
TUGboat, Volume 40 (2019), No. 2 129

Henri Menke

Parsing complex data formats in LuaTEX
with LPEG

Henri Menke

Abstract
Although it is possible to read external files in TEX,
extracting information from them is rather difficult.
Ad hoc solutions tend to use nested if statements or
regular expressions provided by several macro pack-
ages. However, these quick hacks don’t scale well
and quickly become unmaintainable.

LuaTEX comes to the rescue with its embedded
LPEG library for Lua. LPEG provides a domain-
specific embedded language that allows for writing
grammars in a natural way. In this article I give a
quick introduction to Parsing Expression Grammars
(PEG) and then show how to write simple parsers in
Lua with LPEG. Finally we will build a JSON parser
to demonstrate how easy it is to even parse complex
data formats.

1 Quick introduction to LPEG and Lua
The LPEG library [1] is an implementation of Pars-
ing Expression Grammars (PEG) for the Lua lan-
guage. It provides a domain-specific embedded lan-
guage for this task. Its domain is, naturally, parsing.
It is embedded in Lua using overloading of arith-
metic operators to give it a natural syntax. The
language it implements is PEG. The LPEG library
has been included in LuaTEX since the beginning [2].
The examples in this article are based on the talk
“Using Spirit X3 to Write Parsers” which was given
by Michael Caisse at CppCon 2015 [3], where the
speaker introduces the Spirit X3 library for C++ to
write parsers using PEG. The Spirit library is not
too dissimilar from LPEG and if you are looking for
a parser generator for C++, I recommend it.

To make sure that we are all on the same page
and the reader can easily understand the syntactic
constructions used throughout this manuscript, we
review some aspects of the Lua language. First of
all, let’s note that all variables are global by default,
whereas local variables have to be preceded by the
local keyword.
local x = 1

Most of the time we want definitions to be scoped,
so this pattern will show up often. Another impor-
tant thing to note about the Lua language is that,
in contrast to many other programming languages,
functions are first class variables. That means that
when we declare a function, what we actually do is

assign a value of type function to a variable. That
is to say, these two statements are equivalent:
function f(...) end
f = function(...) end

Lua implements only a single complex data structure,
the table. Tables in Lua act as both arrays and
key–value storage; in fact, it is possible to mix both
forms of access within a single instance, as in the
following:
local t = { 11, 22, 33, foo = "bar" }
print(t[2], t["foo"], t.foo) -- 22 bar bar

As can be inferred from that, array indexing in Lua
starts at 1. For tables and strings Lua offers a useful
shortcut. When calling a function with a single lit-
eral string or table, parentheses can be omitted. In
the following snippet the statements on the left are
equivalent to the ones on the right.
f("foo") f"foo"
f({ 11, 22, 33 }) f{ 11, 22, 33 }

Especially when programming with LPEG this short-
cut can save a lot of typing and, once used to it,
makes the code a lot more readable. I will make
extensive use of this syntax.

2 Why use PEG?
Before we delve into the inner workings of LPEG, let
me first give some motivation as to why we would
like to build parsers using PEG. Imagine trying to
verify that input has a certain format, e.g. a date
in the form day-month-year: 09-08-2019. One ap-
proach could be to split the input at the hyphens and
verify that each field only contains numbers, which is
simple enough to implement using TEX macro code.
However, the task quickly becomes more complicated
when further requirements come into play. Merely
because something is made up of three groups of
numbers doesn’t make it a valid date. In situations
like these, regular expressions (regex) sound like a
good solution and in fact, the regex to parse a “valid”
date looks fairly innocent:
[0-3][0-9]-[0-1][0-9]-[0-9]{4}

I put “valid” in quotation marks, because obviously
this regex misses several cases, such as different num-
ber of days in different months or leap years. I en-
courage the reader to look up a regular expression
which covers these special cases, to get an impres-
sion as to how quickly the regex gets out of hand.
Furthermore, neither a pure TEX solution nor regex
implementations in TEX are fully expandable, which



130 TUGboat, Volume 40 (2019), No. 2

Parsing complex data formats in LuaTEX with LPEG

is often desirable. Maybe they can be made fully
expandable but not without tremendous effort.

3 What is PEG?
The question remains, how does PEG help us here?
Let’s first look at a more or less formal definition of
PEG, adapted from Wikipedia [4]. A parsing expres-
sion grammar consists of:

• A finite set 𝑁 of non-terminal symbols.
• A finite set Σ of terminal symbols that is

disjoint from 𝑁.
• A finite set 𝑃 of parsing rules.
• An expression 𝑒𝑆 termed the

starting expression.
Each parsing rule in 𝑃 has the form 𝐴 ← 𝑒, where 𝐴
is a nonterminal symbol and 𝑒 is a parsing expression.

To illustrate this, we have a look at the following
imaginary PEG for an email address.

⟨name⟩ ← [a-z]+  ("." [a-z]+)∗

⟨host⟩ ← [a-z]+ "."  ("com"/"org"/"net")
⟨email⟩ ← ⟨name⟩ "@" ⟨host⟩

The symbols in angle brackets are the non-terminal
symbols. The quoted strings and expressions in
square brackets are terminal symbols. The entry
point 𝑒𝑆 is the rule named email (not specially
marked).

The present grammar translates into natural
language rather nicely. We start at the entry point,
the email rule. The email rule tells us that an email
is a name, followed by a literal @, followed by a host.
The symbols name and host are non-terminal, mean-
ing they can’t be parsed without further information,
so we have to resolve them. A name is specified as
one or more characters in the range a to z, followed
by zero or more groups of a literal dot, followed by
one or more characters a to z. A host is one or more
characters a to z, followed by a literal dot, followed
by one of the literals com, org, or net. Here the
range of characters and the string literals are termi-
nal symbols, because they can be parsed from the
input without further information.

As a little teaser, we will have a look at how the
above grammar translated into LPEG.
local name = R"az"^1 * (P"." * R"az"^1)^0
local host = R"az"^1 * P"."

* (P"com" + P"org" + P"net")
local email = name * P"@" * host

We can already see that there is some sort of mapping
to translate PEG into LPEG; indeed, at first sight

it seems like this translation is almost 1:1. We will
learn what the symbols mean in the next section.

4 Basic parsers
LPEG provides some basic parsers to make life a
little easier. These map the terminal symbols in the
grammar. Here they are, with examples:

• lpeg.P(string) Matches string exactly.
This matches “hello” but not “world”:
lpeg.P("hello")

• lpeg.P(n) Matches exactly n characters.
To match any single character we could use
lpeg.P(1)

There is a special character which is not
mapped by any encoding — the end of input.
In LPEG there is a special rule for this:
lpeg.P(-1)

• lpeg.S(string) Matches any character in
string (a set). To match normal whitespace
we could use:
lpeg.S(" \t\r\n")

• lpeg.R("xy") Matches any character be-
tween x and y (a range). To match any digit:
lpeg.R("09")

To match any character in the ASCII range we
can combine lowercase and uppercase letters:
lpeg.R("az", "AZ")

It is tedious to constantly type the lpeg. prefix,
so we omit it from now on. This can be achieved
by assigning the members of the lpeg table to the
corresponding variables.
local lpeg = require"lpeg"
local P, R = lpeg.P, lpeg.R -- etc.

5 Parsing expressions
By themselves these basic parsers are rather use-
less. The real power of LPEG comes from the ability
to arbitrarily combine parsers. This is achieved by
means of parsing expressions. The available parsing
expressions are listed in table 1. Below, I show some
examples where the quoted strings in the comments
represent input that is parsed successfully by the as-
sociated parser unless stated otherwise.

• Sequence: This implements the “followed by”
operation, i.e. the parser matches only if the
first pattern is followed directly by the second
pattern.



TUGboat, Volume 40 (2019), No. 2 131

Henri Menke

Description PEG LPEG
Sequence 𝑒1𝑒2 patt1 * patt2
Ordered choice 𝑒1|𝑒2 patt1 + patt2
Zero or more 𝑒∗ patt^0
One or more 𝑒+ patt^1
Optional 𝑒? patt^-1
And predicate &𝑒 #patt
Not predicate !𝑒 -patt
Difference patt1 - patt2

Table 1: Available parsing expressions
in LPEG with their name and correspond-
ing symbol in PEG. Note that the difference
operator is an extension in LPEG and not
available in PEG.

P"pizza" * R"09" -- "pizza4"
P(1) * P":" * R"09" -- "a:9"

• Ordered choice: The ordered choice parses the
first operand first and only if it fails continues
to the next operand. So the ordering is indeed
important.
R"az" + R"09" + S".,;:?!"
-- "a", "9", ";"
-- "+" fails to parse

• Zero or more, one or more, and optional:
These are all captured by the same construct
in LPEG, the exponentiation operator. A pos-
itive exponent 𝑛 parses at least 𝑛 occurrences
of the pattern, a negative exponent −𝑛 parses
at most 𝑛 occurrences of the pattern.
R"az"^0 + R"09"^1
-- "z86", "abcde99", "99"
R"az"^1 + R"09"^1
-- "z86", "abcde99"
-- "99" fails to parse
R"az"^-1 + R"09"^1
-- "z86", "99"
-- "abcde99" fails to parse

• And predicate, not predicate: These are spe-
cial in that they do not consume any input.
As might be expected, the not predicate only
matches if the parser it negates does not
match.
R"09"^1 * #P";"
-- "86;"
-- "99" fails to parse
P"for" * -(R"az"^1)
-- "for()"
-- "forty" fails to parse

• Difference: The difference operator matches
the first operand only if the second operand
does not match. This can be useful to match
C style comments which collect everything
between the first /* and the first */. However,
care must be taken that the second operand
cannot successfully parse parts of the first
operand. If that is the case, the resulting rule
will never match.
P"/*" * (1 - P"*/")^0 * P"*/"
-- "/* comment */"
P"helloworld" - P"hell"
-- will never match!

6 Simple examples
Let us study a simple example which parses two
words separated by a space. The LPEG grammar is
stored in the variable rule. The rest of the example
shows the boilerplate that is necessary.
local lpeg = require"lpeg"
local P, R = lpeg.P, lpeg.R

local input = "cosmic pizza"

local rule = R"az"^1 * P" " * R"az"^1
print(rule:match(input) .. " of " .. #input)

This will print on the terminal “13 of 12” because all
the input has been consumed and the parser stopped
at the end of input, which is the 13th “character” in
this string. As we can see, the function rule:match
parses a given input string using a given parser and
returns the number of characters parsed. Another
way to invoke a parse is using lpeg.match(rule,
input), which is equivalent to rule:match(input).



132 TUGboat, Volume 40 (2019), No. 2

Parsing complex data formats in LuaTEX with LPEG

The next example is slightly more complicated.
We will parse a comma-separated list of colon-
separated key–value pairs.
local input = [[foo : bar ,
gorp : smart ,
falcou : "crazy frenchman" ,
name : sam]]

The double square brackets denote one of Lua’s so-
called long strings, which can have embedded new-
lines. The colons and commas that separate keys
and values, and entries, respectively, are surrounded
by whitespace. To match all possible optional white-
space we use the set parser and the optional expres-
sion.
local ws = S" \t\r\n"^0

With this, the specification for the key field is one or
more letters or digits surrounded by optional white-
space.
local name = ws * R("az", "AZ", "09")^1 * ws

The value field, on the other hand, can have either
the same specification as the key field, which does
not allow embedded whitespace, or it can be a quoted
string, which allows anything between the quotes. To
this end we specify the grammar for a quoted string,
which is simply the double quote character, followed
by anything that is not a double quote, followed
by another double quote. The whole thing may be
surrounded by optional whitespace.
local quote =

ws * P'"' * (1 - P'"')^0 * P'"' * ws

Therefore an entry in the key–value list is a name,
followed by a colon, followed by either a quote or a
name, followed by at most one comma. The whole
key–value list may have any number of entries, so we
apply the zero or more expression to the aforemen-
tioned rule.
local keyval =

(name * P":" * (quote + name) * P","^-1)^0

Matching the rule against the input in the same way
as the previous example gives “67 of 66”.

7 Grammars
The literal parser P has a second function. If its argu-
ment is a table, the table is processed as a grammar.
The table has the following layout:
P{"<entry point>",

<non-terminal> = <parsing expression>
...

}

The string “entry point” is the name of the rule to be
processed first. Afterwards the rules are listed in the
same manner as they were assigned to variables in the
previous example. To refer to non-terminal symbols
from within the grammar, the lpeg.V function is
used. Collecting the aforementioned rules into a
grammar could look like this:
local rule = P{"keyval",

keyval =
(V"name" * P":" * (V"quote" + V"name")

* P","^-1)^0,
name =

V"ws" * R("az", "AZ", "09")^1 * V"ws",
quote =

V"ws" * P'"' * (1 - P'"')^0 * P'"'
* V"ws",

ws = S" \t\r\n"^0,
}

It becomes a little more verbose because names of
non-terminal symbols have to be wrapped in V"...".
That is why I personally do not normally include
general-purpose rules like the ws rule in the example
into the grammar, because chances are high I want to
use it elsewhere again. The level of verbosity might
seem like a disadvantage but the encapsulation is
much better this way. It also makes it much easier
to define recursive rules, as we will see later.

8 Attributes
In the previous section we have parsed some inputs
and confirmed their validity by a successful parse, re-
ceiving the length of the parsed input. An important
question remains: how do we extract information
from the input? When a parse is successful, the basic
parsers synthesize the value they encountered, which
I am going to call their attributes. These attributes
can be extracted using LPEG’s capture operations.

The simplest capture operation is lpeg.C(patt)
which simply returns the match of patt. Here we
parse a sequence of only lowercase letters and print
the result.
local rule = C(R"az"^1)
print(rule:match"pizza") -- pizza

Another, very powerful, capture is the table cap-
ture lpeg.Ct(patt) which returns a table with all
captures from patt. This allows us to write a sim-
ple parser for comma-separated values (CSV) in only
three lines:
local cell = C((1 - P"," - P"\n")^0)
local row = Ct(cell * (P"," * cell)^0)
local csv = Ct(row * (P"\n" * row)^0)

local t = csv:match[[



TUGboat, Volume 40 (2019), No. 2 133

Henri Menke

a,b,c
d,e,f
g,,h]]

The variable t now holds the table representing
the CSV file and we can access the elements by
t[<row>][<column>], e.g. to access the “e” in the
middle of the table we can use t[2][2].

There are two more captures we need to see,
the grouping capture and the folding capture. The
grouping capture lpeg.Cg(patt [, name]) groups
the values produced by patt, optionally tagged with
name. The grouping capture is mostly used in con-
junction with the folding capture lpeg.Cf(patt,
func) which folds the captures from patt with the
function func. The most common application is
parsing of key–value lists. The key and the value are
captured independently at first but are then grouped
together. Finally they are folded together with an
empty table capture.
local key = C(R"az"^1)
local val = C(R"09"^1)

local kv = Cg(key * P":" * val) * P","^-1
local kvlist = Cf(Ct"" * kv^0, rawset)

kvlist:match"foo:1,bar:2"

9 More useful parsers
Now that we know how to parse input and extract
data, we can start constructing parsers that are more
useful. We will next write a parser for floating point
numbers. The parser presented here has some limi-
tations. It doesn’t handle an integer part that only
contains a sign, i.e. -.1 will not parse. It also doesn’t
handle hexadecimal, octal, or binary literals. (Con-
sider these to be left as exercises to the reader.)

With these limitations in mind, let’s take a look
at what floating point numbers look like:

integer part

+123⏞
fractional part

.45678⏞⏞⏞⏞⏞
⏟⏟⏟⏟⏟⏟⏟⏟⏟

mantissa
e-90⏟

exponent

With that we formulate the first rule in our grammar,
namely
number = (V"int" * V"frac"^-1 * V"exp"^-1)

/ tonumber,

i.e. a number has an integer part, followed by an
optional fractional part, followed by an optional ex-
ponent. The apparent division by tonumber that
we see here is called a semantic action. A semantic
action is applied to the result of the parser ad-hoc.
In general it is a bad idea to use semantic actions,

because they don’t fit into the concept of recursive
parsing and introduce additional state to keep track
of. Nevertheless there are some cases when semantic
actions are useful, as in this case, where we know
that what we just parsed is a number and we merely
convert the resulting string into Lua’s number type.

Now let’s parse the integer part. Here I show all
the rules that go into it at once.
int = V"sign"^-1 * (R"19" * V"digits"

+ V"digit"),
sign = S"+-",
digit = R"09",
digits = V"digit" * V"digits" + V"digit",

So the integer part is an optional sign, followed by a
number between 1 and 9, followed by more digits or
just a single digit. A sign is one of the characters +
or -. A single digit is just a number between 0 and
9. The digits rule is recursive, because many digits
are either a single digit followed by more digits, or
just that single digit.

Next is the fractional part, which is straightfor-
ward. It is just a period followed by digits.
frac = P"." * V"digits",

Last, the exponential part, which is also rela-
tively simple. It is either a lower- or uppercase E,
followed by an optional sign, followed by digits.
exp = S"eE" * V"sign"^-1 * V"digits",

Now let’s check this parser with some test input.
We expect the result to be the same number that we
input and we expect it to be of Lua type number.
local x = number:match("+123.45678e-90")
print(x .. " " .. type(x))

Output: 1.2345678e-88 number
The full code of the number parser is included

in the JSON parser in the Appendix.

10 Complex data formats: JSON

JSON is short for JavaScript Object Notation and is
a lightweight data format that is easy to read and
write for both humans and machines. JSON knows
six different data types of which two are collections.
These are null, bool, string, number, array, and
object. This maps nicely to Lua where null maps
to nil, bool maps to boolean, string and number
map to their like-named counterparts, and array
and object both map to Lua’s table type.

Finally, on the top level there is always an object.
Here’s an example JSON file [5]:
{"menu": {

"id": "file",



134 TUGboat, Volume 40 (2019), No. 2

Parsing complex data formats in LuaTEX with LPEG

"value": "File",
"popup": {

"menuitem": [
{"value": "New",
"onclick": "CreateNewDoc()"},

{"value": "Open",
"onclick": "OpenDoc()"},

{"value": "Close",
"onclick": "CloseDoc()"}

]
}

}}

Before we begin writing a parser for this, let’s
introduce a few general purpose parsers first, which
are also not part of the grammar.
local ws = S" \t\n\r"^0

This rule matches zero or more whitespace char-
acters, where whitespace characters are space, tab,
newline and carriage return.
local lit = function(str)

return ws * P(str) * ws
end

This function returns a rule that matches a literal
string surrounded by optional whitespace. This is
useful to match keywords.
local attr = function(str,attr)

return ws * P(str) / function()
return attr

end * ws
end

This function returns an extension of the previous
rule, in that it matches a literal string and if it
matched returns an attribute using a semantic ac-
tion. This is very useful for parsing a string but
returning something unrelated, e.g. the null value
of JSON will be represented by Lua’s nil.

As mentioned before, at the top level a JSON
file expects an object, so this will be the entry point:
local json = P{"object",

As discussed before, JSON supports different kinds
of values, so we want to map these in our parsing
grammar.
value =

V"null_value" +
V"bool_value" +
V"string_value" +
V"number_value" +
V"array" +
V"object",

So, a value is any of the value types defined by the
JSON format. Now we have to define what these

values are and how to parse them. We begin with
the easiest ones, the null and bool values:
null_value = attr("null", nil),
bool_value = attr("true", true)

+ attr("false", false),

These two types are defined entirely by keyword
matching. We use the attr function to return a suit-
able Lua value. Next we define how to parse strings:
string_value = ws * P'"'

* C((P'\\"' + 1 - P'"')^0)
* P'"' * ws,

A string may be surrounded by whitespace and is en-
closed in double quotes. Inside the double quotes we
can use any character that is not the double quote,
unless we escape it with a backslash, as in \". The
value of the string without surrounding quotes is
captured. To parse number values, we will reuse the
number parser defined in the previous section
number_value = ws * number * ws,

This concludes the parsing of all the simple data
types. We move on to the aggregate types, starting
with the array.
array = lit"["

* Ct((V"value" * lit","^-1)^0)
* lit"]",

An array is thus a comma-separated list of values,
enclosed in square brackets. The list is captured as
a Lua table. The final and most complicated type to
parse is the object:
member_pair = Cg(V"string_value" * lit":"

* V"value") * lit","^-1,
object = lit"{"

* Cf(Ct"" * V"member_pair"^0, rawset)
* lit"}"

An object is a comma-separated list of key–value
pairs enclosed in curly braces, where a key–value pair
is a string, followed by a colon, followed by a value.
To pack this into a Lua table, we use the grouping
and folding captures mentioned above. This con-
cludes the JSON grammar.
}

The full code of the parser is given in the Appendix
with a little nicer formatting. Now we can go ahead
and parse JSON files.
local result = json:match(input)

The variable result will hold a Lua table which can
be indexed in a natural way. For example, if we had
parsed the JSON example given in the beginning of
this section, we could use



TUGboat, Volume 40 (2019), No. 2 135

Henri Menke

print(result.menu.popup.menuitem[2].onclick)
-- OpenDoc()

In this way, we could write configuration files for our
document, parse them on-the-fly when firing up Lua-
TEX, and configure the style and content according
to the specifications.

11 Summary and outlook
Parsing even complex data formats like JSON is
relatively easy using LPEG. A possible next step
would be to parse the LuaTEX input file in the
process_input_buffer callback and replace tem-
plates in the file with values from JSON.

Acknowledgements
I’d like to thank the TUG bursary for funding, which
supported me in attending this conference.

References
[1] R. Ierusalimschy, A text pattern-matching

tool based on Parsing Expression Grammars.
Software: Practice and Experience 39(3),
221–258 (2009).

[2] T. Hoekwater, LuaTEX. TUGboat 28(3),
312–313 (2007).
tug.org/TUGboat/tb28-3/
tb90hoekwater-luatex.pdf

[3] M. Caisse, Using Spirit X3 to Write Parsers.
CppCon 2015.
youtube.com/watch?v=xSBWklPLRv

[4] Wikipedia, Parsing expression grammar.
wikipedia.org/wiki/
Parsing_expression_grammar

[5] D. Crockford, JSON Example.
json.org/example.html

Appendix: Full code listing of JSON parser

local lpeg = require"lpeg"
local C, Cf, Cg, Ct, P, R, S, V =

lpeg.C, lpeg.Cf, lpeg.Cg, lpeg.Ct, lpeg.P,
lpeg.R, lpeg.S, lpeg.V

-- number parsing
local number = P{"number",

number = (V"int" * V"frac"^-1 * V"exp"^-1)
/ tonumber,

int = V"sign"^-1 * (R"19" * V"digits"
+ V"digit"),

sign = S"+-",
digit = R"09",
digits = V"digit" * V"digits" + V"digit",
frac = P"." * V"digits",
exp = S"eE" * V"sign"^-1 * V"digits",

}

-- optional whitespace
local ws = S" \t\n\r"^0

-- match literal string surrounded by whitespace
local lit = function(str)

return ws * P(str) * ws
end

-- match literal string and synthesize
-- an attribute
local attr = function(str,attr)

return ws * P(str) /
function() return attr end * ws

end

-- JSON grammar
local json = P{

"object",

value =
V"null_value" +
V"bool_value" +
V"string_value" +
V"number_value" +
V"array" +
V"object",

null_value =
attr("null", nil),

bool_value =
attr("true", true) + attr("false", false),

string_value =
ws * P'"' * C((P'\\"' + 1 - P'"')^0)

* P'"' * ws,

number_value =
ws * number * ws,

array =
lit"[" * Ct((V"value" * lit","^-1)^0)
* lit"]",

member_pair =
Cg(V"string_value" * lit":" * V"value")
* lit","^-1,

object =
lit"{"
* Cf(Ct"" * V"member_pair"^0, rawset)
* lit"}"

}

⋄ Henri Menke
9016 Dunedin
New Zealand
henrimenke (at) gmail dot com


