Glisterings: Hanging; Safety in numbers

Peter Wilson

A glisterin mornin aften draws tae rain.

Anonymous

The aim of this column is to provide odd hints or small pieces of code that might help in solving a problem or two while hopefully not making things worse through any errors of mine.

We must indeed all hang together, or most assuredly, we shall all hang separately.

Spoken at the signing of the Declaration of Independence, Benjamin Franklin

1 Hanging

1.1 Overhangs

Rui Maciel asked about a notation for the closure of a set, saying that [8]:

When I need to refer to the closure of a set I tend to use the \(\bar{} \) command, So, considering the set \(\Omega \) then the closure of that set would be:

\[\bar{\Omega} \]

However, I've noticed that when the symbol used to reference a given set also has a superscript then \(\bar{\Omega} \) doesn't look very good. I've also tried \(\overline{} \) instead but it appears even worse

\[\overline{\Omega^s} \]

Enrico Gregorio recommended [3]:

\newcommand*{\closureG}[2][3]{%
\mkern#1mu\overline{\mkern-#1mu#2}}

while Bill Hammond said [5] that he found the following to work better, also noting that he used amsmath:

\newcommand*{\closureH}[2][3]{%
\overline{\{\mkern#1mu#2\mkern-#1mu\}}}

In each case the optional argument is the value of an \(\mkern \); a ‘good’ value depends on whether the set variable is upright (e.g., \(\Omega \)) or slanted (e.g., \(B \)) and whether or not it has a super- or subscript. Basically it comes down to what you think is most appropriate. In my view I prefer the following:

Upright variable (e.g. \(\Omega \)) \(\closureG[0] \), \(\closureH[0] \), \(\closureL[0] \), which are all equivalent to \(\overline{} \)

Slanted variable (e.g., \(B \)) \(\closureG[3] \), \(\closureH[-3] \), \(\closureL[3] \).

I think that \(\closureL[0] \) and \(\closureL[3] \) are close but not quite as good. Something like \(\closureL[1] \) would seem to give a better result.

As the old saying goes, ‘Yer pays yer money and takes yer choice’.

1.2 Paragraphs in equations

‘Cooch’ wrote [2]:

In a number of the chapters for one of my books, I ‘define’ a series variables, generally embedded in the form

variable = text to define the variable

For example (the page I'm currently staring at)

\[\phi^{rst}_{i-1,i} \] = the probability that a particle in state \(r \) at time \(i-1 \) and state \(s \) at time \(i \) is in state \(t \) at time \(i+1 \).

...I want to force the RHS of the expression to ‘wrap’ and be indented after the first sentence, to the right of the equal sign. So, that the above looks like:

\[\phi^{rst}_{i-1,i} \] = the probability that a particle in state...

In other words, something analogous to a ‘hanging indent’ after the first line, but where the indentation is relative to where the equal sign falls.

There were several responses to this and for the following, in order to save space and make the examples easier to read, I have defined

\newcommand*{\mathdef}{\phi^{rst}_{i-1,i}=}
\newcommand*{\textdef}{the probability that a particle in state \(r \) at time \(i-1 \) and state \(s \) at time \(i \) is in state \(t \) at time \(i+1 \).}
\newcommand*{\smath}{D_{n}=}
\newcommand*{\stext}{the definition of the variable as used herein.}

All the respondents disagreed with the use of \emph to indicate a math variable. As Enrico Gregorio said [4]:

There is no one ideal value for the \(\mkern \); a ‘good’ value depends on whether the set variable is upright (e.g., \(\Omega \)) or slanted (e.g., \(B \)) and whether or not it has a super- or subscript. Basically it comes down to what you think is most appropriate. In my view I prefer the following:
Don’t use $\textbf{emph}{}$ for representing a variable: it’s simply \textit{i}; notice also the difference between $i-1$ $(i - 1)$ and \textbf{emph}{i-1} (i-1); the second one is definitely wrong.

Lars Madsen said [9] that he normally used\footnote{equation* is from the amsmath package}

\begin{equation*}
\phi^{rst}_{i-1,i}=
\parbox[t]{<length>}{
aggedright the probability that a particle in state r at time $i-1$ and s at time i is in state t at time $i + 1$.}
\end{equation*}

which, with \langle length \rangle = 0.8\textwidth results in:

$\phi^{rst}_{i-1,i} = \text{the probability that a particle in state } r \text{ at time } i - 1 \text{ and state } s \text{ at time } i \text{ is in state } t \text{ at time } i + 1.$

Enrico Gregorio provided [4] the following environment:

\begin{verbatim}
evenv{	extdesc}[1]% {par\addvspace\medskipamount} \sbox{0}{$#1$ \hfill} \dimen0=\textwidth \advance\dimen0 by -\wd0 \noindent\usebox{0} \begin{minipage}[t]{\dimen0} \end{minipage}
\end{verbatim}

which applied to the example as

\begin{verbatim}
\textdesc{Mathdef}
\textdef
\end{verbatim}

Jean-François Burnol presented [1] the following macro:

\begin{verbatim}
\newcommand\start[1]{\setbox0=hbox{#1} \hangindent \wd0 \noindent\box0}
\start{$\phi^{rst}_{i-1,i}$= }
\textdef
\end{verbatim}

$\phi^{rst}_{i-1,i} = \text{the probability that a particle in state } r \text{ at time } i - 1 \text{ and state } s \text{ at time } i \text{ is in state } t \text{ at time } i + 1.$

Jean-François’ \texttt{start} macro is a \TeX{} version of the \LaTeX{} kernel’s command \texttt{@hangfrom}, which the memoir class provides as a user-level macro \texttt{\hangfrom{text}} by copying the original definition:

\begin{verbatim}
\newcommand\hangfrom[1]{% \setbox0=\hbox{#1} \hangindent \wd0 \noindent\box0}
\hangfrom{\mathdef }
\end{verbatim}

\texttt{\hangfrom{\mathdef }} puts text in a box and makes a hanging paragraph of the following material (something like a description item). Applying this:

\begin{verbatim}
\hangfrom{Mathdef }
\end{verbatim}
\[\phi_{r,t}^{s,t} = \text{the probability that a particle in state } r \text{ at time } i - 1 \text{ and state } s \text{ at time } i \text{ is in state } t \text{ at time } i + 1. \]

\[D_n = \text{the definition of the variable as used herein.} \]

As the last example shows, each ‘definition’ is treated individually. If it is required that, say, several definition texts should be aligned in a set of definitions then using one of the `tabular` environments could be an advantage. For example:

Using `\texttt{tabular}`

\begin{verbatim}
\begin{tabular}{lp{0.7\columnwidth}}
\mathdef & \textdef \\
\end{tabular}
\end{verbatim}

Using `\texttt{tabularx}`

\begin{verbatim}
\begin{tabularx}{\linewidth}{lX}
\mathdef & \textdef \\
\end{tabularx}
\end{verbatim}

Some of the suggestions require a length to be specified for the definition text while others automatically use all the available space. It is really a matter of individual preference which is most suited for a particular desired outcome.

It was a bright cold day in April, and the clocks were striking thirteen.

Nineteen Eighty-Four, George Orwell

2 Safety in numbers

Gordon Haverland posted [6] to the texhax mailing list:

I don’t suppose there is some easy way to deal with superstitions in \LaTeX? I looked around CTAN a bit and nothing jumped out at me.

I suspect the company I am doing work for is superstitious, or customers are. But I ran across an enumerated list where there is no 13th element.

What I’ve done is:

13. Purposely blank.

But is there something else that is more universal?

Heiko Oberdiek responded [10] with a universal solution by changing the definition of `\@arabic`, which is the underlying \LaTeX macro for typesetting the value of a counter in arabic form:

\begin{verbatim}
\makeatletter
\newcommand*{\safe}{\ifnum##1=13\relax
12a\%
\else
-12a\%
\else
\expandafter\@firstofone\expandafter{\number##1}\
\fi}
\makeatother
\end{verbatim}

Following the \safe declaration every setting ‘13’ will be typeset as ‘12a’.

To save space in the following examples I have defined:

\begin{verbatim}
\makeatletter
\newcommand*{\setlistctr}[1]{\setcounter{\@listctr}{#1}\
\protected@edef\@currentlabel{\csname p@\@listctr\endcsname\
\csname the\@listctr\endcsname}}
\makeatother
\end{verbatim}

which can be used to reset the \enumerate list counter.

Applying Heiko’s suggestion to an \enumerate list as:

\begin{verbatim}
\begin{enumerate}
\item One \par
\ldots \setlistctr{11}
\item Twelve
\item Thirteen
\item Fourteen
\end{enumerate}
\end{verbatim}

‘Safe’ enumeration:

\begin{verbatim}
\begin{enumerate}\safe
\item One \par
\ldots \setlistctr{11}
\item Twelve
\item Thirteen
\item Fourteen
\end{enumerate}
\end{verbatim}

the result is:

Standard enumeration:

1. One

...
However Gordon had explicitly mentioned the \texttt{enumerate} list and I thought that perhaps something specific for that would suit. To that end I defined the \texttt{\skipit} macro that ensures that the counter in an \texttt{enumerate} skips the value ‘13’, and the macro \texttt{\fixitem} to append it to the end of \LaTeX's internal \texttt{\@item} macro.

\begin{verbatim}
\makeatletter
\newcommand*{\skipit}{%
 \if@nmbrlist
 \ifnum12=\csname c@\@listctr\endcsname
 \refstepcounter{\@listctr} \fi
 \fi}
\let\old@item\@item
\newcommand{\fixitem}{%
 \def\@item[#1]{\old@item[#1]\skipit}}
\makeatother
\end{verbatim}

An example of this approach is:

\begin{verbatim}
\begin{enumerate}\fixitem
\item One \par
...
\item Twelve
\item Thirteen
\item Fourteen
\end{enumerate}
\end{verbatim}

With a second level list, though, you might not get what you expect:

\begin{verbatim}
\begin{enumerate}
\item Including a ‘\skipit’ enumeration:
\begin{enumerate}\fixitem
\item One \par
...
\item Twelve
\item Thirteen
\item Fourteen
\end{enumerate}
\end{enumerate}
\end{verbatim}

References

\begin{verbatim}
\item Thirteen
\item Fourteen
\end{verbatim}

\item Peter Wilson
12 Sovereign Close
Kenilworth, CV8 1SQ UK
herries dot press (at)
earthlink dot net