
TUGboat, Volume 40 (2019), No. 2 115

MacTEX-2019, notification, and
hardened runtimes

Richard Koch

Abstract

MacTEX installs everything needed to run TEX on
a Macintosh, including TEX Live, Ghostscript, and
four GUI applications: TeXShop, TEX Live Utility,
LATEXiT, and BibDesk. In macOS 10.15, Catalina,
Apple requires that install packages be notarized,
and all command line and GUI applications in such
a package must be signed and adopt a hardened
runtime. I’ll explain what this means and how it was
accomplished.

MacTEX 2019

1 Recent changes

For many years, MacTEX supported macOS 10.5
(Leopard) and higher, on both PowerPC and Intel
processors. Starting in 2017, we decided to limit
support to those systems for which Apple still pro-
vides security updates. Consequently, we support
the three latest systems; in 2019 we support Sierra,
High Sierra, and Mojave (that is, 10.12 and higher).
Each fall, Apple introduces a new system and we
also support that. Thus MacTEX-2019 will support
Catalina when that is released this fall.

Mojca Miklavec compiles Mac binaries for older
systems; in 2019 she supports Snow Leopard (10.6)
and higher. TEX Live contains both our binaries
and Miklavec’s binaries. Our web pages (tug.org/
mactex) explain how to install TEX Live using either
the MacTEX installer or the standard Unix install
script (install-tl), so users with older systems can
update using the Unix install script. Both methods
produce exactly the same TEX Live in the end.

2 Security

I retired from the University of Oregon in 2002. In
that year, freshmen arriving at the University dis-
covered a CD and instruction sheet taped over the
ethernet jacks in their dorm rooms. The sheet said

Warning: You must install the virus checker on

this CD before connecting your computer to the

ethernet. If you fail to follow this instruction,

you will lose ethernet privileges in this room.

The note ended with one more sentence:

Macintosh users can ignore this message.

But that was 2002. This April, I got the following:

From: koch@math.uoregon.edu

Date: April 4, 2019

To: koch@math.uoregon.edu

Hey! I compromised your account and gained full

access to it. I just sent this email from your

account. You visited an adult website and got

infected. This gave me access to all of your

contacts, browsing history, your passwords,

your webcam, and even your microphone.

I noticed you were trying to please yourself by

watching one of those nasty videos, well my son,

I recorded your actions ... (thanks to your

webcam) and even recorded your screen (the video

you were watching). Now, if you do nothing, then

I will send this video to all of your email,

social media and messenger contacts. You have

the option to prevent me from doing all of this.

All you need to do is to make the transfer of

\$958 to my bitcoin address ...

3 Lessons

• The Macintosh is built on top of Unix. Unix
has strong protection against other irresponsible
users. Like most companies, Apple has security
engineers patching kernel and system bugs as
they are found.

• But Macs are generally used by one person,
and the remaining problem is to protect that
person against himself or herself. If my Mac is
attacked, I’m not worried that the criminal will
become root. I’m worried that he will activate
my camera, read my mail, find my contact list,
or turn on my microphone.

• For several years, Apple has provided a (manda-
tory) solution for applications in the App Store.
It is known as sandboxing. A sandboxed appli-
cation cannot interact with other programs; it
runs in its own sandbox.

• In Catalina (and also to some extent in Mojave)
Apple provides a different kind of security pro-
tection for other programs. Unlike sandboxing,
the new security is carefully tuned to allow any
program to run as usual. Here’s how it works.

4 Signing

This step was introduced in 2012. Apple Developers
can sign their applications and their install packages.
When software is downloaded from the Internet, the
system checks that the software has not been mod-
ified since it was signed, and that the signature is
from a known developer. It refuses to run software
that doesn’t pass. Otherwise it sets a Finder bit
to disable future checks and runs the software. A

MacTEX-2019, notification, and hardened runtimes

tug.org/mactex
tug.org/mactex

116 TUGboat, Volume 40 (2019), No. 2

control panel in Apple’s System Preferences controls
this behavior:

Signing requires developer status from Apple,
which costs $100 a year. TeXShop and MacTEX have
always been signed.

Apple issues two developer signing certificates,
one for applications and one for install packages.
Signing applications is done in XCode as part of the
build process. A command line binary signs install
packages.

Tricks explained on the Internet allow users
to disable the signing requirement and install any
program. At this year’s WWDC, Apple said that
such tricks would always be available.

5 Notarization

This spring, Apple added notarization. This works
like signing; both applications and install packages
can be notarized. Once software is signed and just
before release, it is sent to Apple. There it is checked
for viruses (no human hands touch the software).
Checking takes around 15 minutes. If the software
passes the test, a “certificate” is mailed back and
“stapled” to the software. In Catalina, software down-
loaded from the Internet must be both signed and
notarized before it can run.

Previously, software was only tested once to
make sure it was not modified. Now these tests
will be rerun periodically. The details are somewhat
vague (to me), so don’t ask.

6 Hardened runtimes

Signing and notarization are small potatoes. The
big security step in Catalina is the requirement that
all applications and command line programs in a
notarized install package must be signed and time-
stamped, and must adopt a Hardened Runtime. All
of this is new. The MacTEX install package has been
signed since 2012, but the individual TEX binaries
are not signed. And while TeXShop is signed, the
remaining applications TEX Live Utility, LATEXiT,
and BibDesk are not signed. The kicker, however, is
that these applications and all command line apps
must adopt a hardened runtime. What is that?

Apple has a list of 13 dangerous operations a
program might try to perform. I’ll give the full list
later, but among the items are these: accessing the
camera, accessing the microphone, accessing location
information, accessing the address book, accessing

the user’s calendars, accessing photos, sending Apple
events to other applications, executing JIT-compiled
code, loading third party libraries not by Apple. If
an application adopts a hardened runtime, it is not
allowed to perform any of these operations.

However, for each of the 13 dangerous opera-
tions, a developer can claim an entitlement. I have
always dreamed of a TEX editor attached to a cam-
era; to make a commutative diagram, draw it and
take a picture and the editor converts the drawing
into TEX. The author of such an editor would file
an entitlement for the camera operation.

Nobody at Apple checks the entitlement list;
there is no “approval process”. A developer can
claim all 13 entitlements and then the hardened
runtime has no effect.

So calm down that case of paranoia. Apple isn’t
restricting developers. It is providing a tool to help
open source developers improve security.

6.1 Dealing with command line programs

Command line programs can adopt a hardened run-
time without recompiling. The command below does
this for the xz binary used by tlmgr. The --force

option says to replace any previous signing by the
new one, and --options=runtime says to adopt a
hardened runtime with no exceptions.

codesign \

-s "Developer ID Application: Richard Koch" \

--force --timestamp --options=runtime xz

To claim exceptions for a command line program,
add a flag --entitlements=TUG.entitlement to
the previous call, where TUG.entitlement can be
any name and is a short XML file. The exam-
ple TUG.entitlement here allows linking with third
party libraries. (One long line has been broken for
TUGboat with a \; it should not be broken in a real
file.)

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC

"-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>com.apple.security.cs.\

disable-library-validation</key>

<true/>

</dict>

</plist>

By embedding the codesign call in a shell script,
it is easy to construct scripts which sign, timestamp,
and adopt hardened runtimes for all command line
binaries in an install package.

Richard Koch

TUGboat, Volume 40 (2019), No. 2 117

6.2 Case 1: BasicTEX

In addition to the full MacTEX, we provide a smaller
install package called BasicTeX, which installs the
distribution obtained by using install-tl with the
“small” scheme. To test the above ideas, I submitted
this package unmodified to Apple for notarization.
Apple refused to notarize it, but they sent back a de-
tailed and easy-to-read error sheet. The bin directory
of BasicTEX has 88 items. Apple ignored symbolic
links, scripts, and other files, but had problems with
30 commands. These were exactly the commands
which the Unix command file listed as “Mach-O
64-bit executable x86 64”.

In addition, Apple found three other such bina-
ries in tlpkg/installer: lz4, wget, xz.

I used the codesign script on these 33 binaries
and submitted BasicTEX again to Apple for nota-
rization. Approved!

6.3 Case 2: Ghostscript

Ghostscript only has two binaries, gs-X11 with X11
support and gs-noX11 without X. We install a sym-
bolic link named gs to the appropriate binary.

I ran codesign on gs-X11 and gs-noX11 and
submitted to Apple. Apple notarized the install
package. But when the package was used to install
Ghostscript, gs refused to run. Why?

Originally, Apple supplied an optional install
package for X11. But their package was often out
of date, so a mutual decision was made for a third
party to supply X11 for the Macintosh as open source.
Consequently, gs-X11 links in a third party library,
which is not allowed for hardened runtimes. Re-
signing gs-X11 and claiming an entitlement for such
linking solved the problem.

6.4 Case 3: biber

The biber binary is so complicated that TEX Live
builders do not compile it. Instead the author sub-
mits binaries. The codesign script didn’t work with
this binary. I contacted the author, Philip Kime. A
month later he sent a binary which worked. I suspect
Kime knows a lot more about notarization than I do
now.

6.5 Case 4: The big enchilada

Finally it was time to notarize the full TEX Live.
I hardened xz, wget, lz4, and all the binaries in
bin/x86_64-darwin which were not links and re-
ported to be “Mach-0 64-bit executables” by file.
Tests revealed that two of these binaries needed an
exception for X11: mf and xdvi-xaw. I submitted
the package to Apple. It was rejected.

A big difference between BasicTEX and the full
TEX Live is that the second package has documen-
tation provided by package makers. This documen-
tation comes in a wide variety of formats: source
files for illustrations, zip files, and so forth. When
Apple tests an install package for viruses, does it
unzip files and look inside? Yes, it does. Does it
examine illustration source files? Yes, it does that
too. So lots of things could go wrong.

Luckily, Apple provided clear explanations for
rejection, and it turned out that MacTEX had only
three problems:

• In texmf-dist/doc/support/ctan-o-mat, one
file is given an extension .pkg. Apple believes
that a file with extension .pkg is an install pack-
age, and this package was not signed. It turned
out to be an ordinary text file.

• In texmf-dist/doc/latex/codepage, Apple
could not unzip the file demo.zip.

• In texmf-dist/source/latex/stellenbosch,
there is a zip file named USlogos-4.0-src.zip

containing two CorelDraw source files for illus-
trations. Apple did not recognize these source
files and flagged them.

The three problems were easy to work around. Bug
reports were also sent to Apple so they can improve
the notarization machinery.

7 Status of notarization for MacTEX-2019

Fully notarized install packages for MacTEX-2019,
BasicTEX-2019, and Ghostscript-9.27 are available
on the web for testing. Indeed, the Ghostscript-
9.27 package on CTAN is already notarized. The
MacTEX-2019 and BasicTEX-2019 packages will be
moved to CTAN, replacing the original packages, in
late summer just before Catalina is released.

TEX Live Utility, LATEXiT, and BibDesk are
not in the notarized MacTEX-2019 because they are
applications rather than command line programs,
so their authors must sign and notarize them. This
has not yet happened. If these authors used the
XCode which comes with Mojave, these steps would
be trivial, but they use an older XCode. We are
working with the authors but have nothing to report.

8 Technical details

I end with some technical details for others who
may need to deal with these issues on the Macintosh.
I’ll explain how to sign install packages and how to
notarize such packages. Then I’ll list the six runtime
entitlements and seven resource access entitlements
from an official Apple document.

MacTEX-2019, notification, and hardened runtimes

118 TUGboat, Volume 40 (2019), No. 2

8.1 Signing an install package

Signing requires developer status from Apple, which
costs $100 a year. Certificate information and se-
curity codes are kept on Apple’s KeyChain, and
automatically retrieved by the signing software when
needed. If you buy a new machine or install a new
system, you must transfer this information to the
new system. XCode makes this easy if you know
what mysterious icon to click.

Signing applications happens automatically in
XCode as part of the build process. Signing install
packages is done on the command line. The command
here signs Temp.pkg and writes the signed package
Basic.pkg.

productsign \

--sign "Developer ID Installer: Richard Koch" \

Temp.pkg Basic.pkg

8.2 Notarizing an install package

Notarization of install packages is done on the com-
mand line, and is somewhat trickier. Below are the
crucial commands. The first command sends an in-
stall package to Apple to be notarized. If uploading
succeeds, this command returns an identifier which
I symbolize with YYYY; it is actually much longer.

xcrun altool --notarize-app \

--primary-bundle-id \

"org.tug.mactex.basictex" \

--username "koch@uoregon.edu" \

--password "XXXX" \

--file BasicTeX.pkg

When Apple is finished, it sends a brief email
stating whether notarization was successful. If there
were errors, this second command asks for a detailed
list of errors. The command returns a url, and the
error list will then appear in a browser pointed to
this url.

xcrun altool --notarization-info YYYY \

--username "koch@uoregon.edu" \

--password "XXXX"

If notarization was successful, this third com-
mand staples the certificate to the install package,
producing a notarized package:

xcrun stapler staple "BasicTeX.pkg"

In these commands, altool is a command line
tool which communicates with Apple. This com-
munication is normally protected using two-factor
authentication, but that is not convenient for com-
mand line work. So before using altool, Apple asks
developers to log into their account and give altool

a temporary password. The symbol XXXX in the first
and second commands represents this password.

The value org.tug.mactex.basictex in the
first command identifies the install package for the
notification process, but need not correspond to any
similar string in the package. So the identifier can
be selected randomly.

8.3 Runtime entitlements

All entitlements are boolean values; all keys start with
com.apple.security, not shown here for brevity.

Allow Execution of JIT-compiled Code: whether the app
may create writable and executable memory using
the MAP_JIT flag. Key: .cs.allow-jit

Allow Unsigned Executable Memory: whether the
app may create writable and executable
memory without using the MAP_JIT flag.
Key: .cs.allow-unsigned-executable-memory

Allow DYLD Environment Variables: whether the app
may be impacted by DYLD environment variables,
which can be used to inject code into the process.
Key: .cs.allow-dyld-environment-variables

Disable Library Validation: whether the app may load
plug-ins or frameworks signed by other developers.
Key: .cs.disable-library-validation

Disable Executable Memory Protection: whether to
disable code signing protections while launching
the app.
Key: .cs.disable-executable-page-protection

Debugging Tool: whether the app is a debugger and
may attach to other processes or get task ports.
Key: .cs.debugger

8.4 Resource access entitlements

Audio Input: whether the app may record audio using
the built-in microphone and access audio input
using Core Audio. Key: .device.audio-input

Camera: whether the app may capture movies
and still images using the built-in camera.
Key: .device.camera

Location: whether the app may access location
information from Location Services.
Key: .personal-information.location

Address Book: whether the app may have read-write
access to contacts in the user’s address book.
Key: .personal-information.addressbook

Calendars: whether the app may have read-write access
to the user’s calendar.
Key: .personal-information.calendars

Photos Library: whether the app may have
read-write access to the user’s Photos library.
Key: .personal-information.photos-library

Apple Events: whether the app may send Apple Events
to other apps. Key: .automation.apple-events

� Richard Koch
koch (at) math dot uoregon dot edu

http://math.uoregon.edu/koch/

Richard Koch

	Recent changes
	Security
	Lessons
	Signing
	Notarization
	Hardened runtimes
	Dealing with command line programs
	Case 1: BasicTeX
	Case 2: Ghostscript
	Case 3: biber
	Case 4: The big enchilada

	Status of notarization for MacTeX-2019
	Technical details
	Signing an install package
	Notarizing an install package
	Runtime entitlements
	Resource access entitlements

