\LaTeX{} and Jupyter, TikZ and Vega

Jonathan Fine

1 Then and now

When Don Knuth created TeX in the 1970s and 80s, publishing was mostly on paper. TeX was created to solve the problem of computer typesetting, particularly for technical content. The portable computers, including the mobile phone, have changed publishing. Many people prefer laptop and notebook computers to paper books.

2 Laboratory and scientific notebooks

The great experimental physicist Michael Faraday (1791–1867) kept a lab diary. Today we might do this on a computer, as a private blog, or a scientific notebook, such as Jupyter.

\LaTeX{} solved the problem of typesetting, for printing on paper. Today, Project Jupyter develops “open-source software, open standards, and services for interactive and reproducible computing”.

3 Jupyter and \LaTeX{}

In many ways, Jupyter is now what \LaTeX{} was in the 1980s. It’s got a growing and well-funded community, and making steady and rapid progress. It is a major and well-respected force.

4 PGF/TikZ and D3/Vega

PGF/TikZ is a deservedly popular TeX-based technical drawing package. In it, PGF/TikZ is a low-level/high-level language pair.

In the parallel universe of scientific web publishing, D3/Vega is a similar language pair, based not on TeX but on HTML5.

Many would benefit from a bridge between TikZ and Vega, particularly those who want high-quality visualisation in both PDF and interactive HTML5.

5 Further reading (and browsing)

In January 2018 Nature published a Toolbox article Data visualization tools drive interactivity and reproducibility in online publishing. The URL is https://www.nature.com/articles/d41586-018-01322-9.

○ Jonathan Fine
 Milton Keynes
 England
 jfine2358@gmail.com