
82 TUGboat, Volume 40 (2019), No. 1

TUGboat online, reimplemented

Karl Berry

Abstract

This article discusses updates to the data and code
for creating the online TUGboat HTML files which
are automatically generated: the per-issue tables of
contents and the accumulated lists across all issues of
authors, categories, and titles. All source files, both
data and code, are available from https://tug.org/

TUGboat, and are released to the public domain.

1 Introduction

Since 2005, TUGboat has had web pages generated
for both per-issue tables of contents and accumulated
lists across all issues of authors, categories, and titles.
David Walden and I worked on the process together
and wrote a detailed article about it [1]; Dave wrote
all of the code. More recently, we wanted to add some
features which necessitated writing a new implemen-
tation. This short note describes the new work.

The basic process remains unchanged. To briefly
review from the earlier article:

• For each issue, a source file tb〈n〉capsule.txt
(n being the TUGboat issue sequence number),
which is essentially written in TEX (it is used
to create the contents by difficulty on the in-
side back cover), is converted to an HTML file
named contents〈vv-i〉.html (for issue number
i in volume vv). These contents*.html files
are intended to closely mimic the printed ta-
ble of contents (the back cover) with respect to
ordering of items, variation in author’s names,
category names, etc., with only typos corrected.

• The translation from TEX to HTML is done by
the code here, not using TEX4ht or any other
tool; the overall HTML structure is written di-
rectly by the program. The translation is in-
formed by two files (lists-translations.txt
and lists-regexps.txt), which (simplistically)
map TEX input strings to HTML output strings.

• Finally, three files are produced accumulating all
items from across all issues: listauthor.html,
listkeyword.html, and listtitle.html; each
is grouped and sorted accordingly. (These cu-
mulative lists are the primary purpose for devel-
oping the program in the first place.) In these
files, in contrast to the per-issue contents, many
unifications are done (directed by a third ex-
ternal data file, lists-unifications.txt), so
that articles written under the names, say, “Don-
ald E. Knuth”, “Donald Knuth”, “Don Knuth”,
etc., all appear together. Similarly, many varia-

tions in category names, and related categories,
are merged.

• The translations are applied first, then the reg-
ular expressions (regexps), and finally the unifi-
cations.

2 General implementation approach

Both the old implementation and the new are writ-
ten in Perl, though they do not share any code. I
chose Perl simply because it is the scripting language
in which I am most comfortable writing nowadays.
There was no need to use a compiled language; the
total amount of data is small by modern standards.
Readability and maintainability of the code are far
more important than efficiency.

I wrote the new implementation as a straight-
forward, if perhaps old-fashioned, program. I did
not see the need to create Perl modules, for example,
since the program’s job is a given, and the chance
of any significant reuse outside the context of TUG-
boat seems small indeed. All the code and data are
released to the public domain, so any subroutines,
utility functions, fragments, or any other pieces of
code or data useful elsewhere can be copied, modified,
and redistributed at will.

As mentioned above, the capsule source files are
essentially TEX. For example, here is the capsule
entry from tb123capsule.txt for a recent article:

\capsule{}

{Electronic Documents}%add|Software \& Tools

{Martin Ruckert}

{\acro{HINT}: Reflowing \TeX\ output}

{postponing \TeX\ page rendering to ...}

{217-223}

{/TUGboat/!TBIDENT!ruckert-hint.pdf}

The meaning of the fields is described in the pre-
vious article, but is probably evident enough just
from the example. For our present purposes, let’s
just observe the brace-delimited arguments and gen-
eral TEX markup. To parse this, the present pro-
gram uses one non-core Perl module (and only this
one): Text::Balanced (metacpan.org/pod/Text::
Balanced), which does basic balanced-delimiter pars-
ing. (The previous implementation did the parsing
natively, more or less line-based.)

Perl has several modules to do this job; I chose
this one because (a) it had a reasonably simple inter-
face, and (b) it could return the non-balanced text
between arguments, which was crucial for our for-
mat, since we use formatted comments as directives
with additional information for the lists* files — as
seen above with the %add|... extra category. Only
three directives have been needed so far: to add and
replace categories, and to add authors. They are

Karl Berry

https://tug.org/TUGboat
https://tug.org/TUGboat
metacpan.org/pod/Text::Balanced
metacpan.org/pod/Text::Balanced

TUGboat, Volume 40 (2019), No. 1 83

crucial for making the accumulated lists include all
the useful information.

Each capsule turns into a Perl hash (associative
array), and each issue is another hash, including
pointers to all its capsules, and so on. In general,
the amount of data is so small that memory usage
was a non-issue.

Perhaps it would be a better general approach to
completely reformat the TEX source into a non-TEX
format (YAML, for instance) and then parse that;
and perhaps some future TUGboat worker will feel
inspired to do that. It would not be especially hard
to have the current implementation output such a
conversion as a starting point. I merely chose to keep
the process more or less as it has been.

3 Cleaning up capsule sources and output

I did take the opportunity to clean up the capsule
source files, e.g., using more consistent macro abbre-
viations, adding missing accents to authors’ names,
correcting typos, etc. The balanced-brace parsing
regime meant that unbalanced braces got found, of
which there were several.

I also added consistency checks in the code, so
that, for example, a new category name that we hap-
pen to invent for a future issue will get reported; such
cases should (probably) be unified with an existing
category. Many unifications of existing categories
and authors were also added.

Another part of the cleanup was to ensure that
the page number of each item is unique; when two
items start on the same page, internally we use deci-
mals (100 and 100.5, say) to order them. This is done
with a macro \offset. Naturally such decimals are
not shown in either the TEX or HTML output. They
are necessary in order to have a unique key in all our
various hashes, and for sorting.

Speaking of sorting, I wanted the new output
for the accumulated lists to be stably sorted, so that
the results of any code or data changes could be
easily diffed against the previous output. So now
the sorting for a given entry is reliably by volume,
then issue, then page (and first by title for the title
list); having unique internal page values was also a
prerequisite for the stable sort.

Another minor point about the HTML output
is the anchor names: we intentionally reduce all an-
chor identifiers (author names, titles, etc.) to 7-bit
ASCII— indeed, only letters, numbers, periods, and
commas. For example, Herbert Voß’s items in TUG-
boat are available at tug.org/TUGboat/Contents/

listauthor.html#Voss,Herbert. (Sorry, Herbert.)
Similarly, if an anchor starts with a non-letter, it is
prefixed by t_. Although HTML permits general Uni-

code in anchor names nowadays, this has not always
been the case, and regardless, for ease of copying, use
in email, etc., this seemed the most useful approach.

4 Data files lists-*.txt

The external data files lists-unifications.txt

and lists-translations.txt that play a part in all
these conversions are described in the earlier article.
The third file mentioned above, lists-regexps.txt,
is new in this implementation. Here are some exam-
ple entries from each.

4.1 lists-unifications.txt

Examples from lists-unifications.txt:

Dreamboat

Expanding Horizons

Future Issues

...

Max Díaz

M. Díaz

The left-justified line shows the name as it should be
shown, and following indented lines show alternate
names as they are found. We unify categories and
names, as shown here.

The Dı́az example also shows that we do unifi-
cations after the translation to HTML, so both the
canonical name and the alternates are expressed that
way, not in TEX. Thus, the exact form of the trans-
lation matters (whether ı́ translates to í or
í or í or a literal UTF-8 ı́ or . . .) and
has to match with the lists-translations.txt

entries. Examples from there are next.

4.2 lists-translations.txt

Examples from lists-translations.txt:

\’{\i}||í||i

\TUG{}||TUG

Each line is two or three strings, separated by a ||

delimiter. The first element is what’s in the TEX
source; the second is the HTML to output, and the
third is the plain text conversion for sorting and
anchors. If the third element is absent (as in the
\TUG line above), the second element is used for both
plain text and HTML.

4.3 lists-regexps.txt

For lists-regexps.txt, the general form is similar
to lists-translations.txt, with a left-hand side
and right-hand side separated by the same || delim-
iter. But here, the lhs is a regular expression, and
the rhs is a replacement expression:

\\emph\{(.*?)\}||"<i>$1</i>"

\{\\it\s*(.*?)\}||"<i>$1</i>"

TUGboat online, reimplemented

tug.org/TUGboat/Contents/listauthor.html#Voss,Herbert
tug.org/TUGboat/Contents/listauthor.html#Voss,Herbert

84 TUGboat, Volume 40 (2019), No. 1

All that punctuation may look daunting, but if taken
a bit at a time, it is mostly standard regular expres-
sion syntax. The above two entries handle the usual
LATEX \emph{...} and plain {\it ...} italic font
switching (with no attempt to handle nested \emph,
as it is not needed). Both syntaxes for font switching
are prevalent throughout the capsule sources.

The .*? construct in the left hand side may
be unfamiliar; this is merely a convenience meaning
a “non-greedy” match — any characters up until the
first following right brace (the \} means a literal
right brace character). A .* without the ? would
match until the last following right brace.
�� On second glance, what also may seem un-

usual is the rhs being enclosed in double
quotes, "...", specifying a Perl string constant.
Why? Because, ultimately, this is going to turn
into a Perl substitution, s/〈lhs〉/〈rhs〉/g (all substi-
tutions specified here are done globally), but initially
the lhs and rhs have to be read into variables — in
other words, string values. But we don’t want to
evaluate these strings when they are read from the
lists-regexps file; the $1 in the rhs needs to refer
to what is matched by the (...) group on the lhs
when the substitution is executed. This turns out to
be a programming exercise in layers of evaluation.
�� The simplest way I found to do it was to

use a Perl feature I had never before needed,
or even heard of, in my 30-odd years of using Perl
since it first appeared: including the /ee modifier
on the substitution, as well as the /g. I won’t try to
explain it here; for the curious, there is a discussion at
stackoverflow.com/q/392644, in addition to the
Perl manual itself (perlre).

5 Performance and profiling

Although I said above that efficiency was not an issue,
that is not quite true. Especially during development
and debugging, doing a test run must not take too
long, since it gets done over and over. My extremely
naive initial version took over 45 seconds (on my
development machine, which is plenty fast) to process
the ≈120 TUGboat issues — much too frustrating to
be borne.

The Perl module Devel::NYTProf turned out
to be by far the best profiling tool available. (By the
way, NYT stands for New York Times ; a programmer
there did the initial development.) Unlike other Perl
profiling tools, it shows timing data per individual
source line, not just functions or blocks.

Using that, it turned out that almost all the
time was being consumed dealing with the substitu-
tions from the lists-* files, since the strings were
being read at runtime, instead of being literal in

the source code. The easy step of “precompiling”
the regular expressions after reading the files, with
qr//, resulted in the total runtime dropping an order
of magnitude, to under 4 seconds. So development
could proceed without any major surgery on the code
or data structures.

6 Conclusion

The ad hoc conversion approach described here is
viable only because we have complete control over
the not-very-complicated input, and desirable mainly
because we want complete control over the output.
I did not want to struggle with any tool to get the
HTML I wanted, namely to be reasonably format-
ted and otherwise comprehensible, and not making
significant use of external resources or JavaScript.

Although changes and new needs are inevitable,
I hope the program and data will be sufficiently
robust for years to come.

References

[1] K. Berry and D. Walden. TUGboat online.
TUGboat 32(1):23–26, 2011. http://www.tug.

org/TUGboat/tb32-1/tb100berry.pdf

� Karl Berry
https://tug.org/TUGboat

Editor’s note: Until last year, the comprehensive
BibTEX database for TUGboat, tugboat.bib, which
Nelson Beebe maintains on the servers at the Uni-
versity of Utah was derived programmatically from
the TUGboat contents files. Earlier this year, Nelson
modified the procedures to instead use the HTML

files (generated as described here) for the issues. This
method should not only be easier to maintain, but
also contain additional information.

New labeling conventions have been applied to
newly created entries; these follow Nelson’s BibNet
Project. Labels of older entries are frozen in the old
form (e.g., Knuth:TB2-3-5), so as not to invalidate
user documents that cite such labels.

These files are on both the Utah web server, at
www.math.utah.edu/pub/tex/bib, and the parallel
FTP server. In addition to tugboat.bib, these as-
sociated files are present: .def, .dvi, .html, .ltx,
.pdf, .ps.gz, .ps.xz, .sok, and .twx. (To fetch
the whole collection under ftp, issue the command
“mget tugboat.*”.)

The collection is also on CTAN in the area info/

biblio, along with bib files on additional topics.
Some of these, including tugboat.bib, are also in
TEX Live. — Barbara Beeton

Karl Berry

stackoverflow.com/q/392644
http://www.tug.org/TUGboat/tb32-1/tb100berry.pdf
http://www.tug.org/TUGboat/tb32-1/tb100berry.pdf
www.math.utah.edu/pub/tex/bib
info/biblio
info/biblio

	Introduction
	General implementation approach
	Cleaning up capsule sources and output
	Data files lists-*.txt
	lists-unifications.txt
	lists-translations.txt
	lists-regexps.txt

	Performance and profiling
	Conclusion

