.

• XML can be easily created and transformed from
programs.

2.1 The speedata layout language

Since the data can be structured in any way, the
layout language must be very flexible. It must also
be possible in the layout files to formulate and eval-
uate the above-mentioned design rules. Supporting
queries to the data is necessary, such as: how wide
has the object become? Is there still enough space
on the page?

Existing layout or formatting languages do not
allow such flexibility. (X)HTML has no programming
support, XSL has no knowledge of layout, CSS is
fine for output, but has only limited programming
abilities. XSL-FO is rigid in its output and has no way
to respond to dynamic queries. In this respect, the
layout language is a mixture between the languages
mentioned here.

2.2 Hello, world

In the following sections I would like to give a small
insight into the layout language. The classic “Hello,
world” example serves as an introduction to speedata.

In database publishing the input usually consists
of two files: the data file and the layout file. I ignore
images and font files for now.

The data file in the “Hello, world” example
consists of one line:

<greeting>Hello, world!</greeting>

Typesetting product catalogs and other database-driven documents with the speedata Publisher

190 TUGboat, Volume 41 (2020), No. 2

This file must be saved in an otherwise empty
directory under the name data.xml.

The layout file (layout.xml) is rather larger,
and looks scarier than it really is (the arrow indicates
an editorial line break):

<Layout

xmlns="urn:speedata.de:2009/publisher/en"

xmlns:sd="urn:speedata:2009/publisher/ ⤦

functions/en">

<Record element="greeting">

<PlaceObject>

<Textblock>

<Paragraph>

<Value select="."/>

</Paragraph>

</Textblock>

</PlaceObject>

</Record>

</Layout>

If you have the speedata Publisher installed, you
can run the command sp to create a PDF file.

The processing starts at the root node in the
data file. In this case it is the element <greeting>.
It sets the “focus” to this element so you can access
it from the layout file. The software now looks for an
entry point in the layout file (<Record>) and executes
every command that is found within this <Record>
element. In this example, a text block is output for
the current element. The <Value> uses the dot (.) to
select the contents of the current focussed element in
the data file, in this case just the text “Hello, world”.
The dot is a so-called XPath expression with which
you can select data. A more detailed description
of the “Hello, world” example can be found in the
manual [3].

2.3 Dynamic layouts

To enable dynamic layouts, the speedata layout lan-
guage has programming options such as loops and
variables and the ability to query the appearance of
the page and objects that are put in virtual areas.
Together, these have enough expressiveness to im-
plement complex layout requirements. As with TEX,
you can put any objects into a virtual area which is
not output in the PDF. In TEX this is called a box;
here it is called a group. For example, to compare
the width of a group to the size of the page and act
on the outcome of the comparison:

<Switch>

<Case test="sd:group-width(’mybox’) > ⤦

sd:number-of-columns()">

<!-- too wide, recalculate -->

</Case>

<Otherwise>

<!-- great, fits on the page -->

<PlaceObject groupname="mybox" />

</Otherwise>

</Switch>

The requirements in practice are of course much
more complex. Interestingly, however, a few building
blocks are sufficient to create complex layouts. Many
functions in speedata Publisher fall into the category
syntactic sugar, i.e. not strictly necessary but helpful
constructions. For example, an image file can be
specified as a fallback for image output:

<Image file="myfile.pdf"

fallback="placeholder.pdf" />

This could also be written in a different way:

<SetVariable

variable="filename"

select="’myfile.pdf’" />

<Switch>

<Case test="sd:file-exists($filename)">

<Image file="{ $filename }"/>

</Case>

<Otherwise>

<Image file="placeholder.pdf"/>

</Otherwise>

</Switch>

2.4 Grid typesetting

Objects can be placed anywhere on a page or in a
grid. Grids can be any size and define a coordinate
system that helps in placing objects automatically
and ensuring that no object overlaps any other.

<Layout xmlns="urn:speedata.de:2009/ ⤦

publisher/en"

xmlns:sd="urn:speedata:2009/publisher/ ⤦

functions/en">

<SetGrid height="12pt" nx="10"/>

<Trace grid="yes"/>

<Pageformat width="8cm" height="4cm"/>

<Record element="data">

<PlaceObject column="3" row="2">

<Textblock>

<Paragraph>

<Value>Hello world!</Value>

</Paragraph>

</Textblock>

</PlaceObject>

</Record>

</Layout>

Patrick Gundlach

TUGboat, Volume 41 (2020), No. 2 191

Using a grid has several advantages:

• Every object allocates an area on the page. It
is easy to check how big this area is.

• Objects that are placed on a grid cannot overlap,
unless forced to. The system moves the object
to the next free space.

• It is easy to achieve typesetting on a grid just
by letting the output start at a new grid row.

Of course not everything can be placed within a
grid. Logos or background images for example need
to be placed at absolute positions:

<!-- grid -->

<PlaceObject row="4" column="5">

<Image file="_samplea.pdf" width="5"/>

</PlaceObject>

<!-- absolute -->

<PlaceObject row="12mm" column="5cm">

<Image file="_samplea.pdf" width="5"/>

</PlaceObject>

2.5 Other features

The speedata Publisher has many, many features.
Here, I’d like to highlight just a few of them.

Accessibility It is possible to attach logical struc-
ture to the texts placed in the PDF so it can be
PDF/UA (Universal Accessibility) compliant.

HTML input The speedata Publisher comes with
a CSS+HTML parser that lets you typeset doc-
uments written in HTML as they would look in
a browser.1

Master pages Page templates, including logos and
other static and dynamic information, can be
defined together with arbitrarily complex con-
ditions for when the page will be chosen by the
software.

Page areas You can define areas on the page to let
text flow from one area to the next area. This
is used in magazine typesetting.

HTTP assets Images and all other resources can
be loaded on the fly from the web. This makes it
easy to use digital asset management software.

1 This feature is under development, so not all aspects are

implemented yet.

Image wrapping Images can be (automatically)
enriched with information about where text can
wrap around the image. The paragraph shape
is calculated automatically.

Advanced tables The speedata Publisher does not
use any of TEX’s table code. It ships with its
own table model, which is inspired by HTML

and supports static and dynamic headers and
footers, controllable page breaks, running totals,
complex table cell backgrounds and much more.

Server mode Included in the Publisher is a REST

API that listens for incoming HTTP requests
to start publishing runs. This makes it easy to
build a server infrastructure for typesetting jobs.

Strong quality assurance There are more than a
hundred documents that are automatically com-
pared before making changes to the software, so
we can be assured old documents will be typeset
without changes in future versions.

3 speedata and LuaTEX

As mentioned above, LuaTEX is used as the backend
for speedata. Almost all parts of the speedata Pub-
lisher are written in Lua. No code from the plain,
ConTEXt or LATEX formats is used. There is a tiny
TEX wrapper that jumps directly into the Lua mode,
which does all the processing.

\catcode‘\{=1 \catcode‘\}=2

\directlua{require("publisher.spinit")}

\end

All other functions are at the Lua level. These
are, for example

• Parse the XML files (data and layout)
• Read in all images and font files
• Execute the program statements in the layout
• Assemble the data structures for TEX
• . . . and much more

Some of the routines are written in the pro-
gramming language Go and included as a library
at runtime. This library handles the loading of re-
sources via HTTP (including caching) and parsing
of HTML and CSS files. It was easier to use existing
libraries for these tasks than to rewrite them in Lua
from scratch.

3.1 TEX without \TEX

If no input comes in the form of TEX code, how is
LuaTEX able to typeset text and place other objects
into the PDF?

TEX normally reads the files with the macro in-
structions (e.g., \section) and stores the contents as
so-called nodes after some processing. These are the
smallest data units, which store e.g. a character or a

Typesetting product catalogs and other database-driven documents with the speedata Publisher

192 TUGboat, Volume 41 (2020), No. 2

glue. With these data units everything that is visible
in the output (along with some other technical infor-
mation) is represented. These data structures can
then be used to create DVI or PDF output. Thanks
to LuaTEX, these nodes can also be created and ma-
nipulated in Lua. Thus, the main part of the Lua
program code consists of generating such nodes from
the input data and the instructions of the layout file.

Node lists are linked lists of single nodes, which
can also contain lists themselves. For example, the
content of a horizontal box \hbox{...} is a list and
the box itself can be part of another list. Each
node consists of different fields, depending on what
is stored. For example, the character “H” could be
represented as a node as follows.

Such a character could easily be created with
the following Lua commands (the double dash -- is
a Lua comment):

h = node.new("glyph")

-- 72 is the ascii code for H

h.char = 72

h.font = 1

h.lang = 2

You can chain the nodes by, for instance, setting
the prev and next pointers:

-- as above

e = node.new("glyph")

e.char = 101; e.font = 1; e.lang = 2

h.next = e

e.prev = h

In this way, entire nodelists can be generated.

We are close to a nodelist that can be used for
output. Three things are missing from a “perfect”
paragraph:

1. hyphenation
2. kerns
3. ligatures

Hyphenation: there is a Lua function for TEX’s
hyphenation routine: long.hyphenate(nodelist).
When called, LuaTEX changes the nodelist and in-
serts the so-called discretionaries that signal a hy-
phenation point.

Kerns and ligatures: there are two very helpful
routines that add ligatures and kerns to the nodelists:
node.ligaturing(nodelist) for ligatures, and for
kerns node.kern(nodelist). The former replace
some glyph nodes with ligatures, so that they can
be dissolved again when a word is hyphenated. The
latter inserts small (often negative) spaces between
glyphs. Regarding ligatures, one can argue whether
it is still appropriate to do this via the TEX mecha-
nism. OpenType fonts often contain other ligatures
that would have to be translated for TEX’s ligature
mechanism. Furthermore, libraries like HarfBuzz
offer much more powerful functions for ligatures.

If hyphenation, kerns and ligatures are inserted,
you can use

tex.linebereak(nodelist, parameter)

to create a paragraph broken by TEX. The param-
eters specify the values for paragraph settings like
emergencystretch or linepenalty but also the para-
graph style (parshape). The result is a vertical box
with single lines in horizontal boxes.

3.2 Output of nodelists

After nodelists have been assembled, they can be out-
put. The speedata Publisher collects all material for
the pages and outputs it in one go. tex.shipout(n)
outputs the TEX box with the number n:

nodelist = node.vpack(nodelist)

tex.box[1234] = nodelist

tex.shipout(1234)

Before output, structural elements may have
to be written to the PDF for PDF/UA. To do this,
the content of the page is analyzed and a PDF ob-
ject structure is written to the PDF for accessibility
purposes.

3.3 Fonts and languages

In the example above, we just used some dummy val-
ues for ‘font’ and ‘lang’. Usually TEX loads the font
files or language patterns with \font and \patterns.
The speedata Publisher has its own routines for
both to allow UTF-8 input, similar to fontspec and
luaotfload for LATEX.

A new language can easily be loaded in LuaTEX:

Patrick Gundlach

TUGboat, Volume 41 (2020), No. 2 193

local l = lang.new()

l:patterns(pattern)

local id = l:id()

Here pattern is the content of a pattern file.
Loading a new font is a bit more complicated.

The FontForge library that is part of LuaTEX is used
to get information about (OpenType) fonts. An
alternative routine based on HarfBuzz is planned,
which is part of LuaTEX (under the name luahbtex)
since the last TEX Live release.

font, err = fontloader.open(filename_with_path)

...

fonttable = fontloader.to_table(font)

fonttable now has all font properties in an
extensive table, which can be made available to TEX:

local f = { }

f.name = fonttable.fontname

f.fullname = fonttable.fontname

f.designsize = size

f.size = size

f.direction = 0

f.filename = fonttable.filename_with_path

f.type = ’real’

...

f.characters = {

-- code for all glyphs in a font

}

-- define the font:

fontid = font.define(f)

You can use the font id in the nodelists above.

3.4 PDF specials

The PDF contains a lot more information than that
which is visible at a first glance. For example, book-
marks, hyperlinks, document structure for accessi-
bility, attached documents for electronic invoices
are elements that need to be written into the PDF.
Thanks to pdfTEX and the API in LuaTEX, this is
an easy task once the required syntax for these PDF

objects are known. They can be written to the PDF

as follows:

pdf.obj(...)

This function has several different parameters
that allow compressed or uncompressed text or data
to be written as a simple or a stream object.

There are also visible objects that cannot be
created with TEX’s graphics routines. Colors, trans-
parency, shades and other objects need to be writ-
ten with PDF drawing instructions. For example,
the borders in the following picture need to drawn
with instructions such as 0 0 m 1 5 l which means
“move to position (0,0) and draw a line to (1,5)”.

There are operators to draw lines and Bézier curves,
fill paths, clip contents from inside and outside of
given areas and many other drawing operators.

These operations can be inserted into the PDF

by whatsits:

n = node.new("whatsit","pdf_literal")

n.data = "0 0 m 1 5 l"

and then insert this whatsit into the nodelist (output
grayscaled for TUGboat):

4 Outlook and conclusion

Of course I can only scratch the surface in this ar-
ticle. LuaTEX and also the speedata Publisher are
two very powerful pieces of software. As can be seen,
the speedata Publisher would not be possible in this
way without LuaTEX. There is no need to under-
stand TEX’s macro language to use TEX, even for
the programmer.

The speedata Publisher is in active development
since 2009. I have a lot of plans for the future de-
velopment (such as HarfBuzz integration), but the
(paying) customers are the ones who drive most de-
velopment of new features.

I’d like to invite you to try out the software, ask
questions, look at the showcase on the homepage or
just browse the manual for inspiration.

To close with Donald E. Knuth’s words: Go
forth now and create masterpieces of the publishing
art!

References

[1] speedata homepage.
https://www.speedata.de.

[2] speedata manual. https://doc.speedata.de.
[3] “Hello, world” example in speedata manual.

https://doc.speedata.de/publisher/en/

helloworld/.

◇ Patrick Gundlach
speedata GmbH
Odilostraße 43
13467 Berlin
Germany
gundlach (at) speedata dot de

https://www.speedata.de/

Typesetting product catalogs and other database-driven documents with the speedata Publisher

https://www.speedata.de
https://doc.speedata.de
https://doc.speedata.de/publisher/en/helloworld/
https://doc.speedata.de/publisher/en/helloworld/

194 TUGboat, Volume 41 (2020), No. 2

A first set of LATEX packages

Jim Hefferon

Abstract

This describes a curated list of packages that covers
most of what beginners want to do. It seeks to name
one package in each area that is capable and reliable.

1 Overview

At TUG 2019 I reported on using social media to
help understand the needs of today’s beginners [1].
Often they just need a pointer to the right package.
This describes a package list suited to those users.

A list that is exhaustive wouldn’t help here; I
have kept the document to two sides of a page. Of
course that involved making choices. I am sorry that
this leaves off some first-quality work, but in any
event, the packages named are capable and basically
bug-free.

Beyond solving problems, the criteria for inclu-
sion in the list is that a package should be in the
distributions and popular. I also value documenta-
tion, particularly if it has helpful examples.

Part of the reason for this article is to solicit
feedback. I have already made improvements in
response to comments on a draft from social media,
in [2]. The end product will be a document in PDF,
HTML, and video. The PDF will be on CTAN.

Below I will go over the choices. The docu-
ment core consists of a few sections classifying areas,
intended to help a user find packages, which is repro-
duced below. Each package name is a hyperlink, with
a terse description. (There are a few extra comments
in parentheses that come up in conjunction with the
recommendations.)

Before those is an introduction. It mentions
CTAN,1 the target of almost all the links here. It also
mentions using texdoc to read local documentation.
Finally, it notes that if a person is writing for a
journal or institution then they should ask if there
is a house package.

2 Every document

To change page size, margins, and orientation, use
geometry.2 Get multiple columns with multicol.3

Any document containing significant amounts
of mathematics should use the American Mathe-
matical Society’s packages amsmath4 and amssymb.5

1 ctan.org
2 ctan.org/pkg/geometry
3 ctan.org/pkg/multicol
4 ctan.org/pkg/amsmath
5 ctan.org/pkg/amssymb

I also use amsthm6 for producing theorem environ-
ments. Notes: (1) amssymb inputs amsfonts so you
don’t need to load the latter, (2) load amsthm after
amsmath, (3) don’t load amsmath directly, instead get
it by loading mathtools,7 which adds some useful
improvements.

You can toss in microtype.8 My eye can’t spot
the improvements but I appreciate that often when
I use it, fewer lines need rewriting for overfull boxes.

3 Inside a document

To tweak lists, use enumitem.9

Enhance captions with caption10 and control
floating environments with float.11 (In particular,
if you want an option that overrides automatic float
placement and puts something exactly where you
ask, this package provides the option ‘H’.)

Get hyperlinks and turn references into links
with hyperref12 (this should be the last or next
to last package loaded). Make cross-references say
‘Theorem 1.2’ instead of just ‘1.2’ with cleveref;13

load this after hyperref. Have urls and file paths
that can linebreak with url14 (but hyperref has its
own facility, so if you are using hyperref then omit
url).

I do code listings with listings15 (although
minted16 also has a lot going for it). Make single
quotes inside verbatim text come out correctly with
upquote.17

(A tangent: copy and paste for computer code
listings would be especially convenient. This is a
start for the listings package.

\lstset{basicstyle=\ttfamily,keepspaces=true,

columns=fullflexible}

But it is not a full solution. For one thing, the result
depends on the PDF viewer. Worse, it loses initial
spaces in a line— if your code line begins with four
blank spaces then after a copy and paste those spaces
are gone.)

For code in Python have a look at pythontex,18

which, besides showing the code listings, also allows
you to execute Python and put the results in your
output. Do the same for the Sage mathematics

6 ctan.org/pkg/amsthm
7 ctan.org/pkg/mathtools
8 ctan.org/pkg/microtype
9 ctan.org/pkg/enumitem

10 ctan.org/pkg/caption
11 ctan.org/pkg/float
12 ctan.org/pkg/hyperref
13 ctan.org/pkg/cleveref
14 ctan.org/pkg/url
15 ctan.org/pkg/listings
16 ctan.org/pkg/minted
17 ctan.org/pkg/upquote
18 ctan.org/pkg/pythontex

Jim Hefferon

https://ctan.org
https://ctan.org/pkg/geometry
https://ctan.org/pkg/multicol
https://ctan.org/pkg/amsmath
https://ctan.org/pkg/amssymb
https://ctan.org/pkg/amsthm
https://ctan.org/pkg/mathtools
https://ctan.org/pkg/microtype
https://ctan.org/pkg/enumitem
https://ctan.org/pkg/caption
https://ctan.org/pkg/float
https://ctan.org/pkg/hyperref
https://ctan.org/pkg/cleveref
https://ctan.org/pkg/url
https://ctan.org/pkg/listings
https://ctan.org/pkg/minted
https://ctan.org/pkg/upquote
https://ctan.org/pkg/pythontex

TUGboat, Volume 41 (2020), No. 2 195

suite with sagetex19 and similar systems exist for
R, Haskell, and Scheme.

There are many packages that add table capa-
bilities such as multirow entries and breaking across
pages. I most often use array,20 which lets you de-
fine custom column types. For units, use siunitx21

(which also has a table column type for aligning on
a decimal point).

To make boxes that are colored or framed, such
as boxes for theorems, I use mdframed.22

Finally, when developing a document I often
want some filler text. I use lipsum.23

4 Graphics and color

To include graphics in files and to do simple ma-
nipulation such as resizing, use graphicx.24 Use
the JPG format for photos, PNG for other kinds of
raster graphics, and PDF for vector graphics. If your
graphic is in another format then convert it to one
of the three. (Usually you give the file name without
the extension, as with \includegraphics{graph}.)
Include parts of a PDF document with pdfpages.25

Include video or sound using media9.26

To get colors, use xcolor27 (although the docu-
mentation can be hard to make out).

For plots and graphics I use Asymptote,28 a
development of METAPOST with three-dimensional
features. However, many people instead use TikZ29

to draw graphics inside the document.

5 Front and back matter, headers, footers

To style chapter and section titles, use titlesec.30

For page headers and footers, reach for fancyhdr.31

You can tweak the format of tables of contents, lists
of figures, etc., with tocloft.32

Write answers to exercises to an external file so
you can read them in later with answers.33 I like
footnotes at the page bottom, so I use footmisc34

(but I had to hack to change the space between a
footnote mark and the footnote). Make an index

19 ctan.org/pkg/sagetex
20 ctan.org/pkg/array
21 ctan.org/pkg/siunitx
22 ctan.org/pkg/mdframed
23 ctan.org/pkg/lipsum
24 ctan.org/pkg/graphicx
25 ctan.org/pkg/pdfpages
26 ctan.org/pkg/media9
27 ctan.org/pkg/xcolor
28 asymptote.sourceforge.io
29 ctan.org/pkg/pgf
30 ctan.org/pkg/titlesec
31 ctan.org/pkg/fancyhdr
32 ctan.org/pkg/tocloft
33 ctan.org/pkg/answers
34 ctan.org/pkg/footmisc

with makeindex.35 Bibliographies are a thorny area,
with lots of strict requirements. CTAN is a big help
here since it has many styles for both BibTEX

36 and
BibLATEX.37

6 Special documents

Make exams and problem sets with the exam38 class.
There are many, many resume and CV packages.

Have a look at CTAN’s cv tag.39

To make presentations, use the beamer40 class.
(But with this package you are entering another
world, where many of the packages discussed here do
not work. For example, section title styling happens
via a completely different mechanism.)

7 Fonts and engines

To see options besides the default Computer Mod-
ern fonts, visit the LATEX Font Catalogue,41 which
includes copy and paste code to make each one work.

Beyond that list, you can also use any font that
your computer has (which usually works well only if
your document does not have much mathematics).
To convert LATEX source to PDF there are three main
programs, called engines. Most people use pdfLATEX.
The X ELATEX engine and the LuaLATEX engine can
leverage the fontspec42 package to use your system’s
fonts. (A word about the preprint site arXiv.org.
If your document was produced with X ELATEX or
LuaLATEX then you can only submit a PDF, not the
document source.)

8 What’s missing?

Again, I would be glad to hear suggestions for making
this list better.

References

[1] J. Hefferon. What do today’s newcomers want?
TUGboat 40(2):106–108, 2019. tug.org/TUGboat/
tb40-2/tb125heff-newusers.pdf

[2] Various Reddit users. A First List of LATEX
Packages. old.reddit.com/r/LaTeX/comments/

hpal2i/a_first_list_of_latex_packages/.

⋄ Jim Hefferon
Saint Michael’s College
jhefferon (at) smcvt dot edu

https://hefferon.net/

35 ctan.org/pkg/makeindex
36 ctan.org/topic/bibtex-sty
37 ctan.org/topic/biblatex
38 ctan.org/pkg/exam
39 ctan.org/topic/cv
40 ctan.org/pkg/beamer
41 tug.org/FontCatalogue
42 ctan.org/pkg/fontspec

A first set of LATEX packages

https://ctan.org/pkg/sagetex
https://ctan.org/pkg/array
https://ctan.org/pkg/siunitx
https://ctan.org/pkg/mdframed
https://ctan.org/pkg/lipsum
https://ctan.org/pkg/graphicx
https://ctan.org/pkg/pdfpages
https://ctan.org/pkg/media9
https://ctan.org/pkg/xcolor
https://asymptote.sourceforge.io
https://ctan.org/pkg/pgf
https://ctan.org/pkg/titlesec
https://ctan.org/pkg/fancyhdr
https://ctan.org/pkg/tocloft
https://ctan.org/pkg/answers
https://ctan.org/pkg/footmisc
arXiv.org
tug.org/TUGboat/tb40-2/tb125heff-newusers.pdf
tug.org/TUGboat/tb40-2/tb125heff-newusers.pdf
old.reddit.com/r/LaTeX/comments/hpal2i/a_first_list_of_latex_packages/
old.reddit.com/r/LaTeX/comments/hpal2i/a_first_list_of_latex_packages/
https://ctan.org/pkg/makeindex
https://ctan.org/topic/bibtex-sty
https://ctan.org/topic/biblatex
https://ctan.org/pkg/exam
https://ctan.org/topic/cv
https://ctan.org/pkg/beamer
https://tug.org/FontCatalogue
https://ctan.org/pkg/fontspec

196 TUGboat, Volume 41 (2020), No. 2

Presenting our LATEX workshop online

Susan DeMeritt, Cheryl Ponchin

Preparing for our first-ever video LATEX class was
much harder than we thought it would be. We would
each start a video, find an error or make an error
while speaking and have to start all over again. This
would happen several times in a row. It was very
frustrating.

Once we finally completed the videos and were
happy with them, we sent them to Paulo Ney de
Souza for processing and posting.

One of the things we noticed, comparing the
video class and in-person class, is that if we make a
mistake in the in-person class we can recover much
more easily, while in the video class we would have
to start over.

It was interesting to watch the videos as they
were shown on Thursday, July 23rd, before the con-
ference. We liked being able to answer questions via
chat. We didn’t have to stop the videos to answer
questions. There were also people adding various
pieces of information that was good for all of the
attendees to learn.

Overall, we thought it went really well. Defi-
nitely a good option since no one could attend the
conference in person because of the pandemic. Paulo
Ney de Souza was so helpful getting everything set
up for us. Cheryl sent him all of the videos and
Paulo put them in the order we requested.

The table of contents for the syllabus is in-
cluded here. The full syllabus, both the LATEX source
and output PDF, is linked from https://tug.org/

tug2020/workshop.html.

⋄ Susan DeMeritt

Institute for Defense Analyses

sue (at) ccrwest dot org

⋄ Cheryl Ponchin

Institute for Defense Analyses

cheryl (at) idaccr dot org

LATEX Workshop

TUG 2020 Conference

1 Creating a LATEX Document

2 Creating Numbered Section Headings

III Creating a Section That Uses Roman Numeral
Numbering

IV Still Using Roman Numbering for Sections

5 Changing Numbering Back to arabic

5.1 Creating Subsection Headings

6 Creating Footnotes

7 Changing Font Styles

8 Marking the Margin of a Paragraph

9 Text in Columns

10 Creating a Table of Contents

11 Adding to Contents

12 Itemizing, Enumerating, and Nesting

13 Theorems, Lemmas, etc.

14 Basic Tables

15 Simple Mathematics and Creating Equations

15.1 Subscripts and Superscripts

15.2 Accents

15.3 Binomial Coefficients

15.4 Congruence

15.5 Delimiters

15.6 Operators

15.7 Ellipses

15.8 Integral

15.9 Sum

15.10 Matrices

16 How to do Bibliographies

17 Getting the Output

https://tug.org/tug2020/workshop.html
https://tug.org/tug2020/workshop.html

TUGboat, Volume 41 (2020), No. 2 197

learnlatex.org: Taking LATEX training

fully interactive

David Carlisle, Paulo Roberto Massa Cereda,
Joseph Wright

1 Introduction

There are a plethora of resources available to new
LATEX users. However, it is much more difficult to
discover which of these provides the best introduction
to LATEX. These online resources vary in quality and
correctness: over time, and with limited editing,
even good advice can become out-of-date. Many
good resources are over-detailed for a new user who
needs only straightforward help to get over the initial
barrier to using the system.

For many programming languages there are now
web sites providing the opportunity to try coding
online using a cloud compiler. These cloud compilers
can be harnessed by a range of teaching websites to
offer a simple introduction to the language using a
suitable IDE (integrated development environment);
a good example is LearnPython.org. Such sites
tend to be limited in scope as they are not aiming
to teach every possible idea in the language but only
a “Beginners” menu.

Over the past six months, work has been ongoing
in filling that gap for LATEX: learnlatex.org. The
aim of this new site is to provide a carefully-curated
set of resources for beginner LATEX authors, with
integrated use of an online LATEX environment and
demonstrations accessed directly from these lessons.
The scope of these learning resources is focussed, and
with the aim of offering the material in bite-sized
chunks.

2 Existing resources

There are already many online resources for learn-
ing LATEX, as a simple web search will reveal. The
top hit at present is Overleaf’s “Learn LATEX in
30 Minutes” (https://www.overleaf.com/learn/
latex/Learn_LaTeX_in_30_minutes), which covers
many of the core ideas with a series of examples.
The second is https://www.latex-tutorial.com,
which takes the step of dividing up the lessons into a
series of pages. There are then more “traditional” re-
sources, including the long-standing LATEX Wikibook
(https://en.wikibooks.org/wiki/LaTeX), and of
course many excellent printed LATEX guides.

The Overleaf page is notable as Overleaf provides
a full LATEX system online, and is used by many
people as their LATEX editor/system. On their teach-
ing page, the examples are given as code blocks but
to run then, a separate tab needs to be opened. That

has the positive of looking exactly the same as any
other document edited on Overleaf, but means leav-
ing the teaching page. The other leading hits for
learning LATEX require that the learner copies or
types out the examples by hand.

In contrast, users learning other programming
languages can today often start on websites that let
them try out the system in the page. That means
no copy-pasting, no need to move to other tabs,
and no need to download and install software. As
mentioned above, LearnPython.org is an excellent
example, forming part of a family of around half
a dozen sites using the same overall framework to
teach a set of modern languages.

The learnlatex.org project was started with
the aim of combining existing best-practice teaching
on LATEX with a strong focus on interactive, online,
training. That required tackling three things: the
content, the website structure, and the online ele-
ment.

3 Writing content

The starting point for writing the content was long-
standing material developed by Nicola Talbot and
used by the UK TEX User Group (UK-TUG) for face-
to-face lessons (https://github.com/uktug/latex-
beginners-course). After assembling a small group
of volunteers, we began by looking at this curriculum,
the content of other sites and discussions we have
all had with new(er) users. That led to a first set of
section titles, which we adjusted as new ideas arose.

We then started drafting the content, taking
existing notes plus new material to deliver around
15 lessons.1 As we worked through these, we found
we had more to say than was reasonable to cover in
a focussed set of lessons. We also felt there was good
content that did not belong in the basic lessons, but
did belong somewhere. That led to a split of each
lesson into two parts: the basics and “going further”.
(We’ll look at the file structures below, and how they
build the site.)

As well as the content and demonstrations, we’ve
worked hard to make sure that the lessons are up-
to-date and accurate. That’s led to discussions with
the LATEX team about for example \label, which is
reflected in the lesson content and means that we
are confident the site covers best practice.

4 Website structure

Based on experience with texfaq.org, we knew that
GitHub Pages, which lets you write webpages in
Markdown, was a good place to look to host the site.

1 We’ve grown to 16 lessons, as there was a strong argu-

ment to add one on errors.

learnlatex.org: Taking LATEX training fully interactive

https://LearnPython.org
https://learnlatex.org
https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes
https://www.overleaf.com/learn/latex/Learn_LaTeX_in_30_minutes
https://www.latex-tutorial.com
https://en.wikibooks.org/wiki/LaTeX
https://LearnPython.org
https://learnlatex.org
https://github.com/uktug/latex-beginners-course
https://github.com/uktug/latex-beginners-course
https://texfaq.org

198 TUGboat, Volume 41 (2020), No. 2

This means that multiple authors can easily work
with the sources without needing to set up a complex
build system: the pages can be edited on the GitHub
site, so a local Git installation is not even required.

We started with a simple structure, with an
index and 15 lesson-XX files (all in Markdown, of
course). GitHub Pages runs a system called Jekyll,
which turns those files into the full site. That’s done
using various bits of template plus some scripting,
which can all be user controlled. As the site has
grown, we split the extra content into more-XX files,
which can then be linked automatically to their “par-
ent”.

Not long after we started work, the question of
translations came up. We’d started with the idea
of just working in English, but we didn’t want to
box ourselves in. So we moved all of the content
into a directory called /en, and started exploring
how to add a language selector. To help with that,
we made some stub files that were marked as being
in a few languages, then got at least the page titles
translated by real people. It turns out to be reason-
ably easy to add a selector, and there’s already been
interest in translation, so we have the site in English,
Vietnamese and Portuguese already, with Spanish,
German and Japanese in the pipeline.

Linked to translations, we also realised that
while most of the lessons stay the same for every
language, we needed a place where language-specifics
could be covered. That came up when we were
asked about Japanese; they need vertical typesetting,
which of course is very different from what we need
for English. So a place for non-translated pages has
been added: the content and number of pages there
is down to the translators.

5 Online LATEX compilers

As outlined above, a key aim in developing the site
has been to allow examples to be run as close as
possible to “in the page”: that has led us to explore
a range of options in this area. We wanted to have a
full LATEX system available, which mean that systems
such as MathJax (mathjax.org) or even MiniLATEX
(minilatex.app) were not suitable.

5.1 Processing examples “in the page”

It is possible to run TEX in the JavaScript engine in
the browser and initially we did some experiments
with texlive.js but such systems are hard to keep
up to date and currently provide only pdfLATEX, not
other engines such as LuaLATEX. So the decision was
made to use a server which ran LATEX, returning the
generated PDF to the web browser. An important
consideration when choosing the technology here was

that the examples should cover a range of languages
and so a range of TEX engines should be available,
notably pLATEX, LuaLATEX and X ELATEX in addition
to pdfLATEX.

During initial development of the site, we mostly
used the servers latexonline.cc and latex-on-http
(https://latex.ytotech.com/). However, in the
end we developed a server latexcgi.xyz specifically
tailored to the requirements of the site.

The most noticeable distinguishing feature of
the LATEX CGI server is that it does not directly
return the generated PDF but instead returns a
call to a locally hosted copy of the PDF.js (https:
//mozilla.github.io/pdf.js) JavaScript library.
This ensures consistent behaviour, notably on mobile
browsers which typically do not include a built-in
PDF renderer. The server does support options to
return the PDF directly, or to return the log file, even
of successful runs.

LATEX CGI supports a range of LATEX formats:
lualatex, pdflatex, xelatex, uplatex, platex and
their -dev variants. It also supports biber, bibtex,
pbibtex and bibtex8 and makeindex.

The server has installed a full copy of TEX Live
2020 and runs in the default “restricted shell escape”
mode. This means that packages such as imakeidx
that make use of the allowed shell commands are
available.

Currently latexcgi.xyz is hosted as a virtual
machine on Amazon’s EC2 service, which is available
in the Free Tier for one year. Long term hosting has
yet to be finalized.

Using a dedicated server gives some flexibility
in the technologies used. One possibility would be
to use Docker images such as the TEX Live images
provided by Island of TEX (https://gitlab.com/
islandoftex/images). This would likely be neces-
sary if we decide to offer more programming features,
in particular allow TEX to be run with shell escape
enabled, although currently the intention is to match
the default (restricted shell escape) that matches a
typical user’s system.

5.2 Online TEX processing systems

All the systems mentioned in the previous section
have the feature that they require no login or pre-
registration, which is convenient but means that any
edits to the documents are lost when the user moves
off the page. The site therefore offers a second al-
ternative to access a full online TEX system provider,
currently Overleaf.

If the Open in Overleaf button is used, a new
project is opened in Overleaf in a new tab in the

David Carlisle, Paulo Roberto Massa Cereda, Joseph Wright

https://mathjax.org
https://minilatex.app
https://github.com/manuels/texlive.js/
https://latexonline.cc
https://latex.ytotech.com/
https://latexcgi.xyz
https://mozilla.github.io/pdf.js
https://mozilla.github.io/pdf.js
https://latexcgi.xyz
https://gitlab.com/islandoftex/images
https://gitlab.com/islandoftex/images

TUGboat, Volume 41 (2020), No. 2 199

browser. The user can edit the example in Overleaf,
and save the project if desired, to return to it later.

The Overleaf API was extended for this site, to
allow multiple-file projects to be uploaded in this
way.

Other TEX editing systems could be used but
a requirement is a public API that starts a project
via an HTTP request rather than using the web page
menu interface.

6 What’s next

The web design we are using is very basic: just what
comes out-of-the-box with GitHub Pages. To help
users navigate, we need proper development of a full
site. That’s beyond the expertise of the site team,
but we have been able to raise funds to employ a
professional web developer. He’s looking at design
both in terms of appearance and structure: things
like mobile accessibility, metadata, etc., are all really
important.

There’s also still more to do on the content, in
particular working out if we need more formalised
exercises or lesson summaries. That likely needs user
feedback, for which we need your help. The site
will work best if it’s promoted to potential users,
and readers of TUGboat are we hope well-placed to
recommend it. Of course, to do that, we’d encourage
you to read the site, give feedback and perhaps even
suggest some improvements!

⋄ David Carlisle

Oxford, United Kingdom

d dot p dot carlisle (at)

gmail.com

⋄ Paulo Roberto Massa Cereda

São Paulo, Brazil

paulocereda (at) gmail.com

⋄ Joseph Wright

Northampton, United Kingdom

joseph dot wright (at)

morningstar2.co.uk

A review of learnlatex.org

Jennifer Claudio

LearnLATEX (learnlatex.org) is an instructional
guide to help new users of LATEX become familiar
with creating their first documents and to introduce
them to robust features that could be lacking or
inefficient in popular word processor software. This
review will address the following specific questions
about the site:

• Is it pedagogically effective?

• Does it provide what a LATEX newbie needs to
know?

• Does it encourage “best practices” and avoid
harmful ones?

• Is it clear about what kinds of materials are
supported?

An example screenshot from the site is shown
at the end of this review, with the caveat that the
site’s graphic design has not yet been developed.

1 Is it pedagogically effective?

At first click, the LearnLATEX site is clean and wel-
coming, a good sign for new users. In Lesson 1, the
site gives an overview of what LATEX is, how it works,
and why it differs from WYSIWYG interfaces. Each
of the modules includes options to learn more about
the topic or go to the next lesson. The user is in-
vited to follow along with examples by seeing the
on-site display, opening in an editor, or by using a
web resource such as Overleaf.

To address the question of pedagogical efficacy,
though, this site assumes a sufficient inherent motiva-
tion from the user to complete each of the exploratory
tasks. The methods of presenting information are in-
deed logically sequential and streamlined, but a user
must want to complete tasks if his or her intention is
to learn the content. The placement of each illustra-
tive example and links to Overleaf (overleaf.com)
and LATEX Online (latexcgi.xyz) are convenient
and facilitate active engagement by the user, which
is also pedagogically functional.

Each lesson has at least one exercise for users
to try. Once again, a motivated user would do these
for the sake of learning. To encourage the fraction
of users exploring the LearnLATEX site who are less
motivated, perhaps a checklist of “Things to try”
would draw more strongly upon the strings of human
desire for task completion. Another suggestion may
be to include things to try that deliberately lead to
errors, followed by a quick set of things to notice and
consequently correct.

200 TUGboat, Volume 41 (2020), No. 2

2 Does it provide what a LATEX newbie

needs to know?

For a user who needs to produce a standard docu-
ment, LearnLATEX provides enough starting points to
populate text and try variations. It also provides rel-
evant background and formatting tips that might be
specific to a publication style, such as forced vertical
or horizontal spacing or paragraph skipping rather
than indentation. The site does focus on producing
the article class, so a new user who wants to produce
slides would need to either find support for that class
or make creative decisions within the article class.

Inclusion of the math mode is an important
section of this site, and reference to additional re-
sources such as Detexify (detexify.kirelabs.org)
are certainly helpful. The robustness of mathemati-
cal typesetting is seemingly a primary incentive for
a person to use LATEX rather than a word processor.

A great bottleneck for new users to LATEX is
neither an issue about raw difficulty nor inability
to use markup functions. The perceived time sink
(which is sometimes an actual time sink) needed to
troubleshoot problems can be undesirable to a user
who might be able to more quickly perform a task
using software with which they are familiar. The
result is that the potential user does not become any
more familiar with LATEX, and does not use it for
future tasks unless required.

LearnLATEX conveniently has a section titled
Dealing with Errors, in which common errors for
the typical user are examined. The supporting exer-
cises to fix the errors illustrated provide an excellent
method for recognizing and solving problems.

3 Does it encourage “best practices” and

avoid harmful ones?

LearnLATEX encourages “best practices” and tips for
successful document creation. It provides insight
into functional tips to help new users avoid pitfalls
that can result in the aforementioned timesinks; for
instance, mentioning that “It’s important to finish
a paragraph before changing the font size back.”
Almost all sections have such a guiding tip to avoid
unnecessary troubleshooting down the line.

4 Is it clear about what kinds of materials

are supported?

Regarding supported materials, it seems that Learn-
LATEX walks its users through a variety of examples
for file types, packages, databases, etc. The relevance
of the supported materials naturally depends on the
user’s intended end product, but each section in
LearnLATEX provides clear details for how those are
used.

5 Overall summary

The construction of this document (review) itself is
perhaps testament that the LearnLATEX site is useful
to a new user who simply needs to create and submit
a text-only document. A search function within
the site could be helpful, though, since there were
sections I wanted to be able to jump to quickly. This
would eliminate the necessity to “flip through” pages
or run web searches for help. Working in tandem
with the Overleaf environment provides a convenient
way to generate the markup and make tweaks as
needed.

The LearnLATEX site is usable as a self-paced
course for a motivated LATEX learner and seems suf-
ficiently effective in its ability to guide a user from
introduction to production. It does not yet, however,
provide incentive for a non-user to explore it dili-
gently unless the user has a specific need for LATEX
typesetting, which is a fair shortcoming of most in-
structional tools across all fields.

The site is currently or soon will be available
in Chinese, English, French, German, Marathi, Por-
tuguese, Japanese, and Vietnamese. (Some transla-
tions are still in progress.)

At the time of this submission, the website is
still being edited and new features implemented. It
is my personal hope, for the efforts that are being
put into making LATEX more accessible, that it will
be adopted by a broader audience other than simply
“those who must use it”.

⋄ Jennifer Claudio

San Jose, California

claudioj (at) esuhsd dot org

Figure 1: Interface for runnable example.

Jennifer Claudio

TUGboat, Volume 41 (2020), No. 2 201

Quo vadis LATEX(3) Team—A look back
and at the upcoming years

Frank Mittelbach and the LATEX Project Team

Abstract

This is a brief write-up of a talk given by the author
at the TUG’20 online conference.

The talk touches briefly on the questions “where
we are coming from” (we being the LATEX Project
Team), “where we are now” and then focusses on the
LATEX Project’s plans for the upcoming years, which
will primarily be focussed on providing an out-of-the-
box solution for generating tagged PDF with LATEX
and will include gentle refactoring of parts of the core
LATEX and providing important functionality, such
as extended standard support for color, hyperlinks
etc., as part of the kernel.

This is a multi-year journey that we have just
started and we will briefly explain the places this will
take us through. At its end we expect that LATEX
users are able to produce tagged and “accessible”
PDF without the need to post-process the result of
their LATEX run.

Contents

1 A quick walk through 30 years of history 201
The birth of the LATEX project 201
The first years 202
A new LATEX version 202
Highlights of the following decades 202

Around 1997 202
The new millennium 202

A change in policy 203
Managing future enhancements 203

2 Activities in 2020 203

3 A look at the future 204
Important areas for urgent improvement . 204
Project(s) for the upcoming years 204
A focus change—modernize LATEX through

gentle refactoring 204
Hook management as an example 205

4 The tagged PDF project 205
Background and project status 206
Project phases and timeline 206

5 Stay tuned 207

1 A quick walk through 30 years of history

In this section we take a short tour from the origins
of LATEX to the present day in order to better under-
stand where we came from and its influence on how
we see the future shaping.

+

IT
:
\
iJ

:l

:jl
: -1-

'1

-:1

With lAkX into the Nineries

Frank Mittelbach & Rainer Schöpf

TUG Anniversary Meeting

Stanford

23th August 1989

The Concept of IATEX

The Essential Features of IATEX

Limitations of the IAT# Version 2.09

New Demands

A Concept for a new lmplementation

I nstitutiona I Considerations

+ .1
Figure 1: The title slide from 1989

The birth of the LATEX project

A bit more than thirty years ago I gave my first
international talk at the 1989 TUG conference at
Stanford (Figure 1). There I lectured in front of
Leslie Lamport and Don Knuth, boldly pointing
out deficiencies of LATEX2.09 and what is needed to
improve on it.

Our criticism wasn’t new to Leslie, as we had
sent him many bug reports and suggestions during
the previous years. And after a long meeting follow-
ing the talk, Leslie passed maintenance and future
development of LATEX on to Chris Rowley, Rainer
Schöpf and myself. For more details on the events
back then see the conference proceedings [9].

Leslie continued to work with us, discussing
concepts and interfaces, but did not participate in
any of the coding for a new version. By the time
LATEX2ε got released he had fully retired from work-
ing on LATEX (except for sending in the occasional
bug report like any other user).

Thus, this day in late August 1989 marked the
origin of the LATEX Project, later often referred to as
the LATEX3 project.

We were young (isn’t that always the problem?)
and had big plans, but it would certainly be impos-
sible to turn even some of them into reality had we
not had the fortune to soon recruit a number of ad-
ditional members— influential in shaping LATEX2ε
and beyond.

Few of them will need introductions to anybody
who has worked a while with LATEX, but for the record
here are the people beside Chris, Rainer and myself
to praise or blame for LATEX2ε and many of the pack-
ages that you are still using today: David Carlisle, Jo-
hannes Braams, Alan Jeffrey, Denys Duchier, Michael

Quo vadis LATEX(3) Team—A look back and at the upcoming years

202 TUGboat, Volume 41 (2020), No. 2

Figure 2: The 1993 LATEX3 Programmer’s Guide

Downes and Robin Fairbairns. All got their hands
dirty in the development of today’s LATEX and/or
had a lasting influence on what later became expl3.

The first years

The early nineties were fairly productive years for the
team and by around 1992 we had built a complete
kernel for a new LATEX3 system. It was able to
compile its own user manual. Figure 2 shows a
version from 1993.

In my talk I titled the slide showing this picture
“A fully working (useless) LATEX3 kernel”. The rea-
son is that we found out to our dismay that there
was serious danger of dying of excessive caffeine con-
sumption while waiting for even a small document
to compile (let alone something like that guide).

Basically we were just several computer gener-
ations too early (or lousy programmers, or both).
We invented, for example, a system comparable to
Cascading Style Sheets (CSS)— long before that ap-
peared in browsers. But all these ideas required
much more computing power than was available on
typical machines back then.

So in the end we gave up and decided that it
was a nice but impossible dream.

A new LATEX version

So instead of continuing with LATEX3 we cleaned up
all the extensions and improvements we had made
for LATEX2.09, developed a graphics and color ab-
straction and bundled everything under the name
LATEX2ε. This was then promoted as the “newly
revised LATEX standard”.

Leslie wrote an updated LATEX manual [3] and
Michel Goossens and myself with the help of Alexan-
der Samarin produced the first LATEX Companion [2],
also known as the Doggie book to many LATEX users
(Figure 3).

Figure 3: The “doggie” book: the first edition of the
LATEX Companion.

LATEX2ε had a fairly shaky start, largely due to
the fact that a small but vocal minority loudly argued
against using it and suggested to stay with LATEX2.09
instead. The main reason given was that “nobody
needs these new 8-bit fonts with precomposed foreign
characters and that they take a huge amount of
unnecessary space on your hard disk”.

However, in the end it took off like a rocket,
largely because of all the other goodies it offered—
solving many of the problems people were struggling
with in the past. If you look through the Web for
LATEX2ε you will find a large number of books in
various languages that appeared in the following
years, clearly showing that there was a high level of
interest in the software.

For us it was an important lesson to learn how
close success or failure can be, if you have a small
but vocal group opposing you.

Highlights of the following decades

Presenting any reasonably complete account of the
works of the LATEX team throughout the years would
fill many pages, so here we restrict ourselves to only
a few highlights that are relevant for what we intend
to do in the future.

Around 1997

At some point we decided to release some of the work
we did for LATEX3 as a package on CTAN named expl3,
mainly to preserve it but also because computers
had gotten faster, and it seemed that the code could
become usable after all at some point in the future.

The new millennium

That action got younger people interested, and first
Morten Høgholm and later Will Robertson and Jo-
seph Wright pushed for a complete overhaul of the

Frank Mittelbach and the LATEX Project Team

TUGboat, Volume 41 (2020), No. 2 203

Figure 4: The expl3 logo

language. This happened in several phases between
2005 and 2012; see [12, 4] for more details.

Large application packages, such as fontspec,
siunitx and others, got written in expl3. At some
point the language was evidently in a reasonably
stable state and we announced it as fit for general
use [13].1

Now with a stable expl3 around 2014 we started
promoting it and one of the actions was to use a logo
for it, which was designed for us by Paulo Cereda—
a lovely hummingbird pecking at the “l” (Figure 4).

To indicate that we are moving into new waters I
pushed for using the hummingbird also as the official
new logo for LATEX and at some point later we made
the switch.

Initially there had been some concerns to make
the LATEX “brand” unrecognizable if it isn’t associ-
ated with some kind of a lion, but in retrospect it
seems fairly clear that the logo was positively re-
ceived and there is no question these days that this
particular bird represents today’s LATEX.

A change in policy

A big step was taken in 2015 when we announced
a new bug-fix and enhancement policy. Until then
the LATEX2ε format was essentially kept unchanged.
Even serious bugs were either not fixed at all, or
fixed by adding the fix to the package fixltx2e that
one could or could not load as desired.

This meant great stability but it also meant that
only the few people who added fixltx2e would benefit
from the fixes, while the great majority would stay
with the buggy version. In the beginning this was fine
but over time it became a burden because packages
have to provide alternative code paths based on
fixltx2e being loaded or not. We therefore switched
to the approach that fixes get applied by default (i.e.,
everybody receives them) and instead now offer a
way (though a rollback mechanism [5, 7]) to opt out,
if necessary.

Thus what happened in 2015 was that the ac-
cumulated fixes previously in fixltx2e got moved into

1 The name expl3 stands for “EXperimental Programming
Language (LATEX)3” but it was kept even after it had long
ceased being experimental.

the LATEX kernel and the package reduced to an
empty shell, unless you used it with an old LATEX
format.

Around that time we also started to bring ex-
ternal developments into core LATEX. For example,
we officially added support for LuaTEX to the kernel
and took over the maintenance and development of
amsmath from the American Mathematical Society.

Managing future enhancements

But we also went a step beyond bug fixes and in-
tegrations. To prepare for future developments we
wrote a new testing and distribution environment
(l3build [8]) that has been used by us to maintain
the kernel sources, and over time also by many other
package developers around the world.

A relatively recent activity was to arrange with
the major distributions, i.e., TEXLive, MacTEX and
MiKTEX, to provide so-called “LATEX development
releases”, allowing users and package developers to
test pre-releases of LATEX with ease [6].

We also announced that necessary enhancements
to the code (to keep it relevant) would be presented
from now on in most cases as opt-out rather than
opt-in solutions.

A good example for this policy change is the
switch from legacy 8-bit code pages to Unicode, or
more precisely to the UTF-8 encoding. This hap-
pened in 2018. With the LATEX release in that year
the default input encoding for LATEX became UTF-8,
and in retrospect it is fair to say that few people
have noticed any ill effects with their document and
had to apply the opt-out. Most people only noticed—
if they noticed the change at all— that they could
finally use Unicode characters in their documents
without problems, a feature that was badly lacking
in LATEX previously.

2 Activities in 2020

Two important changes happened in the spring 2020
release of LATEX:

• One was a long overdue modernization of LATEX’s
font selection scheme to better support all the
new high-quality OpenType fonts;

• The other was described in the LATEX Newsletter

as “improved load-times for expl3”.

Why is the second bullet of any importance? At the
time of the release it was indeed nothing more than
what it said: users with documents loading expl3 (to
begin with, all X ETEX or LuaTEX users) experienced
noticeably faster processing times.

Quo vadis LATEX(3) Team—A look back and at the upcoming years

204 TUGboat, Volume 41 (2020), No. 2

But its importance lies in the fact that it marks
the end of one era and the beginning of a new one.
LATEX now greets you with

LaTeX2e <2020-02-02>

L3 programming layer <2020-06-18>

and this means that thirty years after first dreaming
about it, LATEX finally comes equipped with the
LATEX3 programming layer included as part of the
format.

3 A look at the future

LATEX has stayed surprisingly relevant given that
its original design dates back to the 1980s.2 It has,
however, limitations, some due to the underlying
engine and some due to design decisions made in the
past.

Important areas for urgent improvement

Perhaps the most important limitation is that until
now LATEX concerned itself only with producing a
“printed result” with paper as the ultimate output
medium in mind. Any other usage is either not sup-
ported or not directly supported. However, for quite
a while now, other usage has become increasingly
important. Many documents are never printed or
printed only as a secondary action.

LATEX2ε added some support for graphics and
limited color printing, but otherwise followed the
same paradigm. Hyperlinks and other Web publish-
ing support are layered on top, not as integral parts
of the design.

As a notable example, the hyperref package has
to redefine a larger number of LATEX’s internals and
many commands of other packages to be able to
achieve its goals and even so is often enough only able
to do so by imposing restrictions. Other packages
need to patch the same areas, resulting in conflicts
and limitations.

Another important issue is that LATEX very care-
fully throws away the wealth of structural informa-
tion it has at its disposal while producing output
pages. As a result a PDF or DVI file produced by
LATEX is just a stream of positioned glyphs without
much structural information preserved.

If your intention is only to print that document,
then this is all that is required, but if you want
to produce, say, an accessible PDF document, then
a significant amount of structural information and
other data has to be embedded into the final output
document to guide screen readers, etc., or adhere
to the PDF/UA (Accessibility) standard. At the

2 Or the early 1990s if you think of LATEX2ε as the starting
point for today’s LATEX.

moment this requires extensive manual labor and
processes that often have to be repeated after making
even minimal changes to the LATEX source.

Project(s) for the upcoming years

With the challenges outlined in the previous section
in front of us we are focussing on a number of areas
to address them:

• Embrace and integrate more functionality from
existing packages into the LATEX kernel;

• Provide extended and unified color management,
with graphics and font(glyphs) integration;

• Provide standard interfaces for functionality cur-
rently available only in an ad hoc way, or not
available at all;

• Enable LATEX to automatically produce tagged

PDF.

We plan to integrate important functionality
from existing packages directly into LATEX so that
it is directly available for user and package writers
through standard interfaces. Examples for this are
hyperlinks and colors, as already mentioned, but
there are several other areas we are looking at.

In addition, we plan to provide standard inter-
faces for some important capabilities that are cur-
rently not available at all or only in rudimentary and
ad hoc fashion. An example for this is the hook man-
agement system that is planned for the next LATEX
release in fall this year.

Finally, the list contains a one-liner about pro-
ducing “tagged PDF”, which hides a huge project—
we will discuss this below.

A focus change—modernize LATEX through
gentle refactoring

When we set out in 1989 to improve LATEX2.09 and
produce a new version (a.k.a. LATEX3) the LATEX
universe was largely defined by the software provided
by Leslie Lamport and a rather small and manageable
number of packages by others. The reason being that
it was not at all easy to build applications on top
of LATEX2.09 and, of course, LATEX was only a few
years in use back then.

When LATEX2ε was released in 1994 it solved
many of the problems we had initially criticized, even
though it wasn’t the system we had envisioned—
one with a clear separation of user, designer and
programmer levels and facilities, which we simply
couldn’t make work with the existing computing
power of those days.

However, LATEX2ε offered a package manage-
ment system with \usepackage, command declara-
tion with optional arguments and other goodies for

Frank Mittelbach and the LATEX Project Team

TUGboat, Volume 41 (2020), No. 2 205

users and package developers and so over time peo-
ple started to provide more and more packages for
LATEX that filled the needs of any niche and nowadays
several thousand packages for LATEX are on CTAN.

The increase in the breadth of the software usage
over the years made it more and more unlikely that
producing a standalone LATEX3 next to an existing
LATEX2ε would gain any traction. It would naturally
start out with a very limited scope (because many
existing packages would not work with it) and would
therefore be unsuitable for most serious usage. But
that in turn would mean that as kernel developers
we would not get the necessary feedback that ensures
that the provided features are meeting the needs of
the users and as a package developer there would
be no incentive to provide new packages for a new
system that isn’t widely used—the usual chicken
and egg problem.

We have therefore decided that there will be no
separate LATEX3 product in parallel to an existing
LATEX2ε. Instead, we will approach the modern-
ization through some gentle refactoring of LATEX to
reach the same target, but in smaller steps.

If you look back at the history outlined earlier,
you will see that this journey has already started in
2015 with the new bug-fix policy and the rollback
mechanism, which was then followed by the switch
to UTF-8 to keep LATEX relevant.

The strategy we are following here can be out-
lined in a number of main bullet points:

• Use the L3 programming language to implement
all new kernel code now that it is available;

• Replace existing kernel code (over time);

• Keep focus on reliability and compatibility;

• Collaborate with package writers/maintainers
to ensure compatibility with kernel changes.

An example of our new strategy is the implementa-
tion of a hook management system for LATEX, which
will be introduced in LATEX in the 2020 fall release.

Hook management as an example

In the past LATEX offered just a few heavily used
hooks, for example, \AtBeginDocument. Every other
alteration or addition made by a package was done
by overwriting existing kernel code, leading to all
kinds of known issues.

With the new hook management system, the
LATEX kernel and many packages will get a larger
number of hooks in which other packages can add
code in a controlled manner, avoiding the need for
patching commands. The new system provides stan-
dard interfaces for declaring and using hooks, includ-
ing ways to order code added to hooks by different

package in order to resolve package loading problems,
and plenty more.

The new system is written in the L3 program-
ming language (the source file is lthooks.dtx), but
the interfaces are offered in a way that they can
be used in all packages, i.e., they do not require
the package to be written in expl3 and thus can be
retrofitted into updates of legacy packages easily.

The individual hooks provided by the kernel
in the first release replace ad hoc solutions in spe-
cific areas as provided by packages such as atbegshi,
everyshi, atveryend, etoolbox, filehook and others. In
future releases, more parts of LATEX will see hooks
added.

Thanks to the LATEX development format con-
cept mentioned above, the new hook management
code is already available for testing to anybody inter-
ested—which we strongly encourage. As any change
to LATEX will inevitably have ripple effects which
need sorting out, such pre-testing is an important
part of the overall strategy, to resolve as many prob-
lems and borderline cases as possible before new code
shows up in the main release.

For the same reason the LATEX team is actively
checking across the huge set of packages supplied in
TEX distributions for possible conflicts and working
with other developers and maintainers if updates are
necessary due to upcoming LATEX kernel changes. In
this particular instance, it was necessary for a handful
of packages that patched into existing internal LATEX
commands in places that have been unavoidably
changed to support the new hooks.

4 The tagged PDF project

This project is the LATEX team’s answer to the need
for preparing LATEX to uses other than printing on
paper. The main goals of this project can be sum-
marized as follows:

• Provide functionality to automatically produce
structured PDF, without the need for user inter-
vention or post-processing;

• Provide the necessary interfaces for producing
PDF enhanced by features such as “alterna-
tive text” (to comply with standards such as
PDF/UA).

While the project focusses on PDF as the pri-
mary output format, the functionality that needs to
be developed will be equally applicable when target-
ing other output formats that require structured data
to be present, e.g., HTML, XML, and new formats
such as HINT currently being developed [16, 17].

Quo vadis LATEX(3) Team—A look back and at the upcoming years

206 TUGboat, Volume 41 (2020), No. 2

Background and project status

There has been groundbreaking work done by Ross
Moore and others [10, 14, 11] in the last years in the
quest for enabling LATEX to produce “accessible” or
more generally “structured and enhanced” PDF.

The unfortunate problem which all these at-
tempts have run into is that it is next to impossible
to patch current LATEX and all needed packages and
still obtain reliable and stable results.

A system based on patches is by its nature very
fragile, because any change in the patched code will
break the system—which will happen regularly if
significant patching is needed, as is the case here.
In addition, all solutions to date need to enforce
severe restrictions on the document content and even
then require the user to do serious manual work—
largely because of missing machinery and interfaces
in LATEX.

Our plans are therefore to continue learning from
this prior work and provide the necessary interfaces
directly in LATEX, so that fragile and incompatible
patching is no longer necessary. Some of our initial
work in this regard is documented in [15, 1].

What we have undertaken so far with respect
to the “Tagged PDF project” is to produce a fea-
sibility study and develop a detailed project plan
for reaching the project goals. This is a multi-year
undertaking split into six phases and how long it will
take will depend in part on the financial backing for
the project, i.e., it depends on how much of the work
has to be done in our spare time and how much of
the development work is financed by sponsors, so
that we can have some people work full time on the
necessary work.

We are therefore pleased to be able to say that
Adobe is sponsoring a fair portion of the estimated
project costs, though we hope to attract further
industry sponsors and organizations interested in the
subject, in order to keep the timeline at a reasonable
length.

Project phases and timeline

The project is tentatively divided into six phases
progressing in parallel to the LATEX release cycle;
that is, each phase is expected to require one or
more LATEX releases, depending on how much time
we can devote to the necessary work.

The deliverables of each phase are expected to
be directly applicable to LATEX users (and developers)
so that we can get immediate feedback but also make
tangible progress.

Overall, depending on the available financial
support, the project timeline is expected to take
between three and five years.

Phase I—Prepare the ground

This phase is already well under way and one impor-
tant deliverable is the introduction of a general hook
management system, discussed earlier.

Phase II—Provide tagging of simple
documents

The main goal of phase II is to provide automatic
tagging of simple documents, excluding more com-
plicated structures such as mathematics and tables.
In this phase workarounds are needed for code that
will be adjusted later.

This is delivered as a prototype implementation
in form of an add-on package.

Phase III—Remove the workarounds
needed for tagging

The main goal of phase III is to extend the coverage
of automatic tagging and to remove workarounds
that were initially necessary to provide a working
prototype.

Phase IV—Make basic tagging and
hyperlinking available

The main goal of phase IV is to incorporate all the
code currently in the prototype packages into the
kernel itself. This needs to be done very carefully
and cautiously as there should be no negative impact
for users processing legacy documents. This is why
we expect to need at least a full release cycle for this.

Phase V—Extend the tagging capabilities

With basic tagging available the focus of phase V lies
in providing extended support for tagging by adding
tables and formulas to the supported elements.

Furthermore, interfaces for specifying alternate
text will be developed and added to all relevant
elements.

Phase VI—Handle standards

Finally, phase VI will focus on providing additional
support for the relevant PDF standards (as far as
this is possible using LATEX directly, without post-
processing the resulting PDF), and adding kernel
support for outlines and associated files.

Parallel work

In addition to the six phases (which contain tasks
that are largely understood from a technical per-
spective) there are a number of tasks that require
research. These will be carried out in parallel to the
other work.

Depending on their outcome the structure of the
later phases might need some alteration or extension.

Frank Mittelbach and the LATEX Project Team

TUGboat, Volume 41 (2020), No. 2 207

5 Stay tuned

Clearly this article provides only a short glimpse of
our plans for the immediate and mid-term future.
The feasibility study for the tagged PDF project and
its implications and dependencies, for example, is
a forty page document and touched upon in this
document in a few sentences. In the near future we
intend to publish this study and more details both
on the plans and on our intermediate results.

As a first result from Phase I, you can already
now take a look at the new hook management system
and provide your feedback for consideration before it
get officially introduced in the fall release of LATEX.
With an up-to-date LATEX installation the relevant
commands are:

texdoc lthooks-doc (for documentation)
pdflatex-dev yourfile (for testing)

References

[1] U. Fischer. Creating accessible pdfs
with LATEX. TUGboat 41(1):26–28, 2020.
https://tug.org/TUGboat/tb41-1/

tb127fischer-accessible.pdf

[2] M. Goossens, F. Mittelbach, A. Samarin. The
LATEX Companion. Addison-Wesley, Reading,
MA, USA, 1994.

[3] L. Lamport. LATEX: A Document Preparation

System: User’s Guide and Reference Manual.
Addison-Wesley, Reading, MA, USA, second
edition, 1994.

[4] LATEX Project Team. LATEX3 news, 2009–.
https://latex-project.org/news/

latex3-news/.

[5] LATEX Project Team. The latexrelease package,
2018. https://ctan.org/pkg/latexrelease.

[6] LATEX Project Team. LATEX news, issue 30,
October 2019. TUGboat 40(3):251–254,
2019. https://tug.org/TUGboat/tb40-3/

tb126ltnews30.pdf

[7] F. Mittelbach. A rollback concept for
packages and classes. TUGboat 39(2):107–112,
2018. https://tug.org/TUGboat/tb39-2/

tb122mitt-rollback.pdf

[8] F. Mittelbach, W. Robertson, LATEX3 team.
l3build—A modern Lua test suite for TEX
programming. TUGboat 35(3):287–293,
2014. https://tug.org/TUGboat/tb35-3/

tb111mitt-l3build.pdf

[9] F. Mittelbach, R. Schöpf. With LATEX into
the nineties. TUGboat 10(4):681–690, Dec.
1989. https://tug.org/TUGboat/tb10-4/

tb26mitt.pdf

[10] R. Moore. Ongoing efforts to generate “tagged
PDF” using pdfTEX. TUGboat 30(2):170–175,
2009. https://tug.org/TUGboat/tb30-2/

tb95moore.pdf

[11] R. Moore. Implementing PDF standards
for mathematical publishing. TUGboat

39(2):131–135, 2018. https://tug.org/

TUGboat/tb39-2/tb122moore-pdf.pdf

[12] LATEX. Project Team. LATEX news, issue 17.
TUGboat 28(1):24–25, 2007. https://tug.

org/TUGboat/tb28-1/tb88ltnews.pdf

[13] LATEX. Project Team. LATEX3 news, issue 9.
TUGboat 35(1):22–26, 2014. https://tug.

org/TUGboat/tb35-1/tb109l3news.pdf

[14] C. V. Radhakrishnan, Hàn Thé̂ Thành, et al.
Generating PDF/X- and PDF/A-compliant
PDFs with pdfTEX— pdfx.sty. TUGboat

36(2):136–142, 2015. https://tug.org/

TUGboat/tb36-2/tb113radhakrishnan.pdf

[15] C. Rowley, U. Fischer, F. Mittelbach.
Accessibility in the LATEX kernel—
experiments in Tagged PDF. TUGboat

40(2):157–158, 2019. https://tug.org/

TUGboat/tb40-2/tb125rowley-tagpdf.pdf

[16] M. Ruckert. The design of the HINT file
format. TUGboat 40(2):143–146, 2019.
https://tug.org/TUGboat/tb40-2/

tb125ruckert-hint.pdf

[17] M. Ruckert. The HINT project: Status and
open questions. TUGboat 41(2):208–211,
2020. https://tug.org/TUGboat/tb41-2/

tb128ruckert-hint.pdf

⋄ Frank Mittelbach and
the LATEX Project Team

Mainz, Germany
frank.mittelbach (at)

latex-project dot org

https://www.latex-project.org

Quo vadis LATEX(3) Team—A look back and at the upcoming years

208 TUGboat, Volume 41 (2020), No. 2

The HINT Project: Status and open questions

Martin Ruckert, Gudrun Socher

Abstract

The HINT file format is intended as a replacement of
the DVI or PDF file format for on-screen reading of
TEX output. We give an overview of the current state
of the project and solicit answers to open questions
that might influence further development.

1 Current state

1.1 Version 1.0

Version 1.0 of the HINT file format [4] was pub-
lished in August 2019 and presented [3] at the TUG

2019 meeting. In March 2020, the first version
of the HiTEX engine and two HINT viewers, one
for Windows and one for Android, went online on
http://hint.userweb.mwn.de. The performance
of these programs was better than expected in time
as well as in space.

HiTEX runs as fast as other implementations of
TEX; after all, it skips the breaking of paragraphs
into lines and the building of pages. The size of
the HINT files it produces are similar to the size of
PDF files produced from the same source. Even
smaller files can be expected in the future because
the current implementation of HiTEX does not use
the more compact “text format” defined as part of
the HINT specification.

The first viewer for version 1.0 HINT files became
operational in fall 2019. It runs under the Windows
operating system using the WIN32 API. While it
is not optimized for speed, its performance is still
good and the rendering time does not depend on
the file size nor on the position of the page inside
a large file. Large pages on big screens at tiny font
sizes are shown with a small, noticeable delay, but
average pages—comparable to lettersize paper at
10pt—pop up at once.

When we started to build the first viewer for
the Android operating system, we were aware of the
limited computational resources available on mobile
devices and curious how the user experience would
turn out. We decided to use Open EGL to delegate
the rendering of glyphs to the GPU and were posi-
tively surprised that the new implementation—even
on low-cost mobile phones—clearly outperformed
the Windows implementation running on a standard
PC. It turned out that the computational demands
of the TEX-based backend are very low and fast ren-
dering depends almost exclusively on the ability to
accelerate the transfer of bitmaps to the screen. As
a side effect, a group of (lazy) students, charged with

implementing various features of the user interface
as part of a computer graphics course, successfully
used the full power of the TEX backend to imple-
ment a two-finger zoom gesture: re-rendering the
complete page with every movement of the fingers
including line breaking and page building. Just to
demonstrate the backend performance this unusual
way of zooming is left as an option—named “TEX
Zoom”— in the Android implementation.

Both viewers, for Windows and for Android, rest
on a shared backend, written as a literate program in
CWEB (3475 lines of change files for TEX plus 6109
lines of CWEB code).

The Windows viewer is written in C (1056 lines
plus 176 lines for print support); its user interface
is mouse- and keyboard-based. The Android viewer
is written in C++ (947 lines) with some embedded
Open EGL and Java (1201 lines); its user interface
is touch-screen based. In both cases, additional li-
braries are used for decompression and rendering of
fonts and images.

1.2 Version 1.1

Since the publication in March 2020, new features
have been added to the software and we expect Ver-
sion 1.1 to be ready for publication in fall 2020.
Unfortunately the Version 1.1 HINT file format is
not compatible with the 1.0 Version. But the HINT

project is a research project and it seemed reasonable
to make these changes.

First, a new tag was introduced to indicate the
current language. Furthermore, font descriptions
now indicate the encoding. This information was not
available in Version 1.0 because it is not needed to
render HINT files on screen. Knowing the language
and encoding, however, is very important for lan-
guage translation or for text to speech conversion to
make texts accessible to the visually-impaired.

Second, HiTEX was extended by special syntax
to define page templates and the viewer backend
was extended to use page templates. So now it is
possible to display footnotes and floating insertions.
In the process of implementing these features, the
representation of insertions and page templates in
the HINT file format was slightly redesigned.

The new Windows viewer now has a “Print” fea-
ture. Taking a TEX file that is designed for, let’s
say, letter paper, producing a HINT file from it, and
printing it on letter paper should give exactly the
same result as producing a PDF file and printing the
PDF. The “Print” feature is not (yet) available on
Android, because the interface between Android’s
print manager and Open EGL turned out to be chal-
lenging.

Martin Ruckert, Gudrun Socher

http://hint.userweb.mwn.de

TUGboat, Volume 41 (2020), No. 2 209

Figure 1(a): Some math displayed in the Windows
viewer; screenshot at actual size on a 142dpi screen.

(b): The same document, in landscape mode on
a mobile phone. The fonts in both images are the
same size.

A few words about math support: because TEX’s
formatting of mathematical formulas does not de-
pend on \hsize or \vsize, HiTEX does not require
any special handling of math mode. The only excep-
tion is the positioning of a displayed formula and its
equation number in a paragraph. Here HiTEX will
encode the necessary information, such as the value
of \abovedisplayshortskip, together with the for-
mula and the equation number in the HINT file, and
the viewer applies TEX’s algorithm to position them
correctly. Two examples are shown in figure 1.

The LATEX support of HiTEX is still incomplete
because HiTEX is still based on Knuth’s TEX dis-

tribution and the extensions of ε-TEX are not yet
part of it. HiTEX’s memory model is still based on
Knuth’s 16 bit pointers. We hope, however, that in
the near future, HiTEX and the HINT viewers can
become a standard part of the TEX Live distribution
and as easy to use as any other TEX engine.

2 Open questions

Now to the questions. Two basic goals of the HINT

project are:

1. The HINT format is independent of TEX. It
should lend itself as an output format to all
kinds of document processors.

2. HiTEX is source-compatible with other common
versions of TEX like pdfTEX.

As a consequence, it is important to use common
standards both inside and outside the TEX universe.

2.1 Language information and

character encoding

Universally accepted standards have been defined for
the world wide web to represent language informa-
tion. The Internet Engineering Task Force (IETF)
has defined in BCP 47 [1] tags for identifying lan-
guages: short strings like “en” for English or “de”
for Deutsch, and longer ones like “sl-IT-nedis”, for
the specific variant of the Nadiza dialect of Slovenian
that is spoken in Italy. A HINT file should contain
these language tags to enable tools, for example a
text to speech converter, to process a HINT file. The
open question is: How can I obtain this information
from a TEX source file?

The babel package is the de facto standard han-
dling language selection in TEX. It provides a mecha-
nism to map the tags from BCP 47 to TEX’s language
numbers and back again. Adding these tags to an
output file is, however, less simple: When TEX’s
whatsit nodes with a language subtype arrive at the
page builder, only the language number is left. I
think all TEX engines that want to embed language
information in their output would benefit from a
simple standard mechanism; for example, adding a
TEX string number pointing to the BCP 47 tag to
the language whatsit nodes.

The situation with character encodings is simi-
lar. In a HINT file, text is represented as a sequence
of numbers called character codes. HINT files use
the UTF-8 character encoding scheme (CES) to map
these numbers to their representations as byte se-
quences. For example, the character code “0xE4”
(228 decimal) is encoded as the byte sequence “0xC3
0xA4”. The same number 0xE4 now can represent
different characters depending on the coded character
set (CCS). For example in the common ISO-8859-1

The HINT Project: Status and open questions

210 TUGboat, Volume 41 (2020), No. 2

(Latin 1) encoding the number 0xE4 is the umlaut
“ä” whereas in the ISO-8859-7 (Latin/Greek) it is the
Greek letter “δ” and in the EBCDIC encoding, once
common on IBM mainframes, it is the upper case
letter “U”.

The character encoding is irrelevant for render-
ing a HINT file as long as the character codes in the
HINT content section are consistent with the char-
acter codes used in the font file, but the character
encoding is necessary for all programs that need
to “understand” the content of the HINT file. For
example, programs that want to translate a HINT doc-
ument to a different language or for text-to-speech
conversion.

The IETF has established a character set reg-
istry [2] that defines an enumeration of all registered
coded character sets. The coded character set num-
bers are in the range 1–2999. This encoding number
is required in a HINT file as part of a font definition.
Is there a method to obtain this number in a standard
way when processing a TEX source file? Again, all
TEX engines that want to produce accessible output
will need that information.

2.2 Images

This section is only about still images, not animated
images. There are many different file formats to
store images, but most of them exist only for historic
reasons, marketing considerations, or patent rights.
If you look around the web, a few image file formats
are common: JPEG for photographs; PNG for clip-
art, button faces, and other simple graphical objects;
and SVG for resolution-independent vector graph-
ics. Image formats that are commonly used with
TEX, like EPS or PDF, are not found among them.
Further, TEX engines and TEX viewers support dif-
ferent sets of image formats. There are very good
programs available to convert basically any image
format into any other image format, and therefore
it seems reasonable to define one basic set of image
formats that are supported by any TEX engine and
any TEX viewer. I assume that JPEG and PNG are
most likely part of such a set. The open question
is: What kind of image format should be used for
vector graphics?

Among the different versions of SVG, probably
compressed SVG Tiny is the only viable candidate
for the HINT file format, since the HINT file format
is specifically designed for mobile devices, such as
eBook readers, with severely limited capabilities. But
even for SVG Tiny, it seems there is no simple, high-
performance library that would do the job. Of course
there are interpreters for SVG, EPS, or PDF graphics,
but unless you need such an interpreter anyway for

viewing your TEX output, these interpreters add
considerably to the footprint of the TEX viewer.

The only extra interpreter that is (planned to
be) part of the HINT viewer is the FreeType library.
It is needed for PostScript Type 1 fonts. Therefore
the cheapest alternative would be a program that
converts vector graphics to glyphs in such a font. Is
this a viable idea?

Finally, someone might be able to answer this
question easily, but I have not investigated it yet:
What is the minimal set of primitives I have to imple-
ment in HiTEX to make the typical LATEX graphics
packages happy?

2.3 Links

For an output format like HINT that supports on-
demand page building, the usual method of books—
and TEX—to implement references, namely page
numbers, does not work. Therefore links are neces-
sary to navigate large documents. Generating links
is already common practice when TEX’s output is a
PDF file. But note, that for example the TUGboat

sample article template starts with

\usepackage{ifpdf}

\ifpdf

\usepackage[...]{hyperref}

\else

\usepackage{url}

\fi

This is a clear indication that there is no common
set of primitives to implement links across output
formats. Is the only solution another ifhint pack-
age?

Many of the new primitives of PDFTEX write
their arguments directly to the PDF output file. Is it
not better to define a new, standardized subtype of
whatsit nodes for representing links, together with
a common set of primitives to generate these nodes,
and postpone the generation of output format de-
pendent code?

2.4 The viewer API

Unlike previous questions, this one is mainly, though
not exclusively, HINT-specific. When viewing TEX
output, be it a HINT file, a PDF file, or some other
format used for example in a WYSIWYG editor, the
viewer must support interactions between user and
document. In simple cases this is just paging forward
or backward, and in more sophisticated cases follow-
ing a link or zooming. In contrast to DVI or PDF

output, the document representation in a HINT file
is more or less the representation that TEX uses in-
ternally for the document. Therefore the question of

Martin Ruckert, Gudrun Socher

TUGboat, Volume 41 (2020), No. 2 211

how to interact with such a document might be of in-
terest for all programs that interactively manipulate
TEX documents.

The HINT project separates the document han-
dling from the graphical user interface (GUI). It
provides a generic backend program with a clear API

that should be flexible enough to support any GUI

frontend. Currently the following operations are sup-
ported: opening and closing a document, setting the
size of the output area (true size and resolution),
rendering the current page, obtaining the top-left
position of the current page, and moving to a new
page given the top-left or bottom-right position.

Other operations are under consideration. For
example, consider that the user interface wants to
implement searching for words. Opening a window
and entering the search term is entirely the respon-
sibility of the GUI. The backend needs to supply a
function to find the position of the next occurrence
of the search term. But just displaying a page that
starts or ends with the given position is probably
not what the user wants. A new function is needed
that moves to a new page that contains the given
position somewhere in the middle. Another function
should probably be available to test whether the new
position is already on the current page.

To interact with images, floating insertions, and
links might require many more additional functions.
Since there is no point in reinventing the wheel,
we ask: Is there an established set of functions or
patterns to accomplish such tasks which is as simple
as possible and as powerful as necessary to support
the user interfaces that—hopefully—will be written
in the future?

2.5 Change files as literate programs

Large parts of the HINT project are written as literate
programs using CWEB. The special situation with
HINT is, however, that important parts of the code
are taken directly from Knuth’s TEX implementation,
thus written in (the original Pascal) WEB, but with
many, many small modifications. For example, TEX’s
dimensions become extended dimensions in HINT. An
extended dimension is a linear function of \hsize and
\vsize and hence every occurrence of cur_val needs
to be supplemented by an occurrence of cur_hfactor
and cur_vfactor. Similar supplements are needed
for the table of equivalents and the save stack.

The traditional method for such modifications
is to use change files or slightly less traditional, but
more convenient, patch files. Large change files or
patch files tend to be dull reading material up to
the point where they must be considered unreadable.
Two main problems affect the readability of change

files: the lack of context and the necessity to order
changes by their appearance in the original. The sit-
uation can be alleviated somewhat by using the tie
program and organizing the changes into collections
of related changes. For the HINT documentation,
from these change files reasonable TEX output is
generated. But overall, the result is still less than
satisfactory, and this raises the question: Is there a
good way to present changes to a literate program
as a literate program?

3 Conclusion

Considering the scale of the project and the complex-
ity of the involved software, the HINT project has
moved forward with surprising speed. While there
are still many open questions and missing pieces,
the available HINT prototypes are already usable for
small projects and provide a testbed to explore the
advantages and the challenges of on-demand paging
with TEX.

Version 1.1 will provide a more stable basis and
offer enough flexibility to make HINT files a viable
alternative to the DVI or PDF format for on-screen
reading of TEX output. In the long run, however,
a new document format will survive only if it is
either widely used or if its infrastructure is sufficiently
superior to existing formats. Neither is currently the
case. Therefore the HINT project is still looking for
partners in the industry that have the will and the
necessary resources to turn the HINT project from a
research effort into a product.

References

[1] E. A. Phillips, E. M. Davis. Tags for Identifying

Languages. IETF Internet Engineering
Task Force, Sept. 2009. RFC 5646, BCP 47.
tools.ietf.org/html/rfc5646

[2] I. McDonald. IANA Charset MIB. IETF Internet
Engineering Task Force, June 2004. RFC 3808.
tools.ietf.org/html/rfc3808

[3] M. Ruckert. The design of the HINT file
format. TUGboat 40(2):143–146, 2019.
tug.org/TUGboat/tb40-2/tb125ruckert-hint.pdf

[4] M. Ruckert. HINT: The File Format. Independently
published, August 2019. ISBN 978-1079481594.
hint.userweb.mwn.de/hint/format.html

⋄ Martin Ruckert
Gudrun Socher

Hochschule München
Lothstrasse 64
80336 München
Germany
martin.ruckert (at) hm dot edu ,

gudrun.socher (at) hm dot edu

The HINT Project: Status and open questions

tools.ietf.org/html/rfc5646
tools.ietf.org/html/rfc3808
tug.org/TUGboat/tb40-2/tb125ruckert-hint.pdf
hint.userweb.mwn.de/hint/format.html

212 TUGboat, Volume 41 (2020), No. 2

MiniLaTeX: A subset of LATEX for the Web

James Carlson

Abstract

MiniLaTeX is a no-setup subset of LATEX that can
be rendered on the fly to HTML. One can use it to
build web apps with true HTML display viewable on
any device from smart phone to tablet to desktop.
Typesetting occurs in real time, and error messages
are displayed in-line in the rendered text. MiniLaTeX
documents can be exported to standard LATEX.

We describe (a) MiniLaTeX the language, (b) the
main features of the document management applica-
tion minilatex.lamdera.app, and (c) some of the
technical work required to implement an on-the-fly
LATEX-to-HTML compiler.

A video version of this paper is at https://

youtu.be/TAIYpCc3VV0.

1 Introduction

MiniLaTeX is a no-setup subset of LaTeX that comes
with an on-the-fly compiler to HTML:

• No setup. Just begin typing. No preamble
with \usepackage, \begin{document}, etc., is
needed.

• On-the-fly. A typical editor for MiniLaTeX
presents two windows: on the left is the source
text, on the right is the rendered text. Changes
to the source text are immediately reflected in
the rendered text window.

• Errors. Errors are immediately flagged in color
in place in the rendered text.

The compiler is written in Elm (elm-lang.org),
a strictly typed language of pure functions. Elm is
a good language for writing MiniLaTeX apps be-
cause (a) it is designed for building web applica-
tions and (b) it has an excellent, high-performance
library of parser combinators (package.elm-lang.
org/packages/elm/parser/latest), akin to Has-
kell’s parsec.

Here are two links to apps that use MiniLaTeX.

• demo.minilatex.app: a simple no-signin app
for experimenting with MiniLaTeX. Feel free
to edit the text you find there, or clear it and
write something new. Since there is no setup
and since it is interactive, the demo app is also
a good tool for learning LATEX.

• minilatex.lamdera.app/g/34: This link takes
you to some class notes, hosted on minilatex.

lamdera.app.

minilatex.lamdera.app, while still in alpha test, is
a full content-management system for creating, edit-

ing, and distributing MiniLaTeX documents. Some
ways to access it:

• Guest access. Sign in to minilatex.lamdera.
app as guest with password minilatex to ex-
plore documents that have been made public by
their authors. Both the source and rendered text
are available, so you can see how MiniLaTeX
documents are written.

• Registered user. Create and edit documents
on a desktop computer or tablet.

• Smart phone. Use in read-only mode on a
smart phone. Students can read class notes and
problem sets this way.

2 Features of MiniLaTeX

Below is a summary of MiniLaTeX features. See the
manual (minilatex.lamdera.app/g/21) for more
details.

• Macros and Environments. Environments
include theorem, problem, definition, etc., as
well as equation, align, verbatim, and more. The
\maketitle, \section, \cite, \eqref macros
and many others work as expected. Unimple-
mented macros are rendered verbatim, but col-
ored red to indicate their status.

• Macro definitions. One can define macros for
both math mode and text mode in MiniLaTeX.

• Export. MiniLaTeX documents can be ex-
ported to standard LATEX, complete with the
necessary \usepackage, \begin{document} . . .
\end{document}, and any needed macro defini-
tions. Exported documents are ready to process
with pdflatex. An example of an exported doc-
ument compiled to PDF using TeXShop is at
noteimages.s3.amazonaws.com/anharmonic_

oscillator.pdf.

• Images. A macro
\image{URL}{Caption}{Format}

is provided to place images in a MiniLaTeX
document. Provision is made to render images
in exported documents. In addition, there is an
svg environment for rendering SVG images from
SVG source code.

• Unicode. MiniLaTeX accepts Unicode (UTF-8)
input. More needs to be done to accommodate
Unicode in exported documents.

• Paragraph-centric. MiniLaTeX is “paragraph-
centric”, meaning that the smallest unit of re-
compilation is the logical paragraph. A logical
paragraph is either an ordinary paragraph or
an outer begin-end block delimited above and
below by a blank line.

James Carlson

https://minilatex.lamdera.app
https://youtu.be/TAIYpCc3VV0
https://youtu.be/TAIYpCc3VV0
https://elm-lang.org
https://package.elm-lang.org/packages/elm/parser/latest
https://package.elm-lang.org/packages/elm/parser/latest
https://demo.minilatex.app
https://minilatex.lamdera.app/g/34
https://minilatex.lamdera.app
https://minilatex.lamdera.app
https://minilatex.lamdera.app
https://minilatex.lamdera.app
https://minilatex.lamdera.app
https://minilatex.lamdera.app/g/21
https://noteimages.s3.amazonaws.com/anharmonic_oscillator.pdf
https://noteimages.s3.amazonaws.com/anharmonic_oscillator.pdf

TUGboat, Volume 41 (2020), No. 2 213

• Additions. Besides the \image command, var-
ious other commands exist in MiniLaTeX but
not standard LATEX. These commands are pro-
vided with suitable macro definitions on export
so that a MiniLaTeX document can always be
compiled with standard LATEX tools. Here are
some examples (colors are grayscaled in the
printed TUGboat; apologies). Text can be col-
ored blue using the \blue macro: I am feel-

ing blue. Text can be highlighted using the
\highlight macro. The teacher said that all
work on our class project is due by October 1.
There is also a \strike macro: Please delete
this very bad word. For a complete list of addi-
tions, see minilatex.lamdera.app/g/21.

An important part of the MiniLaTeX project
is to properly define the subset of LATEX to be sup-
ported. The current rule of thumb for this is “good
enough to write my lecture notes, class hand-outs,
and problem sets”. Feedback on this issue is much
appreciated.

3 Some features of minilatex.lamdera.app

minilatex.lamdera.app hosts a content manage-
ment system which supports creating, editing, and
distributing documents from a searchable repository.
Users can search by title, author, tags, etc. Docu-
ments can be collaboratively edited, shared by url,
and versioned on Github through a simple user in-
terface. Documents can also be exported to PDF.

In addition to the familiar \href macro, \xlink
and \ilink are provided in MiniLaTeX. The \xlink
macro is used to make a link from one document
to another in minilatex.lambdera.app. Thus, one
can say \xlink{21}{Manual} to make a link to doc-
ument 21 with label Manual.

The \ilink macro is similar. It has the same
syntax, but is used in constructing a page of links
which functions as a table of contents or index docu-

ment. In this way, one can assemble many documents
into one to make a book. For an example, see the
class notes at minilatex.lamdera.app/g/34. It is
worth looking at the source to see how it is done.

4 The MiniLaTeX Compiler

The MiniLaTeX compiler consists of two parts, a
parser and a renderer. The first is a function

parse: Source text → AST,

where AST stands for Abstract Syntax Tree. This is
a tree with nodes like

LXString "Pythagoras says"

and

InlineMath "a^2 + b^2 = c^2"

The tree thus expresses a grammatical analysis
of the source text, identifying its “parts of speech”
and putting them in relationship to one another. The
second is a function

render: AST → HTML.

The compiler is the composite of these two functions:

compile = render ◦ parse

The strategy that makes writing such a com-
piler feasible is divide and conquer. One writes
the parser using parser combinators. One then con-
structs a function which renders the text-mode LATEX
to HTML, passing the math-mode text on to ei-
ther MathJax (https://mathjax.org) or KaTeX
(https://katex.org) for rendering.

Video: Making a LATEX-to-HTML parser in Elm
(https://youtu.be/dmDA7iziSgs).

4.1 MiniLaTeX’s AST

Every value in a statically typed language like Haskell,
ML, or Elm, has a type. Below is the type of the AST

for the MiniLaTeX compiler. Writing down this type
definition was the first step in writing the parser.

1 type LatexExpr

2 = LXString String

3 | Comment String

4 | Item Int LatexExpression

5 | InlineMath String

6 | DisplayMath String

7 | SMacro String (List LatexExpr)

(List LatexExpr) LatexExpr

8 | Macro String (List LatexExpr)

(List LatexExpr)

9 | Environment String (List LatexExpr)

LatexExpr

10 | LatexList (List LatexExpr)

11 | NewCommand String Int LatexExpr

12 | LXError (List (DeadEnd Context Problem))

Note that the definition of LatexExpr refers to itself,
hence is recursive. This is typical of the definitions
of types of structured trees. To give an idea of how
the parser works, consider the following examples. In
each, the first line is source text, the others constitute
the resulting AST (line breaks are editorial).

> Pythagoras

LXString "Pythagoras"

> \strong{Pythagoras}

Macro "strong" [] [LatexList

[LXString "Pythagoras"]]

> \strong{Pythagoras} says that $a^2 + b^2 = c^2$

Macro "strong" [] [LatexList

[LXString "Pythagoras"]]

, LXString "says that "

, InlineMath "a^2 + b^2 = c^2"

MiniLaTeX: A subset of LATEX for the Web

https://minilatex.lamdera.app/g/21
https://minilatex.lamdera.app
https://minilatex.lamdera.app/g/34
https://mathjax.org
https://katex.org
https://youtu.be/dmDA7iziSgs

214 TUGboat, Volume 41 (2020), No. 2

The parser is defined in roughly 500 lines of
Elm code and consists of a set of functions which call
upon one another. The top-level parser function is
given below. Note the close correspondence between
its parts and the parts of the type definition. It is
built using oneOf, a combinator which takes a list of
parsers as arguments and which returns a parser as
value.

1 latexExpression : LXParser LatexExpr

2 latexExpression =

3 oneOf

4 [texComment

5 , displayMathDollar

6 , displayMathBrackets

7 , inlineMath

8 , newcommand

9 , macro

10 , smacro

11 , words

12 , lazy (_ -> environment)

13]

We give one more example, the macro parser.
It uses the combinators (|=) and (|.) to sequence

parsers, thereby forming a new one. The result-
ing “parser pipeline” operates in the following way.
The phrase |= macro parses the name of the macro.
Then |= itemList optionalArg recognizes the list
of optional arguments, and |= itemList arg does
the same for the regular macro arguments. Finally,
|. whitespace “eats” but ignores whatever white
space it finds. The values found by the (|=) phrases
are taken as arguments of the constructor Macro for
the LatexExpr type, and the result of this function
call is a value of type LatexExpr.

In this example, whitespace is a parser for
white space, which can come in different flavors de-
pending on context, e.g., spaces only or spaces and
newlines.

1 macro : LXParser () -> LXParser LatexExpr

2 macro =

3 succeed Macro

4 |= macroName

5 |= itemList optionalArg

6 |= itemList arg

7 |. whitespace

One can continue down the rabbit hole, explain-
ing the parsers macroName, optionalArg, arg and
the combinators itemList, etc., but we stop here.

What is important to understand is that funda-
mentally there are only three things in something like
the MiniLaTeX parser: primitive parsers, combina-
tors that choose among alternatives, and combinators
that sequence other parsers. As a note, eating trail-
ing whitespace is important because in the present
setup, lexing and parsing are not separate operations.

4.2 Rendering

The top-level rendering function is much like the
top-level parsing function. It analyzes the type of a
LatexExpr and dispatches the appropriate renderer,
which may in turn call other rendering functions,
including the top level one. And so on, down the
next rabbit hole of function calls we go. The renderer
module constitutes roughly 1300 lines of code.

4.3 Code

Code for the MiniLaTeX compiler as well as the
demo app can be found at github.com/jxxcarlson/
meenylatex. (The strange name is to reserve the
name github.com/jxxcarlson/minilatex for a fu-
ture stable version with a polished API.)

The code for the minilatex.lamdera.app ap-
plication is at https://github.com/jxxcarlson/

lamdera-minilatex-app. All code is open source.

5 Feedback

I am very interested in feedback from the community
regarding features, bugs, etc. Of special interest
is the subset of LATEX used: what should it be?
Comments to jxxcarlson at gmail.

6 Acknowledgements

I would like to thank Evan Czaplicki, Ilias Van
Peer, Mario Rogic, and Luke Westby, all of the
Elm community, Davide Cervone, MathJax, and the
team at KaTeX.org for their generous and invaluable
help. I also wish to thank the Simons Foundation
(https://simonsfoundation.org) for its support
of this project.

This document was originally written in Mini-
LaTeX and is available at minilatex.lamdera.app/
g/22.

⋄ James Carlson

jxxcarlson (at) gmail dot com

https://minilatex.lamdera.app

James Carlson

https://github.com/jxxcarlson/meenylatex
https://github.com/jxxcarlson/meenylatex
https://minilatex.lamdera.app
https://github.com/jxxcarlson/lamdera-minilatex-app
https://github.com/jxxcarlson/lamdera-minilatex-app
https://simonsfoundation.org
https://minilatex.lamdera.app/g/22
https://minilatex.lamdera.app/g/22

TUGboat, Volume 41 (2020), No. 2 215

Why the LATEX community should care

about SGML

William F. Hammond

Abstract

Given that the universal format-to-format translator
Pandoc is coming of age, LATEX authors are tempted
to think that whatever LATEX they write can quickly
be translated without worry to whatever other format
may be required.

Of course, that is not exactly true, but the use
of an XML profile of LATEX can make it exactly true.
However, an SGML profile of LATEX can provide closer
emulation of classical LATEX than an XML profile.

Most actors in the world of markup have re-
stricted their use of SGML to XML. For that reason
software that handles SGML beyond the realm of
XML seems to be falling out of maintenance. If
the LATEX community wishes to continue to be able
to avail itself of the advantages of SGML for LATEX
source emulation, it may fall on the LATEX community
to maintain the extant SGML libraries.

1 Maximally useful source markup

Authors spend a great deal of time writing their
articles and reports. Because of that investment
of time it is important that tools used in writing
are chosen carefully. One wants the fruit of one’s
writing to be presentable not only on the printed
page but also on screens of various sizes from mobile
telephones to full-wall monitors. It is better to write
once and then use robust processing streams for the
desired output formats rather than to edit manually
for each output. Within the realm of TEX-like source,
the best results flow from profiled LATEX.

1.1 The concept of LATEX Profiles

A LATEX profile is a dialect of LATEX with a fixed
command vocabulary, where all macro expansions
must be effective in that vocabulary, having dual
existence under an SGML [4] document type with
a canonical XML [2] shadow. I spoke about this
concept in my talk [7] on the 1000002-th (i.e., 32nd)
anniversary of TUG in 2010.

While an instance of a LATEX profile may be
written directly as SGML or XML using the regular
syntax, it is envisioned that one would want to use
generalized LATEX, i.e., write using the syntax of
LATEX.

The XML guise of a LATEX profile can be styled,
though with less than perfection, using CSS [1]. See
my talk [8] at TUG 2014. This is not a new idea

except insofar as it involves CSS-only rendering of
most of LATEX math.

My GELLMU Project, found at my university
website, albany.edu/~hammond/gellmu, as well at
CTAN (ctan.org/pkg/gellmu) provides a didactic
model for the use of a LATEX profile.

1.2 A side remark on accessibility

In reference to the first of Ross Moore’s talks at this
meeting, I want to suggest that HTML 5 [3], with
Unicode text and MathML for math, obtained from
a LATEX profile can rather easily be made accessible
for those with vision impairment.

2 Why SGML rather than XML?

The simple answer is that SGML provides better
emulation of classical LATEX than XML in that XML

requires markup elements to have tags for both start
and end, whereas with SGML it is commonly possible
to omit an end tag and less commonly possible to
omit a start tag and sometimes both. This is not the
place to rehearse the conditions under which these
tag omissions are allowed. The point is that classical
LATEX may be viewed as allowing many tag omissions,
and for that reason one may construct approximate
SGML models that are closer to classical LATEX than
any XML model can be.

One aspect of the overall idea of generalized
LATEX is that the processing should proceed through
a pipeline with well-defined stages, and the first
stage of that processing should involve only syntax.
Thus, for a particular LATEX markup structure, a
human may see how to use code to reformulate it
directly under an XML document type, but that
formulation might require knowledge of both classical
LATEX vocabulary and the vocabulary of the XML

document type.

3 Example: A simple table

There follows a mundane example of a centered table
that would normally be created in LATEX using a
tabular environment inside a center environment.

long phrase five shorter
shorter long phrase five

The pattern of horizontal alignment in the cells of this
table is “rcr”, which in LATEX is normally furnished
as an argument of the tabular environment. This
table has two rows, each with three cells. The rows
have horizontal borders and the cells have vertical
borders.

In the GELLMU Didactic Production System
this centered table can be marked up with

Why the LATEX community should care about SGML

https://tug.org/tugboat/tb31-2/tb98hammond.pdf
https://tug.org/TUGboat/tb35-2/tb110hammond.pdf
https://albany.edu/withtilde%20hammond/gellmu
https://ctan.org/pkg/gellmu

216 TUGboat, Volume 41 (2020), No. 2

\begin{display}

\begin{tabular}{|r|c|r|}

\hline

long phrase & five & shorter \\

\hline

shorter & long phrase & five \\

\hline

\end{tabular}

\end{display}

One probably wants the cell separators (“&”) to
be viewed as tags for cells and the row separators
(“\\”) to be viewed as tags for rows.

The question here is not how to mark up a table
in some corresponding XML but how to formulate
XML markup that models this LATEX construction.
Where do the hline-s belong in that model? If only
because the question about the hline-s requires some
thought, the translation from this generalized LATEX
to an XML model cannot be just a matter of syntax.

But with a few syntactic conventions, includ-
ing the recognition of argument syntax on the tab-
ular environment to generate a generic “argument”
“<ag0>”, flagging the \\ as a generic “breaking” ele-
ment “<brk0>”, and recognizing the special syntactic
role played in LATEX by the character “&” leading to
the element “tabampcell”, one arrives in a straight-
forward fashion at this segment of SGML:

<display>

<tabular><ag0><vbr/>r<vbr

/>c<vbr/>r<vbr/></ag0>

<hline>

long phrase

<tabampcell>five

<tabampcell>shorter<brk0>

<hline>

shorter

<tabampcell>long phrase

<tabampcell>five<brk0>

<hline>

</tabular>

</display>

(In this example “<vbr/>” is an empty ele-
ment representing the special character “|”. In the
GELLMU Didactic Production System all 33 of the
printable non-alphanumeric ASCII characters have
representation as empty elements with three-letter
names. There are various context-dependent ways
that any of these characters can be special after a
format translation. Naming them makes it possible
for last processing minute decisions to be made. On
the other hand, use of the names is quite often op-
tional in generalized LATEX markup source, as here

with “|”, so long as emulation of TEX’s manmac is
not being engaged.)

At the next stage of processing—under an
SGML transformation—using code with knowledge
of markup vocabulary at both ends, the SGML seg-
ment above is transformed to the following XML

segment:

<display>

<tabular>

<tabuhead>

<tabharg><vbr/>r<vbr/>c<vbr

/>r<vbr/></tabharg>

<hline/>

</tabuhead>

<tabubody>

<taburow>

<firstcell>long phrase</firstcell>

<tabampcell>five</tabampcell>

<tabampcell>shorter</tabampcell>

</taburow>

<taburow>

<firstcell><hline/>shorter</firstcell>

<tabampcell>long phrase</tabampcell>

<tabampcell>five</tabampcell>

</taburow>

<taburow>

<firstcell><hline/></firstcell>

</taburow>

</tabubody>

</tabular>

</display>

4 SGML, LATEX, decline, and authors

Like XML, SGML is a grammar for markup languages.
XML has stricter rules than SGML. While formally
SGML and XML have disjoint specifications, it is
nonetheless the case that any XML document type
admitting a “DTD” definition may be realized in a
routine way as an SGML document type. In the other
direction, most SGML document types admit an
SGML normalization that can usually be transformed
to an XML document type.1

4.1 Why XML now dominates SGML

One of the complications with SGML that led to the
rise of XML is that an SGML document very rarely
exists as a stand-alone file. An SGML document must
always include or reference a formal document type
definition and be associated, explicitly or implicitly,
with an on-board SGML declaration. As a practical

1 But, for example, there might be a challenge in this
direction with an instance of an SGML document type that
makes extensive use of SDATA.

William F. Hammond

TUGboat, Volume 41 (2020), No. 2 217

matter an SGML user must have a collection of aux-
iliary documents just as a LATEX user must have a
collection of packages. While this can be practical for
sharing among a group of authors, it makes sharing
an SGML document across the web more difficult
and less efficient than sharing an XML document.

SGML documents that are not XML have effec-
tively vanished from the web.2 The fact that any new
SGML documents being generated are behind closed
doors, together with a somewhat steeper learning
curve for SGML than for XML, seems to have led to
a loss of interest in SGML beyond XML.

4.2 Who the authors are

How do SGML and XML documents arise?
I believe most of the books and articles written

by actual authors, whether for academic publication
or for the popular press, are most likely written either
with a word processor, such as provided by Microsoft,
or in a TEX-family markup.

I believe that most extant SGML or XML doc-
uments are not actual source. For example, there
are “markdown” languages from which basic XML

documents can robustly be spawned. When SGML

or XML documents are actual source, the creators
are usually persons working, one way or another, in
document technology. Those creators usually work
with editing tools that have been adapted to mini-
mize the distinctions between SGML and XML that
I mentioned earlier in section 2.

I see the LATEX community as still under chal-
lenge by the concern raised by Chris Rowley at the
2010 TUG meeting over “peak TEX” (analogous to
“peak oil”), and here I’ve pointed to SGML (beyond
XML) being in decline. One of the threats for the
future of LATEX is its difficulty in being converted to
other formats for documents where that is sensible.
The concept of a LATEX profile provides a place where
LATEX and SGML can help each other to the benefit
of both.

5 Libraries for parsing and processing

Because the rules for an XML document are some-
what more restrictive than the rules for an SGML

document, libraries for processing XML are easier to
construct and maintain than libraries for processing
SGML. Indeed, the specification of SGML provides

2 There was a time after the rise of XML that version
4 of HTML, an SGML “application” (document type), was
the dominant markup for web pages. It worked because web
browsers were required to have native knowledge of HTML.
This continued for a while even after the early XML form of
HTML was promoted and then appeared to gain widespread
use through many web page instances that were not actually
well-formed XML.

for variations of syntax, detailed character set speci-
fication, and myriad markup shortcuts to the point
that I do not know whether any library was ever
produced to provide functions for handling a full
implementation of the SGML specification. However,
the extent of SGML use that I think desirable for
profiling LATEX is well within the territory covered
by SGML libraries.

5.1 Simplicity with XML

With the rise of XML and the ease of writing software
for parsing and transforming XML documents, many
new options appeared. With XML a document need
not be accompanied by a document type definition.
It is sufficient that transforming software knows the
markup vocabulary used with the document. Thus:

• An XML document may be rendered in a web
browser solely by linking the document to a CSS

stylesheet.

• An XML document may be transformed to an-
other format by using an XSLT transformation
that is defined by creating an XSLT stylesheet,
which itself is an XML document.

My guess is that XSLT is probably the most widely
used transformation language for XML today. Per-
sonally, I find it cumbersome to write for XSLT. I
would much rather code in a traditional programming
language. In particular, it is not pleasant trying to
code for XSLT when the translation target is LATEX.

5.2 The libraries OpenSP and SGMLSPM

I believe that the most widely deployed library for
handling SGML is OpenSP. It is a C++ library for
parsing and transforming SGML documents that was
spawned from James Clark’s SP. Before the rise of
XML, I believe Clark’s SP was dominant. For exam-
ple, at some point during the time of Sun Microsys-
tems’ Solaris operating system, the system manual
pages were re-coded from Roff source to a variant of
Docbook SGML, and SP was deployed for generating
various output formats. This arrangement for sys-
tem manual pages is found today in Ubuntu systems
though with OpenSP rather than SP. It’s not always
understood that since every XML document may be
construed as an SGML document, OpenSP can be
used with XML documents.

I might also mention OpenJade, which was
spawned from Jade, also by James Clark. OpenJade
provides an engine for Document Style Semantics and
Specification Language (DSSSL), which is an early
transformation language for SGML that is written
in SGML—thus, a forerunner of XSLT—under an
SGML declaration that makes one of its stylesheets
look like Lisp code. Usually package management

Why the LATEX community should care about SGML

218 TUGboat, Volume 41 (2020), No. 2

systems that house OpenSP also house OpenJade; I
mention this because online searches for “openjade”
can be easier than for “opensp”.

Finally, I want to mention the Perl software
SGMLSPM/sgmlspl for SGML transformations writ-
ten by David Megginson of Ottawa and released as
GPL software in 1995 that, to my knowledge— I use
it daily3 —has never since needed repair. SGML-

SPM/sgmlspl enables one to write a handler for each
element in an SGML (or XML) document type to
treat the rendering of that element in a translation.
It is designed to accept a parsed stream from OpenSP
and generate an output stream in the target format.
This works well for writing HTML, LATEX, and just
about any output format. If the handlers are not
written mindlessly, a single run of OpenSP piped to
SGMLSPM/sgmlspl can handle a very large docu-
ment. Also there is the advantage that inside one
of those handlers, the transformation writer has the
full power of Perl.

5.3 OpenSP needs maintenance

Unfortunately, as it is today, OpenSP only supports
the basic multilingual plane of Unicode (U+0000–
U+FFFF). Tackling the task of adding support for
all of Unicode might not at first glance seem hard, but
it is daunting because of the complexity of OpenSP
that arises from the extent of its coverage of SGML

beyond XML and its character handling. To my mind
this task might be a good master’s thesis project for
someone in Computer Science. Prior to modification
the code will require much study. The task needs
someone with stamina and good eyes.

References

[1] Bert Bos, Tantek Çelik, Ian Hickson, & H̊akon
Wium Lie, Cascading Style Sheets Level 2
Revision 1 (CSS 2.1) Specification, World
Wide Web Consortium Recommendation, 7
June 2011.
w3.org/TR/2011/REC-CSS2-20110607

[2] Tim Bray, Jean Paoli, C.M. Sperberg-McQueen,
Eve Maler, & François Yergeau, Extensible
Markup Language (XML) 1.0 (Fifth
Edition), World Wide Web Consortium
Recommendation, 26 November 2008.
w3.org/TR/2008/REC-xml-20081126

3 After incorporating one additional feature written by
Dave Walden.

[3] S. Faulkner, A. Eicholz, et al., HTML 5.2,
World Wide Web Consortium Recommendation,
14 December 2017.
w3.org/TR/2017/REC-html52-20171214

[4] Charles F. Goldfarb, The SGML Handbook,
Clarendon Press, Oxford, 1990.

[5] William F. Hammond, “GELLMU: A Bridge
for Authors from LATEX to XML”, TUGboat

22:3 (2001), pp. 204–207.
tug.org/TUGboat/tb22-3/tb72hammond.pdf

[6] William F. Hammond, “Dual presentation
with math from one source using GELLMU”,
TUGboat 28:3 (2007), pp. 306–311.
tug.org/TUGboat/tb28-3/tb90hammond.pdf

A video of the presentation at TUG 2007,
July 2007, in San Diego is available at
http://zeeba.tv/conferences/tug-2007.

[7] William F. Hammond, “LATEX profiles as
objects in the category of markup languages”,
TUGboat 31:2 (2010), pp. 240–247.
tug.org/TUGboat/tb31-2/tb98hammond.pdf.
A video of the presentation at TUG 2010,
June 2010, in San Francisco is available at
http://zeeba.tv/conferences/tug-2010.

[8] William F. Hammond, “Can LATEX profiles
be rendered adequately with static CSS?”,
TUGboat 35:2 (2014), pp. 212–218.
tug.org/TUGboat/tb35-2/tb110hammond.pdf

A video recording of the presentation at
TUG 2014, June 2014, in Portland, Oregon is
available at http://zeeba.tv/conferences/
text/tex/tug-2014.

[9] Leslie Lamport, LATEX: A Document
Preparation System, 2nd edition,
Addison-Wesley, 1994.

[10] MacFarlane, John, Pandoc: A Universal
Document Converter.
pandoc.org

⋄ William F. Hammond

University at Albany,

Albany, New York, and

San Diego, California

whammond (at) albany dot edu

https://www.albany.edu/

~hammond/

William F. Hammond

https://w3.org/TR/2011/REC-CSS2-20110607
https://w3.org/TR/2008/REC-xml-20081126
https://w3.org/TR/2017/REC-html52-20171214
https://tug.org/TUGboat/tb22-3/tb72hammond.pdf
https://tug.org/TUGboat/tb28-3/tb90hammond.pdf
http://zeeba.tv/conferences/tug-2007
https://tug.org/TUGboat/tb31-2/tb98hammond.pdf
http://zeeba.tv/conferences/tug-2010
https://tug.org/TUGboat/tb35-2/tb110hammond.pdf
http://zeeba.tv/conferences/text/tex/tug-2014
http://zeeba.tv/conferences/text/tex/tug-2014
https://pandoc.org

TUGboat, Volume 41 (2020), No. 2 219

LATEX technologies at work—aesthetically
beautiful PDFs on the fly from XML

input: XML Page Composition (XPC)
micro-service in the cloud

Rishikesan Nair T., Aravind Rajendran,
Rajagopal C.V., Radhakrishnan C.V.

Abstract

XML Page Composition (XPC) is a micro-service in
the cloud which is built on the web-based typesetting
framework TEXFolio from River Valley Technologies,
India, a typesetting technology company established
in India in 1996 by the brothers C.V. Radhakrishnan,
C.V. Rajendran and C.V. Rajagopal, which acts as a
technology provider for STM Document Engineering
Pvt Ltd (STMDocs), which in turn uses TEX and
friends for typesetting and provides prepress services
to leading publishers around the world.

The purpose of XPC is to automate PDF creation
from the XML source using an automated workflow
without any manual intervention. Of the several re-
cently developed web-based frameworks by River Val-
ley Technologies India, XPC is the newest. Ithal [1],
Neptune [2] and TEXFolio [3] are other milestone
developments of River Valley Technologies. A few
more products and services specifically focussing on
empowering the author are under development at
River Valley.

A valid XML along with the graphics and other
metadata files associated with it should be made
available to the XPC system to generate a PDF. An
automated quality control (QC) process is performed
on the PDF output and a number of parameters, both
standard typesetting specifications and publisher-
specific requirements, are checked by the system
itself as part of the final validation.

1 Introduction

Prepress work for scientific, technical, and medi-
cal (STM) journal production has been subjected to
enormous changes over recent years, in order to meet
growing technology requirements, speed up the pro-
duction process, and reduce overall production time.
The aim is to publish articles as quickly as possible,
thus reducing manual labour to increase accuracy
and cost reduction. In the beginning, the research
articles or other materials were typeset for print me-
dia only. However, when the Internet came into the
picture the landscape radically changed. The require-
ment for many different types of outputs become a
de facto standard, and the typesetter who does the
prepress work has to generate SGML/XML/MathML

and web-optimized PDFs in addition to the “fat”

PDF or print PDF, all from a single source which the
author provides.

The current scenario is that a publisher uses
typesetting services either from one prepress supplier,
or a few, distributing its journals among them. Those
supplier(s) are responsible for the entire production
of the particular journal(s) assigned to them:

(1) media conversion,

(2) file structuring,

(3) copyediting,

(4) producing proofs for authors,

(5) incorporating author corrections,

(6) producing XML/MathML, web optimized PDFs,
print ready PDFs and electronically publishing
them for article-based publishing,

(7) compiling the articles into a journal issue, per
the instructions from the publisher.

Leading publishers of STM journals are recently
thinking along new lines, trying to distribute the
prepress work of even a single journal to many type-
setters. For example, steps (1) to (5) to the first
supplier; (6) to a second supplier and (7) to a third.

XML Page Composition (XPC), a new prod-
uct from River Valley Technologies India1 which
STMDocs2 has evaluated can play a major role in
the prepress work industry. XPC is deployed under
stage 6 (see above) in a fully automatic mode. Now
let us look at XPC in detail.

2 XML Page Composition Service (XPC)

The XPC micro-service is a typesetting system in the
cloud to create standards-compliant and aesthetically
pleasing PDF using TEXFolio, directly from a valid
production XML, assets and metadata. (TEXFolio is
the TEX-based typesetting framework in the cloud.)

The Automated Quality Control system (Auto-
QC) built into XPC ensures the quality of the gen-
erated PDF output and also carries out publisher-
specific validation. Auto-QC is based on certain rules
and standards which are predefined. Column balanc-
ing, float placement, overfull boxes, and underfull
boxes are a few of the issues checked by auto-QC.
Auto-QC produces an error report in PDF format for
the operator.

Currently numerous templates for one of the
leading STM publishers are configured. There is no
limit on the number of typesetting models that can
be configured.

All files will pass through XPC without manual
intervention. However, heavy math, depending on

1 http://www.river-valley.com
2 https://www.stmdocs.in

Beautiful PDFs from XML through XPC

http://www.river-valley.com
https://www.stmdocs.in

220 TUGboat, Volume 41 (2020), No. 2

Figure 1: XPC workflow.

the needs of the publisher, may need manual support,
mostly with pagination.

2.1 XPC Features

The main features of XPC (the figures are grayscaled
for print):

1. XPC workflow (Fig. 1) is in the cloud.

2. No content editing or alterations of the source,
hence no accidental human errors.

3. High-level automated QC between PDF output
and XML, as described. Two sample reports are
shown in Fig. 2.

4. Formatting/pagination of PDF output, if re-
quired, is done using a control file generated
from the XML, without touching the XML data.

5. Application of artificial intelligence for table for-
matting and float placement, thereby reducing
manual effort.

6. Multilingual support, currently configured for
11 languages.

7. Automatic table width calculation to help type-
set tables in either single column or double col-
umn mode without any processing instructions.

Figure 2: Auto-QC error reports.

8. APIs to support command-line operations for
automation.

2.2 Workflow

The workflow diagram in Fig. 1 along with the ex-
planation of each step provided in the following will
describe in more detail the functionality of the XPC

service.

Rishikesan Nair T., Aravind Rajendran, Rajagopal C.V., Radhakrishnan C.V.

TUGboat, Volume 41 (2020), No. 2 221

Figure 3: XPC operator dashboard as implemented at STMDocs during evaluation.

1. Order initiation: API service call or check for
orders in publishers’ servers.

2. Process service call or orders, and extract order
information.

3. Send order information to data repository or
datastore.

4. Retrieve input XML and assets of the items
which are generated by the XML supplier.

5. Process XML: Add namespaces, find table width,
create an external float control file and create
a TEX file. Find the typesetting model and
(only if a journal with a new model is received)
create a typesetting template configuration file
automatically.

6. Make an archive of all these and push them to
TEXFolio microservice for processing.

7. Create PDF.

8. Trigger auto-QC: If the quality of the PDF out-
put is not up to the benchmark or publisher
specifications, flag a failure, likely a need for
manual pagination.

9. Items requiring manual intervention get listed in
the operator’s dashboard (see Fig. 3). Operator
paginates using the float control file, pushes the
finished PDF again for auto-QC.

10. If auto-QC is successful, PDF will be delivered
to the client.

2.3 Error reports — Details

Two error reports are given in Fig. 2 (above and
below are two separate reports). There are three
main sections which will appear in every article
which contains figures and tables: “Report of first

call/insertion: fig”, “Report of first call/insertion:
tbl”, “Report of total number of objects”. The op-
tional section “Overfull details” will appear only if
the PDF output has any overfull text.

One of the many challenges of the auto-paginat-
ion function is the placement of floats near their
references. XPC will do a fairly nice job here, however
in very rare cases due to severe constraints such as
a small number of pages, a large number of floats,
and a two-column document, as one can imagine, it
is a difficult task to place the floats near to their
references even manually. If the floats are placed far
from their citations, this information will be flagged
in the report and the operator who checks the report
can find and correct it. As you can see in the sample
reports, the following details are included to help the
operator to find the problem:

• ID: The ID of the float to search.

• Call Page: The page in the PDF where the
float is first cited.

• Obj Ins: The PDF page where the float is in-
serted.

• Tolerance: The tolerance with which this can
be allowed. As the tolerances become worse,
they are highlighted with colour changes, red
being the worst.

2.4 Issues and challenges

The developers faced many challenges during the
development of XPC. A few of them are listed here:

1. Finding journal typesetting model

2. Table cell width calculation

3. Float placement

4. Handling built-up accents

Beautiful PDFs from XML through XPC

222 TUGboat, Volume 41 (2020), No. 2

5. Pagination using a control file automatically
generated from XML

6. Automated QC of the PDF output

7. Automated column balancing of the last page
in a two-column article

8. Automating manual fall-out: Adding more pag-
ination commands in control file— In Progress

All except the last have been resolved.

2.5 Estimated production capacity

The service levels presented as part of the pilot phase
of the service were these:

1. 30% of the articles can be delivered within 6
hours.

2. 60% of the articles can be delivered within 12
hours.

3. 100% of the articles can be delivered within 24
hours.

4. Capacity that can be handled would be 250
articles per day (average 15 pages/article).

However the performance has been greatly enhanced
after the pilot phase. Currently the service capacity
is over 600 articles per day (average 15 pages/article).

3 Acknowledgement

STM Document Engineering (STMDocs) gratefully
acknowledges and thanks River Valley Technologies
for allowing their products and technologies (XPC,
TEXFolio, NEPTUNE, Ithal, etc.) to be showcased
at TUG. Any credits are to be attributed to River
Valley Technologies. We also highly acknowledge
the team at STMDocs who have helped with the
evaluation of the XPC system, especially Apu V and
Rahul Krishnan S and our testing team Akshay K.S.
and Sangeetha V.

References

[1] Ithal. https://ithal.io/main.html

[2] R. Aravind Rajendran, Rishikesan Nair T.
NEPTUNE—a proofing framework for
LATEX authors. TUGboat 40(2):150–152,
2019. https://tug.org/TUGboat/tb40-2/

tb125rajendran-neptune.pdf

[3] R. Rishikesan Nair T., Rajagopal C.V.
TEXFolio—a framework to typeset XML

documents using TEX. TUGboat 40(2):147–149,
2019. https://tug.org/TUGboat/tb40-2/

tb125rishi-texfolio.pdf

⋄ Rishikesan Nair T.

Aravind Rajendran

STM Document Engineering Pvt. Ltd.

River Valley Campus, Mepukada

Malayinkil

Trivandrum 695571

India

rishi (at) stmdocs.in ,

aravind (at) stmdocs.in

https://stmdocs.com

⋄ Rajagopal C.V.

Radhakrishnan C.V.

JWRA 34

Jagathy

Trivandrum 695571

India

cvr3 (at) river-valley.org ,

cvr (at) river-valley.org

http://river-valley.org

Rishikesan Nair T., Aravind Rajendran, Rajagopal C.V., Radhakrishnan C.V.

https://ithal.io/main.html
https://tug.org/TUGboat/tb40-2/tb125rajendran-neptune.pdf
https://tug.org/TUGboat/tb40-2/tb125rajendran-neptune.pdf
https://tug.org/TUGboat/tb40-2/tb125rishi-texfolio.pdf
https://tug.org/TUGboat/tb40-2/tb125rishi-texfolio.pdf

TUGboat, Volume 41 (2020), No. 2 223

Tagging with LATEX—Part 1:

Author considerations

Ross Moore

Abstract

Successful tagging within PDF files generated from
LATEX source encourages a change in viewpoint on
the nature and intent of the LATEX coding. Using
explicit examples from a real-world document, we
illustrate how to capture such a change within the
LATEX source, for various structural elements. Other
issues for creating archival and accessible PDF docu-
ments are discussed.

1 Introduction

With ‘Tagged PDF’ being the accepted method for
creating PDF documents enriched to satisfy Acces-
sibility requirements [5, 6], this article is intended
to address the main issues that authors and editors
should be aware of, with regards to tagging and
LATEX usage. Examples are taken from a real-world
fully-tagged research report, prepared in LATEX but
also employing extra coding written by the author,
in a package named tpdf that handles the technical
aspects of producing ‘Tagged PDF’. That research
report is the one used by the author in the talk [7]
at TUG 2019 (delivered remotely using Zoom collab-
oration software). It is based on a publication from
the U.S. National Parks Service [8].

This article is not meant to be an introduction to
the use of the tpdf package, but more about the kind
of extra considerations that authors and editors alike
should be making, to allow tagging to be performed
successfully and usefully.

1.1 Requirements for U.S. federally funded

research publications

As some justification as to why ‘Tagged PDF’ is both
relevant and desirable, we note some U.S. Govern-
ment guidelines and requirements.

• United States Access Board; Information and
Communication Technology (ICT) Final Stan-
dards and Guidelines. [1]
Section 508 ICT Refresh, §504.2.2 :

. . . be capable of exporting PDF files
that conform to ANSI/AIIM/ISO 14289
-1:2016 (PDF/UA-1) . . .

• National Science Foundation, Q&A: public ac-
cess policy. [2]

. . . possess a minimum set of machine-
readable metadata elements . . . ;
be managed to ensure long-term preser-
vation; . . .

By producing documents conforming to published
standards, both PDF/A [3] and PDF/UA [4], these
obligations can be met in full, if not surpassed.

2 Tagging commands for special content

It is a common typographical practice to use differ-
ent styling to present names of books, magazines,
or publications which have a particular relevance to
the topic under discussion. Certainly the fact of a
different style being used indicates to a fully-sighted
reader that there is a special significance, but not
what that significance actually is. That has to be de-
duced from context. With tagging, that significance
can be made explicit. And with LATEX source this is
very easy to do.

For example, the Night Skies Project report has
a page which mentions the various Acts of Congress
which underpin their work; see Figure 1. The names
of these acts appear in italics. This was originally
done by simply specifying

\textit{Organic Act of 1916} ...

Changing this by inventing a macro \nrpsAct the
true intention is captured, at least within the LATEX
source. For typesetting purposes the expansion of
this new macro is given by:

% for names of Acts of Congress

\newcommand{\nrpsAct}[1]{\textit{#1}}

which typesets exactly as \textit does. But now,
when it comes to generating tagging for a Tagged
PDF version, as seen on the left-hand side of Figure 1,
one can use coding as in Figure 2.

In that coding we see that firstly a new macro
is created, named \NRPS@Act, which refers to the
same code-block as currently does \nrpsAct, by us-
ing TEX’s \let primitive. Then a new code-block is
defined under the name \TPDF@NRPS@Act. When this
block is executed, after reading the parameter text
as #1 a group is started with \begingroup. Struc-
ture tagging named as CongressAct is implemented,
along with a counter for such structure elements.
The tagging that would otherwise be performed by
\textit, through the style change macro \itshape,
is suppressed since we are using the CongressAct

structure instead. Then \TPDF@NRPS@Act is called
with the #1 parameter text, to do the typesetting
and generate the associated content tagging struc-
tures that would normally have been done when
\textit is called. The grouping is closed using
\endgroup after which normal tagging of the para-
graph content is resumed. To have this new code
block activated at the correct time, we re-assign the
macro name \nrpsAct to point to the modified ex-
pansion, again using \let. A final command, using

Tagging with LATEX—Part 1: Author considerations

224 TUGboat, Volume 41 (2020), No. 2

Figure 1: Tagging of Acts of Congress, using a distinctive macro name \nrpsAct.

\let\NRPS@Act\nrpsAct

\def\TPDF@NRPS@Act #1{%

\begingroup

\TPDF@advancecounter{CongressAct}%

\edef\TPDF@theseparams{{CongressAct}{CongressAct.\TPDF@counter@CongressAct}}%

\expandafter\TPDF@newstructnode\TPDF@theseparams

{}{}{}{Act of Congress}{}{}{}%

\TPDF@style@structure@suppress{\itshape}%

\NRPS@Act{#1}%

\endgroup

}

\let\nrpsAct\TPDF@NRPS@Act

\TPDF@appendto@RoleMapDict{/CongressAct /Span}

Figure 2: Code to initiate generation of the structure tagging as seen in Figure 1.

Figure 3: Structure tagging of the front cover and front-matter section of the research report.

Ross Moore

TUGboat, Volume 41 (2020), No. 2 225

\TPDF@appendto@RoleMapDict, allows PDF reader
software to treat the non-standard structure tag
name /CongressAct (which we just invented) in the
same way as the standard /Span tag name.

2.1 Aside on how TEX macros work

We all make great use of (LA)TEX commands, but how
well do we understand how they work? Upon reading
a string beginning with the \ character, TEX (the
program which underlies LATEX processing) creates
a control-sequence token (also called a ‘macro’); but
what is it really? Essentially there is the name token
(such as \title, \date, \section, etc.) and a block
of coding that is to be executed, or data to be inserted
into the processing stream, when the name token
is encountered while working through a document’s
source. This block of coding resides somewhere in
the computer’s memory, associated with the running
job. The memory location has an address, specified
by a number which allows the code to be found and
used. In other computing languages, one refers to
use of such address locations as pointers to data or
code-blocks. Thus effectively a macro is just a named

pointer to a block of code or content to be used.
When a new macro is first defined (e.g., using

LATEX’s \newcommand or similar, or with TEX’s \def,
\edef or \let) one can think of a key–value pair
consisting of the new name token and its associated
memory address, being pushed onto the top of a
stack of all the currently defined such name tokens.
Now when a command is encountered, the processor
starts at the top of this stack, reading downwards
until a token having the same name is encountered.
Then the corresponding address is used to find the
data or code that is to be handled next. Frequently
the macro definition will occur within an environ-
ment or grouping (using {. . . }, or \begingroup . . .
\endgroup or similar). Upon entering the grouping,
the current location of the stack is recorded as a
stack-pointer, say. When the grouping closes, any
name token entries added later than that recorded
level are discarded—except for any that have been
declared as global (using TEX’s \gdef, or \xdef or
\global\let). All of LATEX’s counters are globally
defined and updated. This is the kind of mechanism
that allows the same macro name to refer to different
values, at various stages of processing; a concept
known as scoping of variable values.

With this interpretation we can better under-
stand how the coding in Figure 2 works. Firstly a new
pointer named \NRPS@Act is made, pointing to the
value of \nrpsAct, since that is going to be redefined
to point instead to the coding of \TPDF@NRPS@Act.
But part of the coding of this is to use \NRPS@Act

itself. This is done within a grouping, because the
command

\TPDF@style@structure@suppress

makes some changes to other macros, and these
changes need to be scoped to within that grouping
only. In particular a command

\TPDF@maybe@taggedparagraphmiddle

is set to \relax, (i.e., to do nothing) and

\aftergroup

\TPDF@maybe@taggedparagraphmiddle

issued. This causes the coding for resumption of tag-
ging within the surrounding paragraph to be delayed
until \endgroup, when otherwise it would have oc-
curred upon completion of \textit{...}. It works
since the named pointer’s associated value reverts
back to what it was prior to \begingroup, as the
pointer to the \relax value has been removed from
the stack.

2.2 Patching as ‘hacking’ or ‘enhancement’

This technique, of capturing a pointer and using
it within a new code-block, to replace what LATEX
would do evaluating a particular macro name, can be
considered as a trick for code-hacking. Or it can be
considered as a legitimate technique for enhancing
the results of typesetting with other structures that
may be important for the job as a whole. Such
patching is used in the nameref package, part of the
hyperref bundle of packages, for enhancing LATEX
commands to produce named destinations to act as
anchors for hyperlinks to section titles, figure/table
captions, and other usages of the \label command.
Other packages employ this technique to enhance
footnotes, cross-references, citations and more, with
hypertext features.

Later, in Section 6.1, we give an example of
how pointers can be used to resolve an apparent
inconsistency created by the same LATEX macro being
patched by two different packages [20, 21]. Then, in
Section 7.2 we use them to resolve a difficulty with
mathematical source initially intended for LuaTEX.
Furthermore these are fundamental to how the tpdf

package works, to produce Tagged PDF output; as
will be discussed in more detail in a later paper in
this series.

3 LATEX environments indicate structure

Common LATEX environments, such as flushleft,
flushright, center, quotation, etc. adjust the way
paragraph content is displayed. This is a visual hint
to a sighted reader that there is a special meaning
attached to the enclosed content. But that is ex-
actly one of the main reasons for tagging, to attach a

Tagging with LATEX—Part 1: Author considerations

226 TUGboat, Volume 41 (2020), No. 2

name to a block of content. That is, a screen-reader
will not do anything special with how the content is
presented, but it can alert a visually-impaired user
to the fact that it has been tagged specially. The
tpdf package, when used to create Tagged PDF, auto-
matically produces the appropriate tagging for such
environments. It also specifies suitable attributes
which hint at the desired visual layout, for tools that
need to construct a layout; e.g., for small screens.

Other environments, tabular, verbatim and
common list-like environments itemize, enumerate,
description and more, indicate that their content
may involve special typesetting and/or layouts. For
the list-like environments, in particular, the question
arises as to whether the listed information remains
as part of the preceding (perhaps surrounding) para-
graph, or whether it constitutes a separate (vertical)
block with the paragraph having finished already.
LATEX has no formal way to differentiate between
these cases, however when coded such as follows with
a blank line,

... satisfying conditions in this list.

\begin{enumerate}

\item

one would expect the paragraph to finish prior to
commencement of the list, as triggered by the blank
line. Whereas with the following coding

... satisfying the conditions:

%

\begin{enumerate}

\item

there is no (uncommented) blank line; indeed the list
items might each be supplying a possible end to the
preceding incomplete sentence. A commented blank
line is only for clarity in the LATEX source; it can be
omitted altogether, with no change to processing.

3.1 New environments declaring structure

Just as new commands can be defined to convey the
intention associated with styling, so also can new
environments be defined, doing no extra typesetting,
but conveying a name to be associated with definite
structure within the document. The first two pages
of the Night Skies Project report are meant to be
printed on special stiffer paper, and serve as the
‘cover’ for a printed version. Similarly the last two
pages are for the back cover, printed on the same stiff
paper. Thus in the PDF, it makes sense to regard
these 2-page blocks as separate parts of a structured
document, tagged as Part.

Figure 3 shows an environment nrpsCover, that
wraps the first two pages, but otherwise produces

no visual content. Similarly there is an environment
nrpsFrontmatter which encloses the title-page, the
Table of Contents, List of Figures, Lists of Tables
and Appendices, and further information generic to
the organisation of the project, rather than being
unique to the project report and results. These two
structures do not use a separate sectioning command,
but they are sufficiently important that a bookmark

is appropriate within an electronic document.
Coding as shown in Figure 4 achieves this, using

a macro \pseudochapter which itself uses macros
from other packages. The \NR@schapter is a patch
of \@schapter resulting from \chapter* for starting
an unnumbered chapter. But there is no anchor text,
so the prior redefinition

\renewcommand{\H@old@schapter}[1]{}%

causes that part to be skipped, leaving just the spec-
ification of a named destination. Then we have

\addbookmarksline{chapter}{#1}

to add a bookmark without also creating a Table-of-
Contents entry. Its definition, shown in Figure 4,
calls up \addcontentsline, but with a disabled
\addtocontents command, which will just gobble
its arguments.

These two new commands \pseudochapter and
\addbookmarksline are essentially patching macros
\NR@schapter and \addcontentsline respectively;
but this time removing functionality, rather than
adding extra coding. The result is an invisible chap-
ter heading with a bookmark but no ToC entry. This
also provides a place for structure to be attached, as
shown in Figure 3.

3.2 Structure destinations

Observe in Figure 5 that the bookmarks use the icon
shown here at right below. This indicates that the
bookmark includes a specified structure destination

(see [14, Table 8.4] or [16, Table 151]), as well as the
usual destination area of a printed page.

normal bookmark with structure destination

In the visual view there is no noticeable difference in
the result upon clicking on a bookmark. But when
the PDF file is exported to XML from Acrobat Pro
DC [17], then targets and links are automatically
produced for each bookmark; viz.

<bookmark title="Introduction">

<destination structID="LinkTarget_591"/>

Ross Moore

TUGboat, Volume 41 (2020), No. 2 227

% declare some environments, to allow hooks for structural tagging

\newenvironment{nrpsCover}{%

\pseudochapter{Cover}%

}{\unskip}

\newenvironment{nrpsFrontmatter}{%

\pseudochapter{Titlepage}%

}{\unskip}

%% RRM: use this to get a bookmark, at the chapter level

%% without making a ToC entry

\newcommand{\pseudochapter}[1]{%

\begingroup

\renewcommand{\H@old@schapter}[1]{}%

\NR@schapter{#1}%

\addbookmarksline{chapter}{#1}%

\endgroup

}

\newcommand{\addbookmarksline}[3][toc]{%

{\renewcommand{\addtocontents}[2]{}%

\addcontentsline{#1}{#2}{#3}%

}%

}

Figure 4: Code for environments named for the structure tagging as seen in Figure 3,
and the extra bookmarks as in Figure 5.

Figure 5: Extra Bookmarks generated for front cover and title-page of the research
report, resulting from the coding shown in Figure 4.

Tagging with LATEX—Part 1: Author considerations

228 TUGboat, Volume 41 (2020), No. 2

<bookmark title="Regional Setting">

<destination structID="LinkTarget_622"/>

</bookmark>

</bookmark>

...

<Chap>

<H2 id="LinkTarget_591" >Introduction</H2>

...

<Sect>

<H3 id="LinkTarget_622" >Regional Setting</H3>

...

With a structure destination the target is the first
structure having textual content, as a (perhaps) sub-
structure child of a structure element specified in
the bookmark’s dictionary, or indeed the specified
structure itself. Usually this will be the <H2> or
<H3> title text for a chapter or section rather than
their parent <Chap> or <Sect> structures, but it can
be different. For example the ‘Cover’ bookmark
in Figure 5 goes to the first piece of text on the
Cover page, namely ‘National Park Service’, as seen in
Figure 3.

Having a structure destination as just described,
when exported for other technologies (in particu-
lar Assistive Technology for screen-readers, etc.), a
bookmark now behaves as would be expected in
XML or HTML web-based pages, say. On the other
hand, when using ‘ordinary’ bookmarks, Acrobat Pro
DC [17] uses a heuristic to try the deduce the best
piece of text to be chosen as the target, given the area
of the page specified by its destination key. While
working well in most cases, this can come earlier
than one would expect from the visual view, and the
same target may be found for multiple bookmarks,
which is clearly incorrect.

This concept of structure destination can be
used for hyperlinks as cross-references, ToC entries,
citations, etc., at least with PDF 2.0 [16, §12.3.2.3
and Table 202]. These must be specified explicitly, by
adding XML attributes directly to the PDF dictionary
for the structure elements of both the link and its
target. Unless it is also a target for a bookmark,
the target needs to be associated with an explicit
id="...", with ... replaced by a unique name. This
is achieved with /id (...) as a key–value entry,
while the link structure needs xlink:target="...",
and include also a namespace declaration as follows:

xmlns:xlink="http://www.w3.org/1999/xlink"

This latter is best done using a ClassMap entry for
the structure, as /C /XLink. While structure des-
tinations were only introduced with PDF 2.0 [16],
by including the /SD key with value, as well as an
ordinary /D key and value, in a go-to action (/A)
dictionary, one achieves both forward- and backward-

compatibility with all versions of PDF for internal
hyperlinks within the document. Reader software
is supposed to respect the /SD action in preference
to the /D, if able to do so. Otherwise, as with older
software, it will be ignored and /D used.

4 Combining environments and commands

As well as the first two pages being cover-page ma-
terial to be printed on special paper stock, so also
are the last two pages. Figure 6 shows the result,
with special tagging of the content appearing on the
back cover page, using specially defined commands
\nrpsService, \nrpsDepartment named to convey
the intention of the material in their arguments, as
described in Section 2. Also \nrpsPlaceLogo, and
specially named environments are used.

The original coding for those last two pages
is given in Figure 7, which can be seen as a quite
complicated mixture of styling and layout commands,
interspersed with the content to be displayed. That
kind of coding has been simplified by absorption
into macro and environment definitions as shown in
Figure 8. Note that \nrpsIssue is Metadata that
identifies the particular publication, so should be set
at the beginning of the document source where such
data is easily found; e.g., by (in this case):

%% MetaData that is re-used

\providecommand{\theissue}{310/152635}

\providecommand{\theissueII}{\theyear/1914}

\providecommand{\theyear}{2019}

\providecommand{\thedate}{April \theyear}

\providecommand{\thejournal}{Natural

Resource Report NPS/NRSS/NSNSD/NRR}

\edef\nrpsIssue{\theissue, \thedate}

Use of \providecommand is recommended for these,
since this has an effect only if the macro is currently
undefined. This means that it does not interfere with
a more sophisticated workflow in which values for
\theissue, \thejournal, \thedate, etc. may have
been supplied already. The document’s title and
subtitle could also be provided this way. However,
in practice these are set at different sizes in different
places within the document, which can require some
extra markup to create the best visual layout. So we
do not do this here.

Another aspect visible in Figure 6 is the use of
a tabular environment simply for the purpose of vis-
ual layout. There is no semantic meaning attached
to this environment usage, so there is no associ-
ated structure tagging; whereas the content of each
cell does have semantic meaning, associated with
the specially defined macro names, as mentioned
above. This is an important counter-example to
the discussion of Section 3. Thus within a tagging

Ross Moore

TUGboat, Volume 41 (2020), No. 2 229

Figure 6: Back cover pages, and the coding for its structures.

\clearpage

\pagestyle{empty}

\strut

\vfill

The Department of the Interior protects and manages the nation’s natural resources and cultural heritage;

provides scientific and other information about those resources;

and honors its special responsibilities to American Indians, Alaska Natives, and affiliated Island Communities.

\\

NPS \hl{XXXXXX}, March 2019

\clearpage

\newgeometry{lmargin=0.75in, rmargin=0.75in, tmargin=0.75in, bmargin=1in}

\renewcommand{\arraystretch}{0.65} % Default value: 1

\begin{table}

\centering

\begin{tabular}{p{0.875\textwidth} r}

\thickhline

\\[-4pt]

\scriptsize{\textsf{\textbf{National Park Service}}}

& \multirow{3}{*}{\includegraphics[width=0.075\textwidth]{logos/NPSarrowhead}}\\[1pt]

\scriptsize{\textsf{\textbf{U.S. Department of the Interior}}} & \\[5pt]

%\noalign{\hrule height 1.2pt}

\end{tabular}

\end{table}

\hrule height 1.2pt

%\vspace{4pt}

\footnotesize{

\textsf{\href{https://www.nps.gov/orgs/1778/}{\color{blue}

\textbf{Natural Resource Stewardship and Science}}}\\

\textsf{1201 Oakridge Drive, Suite 150}\\

\textsf{Fort Collins, CO 80525}\\

}

\vfill

\textsf{\textbf{EXPERIENCE YOUR AMERICA $\rm^{\textsf{TM}}$}}

Figure 7: Original coding for the content displayed on the Back-Cover pages.

Tagging with LATEX—Part 1: Author considerations

230 TUGboat, Volume 41 (2020), No. 2

\newcommand{\thickhline}{\noalign{\hrule height 14.15pt}}

\newcommand{\thinhline}{\noalign{\hrule height 1.2pt}}

\newcommand{\thinhrule}{\hrule height 1.2pt}

\def\nrpsPutDate{\noindent\nrpsTheDate}

\def\nrpsTheDate{NPS \nrpsIssue}

\def\nrpsDirectorateName{Natural Resource Stewardship and Science}

\newcommand{\nrpsService}[1]{\scriptsize{\textsf{\textbf{#1}}}}

\newcommand{\nrpsDepartment}[1]{\scriptsize{\textsf{\textbf{#1}}}}

\newcommand{\nrpsDirectorate}[1]{\scriptsize{\textsf{\textbf{#1}}}}

\newcommand{\nrpsDirectorateLink}[1]{{\footnotesize\bfseries\sffamily\color{blue}%

\href{#1}{{\nrpsDirectorateName}}}}

\newcommand{\nrpsPlaceLogo}[1]{\multirow{3}{*}{\includegraphics[width=0.08\textwidth]{#1}}}

\newenvironment{nrpsbackAddress}{\\\noindent\sffamily\ignorespaces}{\unskip}%

\newenvironment{nrpsInsideBackCover}{\clearpage \strut \thispagestyle{empty}\vfill}{}

\newenvironment{nrpsBackCover}{\clearpage

\newgeometry{lmargin=0.75in, rmargin=0.75in, tmargin=0.75in, bmargin=1in}

\renewcommand{\arraystretch}{0.65}% Default value: 1

\thispagestyle{empty}}%

{\vfill \begin{nrpsMotto}

EXPERIENCE YOUR AMERICA\texttrademark

\end{nrpsMotto}}

\newenvironment{nrpsMotto}{\sffamily\bfseries}{}

Figure 8: Macro and environment definitions for styling the content on the Back-Cover pages.

context, as with the tpdf package, there is no need
for automatic tagging at this point; hence the use
of \canceltagging, which affects also the styling
commands in the macro expansions; these revert
to having just their usual LATEX expansions. In a
future version, this could be incorporated into the
tagging expansion of the nrpsBackCover environment,
as there is really nothing else there that is associated
with implicit semantic macros or environments. It is
not done in this article to illustrate the adaptability
of tagging to particular semantic requirements within
a specific document or class of documents. To allow
the document to be processed without having the
tpdf package loaded, use coding such as follows.

\makeatletter

\AtBeginDocument{%

\@ifpackageloaded{tpdf}{}%

{% coding to cancel commands

\let\canceltagging\relax

}%

}% end of \AtBeginDocument

\makeatother

Use of \AtBeginDocument delays testing in case the
package is loaded later within the preamble section
of the document source.

Also observe in Figures 6 and 7 that the orig-
inal use of \begin{table} ... \end{table} has
become simply \begingroup ... \endgroup, since

there is no intention of this material floating else-
where, and there is no need for a caption or any
numbering or other associated constructs.

This use of a tabular environment to control the
visual layout occurs also on the front cover, as can
be seen in Figure 3. Indeed the coding is identical
apart from how the \nrpsDirectorateText is dis-
played, as the name ‘Natural Resource Stewardship
and Science’ of the Directorate [9]. On the front
cover, this is part of the tabular, just above a thin
rule that finishes this material. On the back cover
it appears in larger type below the rule, as anchor
text to the website of the Directorate. With this
double usage, the structure is declared specially as
/DirectorateLink, which uses a RoleMap entry to
exhibit the behaviour of a /Link. The coding shown
in Figure 8 has macro definitions for both the front-
and back-cover instances.

5 ‘Alternative text’ for figures

Accessibility guidelines require that figures be ac-
companied by ‘alternative text’ [11] that can help a
visually or cognitively disabled person understand
the semantic content associated with the inclusion of
a figure. By a ‘figure’ here, we mean non-textual con-
tent that has a definite semantic meaning within the
context of the electronic document. The alternative
text is read by screen readers, and other Assistive

Ross Moore

TUGboat, Volume 41 (2020), No. 2 231

Figure 9: A ‘floating’ figure with numbered caption following immediately after the image.

technology, in place of the figure itself, which may
be a photograph or other image, but need not neces-
sarily be so.

Note that this is logically different from LATEX’s
figure environment, which is semantically a grouped
block of content within the document which needs
to be shown together. For pagination considerations
this group, or /Div, may need to ‘float’ to a page
later than where the information might otherwise
logically be read, or an image first viewed. Usually
there will be a caption which describes some of the
semantic meaning of the non-textual content, which
is often an image or graphic, but need not always be.
For example, within this article many of the ‘figures’
are code listings, which in a Tagged PDF document
would be tagged as either /Code or /BlockQuote, or
something equivalent.

A common misconception is that the alternative
text for an image is just the same as the ‘caption’
of a figure. This is quite wrong, especially as any
caption should also be available to the Assistive Tech-
nology (see Recommendation [6, §4.3.1.3]). Rather
the ‘alternative text’ should complement any dis-
cussion in the surrounding text, which could well
include a caption. Thus it can explain the ‘What?’
(is in the image/figure) while the caption is giving
the ‘Why?’ (is an image used here). See Figure 9 for
a typical example, where the alternative text is seen
in a popup as the mouse hovers over the image. The

automatically-generated ‘Figure 1:’ is in a separate
text container to the bulk of the caption.

See [6, §4.3.1] for a discussion and examples of
tagging figures and captions, where the main expec-
tation is for a /Caption tag to follow immediately
after the /Figure. However, it is also noted there [6,
§4.3.1.1, Example D] that an actual /Caption need
not always occur.

As a first example of how a non-captioned figure
can be implemented, consider the logo of the Na-
tional Parks Service, as displayed on the front cover
and seen in Figure 3, and also on the back cover in
Figure 6. When building the Tagged PDF version
of the report the \nrpsPlaceLogo macro is replaced
by an alternative, declared as follows.

\def\TPDF@nrpsPlaceLogo #1{%

\multirow{3}{*}{\tagFigure[NPSlogo]{%

National Park Service logo, in shape of

stone arrowhead with Sequoia tree, bison,

lake and mountain scenery}{%

\includegraphics[width=0.08\textwidth]%

{#1}}}}

Here the \tagFigure macro is defined in the tpdf

package; it has an argument for the alternative text,
as well as an optional name for the figure, and final
argument for placing the figure content itself; in this
case as an included image of specified width.

As there is no caption, the alternative text is
providing a brief answer to the question ‘What is the
content conveyed by the image?’ [12]. In the logo,

Tagging with LATEX—Part 1: Author considerations

232 TUGboat, Volume 41 (2020), No. 2

Figure 10: Photo appearing on reverse side of the cover page, along with captions
and attributions, for that image and the one appearing on the cover page itself.
The image is the anchor for a hyperlink to the caption.

\begin{nrpsReverseCover}

% Second page photo

\begingroup

\hypertarget{pic-revcover}{}% creates anchor-point above the image

\centerline{\hyperlink{pic-revcover-caption}{%

\tagFigure[NightSkiesTeam]{Team members silhouetted against night sky shortly after

a vivid sunset.}%

{\frame{\includegraphics[width=\textwidth]{photos/fig02-cover2.jpg}}%

}}% end of \hyperlink

}% end of \centerline

\endgroup

\vfill

% Figure captions

\begin{figurecaptionlist}%

\begin{figurecaption}{pic-revcover}{on this page}% capitalised by the environment

The Night Skies Team with Chaco staff assessing the monitoring location of Gallo Cuesta\\

Photograph courtesy of Jeremy White

\end{figurecaption}

%\newline

\begin{figurecaption}{pic-cover}{on the cover}% capitalised by the environment

Fisheye view of the night sky over Chaco Culture National Historical Park in false color\\

Photograph courtesy of the National Park Service Night Skies Program

\end{figurecaption}%

\end{figurecaptionlist}%

\end{nrpsReverseCover}%

Figure 11: Coding for the reverse cover-page photograph and attributions.
The image is linked to its caption, and vice-versa.

Ross Moore

TUGboat, Volume 41 (2020), No. 2 233

one sees a collection of graphic elements symbolising
vegetation and wildlife, as well as scenic, recreational,
historical and archaeological values [10].

When tagging is not implemented, one can sim-
ply define the expansion as follows, to just place the
image normally.

\providecommand{\tagFigure}[3][]{#3}

This is best delayed using \AtBeginDocument as de-
scribed earlier in Section 4.

For a second example where now there is some
surrounding context, Figure 10 shows a photograph
used inside the front cover of the research report.
Notice how the alternative text appears within a
popup ‘tool-tip’. The image is followed, down the
page, by a ‘caption’ and attribution of the source
of the photograph, as well as similar information
for the image used on the front cover. As such, we
actually have a list of figure captions, rather than
a single caption following each figure. Indeed these
‘captions’ are structurally more like ‘end-notes’ for
the two images on either side of the cover page.

The coding to place this material is shown in
Figure 11, using new commands and environments
defined as follows.

\newenvironment{nrpsReverseCover}{%

\newgeometry{margin=1in}\strut\vfill}{}

\newenvironment{figurecaptionlist}%

{}{\unskip}%

\makeatletter

\newenvironment{figurecaption}[2]%

{\noindent\footnotesize

\Hy@raisedlink{%

\hypertarget{#1-caption}{}}%

\hyperlink{#1}{{\bfseries

\MakeUppercase{#2}}}\\}%

{\unskip}

\makeatother

As seen in this coding, commands \hypertarget and
\hyperlink, from the hyperref package, are used to
link each caption to a target destination located
just above the corresponding image (e.g., named
pic-revcover), as well as linking from the image to
caption (with destination pic-revcover-caption).
This explains the detailed tagging as seen in Fig-
ure 10, which is in accordance with the recommenda-
tions in [6, §4.2.7.1], and is analogous to Example C
found there. Another way to see the alternative text
is upon export as text, or into XML as follows.

<Div>

<Link><Figure Alt="Team members silhouetted against

night sky shortly after a vivid sunset.">

<ImageData src="images/A3-Main-pdftex_img_2.jpg"/>

</Figure>

</Link>

<L>

<Lbl>

<Link>ON THIS PAGE</Link>

</Lbl>

<LBody>The Night Skies Team with Chaco staff

assessing the monitoring location of Gallo Cuesta

Photograph courtesy of Jeremy White</LBody>

<Lbl>

<Link>ON THE COVER</Link>

</Lbl>

<LBody>Fisheye view of the night sky over Chaco

Culture National Historical Park in false color

Photograph courtesy of the National Park Service

Night Skies Program</LBody>

</L>

</Div>

The above XML version gives an idea of the kind of
tagged information that would be passed to Assistive
Technology applications.

6 Metadata & Titlepage

One cannot downplay the rôle that Metadata plays
in helping to allow documents to be found on the
internet, via search engines, and otherwise located
in document repositories. The more accurate and de-
tailed the Metadata, the easier it becomes to decide
whether a given document is the one that most ap-
propriately provides the knowledge that one may be
seeking. In the case of PDF documents, by Metadata
we mean not only the information displayed visually
on the title-page, but also keywords, copyright status
and internally generated structural information, such
as creation/modification dates and more.

For documents conforming to PDF/A archival
specifications, the XMP packet [13] is the method
that allows all such pieces of Metadata to be included
in a way that can be easily extracted in XML format.
It is as though the PDF document is carrying along its
own Library of Congress Catalogue card. Figure 12
shows a view of part of this information, with many
fields filled. Most of these fields are not provided
automatically by LATEX. Even more fields are shown
in Figure 13, along with coding that writes informa-
tion into an external file named \jobname.xmpdata

based on the name of the LATEX source file (in this
case A3-main-pdftex.tex). This file is used by the pdfx
package to create the full XMP packet, by inserting
the information into a template (named pdfa.xmp),
creating a new file pdfa.xmpi that is then embedded
uncompressed into the PDF/A file being built using

Tagging with LATEX—Part 1: Author considerations

234 TUGboat, Volume 41 (2020), No. 2

Figure 12: Metadata as shown on the title-page, as well as extra PDF /Info entries;
conformance for PDF/A-3A and PDF/UA-1 can be checked using Preflight.

\providecommand{\pdfxopts}{a-3a,ua-1,pdf17,nocharset}

\begin{filecontents*}{\jobname.xmpdata}

\Title{Night skies data report: Photometric Assessment

of Night Sky Quality \textemdash\ Chaco Culture

National Historical Park}

\Author{Li-Wei Hung\sep Dan M. Duriscoe\sep

Jeremy M. White\sep Bob Meadows\sep

Sharolyn J. Anderson}

\Publisher{National Park Service. Fort Collins, Colorado}

\Subject{Natural Resource Stewardship and Science, Night

skies data report}

\Keywords{night sky quality\sep Natural Sound and Night

Skies\sep Natural Resource Report\sep photometric

assessment\sep Night Skies Data Report\sep Chaco Culture

National Historical Park}

\Copyrighted{False}

\Copyright{Material created by the NPS and presented

on their website, unless otherwise indicated, is

generally considered in the public domain. It may be

distributed or copied as permitted by applicable law.}

\WebStatement{https://www.nps.gov/aboutus/disclaimer.htm}

\PublicationType{Report}

\Journaltitle{\thejournal}

\Volume{\theyear}

\Issue{\theissue}

\CoverDate{\theyear-04}

\CoverDisplayDate{\thedate}

\Creator{pdfTeX + pdfx.sty with \pdfxopts\space option}

\Language{en-us}

\end{filecontents*}

Figure 13: Advanced Metadata pane, with LATEX source that provides information for the XMP packet.

Ross Moore

TUGboat, Volume 41 (2020), No. 2 235

% Report title

\begin{nrpsInsideCover}

\nrpsTitle{Night Skies Data Report}\relax\\[-0.1in]%

\nrpsSubtitle{Photometric Assessment of Night Sky Quality \\[2pt]Chaco Culture National Historical Park}%

\nrpsSeries{Natural Resource Report NPS/NRSS/NSNSD/NRR---\hl{\theissueII}}%

\vspace{0.2in}

% Authors

\begin{nrpsAuthors}

\author{Li-Wei Hung\thanks{\nrpsmultidest

National Park Service\\1201 Oakridge Drive\\Suite 100\\Fort Collins, CO 80525}},

\author{Dan M. Duriscoe\thanks{National Park Service (retired)\\Big Pine, CA 93513}},

\author{Jeremy M. White\thanks{Colorado State University\\Fort Collins, CO 80523}},

\author{Bob Meadows\setcounter{mpfootnote}{0}\mpfootnotemark}, and

\author{Sharolyn J. Anderson\setcounter{mpfootnote}{0}\mpfootnotemark}%

\end{nrpsAuthors}%

\nrpsDate{April 2019}

\begin{nrpsAddress}%

U.S. Department of the Interior\\

National Park Service\\

Natural Resource Stewardship and Science\\

Fort Collins, Colorado%

\end{nrpsAddress}

\end{nrpsInsideCover}

Figure 14: LATEX coding for the title-page, using well-named environments as defined in Figure 16.

the pdfTEX processing engine. The package options
given as \pdfxopts are used via

\usepackage[\pdfxopts]{pdfx}

resulting in the appropriate Metadata to declare the
document to be valid for ISO standards PDF/A-3A
(ISO 19005-3:2012) [3] and PDF/UA (ISO 14289-
1:2012) [4], as can be seen in the left-most panel
of Figure 12. These standards are built upon the
PDF 1.7 (ISO 32000-1:2008) specification [14]. The
claims of validation can be checked, using the Pre-

flight utility [18] of Acrobat Pro DC [17].
It is worth remarking here that use of the pdfx

package requires loading hyperref early, to be able to
use some of its coding structures for writing directly
into the PDF file being built. This can have conse-
quences for the order in which other packages need
to be loaded, since hyperref patches many existing
LATEX commands, to include hypertext features. One
example of this is discussed and resolved, later in
Section 6.1. Doubtless others will occur with other
document classes, and the packages used.

Some of the Metadata that is used both on the
title-page and within the XMP packet is given using
macros, as discussed already in Section 4. With mul-
tiple authors and keywords, the \sep macro is used
as a delimiter; it expands differently in various con-
texts. For example, the keywords ultimately occur
as follows, using RDF syntax [19].

<dc:subject><rdf:Bag>

<rdf:li>night sky quality</rdf:li>

<rdf:li>Natural Sound and Night Skies</rdf:li>

<rdf:li>Natural Resource Report</rdf:li>

<rdf:li>photometric assessment</rdf:li>

<rdf:li>Night Skies Data Report</rdf:li>

<rdf:li>Chaco Culture National Historical Park

</rdf:li></rdf:Bag></dc:subject>

If more, or different, Metadata fields are required
for a particular class of documents, then a pdfa.xmp

template can be edited appropriately. If you have a
need to do this, contact the author of this article.

6.1 Authors and footnotes

In many LATEX document classes a construction like

\author{ ... \thanks{ ... }}

provides an author name and affiliation. Normally
the argument of \thanks is separated from the au-
thor and is typeset as a footnote. When provided in
the document preamble, each use of \author causes
the information to be stored away, awaiting use in
a command like \maketitle. With the research re-
port, the title-page is built separately, after the cover
pages. There is no need to store the author names,
but the syntax for providing that information can
still be used, for consistency with authoring in other
documents.

Figure 14 shows the coding for the title-page,
using macros and environments named according to
the principles discussed in Section 2, 3 and 4. Those
names can be mapped to structure tagging as evident
in Figure 15. The visual layout is determined by the
macro definitions shown in Figure 16. Of note is

Tagging with LATEX—Part 1: Author considerations

236 TUGboat, Volume 41 (2020), No. 2

the nrpsAuthors environment which uses a minipage

to ensure the correct style and placement of foot-
notes created from \thanks commands. The counter
mpfootnote, used for these footnotes, avoids inter-
ference with those outside the minipage. Also within
the nrpsAuthors environment we see that \author is
defined to just typeset its argument, with \thanks

becoming just \footnote.
Observe how the order of structural tagging need

not coincide with the visual order of information on
the page. Rather the order for tagging follows the
logical order of occurrence in the LATEX source, with
a corresponding address following each author. A
hyperlink, with anchor text being the raised footnote
number, connects to each author’s address. This
is in accordance with [6, §4.2.7.1 Example C], but
without back links as the author and address are
adjacent in the tagging structure.

Where different authors share the same address
(in this case authors 1, 4 and 5), the anchor text
looks the same but there are separate hyperlinks to
named destinations Hfootnote.1, Hfootnote.4 and
Hfootnote.5. These latter two are placed together
with the former, using a macro \nrpsmultidest

which occurs at the beginning of the first \thanks
(see Figure 14) and is defined as follows.

\def\nrpsmultidest{\Hy@raisedlink{%

\hyper@@anchor{Hfootnote.4}{\relax}%

\hyper@@anchor{Hfootnote.5}{\relax}}}%

Here \Hy@raisedlink and \hyper@@anchor are in-
ternally defined by the hyperref package, and are
used when automatically placing hyperlink anchors.
For authors 4 and 5 the \thanks is replaced by

\setcounter{mpfootnote}{0}\mpfootnotemark

to get the correct raised number, using a command
\mpfootnotemark from the footmisc package. This
affects just the hyperlink anchor text, as the target
destination is generated using yet another counter.
Loading the footmisc package is not as easy as it
would seem, since it patches the LATEX command
\@footnotetext, which has been patched already
by hyperref to generate the hyperlinks. Without
proper care, one gets messages such as the following,
for non-minipage footnotes.

pdfTeX warning (dest): name{Hfootnote.6}

has been referenced but does not exist,

replaced by a fixed one

This indicates that a hyperlink cannot work as in-
tended. It is essentially the same issue as reported
previously [20, 21]. To resolve the incompatibility we
can use the ideas from Sections 2.1 and 2.2. Consider
the following coding when loading the package.

\makeatletter

\let\LTX@footnotetext\H@@footnotetext

\let\HYP@footnotetext\@footnotetext

\usepackage{footmisc}

\let\FM@footnotetext\@footnotetext

\let\H@@footnotetext\FM@footnotetext

\let\@footnotetext\HYP@footnotetext

\makeatother

The resulting expansion for \@footnotetext is the
same as if footmisc had been loaded first. It works
since hyperref created a pointer \H@@footnotetext
to the expansion of \@footnotetext before patch-
ing, and uses this within its own patch. What is
needed is to make \H@@footnotetext point instead
to footmisc’s version as \FN@footnotetext, while
still using hyperref’s coding which has been captured
as \HYP@footnotetext. This is what the sequence
of three \let instances achieves, without defining
any new code blocks, and we have a pointer to each
defined code block. If we wish to retain pointers to
only expansions that will actually be used, then this
coding can be reduced by two lines. (How?)

6.2 More front-matter structures

Other pages in the front-matter section of the report
have paragraphs, or other structures, that have a
special semantic meaning. For example Figure 17
has a few ordinary paragraphs, but also an example
citation, and one paragraph with hyperlinks to the
NPS website and email address. The whole page can
be wrapped in an environment nrpsPolicy that resets
the page-numbering and its style, and finishes with
the publication date. Although no special format-
ting is required for the example citation, it is worth
tagging this for its semantic meaning.

\newenvironment{nrpsPolicy}{%

\pagenumbering{roman}%

\setcounter{page}{2}%

}{\unskip \vfill \nrpsPutDate}

\newenvironment{nrpsCitation}{}{\unskip}

Consider again Figure 5. There is a bookmark
to the ‘Table of Contents’ (ToC) page, but no corre-
sponding entry within the ToC itself. Achieve this
via a macro \suppresscontents which is defined
within the following block of coding.

\makeatletter

\def\contentssuppress{%

\protect\contentsline{chapter}%

{\contentsname}{\thepage}%

{\@currentHref}\protected@file@percent}

\makeatother

\let\LTXaddtocontents\addtocontents

\newcommand{\addtocontentssuppressed}[2]{%

\begingroup \def\thisarg{#2}%

Ross Moore

TUGboat, Volume 41 (2020), No. 2 237

Figure 15: Tagging and layout of author information, produced using the coding
shown in Figure 14. The Preflight window shows validation for PDF/A-3a.

\newenvironment{nrpsInsideCover}{%

\vspace{2pt}%

\rule{\textwidth}{1pt}\\[0.2in]}{}

% Recreations of NRR MS Word styles

\newcommand{\nrpsTitle}[1]{\noindent\fontsize{20}{24}\selectfont\textbf{#1}}

\newcommand{\nrpsSubtitle}[2][{\\[4pt]}]{\fontsize{18}{21}\selectfont\textit{#1#2}}

\newcommand{\nrpsSeries}[2][{\\[12pt]}]{\fontsize{12}{14}\selectfont{#1#2}}

% provide macro as a place-holder for structural tagging

\newcommand\nrpsAuthor[1]{#1}%

\newenvironment{nrpsAuthors}{%

% Do all the work inside a minipage,

% this allows footnotes to come immediately afterwards

% rather than at the bottom of the page.

\begin{minipage}{\textwidth}%

% number the footnotes with numerals

\renewcommand{\thempfootnote}{\arabic{mpfootnote}}%

\let\footnotesize\normalsize % write footnotes at normal size

\def\footnoterule{\vskip-\medskipamount}% remove the rule above footnotes

\footnotesep=26pt % set spacing between footnotes

\footnotemargin=4pt % indent the footnote marker, else it overlaps the margin

\parindent=0pt % ensure no paragraph indent

% allow \author to be used for declaring author names

\let\author\nrpsAuthor

\let\thanks\footnote

}{\end{minipage}}

% set Date and Address, with appropriate space before

\newcommand{\nrpsDate}[1]{\vfill{#1}}

\newenvironment{nrpsAddress}{\\\\}{\unskip}%

Figure 16: Macro and environment definitions, for the title-page as coded in Figure 14.

Tagging with LATEX—Part 1: Author considerations

238 TUGboat, Volume 41 (2020), No. 2

Figure 17: The page following the title-page has a paragraph with external
hyperlinks, the publication date, and the recommended way to cite the report as a
publication.

\ifx\thisarg\contentssuppress\else

\LTXaddtocontents{#1}{#2}%

\fi \endgroup}% use it locally only

\def\suppresscontents{%

\let\addtocontents\addtocontentssuppressed}

The effect of this is that whenever \addtocontents
is encountered when writing into the .aux file, then
the argument is checked to see whether it matches
what is produced by the following.

\addcontentsline{toc}{chapter}{\contentsname}

If so, then writing this ToC entry is skipped, but the
\Bookmark command is still written into the .out

file. On the next processing run, the desired result is
produced provided the ToC is generated using coding
as follows.

{% suppress ToC entry, but keep the bookmark

\suppresscontents

\maintoc

\addcontentsline{toc}{chapter}{\contentsname}

}\clearpage

The tpdf package patches many LATEX macros
including \tableofcontents, \listoffigures and
\listoftables. It also patches \@starttoc from
the tocloft package. This produces tagging in accor-

dance with Recommendation [6, §4.1.4.1, Example B].
This includes having hyperlinks from the section ti-
tles to where the (sub-)section starts within the body
of the PDF, and tagging of dot leaders as /Artifact,
as recommended in §4.1.4.3. This can be seen, for
example, in Figure 18. Page numbers are not hyper-
linked, and the word ‘Page’ above the numbers is
also an /Artifact.

Note how subsections have a nested /TOC struc-
ture, child of their enclosing section’s /TOCI. This
tagging is all handled automatically with no extra
input required from a document’s author. However
there is one practical consideration of which authors
and editors should be aware, when using tpdf for
generating Tagged PDF documents.

The tpdf package maintains a ‘tag history’ file
which, among other things, records the page number
on which each structural and content tag occurs; or
rather, on which it did occur on the completed LATEX
run. On the next run the history is read, which helps
in determining internal aspects of how the tagging
is structured for the pages. Also, the page number
is compared with what is happening when the same
tagging and content is encountered on the subsequent
run. A warning message is written when there is a

Ross Moore

TUGboat, Volume 41 (2020), No. 2 239

Figure 18: Fully-tagged ‘Table of Contents’ page, hyperlinked and with nested /TOC

structure according to section levels.

difference. This is similar to warnings about missing
or changed cross-reference or citation labels in ordi-
nary LATEX jobs. However the number of structural
tags and content snippets is far, far greater.

As document source is being written, or edited,
it is inevitable that tagging information will change,
and differences in the ‘history’ content encountered.
Thus at least one extra LATEX run will be needed,
to ensure that tagging has stabilised. In particular,
as extra material is added, the length of the Table
of Contents can grow, perhaps requiring an extra
page. With such an extra page, there will be changes
in the recorded history for all subsequent structure
and content. As many as three extra runs may be
required before the history has stabilised. Even then
it is best to do another run ‘just to be sure’. Authors
and editors should get used to using the ‘Console’
window for interactive control of a running TEX job.
As well as hitting the return key to continue af-
ter a pause displaying an error or warning message,
one can also use the ‘q’ key (followed by return)
to switch into so-called quiet mode. Now there are
no further messages for warnings, and the job can
proceed to completion without pauses. This is most
convenient on the second or third subsequent run
after significant edits, when the pauses are due to
detected history changes, as these will be updated

without need for further edits. In case of real typos,
in a macro name say, there is also ‘i’ to allow inser-
tion of the intended macro name. This is preferable
to ‘x’ as it can allow the job to complete without
the need for multiple extra runs before stabilisation
can be achieved. Just one more run, with the typo
corrected, may be sufficient.

Then, when you think the document is complete
or you want to check the results of significant editing,
use the Preflight utility [18] to check validation (as
shown in Figures 12 and 15), and examine the tagging
tree within Acrobat Pro DC [17] (as in Figures 1, 3,
6, 9, 10, 15 and 17).

7 pdfLATEX vs. LuaLATEX

With reports written collaboratively by multiple au-
thors, it is understandable that some may prefer
LuaLATEX to process the document, while another
may prefer pdfLATEX. LuaLATEX and pdfLATEX are
built upon the LuaTEX and pdfTEX ‘engines’ respec-
tively, each loading the LATEX format. Mostly the
same (at least visual) output is able to be produced,
but there can be significant differences in configu-
ration options that are needed to actually achieve
this. Here we discuss such differences relevant to the
‘Night Skies’ research report.

Tagging with LATEX—Part 1: Author considerations

240 TUGboat, Volume 41 (2020), No. 2

7.1 Font formats

The research report [8] style is an adaptation for
LATEX following styles developed for Microsoft Word
documents. As such it uses fonts ‘Times’ and ‘Arial’
in several sizes and faces. LuaTEX is able to work
directly with both OpenType (.otf) and TrueType
(.ttf) font formats. OpenType supports a large
number of characters including accented letters for
different languages, as well as mathematical symbols
and much more. On the other hand pdfTEX (gen-
erally) addresses at most 256 characters in a font,
and can use the TrueType (.ttf) font format. The
winfonts package [22] provides the support needed to
use the Windows’ TrueType fonts with pdfTEX, but
it does not supply the fonts themselves. These are
presumed to be available already on a Windows (or
other) system. Thus for the research report, there
is coding in the ‘settings’ file read from the LATEX
preamble as follows.

\usepackage{ifluatex}

\ifluatex

\usepackage{fontspec}

\fi

\ifluatex

%This is Overleaf Specific (or if the fonts

% are not installed in your system)

%--

% Times New Roman

\setromanfont[

BoldFont=Font-timesbd.ttf,

ItalicFont=Font-timesi.ttf,

BoldItalicFont=Font-timesbi.ttf,

]{Font-times.ttf}

% Arial

\setsansfont[

BoldFont=Font-arialbd.ttf,

ItalicFont=Font-ariali.ttf,

BoldItalicFont=Font-arialbi.ttf

]{Font-arial.ttf}

%% those TTF fonts do not validate for PDF/A :

%% incomplete CIDSet

\else

% but all is well with pdfTeX and corresponding

% Type-1 fonts

\usepackage[T1]{fontenc}

\usepackage{times}% actually NimbusRomNo9L

\usepackage{winfonts}

\renewcommand{\sfdefault}{arial}

\fi

This assumes that fonts named Font-times.ttf and
Font-arial.ttf are available on the local system when
using LuaTEX, at least via the Overleaf online sys-
tem [26]. Using other systems the font file names will

be different. With pdfTEX as the typesetting engine,
this coding assumes packages times and winfonts are
available. Packages ifluatex and fontspec come with
TEX Live [25] distributions and times also, as part of
LATEX’s NFSS support, whereas winfonts does not.

There is, however, a small complication with
winfonts, in the form of a mistake in the virtual font
for ‘Arial Bold Italic’, which is used for sub-section
headings. The virtual font for this actually refers to
‘Arial Bold ’, omitting the ‘Italic’ part. A fix for this
is available through a package fix-winf [23].

Alternatively, there is a package urw-arial [24]
which provides Type 1 fonts based on the ‘Arial’
glyph shapes, provided freely by URW. But there are
slight differences in glyph metrics between these and
Microsoft’s own TrueType fonts for ‘Arial’. Further-
more, the package winfonts also loads the textcomp

package, whose utility is discussed within the next
sub-section.

7.2 Inline mathematics

There is one feature in LuaTEX that is different to
all other TEX engines, with regard to mathematical
symbols, in particular for an inline mathematical
expression. A macro token like \pm normally only
works smoothly in so-called ‘math-mode’, otherwise
there is an error message in the Console window.

Missing $ inserted.
<inserted text>

$
l.40 token like \pm

normally only works
?

Furthermore, TEX has switched into math-mode for
the benefit of further mathematical symbols that
may be following. The reason for this behaviour is
that spacing between letters and symbols tends to be
different in math-mode than with ordinary textual
input into paragraphs.

On the other hand, with LuaTEX it is perfectly
OK to use the ‘±’ character directly in the input, as
it lies within the range of characters supported by
most 8-bit fonts. This behaviour, which is similar
to what one might expect from other word- or text-
processing software, can be very convenient where
the math-expressions are short and uncomplicated.
It does however bypass the very fine-tuning of spacing
that otherwise results from using math-mode.

Provided the textcomp package is loaded this
approach also works with pdfTEX, otherwise there
is an error message as shown in Figure 19. The
textcomp package sets up a mapping which produces
\IeC{\textpm} upon reading the special character.
Here \textpm specifies the desired character from a
re-encoded (TS1) version of the current text font.

Ross Moore

TUGboat, Volume 41 (2020), No. 2 241

Figure 19: Error message, using pdfTEX, resulting
from input of a UTF-8 mathematical symbol, unless
the textcomp package has been loaded.

Now when it comes to accessibility, it’s not at all
clear how a screen-reader will handle the resulting ‘±’
character. So we add an extra layer which specifies
alternative text for that symbol, and uses proper
math-mode where appropriate. For example, the
research report’s preamble has coding as follows.

\ifluatex

\else

% account for math chars in text

\let\LTXarcdeg\arcdeg

\let\LTXcdot\cdot

\let\LTXsim\sim

\let\LTXtextpm\textpm

\def\NRRarcdeg{\TPDFensuremath{degree}

{\LTXarcdeg}}

\def\NRRcdot{\TPDFensuremath{times}{\LTXcdot}}

\def\NRRsim{\TPDFensuremath{approximately}

{\LTXsim}}

\def\NRRtextpm{\TPDFensuremath{plus or minus}

{\pm}}

\AtBeginDocument{%

\let\arcdeg\NRRarcdeg

\let\cdot\NRRcdot

\let\sim\NRRsim

\let\textpm\NRRtextpm

}

\fi % end of \ifluatex

As a default expansion, we have that

\def\TPDFensuremath #1#2{\ensuremath{#2}}

where TEX’s \ensuremath handles switching both
into math-mode and back out again. With the tpdf

package being used to generate Tagged PDF, the
adapted command \TPDFensuremath does more by
also establishing the contents of the #1 parameter
as ‘alternative text’. Notice how pointers have been
used to capture the expansion of an existing LATEX
macro, then to change the name so as to point to
an enhanced code-block, as was discussed earlier in
Section 2.2.

Throughout the research report such commands
are used for measurements and units; viz.
...in units of W\cdot cm$^{-2}$\cdot sr$^{-1}$

...angular sensitivity is \sim 42$^\circ$.

...darker than \sim 21.5 mag/arcsec2.

...brightness measurement is ±4\%.

...accurate to ±5\%, or 0.05 magnitudes.

Acknowledgements

Great thanks go to members of the U. S.National
Parks Service science team based at Fort Collins,
Colorado:

• Kurt M. Fristrup (Senior Scientist),
Natural Sounds and Night Skies Division;

• Chalmers-Fagan Johnson (Web and Report
Specialist);

• Li-Wei Hung (Night Skies Research Scientist),
main author of the report [8];

• Damon Joyce (Night Skies Research Scientist);

• Dan M. Duriscoe, Jeremy M. White,
Robert Meadows, Sharolyn J. Anderson; authors
of the report [8].

for allowing use of their report as a development
document for Tagged PDF using LATEX.

Thanks also to Thomas E. Price, University
of Akron (emeritus), for reading an early draft and
providing useful comments and suggestions.

References

[1] United States Access Board; Section 508
ICT Refresh (January 2017). §E205.4
Electronic Content. https://www.access-
board.gov/guidelines-and-standards/

communications-and-it/about-the-

ict-refresh/final-rule/text-of-the-

standards-and-guidelines#504-authoring-

tools.

[2] National Science Foundation—FAQ; What is
NSF’s public access policy? https://www.nsf.

gov/pubs/2016/nsf16009/nsf16009.jsp#q1.

[3] ISO 19005-3:2012; Document Management—
Electronic document file format for long term
preservation—Part 3: Use of ISO 32000-1
with support for embedded files (PDF/A-3).
https://www.iso.org/standard/57229.

html.

[4] ISO 14289-1:2012; Document management
applications—Electronic document file
format enhancement for accessibility—Part 1:
Use of ISO 32000-1 (PDF/UA-1). Technical
Committee ISO/TC171/SC2.
http://www.iso.org/iso/catalogue_

detail.htm?csnumber=64599.

[5] WCAG 2.1; ‘Web Content Accessibility
Guidelines’. W3C Recommendation 05 June
2018. W3C Consortium.
https://www.w3.org/TR/WCAG21/.

Tagging with LATEX—Part 1: Author considerations

https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines#504-authoring-tools
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines#504-authoring-tools
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines#504-authoring-tools
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines#504-authoring-tools
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines#504-authoring-tools
https://www.access-board.gov/guidelines-and-standards/communications-and-it/about-the-ict-refresh/final-rule/text-of-the-standards-and-guidelines#504-authoring-tools
https://www.nsf.gov/pubs/2016/nsf16009/nsf16009.jsp#q1
https://www.nsf.gov/pubs/2016/nsf16009/nsf16009.jsp#q1
https://www.iso.org/standard/57229.html
https://www.iso.org/standard/57229.html
http://www.iso.org/iso/catalogue_detail.htm?csnumber=64599
http://www.iso.org/iso/catalogue_detail.htm?csnumber=64599
https://www.w3.org/TR/WCAG21/

242 TUGboat, Volume 41 (2020), No. 2

[6] ‘Tagged PDF Best Practice Guide:
Syntax’. PDF Association. For developers
implementing ISO 14289-1 (PDF/UA). Version
1.0 (June 2019).
https://www.pdfa.org/resource/tagged-

pdf-best-practice-guide-syntax/

[7] Moore,R.; ‘LATEX 508—creating accessible
PDFs’. Conference talk presented at
TUG 2019 in Palo Alto, July 2019,
delivered remotely via Zoom. Movies and
other related material can be found at
http://web.science.mq.edu.au/~ross/

TaggedPDF/TUG2019-movies/.

[8] Hung, L.-W., D.M.Duriscoe, J.M.White,
B. Meadows, and S. J.Anderson. 2019. Night
skies data report: Photometric assessment of
night sky quality—Chaco Culture National
Historical Park. Natural Resource Report
NPS/NRSS/NSNSD/NRR—2019/1914.
National Park Service, Fort Collins, Colorado.
https://irma.nps.gov/DataStore/

Reference/Profile/2260171.

[9] Natural Resource Stewardship and Science
Directorate. National Park Service. https:
//www.nps.gov/orgs/1778/index.htm.

[10] ‘History of the NPS Arrowhead’. National
Park Service.
https://www.nps.gov/glac/learn/news/

history-of-the-nps-arrowhead.htm.

[11] WebAIM; Web accessibility in mind:
‘Alternative Text’ page.
https://webaim.org/techniques/alttext/.

[12] Accessible U: ‘Alt Text’. University of
Minnesota web site. https://accessibility.
umn.edu/core-skills/alt-text.

[13] Adobe Systems Inc.; Extensible Metadata
Platform (XMP). ISO standard (16684-1).
https://www.adobe.com/products/xmp.

html.

[14] Adobe Systems Inc.; PDF Reference 1.7,
November 2006. Also available as [15].
https://www.adobe.com/devnet/pdf/pdf_

reference.html.

[15] ISO 32000-1:2008; Document management—
Portable document format (PDF 1.7);
Technical Committee ISO/TC171/SC2

(July 2008). http://www.iso.org/iso/
catalogue_detail?csnumber=51502.

[16] ISO 32000-2:2017; Document management—
Portable document format—Part 2: PDF 2.0
Technical Committee ISO/TC171/SC2 (July
2017). https://www.iso.org/standard/
63534.html.

[17] Adobe Systems Inc.; Acrobat Pro DC.
The complete PDF solution for any
device. (Windows and Mac. only) https:
//acrobat.adobe.com/au/en/acrobat.html.

[18] Adobe Systems Inc.; ‘Analyzing documents
with the Preflight tool (Acrobat Pro)’.
https://helpx.adobe.com/au/acrobat/

using/analyzing-documents-preflight-

tool-acrobat.html.

[19] W3C; Resource Description Framework (RDF).
W3C Recommendation 25 February 2014.
RDF 1.1 Concepts and Abstract Syntax.
https://www.w3.org/TR/2014/REC-rdf11-

concepts-20140225/

RDF 1.1 XML Syntax. https://www.w3.org/
TR/rdf-syntax-grammar/.

[20] TEX StackExchange; ‘Package footmisc

causes pdfTEX error’. question asked October
2015. https://tex.stackexchange.com/
questions/268504/package-footmisc-

causes-pdftex-error/516607.

[21] TEX StackExchange; ‘Footnotes misbehaving
in report go to front page but behave
correctly in other report’. question
asked September 2014. https://tex.
stackexchange.com/questions/203439.

[22] CTAN archive: winfonts—a package to use
the basic Windows TrueType fonts. Package
and documentation by Paul Pichaureau, Paris,
January 2006. Comprehensive TEX Archive
Network. https://ctan.org/pkg/winfonts.

[23] CTAN archive: fix-winf—fixes for Windows
font usage with pdfLATEX. Package and
documentation by Ross Moore, December
2019. (to appear) Comprehensive TEX Archive
Network. https://ctan.org/pkg/fix-winf.

[24] CTAN archive: urw-arial—URW Arial
font pack for use with LATEX. Package and
documentation by Walter Schmidt, March
2006. https://ctan.org/pkg/urw-arial.

[25] TEX Live—document production system.
Distributed by TEX user groups worldwide,
since 1996. Major releases annually.
https://tug.org/texlive.

[26] Overleaf, Online LATEX Editor.
https://www.overleaf.com/about.

⋄ Ross Moore
Macquarie University
Sydney, Australia
ross.moore (at) mq dot edu dot au

Ross Moore

https://www.pdfa.org/resource/tagged-pdf-best-practice-guide-syntax/
https://www.pdfa.org/resource/tagged-pdf-best-practice-guide-syntax/
http://web.science.mq.edu.au/~ross/TaggedPDF/TUG2019-movies/
http://web.science.mq.edu.au/~ross/TaggedPDF/TUG2019-movies/
https://irma.nps.gov/DataStore/Reference/Profile/2260171
https://irma.nps.gov/DataStore/Reference/Profile/2260171
https://www.nps.gov/orgs/1778/index.htm
https://www.nps.gov/orgs/1778/index.htm
https://www.nps.gov/glac/learn/news/history-of-the-nps-arrowhead.htm
https://www.nps.gov/glac/learn/news/history-of-the-nps-arrowhead.htm
https://webaim.org/techniques/alttext/
https://accessibility.umn.edu/core-skills/alt-text
https://accessibility.umn.edu/core-skills/alt-text
https://www.adobe.com/products/xmp.html
https://www.adobe.com/products/xmp.html
https://www.adobe.com/devnet/pdf/pdf_reference.html
https://www.adobe.com/devnet/pdf/pdf_reference.html
http://www.iso.org/iso/catalogue_detail?csnumber=51502
http://www.iso.org/iso/catalogue_detail?csnumber=51502
https://www.iso.org/standard/63534.html
https://www.iso.org/standard/63534.html
https://acrobat.adobe.com/au/en/acrobat.html
https://acrobat.adobe.com/au/en/acrobat.html
https://helpx.adobe.com/au/acrobat/using/analyzing-documents-preflight-tool-acrobat.html
https://helpx.adobe.com/au/acrobat/using/analyzing-documents-preflight-tool-acrobat.html
https://helpx.adobe.com/au/acrobat/using/analyzing-documents-preflight-tool-acrobat.html
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/rdf-syntax-grammar/
https://www.w3.org/TR/rdf-syntax-grammar/
https://tex.stackexchange.com/questions/268504/package-footmisc-causes-pdftex-error/516607
https://tex.stackexchange.com/questions/268504/package-footmisc-causes-pdftex-error/516607
https://tex.stackexchange.com/questions/268504/package-footmisc-causes-pdftex-error/516607
https://tex.stackexchange.com/questions/203439
https://tex.stackexchange.com/questions/203439
https://ctan.org/pkg/winfonts
https://ctan.org/pkg/fix-winf
https://ctan.org/pkg/urw-arial
https://tug.org/texlive
https://www.overleaf.com/about

TUGboat, Volume 41 (2020), No. 2 243

TUG 2020 abstracts

Editor’s note: Videos are or will be available for
most presentations; links and other information at
tug.org/tug2020.

−− ∗ − −

TEX and LATEX: The user experience
Jonathan Fine

Where are we? How did we get here? What’s the
future? I’ll try to answer these questions, by looking
outward in both space and time.

Don Knuth started TEX in 1977. The present
version is a direct descendant of the 1982 version.
Only at the end of the 1980s did hard disc drives
cost less than $10 a megabyte. Today, for about
$100 I can buy a pocket computer that connects to
a ubiquitous network. It has gigabytes of solid state
storage. It fits in my pocket, more easily than a book.

Today software that implements Don Knuth’s
wonderful mathematical typesetting algorithm and
fonts can be downloaded for free. And this software
installs itself, and is interactive. In real time it
previews LATEX-encoded mathematics, as I type it.

My monitor is 40 inch, 3840x2160 with 24 bit
color. It’s no more expensive than a TV. (In fact,
it is a TV.) It cost about $450. It’s not my virtual
desktop. It’s my vertical desktop, about the same
size as my horizontal desktop.

As often as not, when I read beautifully typeset
mathematics, it’s on my vertical desktop, as part of
a web page. The only time I actually need a PDF is
to send a file to be printed. So that I can put it on
my horizontal desktop, and write on it with a pen.

And the interactive mathematical typesetting
software. It’s built on HTML5, and it’s called Math-
Jax. And the future of TEX and LATEX and our
community. To succeed, we have to change, and also
keep things the same. Linus Torvalds did something
much the same with Unix, to create Linux.

By the way, my wonderful pocket computer that
typesets mathematics. It’s also known as a mobile
phone, and it runs the Linux kernel.

Learning LATEX (and other languages) online
Jonathan Fine

Online education is suddenly more important, from
primary schools to research. This talk focuses on
beginners learning LATEX. We learn from what’s
already been done for other computer languages.

First I survey how to provide online LATEX type-
setting via a web browser. They are: LATEX as a
cloud service; LATEX running in the browser; Math-
Jax running in the browser.

Next, what to teach the student, and how. Teach-
ing is not the same as writing a reference manual.
It requires identifying core concepts, and presenting
them in a helpful manner and order. Students need
to test their understanding, and perhaps explore, be-
fore moving on. We consider LATEX from this point
of view.

At the school level, the Raspberry Pi Founda-
tion (RPF) (raspberrypi.org) is one of the leaders.
They offer many projects in HTML, CSS, JavaScript
and Python. They have strong connections with stu-
dents and teachers. They partner with Code Club
(CodeClub.org) and Future Learn (FutureLearn.
com). They provide many free resources. They run
education research seminars. And they design and
produce the Raspberry Pi.

Finally, we blend the experience of the RPF with
the task of learning and teaching LATEX, and conclude
with some problems, opportunities and challenges.
More information: jfine2358.github.io.

Teaching with LATEX and Overleaf
Paul Gessler

When universities and other schools closed campuses
to help reduce the spread of coronavirus, many profes-
sors and teachers quickly adapted to online teaching
by necessity. Likewise, students adapted to online
learning and found ways to collaborate with peers
while following social distancing guidelines. Overleaf,
an online writing platform for TEX, has proven help-
ful in many of these scenarios. This talk will provide
an overview of how Overleaf can be used most effec-
tively in an education context. Topics include: how
to effectively organize projects; suggested workflows
for sharing assignment templates and receiving com-
pleted assignments; using Overleaf’s reviewing tools
to collaborate and provide feedback on assignments.

The creative evolution of type specimens
Amelia Hugill-Fontanel

Type specimens have been produced from the earliest
days of Western printing history as commercial docu-
ments designed to sell printing type. Over the course
of five centuries, this publication genre has kept
pace with the needs of its consumers through inno-
vative change. This time-traveling tour will navigate
through the vast holdings of the RIT Cary Graphic
Arts Collection to explore the formats and features
that unfurl through the history of type specimens.

Bio: Amelia Fontanel is a curator at the RIT

Cary Graphic Arts Collection, a renowned library
that collects on design, typography, and the book
arts. As manager of the Cary technology collection,
she is responsible for teaching and maintaining over
30 different presses and thousands of fonts of metal

https://tug.org/tug2020
https://raspberrypi.org
https://CodeClub.org
https://FutureLearn.com
https://FutureLearn.com
https://jfine2358.github.io

244 TUGboat, Volume 41 (2020), No. 2

and wood type. She is actively involved in the in-
ternational printing community, holding executive
board positions with the American Printing History
Association and the Hamilton Wood Type and Print-
ing Museum.

TEX and global mathematics
Patrick Ion

TEX was developed as a way of communicating math-
ematics. It has been very successful for that and
much more. But TEX did not completely dominate
publishing, though it much expanded the commu-
nity able to write mathematics directly. MathML

(Mathematics Markup Language) was specified as a
markup for mathematics in the W3C (World Wide
Web Consortium) context; it is both officially part of
the web’s basic HTML and an ISO standard. The idea
that there should be a Global Digital Mathematics
Library (GDML) is an obvious one. There’s an In-
ternational Mathematical Knowledge Trust (IMKT)
devoted to eventually realizing a GDML, growing out
of efforts by the International Mathematical Union.
Some of how the present situation came to be and
what’s evolving now will be examined. For a his-
torical marker see my article MathML: A key to

math on the web, TUGboat 20:3 (1999), pp.167–175,
tug.org/TUGboat/tb20-3/tb64ion.pdf.

HarfBuzz in LuaLATEX
Marcel Krüger

Starting with TEX Live 2020, LuaLATEX uses the
luahbtex engine instead of luatex, and therefore
allows the use of HarfBuzz instead of the ConTEXt-
derived font shaper. This presentation tries to answer
some of the most important questions about this
change, e.g.,

• How does this affect existing documents?
• How can this system be used?
• How does this help typesetting of scripts with

which LuaLATEX has always had problems?
• Why would I want to use this even for

documents in scripts which are well supported
by the existing shaper?

• In which cases would you not want to use
HarfBuzz?

• How does this compare to X ETEX’s font
handling?

MetaPost-based, dynamic extensible
delimiters for LuaTEX
Marcel Krüger

TEX’s math mode has always had support for ex-
tensible delimiters which can grow according to the
content delimited by them, but these have been based
on vertically stacking repeated parts. While this can

often provide decent results, it leaves a lot to be de-
sired, especially for round or angle brackets. Given
that LuaTEX includes, with luamplib, a MetaFont-
derived system, it should be possible to dynamically
instantiate meta fonts with exactly the right delim-
iter size, without any restrictions regarding their
composition. This presentation shows one implemen-
tation of this, which builds on MetaType1/AlgoType
in order to output high quality, and potentially even
fully hinted, vector glyphs which properly integrate
into a modern LuaTEX document.

Pandoc for TEXnicians — TUG 2020 keynote
address
John MacFarlane

I will give an overview of the document conversion
program pandoc (pandoc.org), with an emphasis on
how it might be useful to people who are already
comfortable using LATEX to prepare documents. In
the first part, I’ll discuss the use of pandoc to convert
between LATEX and other common formats, including
Microsoft Word docx and HTML. In the second
part, I’ll give some reasons why even a seasoned
TEXnician might want to consider writing documents
in pandoc’s extended Markdown instead of LATEX,
and I’ll teach some tricks that can be used to recover
the tremendous power and flexibility of LATEX in this
simpler idiom.

CMaps, Virtual fonts, ActualText for
reliable text extraction and accessibility
Ross Moore

The single most critical factor for document content
to be accessible is that text can be extracted reliably
and accurately. For a PDF file, the CMap structure
gives a mapping of each character in a font to a
corresponding Unicode code point. The pdfTEX and
dvipdfmx engines have different ways to attach a
CMap resource to font instances within PDF files.
While it is a vital piece, the CMap is not the whole
story; since the same character from the same font
can be used in different ways. This is most apparent
in a “fake” small-caps font, where uppercase glyphs
are drawn from the same base font, but at reduced
size using the virtual font mechanism. By defining
a second virtual font instance, and attaching a cus-
tomised CMap file and map file entry, the lowercase
letters of a faked small-caps font can be correctly
extracted as lowercase Latin letters.

Accented Latin letters are often constructed
within virtual fonts by placing the accent first, then
the base. This is counter to Unicode where the com-
bining accent character comes after the base. By
rearranging the virtual font description this order
can be changed, allowing text-extraction of correctly

https://tug.org/TUGboat/tb20-3/tb64ion.pdf
https://pandoc.org

TUGboat, Volume 41 (2020), No. 2 245

accented characters. This fixes many difficulties with
a LATEX T1-encoded font, but some Extended Latin
characters still need further consideration. Using a
little-known trick of inserting DVI special commands
into the virtual font description, ActualText replace-
ment tagging can be encoded inside the virtual font,
allowing constructed characters to be mapped to
their proper Unicode point.

Making a new TEX Live release available
on Overleaf
Eric Mc Sween

Overleaf is an online collaborative editor for LATEX.
It produces PDF documents using a full TEX Live
installation to compile projects authored by its users.
Every year, when a new TEX Live version is released,
it needs to be integrated in Overleaf without breaking
existing projects that worked with previous TEX Live
versions. This talk will explain how this is done. We
will also take the opportunity to look at how the
compilation service works.

TEX Live 2020 news; texlive.info services
Norbert Preining

TEX Live 2020 has seen the usual bunch of fixes and
new version, but also one more significant change we
have been working on for a long time: the renaming
of containers to include the revision. The main aim
of this change was to make life of distributors who
rely on unique names easier. We will report a bit on
the necessary changes and its implications.

The second part of the talk will briefly introduce
the TEX-related services at texlive.info.

Authoring accessible documents, including
with TikZ diagrams
Thomas Price, Ross Moore

There are two parts to this presentation. Firstly,
Tom Price will describe a bundle of LATEX files de-
signed to build PDF/UA accessible documents from
LATEX sources using a pdfLATEX engine. The bun-
dle takes full advantage of the capabilities of the
pdfx.sty and tpdf.sty packages while requiring
minimal effort on the part of document authors.

Next, Ross Moore, author of pdfx.sty and
tpdf.sty, will discuss how tagging can be achieved
within a diagram created using tikz.sty package
methods. It is becoming increasingly common to
encounter images built this way, so it will be nec-
essary to tag the information in these, so that it
becomes accessible to readers with visual disabilities.
Ross will demonstrate some promising first steps in
this direction; in particular for a ‘SWOT analysis’
diagram.

Typesetting with Python
Brandon Rhodes

What would an algorithm look like that improves on
the TEX typesetting system’s scheme for breaking
a book’s text into pages? This talk explores a new
Python library for high quality typesetting that I
been crafting, and that I have already used to format
and print a short-run hardback book.

TopTeX, a new Q&A site for TEX
samcarter

TopTeX (TopAnswers.xyz/tex) is a new site for
questions and answers about TEX and friends. It is
part of the TopAnswers.xyz network, an open source
and not for profit project. Its development is focused
on the needs of the users and provides a friendly
environment for building a high quality repository
of knowledge.

The newest changes to newtx and its
relatives and codependents
Michael Sharpe

The newtx package has undergone very substantial
changes over the last couple of years, while striving to
remain backwardly compatible with earlier versions.
In this presentation, I’ll try to outline the motivations
behind the changes and make comparisons with other
general purpose LATEX math packages. Among the
codependency issues are problems in adapting a math
package to fit a text font package, and, to a lesser
extent, vice versa.

dePSFrag, the final nail in the coffin
Paulo Ney de Souza, Vadim Ponomarev

Annotation of graphics in TEX has always been a dif-
ficult subject. Solutions starting with WARMReader
and passing by PSFrag and pinlabel did not have
a path to more modern TEX engines (pdf-, xe- and
lua-). In this talk we present a framework for moving
the source files of the most common of all these pack-
ages — PSFrag — over to any other labelling desired
(pinLabel, Overpic, XYOverPic and TikZ), providing
a path for processing legacy content and allowing
more choices in production environments.

https://texlive.info
https://TopAnswers.xyz/tex
https://TopAnswers.xyz

246 TUGboat, Volume 41 (2020), No. 2

Die TEXnische Komödie 2–3/2020

Die TEXnische Komödie is the journal of DANTE e.V.,
the German-language TEX user group (dante.de).
Non-technical items are omitted.

Die TEXnische Komödie 2/2020

Herbert Voß, Die Eingabe von Sonderzeichen
[The entry of special characters]; pp. 6–16

The entry of special characters via the keyboard
is handled differently by the various systems. As a
rule, the user has no direct information about possi-
ble keyboard shortcuts, to reach certain characters,
for example the German opening and closing quotes —
differentiating these special characters from the char-
acter that is output by Shift+2. The latter is actually
only reserved for “programming”. In this article we
show a list of various special keys and how they are
entered on Windows, GNU/Linux and Mac OS.

Wolfgang Beinert, Schriftwahl [Font selection];
pp. 17–23

The choice of a suitable font has great impor-
tance in all sub-disciplines of typography. It not
only significantly influences the readability and aes-
thetics of a communication medium, it also causes
sustainable conclusions in the implementation. The
goal of professional font selection is to find typefaces
which are ideally suited for a certain task and for a
certain medium without creating opportunity costs
in typesetting, in production, in publication, in legal
consequences, or for the recipient.

Lukas C. Bossert, Mit biber –tool

Bibliografieeinträge bearbeiten [Edit bibliography
entries with biber –tool]; pp. 24—32

There are several programs that can be used
to edit bib files (JabRef, BibDesk, etc.). However,
if one would like to create bibliography entries in
an automated process, another tool is needed. This
article shows how to use biber in tool mode to edit
bib files of any size.

Herbert Voß, Eine weitere Schrift für Menschen
mit Leseschwäche [Another font for people with
reading difficulties]; pp. 33–35

Digital fonts for people with reading difficulties
are rare. In this article a new font is introduced.

Lukas C. Bossert, Kommentieren und
Dokumentieren von Code [Different ways to
comment and document code]; pp. 36–48

This article is dedicated to Herbert Voß on the
occasion of his farewell from the editors of the DTK.
In his position at the editorial office or in seminars
or on TeX.SE he has helped not only me but many
others with helpful comments regarding LATEX.

Herbert Voß, Kommaseparierte Listen als
Tabellen und Grafiken darstellen [Comma-separated
lists represented as tables and graphics]; pp. 49–54

We show how to typeset a list of comma sep-
arated values (CSV) as a table with the help of
pgfplotstable, and as a graphic using pgfplots.

Die TEXnische Komödie 3/2020

Doris Behrendt, Mario Haustein, Johannes

Hielscher, Nils Pickert, Henning Hraban

Ramm, CCCamp19; pp. 23–26
Report on the DANTE presence at the Chaos

Communication Camp 2019 of the Chaos Computer
Clubs (CCC) in the Mildenberg brick park.

Alexander Krumeich, n-doc – ein
LATEX-basiertes Verfahren für IT-Sicherheitszertifi-
zierungen [n-doc — a LATEX-based procedure for IT

security certifications]; pp. 37–48
Devices and software in the environment of the

telematics infrastructure of healthcare systems (TI)
must meet high safety standards. In the case of the
eHealth connector for connecting doctors’ practices
and hospitals to the TI, this requires certification
according to Common Criteria (CC) by the Federal
Office for Security in Information Technology (BSI).

Pascal Braband, Professionell präsentieren mit
der Beamer-Klasse [Professional presentation with
the beamer class]; pp. 48–51

LATEX in combination with the beamer class pro-
vides a powerful tool to create impressive professional
(scientific) presentations. But when it comes to the
actual presentation of these presentations, the possi-
bilities are often limited. As a standard feature often
only a simple PDF viewer is available, with which the
slides can be displayed. This may be sufficient for
simple presentations, but for more complex, longer
presentations, more functions may be useful. Exactly
for these requirements there are a few programs that
are specialized to professionally present PDF files
made with the beamer class. Three such solutions
are presented in this article.

Herbert Voß, Chaotische Symmetrien mit Lua
berechnet [Chaotic symmetries calculated with
Lua]; pp. 51–57

Symmetries in chaos can be particularly well
displayed graphically. Using TEXLua as a program,
it does not even require the installation of the script
language Lua, which is installed by default in a full
installation of TEX. The graphics can be processed
from a LATEX document as well as externally with
TEXLua.

[Received from Herbert Voß.]

TUGboat, Volume 41 (2020), No. 2 247

Zpravodaj 2020/1–2

Zpravodaj is the journal of CSTUG, the TEX user
group oriented mainly but not entirely to the Czech
and Slovak languages. The full issue can be down-
loaded at cstug.cz/bulletin.

The issue includes several pages of photos from
a visit to Don Knuth’s home during TUG 2020, and
Don’s visit to Brno. Also, videos for the q&a sessions
at Brno (item below) are linked at tug.org/videos.

Petr Sojka, Úvodńık staronového předsedy
[Introductory words from the once and future
president]; pp. 1–11

This editorial introduces the content of the issue,
and the author gives some personal reminiscences
about Don’s trips, together with reporting on the
recent visit of the Grand Wizard to Brno.

Go forth and participate in CSTUG to make the
bright future of TEX & Friends a reality! You can!

Marian Genčev, Vı́cejazyčné pseudonáhodné
generováńı ṕısemných test̊u z databáźı
[Multilingual pseudorandomly generated
tests from databases]; pp. 12–47

The aim of this paper is the description of the
class ngt.cls that was created to simplify the prepa-
ration of written tests for educators with common
user knowledge of LATEX. The described simplifica-
tion consists mainly of pseudo-random generation
of tests from a prepared database of problems. Fur-
ther advantages of the created system include the
ease of control for the end user and the possibility of
creating a version with or without results. Writing
the problems in the database file is designed to work
with any number of language versions in a single
source file, with easy switching between them.

V́ıt Novotný, Markdown 2.8.1: Směle k tr̊unu
odlehčeného značkováńı v TEXu [Markdown 2.8.1:
Boldly unto the throne of lightweight markup in
TEX]; pp. 48–56

Markdown is a lightweight markup language
that makes it easy to write structurally simple docu-
ments. Existing tools for rendering markdown docu-
ments to PDF treat TEX as a black box. In contrast,
the Markdown package provides support for styling
and typesetting markdown documents inside TEX,
extending a TEXie’s toolbox rather than forcing them
to replace TEX with a more limited tool.

Since its release in 2016, the package has re-
ceived several important updates improving the func-
tionality and user experience. In this article, I will
reintroduce the package, and describe its new func-
tionality and documentation.

Jan Šustek, Zpracováńı dat z tabulkového
editoru TEXem [Processing spreadsheet data in
TEX]; pp. 57–63

In the paper we show a way to read and process
spreadsheet data in TEX. The macros are described
in detail, allowing readers to create simple macros
easily. We also show a three-line macro for inserting
a whole table into a TEX document.

Tomáš Szaniszlo, Dva bloky otázok a odpoved́ı
od Donalda Knutha na FI MU [Two questions
and answer sessions by Donald Knuth at FI MU];
pp. 64–97

In October 2019 the Faculty of Informatics,
Masaryk University hosted Donald Knuth as a guest
who led two question and answer sessions for the
occasion, dedicated to the themes of computer sci-
ence and art. Following some background on these
lectures, you can find their transcripts in this article.

Peter Wilson, Mělo by to fungovat IX –
Opakováńı textu [It Might Work IX — Repetition
of text]; pp. 98–104

[Printed in TUGboat 34:1.
Translated to Czech by Jan Šustek.]

[Received from Vı́t Novotný.]

Editor’s note: The following questions were among
those asked during the two Q&A sessions with Don
Knuth (item noted above).

Session 1
• What is your favorite problem in Computer Sci-

ence?
• Do you still write any code? If so, why and what

computer language?
• Did you try to write a program for a quantum

computer?
• What was your subject in your PhD thesis?
• What do you think about Artificial Intelligence?
• Could you tell us the story of TEX from the very

beginning to implementation?
• What would you advise to your 25-year-old self?
• Is it too late for 20-year-old students to start

learning real mathematics and programming?
• Biggest challenge of becoming a good program-

mer?
• Do you prefer screen and keyboard or paper and

pencil?

Session 2
• P vs. NP (reprise)
• What’s your idea about limits, the capacity of

the human mind?
• Compatibility problem between musical styles

in Fantasia Apocalyptica?

Zpravodaj 2020/1–2

248 TUGboat, Volume 41 (2020), No. 2

• Tabs or spaces? Vim or Emacs?
• What is the worst code you have ever seen?
• Any problems you gave up on trying to solve?
• Can you elaborate your stance on

software patents?
• What would you like to redo?
• If you had the ability to write CWEB or WEB again

today, would you do anything differently?
• What kind of organ do you have at home?

Photos courtesy of Zpravodaj;
credits to Martina Morávková and Petr Sojka.

Don Knuth playing on his home organ.

Type case with mementos (Don’s home).

Don in his office.

Dragon curve (with error) in entrance hall (Don’s home).

P 6= NP?, lecture of 2019-10-08, FI MU.

Signing after the lecture.

Preparing for Fantasia Apocalyptica concert, 2019-11-10.

TUGboat, Volume 41 (2020), No. 2 249

TheTreasure Chest

These are the new packages posted to CTAN (ctan.
org) from March–August 2020, along with a few
notable updates. Descriptions are based on the an-
nouncements and edited for extreme brevity.

Entries are listed alphabetically within CTAN

directories. More information about any package
can be found at ctan.org/pkg/pkgname. A few
entries which the editors subjectively believe to be
of especially wide interest or otherwise notable are
starred (*); of course, this is not intended to slight
the other contributions.

We hope this column helps people access the vast
amount of material available through CTAN and the
distributions. See also ctan.org/topic. Comments
are welcome, as always.

⋄ Karl Berry

tugboat (at) tug dot org

fonts

charissil in fonts

CharisSIL fonts with LATEX support.
courierten in fonts

Courier 10 Pitch BT with LATEX support.
ektype-tanka in fonts

Devanagari fonts from EkType.
helmholtz-ellis-ji-notation in fonts

Inline microtonal just intonation accidentals.
ibarra in fonts

Ibarra Real Nova fonts, with LATEX support.
kpfonts-otf in fonts

OpenType implementation of kpfonts for
LuaTEX and X ETEX.

* notomath in fonts

Math support for Noto fonts via newtxmath.

graphics

bookshelf in fonts

Create a nice image from a BibTEX file.
commutative-diagrams in graphics/pgf/contrib

Commutative diagrams using TikZ.
dpcircling in graphics/pgf/contrib

Decorated text boxes using TikZ.
nimsticks in graphics/pgf/contrib

Draws sticks for multi-pile Nim games.
tikz-lake-fig in graphics/pgf/contrib

Schematic diagrams of lakes.
tikz-planets in graphics/pgf/contrib

Illustrate celestial mechanics and the
solar system.

tikzpackets in graphics/pgf/contrib

Display network packets.

info

dtk-bibliography in info

Bibliography for Die TEXnische Komödie, the
journal of the German-speaking TEX user
group.

install-latex-guide-zh-cn in info

Introduction to LATEX installation, in Chinese.
* tex-nutshell in info

Concise document about principles of TEX.
tlmgrbasics in info

Commonly-used actions and options for tlmgr.

language/japanese

jlreq-deluxe in language/japanese

Multi-weight Japanese font support for jlreq.

language/marathi

marathi in language/marathi

Marathi language support, for X ELATEX and
LuaLATEX.

macros/generic

expkv-cs in macros/generic

Define expandable key=val macros using
expkv.

expkv-opt in macros/generic

Parse class and package options using expkv.
namedef in macros/generic

TEX definitions with named parameters.

macros/latex/contrib

akshar in macros/latex/contrib

Support for syllables in Devanagari.
algpseudocodex in macros/latex/contrib

Typeset pseudocode, based on algorithmicx.
annee-scolaire in macros/latex/contrib

Typeset the French academic year.
anonymous-acm in macros/latex/contrib

Make anonymous versions of ACM articles.
antanilipsum in macros/latex/contrib

Italian supercazzole in Amici Miei style.
bubblesort in macros/latex/contrib

Configurable bubble sort implementation.
ccool in macros/latex/contrib

Encoding notational conventions.
chhaya in macros/latex/contrib

Linguistic glossing in Marathi.
conditext in macros/latex/contrib

Define and manage conditional content.

macros/latex/contrib/conditext

250 TUGboat, Volume 41 (2020), No. 2

diabetes-logbook in macros/latex/contrib

Logbook for people with type one diabetes.
edichokey in macros/latex/contrib

Typeset dichotomous identification keys.
endnotes-hy in macros/latex/contrib

Patch endnotes for correct hyperlink anchors.
epigraph-keys in macros/latex/contrib

Epigraphs with key/value interface.
exesheet in macros/latex/contrib

Typesetting exercise or exam sheets.
frpseudocode in macros/latex/contrib

French translation of algorithmicx.
glossaries-nynorsk in macros/latex/contrib

Norwegian Nynorsk support for glossaries.
hvarabic in macros/latex/contrib

Macros for right-to-left typesetting.
ltx4yt in macros/latex/contrib

Play YouTube videos in the default browser.
media4svg in macros/latex/contrib

Multimedia inclusion for dvisvgm.
membranecomputing in macros/latex/contrib

Membrane computing notation.
menucard in macros/latex/contrib

Typesetting simple menus.
mercatormap in macros/latex/contrib

Spherical Mercator coordinate systems and
Web Mercator tile integration.

metanorma in macros/latex/contrib

Metanorma standardization documents.
mlmath in macros/latex/contrib

Math notation for machine learning.
musical in macros/latex/contrib

Typeset (musical) theatre scripts.
qrbill in macros/latex/contrib

Create QR bills per Swiss payment standards.
readablecv in macros/latex/contrib

Attractive CV and letter class.
schooldocs in macros/latex/contrib

Variety of layout styles for school documents.
semantex in macros/latex/contrib

Object-oriented mathematics.
shtthesis in macros/latex/contrib

Unofficial thesis template for ShanghaiTech U.
tile-graphic in macros/latex/contrib

Generate tiles of an image.
utf8add in macros/latex/contrib

Additional support for UTF-8 LATEX input,
including math.

vcell in macros/latex/contrib

Vertical alignment of content inside table cells.
verifiche in macros/latex/contrib

Typeset Italian high school tests.
willowtreebook in macros/latex/contrib

Easy book class, built on memoir.

macros/latex/contrib/beamer-contrib

beamerappendixnote in m/l/c/beamer-contrib

Create notes on appendix frames in Beamer.
beamertheme-pure-minimalistic in

m/l/c/b-c/themes

Minimalist Beamer theme.
beamerthemenord in m/l/c/b-c/themes

Beamer theme using the Nord color scheme

macros/latex/contrib/biblatex-contrib

biblatex-software in m/l/c/biblatex-contrib

BibLATEX styles for software.
biblatex-unified in m/l/c/biblatex-contrib

Unified stylesheet for linguistics journals.
biblatex-vancouver in m/l/c/biblatex-contrib

Vancouver style for BibLATEX.

macros/luatex

lua-uni-algos in macros/luatex/generic

Unicode algorithms for LuaTEX.

macros/luatex/latex

ekdosis in macros/luatex/latex

TEI XML-compliant critical editions.
emojicite in macros/luatex/latex

Add emojis to citations.
luaprogtable in macros/luatex/latex

Programmable table interface for LuaLATEX.
unitconv in macros/luatex/latex

Convert a length with one unit into another.

macros/plain

* zztex in macros/plain/contrib

Full-featured TEX macro package for books,
journals, manuals, more.

support

git-latexdiff in support

Call latexdiff on two Git revisions of a file.
spix in support

Yet another TEX compilation tool: simple,
human readable, no option, no magic.

tikztosvg in support

Shell script to render TikZ to SVG.
xml2pmx in support

Convert MusicXML to PMX and MusiXTEX.

web

pwebmac in web

Consolidated WEB macros for both DVI and
PDF output.

m/l/c/beamer-contrib/beamerappendixnote

2020

Sep 6 – 12 14th International ConTEXt Meeting,
Prague-Sibřina, Czech Republic.
meeting.contextgarden.net/2020

Sep 13 – 18 XML Summer School, St Edmund Hall,
Oxford University, Oxford, UK.
xmlsummerschool.com

Sep 24 – 27 Ladies of Letterpress #9 is online.
ladiesofletterpress.com/conference

Sep 29 –
Oct 2

20th ACM Symposium on Document
Engineering, to be held online.
doceng.org/doceng2020

Oct 15 TUGboat 41:3, submission deadline.

Oct 27 – 31 Association Typographique Internationale,
ATypI All Over, www.atypi.org

Nov 5 – 8 AwayzGoose, an online gathering
for lovers of type and letterpress,
Hamilton Wood Type &
Printing Museum and

American Printing History Association,
Two Rivers, Wisconsin.
woodtype.org/pages/wayzgoose

2021

Mar 1 TUG election: nominations due,
07:00 a.m.PST. tug.org/election

Mar 1 TUGboat 42:1, submission deadline.

Mar 10 – 12 DANTE 2021 Frühjahrstagung and

64th meeting, 32 Jahre DANTE e.V.,
Otto-von-Guericke Universität,
Magdeburg, Germany.
www.dante.de/veranstaltungen

May 2 – 5 CODEX VIII, “EXTRACTION:
Art on the Edge of the
Abyss”, Richmond, California.
www.codexfoundation.org

TUGboat, Volume 41 (2020), No. 2 251

Calendar

Jun ? –
Jul ?

TypeParis21, intensive type design
program,
Paris, France. typeparis.com

Jun 30 –
Jul 2

Nineteenth International Conference
on New Directions in the Humanities,
“Critical Thinking, Soft Skills,
and Technology”,
Universidad Complutense Madrid, Spain.
thehumanities.com/2021-conference

Jul ?? International Society for the History and
Theory of Intellectual Property (ISHTIP),

12th Annual Workshop,
“Landmarks of Intellectual Property”.
Bournemouth University, UK.
www.ishtip.org/?p=1027

Jul 20 – 21 Centre for Printing History & Culture,
CPHC/Print Networks Conference,
“A visitor attraction: printing
for tourists”,
Appleby-in-Westmorland, Cumbria, UK.
www.cphc.org.uk/events

Jul 26 – 30 Digital Humanities 2021, Alliance of
Digital Humanities Organizations,
Tokyo, Japan. adho.org/conference

Aug 2 – 6 Balisage: The Markup Conference,
Rockville, Maryland. www.balisage.net

Aug 18 – 22 TypeCon 2021,
Philadelphia, Pennsylvania.
typecon.com

Sep 10 The Updike Prize for Student Type Design,
application deadline, 5:00 p.m. EST.
Providence Public Library,
Providence, Rhode Island.
prov.pub/updikeprize

Oct 1 – 3 Oak Knoll Fest XXI,
“Women in the Book Arts”,
New Castle, Delaware.
www.oakknoll.com/fest

Owing to the COVID-19 pandemic, schedules may change. Check the websites for details.

Status as of 15 August 2020

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568, email: office@tug.org). For events sponsored by
other organizations, please use the contact address provided.

User group meeting announcements are posted at tug.org/meetings.html. Interested
users can subscribe and/or post to the related mailing list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.html.

https://ctan.org
https://ctan.org
https://ctan.org/pkg/
https://ctan.org/topic
https://ctan.org/pkg/charissil
https://ctan.org/pkg/courierten
https://ctan.org/pkg/ektype-tanka
https://ctan.org/pkg/helmholtz-ellis-ji-notation
https://ctan.org/pkg/ibarra
https://ctan.org/pkg/kpfonts-otf
kpfonts
https://ctan.org/pkg/diabetes-logbook
https://ctan.org/pkg/edichokey
https://ctan.org/pkg/endnotes-hy
endnotes
https://ctan.org/pkg/epigraph-keys
https://ctan.org/pkg/exesheet
https://ctan.org/pkg/frpseudocode
algorithmicx
https://ctan.org/pkg/glossaries-nynorsk
glossaries
https://ctan.org/pkg/hvarabic
https://ctan.org/pkg/ltx4yt
https://ctan.org/pkg/media4svg
dvisvgm
https://ctan.org/pkg/membranecomputing
https://ctan.org/pkg/menucard
https://ctan.org/pkg/mercatormap
https://ctan.org/pkg/metanorma
https://ctan.org/pkg/mlmath
https://ctan.org/pkg/musical
https://ctan.org/pkg/qrbill
https://ctan.org/pkg/readablecv
https://ctan.org/pkg/schooldocs
https://ctan.org/pkg/semantex
https://ctan.org/pkg/shtthesis
https://ctan.org/pkg/tile-graphic
https://ctan.org/pkg/utf8add
https://ctan.org/pkg/vcell
https://ctan.org/pkg/verifiche
https://ctan.org/pkg/willowtreebook
memoir
https://ctan.org/pkg/beamerappendixnote
https://ctan.org/pkg/beamertheme-pure-minimalistic
https://ctan.org/pkg/beamerthemenord
https://ctan.org/pkg/biblatex-software
https://ctan.org/pkg/biblatex-unified
https://ctan.org/pkg/biblatex-vancouver
https://ctan.org/pkg/lua-uni-algos
https://ctan.org/pkg/ekdosis
https://ctan.org/pkg/emojicite
https://ctan.org/pkg/luaprogtable
https://ctan.org/pkg/unitconv

252 TUGboat, Volume 41 (2020), No. 2

2021 TEX Users Group election

TUG Elections Committee

The terms of TUG President and ten other members of
the Board of Directors will expire as of the 2021 Annual
Meeting, expected to be held in July or August 2021.

The terms of these directors will expire in 2021:
Karl Berry, Johannes Braams, Kaja Christiansen,
Taco Hoekwater, Klaus Höppner, Frank Mittelbach,
Ross Moore, Arthur Rosendahl, Will Robertson,
Herbert Voß.

Continuing directors, with terms ending in 2023:
Barbara Beeton, Jim Hefferon, Norbert Preining.

The election to choose the new President and Board
members will be held in early Spring of 2021. Nomina-
tions for these openings are now invited. A nomination
form is on this page; forms may also be obtained from
the TUG office or via tug.org/election.

The Bylaws provide that “Any member may be
nominated for election to the office of TUG President/
to the Board by submitting a nomination petition in
accordance with the TUG Election Procedures. Election
. . . shall be by . . . ballot of the entire membership, carried
out in accordance with those same Procedures.”

The name of any member may be placed in nomina-
tion for election to one of the open offices by submission
of a petition, signed by two other members in good stand-
ing, to the TUG office; the petition and all signatures
must be received by the deadline stated below. A can-
didate’s membership dues for 2021 must be paid before
the nomination deadline. The term of President is two
years, and the term of TUG Board member is four years.

An informal list of guidelines for TUG board mem-
bers is available at tug.org/election/guidelines.html.
It describes the basic functioning of the TUG board,
including roles for the various offices and ethical consid-
erations. The expectation is that all board members will
abide by the spirit of these guidelines.

Requirements for submitting a nomimation are listed
at the top of the form. The deadline for receipt of com-
pleted nomination forms and ballot information is

07:00 a.m. PST, 1 March 2021

at the TUG office in Portland, Oregon, USA. No excep-
tions will be made. Forms may be submitted by fax, or
scanned and submitted by email to office@tug.org; re-
ceipt will be confirmed by email. In case of any questions
about a candidacy, the full TUG Board will be consulted.

Information for obtaining ballot forms from the TUG

website will be distributed by email to all members within
21 days after the close of nominations. It will be possible
to vote electronically. Members preferring to receive a
paper ballot may make arrangements by notifying the
TUG office; see address on the form. Marked ballots must
be received by the date noted on the ballots.

Ballots will be counted by a disinterested party not
affiliated with the TUG organization. The results of the
election should be available by mid-April, and will be
announced in a future issue of TUGboat and through
various TEX-related electronic media.

2021 TUG Election—Nomination Form

Eligibility requirements:

• TUG members whose dues for 2021 have been paid.

• Signatures of two (2) members in good standing at
the time they sign the nomination form.

• Supplementary material to be included with the
ballot: passport-size photograph, a short biography,
and a statement of intent. The biography and state-
ment together may not exceed 400 words.

• Names that cannot be identified from the TUG mem-
bership records will not be accepted as valid.

The undersigned TUG members propose the nomination of:

Name of Nominee:

Signature:

Date:

for the position of (check one):

� TUG President

� Member of the TUG Board of Directors

for a term beginning with the 2021 Annual Meeting.

1.
(please print)

(signature) (date)

2.
(please print)

(signature) (date)

Return this nomination form to the TUG office via postal
mail, fax, or scanned and sent by email. Nomination
forms and all required supplementary material (photo-
graph, biography and personal statement for inclusion
on the ballot, dues payment) must be received at the
TUG office in Portland, Oregon, USA, no later than

07:00 a.m. PST, 1 March 2021.

It is the responsibility of the candidate to ensure
that this deadline is met. Under no circumstances will
late or incomplete applications be accepted.

Supplementary material may be sent separately from
the form, and supporting signatures need not all appear
on the same physical form.

� 2021 membership dues paid
� nomination form
� photograph
� biography/personal statement

TEX Users Group
Nominations for 2021 Election

P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

(email: office@tug.org; fax: +1 815 301-3568)

TUGboat, Volume 41 (2020), No. 2 253

TUG

Institutional

Members

TUG institutional members

receive a discount on multiple

memberships, site-wide electronic

access, and other benefits:

tug.org/instmem.html

Thanks to all for their support!

Adobe Inc., San Jose, California

American Mathematical Society,

Providence, Rhode Island

Association for Computing

Machinery, New York, New York

Aware Software, Newark, Delaware

Center for Computing Sciences,

Bowie, Maryland

CSTUG, Praha, Czech Republic

Duke University Press,

Durham, North Carolina

Harris Space and Intelligence

Systems, Melbourne, Florida

Hindawi Foundation, London, UK

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

Maluhy & Co., São Paulo, Brazil

Marquette University,

Milwaukee, Wisconsin

Masaryk University,

Faculty of Informatics,

Brno, Czech Republic

Nagwa Limited, Windsor, UK

New York University,

Academic Computing Facility,

New York, New York

Overleaf, London, UK

StackExchange,

New York City, New York

Stockholm University,

Department of Mathematics,

Stockholm, Sweden

TEXFolio, Trivandrum, India

Université Laval,

Ste-Foy, Québec, Canada

University of Ontario,

Institute of Technology,

Oshawa, Ontario, Canada

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway

VTEX UAB, Vilnius, Lithuania

Science is what we understand well enough to explain to a
computer. Art is everything else we do.

— Donald E. Knuth

stmdocs
the confluence of art and science of text

processing in the cloud!

◦ empowering authors to self-publish

◦ assisted authoring

◦ TEXFolio — the complete journal
production in the cloud

◦ NEPTUNE — proofing framework for
TEX authors

S T M D O C U M E N T E N G I N E E R I N G P V T LT D
Trivandrum • India 695571 • www.stmdocs.in • info@stmdocs.in

1

254 TUGboat, Volume 41 (2020), No. 2

Find out more at www.overleaf.com

A free online LaTeX and Rich Text

collaborative writing and publishing tool

Features include:

• Cloud-based platform: all you need is a web browser. No

software to install. Prefer to work offline? No problem - stay in
sync with Github or Dropbox

• Complementary Rich Text and LaTeX modes: prefer to see
less code when writing? Or love writing in LaTeX? Easy to
switch between modes

• Sharing and collaboration: easily share and invite colleagues
& co-authors to collaborate

• 1000’s of templates: journal articles, theses, grants, posters,
CVs, books and more – simply open and start to write

• Simplified submission: directly from Overleaf into many
repositories and journals

• Automated real-time preview: project compiles in the
background, so you can see the PDF output right away

• Reference Management Linking: multiple reference tool linking
options – fast, simple and correct in-document referencing

• Real-time Track Changes & Commenting: with real-time
commenting and integrated chat - there is no need to switch to
other tools like email, just work within Overleaf

• Institutional accounts available: with custom institutional

web portals

Overleaf makes the whole process of writing, editing and
publishing scientific documents much quicker and easier.

TUG 2019 Sponsor

Adobe.com/go/acrobat

Available on any device.

The information here comes from the consultants
themselves. We do not include information we
know to be false, but we cannot check out any of
the information; we are transmitting it to you as it
was given to us and do not promise it is correct.
Also, this is not an official endorsement of the
people listed here. We provide this list to enable
you to contact service providers and decide for
yourself whether to hire one.

TUG also provides an online list of consultants
at tug.org/consultants.html. If you’d like to be
listed, please see there.

Dangerous Curve

+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

We are your macro specialists for TEX or LATEX
fine typography specs beyond those of the average
LATEX macro package. We take special care to
typeset mathematics well.

Not that picky? We also handle most of your
typical TEX and LATEX typesetting needs.
We have been typesetting in the commercial and

academic worlds since 1979.
Our team includes Masters-level computer

scientists, journeyman typographers, graphic
designers, letterform/font designers, artists, and a
co-author of a TEX book.

Dominici, Massimiliano

Email: info (at) typotexnica.it

Web: http://www.typotexnica.it
Our skills: layout of books, journals, articles;
creation of LATEX classes and packages; graphic
design; conversion between different formats of
documents.

We offer our services (related to publishing in
Mathematics, Physics and Humanities) for
documents in Italian, English, or French. Let us
know the work plan and details; we will find a
customized solution. Please check our website
and/or send us email for further details.

TUGboat, Volume 41 (2020), No. 2 255

TEXConsultants

Latchman, David

2005 Eye St. Suite #6
Bakersfield, CA 93301
+1 518-951-8786
Email: david.latchman (at)

texnical-designs.com

Web: http://www.texnical-designs.com
LATEX consultant specializing in the typesetting of
books, manuscripts, articles, Word document
conversions as well as creating the customized
LATEX packages and classes to meet your needs.
Contact us to discuss your project or visit the
website for further details.

Monsurate, Rajiv

India
Email: tex (at) rajivmonsurate.com

Web: https://www.rajivmonsurate.com
I have over two decades of experience with LATEX
in STM publishing working with full-service
suppliers to the major academic publishers. I’ve
built automated typesetting and conversion
systems with LATEX and rendered TEX support for
a major publisher.
I offer design, typesetting and conversion

services for self-publishing authors. I can help with
LATEX class/package development, conversion tools
and training for publishers and typesetters for
book and journal production. I can also help with
full-stack web development.

Sofka, Michael

8 Providence St.
Albany, NY 12203
+1 518 331-3457
Email: michael.sofka (at) gmail.com

Personalized, professional TEX and LATEX
consulting and programming services.
I offer 30 years of experience in programming,

macro writing, and typesetting books, articles,
newsletters, and theses in TEX and LATEX:
Automated document conversion; Programming in
Perl, Python, C, C++, R and other languages;
Writing and customizing macro packages in TEX or
LATEX, knitr.

If you have a specialized TEX or LATEX need,
or if you are looking for the solution to your
typographic problems, contact me. I will be happy
to discuss your project.

Veytsman, Boris

132 Warbler Ln.
Brisbane, CA 94005
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net
TEX and LATEX consulting, training, typesetting
and seminars. Integration with databases,
automated document preparation, custom LATEX
packages, conversions (Word, OpenOffice etc.) and
much more.

I have about two decades of experience in TEX
and three decades of experience in teaching &
training. I have authored more than forty packages
on CTAN as well as Perl packages on CPAN

and R packages on CRAN, published papers in
TEX-related journals, and conducted several
workshops on TEX and related subjects. Among
my customers have been Google, US Treasury,
FAO UN, Israel Journal of Mathematics, Annals of
Mathematics, Res Philosophica, Philosophers’
Imprint, No Starch Press, US Army Corps of
Engineers, ACM, and many others.

We recently expanded our staff and operations
to provide copy-editing, cleaning and
troubleshooting of TEX manuscripts as well as
typesetting of books, papers & journals, including
multilingual copy with non-Latin scripts, and more.

256 TUGboat, Volume 41 (2020), No. 2

Warde, Jake

Forest Knolls, CA, 94933, USA
+1 650-468-1393
Email: jwarde (at) wardepub.com

Web: http://myprojectnotebook.com
I have been in academic publishing for 30+ years.
I was a Linguistics major at Stanford in the
mid-1970s, then started a publishing career. I
knew about TEX from Computer Science editors at
Addison-Wesley who were using it to publish
products. Beautiful, I loved the look. Not until I
had immersed myself in the production side
of academic publishing did I understand the
contribution TEX brings to the reader experience.

Long story short, I started using TEX for
exploratory projects (see the website referenced)
and want to contribute to the community. Having
spent a career evaluating manuscripts from many
perspectives, I am here to help anyone who seeks
feedback on their package documentation. It’s a
start while I expand my TEX skills.

Reports and notices

118 TUG 2020 conference information

120 Barbara Beeton / Random musings on TUG 2020 online

121 David Walden / Observations on the TEX Users Group’s 41st Annual Conference—
TUG 2020 in the COVID-19 era

123 Paulo Ney de Souza / TUG 2020: A report and future recommendations

127 Paulo Ney de Souza / Interview with Javier Bezos
• live interview with Javier Bezos, maintainer of Babel and other packages

132 Paulo Ney de Souza / Interview with Philip Kime
• live interview with Philip Kime, Jungian psychoanalyst and maintainer of Biber and BibLATEX

126 Jonathan Fine / TEX conferences and General Meetings, this year and next

243 TUG 2020 abstracts (Fine, Hugill-Fontanel, Gessler, Ion, Krüger, MacFarlane, Moore, Mc Sween,
Preining, Price, Rhodes, samcarter, Sharpe, de Souza)

246 From other TEX journals: Die TEXnische Komödie 2–3/2020; Zpravodaj 2020/1–2

251 Calendar

252 TUG Elections committee / TUG 2021 election

253 Institutional members

253 TUG 2020 sponsors

255 TEX consulting and production services

TUGBOAT Volume 41 (2020), No. 2

Introductory

155 Jennifer Claudio / Typographical explorations in two unicase alphabets
• consideration of written emotion in scripts that do not distinguish case

196 Susan DeMeritt, Cheryl Ponchin / Presenting our LATEX workshop online
• preparation of videos and syllabus for the TUG 2020 workshop

194 Jim Hefferon / A first set of LATEX packages
• one recommended package per general area, covering most of what beginners need

171 Astrid Schmölzer and Sarah Lang / Empowerment and teaching LATEX
• four quick lessons for those interested in empowering new users, especially in the humanities

Intermediate

185 Takuto Asakura / The design concept for llmk—Light LATEX Make
• simple, explicit workflow specification via TOML

249 Karl Berry / The treasure chest
• new CTAN packages, March–August 2020

197 David Carlisle, Paulo Roberto Massa Cereda, Joseph Wright / learnlatex.org:
Taking LATEX training fully interactive

• new tutorial site, with LATEX running directly from the web pages

168 Paulo Cereda / TEX in church: A typographical adventure
• creating songsheets and booklets with LilyPond and LuaTEX

199 Jennifer Claudio / A review of learnlatex.org
• examination of this new web site for guiding creation of first documents

157 Peter Flynn / Your personal LATEX bookshelf: Improving your background in a time of lockdown
• randomized sizes and colors for book spines from BibTEX sources

182 Island of TEX / The Island of TEX: Developing abroad, your next destination
• overview of development projects at https://gitlab.com/islandoftex

173 Sarah Lang / Didactical reduction versus references: How to better teach LATEX
• tech privilege, tacit knowledge, and working between beginner and mastery

145 Steven Matteson / The road to Noto
• from the Rosetta Stone, through polyglot bibles and Droid, to Noto

179 Boris Veytsman / Using Overleaf for collaborative projects: First impressions and lessons learned
• using Overleaf and git together for metacomments and version control

160 David Walden / Noticing history—a personal view
• how practitioners can help preserve and document primary sources and other computing history

Intermediate Plus

188 Patrick Gundlach / Typesetting product catalogs and other database-driven documents with
the speedata Publisher

• flexible XML-based publishing from LuaTEX, without TEX macros

215 William Hammond / Why the LATEX community should care about SGML

• benefits of using SGML over XML for LATEX processing; need for SGML library maintenance

139 Hussain KH, Rajeesh KV, Aravind Rajendran / Beyond Roman fonts: Extra dimensions in Malayalam fonts
• supporting the unusually large descender space needed for Malayalam, and the Rachana font design

201 Frank Mittelbach & the LATEX Project Team / Quo vadis LATEX(3) Team—A look back and at the upcoming years
• the last 30 years, and upcoming hook management, tagged PDF, and more

219 Rishikesan Nair T., Aravind Rajendran, Rajagopal C.V., Radhakrishnan C.V. / LATEX technologies at work—
aesthetically beautiful PDFs on the fly from XML input: XML Page Composition (XPC) micro-service
in the cloud

• automated PDF creation and quality control from XML sources

208 Martin Ruckert, Gudrun Socher / The HINT Project: Status and open questions
• mobile and tablet reading of TEX output; soliciting information for future work

Advanced

212 James Carlson / MiniLaTeX: A subset of LATEX for the Web
• no-setup LATEX rendered on the fly to HTML in any browser

223 Ross Moore / Tagging with LATEX—Part 1: Author considerations
• real-world examples of LATEX source to archive accessible PDF

175 Yoan Tournade / LaTeX-on-HTTP: LATEX as a commodity web service for application developers
• JSON-based HTTP API for running LATEX over the web

Reports and notices

118 TUG 2020 conference information

120 Barbara Beeton / Random musings on TUG 2020 online

121 David Walden / Observations on the TEX Users Group’s 41st Annual Conference—
TUG 2020 in the COVID-19 era

123 Paulo Ney de Souza / TUG 2020: A report and future recommendations

127 Paulo Ney de Souza / Interview with Javier Bezos
• live interview with Javier Bezos, maintainer of Babel and other packages

132 Paulo Ney de Souza / Interview with Philip Kime
• live interview with Philip Kime, Jungian psychoanalyst and maintainer of Biber and BibLATEX

126 Jonathan Fine / TEX conferences and General Meetings, this year and next

243 TUG 2020 abstracts (Fine, Hugill-Fontanel, Gessler, Ion, Krüger, MacFarlane, Moore, Mc Sween,
Preining, Price, Rhodes, samcarter, Sharpe, de Souza)

246 From other TEX journals: Die TEXnische Komödie 2–3/2020; Zpravodaj 2020/1–2

251 Calendar

252 TUG Elections committee / TUG 2021 election

253 Institutional members

253 TUG 2020 sponsors

255 TEX consulting and production services

