
TUGBOAT

Volume 38, Number 1 / 2017

General Delivery 3 President’s note / Jim Hefferon

5 Editorial comments / Barbara Beeton

iTEX lives!; LATEX tutorials; The Go fonts; METAFONT at 32;
From TUG’16, more from Joe Clark

7 Interview with Scott Pakin / David Walden

10 What’s a Professor of Neurology doing using LATEX? / David Teplow

Typography 16 Typographers’ Inn / Peter Flynn

18 Review and summaries: The History of Typographic Writing—The 20th century

Volume 1, from 1900 to 1950 / Charles Bigelow

Software & Tools 23 SILE: A new typesetting system / Simon Cozens

Fonts 28 BaskervilleF / Michael Sharpe

Resources 31 Programming LATEX—A survey of documentation and packages / Brian Dunn

34 CTAN goes 2.0—New community features and more / Gerd Neugebauer

Tutorials 39 An introduction to the LATEX cross-referencing system / Thomas Thurnherr

41 How to use basic color models in LATEX / Behzad Salimi

Electronic Documents 44 SageMathCloud for collaborative document editing and scientific computing /

Hal Snyder

48 Producing HTML directly from LATEX—the lwarp package / Brian Dunn

LATEX 54 LATEX news, issue 26, January 2017 / LATEX Project Team

56 LATEX3 news, issue 10, November 2016 / LATEX Project Team

58 A key/value interface for generating LATEX floats— the keyfloat package /

Brian Dunn

61 Glisterings: Hanging; Safety in numbers / Peter Wilson

Methods 65 The optimal value for \emergencystretch / Udo Wermuth

Hints & Tricks 87 The treasure chest / Karl Berry

Book Reviews 89 Book review: More Math Into LATEX, 5th edition, by George Grätzer / Jim Hefferon

90 Book review: The Noblest Roman: A History of the Centaur Types of Bruce Rogers

by Jerry Kelly and Misha Beletsky / Boris Veytsman

92 Book review: Track Changes: A Literary History of Word Processing

by Matthew G. Kirschenbaum / David Walden

93 Book review: Manuale Calligraphicum. Examples of Calligraphy

by Students of Hermann Zapf, David Pankow, ed. / Boris Veytsman

94 Seminar review: Presenting data and information by Edward Tufte,
November 9, 2016, Arlington, VA / Boris Veytsman

Abstracts 96 Die TEXnische Komödie: Contents of issues 4/2016–1/2017

97 Zpravodaj : Contents of issues 2015/3–4–2016/1–4

98 Eutypon: Contents of issue 36–37 (October 2016)

TUG Business 2 TUGboat editorial information

2 TUG institutional members

99 TUG financial statements for 2016 / Klaus Höppner

100 TUG 2017 election

Cartoon 106 File extensions / Randall Munroe

Advertisements 107 TEX consulting and production services

News 108 Calendar

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group. Web: http://tug.org/TUGboat.

Individual memberships

2017 dues for individual members are as follows:
Regular members: $105.
Special rate: $75.

The special rate is available to students, seniors, and
citizens of countries with modest economies, as de-
tailed on our web site. Also, anyone joining or re-
newing before March 31 receives a $20 discount:

Regular members (early bird): $85.
Special rate (early bird): $55.

Members also have the option to receive TUGboat

and other benefits electronically, for an additional
discount.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat for
the year in which membership begins or is renewed,
as well as software distributions and other benefits.
Individual membership carries with it such rights
and responsibilities as voting in TUG elections. All
the details are on the TUG web site.

Journal subscriptions

TUGboat subscriptions (non-voting) are available to
organizations and others wishing to receive TUG-

boat in a name other than that of an individual.
The subscription rate for 2017 is $110.

Institutional memberships

Institutional membership is primarily a means of
showing continuing interest in and support for TEX
and the TEX Users Group. It also provides a dis-
counted membership rate, site-wide electronic ac-
cess, and other benefits. For further information,
see http://tug.org/instmem.html or contact the
TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is.

[printing date: March 2017]

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Jim Hefferon, President∗

Boris Veytsman∗, Vice President

Klaus Höppner∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Karl Berry
Kaja Christiansen
Michael Doob
Steve Grathwohl
Steve Peter
Cheryl Ponchin
Geoffrey Poore
Norbert Preining
Arthur Reutenauer
Michael Sofka
Raymond Goucher, Founding Executive Director †

Hermann Zapf (1918–2015), Wizard of Fonts
∗member of executive committee
†honorary

See http://tug.org/board.html for a roster of all past

and present board members, and other official positions.

Addresses

TEX Users Group

P.O. Box 2311

Portland, OR 97208-2311

U.S.A.

Telephone

+1 503 223-9994

Fax

+1 815 301-3568

Web

http://tug.org/

http://tug.org/TUGboat/

Electronic Mail

General correspondence,

membership, subscriptions:

office@tug.org

Submissions to TUGboat,

letters to the Editor:

TUGboat@tug.org

Technical support for

TEX users:

support@tug.org

Contact the

Board of Directors:

board@tug.org

Copyright c© 2017 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not

be reproduced, distributed or translated without the

authors’ permission.

For the editorial and other material not ascribed to a

particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice

are preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another

language, except that the TEX Users Group must approve

translations of this permission notice itself. Lacking such

approval, the original English permission notice must

be included.

. . . I sat down to dinner to find my soup which was
a sort of noodle soup, turning into all sorts of curious
forms and even letters of the alphabet. . . . On close
investigation I found that the dough had been run
through forms so as to make the different letters of
the alphabet and figures, too! It was like looking in
the “hell box” of a printing office,

Wilbur Wright, letter to sister Katherine,
Le Mans, June 28, 1908

in David McCullough,
The Wright Brothers (2015)

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 38, NUMBER 1 • 2017
PORTLAND • OREGON • U.S.A.

TUGboat editorial information

This regular issue (Vol. 38, No. 1) is the first issue of the
2017 volume year.

TUGboat is distributed as a benefit of member-
ship to all current TUG members. It is also available
to non-members in printed form through the TUG store
(tug.org/store), and online at the TUGboat web site
(tug.org/TUGboat). Online publication to non-members
is delayed up to one year after print publication, to give
members the benefit of early access.

Submissions to TUGboat are reviewed by volun-
teers and checked by the Editor before publication. How-
ever, the authors are assumed to be the experts. Ques-
tions regarding content or accuracy should therefore be
directed to the authors, with an information copy to the
Editor.

TUGboat editorial board

Barbara Beeton, Editor-in-Chief
Karl Berry, Production Manager

Boris Veytsman, Associate Editor, Book Reviews

Production team

William Adams, Barbara Beeton, Karl Berry,
Kaja Christiansen, Robin Fairbairns, Robin Laakso,
Steve Peter, Michael Sofka, Christina Thiele

TUGboat advertising

For advertising rates and information, including consul-
tant listings, contact the TUG office, or see:
tug.org/TUGboat/advertising.html

tug.org/consultants.html

2 TUGboat, Volume 38 (2017), No. 1

Submitting items for publication

Proposals and requests for TUGboat articles are grate-
fully received. Please submit contributions by electronic
mail to TUGboat@tug.org.

The second 2017 issue will be the proceedings of
the TUG’17 conference (tug.org/tug2017); the deadline
for receipt of final papers is May 12. The third issue
deadline is September 1.

The TUGboat style files, for use with plain TEX
and LATEX, are available from CTAN and the TUGboat

web site, and are included in common TEX distributions.
We also accept submissions using ConTEXt. Deadlines,
templates, tips for authors, and more is available at
tug.org/TUGboat.

Effective with the 2005 volume year, submission of
a new manuscript implies permission to publish the ar-
ticle, if accepted, on the TUGboat web site, as well as
in print. Thus, the physical address you provide in the
manuscript will also be available online. If you have any
reservations about posting online, please notify the edi-
tors at the time of submission and we will be happy to
make suitable arrangements.

Other TUG publications

TUG is interested in considering additional manuscripts
for publication, such as manuals, instructional materials,
documentation, or works on any other topic that might
be useful to the TEX community in general.

If you have such items or know of any that you
would like considered for publication, please contact the
Publications Committee at tug-pub@tug.org.

TUG

Institutional

Members

TUG institutional members

receive a discount on multiple

memberships, site-wide electronic

access, and other benefits:

http://tug.org/instmem.html

Thanks to all for their support!

American Mathematical Society,

Providence, Rhode Island

Aware Software, Inc.,

Midland Park, New Jersey

Center for Computing Sciences,

Bowie, Maryland

CSTUG, Praha, Czech Republic

Fermilab, Batavia, Illinois

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

Maluhy & Co., São Paulo, Brazil

Marquette University,

Milwaukee, Wisconsin

Masaryk University,

Faculty of Informatics,

Brno, Czech Republic

MOSEK ApS,

Copenhagen, Denmark

New York University,

Academic Computing Facility,

New York, New York

Overleaf, London, UK

River Valley Technologies,

Trivandrum, India

ShareLaTeX, United Kingdom

Springer-Verlag Heidelberg,

Heidelberg, Germany

StackExchange,

New York City, New York

Stanford University,

Computer Science Department,

Stanford, California

Stockholm University,

Department of Mathematics,

Stockholm, Sweden

TNQ, Chennai, India

University College, Cork,

Computer Centre,

Cork, Ireland

Université Laval,

Ste-Foy, Québec, Canada

University of Cambridge,

Centre for Mathematical Sciences,

Cambridge, United Kingdom

University of Ontario,

Institute of Technology,

Oshawa, Ontario, Canada

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway

TUGboat, Volume 38 (2017), No. 1 3

President’s note

Jim Hefferon

This is my last column as President. I am delighted
to announce our next President and a robust election
for the next Board. I will discuss some more events
in the TEX world, and I will also take a minute for
an exit reflection.

Elections

This is an election year for TUG. Since there was a
single candidate for President, Boris Veytsman, he
will serve for the next two years. Congratulations
Boris!

For the Board there are ten open seats. To every
one of the candidates, let me say on behalf of the
community, “Thank you for volunteering.” By the
time this reaches you the results will be posted at
tug.org/election/.

Conferences

This year’s TUG conference takes place in conjunc-
tion with BachoTEX, April 29–May 3, 2017. We are
joining the Polish group GUST in celebrating their
25th birthday. See tug.org/tug2017/ for more in-
formation. If you are planning to go please read
“Things you always wanted to know about Bachotek”
at tug.org/tug2017/bachotex.html.

The 11th International ConTEXt meeting will
be September 11–17, 2017 in Butzbach-Maibach,
Germany. See meeting.contextgarden.net/2017/
for the full information.

One more meeting note: we’ve submitted an
application to be a satellite conference for the 2018
International Conference of Mathematicians in Rio
de Janeiro. Nothing is firm yet but it is an exciting
prospect. Fingers crossed.

On the TUG site

Dave Walden has returned to doing interviews and
the latest subject is Scott Pakin. I am a big admirer
of Scott’s work, including the Comprehensive LATEX
Symbol List, and I often recommend it when answer-
ing questions. But his Visual LATEX FAQ made a
bigger impression on me because the first time I saw
it, I was floored. This idea is so compelling that
of course the document needs to be made, but how
come I never thought of anything like it? A brilliant
idea just seems obvious in hindsight. As usual, Dave
does a great job with an interesting subject. See
tug.org/interviews/pakin.html.

There are also new book reviews. Boris Veyts-
man looks at The Noblest Roman: A History of

the Centaur Types of Bruce Rogers by Jerry Kelly

and Misha Beletsky; Dave Walden reviewed Track

Changes: A Literary History of Word Processing by
Matthew G. Kirschenbaum; and I have looked at the
latest edition of George Grätzer’s More Math Into

LATEX. The link tug.org/books/ will take you to
all the book reviews, discounts, and more.

Membership

The winner of the prize for the 2016 Members Bring

Members drive is Doug Marmion. He received a lim-
ited edition of Manuale Zapficum, 2009: Typographic

arrangements of the words by and about the work of

Hermann Zapf & Gudrun Zapf von Hesse from RIT
Press. Congratulations to Doug, and thank you to
everyone who participated (and another thank you
to Boris for taking care of the prize and the project
administration).

Membership remains a concern. If you know
someone who uses TEX and friends then urge them
to consider joining TUG. In particular, point out
to them how very inexpensive it is to support their
tools. The basic membership early bird rate is $85,
with a $40 deduction if you opt out of a paper copy
of TUGboat and the software DVD and get them
in electronic form only. If you are a student, a new
grad, a senior, or a citizen of a country with a modest
economy then after the deduction the annual mem-
bership is only $15. It could not be more reasonable.
See tug.org/join.html.

Reflections

Although I am not a tumultuous person, it is fair
to say that my brief time in office has been a tu-
multuous one for TUG. At times it seemed that the
organization could collapse. It is a lesson in how frag-
ile things are, that being good today is not enough
and we must work hard to keep it up.

But we came through, with the support of mem-
bers and with the pitching-in of everyone on the
Board. I must especially note the efforts of Pavneet
Arora, Barbara Beeton, Michael Doob, and Boris
Veytsman. These folks have been an inspiration.

We are all glad to see TUG back accomplishing
things in our community. Last summer’s conference
was delightful. We have, with our friends in GUST,
every prospect of another wonderful meeting in a few
months. And, we are optimistic about our chances
for a prestigious conference venue in 2018.

Positive things are of course also happening out-
side of TUG. I am particularly cheered by the emer-
gence of online sites for using TEX and LATEX. As a
college teacher, I would like to see more undergradu-
ates turned on to TEX and these sites significantly
lower the barrier to entry.

President’s note

4 TUGboat, Volume 38 (2017), No. 1

Finally, to finish my time writing this column,
I ask your indulgence to state a personal opinion.

All is not roses. TUG’s slow but steady loss of
members is a worry. Others may not agree but I
perceive that it is in part a reflection of a larger prob-
lem, decreased use. For instance, among colleagues
at my school TEX is no longer the go-to, even for
semi-formal mathematical documents such as course
exams. Part of this decrease comes from users want-
ing things that they have trouble getting with TEX
and so they shift to reaching first for other tools.

Everyone here knows that the TEX family pro-
grams set a standard. They have made it possible
for users who have not spent years being trained
in printing, but instead are simply reasonably com-
petent with the programs, to produce documents
of professional quality, especially for mathematical
text. And they have done it while maintaining the
advantages of being markup-based and of being Free
software. TEX continues in many ways to set the
standard; the work of Knuth, and of others in our
community, remains a milestone accomplishment.

But in acknowledging the milestone we must
also acknowledge that the work continues. One of
TUG’s goals1 is “To foster innovation in high-quality
electronic document preparation.” And users want
innovation. We have had our idea of documents
widened, in many cases by what browsers give us, or
even word processors. We want a variety of non-text
elements, including video and audio. We also want to
simply include many more of them, so that the model
of floating occasional figures is stretched beyond
its usefulness. We want reflowing text, including
high quality line breaking, even if our content is
mathematics.

We also want documents that are active. I am of-
ten asked about including interactive graphics such as
zoom-in illustrations in Calculus, in both 2D and 3D.
A colleague asked about a textbook for a topic that
requires the most current information, mathematics
for social justice, so that the document must update
itself from the web with the latest statistics, includ-
ing changing its graphs to reflect those facts, not just
at compile time but at run time. And, I am writing
a document on computability in which I want to
embed a Scheme interpreter, so that students can
run code.

Here is an example that is relatively mainstream.
My department teaches from a statistics text where
doing the homework requires that students leave the
text for a JavaScript-heavy web site, and then return
to the book for the next exercise. It is an awkward

1 tug.org/aims_ben.html

pairing. Why are we going on the web? Because
that’s the only way to do the needed activity (for
instance, to have the computer simulate a thousand
samples, each consisting of flipping a coin a hundred
times). Then why are we going back to a book? Be-
cause web pages in browsers do not succeed as texts,
at least as they are today constituted, at least in part
because they are not typographically good enough.
Despite the advantages of web pages—hyperlinks,
searchable text, etc.— the elements of composition
that have developed over centuries, the elements that
TEX does so well, are critical to making the text us-
able, to making the material easily comprehensible,
and current pages and browsers do not do that well
enough.

Do TEX users have a way to do best-of-both?
In the PDF viewer category, the standard is Acrobat
Reader. It has high quality output and promises an
embedded JavaScript interpreter and reflowing text,
but it doesn’t do that across platforms. Among active
formats, besides a browser the leading freely-usable
one is Jupyter notebooks. They are very interesting
but have no claims to first-class typography, to being
able to produce professional-quality output.

Now, readers of TUGboat know that a great
deal of very good work is being done on many of
the issues I’ve named. I’ll mention the LuaTEX and
LATEX3 efforts as admirable examples and there are
others. Indeed, some of the things I’ve mentioned are
possible today, but often even those can be done only
in ways that are ungainly, that require knowledge of
a variety of technologies, that do not work across all
major platforms, or that are a hack that we cannot
reasonably expect to still work in a decade.

I don’t have a solution. But I do have this
column, this one last time, and I will use it to make
a request: the next time that you see a document
on the web that wows you, ask yourself whether
this could be done today with the TEX family, by
a reasonably capable user. To the extent that the
answer is “yes” we as a community are doing great.

But where the answer is “no”, I hope that we
will see that as a challenge, and will work together to
make them do-able. Then TEX will retain its place as
a leading tool for creating the best documents. The
work that we’ve done will continue to move forward.

And I shall enjoy that, from the relative calm
of being an ex-President.

⋄ Jim Hefferon

Saint Michael’s College

jhefferon (at) smcvt dot edu

Jim Hefferon

TUGboat, Volume 38 (2017), No. 1 5

Editorial comments

Barbara Beeton

iTEX lives!

(ding-ding!)1 A communication from Don Knuth
reports that his sister gave him “a curious Christmas
present”. Gift Republic Ltd. has a gimmick to offer a
previously nameless star to customers, and allow the
customer to give it an unofficial name. According to
the promo lit,

The chosen star name will not necessarily be
recognised by any scientific organisation or by
astronomers and Gift Republic can accept no
liability for this. Star names are published in
the Gift Republic Star Registry which is stored
in a secure location. A record of the Registry
is periodically submitted to the British Library
to ensure public accessibility and preservation.

The star chosen for Don has the AGASC_ID2

of 29897992; its coordinates are 9h 23m 46.4s,
1
◦
12

′
49.6

′′.

That (appropriately) puts it in the constellation
Hydra, near the ‘head’ end —roughly midway
between the serpent’s head and the constella-
tion Sextans.

Its magnitude is 12.9. (That’s pretty dim,
but it surely would be a lot brighter if we could
get closer.)

I have no idea of the estimated distance from
Earth to iTeX. But it’s probably pretty large,
and that might explain why I haven’t seen any
implementations yet.

Are there any astronomers in the audience? If so, we
invite confirmation of the name.

Don concluded his message with this postscript:
“Maybe there’s even a computer scientist in iTeX’s
solar system who has given the name ‘iTeX’ to our

sun. . . ”
[The recent announcement of a star, only 40

light years away, with seven approximately earth-
sized planets, leads one to think that this could even
be a possibility, however remote.]

LATEX tutorials

Searching with Google for “LATEX tutorial” produces
the result “About 11,700,000 results (0.42 seconds)”.
This is rather overwhelming. How is it possible to
know what is current, demonstrates best practices,
and presents material in a logical order? To some

1 zeeba.tv/tug-2010/an-earthshaking-announcement
2

AGASC stands for the AXAF (Chandra) Guide and
Acquisition Star Catalog.

extent, this is subjective, and what is helpful for one
person will not necessarily be effective for another.

There are just a few tutorials listed on the TUG

website.3 While the basics of LATEX are stable, there
are always new developments worth sharing — tuto-
rials can be instructive for both beginners and more
advanced users.

Prodded by a suggestion that this might be a
useful area to explore, I decided to review some of
what is now available.

I admit to a strong bias in this area, based on
decades of experience assisting authors in prepar-
ing manuscripts for publication by the AMS, and
answering questions on various TEX forums. I am
not encouraged by much of what is found on the
web. For example, the first two introductory tuto-
rials I sampled were well produced and organized
logically, but they both recommended using a dou-
ble backslash to start a new line of text. Prejudice
against this practice is not just personal bias; the
learners are being taught some things that will get
them in trouble later on. These particular examples
had many thousands of views reported, and favor-
able comments, but in my opinion they should not
be recommended unconditionally, which is what I
would hope for, for presentations listed by TUG.

Another example of a really good idea, but
one that needs work, is the LATEX Wikibook, en.

wikibooks.org/wiki/LaTeX. Like the tutorials,
video and audio, this includes material does not
exemplify “best practices”. The Wikibook is being
worked on, but progress is slow.

It would certainly be welcome to have more good
tutorials listed on the TUG website. If someone out
there would be interested in reviewing what is avail-
able, please let us know. Like book reviews, which
are both published here in TUGboat and posted on
the TUG website, such exposure can (we hope) be a
positive incentive for improved instruction.

The Go fonts

A family of fonts commissioned by the Go program-
ming language project has been developed by the
Bigelow & Holmes font foundry. The family (called
“Go”) includes proportional and fixed width faces
in normal, bold and italic renderings. These fonts
are particularly well adapted for use in displaying
program code, with “punctuation characters easily
distinguishable and operators lined up and placed
consistently.” They are licensed under the same open
source license as the rest of the Go project’s software.

3 tug.org/begin.html#doc and
tug.org/interest.html#latextutorials with related

material in the surrounding sections.

6 TUGboat, Volume 38 (2017), No. 1

The announcement, made last November, ap-
pears at https://blog.golang.org/go-fonts.

LATEX support was announced shortly thereafter
as the gofonts package, which includes both font
subfamilies under the names GoSans and GoMono;
the package is available from CTAN.

Chuck Bigelow reports that the Go fonts work
well with Lucida fonts

because they have the same x-heights and sim-
ilar weights as Lucida, although width metrics
are like those of Helvetica and Arial. That’s be-
cause the Go fonts were derived from the Luxi
fonts, which were derived from Lucida fonts.

The Go proportional fonts are sans serif, especially
appropriate for screen displays at small sizes. They
are “humanist” in style, “derived from Humanist
handwriting and early fonts of the Italian Renais-
sance, and still show subtle traces of pen-written cal-
ligraphy.” This is in contrast to the “grotesque” style
characteristic of fonts like Helvetica. (An early 19th
century sans serif typeface was named “Grotesque”,
and the name became generic.) The monospace fonts
carry slab serifs.

The italic form of the Go fonts is an oblique
version of the roman, with the notable exception
that the a is single story, redesigned to harmonize
with the bowl shapes of b and similarly shaped letters,
as shown in this sample.

abdgpq
abdgpq
abdgpq
abdgpq
abdgpq
abdgpq

The Go Mono fonts are eminently suitable for
rendering computer code, as

[they] conform to the DIN 1450 standard by
differentiating zero from capital O; numeral 1
from capital I (eye) and lowercase l (ell); nu-
meral 5 from capital S; and numeral 8 from
capital B. The shapes of bowls of b d p q follow
the natural asymmetries of legible Renaissance
handwriting, aiding differentiation and reduc-
ing confusion.

The cited blog entry provides more complete infor-
mation.

Late addition from Chuck: An upgrade of the Go
fonts is (already) in the making. It consists mostly
of a bug fix to the chart/box characters, plus some

renaming to conform to current PostScript charac-
ter naming. The Unicode “replacement” character
(U+FFFD, a question mark reversed out of a black
lozenge) is also being added.

On a related note, “Go” is not the first font to
be named after a programming language. Adrian
Frutiger designed a font named “Algol” to be used in
a book about the Algol language, published in 1963.4

This was a one-off creation in phototype, and has
been long out of production. Jacques André, who
told Chuck about this type, wishes someone would
make a digital version. Any takers?

METAFONT at 32

The 2
5 anniversary of METAFONT was celebrated

last year, but I failed to mention it at the time. Well,
better late than never.

As might be expected, Don Knuth presented a
retrospective, with slides, at the San Francisco Pub-
lic Library. The talk was part of the “Type@Cooper
West” series, and the video is posted at vimeo.com/
184705112. The video is also posted at www.youtube.
com/watch?v=0LR_lBEy7qU.

The slides from the talk can be found on Don’s
web page: www-cs-faculty.stanford.edu/~knuth/
MFtalk.pdf.

Among the photographs are pictures of everyone
who worked on METAFONT, font designers and grad-
uate students alike. There’s a particularly nice photo
of Don with Hermann Zapf and Matthew Carter; an-
other shows the main “team”: Don with Richard
Southall and Arthur Samuel as well as the students —
how young they look!

From TUG’16, more from Joe Clark

Two adjuncts to Joe Clark’s presentation at TUG 2016
are posted on his web site:
blog.fawny.org/2016/11/07/tug2016/

joeclark.org/appearances/tug/

The video from the conference is also up:
zeeba.tv/type-and-tiles-on-the-ttc/

The blog post contains Clark’s reactions to the
TUG contingent that took up his invitation to tour
some of the subway stops discussed in his talk. It also
contains photos that are not in the published article.
And finally, it contains his admission that, after the
TUGboat editors had “converted [it] to some version
of TeX” he simply edited the TeX file, “despite my
never having done that before. A reason why TeX is
still in use is because it actually works.”

⋄ Barbara Beeton

tugboat (at) tug dot org

4 https://tinyurl.com/frutiger-algol

TUGboat, Volume 38 (2017), No. 1 7

Interview: Scott Pakin

David Walden

Scott Pakin has developed many LATEX packages and
other TEX-related tools.

Dave Walden, interviewer : Please tell me a bit
about yourself.

Scott Pakin, interviewee : I’m 46 years old and
have lived my whole life in the United States. I grew
up in Chicago, Illinois (population: 2,700,000) and,
after graduating high school, moved repeatedly to
successively smaller cities and towns: Pittsburgh,
Pennsylvania (population: 304,000) for my under-
graduate degree at Carnegie Mellon University, then
Champaign, Illinois (population: 232,000) for my
Master’s and PhD at the University of Illinois at
Urbana-Champaign, and finally to Los Alamos, New
Mexico (population: 18,000) to work at Los Alamos
National Laboratory (LANL), where I’m still em-
ployed.

I knew from an early age I wanted to work with
computers. I started programming in BASIC at age 9
on an obscure computer at my parents’ company: an
SDS 420 from Scientific Data Systems. (It used a
1 MHz 6502 processor and took 8-inch floppy disks,
which contained maybe a hundred kilobytes of ca-
pacity.) When I was in high school, I wrote, in
8088 assembly language, a screen-dump utility called
DumpHP that printed a screen of CGA graphics to an
HP LaserJet printer. A small company named Orbit
Enterprises licensed the code from me, incorporated
it into their commercial LaserJet setup program,
SetHP, and paid me royalties. Over the next few
years, I made US$3000 in royalties—not bad for a
teenager. I had no trouble deciding I wanted to get
a bachelor’s, master’s, and eventually a doctoral de-
gree in Computer Science. Along the way, I realized I
especially enjoyed working with novel hardware and
high-performance computers, and LANL has some of
the world’s fastest.

DW : Can you say something about the kinds of
computing you do at LANL?

SP : At LANL, I’ve worked on a variety of research
projects including tools for analyzing and improving
the performance of supercomputers and the applica-
tions that run on them. I’m currently having great
fun experimenting with a supercomputer we just
bought from D-Wave Systems, Inc., that exploits
quantum effects to solve a specific type of optimiza-
tion problem. Think of TEX’s paragraph-building
algorithm, for example: It tries to find the best way
to break paragraphs into lines to minimize the total
penalty for awkward spacing. The research ques-
tion I’m currently investigating is if it’s possible to
transform more-or-less ordinary looking computer
programs into optimization problems suitable for
running on a D-Wave system.

DW : How did you first come in contact with TEX?

SP : I began using the WordPerfect word processor
(under DOS) to write documents. (WordStar was
already losing popularity, and Microsoft Word hadn’t
yet caught on.) In my opinion, the best thing about
WordPerfect was its “reveal codes” feature, which let
one see the formatted document—calling it WYSI-

WYG would be overly generous—and the underlying
markup (begin bold, end bold, begin italic, end italic,
etc.) in a split-screen layout. Both were editable, but
I really liked the precise control provided by the
markup pane so I favored using that.

I hadn’t heard about TEX until college, where a
math-major friend who had recently learned LATEX
was excitedly talking about it. However, I didn’t
bother trying it out myself at the time. Once I
began writing research papers in graduate school, I
took the time to read through Lamport’s book (first
edition, of course) and learn LATEX. Having been
weaned on WordPerfect’s “reveal codes” feature, I
found LATEX very natural to use.

Like most LATEX newcomers, I managed to slop-
pily hack my way through whatever typesetting chal-
lenges I encountered. It wasn’t until I started writing
my dissertation that I decided to spend some effort
on really learning how LATEX works, how to use it
more efficiently, and how to more precisely control
its behavior. While doing so, I picked up TEX and
LATEX programming aspects and even wrote my first
LATEX package, bytefield, which I used in my dis-
sertation.

DW : What was your dissertation topic?

SP : My PhD thesis considered processors distrib-
uted over a high-speed network working together to
perform a computation fast. I presented an approach

Interview: Scott Pakin

8 TUGboat, Volume 38 (2017), No. 1

for robustly synchronizing large numbers of such pro-
cessors such that a few laggards don’t necessarily
slow everyone else down.

DW : You have a bunch of useful tools at CTAN1.
Trying to grasp what is there, I can divide them
into several categories: LATEX packages; LATEX meta-
things (e.g., ctanify, dtxtut, bundledoc); Post-
Script, EPS, and PDF related tools; tools for moving
fonts into the TEX world (including some Metafont
aspects), and combining TEX with other languages
(Perl and Python). On your own website2 you catego-
rize things as packages, script, and documents. What
motivated you to create all these different tools?

SP : Most of my LATEX packages and programs were
written to satisfy some typesetting need I had. Then,
figuring that others might have the same need, I
polished the code, documented it, and released it to
CTAN.

It’s always interesting to see which packages
and programs have really caught on, and which
quickly faded into obscurity. In fact, even I get
surprised when I look over my list of CTAN contri-
butions and find things I haven’t used in years and
barely even remember writing. From what I can
tell, my savetrees package, which tries to squeeze
a document into as few pages as possible, is wildly
popular with researchers trying to stay within a man-
dated page limit for publication; and attachfile,
which facilitates embedding arbitrary files within a
document, and hyperxmp, which lets one include a
large amount of metadata in a document, also seem
to get a fair amount of attention. On the other hand,
spverbatim, which enables verbatim text to wrap
at spaces; listliketab, which typesets lists that
arrange data in columns; and the newcommand script,
which generates \newcommand templates for macros
with complex juxtapositions of required and optional
arguments, apparently get little or no use. Heck, I
don’t think anyone has ever used dashrule, which
draws dashed horizontal lines.

DW : You may be too pessimistic about dashrule;
it’s recommended at http://tex.stackexchange.

com/a/125503 and is mentioned in many other places
on that website.

DW : Both the Visual LATEX FAQ and the Compre-
hensive LATEX symbol list seem like they must have
been enormous efforts. How have you gone about
creating each of these?

SP : Indeed, the Visual LATEX FAQ required quite a
bit of effort to create, and the Comprehensive LATEX
Symbol List required substantially more. In both
cases, one big challenge was to incorporate mutually

conflicting elements in the same document. The sym-
bol list, which tabulates a vast number of symbols
that LATEX documents can typeset, started with rel-
atively few packages—base LATEX, AMS, St Mary’s
Road, wasy—so it began being reasonably man-
ageable. However, each new symbol package that
gets added brings a new source of woe. Perhaps
the biggest headache is that TEX has a hard-wired
limit of 16 math alphabets. I typically have to access
math fonts as if they were text fonts in order not to
overflow that limit. Even worse, I’ve recently been
encountering newer symbol packages that require
LuaLATEX or X ELATEX, while some older packages
break when using those TEX engines. Each new re-
lease of some symbol package seems to introduce a
new conflict with some other package. As a result,
the symbol list has become almost completely un-
maintainable. I’ve begun work on a complete rewrite
that should be robust to those issues, but that effort
is slow-going and is still many years away from being
usable.

DW : Please tell me your thoughts on the overall
TEX infrastructure and whether you think it can be
made better given practical limitations.

SP : TEX and LATEX have a thriving infrastructure
in terms of the sheer number of readily available
LATEX packages and the great strides being made in
recent years enhancing the underlying TEX engine
with improved support for system fonts and improved
automation using Lua.

A practical limitation is getting new users to
adopt the TEX ecosystem. Despite being only four
years older than Microsoft Word, TEX has a far
more “old-school” feel to it. Yes, TEX installation
has improved over the years; and yes, GUIs do
exist to simplify usage, obviate the need to learn
control sequences, and provide word-processor-like
synchronous editing. However, (LA)TEX’s lack of
integration is a huge shortcoming relative to a word
processor. If a user wants to typeset a table in a
particular form, does he/she use an ordinary tabular
environment or load one or more of the array,
bigtabular, booktabs, btable, calls, colortab,
colortbl, ctable, dcolumn, easytable, hvdashln,
longtable, ltablex, makecell, mdwtab, multirow,
polytable, sltables, stabular, supertabular,
tables, tabls, tabu, tabularborder, tabularew,
tabularht, tabularkv, tabularx, tabulary,
threeparttable, threeparttablex, or xtab pack-
ages? Even worse, many packages conflict with each
other either explicitly (giving an error message) or
implicitly (screwing up some unrelated aspect of the
document in some hard-to-diagnose manner). Worse

David Walden

TUGboat, Volume 38 (2017), No. 1 9

still, the set of conflicts can change from version to
version of any given package.

Another example of (LA)TEX’s lack of integration
relative to a word processor is that a word-processing
document is stored in a single file that can easily
be transmitted to colleagues. My bundledoc script
helps with this on the LATEX side by bundling to-
gether all the separate document files, style files,
class files, graphics files, etc. into a single .tar or
.zip file, but usage is still a bit clunkier than what
an integrated tool can provide.

Word processors have been improving their type-
setting quality, support for mathematics, support for
international scripts, logical structure, and other
features that have traditionally lain in TEX’s wheel-
house. For most users, word processors are good
enough tools for the jobs they have. I think the
wrong approach is to try to turn (LA)TEX into a word
processor. It lacks the foothold of, say, Microsoft
Word and is unlikely ever to become a dominant form
of document interchange. Instead, (LA)TEX infra-
structure enhancements should focus on the system’s
core strengths: ease of making global, structural
changes to an entire document; ease of automation;
and ready and convenient support for a variety of
specialized typesetting requirements in areas such as
linguistics, mathematics, and natural sciences.

DW : Given you’ve built various PostScript, EPS,
and PDF tools (such as purifyeps), do you have
thoughts on what might practically be done with
(LA)TEX to make them more suitable for integrating
with PDF et al.?

SP : I guess I don’t have any grand vision for better
integration of (LA)TEX with the PDF world. That
said, native support for PDF/A-1a generation and
fully tagged PDF would be nice. The former guaran-
tees a high degree of portability, and the latter facili-
tates reflowing text on a tablet and improves mechan-
ical reading of a document to the vision-impaired.

DW : At the 2014 TUG annual conference in Port-
land, Mertz, Slough and Van Cleave presented a
paper3 that included a significant discussion of your
bytefield package. Also, Mertz and Slough previ-
ously presented a lengthy discussion4 of your PerlTEX
system. I am interested in how you feel about other
people describing your work and whether they inter-
acted with you as they wrote their papers.

SP : I’m always eager for people to use my tools.
It’s wonderful to know that I helped someone get the
typesetting they were looking for or automate some
tedious task.

I was not contacted by the authors of the papers
you cite above, but that’s probably a good sign; it

says the authors were able to get bytefield and
PerlTEX to work without extra help. For PerlTEX,
which lets users write LATEX macros in Perl, that’s
especially encouraging. PerlTEX was extremely chal-
lenging to develop and is therefore likely to be a lot
more fragile than a typical LATEX tool. It requires
a lot of TEX trickery to process what could be con-
sidered syntactically incorrect TEX but syntactically
correct Perl from within TEX, and it takes a Com-
puter Science-y distributed-systems-style protocol to
implement correct, two-way communication between
TEX and a Perl wrapper script given TEX’s limited
ability to communicate with the outside world in a
safe (i.e., not-\write18) and portable manner. It’s
great that PerlTEX works fine for Mertz and Slough
and that they were able to perform some interesting
and creative tasks with it.

DW : Do you still see a role for PerlTEX with LuaTEX
now available?

SP : Not so much. LuaTEX deeply integrates Lua
with the TEX engine while PerlTEX is more loosely
coupled. Consequently, there are things LuaTEX can
do that PerlTEX can’t (e.g., directly manipulating
some of TEX’s internal representations). On the
other hand, I find PerlTEX’s \perlnewcommand and
\perlnewenvironment macros very convenient. Per-
haps I should write a package that provides the anal-
ogous \luanewcommand and \luanewenvironment

macros

DW : You’ve also developed lots of other tools, such
as those listed on your personal website (readers:
see http://www.pakin.org/~scott/). Perhaps you
also do not hesitate to build a new tool in the course
of accomplishing your work at LANL5. Can you speak
about tradeoff between (a) just doing what you have
to do to accomplish some primary task, and (b) first
building a tool to help you with the primary task
and then applying it to accomplish the task?

SP : I write lots of tools, and I always learn some-
thing new when I do. It’s always a good idea, though,
to perform a task manually the first few times to
determine what aspects are suitable for generaliza-
tion and automation—and to convince yourself that
the task is in fact something that gets performed
sufficiently often as to warrant building a tool for it.
I suppose the following are a good set of questions
a tool-builder might ask himself before embarking
on developing a new tool or, in the context of this
discussion, a new LATEX package:

• Is the task sufficiently common as to warrant
building a tool for it?

Interview: Scott Pakin

10 TUGboat, Volume 38 (2017), No. 1

• Is the task sufficiently complex for users to be
willing to install and learn a new tool rather
than perform the task manually?

• Is the task sufficiently general for a tool to per-
form it without having to be so parameterized
that it becomes almost as difficult to learn and
use as it is to perform the task manually?

DW : Were any of these tools particularly more fun
to work on?

SP : It’s hard to pick a single, most fun piece of
LATEX development. PerlTEX is the most sophisti-
cated LATEX-related tool I’ve ever created, and it was
exciting when I finally got that to work. My three
standalone documents—The Comprehensive LATEX
Symbol List, The Visual LATEX FAQ, and How to
Package Your LATEX Package—all required a fair
amount of thought to produce, and I learned quite a
bit from each one. I guess the common thread is that
tools, packages, and documents that were intellectu-
ally challenging to develop are more rewarding than
those that required only straightforward coding.

DW : Thank you for taking the time to participate in
this interview. You are working on a lot of fascinating
things.

[Interview completed 2017-02-05]

Links

1 https://www.ctan.org/author/pakin
2 http://www.pakin.org/~scott/latex-stuff.html
3 https://www.tug.org/TUGboat/tb35-2/tb110mertz.pdf
4 https://www.tug.org/TUGboat/tb28-3/tb90mertz.pdf
5 https://ccsweb.lanl.gov/~pakin/

⋄ David Walden

http://tug.org/interviews

What’s a Professor of Neurology doing

using LATEX?

David B. Teplow, Ph.D.

Abstract

In the general biomedical and academic research
communities, most people have never heard of LATEX.
Students and professors in the humanities, social
sciences, biological sciences, and clinical medicine
who have heard of LATEX often don’t appreciate the
value of such a sophisticated and elegant typesetting
engine. Instead, as with most of the world, they
succumb to the forces of the Dark Side (traditionally
Microsoft Corporation) and use expensive, inflexible,
closed source, and relatively primitive programs to
compose documents. They also suffer the continuing
frustrations of doing so. I discuss here my own
journey out of the darkness and into the light of
LATEX.1

1 Introduction

My first exposure to document creation, like most
in my generation, was in English class in elementary
school. Documents all were hand written and one
was graded on “penmanship.” As one got older, one
was expected to use a typewriter to produce pro-
fessional looking documents. It was not until the
80s, with the introduction of the IBM PC (personal
computer) in 1981 and the Apple Macintosh 128K
in 1984, that the average consumer could compose
documents electronically and print them using line
printers or dot matrix devices. I remember my ex-
citement running WordPerfect or WordStar on my
IBM PC and MacWrite on my Macintosh Plus (with 1
MB of memory and a 20 MB disk drive large enough
to use as a crane counterweight). One actually could
“program” how individual letters, sentences, para-
graphs, or document sections should look. This was
done using keyboard commands embedded in the
text. WYSIWYG GUIs came later and were seen as
revolutionary. One no longer had to guess how their
typescript would look. It was right there in front of
you on the screen.

Development of personal computers and soft-
ware has continued during the almost four decades
since a vision for personal computing occurred at
IBM. The most important software design principle
was “do more and make it easier.” Unfortunately,

1 The reader is cautioned that what follows is my personal

perspective on LATEX. This perspective is not meant to be,

nor is it, a definitive review of LATEX and its uses. I ask the

indulgence of TUGboat readers if they find any inaccuracies

in this article and would be grateful if these inaccuracies were

brought to my attention.

TUGboat, Volume 38 (2017), No. 1 11

and particularly in the case of Microsoft Word, do-
ing more and making it easier actually meant “make
it more complicated, inflexible, and buggy.” When
the Unix-based Mac OS X operating system came to
the Macintosh platform with its protected memory
and preemptive multitasking architecture, software
programming errors only crashed the application in
use, not the entire computer and not that often. The
exception, of course, was Microsoft Word, which to
this day can be counted on to crash at the least
opportune moments, often making one’s prior work
unrecoverable.

As a professor, I had to continually compose
documents, be they notes, letters, grant applications,
or manuscripts to be published in academic journals.
Text processing capability was mandatory and Word
was the de facto standard for this purpose. This
meant that year after year, decade after decade, I,
like others, had to suffer the frustrations inherent in
trying to get text processing “bloatware” to do what
one wanted it to do. These frustrations included,
among many, application crashes, the well known
“Word has insufficient memory” error messages when
one tries to save a file, difficulties embedding images
and maintaining their location during subsequent
editing, problems formatting tables, bizarre place-
ment of equations constructed using MathType or
Equation Editor, and an inability to stop the pro-
gram from “helping” you by automatically changing
formatting, word spelling, and other aspects of doc-
ument creation.

These computing and composition experiences
made clear a desperate need for a better method of
document composition. Enter LATEX.

2 How I met LATEX and why I fell in love

with it

My first exposure to LATEX occurred in the context
of a collaborative effort to understand the mechanis-
tic bases of Alzheimer’s disease. The collaboration
integrated biochemical and computational studies of
protein aggregation. My laboratory carried out the
biochemistry work while the computational studies
were done by physicists. When our studies were com-
plete, we discussed how and where to publish our
results. I had assumed that our manuscript would
be composed using Word, which I suggested to my
physicist colleagues. To my surprise, the leader of
the physics group, a world authority in the field of
statistical physics, told me that he did not know
what Microsoft Word was! All word processing in
his group was done using LATEX, which I had never
heard of. The composition and publishing of scien-
tific manuscripts is an arduous process that requires

tremendous attention to detail and many, many it-
erations during initial manuscript creation and the
peer review process. Authors must use the same
text processing platform during this process. It thus
appeared that either my learned colleague and his
group would have to learn Word or I would have to
learn LATEX.

I chose to be the one to learn a new document
preparation system. I did so for a number of reasons,
some practical and some personal. The practical rea-
son is that professors tend to become ossified as they
age, which means that change can be difficult. It
would be easier for me, as a new Assistant Professor,
to learn a new system than it would for my senior
colleague, a distinguished Professor of Physics. The
second reason was my high regard for the academic
acumen of most physicists, which suggested that the
tools they used in their research, including those
for document preparation, likely would be powerful
and elegant. As I mentioned above, the introduction
of the Unix-based Mac OS X operating system made
the Mac platform remarkably powerful because now
one could take advantage of the huge reservoir of
expertise and software associated with Unix, which
of course included LATEX. I quickly learned that the
LATEX source files were simple ASCII text files. I
could work on my Mac, either inside a LATEX GUI or
in Terminal, while my colleagues could use their PCs
and we could easily exchange files and be certain they
would compile,2 regardless of platform. This elimi-
nated the continuing problem of format alterations
in Word files caused by file movement between Mac
and PC platforms. I was tremendously impressed
with the professional layouts of our manuscript af-
ter source file compilation. For the first time in my
academic life, I could create manuscripts that, es-
sentially, were already typeset. They were beautiful.
Finally, from the perspective of a science nerd, I
found the prospect of learning what essentially is a
programming language to be very exciting.

As I became more adept at using LATEX, I re-
alized that it provided many capabilities that were
superior to those of standard word processing pro-
grams. One of the biggest headaches in the composi-
tion of scientific manuscripts is the need to change
figure and table numbers if such items are added
or deleted from manuscript drafts. One can do this
manually if one is particularly attentive to detail,
or automatically using search and replace functions.
However, this is time consuming and often results
in multiple figures or tables having the same num-
ber, which is confusing — especially to peer reviewers

2 Assuming no trivial coding errors existed.

What’s a Professor of Neurology doing using LATEX?

12 TUGboat, Volume 38 (2017), No. 1

and editors who decide if your manuscript will be
accepted for publication. Enter the LATEX \label{}

command! What an easy and elegant way to en-
sure that any editorial changes result in automatic,
accurate renumbering of figures and tables.

I was equally, if not more, delighted by BibTEX,
especially after struggling with EndNote for so many
decades. I could now create a single library and for-
mat my bibliography using pre-existing bibliography
style .bst files—no more hassles with constantly
having to edit EndNote output styles. I could edit
my library in any text editor or use one of the many
reference management programs available. I’ve used
JabRef and BibDesk, among others, and find JabRef
particularly useful.

The use of pre-existing class and style files il-
lustrates the power, ease of use, and time efficiency
of the LATEX platform. If I am required to use a
particular class for a publication, I simply download
it from the web or get it from the publisher (as I
did for the ltugboat class used for this article). I
can compose my source file without any concerns
about it being properly rendered. Of course, as TUG-

boat readers well know, and as neophyte LATEX users
rapidly learn, TEX and its derivatives are designed to
enable writers to focus on the content of their work
as opposed to its formatting. I no longer have to
spend time carefully reading document formatting
instructions from a publisher or agency to whom I
am submitting a grant application and then convert-
ing these instructions into an acceptably formatted
Word document. The class and style files do it all
for me.

Experienced computer users know that it is most
time efficient to operate your computer by leaving
your fingers on the keyboard, as opposed to con-
stantly having to manipulate a mouse or other input
device. This is no more evident than when one is
creating mathematical formulas. Although Equa-
tion Editor and MathType are useful point-and-click
formula creation applications that interface seam-
lessly with Word, one must invoke either one and
then click, click, click . . . to create the formula, which
then is inserted, often with bizarre vertical alignment
within text lines, into the document. In addition, it
is common to find that these formulas are rendered
improperly once the file has been typeset by a pub-
lisher. When I create formulas in LATEX, I can do
so without lifting my hands off the keyboard and
I do not experience any subsequent formatting or
rendering errors.

Anyone who has tried to create lists using stan-
dard word processors likely has encountered problems
with indentation, nesting of list elements, and most

vexing, stopping the program from adding new text
to the end of an existing list. The fine control of
the list environments in LATEX eliminates these prob-
lems. Similar advantages exist with respect to table
creation. I am an experienced Word user (unfortu-
nately), but I still can’t figure out how to format and
align tables in a reasonable amount of time.

I find that figure and caption placement can be
problems both for word processor and LATEX users.
One also encounters figures that mysteriously change
their positions within a document. In Word, these
problems are exacerbated by the fact that figures
and captions are entered independently.

3 How I learned LATEX

As we all know, LATEX, in essence, is a program-
ming language. Its code may be less complicated
than C++, Fortran,3 Objective-C et al., but it nev-
ertheless requires the user to create source code that
instructs a compiler how to produce a properly ren-
dered document. One of the beauties of LATEX is
that a new user need not know anything to begin
using LATEX other than how to open a .tex file in a
text processor. This was how I began the learning
process, by simply editing the text within the source
files created by my collaborators. It was easy to
learn how to encode underlined, italicized, or bolded
text. After all, how hard is it to “escape” the obvious
“bf” abbreviation for bold font and type \bf?4 In
the process of assimilating this simple syntactical
information, one begins to get a sense of how LATEX
programming works and this sense then provides a
framework for adding new skills to one’s repertoire.
“Environments” then are encountered that require
learning how they are parameterized and about what
can and cannot be done within them. At this point,
the neophyte LATEX user needs to begin studying the
language more deeply.

I found myself doing what any self-respecting
academic would — I bought books. The first two are
well known in the TUG community, namely Guide to

LATEX by Kopka and Daly and The LATEX Compan-

ion by Mittelbach and Goossens. These two volumes
became my “go to” references for questions. I also
found First Steps in LATEX by Grätzer, LATEX Line

by Line by Diller, and Learning LATEX by Griffiths
and Higham to be useful. Scientific publications usu-
ally contain tables and figures. In the beginning, as
I began creating my own .tex files, it was simple to
copy and paste a figure environment from a file of
my collaborators and just insert the path to my own

3 Including Fortran 4, which I used a half century ago!
4 Interestingly and ironically, I just now learned how to

escape the backslash so all the following text was not bold!

David Teplow

TUGboat, Volume 38 (2017), No. 1 13

figure. This got me started. I also cut and paste
table environments. However, to gain more expertise
in managing these environments, I added Typesetting

Tables with LATEX by Voß, and The LATEX Graph-

ics Companion by Goossens, Rahtz, and Mittelbach,
to my “go to” references. These days, however, I
rarely consult these references, not because they are
uninformative, but because so much detailed infor-
mation is available on the web. I routinely access
tex.stackexchange if I need help, download pack-
age manuals, or access other sources found through
web searches. It’s remarkable how many preamble
lines, environments, minipage formats, and other
bits of code one can simply cut from web pages and
paste into their source file to achieve a particular
typesetting goal without any pre facto syntactical
knowledge.

I find “playing” with LATEX to be a lot of fun. It’s
often a challenge to render and position text, figures,
and tables in a specific way. I like trying different
things and seeing the output. I might switch between
standard figure and wrapfigure environments, use
minipages, or try other methods to achieve a particu-
lar document rendering. The process of self-directed
investigation provides rich rewards in terms of better
understanding how LATEX works and how to ma-
nipulate output, as opposed to memorizing how to
perform a single task. One is able to develop an
intuition that facilitates learning and accelerates the
process of problem solving.

4 How I use LATEX

“If you got a terminal, you can use LATEX.”

This certainly is true for those who are ⋆nix (Unix,
Linux et al.) savvy or love the command line. How-
ever, the majority of the world’s computer users
interact with their computers through GUIs. A ma-
jor advance for the general LATEX community, one
that made the use of these programs much more
attractive to the average computer user, was the
introduction of GUI front ends to LATEX compilers.
Users were able to run LATEX by pointing and clicking
with their mice. No knowledge of ⋆nix commands
and syntax were required. What was required, both
for command line users and GUI users, were multiple
steps before a finished document could be viewed.
For academicians, for whom extensive referencing
is required, the process included triple compilation
(LATEX→BibTEX→LATEX) so that references were
numbered correctly and a bibliography was created.
Multiple steps also were required to produce an out-
put file that could be easily shared with others who
might be relatively computer illiterate or worked us-
ing different platforms and operating systems (e.g.,

Mac and MacOS, PC and Windows, terminals and
⋆nix). This typically involved a tex→dvi→pdf com-
pilation and conversion process. One also could
produce output files in other formats, including post-
script, html, or rtf, but pdf was the most useful for
collaborations and submission of manuscripts to most
journals. These processes were not onerous in na-
ture, but they were burdensome and time-consuming.
For those used to WYSIWYG document composition,
this need to first compile the source code before see-
ing the finished work product was a bit off-putting.
However, with the advent of three-panel application
interfaces (file directory, source file, rendered output)
and automatic file compilation, users can immedi-
ately see the results of their work. This has been an
important development because it has streamlined
the document preparation process for the average
computer user, eliminating the need to understand
the source file→compiler→output file process.

My initial LATEX front end was TeXShop, which
provided a simple, useful method for compiling source
files and viewing their output. As one who enjoys
determining if newly developed or updated applica-
tions might offer an easier or more powerful user
experience, I also have used Texmaker, TeXworks,
TeXnicle, Texpad, TeXstudio, and Latexian, as well
as web-based document creation and compilation en-
gines like Overleaf (formerly writeLaTeX) and Share-
LaTeX. LYX is unique among these front ends in
that its default document view hides the source code
from the user and its interface looks more like the
icon-based interfaces of non-TEX-based word proces-
sors. It also requires the user to port the output file
to a different application (e.g., Adobe Acrobat) to
view the rendered output. I found this type of GUI

to be an unhappy medium between the extremes of
document preparation, i.e., using a terminal or using
a standard word processor (e.g., Word).

I am composing this document using Texpad,
which is my current favorite. A helpful feature of
Texpad and other programs is their handling of com-
pilation errors. Error and output logs are instantly
available for user review either within the main ap-
plication window itself or by a simple click on an
icon. In addition, the user is provided the means
to rapidly edit offending syntax simply by clicking
on a particular error message in the message viewer,
which then moves the focus of the keyboard to the
offending line of code. This saves a lot of time during
the error correction process. Other features of these
front ends that are particularly useful are code com-
pletion, flash bulb-like highlighting of beginning and
ending characters (e.g., curly braces), and syntax
highlighting.

What’s a Professor of Neurology doing using LATEX?

14 TUGboat, Volume 38 (2017), No. 1

To further facilitate document creation, and to
deal with the progressive memory loss experienced
by Professor Emeriti, I also create a variety of pre-
ambles, tables, and figure environments and store
them in a special directory. I then can simply cut and
paste the code into new documents without having to
remember any special syntax that I might have used
in the past. For example, as a professor, I am asked
to compose many different kinds of recommendation
letters, including those for undergraduates, graduate
students, postdoctoral fellows, different professorial
ranks, etc. To do so, I have created a directory in
which boilerplate letters for each type of recommen-
dation exist. When I need a template, I can rapidly
access these pre-made files. This has made compo-
sition of new letters trivial. The same strategy is
used for grant application preambles, be they for the
National Science Foundation, the National Institutes
of Health, or other agencies.

5 Using LATEX in a non-LATEX world

Readers of this article already know, and likely much
better than I, how powerful, flexible, and efficient
LATEX is. These are some of the reasons we choose
to use this document preparation system. Unfortu-
nately, the rest of the world either is not aware of
the existence of LATEX or is precluded from using it
due to restrictions on how document preparation is
to be done. The latter restriction usually is imposed
on employees to ensure company-wide consistency
in document preparation, which is a reasonable con-
cern. Establishing a standard application for docu-
ment preparation allows diverse groups of people to
seamlessly exchange documents.5

Microsoft Word has become the de facto stan-
dard document preparation application. There are
many reasons for this, all of which can be debated
among computer users, businesses, the general pub-
lic, educators, sociologists et al., but one of the key
reasons, vis-à-vis why LATEX is not a standard, is
that Word uses a GUI as opposed to the command
line interface of LATEX. This makes Word easier to
learn for the vast majority of computer users, who
are not capable of using the command line for doc-
ument preparation or simply may not want to do
so. As a realist, I do not expect this situation to
change. I also think it unlikely that proselytizing for
LATEX converts will be particularly effective, espe-
cially in a world in which OUIs (“oral user interfaces”)
appear destined to supplant keyboard, mouse, and

5 Of course, though seamless in theory, cross-platform
(MacOS vs. Windows) document preparation and management
using Microsoft Word (or PowerPoint) remains problematic
and vexing in practice.

other data entry methods, as well as supplant many
aspects of application and system control.6

Where then do these facts leave the LATEX com-
munity as a whole? I suggest, in the future, that
the community will continue to thrive, as it is now.
There are myriad reasons for this, many of which
have been discussed above. The most important
of these is that for many applications, especially in
mathematics, physics, and engineering, LATEX is a
superior document preparation system.7 Given this
fact, those who choose to prepare their own docu-
ments using LATEX, but who also work in the larger
world of Word and other document preparation ap-
plications, must implement strategies for interfacing
these two “worlds.”

The specific strategies depend on a number of
factors, the most important of which are how the
master document is to be prepared and what the
final output file format must be. The first factor
depends primarily on whether document preparation
is done by a single person or in the context of a
collaboration. The second generally is dictated by
the requirements of the end-user of the document,
e.g., a publisher. Publishers specify the file types
accepted for publication, which increasingly include
PDF. The beauty of LATEX is the facile compilation
of the source code as a PDF file, which renders moot
the original document preparation system. This PDF

output also circumvents problems with providing
documents to those working with computer hardware
or OSs different from one’s own.

If manuscripts can be submitted for publication
using one of many file types, e.g., .tex, .doc, or
.docx, and the manuscripts present collaborative
work, the decision about source file type can be
pre-determined among collaborators, usually using a
metric based on ease of group composition. Practical
considerations also may factor into this decision. For
example, if the contributing author, the one who is
responsible for the actual compilation of the man-
uscript and its submission for publication, is not
familiar with LATEX, then Word often becomes the
default document preparation application. However,
if I am the contributing author and I want to prepare
the manuscript using LATEX, I can do so by adding
files from my collaborators into my .tex source file.
The easiest way to do this is to ask for .txt files. Sur-
prisingly, I often encounter collaborators who don’t

6 In fact, there is no reason, theoretically, why such OUIs
could not be implemented for source file creation in LATEX.

7 It should be noted that LATEX is not restricted to these
fields. It has been used effectively in a broad range of fields,
including philosophy, economics, theology, the law, and neu-

rology.

David Teplow

TUGboat, Volume 38 (2017), No. 1 15

know how to create .txt files and instead provide
.doc or .rtf files. These then must be converted
into plain text.

Conversion can be done automatically using a
variety of programs or web-based conversion utilities,
although I have found that the fidelity of conversion
often is lacking. Post-conversion processing of the re-
sulting text file thus is required to remove hidden or
special characters that create serious or fatal errors
during LATEX compilation. I have found that utilities
that clean up text, e.g., by removing extra spaces,
carriage returns, tabs, or forwarding characters, are
especially useful in this regard. Once clean, I then
execute a second post-conversion process, usually
using global find-and-replace functions, to make sure,
among other things, that quotation marks will be
rendered properly (i.e., converting “ and ” into `` and
’’), percentage symbols are escaped (% to \%), Greek
characters are encoded properly, and one-, two-, and
three-em dashes will appear correctly. These conver-
sions can be done quite rapidly, after which the plain
text can be pasted into the source file. Additional
edits, which usually are minor, then are done in the
source file after compilation if error messages are
displayed or rendering problems exist.

“Cross-world” bibliography creation and man-
agement is a bit more cumbersome, if one defines
cumbersome as an author needing more than one
library. I maintain two comprehensive reference li-
braries, one in .bib format and one in EndNote
format (.enlp). In collaborative work in LATEX,
the collaborators agree about whose library will be
used and simply upload it to a shared directory con-
taining the manuscript source file. This is trivial.
If I must incorporate citation markers from Word
documents, regardless of their provenance (Word,
Bookends, Mendeley), then I do so manually. This
requires a significant amount of program switching
(LATEX↔JabRef), but with the powerful search ca-
pabilities of library management software, and pa-
tience, the process is straightforward. It should be
mentioned that neither world is free of typographical
problems within rendered bibliographies. Surpris-
ingly, special symbols, capitalizations, and especially
Greek characters, are usually not coded properly in

references downloaded from the web, especially in
the case of EndNote. I automatically examine each
downloaded reference to ensure that the bibliography
created by BibTEX or Endnote is an exact rendering
of the reference as originally published. After hav-
ing done this for so many decades, this process has
become almost autonomic.

The fundamental principle guiding my cross-
world collaborations is “LATEX takes anything and
Word takes nothing.” This means that if a manu-
script is composed in LATEX, I can take content from
essentially any file type provided by a collaborator
and incorporate it into my source file. In contrast, if
manuscript composition is to be done in Word, then
LATEX is not used at all.

6 Concluding remarks

Among the community of computer users who are
free to choose their hardware, software, and style of
use, adherence to their choices may have the flavor of
religious fanaticism. This long has been true in the
Mac community, not even considering Apple’s efforts
to portray Mac users as “cool,” “with it,” or “differ-
ent.” I am a long-time Mac fanatic, not because of
such superficial characterizations but rather because
of my recognition of a superior operating system
and how it makes my computational efforts easier
and more efficient. My extensive experience with
document processing systems has led me to the same
recognition with respect to LATEX. I look forward to
a time when this recognition will be universal.

Acknowledgement

The author gratefully acknowledges Dr. Eric Hayden
(UCLA) for helpful comments on this manuscript.

⋄ David B. Teplow, Ph.D.

Professor Emeritus

Department of Neurology

David Geffen School of Medicine at UCLA

635 Charles E. Young Drive South

Los Angeles, CA 90095

USA

dteplow (at) mednet dot ucla dot edu

http://teplowlab.neurology.ucla.edu/

What’s a Professor of Neurology doing using LATEX?

16 TUGboat, Volume 38 (2017), No. 1

Typographers’ Inn

Peter Flynn

Layouts

The three main default document classes in LATEX
(book, report, and article) implement a consistent
page layout with conservative features:

• centered title block or title page;

• wide set and wide margins;

• centered, narrower Abstract in smaller type,
indented;

• justified text;

• indented, unspaced paragraphs;

• bold sectional divisions, widely-spaced;

• heavily-indented lists with wide spacing;

• non-hanging footnotes;

• floating tables and figures with caption position
dependent on caption text quantity;

• same-size type in block quotations with
independent indentation;

• a single typeface throughout
(Computer Modern).

At the time LATEX was written (1985), these defaults
were already quite conservative, and have been de-
scribed as ‘based on then-common conventions for
scientific publishing’ [5]. I recently came across an
article a relative wrote in the 1950s— it could al-
most have been formatted with LATEX’s defaults (see
Figure 1).

Figure 1: 1950s journal style [4]

Fashions in page layout and design change like
the seasons: while many journals do still use cen-
tered titling in the body font, many do not, opting
instead for anything from flush-left sans-serif bold
to a shaded block rotated 90◦ positioned at the left-
hand edge (as in Figure 2).

TUGboat TheCommunicationsof theTEXUsersGroup
Volume 38, Number 1, 2017

March 10, 2017

T
y
p
o
g
ra

p
h
e
rs
’
In
n

P
e
te

r
F
ly

n
n

Layo

The three main default document classes in LATEX (book,
report, and article) implement a consistent page layout with
conservative features:

centered title block or title page;
wide set and wide margins;
centered, narrower Abstract in smaller type, indented;
justified text;
indented, unspaced paragraphs;
bold sectional divisions, widely-spaced;
heavily-indented lists with wide spacing;
non-hanging footnotes;
floating tables and figures with caption positioning
dependent on caption text quantity;
same-size type in block quotations with independent
indentation;
a single typeface throughout (Computer Modern).

At the time LATEX was written (1985), these defaults were
already quite conservative, and have been described as
‘based on then-common conventions for scientific publishing’
[4]. I recently came across an article a relative wrote in the
1950s [7] and it could almost have been formatted with
LATEX’s defaults.

Fashions in page layout and design change like the seasons:
while many journals still use centred titling in the body font,
many do not, opting instead for anything from flush-left
sans-serif bold to a shaded block rotated 90° positioned at
the left-hand edge.

Economy in paper means narrower margins (unfortunately
meaning even wider set, unless two columns are used);
Abstracts can be positioned in a block to a corner or a
margin; text can be set ragged right; indentation can be zero,
with a space between paragraphs; sectional divisions can be
centered, wrapped, indented, or otherwise reformatted; lists
can be tighter-spaced and barely indented; footnotes hang;
block quotations are in smaller type and unindented;
sans-serif is used for headings, and even occasionally for the

Figure 2: Re-envisioning some of LATEX’s defaults

Many publishers and journals have written their
own document classes which can be downloaded
(some are included with TEX Live), and many helpful
people have written classes and packages which pro-
vide alternative layouts (the memoir and koma-script

bundles are excellent examples).1 You can of course
go the whole hog and employ a designer to draw up
a suitable set of (possibly corporate) designs, and
then get them implemented as LATEX classes by one
of the TEX consultants listed at the back of every
issue of TUGboat.

However, for the users who just want to create
simple layouts of their own, here are some guidelines
to current practice that can be used. After all, if
LATEX were to be written today, what defaults would
we want?

1 I tried to introduce one myself (vulcan) many years ago
[1], which was a compendium of packages and modifications,
but it required more resources than I had available at the
time.

Peter Flynn

TUGboat, Volume 38 (2017), No. 1 17

Titling Redefine the \maketitle command to put
the title, author, date, and other metadata
where you want it.

Margins Reset margins with the geometry package.
Abstract Redefine the abstract environment to

control the font size and positioning.
Justification This is still the standard for books

but ragged right is less formal and has been
popular in wordprocessors for decades.

Spacing The parskip packages turns off indenta-
tion and uses space between paragraphs instead.
This is a popular office-document format.

Sections The sectsty and titlesec packages let you
change the styling of headings. In justified text,
set headings to ragged right to avoid hyphen-
ation and justification (H&J) problems.

Lists Use the enumitem package to restyle all types
of lists, not just enumerated ones.

Footnotes The footmisc package (and others) pro-
vide alternative layouts for footnotes.

Tables and figures Caption styling can be changed
with the ccaption package and others.

Block quotations Redefine the quotation envi-
ronment to get rid of the first line indent, and
to change the font size.

Typefaces Use X ELATEX to get a much wider and
more easily-accessible choice of typefaces [3], but
even with pdflatex, there is a substantial range
available (see the LATEX Font Catalogue tug.

dk/FontCatalogue). If you have mathematical
content your selection is more limited.

I haven’t mentioned the letter class. It’s something
of an anomaly, although it too implements what was
a fashionable layout in the days of the typewriter: a
vertically-centered document (that is, equal amounts
of white-space above and below). I’m not aware of
anywhere using this layout today, and restyling it is
much harder than with the other classes. However,
the koma-script bundle mentioned above provides a
very adaptable alternative.

Go forth, etc. . .

Afterthought

Just after the last Typographers’ Inn hit the streets,
I spotted another example (see Figure 3) of a centered
heading broken unusually [2, 3]. In the early centuries
of printing, it wasn’t considered ‘bad’; in fact it
occurs frequently on title pages.

In a narrow measure, long headings are going to
cause H&J problems because they are typically set
in a much larger size than the body copy.2

2 Your Editor-in-Chief, Barbara Beeton, and your Produc-
tion Manager, Karl Berry, will know this only too well from
TUGboat.

Figure 3: Unusual line-breaking in a heading (Book
of Common Prayer, 1549, fragment, courtesy
The Society of Archbishop Justus)

This example provides us with two insights into
the minds of the 16th-century compositor and page
designer (if they were two separate people):

1. that he felt it necessary to expand ‘The Con-
tentes’ by adding ‘of this Booke’ (perhaps ‘Con-
tentes’ alone was not yet established);

2. that he felt it was perfectly normal for a word
which needed to be hyphenated to be continued
in a different size and even a different typeface
on the second line.

We do live in a different worlde.

References

[1] Peter Flynn. The vulcan Package—A Repair Patch
for LATEX. TUGboat, 20(3):208–213, Sep 1999.
http://tug.org/TUGboat/tb20-3/tb64flynn.pdf.

[2] Peter Flynn. Typographers’ Inn—Formatting
and centering. TUGboat, 33(1):8–9, Jan 2012.
http://tug.org/TUGboat/tb33-1/tb103inn.pdf.

[3] Peter Flynn. Typographers’ Inn. TUGboat,
37(3):266, Dec 2016. http://tug.org/TUGboat/

tb37-3/tb117inn.pdf.

[4] Thomas George Flynn. Electronic Organs.
Institution of Electrical Engineers Students’

Quarterly Journal, 25(98):113–118, Dec 1954.

[5] musarithmia. What is the name of LATEX’s default
style and why was it chosen for LATEX?—(answer).
tex.stackexchange.com, 272607(1), Oct 2015. http:

//tex.stackexchange.com/questions/272607.

⋄ Peter Flynn
Textual Therapy Division,

Silmaril Consultants
Cork, Ireland
Phone: +353 86 824 5333
peter (at) silmaril dot ie

http://blogs.silmaril.ie/peter

Typographers’ Inn

18 TUGboat, Volume 38 (2017), No. 1

Review and summaries: The History of

Typographic Writing—The 20th century

Volume 1, from 1900 to 1950

Charles Bigelow

Histoire de l’Écriture Typographique— le XXième

siècle; tome I/II, de 1900 à 1950. Jacques André, ed-
itorial direction. Atelier Perrousseaux, Gap, France,
2016, http://tinyurl.com/ja-xxieme. The book
is in French. Volume 2 covers the years 1950 to 2000,
to be reviewed later.

The 20th century saw the three most transformative
innovations in typographic technology after Guten-
berg’s invention of alphabetic movable type five cen-
turies earlier. Each innovation by turns increased
speed, reduced cost, and increased efficiency of text
composition. First came keyboard-driven hot-metal
composing machines like Linotype and Monotype;
invented in the late 19th century, these achieved com-
mercial dominance in the early decades of the 20th
century, supplanting most hand-set type. Next came
phototype—electro-optical photographic composi-
tion; invented in the 1940s, phototype replaced most
hot-metal typesetting by the 1970s. Lastly came
digital typography; invented in the 1960s, it replaced
most metal and photo typesetting by the year 2000.
Typesetting occurs prior to print, so these technolog-
ical changes went mostly unnoticed by readers. By
the end of the millennium, however, digital typogra-

phy had begun to supplant print itself, because text
display and reading increasingly shifted from paper
to computer screen, a phenomenon now noticed by
nearly all readers and publishers.

In the 20th century, typography was also trans-
formed by cultural innovations that were strikingly
visible to readers. In a profusion of new styles, move-
ments, and polemics, a plethora of avowedly rev-
olutionary “-isms” challenged traditional tenets of
typography in zealous efforts to reformulate, aban-
don, or replace long-held principles of typographic
organization and expression.

Some of these cultural movements hearkened
back to an idealized typographic past, while others
pointed to an idealized future. Our typography today
is a mix of such memories versus desires: old and
new, traditional and modern, potential and practical,
obsolete and avant-garde.

There have been relatively few books on ty-
pography that provide deep analysis of its cultural
transformations, knowledgeable explanations of its
technological progression, and copious illustrations
to accompany both aspects.

That is why this book is a milestone in the
scholarship and appreciation of modern typography.
Totaling 522 well-illustrated pages in two volumes of
essays by a group of typographic experts under the
editorial direction of Jacques André [1], the books
provide an impressive perspective on the typographic
art, culture and technology of the past century. [2]

Instead of an overview of the whole book, this
review of the first volume gives partial summaries and
comments on each of the chapters, This is done for
two reasons. First, the book is in French, so the short,
mini-summaries may help English-language readers
get some idea of the contents and significance of those
various chapters that may be of particular interest.
Second, because each author writes with different
expertise, perspective, and literary style, these mini-
summaries may give some hint of the variety of styles
and sensibilities in the essays. The book deserves an
English edition, but it is hoped that these notes may
at least point to what is contained therein.

Here are the chapters of Volume 1.

Alan Marshall: Preface (Préface)
The 20th century was one of the most eventful peri-
ods in the history of typography, influenced by two
major changes, the mechanization of typesetting and
the diversification of the use of print. The former
advanced typography for reading, while the latter
transformed typography for seeing. The selection and
production of typefaces for mechanized composition
concentrated mainly on traditional type forms that

Charles Bigelow

TUGboat, Volume 38 (2017), No. 1 19

are nearly subliminal in extended texts, but for pro-
motion of goods and dissemination of publicity in the
increasingly mass-market 20th century, super-liminal
type styles were created to arrest, shock, intrigue, se-
duce, and persuade readers of short commercial mes-
sages. As technology and usage changed, traditional
methods did not entirely disappear; hand-set display
types, for example, were often used in conjunction
with mechanized composition of longer texts.

1. Matthieu Cortat: The flowering of the

Modern (La floraison de la modernité)
From beginnings in the late 19th century English
Arts & Crafts movement and French lithographic
poster lettering, new typographic styles emerged,
especially the flowing, floral, and youthful styles
gathered under the banner of Art Nouveau, which
exercised international influence on lettering and
typography, often in contrast to traditional typogra-
phies of France and Germany. The botanical style
of Art Nouveau is a recurrent theme in this essay,
which ends with an olfactory metaphor: that when
the avant-garde moved on to other styles, Art Nou-
veau typography faded into obsolescence, leaving
only occasional whiffs of a flowery perfume in its
wake. (This reviewer recommends a whiff of Jacques
Guerlain’s “Après l’Ondée” (After the Rain Shower),
the quintessential Art Nouveau perfume, composed
in 1906 but still in production and regarded as one
of the greatest fragrances of all time.)

2. Roxanne Jubert: Signs of the avant-garde:

the alphabet between construction, system,

art and utopia (Signes des avant-garde:
l’alphabet entre construction, système,

art et utopie)
This lucid yet congenial exposition, reminiscent of
the essays of Roland Barthes, analyses the explosion
of diverse avant-garde movements in Europe, includ-
ing Futurism, De Stijl, Dadaism, Constructivism,
Bauhaus, New Typography, and their effects on ty-
pographic forms and organizations. The structuralist
approach of the essay effectively elucidates implicit
(and sometimes explicit) aesthetic and semiological
philosophies of the avant-gardists with their arrest-
ingly visual modularization and segmentation of ty-
pographic images, their construction of experimental
alphabets, and their integration of typography, ge-
ometry, and photography. Even the best English
discussions of avant-garde typography are rarely this
interesting.

3. Roxanne Jubert: The Art Deco Letter:

variety, stylization, play, and contrast

(La lettre Art Déco: variété, stylisation, jeu,

contraste)

Art Deco was (and still is) an aesthetic family that
encompassed several different but somehow related
visual styles. Understanding Art Deco visual rela-
tionships is a bit like grappling with Wittgenstein’s
remarks on family resemblance— is there a single
core element or a set of overlapping similarities?
Whatever its visual core, Art Deco influenced poster
art, architecture, signage, advertising, and typogra-
phy and characterized the then-modern era of the
1920s and 1930s, between the two great wars. De-
spite diversity within the style, multiple connections
can be traced among its apparently disparate forms.
Of particular typographic note are Art Deco type-
faces by designers who are better known today for
more sober creations, including Morris Fuller Ben-
ton, Rudolf Koch, Imre Reiner, Robert Middleton,
and Dick Dooijes. There are also notable designs
by artists firmly within the Art Deco genre such as
A. M. Cassandre. Unlike the Art Nouveau types,
many forms of Art Deco continue to be used today.

Jacques André: First Interlude:

The sociology and revival of a type style:

stencil (Pause: Sociologie et renouveau d’un

caractère: les pochoirs)
This absorbing, often amusing, and copiously illus-
trated exposition proceeds from a hand silhouette
in palaeolithic cave painting to the analytic logic of
form and counter-form in letter shapes; from spray-
painted graffiti to labels on gunny sacks and letters on
wine barrels; from slogans on walls to road markers;
from signs cut in metal to stencil-like typefaces by
Auriol, Jacno, and other 20th century type designers.

4. Nelly Gable and Christian Paput:

Perennity of punches and matrices

(Pérennité des poinçons et matrices)
A clear and beautifully illustrated treatise on type
punch-cutting, emphasizing the tools and techniques
still used today at the French Imprimerie Nationale.
For five and a half centuries [3], punch-cutting has
been at the core of every era of typography, practiced
by a tiny group of skilled artists whose exquisitely
precise work has rarely received public recognition,
first because it was necessarily executed in miniature
(like the 10 point type you are reading now) and was
usually anonymous (apart from in-group knowledge
of a few typographic cognoscenti) because type was
made in service of the arts of literature and knowl-
edge. Stanley Morison wrote that typography is only
accidentally aesthetic, “for the enjoyment of patterns
is rarely the reader’s chief aim.” This applies as well
to the jewel-like intricacy of finished punches. In
this chapter, the methods, tools, and techniques of
cutting and proofing punches, and of striking and

Review: The History of Typographic Writing—The 20th century ; vol. 1

20 TUGboat, Volume 38 (2017), No. 1

justifying matrices, are precisely described and ex-
plained, coupled with clear photographs by Nelly
Gable and Daniel Pype. Among its side-revelations
are the names of the principal French punch-cutters
who worked at the Imprimerie Nationale, Deberny &
Peignot, and other organizations in the 20th century.
Thus, artists who worked mostly in obscurity are
rescued to some extent from anonymity. A photo
of punches bearing the punch-cutters’ own identi-
fying stamps furthers the cause. Little has been
published on punch-cutting, and even less is still in
print, so this excellent chapter especially merits an
English translation and republication, perhaps as an
offprint. [4]

5. Christian Laucou: Technical innovations

from 1900 to 1945 (Les innovations techniques,
de 1900 à 1945)
In the Internet era, we may believe that electronic
innovation travels at a faster speed than ever be-
fore, but this essay demonstrates the dizzying pace
of mechanical innovation in typesetting at the start
of the 20th century. Typography was, after all, the
dominant information technology of that era. Even
the lexicon of names of typesetting inventions is
enough to write rhyming poetry to accompany the
clatter of machines like Barotype, Diotype, Franco-
type, Intertype, Linotype, Monotype, Nebitype, Ro-
totype, Stringertype, Teletype, Typar, Typograph,
Typomeca, Typostereotype and more. Engineer-
ing drawings, particularly of matrices and mecha-
nisms, illustrate the ingenuity devoted to turning
keystrokes into print, a process that continued to be
reinvented throughout the century in other technolo-
gies, even as metal-based composition approached
near-extinction.

Jacques André: Second Interlude:

Louis Jou, an idiosyncratic brilliance

(Louis Jou, un marginal génial)
An appreciation of the typographic work of Louis
Jou, an engraver, typographer, type designer and
fine book printer-publisher whose work combined
the richness, variety, and elegance of Renaissance
typography with the exuberance of Art Nouveau,
enhanced by his own inventiveness in ornamental
lettering and layout. A friend of Apollinaire, Dufy,
Cocteau, and other literary and artistic luminaries
of his time, Jou, who was born in 1881 and died
in 1968, “came too late to achieve the glory of his
English equivalent, William Morris but too early to
use digital type, which would have enabled him to
play more with fonts and compose his books with
the perfectionism of an aesthete.”

6. Manuel Sesma: Return to historical

and neo-historical typefaces (Retour aux
caractères historiques et néo-historiques)
Revival and practice of past letterforms is tradi-
tional in Asian calligraphy. In the Italian Renais-
sance, Humanist handwriting revived Carolingian
court handwriting of six centuries earlier and be-
came the model for the first roman and italic types.
Arts and Crafts printers revived older types using
photographic enlargements from books and hand
punch-cutting. Augmented by pantographic punch-
engraving, revivals achieved commercial success in
the 20th century, especially with revivals of types
cut by Claude Garamond in the 16th century (or
derivatives cut by Jean Jannon in the 17th century
but misidentified as those of Garamond). These re-
vivals were marketed under the names “Garamond,”
“Garamont,” “Granjon,” “Estienne,” “Sabon,” and
others, causing this essay to call the phenomenon
“garamonomanie” (perhaps “Garamonomania” in En-
glish). Questions about whose types were actually
revived as Garamond’s resulted in intriguing typo-
graphic scholarship by Jean Paillard in 1914 and
Beatrice Warde (writing as Paul Beaujon) in 1926. [5]

The Peignot foundry types “Cochin” and “Nico-
las Cochin” were based on elegant lettering by 18th
century engravers Charles-Nicolas Cochin and son.
The Peignot Cochin types became fashionably pop-
ular in France and were imitated by foundries else-
where.

In the U.S., American Type Founders (ATF) pro-
duced successful revivals by designer Morris Fuller
Benton and printer-scholar Henry Lewis Bullen, in-
cluding Bodoni, Jenson (called Cloister), (Fry’s)
Baskerville, Caslon, and the Garamond that ignited
Garamonomania. Frederic W. Goudy often took Re-
naissance models as inspiration but imbued them
with his own artistic sensibility. Goudy Old Style
from ATF, with additional versions by M. F. Benton,
has remained popular through every major change in
typesetting technology. Goudy also drew “Garamont”
for American Monotype.

Revivals were also produced by the Bauer and
Stempel foundries in Germany and Linotype in Eng-
land, Germany, and the U.S. In mechanical compo-
sition, the best known series of revivals came from
the English Monotype corporation. Under the direc-
tion of Frank Hinman Pierpont and with the advise-
ment of Stanley Morison, Monotype revived types
by Jenson, Aldus, Arrighi, Garamond, Van Dijck,
Fournier, Baskerville, Bell, Bodoni, and others, and
also produced original faces by designers with classi-
cal affinities: Perpetua by Eric Gill, Romulus by Jan
van Krimpen, and Dante by Giovanni Mardersteig.

Charles Bigelow

TUGboat, Volume 38 (2017), No. 1 21

Though waxing and waning at times, type revivals
continued through the rest of the 20th century.

7. Manuel Sesma: Lead again

(Encore le plomb)
As the European typographic industry strove to re-
cover after World War II, an exuberant flowering of
imaginative typefaces emerged from French designers
and typefoundries with an inventive sense of graphic
style termed “La Graphie Latine” (“Latin Typog-
raphy”). These spirited French typefaces brimmed
with inspiration: Paris, Flash, Île de France and
Champs Elysées by Enric Crous-Vidal; Choc, Banco,
Mistral, Calypso, and Antique Olive by Roger Ex-
coffon; Jacno by Marcel Jacno; Ondine and Phoebus
by Adrian Frutiger. Though revolutionary in style,
these faces were produced as lead foundry types. [6]
Mistral and Calypso were “tours de force,” challeng-
ing the constraints of metal type. In the 1950s and
1960s, expressive French designs differed markedly
from the sober, grotesque-style sans-serifs at the
core of Swiss typography and its allied international
modernism that favored grid-based bureaucratic reg-
ulation over charismatic expression. But, as a philo-
sophical complement to effervescence in letter design,
French writing and thinking on type also featured
acutely rational reflections on the logic of typography,
as seen in the typeface classification system devised
by Maximilien Vox and adopted as a standard by
the Association Typographique Internationale as the
Vox-ATypI system, and in the numeric naming sys-
tem for typeface weight, width, and posture devised
by Adrian Frutiger for his pioneering Univers neo-
grotesque produced by the Paris foundry Deberny &
Peignot, for both phototype and foundry type.

8. Charles Bigelow: Legibility and

typography: research in the first half of

the 20th century (Lisibilité et typographie: les

recherches durant la première moitié du xxe siècle)
By the first decade of the 20th century, literacy
rates in France, England, Germany, and America
had soared to more than 90 percent due to national
expansions of free, public education. The vast in-
creases in literacy fueled the printing and marketing
industries but raised concerns about typeface legibil-
ity in reading education, ocular health of children,
and the physiology and psychology of reading. Émile
Javal in France and Edmund Burke Huey in America
pioneered reading research. Shortly afterwards in
New York, Barbara Roethlein (with font assistance
from Morris Fuller Benton) conducted one of the
earliest psychological studies comparing type legibil-
ity. Elsewhere, Richard L. Pyke in England, Gerrit
Willem Ovink in Holland, and Miles Tinker with

Donald G. Paterson in Minnesota conducted legibil-
ity studies, the last of these continuing through the
first half of the century. Although most typeface
development followed traditional faith in the trained
eye of the designer, legibility research did influence
the design of a few popular typefaces for specific pur-
poses. The enduringly popular Century Schoolbook,
originally designed by Morris Fuller Benton for a
textbook publisher, drew upon Roethlein’s earlier
research. Linotype’s “Legibility Group” was at one
time used in more than half of all newspapers in
the United States. It included several closely related
designs (Ionic No. 3, Excelsior, Opticon, and Corona)
that were influenced by Century Schoolbook and un-
published legibility research by Linotype. Not all
legibility studies were reliable. R. L. Pyke skepti-
cally remarked, “Four times as many writers have
measured legibility as have defined it. Three out of
every four writers have been attempting to measure
something the exact nature of which they have not
paused to examine.” [7]

Paul-Marie Grinevald: Third Interlude:

Survey of historians of typography

(Aperçu des historiens de la typographie)
This is a rare essay in typographic historiography: a
history of histories of typography. It includes social
histories of printing such as Elizabeth Eisenstein’s
The Printing Press as an Agent of Change, Lucien
Febvre & Henri-Jean Martin’s The Coming of the

Book, Marshall McLuhan’s The Gutenberg Galaxy

and The Medium is the Message. Recognizing that
typography is only the most recent form of writing,
the chapter cites Jack Goody’s anthropological trea-
tises on writing and society, ancient and modern, in
The Domestication of the Savage Mind (the title an
in-joke on a structuralist treatise by French ethnolo-
gist Claude Levi-Strauss) and The Logic of Writing

and the Organization of Society.
On the forms of letters and typefaces, this survey

touches on Euclidean letter constructions by Luca
Pacioli, Albrecht Dürer, Geoffrey Tory, and others in
the 16th century, on the refined Cartesian geometry
of type forms developed circa 1693–1702 by savants
Jean-Paul Bignon, Jacques Jaugeon, and Sebastian
Truchet, which led to the creation of the Roman
du Roi, the French royal typefaces. Valuable essays
on type and history, to mention a few of the many
cited, include: in the 18th century, Pierre-Simon
Fournier’s Manuel Typographique and the chapter
“Caractère” in the Diderot Encyclopédie; in the 19th
century, Talbot Baines Reed’s A History of the Old

English Letter Foundries; in the 20th century, Daniel
Berkeley Updike’s Printing Types: Their History,

Review: The History of Typographic Writing—The 20th century ; vol. 1

22 TUGboat, Volume 38 (2017), No. 1

Forms and Use—A study in survivals, Marius Au-
din’s Histoire de l’Imprimerie par l’Image and La

Somme Typographique, Harry Carter’s A View of

Early Typography, Fernand Baudin’s L’Effet Guten-

berg, John Dreyfus’ Into Print, Alan Marshall’s Du

plomb à la lumière, and other recent works. Pre-
ceding volumes from Perrousseaux in the series on
Histoire de l’Écriture: Typographique must also be
mentioned: De Gutenberg au XVIIe siècle, by Yves
Perrousseaux; Le XVIIIe siècle (two volumes), also
by Yves Perrousseaux; and Le XIXe siècle français

by Jacques André and Christian Laucou.
The book ends with an extensive general bib-

liography as well as bibliographies specific to each
chapter, totaling 412 references in all, to works in
French, English and German. These are followed by
indexes of typefaces, typographers, and typographic
topics.

Notes

[1] The general editor, Jacques André is a French
computer scientist with an intense interest in ty-
pography. He organized the first academic confer-
ence on the integration of computer science with
typography, “La Manipulation des Documents”, in
Rennes, France in May, 1983, and organized the
later international “Raster Imaging and Digital Ty-
pography” (RIDT) conferences. He has published
papers on TEX, and readers of TUGboat may know
his reviews and articles including “Father Truchet,
the typographic point, the Romain de Roi, and
tilings” (TUGboat issue 20:1, 1999) and “The Cas-
setin project—Towards an inventory of ancient types
and the related standardised encoding” (24:3, 2003).
Notable are his translations and re-interpretations
of selected print works, such as “Petits jeux avec
des ornements”, a translation into French with digi-
tal re-composition of ornamental patterns by Swiss
typographer Max Calisch in Kleines Spiel mit Or-

namenten (Berne, 1965), and an electronic revival
of P.-S. Fournier’s Manuel Typographique (Barbou,
1764). http://jacques-andre.fr/japublis/

[2] These two volumes are the latest in a series on
“Typographic Writing” from Atelier Perrousseaux, a
French publisher of typography books. The series, in
several successive volumes, begins with Gutenberg
and thence covers the next six centuries. The term
“typographic writing” in the title affirms that typog-
raphy is the latest form of writing in a long history
of literacy. All of the books in the series are well
worthwhile.

[3] Gutenberg’s method of making type in the 1450s
remains shrouded in mystery, but the technique of
punch and matrix was probably developed and prac-

ticed before 1470, when Nicolas Jenson, a master of
the French mint who had studied the infant art of
typography in Mainz, gave up minting for printing
and opened his shop in Venice.

[4] The chapter’s bibliography includes Counterpunch
by Fred Smeijers, now out of print but an entertaining
and informative book that combines the author’s
efforts to learn punch-cutting, including a history and
explanation of the tools and techniques, comparisons
of hand work to computer work, the creating of new
type designs inspired by models from the golden age
of typography, and comments on other topics arising
during the author’s story. A good short essay, not
in the bibliography, is Paul Koch’s “The Making of
Printing Types”, translated from German by Otto W.
Fuhrmann, in The Dolphin: A Journal of the Making

of Books, No. 1, pp. 24–57. Illustrations by Fritz
Kredel. The Limited Editions Club, New York, 1933.

[5] See: ‘Paul Beaujon’ (Beatrice Warde), ‘The Gara-
mond types: 16th and 17th century sources consid-
ered’, The Fleuron, 5, 1926, pp. 131–79. A recent
review of Garamond scholarship is James Mosley’s
“Garamond or Garamont”, Typefoundry Blog, Apr. 1,
2011. http://typefoundry.blogspot.com/2011/

04/garamond-or-garamont.html

[6] The title of this chapter and the bravado of the de-
signers may remind fans of American western movies
of a memorable line in the classic The Magnificent

Seven, delivered by Steve McQueen: “We deal in
lead, friend.”

[7] A short talk on this chapter was delivered at the
TEX Users Group meeting in Toronto, Ontario, on
July 27, 2016. Legibility research lost academic pop-
ularity in the middle of the century, but scientific
reading research was revived in the 1970s and 1980s,
principally in three areas: eye movements in read-
ing, researched by G.W. McConkie, Keith Rayner,
and Andrew Pollatsek, among several others; psy-
chophysics of reading, researched by Gordon E. Legge
and others; various practical studies comparing type-
faces, by Cyril Burt, Bror Zachrisson, E.C. Poulton,
Dirk Wendt, Herbert Spencer, Linda Reynolds, and
others.

Disclosure: As seen above, the reviewer contributed
a chapter to this book (but receives no monetary
compensation). He has known the general editor over
more than three decades of friendly mutual interest
in digital typography.

⋄ Charles Bigelow
http://lucidafonts.com

Charles Bigelow

TUGboat, Volume 38 (2017), No. 1 23

SILE: A new typesetting system

Simon Cozens

Abstract

SILE is a new typesetting system, influenced by
TEX but written from scratch in Lua. While still
in the early stages of development, it holds po-
tential as a typesetting system designed for unsu-
pervised automated typesetting, especially in non-
Latin scripts. SILE can be obtained from http:

//www.sile-typesetter.org/.

1 Introduction

In 2012, I wrote a typesetting system by mistake.
As part of my work for a small publishing com-

pany, I wrote a simple Perl script to automate the
production of book covers. However, I soon discov-
ered that the typesetting of the back cover blurb
was unacceptable without proper justification. I
ported Bram Stein’s JavaScript version [8] of the
original TEX justification algorithm [5] to Perl. Since
there was already a Perl implementation [4] of TEX’s
hyphenation algorithm [6], I added support for hy-
phenation at the same time.

Now I had something which could reliably type-
set paragraphs to PDF . . . well, you can probably
guess the rest. Adding a page builder was the ob-
vious next step, and soon penalties, skips, glues
and the rest followed. The project was rewritten in
JavaScript, and then finally in Lua.

Why does the world need another typesetting
system? Of course, it doesn’t. But sometimes it’s
a good idea to reinvent the wheel; that’s how we
get better wheels. If we never reinvented wheels in
the software industry, this journal would be called
troffboat. And a friend who works in Bible type-
setting let me know about a number of things that
current automated typesetters can’t do well—col-
umn balancing with multi-page lookbehind and grid
typesetting; layout of parallel polyglots across page
spreads; and so on—which gave me a number of
goals.

Because of these goals and my own interest in
non-Latin scripts, SILE has developed a focus on
multilingual typesetting, particularly with complex
and minority scripts, and the unsupervised layout of
large, complex documents. SILE will see a 1.0.0 re-
lease when it is capable of taking a Unified Scripture
XML [7] Bible translation and an appropriate class
file, and producing a print-ready Bible of quality
equivalent to that of a human typesetter. Even if I
never achieve it, I’m having fun trying.

2 SILE’s Component Parts

One of the advantages of writing a typesetting sys-
tem in 2012 rather than in 1982 is that most of
the hard work is already done for you. As we have
mentioned, core typesetting algorithms are readily
available; Unicode, together with its standard an-
nexes and technical reports, describes good solutions
to many of the problems of multilingual data rep-
resentation; OpenType fonts and shaping engines
help with the layout of complex scripts; embedded,
interpreted languages won out over macro processors;
and the world has effectively standardised on PDF

as a document format.
A bird’s eye view of SILE is shown in fig. 1.

Text is consumed, and is reordered according to the
Unicode Bidirectional Algorithm [9]. Then each run
of text, together with its font, language, direction
and other settings, is passed to the HarfBuzz [1]
shaping engine. HarfBuzz returns a stream of glyph
IDs and metrics, which are then assembled into a
list of nodes, either by language-specific processors
or by the default Unicode processor. The nodes are
fed to the familiar H&J algorithms and collected into
vboxes, vboxes into frames, frames into pages, and
pages are finally output as PDF.

The choice of Lua as an implementation lan-
guage hinged on a number of factors; obviously there
are some benefits to using a language which is famil-
iar to a pre-existing community of typesetting soft-
ware engineers, although I have no strong desire to
‘convert’ anyone! But there are also benefits to using
an interpreted language for implementation: first,

Shaping
(harfbuzz)

Bidi processing
(ICU)

Text

Font selection
(fontconfig /
Mac native)

Language support

Line/page breaking
(Knuth algorithms)

PDF generation
(libtexpdf)

Figure 1: SILE’s component parts

SILE: A new typesetting system

24 TUGboat, Volume 38 (2017), No. 1

\SILE{}.registerCommand("tableofcontents:item", function (options, content)

\SILE{}.settings.temporarily(function ()

\SILE{}.settings.set("typesetter.parfillskip", \SILE{}.nodefactory.zeroGlue)

\SILE{}.call("tableofcontents:level" .. options.level .. "item", {}, function ()

\SILE{}.process(content)

\SILE{}.call("dotfill")

\SILE{}.typesetter:typeset(options.pageno)

end)

end)

end)

Figure 2: Lua code to typeset a TOC entry

Lua is designed as an embedded language, which
means that SILE can provide a complex text lay-
out system for embedding within other applications.
(For instance, there is a SILE preview plugin for the
Glyphs font editor.) It also means that any area
of SILE’s operation can be overridden or extended,
not just those with pre-defined hooks. For instance,
the grid typesetting package works by overriding the
leading calculation; similarly, when setting Japanese
text on a hanmen grid, there is no need to apply full
best-fit paragraph composition— it’s fine to replace
the Knuth-Plass algorithm with a simple first-fit line
breaker for speed.

SILE’s modular design also means that every-
thing is pluggable. I tried a number of different PDF

libraries while developing SILE; the first versions
used Cairo [2], but Cairo’s PDF surface is fairly lim-
ited, and does not allow for the generation of PDF

annotations, links and outlines—not to mention any
of the tagged and structured markup required for
accessible PDFs— so I started looking for alterna-
tives: Haru, PoDoFo and others. Since the output
system has a well-defined interface, I could easily
test a new PDF generation library by slotting a new
output implementation in place. Similarly, SILE’s
regression test system works by plugging in a custom
outputter which produces a textual representation
instead of a PDF; this can then be compared against
the expected results using diff.

Incidentally, the PDF library I settled on was
both an old one and a new one: I extracted the
PDF generation backend from dvipdfmx and made
it available as a library–libtexpdf. This was the only
PDF generation system I could find which allowed
me to address glyphs by ID, and also to add arbitrary
PDF operators to the output.

Apart from C interfaces to HarfBuzz, ICU (the
Unicode support library), fontconfig and libtexpdf,
the core of SILE comprises a little under 5,000 lines of
Lua code. (10% of which is made up of a somewhat
literal port of TEX’s line breaking algorithm.) This

makes sense—with so much done by third-party
libraries, there is relatively little left for SILE to do
by itself.

3 Input formats, packages and classes

Just like the output system, SILE’s input system
is modular. The first input format implemented
for SILE was XML—the idea being that SILE is to
be used to typeset data produced by other software,
such as translation databases, rather than documents
constructed by hand; XML is both an easy format
to parse and an easy format for other software to
output. But while SILE needs to ingest XML, for
whatever reason people wanted to hand-generate
SILE documents, and so SILE added a parser for a
simple, TEX-like input format.

The TEX-like format is only superficially TEX-
like. It is, essentially, simply another way of rep-
resenting an XML tree structure. These two SILE

documents are equivalent:

\begin{foo} <foo>

Text Text

\bar[this=that] <bar this="that"/>

\end{foo} </foo>

The implementation of <foo> and <bar> is, of
course, up to the user. In this sense, SILE is similar
to an XML stylesheet processor: alongside a doc-
ument must come a set of processing expectations
which define how the tags will be typeset. SILE’s
\define command provides an extremely restricted
macro system for implementing simple tags, but you
are deliberately forced to write anything more com-
plex in Lua. (Maxim: Programming tasks should
be done in programming languages!) For example,
the command to typeset a table-of-contents item is
implemented by the code in fig. 2. This expects a
command of the form:

\tableofcontents:item[level=2,pageno=3]

{Something}

Simon Cozens

TUGboat, Volume 38 (2017), No. 1 25

and passes the text and page number separated by
leaders to the command which styles a level 2 TOC

entry; this command, which is more easily imple-
mented with a \define at the SILE level, will in
turn set the appropriate font size, style and so on.

Lua code is loaded into SILE as packages or
classes, similar to LATEX—classes define the layout
and key formatting expectations for tags, while pack-
ages provide additional functionality. Classes can be
inherited (in the object-oriented programming sense)
from other classes; SILE comes with a number of
basic document classes but the expectation would be
that each substantial document project would define
its own class.

Since classes can be loaded even before the docu-
ment is opened, they can do things such as providing
a new input format. The markdown class does just
this, implementing a parser and providing processing
expectations for Markdown documents.

Naturally there are not currently anything like
as many packages for SILE as for TEX derivatives.
But fig. 3 is (an abridged version of) my favourite.
This implements boustrophedon text by overriding
the typesetter’s function for turning horizontal lists
into vertical lists. After the default implementation,
the vertical list is inspected, and a custom whatsit
(swap) is inserted after every vbox. When the whatsit
is output, the typesetter’s direction is reversed: if
the previous line was left-to-right, the next line will
be right-to-left, and vice versa.

SILE’s programmability leads itself to experi-
mentation and implementation of new technologies;
support for OpenType color fonts was added as an
external package in 85 lines of code, and rudimentary
support for OT fonts with SVG outlines has recently
been added.

4 The language support system

While Harfbuzz and Unicode provides a lot of what
SILE needs to support complex scripts, different lan-
guages have different typographic conventions. For
instance, correctly typesetting Japanese is not a mat-
ter of inserting line break opportunities between ev-
ery pair of characters; Japanese kinsoku-shori rules
stipulate that some punctuation characters cannot
start lines and others cannot end lines. Addition-
ally, characters are generally set on a fixed grid,
but spacing is reduced around brackets and commas.
These language-specific typesetting conventions are
encoded in SILE’s language support system, which
assembles the stream of glyphs from the shaper into
nodes, giving SILE a chance to implement hyphen-
ation points, line breaking opportunities and so on.

local swap = \SILE{}.nodefactory.newVbox({})

swap.outputYourself = function(self,typesetter)

typesetter.frame.direction =

typesetter.frame.direction == "LTR-TTB"

and "RTL-TTB" or "LTR-TTB"

typesetter.frame:newLine()

end

\SILE{}.typesetter.boxUpNodes = function(self)

local vboxlist =

\SILE{}.defaultTypesetter.boxUpNodes(self)

local nl = {}

for i=1,#vboxlist do

nl[#nl+1] = vboxlist[i]

if nl[#nl]:isVbox() then

nl[#nl+1] = swap

end

end

return nl

end

Figure 3: The boustrophedon package, abridged.

Another pertinent example is that of many south-
east Asian languages which are written without inter-
word spaces but which line break between graphical
syllable clusters, the clusters being determined by
morphological analysis. SILE’s support for Javanese
uses a Parsing Expression Grammar [3] to detect syl-
lable boundaries and insert penalties into the node
stream to specify potential break points. Access to
ICU means that language-specific casing rules (such
as the Turkish i/İ and ı/I combinations) are correctly
applied.

SILE does not assume any default directionality,
meaning that left-to-right typesetting is not priv-
ileged over right-to-left processing. Indeed, sup-
porting Mongolian, which is traditionally written
top-to-bottom and left-to-right, is simply a matter
of telling the typesetter about the new direction:
\thisframedirection{TTB-LTR}.

Figure 4 demonstrates SILE’s multi-script ca-
pabilities; notice how SILE has respected the typo-
graphic conventions of each script, and how the RTL

texts (Arabic and Hebrew) have been reordered ac-
cording to the conventions of mixed directionality
typesetting. In the source file, each text is marked up
with its language so that SILE can select the appropri-
ate set of rules, but the bidi reordering is performed
by default and requires no additional markup.

5 Frames

In our overview of SILE’s component parts, we men-
tioned in passing that vboxes are assembled into
frames and frames are assembled into pages. Frames

SILE: A new typesetting system

26 TUGboat, Volume 38 (2017), No. 1

My hovercraft is full of eels. مُمْتِلئة حَوّامتي
نْقَليَْسون بِأَ Իմ սաւառնակս օձաձկներով լեց ն

է: আমার হভার া কঁুেচ মাছ-এ ভরা হেয় গেছ
က နေ်တ ်ရဲ ေလစးယ ်မှ င း ှင်ေ့တအွြပည့် ှေန
ပ တယ်။ 我的氣墊船裝滿了鱔⿂ ჩ მ ხომ ლ
ს ჰ რო ლ შ ს ს ლ Το
Χόβερκράφτ μου είναι γεμάτο χέλια שלי הרחפת
בצלופחים מלאה मेरी मँडराने वाली नाव सपमीन से भरी
ह ᐅᒥᐊᕐᔫᑉ ᐳᓪᓕᓕᒫᐸᒐ ᑕᑦᑕᕐᓂᖅ ᐊᒻᒪᔭᖅ 私

のホバークラフトは鰻でいっぱいです សុទ្ធ
ែតឣន្ចងេពញទូក បះេយើង ។ 내 호버크라프트

는 장어로 가득 차 있어요 എെ പറ ും-
േപടകം നിറെയ വ്ളാ ുകളാണ് මාෙ වා
පා යානෙ ආඳ ඇතஎ மிதைவ

நைறய வலா மீ க
1

Figure 4: SILE’s multi-script capabilities

are areas on the page where text is to be set. The
frames for a page are generally defined by the docu-
ment’s class, but can be modified dynamically. For
instance, footnotes are generally implemented by
placing a zero-height frame at the bottom of the
main content area. As footnotes are placed on a
page, the footnote frame expands and the content
frame shrinks. This allows for interesting layout pos-
sibilities: in a two column layout, the footnotes can
be placed at the end of the second frame, or across
the bottom of two frames, or in a separate area of
the page altogether.

Frame layouts are generally specified relatively
rather than absolutely; for instance, fig. 5 shows the
frame declarations of the standard book class. The
dimensions %pw and %ph refer to percentage of page
width and page height respectively.

6 Various neat hacks

SILE packages implement a number of interesting
ideas; in no particular order: best-fit page breaking;
access to OpenType font features; parallel polyglot
layout (see fig. 6); justification alternates (rewriting
the text to improve justification); font fallback on
missing glyphs; grid typesetting; Japanese vertical
typesetting and ruby (furigana) support; automatic
generation of font specimens; a BibTEX-like bibliog-
raphy manager implemented at runtime within the
typesetter; support for producing Structured and
Tagged PDFs.

7 Challenges remaining

While SILE has been used successfully to produce a
number of print books and articles, it is still not a fin-
ished product. The development team is very small;
I’m the primary developer, with Caleb Maclennan
and Khaled Hosny as notable contributors. Devel-
opment happens on github and we are very open
to issues and pull requests. However, there are a
number of challenges remaining.

The lack of a Windows distribution is currently
hampering adoption; the pushback routine (which
disgorges the vertical list back onto the horizontal
list after every frame break, in case the next frame
has a different width) is a perennial source of mind-
boggling bugs; and currently we lack a good solution
for moving between multi-column and single-column
layout and back again, which is a blocker for serious
Bible typesetting.

We are also still working out how best to use
SILE. For instance, I initially anticipated that the
frames feature could be used to solve all kinds of
layout challenges—drop caps, wrapping text around
floated figures and so on. After some investigation we
have found that frames are better suited to page-level
layout, and other solutions such as nested vboxes
and custom packages work better for altering layout
within a frame. As more packages are developed,
idiomatic use of the system will become more clearly
defined.

I am often asked about typesetting of mathe-
matics. My usual glib answer is that there is not very
much mathematics in the Bible! However, I would
like to see an implementation of math typesetting
for SILE. The current plan is to find a way to call
out to MathJax to perform the layout computations,
and have SILE lay out the resulting nodes. How-
ever, SILE’s development is essentially driven by user
requests; I don’t need math for the kind of books
I’m typesetting, but if this is something you need, I
would be glad to help you implement it!

8 Conclusion

I have deliberately avoided making comparisons be-
tween SILE and TEX derivatives in this article, at-
tempting to introduce SILE on its own merits. In
a sense there is no comparison. TEX is an incredi-
bly mature and stable code base with a large and
vibrant community; SILE is new, fast-moving and
buggy, with few active developers. But I believe that,
with time and development, SILE has the potential
to provide better output than TEX for complex au-
tomated layout of non-Latin documents. It’s also
really fun to mess about with!

Simon Cozens

TUGboat, Volume 38 (2017), No. 1 27

content = {

left = "8.3%pw", right = "86%pw",

top = "11.6%ph", bottom = "top(footnotes)"

},

runningHead = {

left = "left(content)", right = "right(content)",

top = "top(content)-8%ph", bottom = "top(content)-3%ph"

},

footnotes = {

left = "left(content)", right = "right(content)",

height = "0", bottom = "83.3%ph"

},

folio = {

left = "left(content)", right = "right(content)",

top = "bottom(footnotes)+3%ph",

bottom = "bottom(footnotes)+5%ph"

}

folio

runningHead

footnotes

content

page

1

Figure 5: Frame layout in the standard book class

1 Εἰ ὖ ῷ
Χ ῷ, ἄ ω ῖ ,
ὗ ὁ Χ ἐ ἐ -
ᾷ ῦ ῦ ·

2 ἄ ω ῖ ,
ἐ ῆ ῆ .

3 ἀ ἡ
ω ὑ ῶ
ῷ Χ ῷ ἐ ῷ ῷ·

4 ὅ ὁ Χ -
ω ῇ, ἡ ω ὑ ῶ ,

ὑ ῖ ὐ ῷ -
ω ἐ ῃ.

5 ¶ Ν ώ ὖ
ἐ ῆ ῆ , -

ἀ
ἐ ,

, ἥ ἐ ἰ-
ω ,

6 ᾿ ἃ ἔ ἡ ὀ ῦ
ῦ [ἐ ἱ ῆ

ἀ].
7 ἐ ἷ ὑ ῖ -

, ὅ ἐ ῆ
ἐ ·

Therefore, if you have been
raised with Christ, keep
seeking the things above,
where Christ is, seated at
the right hand of God.

Keep thinking about things
above, not things on the
earth,

for you have died and
your life is hidden with
Christ in God.

When Christ (who is your
life) appears, then you
too will be revealed in
glory with him.

So put to death what-
ever in your nature be-
longs to the earth: sex-
ual immorality, impurity,
shameful passion, evil de-
sire, and greed which is
idolatry.

Because of these things
the wrath of God is com-
ing on the sons of disobe-
dience.

You also lived your lives
in this way at one time,
when you used to live
among them.

さて、あなたがたは、キリス

トと共に復活させられたの

ですから、上にあるものを

求めなさい。そこでは、キ

リストが神の右の座に着い

ておられます。

上にあるものに心を留め、

地上のものに心を引かれな

いようにしなさい。

あなたがたは死んだので

あって、あなたがたの命は、

キリストと共に神の内に隠

されているのです。

あなたがたの命であるキリ

ストが現れるとき、あなた

がたも、キリストと共に栄

光に包まれて現れるでしょ

う。

だから、地上的なもの、す

なわち、みだらな行い、不潔

な行い、情欲、悪い欲望、

および貪欲を捨て去りなさ

い。貪欲は偶像礼拝にほか

ならない。

これらのことのゆえに、神

の怒りは不従順な者たちに

下ります。

あなたがたも、以前このよ

うなことの中にいたときに

は、それに従って歩んでい

ました。

Figure 6: A parallel triglot: different scripts, different

column widths, different font sizes

References

[1] Behdad Esfahbod. HarfBuzz.
http://harfbuzz.org/, June 2016.

[2] Bryce Harrington. PDF surfaces.
https://www.cairographics.org/manual/

cairo-PDF-Surfaces.html, April 2016.

[3] Roberto Ierusalimschy. Lua parsing expression
grammars. http://www.inf.puc-rio.br/

~roberto/lpeg/, September 2015.

[4] Alex Kapranoff. Text::Hyphen. http:

//search.cpan.org/perldoc?Text::Hyphen,
October 2015.

[5] Donald E. Knuth and Michael F. Plass.
Breaking paragraphs into lines. Software—

Practice and Experience, 11(11):1119–1184, 1981.

[6] Franklin Mark Liang. Word Hy-phen-a-tion

by Com-put-er. PhD thesis, Department of
Computer Science, Stanford University, 1983.
http://tug.org/docs/liang/.

[7] United Bible Societies. Unified Scripture XML.
https://ubsicap.github.io/usx/, 2016.

[8] Bram Stein. TEX line breaking algorithm in
JavaScript. https://github.com/bramstein/
typeset, April 2016.

[9] The Unicode Consortium. UAX #9:
Unicode bidirectional algorithm. http:

//unicode.org/reports/tr9/, May 2016.

⋄ Simon Cozens

Worldview Center for Intercultural Studies

St Leonards, Tasmania

Australia

simon (at) simon-cozens dot org

http://www.simon-cozens.org

SILE: A new typesetting system

28 TUGboat, Volume 38 (2017), No. 1

BaskervilleF

Michael Sharpe

Abstract

BaskervilleF, where F may stand ambiguously for either
Free or Fry’s, is derived from Libre Baskerville, and
attempts to move away from its web font design toward
a font of more traditional Baskervillian appearance.
Its model is the Baskerville from the American Type
Foundry (ATF) in the early twentieth century, which in
turn was loosely based on Fry’s Baskerville, and had a
new italic designed afresh by Morris Fuller Benton.

1 Baskerville’s life and work

John Baskerville (1706–1775) was born to a poor family
in Birmingham but his talents became apparent early.
He received basic schooling and worked for a period as
a writing master before turning to what made him quite
wealthy, creating and operating a business that japanned
furniture. (Japanning involved multiple layers of heat
treated, highly polished lacquer. The process was de-
veloped as a European response to a similar Japanese
metal lacquering process which had become very pop-
ular. Birmingham was the center of the industry in
England. Success in the business at the upper end re-
quired meticulous attention to be paid to the fine detail
of every aspect of the manufacturing process. We see
remnants of the japanning method in older electrical
transformers, whose windings bear layers of insulating
shellac built up in a similar manner.)

In his mid-forties, Baskerville moved away from
the japanning business back to his roots and started a
firm devoted to high-quality printing. He was wealthy
enough to not have to be concerned about making
money from bread-and-butter jobs and could focus
on high-end projects. At that time William Caslon
was the dominant figure in English typography. His
eponymous font was wildly popular both in England
and America (U.S. Constitution!) but derivative, being
based on other old-style fonts that had been available
for many years, carried to some calligraphic extremes.

Baskerville’s idea for a typeface that would reflect
his ideals of stately, sober perfection was released in
1757. In contrast to the playfulness and asymmetries of
old-style fonts, his designs relied on simplicity of form
and a strict attention to detail. The characteristics, new
to that era, were:

• very regular glyphs, with few embellishments;
• curved strokes that are close to circular, at least in
the roman and bold;

• sharply cut serifs;
• the axis of rounded forms became almost vertical;
• high contrast (ratio of thickest to thinnest strokes).

To bring his ideas to fruition required making his own
printing machinery, his own ultra-smooth, pressed pa-
per and his own high quality ink. It is understandable
that his business was not greatly successful as a com-
mercial enterprise, and he stands as an exemplar of the
aphorism about making a small fortune as a printer
and type founder.1 Following his first production of an
edition of a work of Virgil, he was appointed (1758) as
printer to the Cambridge University Press and in the
course of the next fifteen years published about fifty
classic volumes. His greatest publication is thought to
be his folio Bible (1763), made according to his highest
standards.

Baskerville seems to have been unusually progres-
sive for his time, a free thinker though much of his
work involved religious texts, and did not marry his
housekeeper, and, finally, mistress and business part-
ner, Sarah Eaves, until very late in life. (Zuzana Licko’s
fontMrs. Eaves is based on Baskerville but with softer
features.)

At the time, the English printing community did
not give Baskerville much credit for his innovations.
His rivals spread stories about the sharpness of his ser-
ifs and the excessive contrast being a danger to the eyes
and even with the then-primitive state of fake news
and social networking, these views took a firm hold.
Foreign printers, however, such as Benjamin Franklin,
Giambattista Bodoni and Pierre Simon Fournier were
highly impressed by his designs, which led to the de-
velopment of the “modern” style, for which Baskerville
is labelled a “transitional” font. Following Baskerville’s
death in 1775, his wife sold all his machinery, punches
and matrices to Beaumarchais in Paris for £3700, hav-
ing found no one in Britain willing to make an offer,
such was the popularity of Caslon. These were used
by Beaumarchais in his massive effort, requiring the
purchase of three paper mills, to print in Germany the
complete works of Voltaire, then banned from publi-
cation in France. The surviving punches and matrices
were eventually donated back to Cambridge University
in the early twentieth century. Baskerville has continued
to be a French favorite, being used as the text font in
many of their mainstream mathematical publications.

By 1765, Baskerville appears to have tired of the
printing business and later abandoned it entirely. In
1768, a punch-cutter named Isaac Moore, who worked
for a Bristol print foundry owned by Joseph Fry, cut an
imitation of Baskerville that did not require the highest
level of equipment, paper and ink. It is now considered
that Fry’s Baskerville, as it is now called, has more in
common with later fonts such as Bell, Bulmer and Scotch
Roman. In 1923, Morris Fuller Benton designed for

1 It being essential to first possess a large fortune.

Michael Sharpe

TUGboat, Volume 38 (2017), No. 1 29

American Type Foundry (ATF) a revival of Fry’s Bas-
kerville with a new italic to replace the original poorly
thought-of version in Fry’s Baskerville. This version
appears in several of their catalogs, which have been
scanned at high resolution by Raph Levien and are
available from TUG to interested parties.

In 2012, Pablo Impallari and Rodrigo Fuenzalida
created a new web font, Libre Baskerville, that seems to
be based on tracing the scans of the images above, as
described in [KB01]. The x-height was increased, the
ascenders were shortened, and the contrast was lowered
substantially, while the serifs and tails were thickened
considerably. Their font was well done technically (very
good spacing and kerning) but did not look especially
close to Baskerville, in my opinion.

2 BaskervilleF

In discussions with Karl Berry at the TUGmeeting in
Toronto, 2016, I expressed my interest in making a
version of Baskerville more attuned to the interests of
traditional TEX users, and Karl later supplied me with
a wealth of information about doing this starting from
Raph Levien’s scans.2 Remaking the fonts from scratch
lacked appeal, and once I examined Libre Baskerville
closely, I saw that much could be achieved by undoing
their transformations to web fonts—reducing the x-
heights, increasing the ascender heights, sharpening the
serifs and hollowing out the glyphs to raise the contrast
and reduce the heaviness. Wherever possible, I kept
the side-bearings the same so that the new spacings and
kernings were as similar as possible to those of Libre
Baskerville.

2.1 Additions

In reworking Libre Baskerville, abbreviated below to LB,
to BaskervilleF, abbreviated below to B, there were some
major additions, listed here.

• LB provides no bold italic style—B adds one. Al-
though most users most likely make little use of
bold italic in text, apart perhaps from titles in some
packages, it is essential for producing a proper bold
math italic alphabet.

• LB had only one normal sized figure style, propor-
tional lining.3 B contains four such styles, adding
tabular lining, tabular oldstyle and proportional
lining, the default being tabular lining, which is
needed for proper mathematical figure spacing.

• LB has superior and inferior figures at just 40%
of the size of its lining figures. B contains a re-

2 It is a pleasure to acknowledge Karl’s encouragement and very
useful technical feedback throughout this project.

3 In the original Baskerville, all figures were oldstyle, a.k.a. low-
ercase figures. Lining figures, the much more common form now,
were not introduced until several years after Baskerville’s death.

worked set of inferior and superior figures at ap-
proximately 60% of the size of its lining figures.
(The pre-built fractions, like ¾, were remade to
use the larger figures, and the \textfrac macro
attempts to provide other fractions with attention
paid to appropriate spacing.)

• LB has only figures in its superiors. B adds supe-
rior upper and lower case letters, with eacute and
egrave the only accented superior letters.

• LB has no small caps. All four styles of B contain
a Small Cap alphabet containing all characters in
the T1 encoding.

• An LY1 encoding is provided. This may be of in-
terest principally to Scandinavian users who wish
to have access to the fj and ffj ligatures, for ex-
ample, in typesetting �ord. (There is no room left
in the T1 encoding for these ligatures.) The other
unusual ligatures available in LY1 are fb (), fh
(�) and fk (�).

As otf versions of the fonts are provided, they
may be used directly in Unicode TEX by means of
the fontspec package. The baskervillef package
provides baskervillef.fontspec, a file specifying the
names of the relevant otf files. It is loaded automat-
ically by fontspec, so it suffices to include in your
preamble:
\usepackage{fontspec}

\setmainfont[Ligatures=TeX]%

{baskervillef}

Usage under LATEX has several options that are spelled
out in detail in the package documentation.

For math typesetting to accompany BaskervilleF,
one may use the package newtxmath with the option
baskerville. For instance:
\usepackage{baskervillef}

\usepackage[baskerville,vvarbb]{newtxmath}

\usepackage[cal=boondoxo,frak=boondox]{mathalfa}

Some sample output:

A Simple Central Limit Theorem:
Let X1, X2, · · · be a sequence of i.i.d. random variables with
mean 0 and variance 1 on a probability space (Ω, F, Pr).
Let

N(y) ≔
∫ y

−∞

e−t
2/2

√
2π

dt,

Sn ≔
n
∑

1

Xk .

Then

Pr

(

Sn√
n
≤ y

)

−−−−→
n→∞

N(y)

or, equivalently, for f ∈ Cb(R),

E f
(

Sn/
√
n
)

−−−−→
n→∞

∫ ∞

−∞
f (t)e

−t2/2
√
2π

dt.

BaskervilleF

30 TUGboat, Volume 38 (2017), No. 1

BaskervilleF is provided with a theorem font, a
version of italic having upright punctuation and lining
figures, which is, in my opinion, more suitable than or-
dinary italic for theorem statements and the like. I have
abused the NFSS standards by setting \textsl to point
to the theorem font rather than a real slanted variant.
This is rather handy because we are then not limited to
using the theorem font only in those theorems where
the styles using appropriate declarations are in force.

3 Comparison to other Baskerville fonts

3.1 Other free Baskerville fonts

The following illustrates some of the differences be-
tween BaskervilleF on the left and its parent, Libre Bas-
kerville on the right. (BaskervilleF has been rendered at
four times natural size and Libre Baskerville at 3.6 times
natural size, so as to match cap-heights.)

Bask:Bask
BaskervilleF Libre Baskerville

The sharper serifs, higher contrast and shorter x-height
of BaskervilleF is quite apparent.

Had we instead matched x-heights, the compari-
son would be:

Bask:Bask
BaskervilleF Libre Baskerville

This time, the cap-height and ascender height of Libre
Baskerville are clearly much less those of BaskervilleF.

If we compareBaskervilleF againstBaskervaldxwith
matched x-heights we get:

Bask:Bask
BaskervilleF Baskervaldx

As is apparent, Baskervaldx is heavier, lower contrast,
and more spread out horizontally.

3.2 Commercial Baskerville fonts

The next two comparisons involve the commercial font
Monotype Baskerville, available on the Mac as a system
font.

Bask:Bask
BaskervilleF Monotype Baskerville

The Monotype roman has different glyph widths (note
in particular the lower bowl of its B, which is less promi-
nent than in other Baskervilles), but is otherwise a fairly
good match to BaskervilleF in terms of weight, contrast
and spacing when magnified by 106.5%.

Bask:Bask
BaskervilleF Monotype Baskerville

The Monotype italic is substantially more delicate than
BaskervilleF’s italic.

Bask:Bask
BaskervilleF ITC NewBaskerville

The ITCNewBaskerville italic, on the other hand, shown
with matching x-height, is heavier, has lower cap-height
and ascender height, and its lower-case letters are a bit
wider, but the family resemblance to BaskervilleF is
apparent.

Finally, here is Storm Baskerville, the most authen-
tic revival of the original Baskerville, at the same x-
height. Though it’s not obvious at even the moderate
magnifications displayed below, the design details in
these fonts are truly remarkable.

Baskerville120 Baskerville120-Italic

Inmetal type, theBaskerville of Deberny&Peignot
was from matrices made using Baskerville’s original
punches, while that of Stephenson Blake (1913) is said
[SB88] to be a reproduction of Fry’s Baskerville. The
samples below were scanned from 30pt sources and so
have thinner strokes than normal body text.

Deberny & Peignot Baskerville

Stephenson Blake Fry’s Baskerville

4 Bibliography

[KB01] Karl Berry, Making outline fonts from bitmap
images. TUGboat, 22:4 (2001), 281–285.
http://tug.org/TUGboat/tb22-4/tb72berry.pdf

[SB88] James Sutton and Alan Bartram, An Atlas of
Typeforms. Wordsworth Editions, Ware (1988).

⋄ Michael Sharpe
http://ctan.org/author/id/sharpe

Michael Sharpe

TUGboat, Volume 38 (2017), No. 1 31

Programming LATEX—A survey of

documentation and packages

Brian Dunn

Abstract

A survey of documentation sources and packages
useful for LATEX programmers.

1 Introduction

Reinventing the wheel may be useful if you think
that you can do it better. Worse, though, is not even
being aware that the wheel has already been invented
in the first place, which can be an embarrassing
waste of time. Such can be the case both for a new
LATEX programmer who isn’t aware of the many ways
things may be done, but also for someone, the author
included, who learned LATEX many years ago but
may have missed some of the recent advancements
in package code and documentation.

A wealth of information is available, not only in
print and online, but also directly embedded in the
typical LATEX distribution. The following is meant
to be a broad overview of some of today’s resources
for LATEX programmers.

(The latest version of this document is available
in the docsurvey package.)

2 Printed books

Even in an electronic/online era, printed books still
have the advantage of being able to be opened for
reference without taking up space on the screen.
Printed books also provide extended discussion of
useful topics, have extensive human-edited indexes
which are more useful than a simple document-wide
search function, and some are also available in elec-
tronic format.

LATEX: A Document Preparation System:

The classic introduction to LATEX, in continuous
reprint for decades. [1]

Guide to LATEX:

An introduction and more advanced material,
including an extensive reference guide. Fourth
edition: 2004. [2]

More Math into LATEX:

Updated to a fifth edition in 2016. [3]

LATEX Beginner’s Guide:

An overview with numerous examples. [4]

LATEX Cookbook:

More examples. [5]

The LATEX Companion:

Provides extended discussion and examples of
the inner workings of LATEX and numerous useful
packages. Second edition: 2004. [6]

Other books are listed at the UK TUG FAQ:
http://www.tex.ac.uk/FAQ-latex-books.html

3 Electronic books

Provided with the TEX distribution:

The Not So Short Introduction to LATEX2ε:

Covers introductory material, customizations,
and a simple package. [7] (texdoc lshort)

LATEX2ε: An unofficial reference manual:

A thorough but concise reference manual for
LATEX2ε, available in several languages. [8]

(texdoc -l latex2e-help)

LaTeX WikiBook:

An online book, includes information about cre-
ating LATEX packages and classes.
https://en.wikibooks.org/wiki/LaTeX

TEX by Topic, A TEXnician’s Reference:

A reference for TEX. This may be useful for
understanding the source code of LATEX pack-
ages, many of which are quite old and written
in low-level TEX. [9] (texdoc texbytopic)

4 Symbol references

These are lists of the LATEX commands which produce
symbols.

Comprehensive LATEX Symbol List:

More than 14,000 symbols and LATEX commands.
[10] (texdoc symbols-letter)

(texdoc symbols-a4)

Every symbol (most symbols) defined

by unicode-math:

Unicode math symbols. [11]
(texdoc unimath-symbols)

5 FAQs

UK TUG FAQ:

A wide-ranging list of frequently-asked ques-
tions. [12] (texdoc letterfaq)

(texdoc newfaq)

Visual LATEX FAQ:

Click on a visual element to learn how it is
programmed. [13] (texdoc visualFAQ)

6 Accessing embedded documentation

A large amount of documentation is included in a
TEX distribution. Most can be accessed with the
texdoc program. Use texdoc -l name to select
from many choices of matching package, file, or pro-
gram names. In some cases the same document is
available in both letter or A4 paper sizes, or in several
languages.

The program kpsewhich may be used to find
out where a file is located. kpsewhich filename

Programming LATEX

32 TUGboat, Volume 38 (2017), No. 1

searches for and returns the path to the given file-
name.

kpsewhich can also return directories, such as:

kpsewhich -var-value TEXMFROOT

kpsewhich -var-value TEXMFDIST

kpsewhich -var-value TEXMFLOCAL

Some package authors choose not to include the
source code in the package documentation. To view
the source code:

1. To locate and read a package’s .sty file:

kpsewhich package.sty

Usually these files have their comments removed,
so it is better to use the .dtx file instead.

2. The .dtx file is usually available, and will have
the package’s source code.

kpsewhich package.dtx

The comments are not yet typeset and so will
not be as easily read.

3. To typeset the documentation with the source
code, copy the .dtx file and any associated im-
age files somewhere local and then look for
\OnlyDescription in the source. This com-
mand tells the ltxdoc package not to print the
source code.

4. Remove \OnlyDescription, then process the
.dtx file with pdflatex package.dtx. Barring
unusual circumstances, this will create a new
documentation .pdf file with the package source
code included.

7 Source code

The source code for LATEX2ε itself is also included
in the distribution.

The LATEX2ε sources:

Occasionally useful for figuring out how some-
thing really works. [14] (texdoc source2e)

List of internal LATEX2ε macros

useful to package authors:

A list of the core LATEX macros, each of which
is linked to the source code. [15]

(texdoc macros2e)

8 Comprehensive TEX Archive Network

The Comprehensive TEX Archive Network (CTAN)
provides a master collection of packages. A search
function is available, which is useful when you know
the name of a package or its author, and a list of
topics is also provided. There are so many topics,
however, that finding the right topic can be a problem
in itself. One useful method to find what you are
looking for is to search for a related package you may
already know about, then look at its description on

CTAN to see what topics are shown for it. Selecting
these topics then shows you related packages. [16]

9 Packages

A number of packages are especially useful for LATEX
programmers:

xifthen:

Conditionals.

etoolbox:

A wide range of programming tools, often avoid-
ing the need to resort to low-level TEX.

etextools:

Adds to etoolbox. Strings, lists, and more.

xparse:

Define macros and environments with flexible
argument types.

environ:

Process environment contents.

arrayjobx, fifo-stack, forarray, forloop, xfor:

Programming arrays, stacks, and loops.

iftex:

Detect TEX engine.

ifplatform:

Detect operating system.

xstring:

String manipulation.

keyval, xkeyval, kvsetkeys:

Key/value arguments.

pgfkeys, pgfkeyx:

Another form of key/value arguments.

kvoptions:

Key/value package options.

expl3:

LATEX3 programming.

l3keys, l3keys2e:

Key/value for LATEX3.

CTAN topic macro-supp:

An entire topic of useful programming macros.

10 Creating and documenting packages

10.1 Packages and programs

Documentation for those interested in creating their
own package or class:

How to package your LATEX package:

A tutorial. [17] (texdoc dtxtut)

LATEX2ε for class and package writers:

Programming a package or class. [18]
(texdoc clsguide)

The doc and shortvrb packages:

Packages for documenting packages. [19]
(texdoc doc)

Brian Dunn

TUGboat, Volume 38 (2017), No. 1 33

The DocStrip program:

The program which processes .dtx and .ins

files to generate documentation and .sty files.
[20] (texdoc docstrip)

10.2 Articles

Related articles from TUGboat:

Rolling your own Document Class: Using LATEX

to keep away from the Dark Side:

An overview of the article class. [21]

Good things come in little packages:

An introduction to writing .ins and .dtx files:

How and why to create your own .dtx and .ins

files. [22]

How to develop your own document class—

our experience:

A comparison of developing class vs. package
files. [23]

11 Online communities

English forums:

TeX—LATEX Stack Exchange:

Almost any question has already been
asked, and a quick web search will find
answers, ranked by vote.
http://tex.stackexchange.com/

LATEX Community:

A traditional forum with quick replies to
your questions.
http://www.latex-community.org/

German forums:

TeXwelt:

http://texwelt.de/wissen/

goLaTeX:

http://golatex.de/

Newsgroup: comp.text.tex

⋄ Brian Dunn
bd (at) bdtechconcepts dot com

http://bdtechconcepts.com

Copyright 2017 Brian Dunn

References

[1] LATEX: A Document Preparation System, Leslie
Lamport, second edition, Addison Wesley, 1994,
ISBN 0201529831.

[2] Guide to LATEX, Helmut Kopka and Patrick W.
Daly, fourth edition, Addison-Wesley, 2004, ISBN
0321173856.

[3] More Math Into LATEX, George Grätzer, 5th ed.,
Springer, 2016, ISBN 3319237950.

[4] LATEX Beginner’s Guide, Stefan Kottwitz, Packt
Publishing, 2011, ISBN 1847199860.

[5] LATEX Cookbook, Stefan Kottwitz, Packt
Publishing, 2015, ISBN-13 9781784395148,
http://latex-cookbook.net/

[6] The LATEX Companion, Frank Mittelbach, Michel
Goossens, Johannes Braams, David Carlisle and
Chris Rowley, second edition, Addison-Wesley,
2004, ISBN 0201362996.

[7] The Not So Short Introduction to LATEX2ε,
Tobias Oetiker, https://ctan.org/pkg/lshort

[8] LATEX2ε: An unofficial reference manual,
George D. Greenwade, Stephen Gilmore,
Torsten Martinsen, and Karl Berry,
http://home.gna.org/latexrefman

[9] TEX by Topic, A TEXnician’s Reference, Victor
Eijkhout, Addison-Wesley UK, 1991, ISBN
0201568829, http://eijkhout.net/texbytopic/
texbytopic.html

[10] The Comprehensive LATEX Symbol List, Scott
Pakin, https://ctan.org/pkg/comprehensive

[11] Every symbol (most symbols) defined by
unicode-math, Will Robertson,
https://ctan.org/pkg/unicode-math

[12] UK TUG FAQ, UK TEX Users Group,
http://www.tex.ac.uk/

[13] The Visual LATEX FAQ, Scott Pakin,
https://ctan.org/pkg/visualfaq

[14] The LATEX2ε Sources, Johannes Braams, David
Carlisle, Alan Jeffrey, Leslie Lamport, Frank
Mittelbach, Chris Rowley, and Rainer Schöpf,
https://ctan.org/pkg/source2e

[15] List of internal LATEX2ε Macros useful to
Package Authors, Martin Scharrer,
https://ctan.org/pkg/macros2e

[16] Comprehensive TEX Archive Network (CTAN),
https://ctan.org

[17] How to Package Your LATEX Package,
Scott Pakin, https://ctan.org/pkg/dtxtut

[18] LATEX2ε for class and package writers, LATEX3
Project, https://ctan.org/pkg/clsguide

[19] The doc and shortvrb packages, Frank
Mittelbach, https://ctan.org/pkg/doc

[20] The DocStrip program, Frank Mittelbach, Denys
Duchier, Johannes Braams, Marcin Woliński, and
Mark Wooding, https://ctan.org/pkg/docstrip

[21] Rolling your own Document Class: Using
LATEX to keep away from the Dark Side,
Peter Flynn, TUGboat 28:1 (2007), pp. 110–123,
http://tug.org/TUGboat/tb28-1/tb88flynn.pdf

[22] Good things come in little packages: An
introduction to writing .ins and .dtx files,
Scott Pakin, TUGboat 29:2 (2008), pp. 305–314,
http://tug.org/TUGboat/tb29-2/tb92pakin.pdf

[23] How to develop your own document class—
our experience, Niall Mansfield, TUGboat 29:3
(2008), pp. 356–361. http://tug.org/TUGboat/
tb29-3/tb93mansfield.pdf

Programming LATEX

34 TUGboat, Volume 38 (2017), No. 1

CTAN goes 2.0—New community features

and more

Gerd Neugebauer

Abstract

The portal of the Comprehensive TEX Archive Net-
work (CTAN) is continuously improving. Additional
features for the personalized interaction with the
portal and the contribution to its contents are now
publicly available. This allows—among other fea-
tures—registered and authenticated users to rate
packages and leave comments on them.

In addition, CTAN announcements are now avail-
able on the portal and via RSS feeds.

1 Introduction

In the Web context the magical number is 2.0. This
is originated in the term Web 2.0 as coined by Eric
Knorr in 2003 [Kno03]. It is associated with the
enrichment of the user experience by community
functions. The community member is not only a pure
consumer but can contribute to the Web content.

CTAN is based on the principle of contribution of
material and participation of community members on
the level of packages. Anyone can upload a package to
CTAN. The CTAN team helps to ensure consistency
and a high quality of the information provided in
the catalogue of packages. This aims not only at
direct online use but also at the production of TEX
distributions like TEXLive and MiKTEX.

With the new features of the CTAN portal we
enter the era of Web 2.0. Community members are
now enabled to contribute information to CTAN as
well. First of all, this information augments the
package description with rating and commenting of
packages. Thus it allows other members to benefit
from the experiences with packages shared on the
CTAN portal.

2 CTAN taken personally

From the start, CTAN has been built with user man-
agement and login capabilities. Until now, I have
used this feature as the only user for managing the
portal. The registration has been deactivated and
the login page hidden.

2.1 Experiences with the guest book

The CTAN portal has had a guest book since its
relaunch in 2012 [Neu13]. Soon spammers found
this page and started to pollute the entries. I have
manually deleted offending entries— sometimes quite
quickly. Nevertheless it was annoying.

Thus I have added a list of stop words to the
portal. Whenever I delete a guest book entry I also

add one or more stop words. The stop words are
checked when a new guest book entry is submitted.
The entry is automatically deleted when a stop word
is found.

As a result, I observed that trash was reduced
but did not vanish completely. It’s an arms race and
I am certain that it will continue. Thus it became
clear that something has to be done to avoid a similar
effect for the community features.

Figure 1: The login and registration (“Join”) links

2.2 Registration and login

CTAN has had a strict security and privacy policy
since its beginnings. As one consequence we have
activated an encrypted communication via https

some time ago. The new community features follow
this spirit. We take care of your data and you have
control over the information presented about you on
the Web.

One change is visible on each page: the links to
the page for login and registration (“Join”). They
appear in the upper right corner of each page, as
shown in figure 1.

To get started you have to register a new account
to gain access to the community features. We collect
a few pieces of information during the registration
process. You can choose a nearly arbitrary account
name. If all privacy guards are active then only this
alias will be seen on the Web portal. Nevertheless
we prefer attributions to you with your real name.
Thus it needs to be given. At least the CTAN team
wants to know who the members are. Finally you
need a working email address. This is used during
the registration process to verify that you can be
reached if required— for instance if you forgot your
password.

Two things are used to identify a user: the first
is the account name and the second is the email
address. Thus the portal tries to avoid different
accounts being created with identical account names
or email addresses.

A few more settings can be made on the regis-
tration page to get things right immediately. After
you have submitted the registration an email will
be sent to the email address you have entered. It
contains a confirmation link to a page where you can
set up your initial password and activate the account.
Now you can log in and participate.

Gerd Neugebauer

TUGboat, Volume 38 (2017), No. 1 35

A few situations deserve special treatment. It
appears obvious that a user name already in use
cannot be chosen. If you enter an email address
which is already in use, you cannot register a second
account for it. This is most probably the case when
you have forgotten that you had already registered.
Just login—or request a password renewal if you’ve
forgotten that as well.

The login is fairly simple. You can use the link
on each page to get to the login page. Alternatively
if you request a private page without being logged
in you are automatically redirected to the login page
first.

The login uses your account name and your
password. The password is not known to the CTAN

team and cannot easily be uncovered. Remember
our privacy policy—we try to protect your privacy.

If you happen to forget your account name or
password you can request an email with a reminder
or a link to a page which allows you to choose a new
password.

You can even decide to delete your account on
CTAN. In this case you cannot login to this account
any more and the information gathered by the system
is deleted.

2.3 Your personal dashboard

You have a personalized starting page—called a
dashboard. It is accessible exclusively to you. No-
body else sees this page. This page is usually shown
immediately after you log in. A sample is shown in
figure 2.

Figure 2: A sample dashboard

From your dashboard you can see which data is
stored for your account. Nearly everything can be
modified at any time. The only fixed value is the

account name. It is your unique identifier for the
system. Once chosen during registration it cannot
be altered. Thus choose wisely.

You can see there statistics about your ratings.
There you can find a link to the complete list of
your ratings and comments. With two clicks you
can reach a particular package page. There you can
revise your rating and your comments at any time
and as often as you like.

2.4 More preferences for you

Any community member has had a small set of set-
tings used even without being logged in. This consists
mainly of the selection of the skin— the appearance
of the Web pages. Some time ago, this was aug-
mented by the option to disable hyphenation and the
selection of the language. This has been requested
particularly because the cut-and-paste operation has
revealed insufficient support of the UTF-8 character
encoding by several programs. This leads to mys-
terious unprintable characters for the hyphenation
marks in pasted text.

The selection of the skin and the hyphenation
flag are stored locally in the browser. Thus they
can be used without login. On the other hand, they
are bound to a single browser and cannot be shared
between different computers or devices.

These choices can now be found on the settings
page. This page provides access to additional settings
if the member is logged in. The complete group
of settings about your account and privacy can be
found there too. Notably, most of the fields from the
registration can be modified here.

2.5 Your public account page

Each registered community member has a /home

page as the URL /home/account . This /home page
shows all information about the account which has
been approved by the user.

Currently the public account page is similar to
the dashboard (see figure 3). But this might change
in the future.

2.6 Identifying package authors

The strict privacy policy of CTAN prevents an au-
thor’s email address from being shown prominently
on the Web. The CTAN team does not have the
capacity to extend the information about authors
with a flag signaling the agreement of the author
to pass on their email address. Nor do we have the
capacity to get such an agreement from each of the
more than 2000 authors.

Authors are usually interested in getting feed-
back on their packages. Thus in most cases it is

CTAN goes 2.0—New community features and more

36 TUGboat, Volume 38 (2017), No. 1

Figure 3: A public account page

not hard to find an email address in a “readme” file,
the package documentation, or even the source code.
Now an author is also enabled—and encouraged—
to provide his email by registering as a CTAN com-
munity member and establishing a link to the CTAN

author which should already be in place. Thus pack-
age users can more easily find the email address and
get in contact with the author.

The association works via the email address of
a contributor known to the CTAN team. If a user
registers an account with the same email address then
he is asked to establish an association. For instance,
I have chosen the account name “gene”. In the CTAN

catalogue someone named me “neugebauer”. Since
the email addresses were identical, the system has
offered me the possibility to establish an association
and I did it. Now a link is on my /author page
pointing to my /home page and vice versa.

This additional association between package au-
thors and CTAN accounts allows visitors to find the
email address of an author more quickly. Of course,
the publication of the email address remains under
the control of the contributor.

2.7 Package upload simplified

Package upload is one place where a contributor
can profit from having a CTAN login. As you may
already know, the upload form is pre-filled with the
data from the last visited package page. This means
that if you navigate to a page which is related to
a package then this information is kept during the
current browser session. The page can be the package
page under /pkg/... or a package-related page in
the tex-archive/ tree.

When you are logged in, your name and email
address is filled additionally. Thus the procedure to

upload an update of one of your packages becomes
rather simple:

• Login

• Select the package from the list of your packages

• Press “Upload”

• Fill in the version number, announcement text,
and select the file to be uploaded

• Press “Submit contribution” and you are done

With these simplifications, authors can be fur-
ther encouraged to upload their package develop-
ments to CTAN.

3 Sharing your experience—Rating and

commenting packages

The user rating of products can be a good source of
information. We see this kind of feedback on many
online shops. A visitor can get an impression of the
experiences of other users. Now we carry this over
to the packages on CTAN.

3.1 New building blocks on package pages

Each package has a page on CTAN which presents
the data gathered in the catalogue about this pack-
age. For instance, the package biblatex is asso-
ciated with the page https://www.ctan.org/pkg/

biblatex.
When looking at the package pages in recent

years, they may have seemed a bit underpopulated.
This is fixed now. More information and functionality
is in place. An example can be seen in figure 4.

Figure 4: New features on package pages

Gerd Neugebauer

TUGboat, Volume 38 (2017), No. 1 37

On this page you can find three new sections.
The section “Community Comments” lists the com-
ments and ratings of the CTAN community members.
The section “Rating Profile” shows some statistics
about the average rating, the number of votes and
the distribution of the votes. The section “My Rat-
ing” allows you to rate the current package or modify
your previous rating. This functionality is available
to authenticated members only.

The aim of the CTAN team is to avoid abuse and
nonsense content. Thus we do not allow anonymous
ratings and comments. As a side effect this policy
allows you to review your rating and adapt it to your
current experiences with the most recent version of
the package.

When you enter the rating for a package you
are asked for several fields. First is the number
of stars—more is better. You can enter a textual
comment. It contains whatever you have to say but
is optional. Finally you are asked to rate yourself.
This provides an indication for the readers on how
deeply you are involved with the package. By the
way, it is legitimate for an author to rate their own
package. Even this can provide insights for readers.

In figure 4 you see the sections with a few ratings
and comments. The packages await your contribution
with ratings and comments.

4 CTAN and JavaScript—Supporting

old-fashioned ways

Nowadays the Web is nearly unusable without Java-
Script. This creeps into CTAN as well. CTAN uses
JavaScript, but sparsely. Nevertheless the 2.0 fea-
tures make use of JavaScript. You will not be able to
see or use much without JavaScript enabled—don’t
even try.

Recently a complaint reached me about the use
of JavaScript on the archive browser pages. Since
some directories are huge it can take some time
to render the directory listing. In order to show
some kind of progress the implementation uses an
asynchronous AJAX call— i.e. JavaScript—to get
the data while a CTAN banner is rotating. If Java-
Script was not available the banner rotated forever
since no attempt is made to load the data.

This has been fixed. A page without JavaScript
is used automatically— it may take slightly longer
before the browser shows a reaction. At least the
basic functionality of browsing the archive directory
and searching can be used without JavaScript now.

5 Feeds from the Lion—News on CTAN

The TEX world is constantly evolving. New and
updated packages can be found on CTAN. The an-

nouncements have been published via the mailing
list ctan-ann@dante.de for a long time. This mail-
ing list is run by DANTE e.V. Anyone interested
can subscribe to receive the email via the adminis-
tration page, https://lists.dante.de/mailman/
listinfo/ctan-ann.

Newsgroups supplement this service. For in-
stance the newsgroup comp.text.tex receives the
announcements from the mailing list.

5.1 Gmane is dead—Long live CTAN

Gmane has been a good and reliable way to access
many mailing lists. When it went down at the end of
June 2016 we felt that there was a gap to be filled—
at least for CTAN and the TEX world. With the end
of Gmane, there was no good way to learn of changes
via a news feed. This functionality is now provided
by the CTAN portal.

Figure 5: Announcements on the CTAN home page

The CTAN home page (see figure 5) now shows
the four most recent announcements on ctan-ann.
In addition, a link to a page with a larger list is
provided (see figure 6). On this page you can find
the orange buttons for “Atom” and “RSS”. They are
links to the respective feeds. Currently the formats
Atom 1.0 and RSS 2.0 are supported. You can enter
these URLs in the feed reader of your choice to read
them.

Maybe you are interested in single packages
only. In this case you can navigate to the respective
package page. If there have been announcements for
this package, you can again find the four most recent
ones listed and a link to a page with more, and again
the orange buttons for “Atom” and “RSS” with the
links for the newsfeeds.

5.2 Activity diagrams—sort of

On the package page you can sometimes find a dia-
gram with (sort of) spectral lines. The idea was to
visualize the activity of the package development in

CTAN goes 2.0—New community features and more

38 TUGboat, Volume 38 (2017), No. 1

Figure 6: The announcements page

some way. The only information available at CTAN

are the announcements. Thus the announcements
are shown in this diagram (see figure 7).

This diagram can be misleading in several sit-
uations. The association of an announcement to a
package relies on a heuristic which tries to identify
the package name in the announcement text. This
heuristic works fairly well for recent announcements
but may fail for older ones or announcements for
several bundled packages.

Figure 7: Announcements spectral lines

Some of the packages are mirrored to CTAN

automatically. In this case no announcement may
appear on ctan-ann. The authors can ask the CTAN

team—via email— to publish an announcement any-
way. But this option is rarely used.

The upload form offers the choice to upload
a package without announcement. If the uploader
selects this option then no announcement is sent and
consequently no spectral line is shown.

6 The road ahead

The CTAN portal is evolving. And features can be
added, modified, or even removed entirely.

6.1 The light on the horizon

With the new possibility of identifying users, we are
able to approach more functionality. Things which
should not be allowed anonymously can be opened
for community members or package authors.

We can envision allowing package authors to
see and edit the catalogue entry for their package.
For instance the description and the topics might be
made accessible in this way. Nowadays this informa-
tion is maintained by the CTAN team. Anyone can
submit suggestions for improvements by sending an
email. But such a process might be offered on the
portal as well.

For any user, one can envision lists on the home
page containing links to packages of interest or doc-
umentation. For the user this list acts as a personal
library. These can be taken into account when rating
a package. One could consider making such lists
public. Thus lists of packages for special interests
could be maintained by the community.

Another possibility would be to make the com-
munity features themselves configurable for an au-
thenticated user. If someone does not like the rating
and commenting, then this could be disabled. But I
suspect this configuration would not be often used.

6.2 It’s your turn to contribute to

www.ctan.org

In this article, you have seen some of the new com-
munity features of the CTAN portal. Now it is up to
you to make best use of it. Visit the CTAN portal,
register, and start rating the packages you know best
from your daily use. Please share the wealth of your
experiences with some of the packages on CTAN and
make the portal more fruitful for others.

Enjoy www.ctan.org and keep on TEXing.

References

[Kno03] Eric Knorr. 2004—The Year of Web Services.
CIO, December 15 2003. http://www.cio.

com/article/2439869/web-services/

2004--the-year-of-web-services.html.

[Neu13] Gerd Neugebauer. CTAN: Relaunch of
the Web Portal. TUGboat, 34(1):6–9,
2013. http://tug.org/TUGboat/tb34-1/

tb106neugebauer.pdf.

⋄ Gerd Neugebauer
Im Lerchelsböhl 5
64521 Groß-Gerau, Germany
gene (at) gerd-neugebauer dot de

www.gerd-neugebauer.de

Gerd Neugebauer

TUGboat, Volume 38 (2017), No. 1 39

An introduction to the LATEX
cross-referencing system

Thomas Thurnherr

Abstract

One of the most powerful features of LATEX is the
cross-referencing system. It allows referencing num-
bered structures, such as headings, figures, tables, or
equations anywhere in the same document. Impor-
tantly, references are automatically updated by the
system whenever necessary. This article provides an
overview of the referencing system and introduces
several packages that extend it.

1 Introduction

LATEX provides a referencing system that allows ref-
erencing almost any numbered object in the same
document. To do that, the system implements the
\label and \ref macros. The \label macro sets
a marker that uniquely identifies a numbered ob-
ject, which can then be referenced through the \ref
macro. The \pageref command is less frequently
used. It prints the page number of the labeled ob-
ject. An example is provided below, where a marker
sec:intro is added to a section. This marker is
then used in the next section to refer to the previ-
ous section. Assuming that “Introduction” is the
first section in the document, \ref{sec:intro} just
prints the number: ‘1’.

\section{Introduction}\label{sec:intro}

% Content

\section{Methods}

In section \ref{sec:intro} on page

\pageref{sec:intro} we introduced ...

2 Specifying a label or marker

The system imposes no restrictions on the format
of a marker. However, it is common practice to
add a prefix + colon (:) to every marker. A prefix
helps the author to identify the kind of object that
is referenced. For example, to reference a figure a
possible marker might be \label{fig:schema}. Ta-
ble 1 shows prefix suggestions for the most frequently
referenced numbered objects. Although it is good
practice to use a prefix, these are merely suggestions
and an author is free to choose a different set of
prefixes or omit them altogether.

3 Placement of labels

Ideally, the \label is placed right after the numbered
object to be labeled. For floating environments such
as figure or table, \label has to be placed after or

Table 1: Suggestions for marker prefixes.

Object Prefix Object Prefix

Chapter ch Figure fig
Section sec Table tab
Subsection ssec List item itm
Appendix app Equation eqn

within the \caption macro, because the caption pro-
duces the figure or table number. Placing a \label

before the numbered object almost certainly will pro-
duce the wrong reference. The same might happen
if the \label is placed too far after the numbered
object.

4 Generating/updating references

A document generally requires two typesetting runs
to generate reference numbers. Behind the scenes,
the system collects all markers in an aux meta-file
while typesetting the document once. It then reads
this aux file to update references during the second
run of typesetting. Whenever references cannot be
generated correctly by the system, double question
marks (??) are produced in the output document.

If references are not updated correctly after re-
typesetting, a quick look through the log file might
help identify the problem. The next section (5) de-
scribes warnings related to the referencing system.

5 LATEX warnings related to the
referencing system

It is not uncommon to see warnings related to the
referencing system in the log file. Two kinds of
warnings may arise from ill-defined markers:
1) There were undefined references.

2) There were multiply-defined labels.

The first is due to a missing marker that is referenced,
whereas the latter is due to a marker that is defined
more than just once. Multiply-defined labels can
happen when the author copies a piece of code, such
as a figure environment, and forgets to replace the
marker with a unique name.

6 Packages extending the referencing
system

There are numerous packages that extend the LATEX
cross-referencing system. Here, I provide a brief in-
troduction to varioref, cleveref, hyperref and
xr/xr-hyper. I chose these particular packages be-
cause I think each of them extends the referencing
system in a unique and comprehensive way. In gen-
eral, these packages do not redefine the functions
of the standard referencing system, but define new

An introduction to the LATEX cross-referencing system

40 TUGboat, Volume 38 (2017), No. 1

macros with a slightly different and beneficial be-
havior. Therefore, the standard behavior of \label,
\ref and \pageref is not affected by using these
packages.

6.1 The varioref package

The varioref package [4] extends the basic refer-
encing system with slightly more sophisticated com-
mands. \vref combines \ref with \pageref to print
the number of the referenced object together with
the page number. If the referenced object is on
the same page, the page number is omitted. The
\vpageref macro extends this idea to \pageref. If
the referenced object is on the same page, the output
says: “on this page”. Otherwise, the output shows
the page number. Finally, the package provides the
\vrefrange and the \vpagerefrange commands to
print a range of numbers and page numbers when
multiple references are provided.

6.2 The cleveref package

Often, the author mentions the type of objects that
is referenced in the text. For example, a figure could
be referenced as follows: “This is shown in figure 1”.
The \ref macro only prints the number of the refer-
enced object. This is where the cleveref package
[1] comes in. It automatically recognizes the type
of object that is referenced and prints the reference
accordingly. For this purpose, the package provides
the \cref command. Similar to the varioref pack-
age, it also implements macros to print the page
number of a referenced object (\cpageref) and a
range of objects or page numbers (\crefrange and
\cpagerefrange).

6.3 The hyperref package

The main function of hyperref [2] that is related to
the cross-referencing system is to make references
clickable. Clicking a reference navigates the reader
to the page where the referenced object resides. For
that, it is sufficient to load the package in the pream-
ble. Moreover, the package defines the \autoref

macro, which is equivalent to \cref in the cleveref
package. It prints the type of reference together with
the reference number. The package implements a
plethora of other functions not necessarily related to
the cross-referencing system. A discussion of these is
out of the scope of this article. Nevertheless, I highly
recommend browsing the package documentation to
learn more about what you can do with the package.

6.4 The xr/xr-hyper packages

The eXternal References xr package [5] allows refer-
encing objects in external documents. This is par-

ticularly useful for scientific articles, where supple-
mentary materials are often provided together with
the main text. The package allows referencing sup-
plementary figures and tables in the main text. To
do that, the external document has to be defined by
\externaldocument{filename} in the preamble of
the main text. If the external tex file is in a different
folder, the path has to be added to the file name.
With that, markers defined in the external document
can be referenced in the main text. To produce
the correct number, external documents need to be
typeset whenever they are changed.

\documentclass{article}

\usepackage{xr}

\externaldocument{supplementary-materials}

\begin{document}

See supplementary figure \ref{fig:abc}.

\end{document}

To create hyperlinks to referenced objects in ex-
ternal documents with hyperref, load the xr-hyper
package instead of xr.

6.5 Package loading order

As all of these packages affect the behavior of the ref-
erencing system, loading multiple packages may give
rise to conflicts. To omit these, packages need to be
loaded in the right order, namely: 1) xr/xr-hyper,
2) varioref, 3) hyperref, and lastly 4) cleveref.

6.6 The showlabels package

Finally, I would like to mention the showlabels

package [3], which shows all markers in the margins
of the output document (PDF). This package is
extremely useful to keep track of markers in long
documents, with a large number of labels.

References

[1] cleveref— Intelligent cross-referencing.
https://www.ctan.org/pkg/cleveref.

[2] hyperref—Extensive support for hypertext in
LATEX. https://www.ctan.org/pkg/hyperref.

[3] showlabels—Show label commands in the
margin. https://www.ctan.org/pkg/

showlabels.

[4] varioref— Intelligent page references.
https://www.ctan.org/pkg/varioref.

[5] xr—References to other LATEX documents.
https://www.ctan.org/pkg/xr.

⋄ Thomas Thurnherr

thomas.thurnherr (at) gmail dot com

http://texblog.org

Thomas Thurnherr

TUGboat, Volume 38 (2017), No. 1 41

How to use basic color models in LATEX

Behzad Salimi

Abstract

This article provides a quick reference guide for new
or experienced users on how to use the five basic
LATEX color models. We describe the color packages,
the primary syntax, and examples of how to include
colored text (or objects) in a document. In this ar-
ticle, we do not attempt to include a comprehensive
coverage of all the options and features in the basic
color models; instead, the intent is to help the in-
terested authors start learning (and using) the color
syntax in the shortest time possible.

1 Basic color models

The default basic color models supplied with stan-
dard LATEX installation provide an extensive range
of colors that are easy to use for colored text or re-
verse color highlighted text.

The five standard color models in LATEX are:

§ model color names must load

3 basic predefined a or b
4 gray gray a or b
5 usenames predefined b
6 RGB arbitrary a or b
7 CMYK arbitrary a or b

a: \usepackage{color}
b: \usepackage[usenames]{color}

In the basic and usenames color models, colors
and their corresponding names are predefined, so
only those predefined color names are available. In
the rgb and cmyk models, a custom color of user-
specified name with infinite variation of color hue
can be specified (mixed). In the gray model, shades
of gray are specified.

2 Syntax for colored text

The syntax for using colored text in all color models
above is one of two equivalent forms:

1. {\color{name}text in color}

2. \textcolor{name}{text in color}

where name is either a predefined or user-specified
color name in one of the color models. The \color

command may make extra vertical space in some
environments such as tabular; in such cases, use
\textcolor command.

To specify a user-defined color in gray, rgb or
cmyk color models, the syntax may be a local or
global definition:

1. Local definition:
\textcolor[model]{specification}{text}

where model is gray, rgb or cmyk and specifi-
cation is described in §§ 4, 6, 7.

2. Global definition: use the \definecolor com-
mand:
\definecolor{color1}{rgb}{n1,n2,n3}

\definecolor{color2}{cmyk}{n1,n2,n3,n4}

then use these custom colors with the syntax
above:
{\color{color1}text in color1}

\textcolor{color2}{text in color2}

See examples in the next section.

3 Basic color model

The predefined colors for the basic color model are
used without any model specification. The eight pre-
defined color names are black, blue, cyan, green,
magenta, red, white, yellow. Syntax:
\textcolor{red}{\textbf{Sample text in red}}

Sample text in red

{\color{cyan}\textbf{Sample text in cyan}}

Sample text in cyan

Another example:

{\color{magenta} color changes

\textcolor{blue}{can be nested

\textcolor{red}{in all} }

{\color{green}color models.}}

color changes can be nested in all color models.

4 Gray scale model

The gray scale model is a variable scale gray and it
takes only one number from 0=black to 1=white (as
they appear on white paper).

The base color name in this package is fixed as
gray; however, various shades can be defined using
the base name gray. For example:
\newcommand{\gry}[1]{\textcolor[gray]{0.70}{#1}}

\definecolor{gray1}{gray}{0.50}

Syntax:
\gry{Sample text in 0.75 gray}

Sample text in 0.75 gray

\textcolor{gray1}{Next text in 0.50 gray}

Next text in 0.50 gray

5 ‘usenames’ color model

In the LATEX usenames color model, there are 68 pre-
defined color names; see Table 1. This color package
must be loaded with the ‘usenames’ option:
\usepackage[usenames]{color}

Syntax:
\textcolor{BrickRed}{text color in BrickRed}

text color in BrickRed
{\color{RoyalPurple} text in RoyalPurple}

text in RoyalPurple

How to use basic color models in LATEX

42 TUGboat, Volume 38 (2017), No. 1

\colorbox{Fuchsia}{\textcolor{white}{%

colorbox Fuchsia}}

colorbox Fuchsia

You can create an alias for a predefined color name,
for example:
\definecolor{ogrn}{named}{OliveGreen}

\textcolor{ogrn}{ogrn is OliveGreen}

ogrn is OliveGreen

Table 1: The 68 standard colors known to dvips
(not pdfLATEX).

Apricot Aquamarine

Bittersweet Black

Blue BlueGreen

BlueViolet BrickRed

Brown BurntOrange

CadetBlue CarnationPink

Cerulean CornflowerBlue

Cyan Dandelion

DarkOrchid Emerald

ForestGreen Fuchsia

Goldenrod Gray

Green GreenYellow

JungleGreen Lavender

LimeGreen Magenta

Mahogany Maroon

Melon MidnightBlue

Mulberry NavyBlue

OliveGreen Orange

OrangeRed Orchid

Peach Periwinkle

PineGreen Plum

ProcessBlue Purple

RawSienna Red

RedOrange RedViolet

Rhodamine RoyalBlue

RoyalPurple RubineRed

Salmon SeaGreen

Sepia SkyBlue

SpringGreen Tan

TealBlue Thistle

Turquoise Violet

VioletRed White

WildStrawberry Yellow

YellowGreen YellowOrange

6 RGB color model

In the rgb (red-green-blue) color model, the pri-
maries are additive; that is, the contribution of each
base color is added to obtain the range from black
(no light) {0,0,0} to white (full light) {1,1,1}. The
rgb color model takes three parameters—one value
for each of the red, green, blue colors. The three

colors can be “mixed” in any proportion; each pa-
rameter must be between 0.0 and 1.0 but they need
not add to 1.0. The three base colors themselves
can be selected with red={1,0,0}, green={0,1,0},
blue={0,0,1}.

The syntax is

1. Define a color locally, usually for one-time use:
{\color[rgb]{n1,n2,n3}text}

\textcolor[rgb]{n1,n2,n3}{text}

Example:
{\color[rgb]{0.8,0.1,0.8} Sample rgb color}

Sample rgb color

2. Define a new color name:
\definecolor{color1}{rgb}{n1,n2,n3}

{\color{color1}text}

Example:
\definecolor{teal}{rgb}{0.0,0.5,0.5}

\textcolor{teal}{Sample teal in rgb model}

Sample teal in rgb model

7 CMYK color model

The subtractive primaries cyan, magenta, and yellow
are the complements of red, green, and blue, respec-
tively; that is, they are subtracted (like filters) from
rgb for the range of full light (white) {0,0,0,0} to no
light (black) {1,1,1,1}. The cmyk (cyan-magenta-
yellow-black) model is a more complex color model
that takes four parameters—one value for each of
cyan, magenta, yellow, black. The four colors
can be “mixed” in any proportion; each parame-
ter must be between 0.0 and 1.0 but they need not
add up to 1.0. The four base colors themselves are
selected with cyan={1,0,0,0}, magenta={0,1,0,0},
yellow={0,0,1,0}, black={0,0,0,1}.

The syntax is analogous to that in §6:

1. Define a color locally, usually for one-time use:
{\color[cmyk]{n1,n2,n3,n3} text }

\textcolor[cmyk]{n1,n2,n3,n3}{text}

Example:
{\color[cmyk]{0.2,0.7,0.1,0.2}

Sample cmyk text}

Sample cmyk text

2. Define a new color name:
\definecolor{clr1}{cmyk}{n1,n2,n3,n4}

{\color{clr1}text}

Example:
\definecolor{brk}{cmyk}{0.2,0.7,0.3,0.3}

\textcolor{brk}{Sample cmyk color model}

Sample cmyk color model

8 Advanced, specialized color models

The basic color models mentioned above generally
suffice for most basic (and some complicated) color

Behzad Salimi

TUGboat, Volume 38 (2017), No. 1 43

applications in text or text objects. If you need (or
want) to use a more specialized color feature not
easily done in basic color models, you can browse
the description of the color packages on the CTAN

page http://ctan.org/topic/colour which lists
over 40 different packages for special applications;
some of these applications extend the basic models,
some introduce new capabilities.

Perhaps the most versatile and advanced pack-
age based on the LATEX basic color model is the
xcolor package, which extends the capabilities of
color with a variety of shades, tones, tints, and
arbitrary mixes of colors, plus additional features.
Among the many capabilities of xcolor are:

• arbitrary tints of predefined (custom) colors

• complete tools for transformation between eight
color models

• complement color specification (−red=not red)

• color by wavelength

• define color series

• alternating row colors in tables

• global/local color definitions (to save memory)

• invoke color specification within pstricks op-
tions, e.g.,
\psset{linecolor=[rgb]{0.3,0.5,0.7}}

To load the xcolor package, you must include in
your document:
\usepackage[options]{xcolor}

The base (predefined) set of named colors in
xcolor is:

black blue brown cyan darkgray gray

green lightgray lime magenta olive

orange pink purple red teal violet

white yellow

Additional color names can be loaded with package
options.

The color definition syntax in xcolor is similar
to that in color, but with extended syntax allowing
for expressions. One of the commands to assign a
name to a custom color specification is:
\definecolor[type]{name}{model-list}{spec-list}

Example:
\definecolor{red}{rgb/cmyk}{1,0,0/0,1,1,0}

defines color name red in rgb or cmyk model de-
pending on which model is currently set.

Two of the packages related to xcolor:

xcolor-material Defines the 256 colors from
the Google Material Color Palette.

xcolor-solarized Defines the 16 colors from
Ethan Schoonover’s Solarized palette.

Even a brief discussion of xcolor’s capabilities is
beyond the scope of this article, so we refer the in-
terested reader to the full xcolor documentation.

My favorite graphics and plotting package to
use in LATEX, pstricks, loads the xcolor package
automatically. Need we say more?

9 Concluding remarks and suggestions

The command \pagecolor changes the background
color of the entire page until another \pagecolor

command is seen. Use \nopagecolor to change the
background color back to normal. There are a num-
ber of additional color packages available to color
specific environments or create special effects.

Color, when used sparingly and effectively, can
make a significant impression on the reader (or con-
sumer) in technical publications (or advertisements).
However, it is counterproductive if used improperly
or excessively. The only exception is perhaps color
used for “art”.

While it is tempting (and fun) to use a multi-
tude of colors in a paper or document, it may be
wise to bear in mind the following facts and ideas:

• Ask yourself, is it necessary to use color?

• The appearance of color is different on a moni-
tor vs. paper, on different monitors and printers,
and to different or color-impaired viewers.

• Pastel colors just never look nice on a white
background.

• What looks nice on the author’s printer may
not look as nice on the reader’s printer.

• Most color graphs or charts reproduce badly on
a monochrome printer or copier; therefore, they
lose their effectiveness.

• Color effects, if included, should be used mini-
mally to enhance clarity only, and to aid in com-
munication of detailed, complex information.

• In most professional publications, all special ef-
fects including color should be used sparingly.

• If you are compelled to use colored text to aid
the reader, first consider using other “normal”
text formats such as enumerate, itemize, italics,
bold face; even these formats should be used
sparingly and consistently.

• Standard LATEX “documentclass” styles provide
automatic (and appropriate) font selection for
all title, sectioning, and text environments.

⋄ Behzad Salimi
Ridgecrest, CA
USA
quadratures (at) gmail dot com

https://sites.google.com/site/

quadratures/

How to use basic color models in LATEX

44 TUGboat, Volume 38 (2017), No. 1

SageMathCloud for collaborative document

editing and scientific computing

Hal Snyder

Abstract

The open-source platform SageMathCloud (SMC)
lets users collaborate in real time on scientific com-
puting and authoring technical documents with stan-
dard LATEX tools. This article offers a survey of key
features, presenting SMC as a unique, unified plat-
form for teachers and researchers to be productive
in today’s mixed software environments and interdis-
ciplinary problem spaces.

1 Introduction

All features of SageMathCloud are available as soon
as a free login is created. The following sections offer
a tour of major features of SMC.

2 Collaboration

SMC collaboration features apply to both static doc-
uments and executable files. Supported file types
include LATEX, Markdown, and HTML documents,
as well as Sage worksheets, Jupyter notebooks, and
Linux terminal sessions.

Multiple users SMC has simultaneous real-time
collaboration with no explicit limit on the num-
ber of simultaneous users. Each user can cus-
tomize the color of their cursor. Figure 1 shows
an example of a second user collaborating during
an edit session.

Work through network interruptions If your
network connection temporarily fails, you can
continue editing as long as you want, and your
changes will be merged into the live document
when you reconnect.

Text and video chat SMC has text chat on
the side of each document. Unlike most other
chat systems, you can include inline and display
MathJax-compatible LATEX formulas and mark-
down in the side chat. Users may edit any past
chat message. Other collaborators are notified of
messages via a bell in the upper right. Figure 2
shows chat with LATEX beside file views.

Video chat is available as well by clicking a
button in the side chat panel.

Course management SMC has an integrated
course management system, which makes it easy
to fully use LATEX with students in the context
of teaching courses and workshops. For example,
you can create a document template with ques-
tions, push it to all students, let them work on
it, then collect it later, grade it, and return it.

Multiple cursors for each user If a user creates
multiple cursors using command- or alt-click, all
cursors are visible to other users.

3 Editing documents

Nothing to install Because SMC is a cloud service,
there is no software to install locally and projects
are reachable from any device with an internet
connection. Files can be compiled online to PDF

without the need for local installation of LATEX
software.

Document history and backups Every edit (at
2-second resolution) is recorded and stored in-
definitely in SMC’s backend database. You can
browse the history using the TimeTravel view,
which also includes a mode showing exactly what
changed between two points in time (and who
made those changes). Figure 3 shows a Time-
Travel view comparing two versions of a file.

SMC stores several hundred read-only snap-
shots of the complete filesystem state, which
users can easily browse. This lets them recover
older versions of files that might not have been
edited via the web-editor (e.g., edited with vim
or emacs via a terminal).

Preview SMC supports online preview, even for
documents that are 150 or more pages. It pro-
gressively refines the resolution of the preview
images and nearby pages. One of the SMC de-
velopers wrote the 2016 Cambridge University
Press book Prime Numbers and the Riemann

Hypothesis using SMC [2].

Forward and inverse search SMC supports
inverse search, which means that by double-
clicking on an area on a preview page, the cursor
in the text editor jumps to the corresponding
location. Similarly, you can jump from a point
in the text editor to the corresponding point in
the preview via forward search.

Editor user interface SMC has a full-featured text
editor for LATEX documents. It has horizontal
and vertical split view, which lets you look at two
points in the document simultaneously. SMC

developers wrote a code folding mode (github.
com/codemirror/CodeMirror/pull/4498), so
one can easily toggle display of sections, sub-
sections, etc. Emacs, Vim, and Sublime key-
bindings are supported along with many color
schemes.

Customizable LATEX build system SMC fully
supports processing very complicated LATEX
documents using custom build systems, includ-
ing several LATEX engines— pdflatex, latexmk,

Hal Snyder

TUGboat, Volume 38 (2017), No. 1 45

Figure 1: Editing .tex file, showing cursor of second user Harald.

Figure 2: Editable chat beside file views.

Figure 3: Edit history showing difference between two versions.

SageMathCloud for collaborative document editing and scientific computing

46 TUGboat, Volume 38 (2017), No. 1

and xelatex—with most packages preinstalled.
Users can easily request additional packages (by
clicking the help button), or install them them-
selves in their local projects. The LATEX build
command is fully customizable, and can involve
running arbitrary command sequences, since we
offer a full Linux environment. It is, for example,
even possible to use GNU make to orchestrate
the full compilation via a Makefile.

Dynamic content Our LATEX editing environment
comes with SageTeX, which makes it easy to
add the output of Python (and SageMath!) com-
putations to any LATEX document. Note that
the plots shown in Figure 2 are dynamically gen-
erated using SageTeX commands. The figure
displays an excerpt from the example file for the
sagetex package by Dan Drake [1].

Besides SageTeX, SMC supports embedding
R code via knitr into LATEX documents. This
technique is popular for generating documents
with statistical and data science content.

Spell checking In addition to normal spell check-
ing, SMC has TEX-aware spell checking.

Other document formats Side-by-side edit-
ing also supports HTML, Markdown, R Mark-
down, and Sweave formats, all of which support
real-time preview and inline and display LATEX.
Figure 4 shows SMC compiling R Markdown.

Autocomplete The keyboard shortcut ctrl-space
autocompletes common LATEX commands.

4 Scientific computing

4.1 Available software

Languages SMC includes dozens of programming
languages and thousands of libraries and pack-
ages, including computer algebra systems for
theoretical mathematics, scientific packages for
physical sciences and bioinformatics, and statis-
tical and machine learning software for data sci-
ence. Here are some of the supported languages:
Python, Sage, R, Julia, C, C++, Haskell, Scala.

Packages and environments Popular packages
and libraries are provided for each programming
language. For Python, the entire Anaconda
suite is available. Sage alone includes symbolic
and numeric packages, including NumPy, SciPy,
matplotlib, Sympy, Maxima, Pari/GP, GAP, R,
and Singular. See Figure 5.

4.2 Programming frameworks

Interactive notebooks In the category of interac-
tive notebook computing, SMC offers Sage work-
sheets and Jupyter notebooks, both of which

have chat and TimeTravel and support LATEX
mixed with code. Sage worksheets allow users
to easily mix different languages and document
formats in different cells of a single worksheet.

Terminal sessions Any number of text-based ter-
minals may be opened to the underlying Ubuntu
operating system, providing access to standard
Linux tools and command-line interfaces to pro-
gramming languages.

5 Free and paid accounts

Free accounts provide unlimited projects and collab-
orators, with 3GB of disk space per project. SMC

charges for upgrades, including more disk space, CPU
power, and outside network access, which makes it
possible to connect to the Internet from within a
project in order to push and pull data to remote sites
(e.g., GitHub). For more about pricing, see https:

//cloud.sagemath.com/policies/pricing.html

6 Further study

The best way to learn more about SMC is to create a
free account at https://cloud.sagemath.com and
try it out for editing and programming.

There is a wealth of tutorial and reference infor-
mation at the SMC wiki at https://github.com/

sagemathinc/smc/wiki.
Articles about new features and system inter-

nals can be found at the SMC blog, http://blog.
sagemath.com. Some of the information in this arti-
cle appeared in the SMC blog posting [3].

Source code is on GitHub at https://github.
com/sagemathinc/smc.

References

[1] Dan Drake. dandrake/sagetex: embed
code, results of computations, and plots
from the Sage mathematics software suite
(http://sagemath.org) into LATEX documents.
https://github.com/dandrake/sagetex,
2017. [Online; accessed 2017-02-15].

[2] Barry Mazur and William Stein.
Prime Numbers and the Riemann Hypothesis.
Cambridge University Press, 2016.

[3] Hal Snyder. SMC for Collaborative LATEX
Editing. http://blog.sagemath.com/latex/
2017/02/06/smc-for-latex.html, 2017.
[Online; accessed 2017-02-14].

⋄ Hal Snyder

Sagemath, Inc.

hsnyder (at) sagemath.com

https://cloud.sagemath.com/

Hal Snyder

TUGboat, Volume 38 (2017), No. 1 47

Figure 4: Compiling an R Markdown file in SMC.

Figure 5: Sage worksheet with LATEX in markdown, symbolic expressions, and units of measure.

SageMathCloud for collaborative document editing and scientific computing

48 TUGboat, Volume 38 (2017), No. 1

Producing HTML directly from LATEX—the

lwarp package

Brian Dunn

Abstract

The lwarp package allows LATEX to directly produce
HTML5 output, using external utility programs only
for the final conversion of text and images. Math
may be represented by SVG files or MathJax.

Documents may be produced by LATEX, Lua-
LATEX, or X ELATEX. A texlua script removes the
need for system utilities such as make and gawk, and
also supports xindy and latexmk. Configuration is
automatic at the first manual compile.

Print and HTML versions of each document may
coexist, each with its own set of auxiliary files. Sup-
port files are self-generated on request.

A modular package-loading system uses the
lwarp version of a package for HTML when available.
Several dozen LATEX packages are supported with
these high-level source compatibility replacements.

A tutorial is provided to quickly introduce the
user to the major components of the package.

1 Why LATEX

Before attempting to justify yet another LATEX-to-
HTML conversion package, it may be worth stepping
back for a moment to consider LATEX itself. A quick
web search for “LaTeX vs Word”, or some other
program, will return many web pages and discussion
threads comparing the various programs and their
advantages. Things change, however, and many of
these discussions are now obsolete due to modern ad-
vances in each program’s capabilities. As examples,
LATEX no longer has many problems dealing with
fonts, and LYX plus a number of integrated devel-
opment environments are now available, along with
online collaborative-development websites [1, 2, 3, 4].
Meanwhile, Word can typeset nice mathematics with
a LATEX-ish input and has improved in its typesetting
and stability, and commercial page-layout programs
have improved in their handling of large documents.

Nevertheless, many of the traditional advantages
of LATEX still apply: the visibility, stability, and porta-
bility of plain-text markup, regular-expression search
and replace of both text and formatting commands,
easy revision control, the ability to handle large and
complex documents, extensive programming capabil-
ities, and the large number of user-supplied packages
solving real-world problems. In many cases, it’s still
faster to type a few arguments than it is to open a di-
alog box and select and fill in entries, and a powerful

programming text editor is usually more responsive
than a word processor.

Another development is the large number of
markup languages now available, usually with a num-
ber of options for output format. These systems are
based on plain-text markup using inline tags or se-
quences of special characters, and thus share some
of the advantages of LATEX. While these systems
are useful for smaller documents, cross-referencing
is limited (although the AsciiDoc syntax does offer
full cross-referencing to figures and tables), much of
the customization is done at the back end, and the
syntax of special symbols tends to become rather
dense once things become complicated. LATEX has
the advantage of giving macros relatively readable
names.

Great progress has been made in making LATEX
more widely accessible. Online collaborative LATEX
editing websites now claim a million users and thou-
sands of institutions, and LATEX is also now available
as a browser application [5]. If anything, LATEX
seems to be building momentum, even after all these
decades.

2 Why convert LATEX to HTML

Unfortunately, modern publishing often involves sub-
mission and rounds of editing in Word format, con-
version to an XML intermediate, then conversion
yet again to a professional typesetting system, along
with HTML or EPUB versions. Each of these stages
may be performed by different groups of people in
different parts of the world [6], most of whom are
not familiar with the technical content, and also by
imperfect algorithms whose programmers haven’t
thought of every possibility. (Example: An incorrect
line break in a superscript, where a hyphen had been
used as a minus sign.) The resulting errors are often
beyond the author’s control— the final product hav-
ing problems which were not present in the signed-off
proof.

While it is unrealistic to expect any of this to
change, there is a movement towards self-publish-
ing [7, 8, 9, 10] which removes many of these problems
while also providing the benefits of quick turnaround,
print on demand, and the ability to make changes
or updates as needed. This requires the ability to
create a professional-quality printed document in sev-
eral sizes (e-tablet included), which LATEX certainly
can provide, but also the ability to create HTML or
EPUB as well. Providing a high-quality PDF ver-
sion is better than asking the user to print from
HTML, whereas providing an HTML version provides
easy accessibility and some search-engine benefits.
Providing both is the best option.

Brian Dunn

TUGboat, Volume 38 (2017), No. 1 49

Another application of LATEX-to-HTML conver-
sion is the creation of an informational (non-interact-
ive) website. Many scientists, professors, and engi-
neers would benefit from having their own website on
which their own technical papers could be published,
and they could apply their pre-existing LATEX skills
not just to the documents but also to the website
itself.

3 Why LATEX is hard to convert

Modern HTML5 and CSS3 are quite capable, to the
point where they can be used to produce technical
books [11]. Nevertheless, there are some practical
problems to overcome in order to create a good con-
version from LATEX to HTML.

One of the first issues is the difference between
individual printed pages versus the HTML concept
of an endless scroll of variable width. Footnotes can
become endnotes, but \pageref refers to what, ex-
actly? Is \linewidth for the current screen size, or
is it for a conceptual page size? The relationship be-
tween font size, image size, and screen size is broken,
there is no margin for marginpars, and text may be
reflowed at any time.

LATEX knows about stretchable space, which is
not true of HTML. A \vfill is almost meaningless
in HTML, and an \hfill is not much better. Nor
do floating objects translate well, since there are no
page breaks at which to place them.

Math in HTML has been a problem for years,
and the MathML standard has not been adopted by
many browsers [12, 13, 14]. MathJax is nice and
getting better all the time, but requires JavaScript
and web access or a local copy, possibly making it
unacceptable for use in EPUB documents [15], and
it can be relatively slow. Drawing math as images
has its own limitations.

Aside from display-related issues, another gen-
eral problem with converting LATEX to HTML is the
fact that LATEX does not use end delimiters for many
of its syntactic units. A \section does not have an
\endsection before the next \section, for example,
and beginning the next \section may first require
closing several nested levels worth of currently open
subsections and paragraphs. Nor does \bfseries

have a syntactically defined endpoint, and HTML/
CSS do not support state switching.

Finally, LATEX engines do not allow for the direct
plain-text output of HTML tags and text content,
thus requiring some kind of PDF-to-text conversion,
followed by some system to optionally split the results
into separate web pages of HTML, and also copy
out any inline images which must be cropped and
converted for web display.

4 Existing methods

Several methods already exist for converting some
subset of LATEX into HTML. These are discussed in
slightly more detail in the lwarp manual.

The closest to lwarp in design principle is the
internet class by Andrew Stacey [16], an interesting
project which directly produces several versions of
markdown, and also HTML and EPUB.

There is also the TEX4ht project [17], which
uses LATEX itself to do most of the work, along with
an external program to convert special codes into
HTML or several other formats.

A number of other projects use an intermedi-
ate translation program to parse LATEX source and
then convert it externally. See HeVeA [18], TTH

[19], GELLMU [20], LATEXML [21], plasTEX [22],
LATEX2HTML [23], and TEX2page [24], most of which
are found on CTAN.

GladTEX [25] may be used to insert LATEX math
expressions into pre-existing HTML code.

For sake of completeness, it should be mentioned
that there are plugins allowing the entry of LATEX
math expressions for Word [26, 27] and LibreOffice
[28], as well as commercial page-layout programs.

5 Why another approach

Nothing except LATEX truly understands LATEX.
More to the point, it’s easier for LATEX to pro-

gram HTML than for a third-party converter program
to understand LATEX. A larger portion of LATEX and
its associated packages can be parsed and converted
when LATEX itself does the work. Another advantage
of staying with LATEX alone is that development of
the core and additional packages can be done without
requiring skills in an additional language.

6 Development

6.1 AsciiDoc markup

The initial inspiration for the lwarp package was the
internet class. Seeing that someone else had trained
LATEX to produce markup, it was decided to pro-
gram LATEX to generate the AsciiDoc markup syntax.
AsciiDoc has several advantages over other markup
languages, including improved cross-references, and
its Asciidoctor variant generating modern HTML5
output. Using AsciiDoc as an intermediate syntax
lifted much of the conversion load from LATEX, while
providing almost all of the functionality which would
be required for a typical technical paper. Neverthe-
less, AsciiDoc just couldn’t represent many of the
concepts commonly-used in LATEX. Tabular material
and minipages were limited, and the toolchain was a

The lwarp package

50 TUGboat, Volume 38 (2017), No. 1

bit of a chore to handle. Thus, the need to program
LATEX to directly produce HTML.

6.2 Low-level and high-level patches

In most cases, code is patched at the lowest level
possible, allowing for increased code compatibility
and reuse. The process of finding the best place
to patch code resulted in several waves of revisions,
especially in the areas of floats, auxiliary files, and
package handling.

Entire packages must be supported. User-level
macros, counters, and so on are intercepted and
redirected or ignored as necessary.

6.3 Fonts and encodings

A vector-based font must be used for pdftotext

to convert the PDF to plain text. A roman face is
used in most cases, which preserves em-dashes with
pdflatex. The HTML tags are printed to the PDF

file in a monospaced font, and the quote marks must
be upright quotes, but this breaks the em-dash in
pdflatex.

LATEX can display many specialized glyphs which
are not encoded and thus won’t be picked up by
pdftotext. It may be possible to assign these us-
ing glyphtounicode.tex or newunicodechar. For
many uses lualatex or xelatex will be preferred,
as pdftotext can use UTF-8 encoding.

The chosen font will be visible in HTML when
rendering math as SVG images.

6.4 Page layout

While generating HTML, a very small font is used
and the page layout is changed to allow generous mar-
gins. Both are to avoid overflow, which can become
a problem with long HTML expressions. Ragged
right is used to avoid hyphenation. The \linewidth
is set for a virtual six-inch wide document, which
solves problems where the user specifies a fraction of
\linewidth for graphics images or tabular columns.

6.5 Paragraph handling

Each paragraph in HTML must be enclosed in an
opening and closing tag. To track paragraphs, the
\everypar hook triggers an action when a paragraph
starts, and \par is re-assigned to close paragraphs.
Flags are used to control whether to turn tag cre-
ation on or off in certain circumstances. For example,
inside an HTML paragraph tags are not al-
lowed, but a
 tag may still be used for something
like a multiline caption.

6.6 Sectioning

HTML sectioning requires nesting and unnesting
LATEX sectional units. Since there are no section-

ending LATEX commands, each \chapter, \section,
etc. must first un-nest any previously nested sectional
units up to its own level. A simple LIFO stack is
used to track section depths and closing tags.

The sectioning code is one area which was rewrit-
ten for HTML output, rather than try to reuse some-
thing which is patched by so many packages. Section
breaks may trigger a new HTML file, and automatic
cross-referencing occurs as well. Formatting and
paragraph handling depend on which kind of section
it is.

6.7 Cross-referencing

While the LATEX and cleveref cross-referencing code
is used, additional referencing is required to track
HTML pages and id tags. Automatically-generated
tags are used for each section and float, allowing
cross-references to link to specific objects on each
page. Indexing uses the xindy program to generate
HTML tags.

6.8 Floats

The combination of caption, subcaption, and newfloat

packages is supported. These were chosen from
among the many alternatives due to being commonly
used, flexible, and kept up-to-date. Floats are gener-
ated in place, as if they were declared [H]ere. Sup-
port is provided for other packages, such as float,
floatrow, capt-of, wrapfig, placeins, and the author’s
own keyfloat which can also support margin floats.

6.9 Image generation

Math, picture environments, TikZ, and anything
else with graphic content may be placed inside a
special lateximage environment. When this envi-
ronment is started, an HTML open comment tag is
generated, followed by a new page. The contents
of the graphic environment are then drawn on the
empty page, followed by yet another new page whose
first line is an HTML closing comment tag. The
comment tags encapsulate any text contents of the
graphics page such that they are not displayed in
the HTML page. Meanwhile, the page and image
numbers are written to a text file to be processed by
lwarpmk, which later separates the PDF file into in-
dividual graphics files, each of which is then cropped,
converted to SVG, and named, ready for inclusion in
the final web page. Finally, HTML instructions are
generated to load the resulting graphics file at that
position in the web page. Paragraph and formatting
elements must be restored to their LATEX meaning
during the creation of the graphic.

Brian Dunn

TUGboat, Volume 38 (2017), No. 1 51

6.10 Math

Math may be represented by SVG images using the
lateximage environment, with the LATEX source em-
bedded as HTML alt tags, or by using the MathJax
script.

6.11 Graphics images

Graphics images may be included at a specified width
and/or height, or as a fraction of \linewidth. When
\linewidth is used, the assumed six-inch line is used
as well, and the final image size is fixed in HTML,
along with a max-width CSS property to hopefully
avoid requiring the user of a hand-held device to pan
across the image.

graphicx is emulated quite well, although the
HTML standard does not agree with LATEX about
white space while rotating or scaling, so expect ugly
results when doing so.

6.12 Minipages

Minipages are created using inline-flex, a fairly
new CSS3 property which allows side-by-side mini-
pages with a vertical alignment. Unfortunately, a
minipage inline with a paragraph of text cannot
work since HTML does not allow a block inside a
paragraph, so the minipage then goes onto its own
line. Furthermore, a <div> cannot be used inside
a , so lwarp disables minipages inside spans,
although \newline or \par can be used to create a

 tag.

For those cases where the user may wish to have
an HTML minipage without a fixed width, the new
command \minipagefullwidth declares that the
following minipage may be the natural width of its
contents, up to the full width of the display. During
print output, the minipage will still use its assigned
width.

6.13 Tabular

Tabular material is a challenge, no matter the syntax.
This is one area where lwarp had to totally replace the
original code rather than try to patch the existing.
Data arrays in the computer-science sense had to
be used to track column types, as well as actions
for \>, \<, and \@. Border-generation logic had to
be created. As of this writing vertical rules are not
supported, but booktabs are, except for trim options
which would be very hard to do in CSS.

6.14 Navigation

In an attempt to avoid resorting to JavaScript, a
“sideTOC” has been developed. This is a subset of
the table of contents which appears at the side or
top of each web page. At present this sideTOC is

not in its own pane, which has both its advantages
and disadvantages, and this may be changed in the
future. To provide for “responsive web design”, the
sideTOC is moved to the top of the page when the
display is narrow, and an additional Home button is
placed at the bottom as well.

6.15 Package handling

A major design decision was made regarding handling
the loading of additional packages. Some packages
may be used as-is, some must be ignored, and some
must be patched in some way to be usable for HTML.
Furthermore, it would be best if these actions were
separated from the lwarp core, interacted well with
each other, and expandable by the user.

To provide all of this, lwarp intercepts both the
\usepackage and \RequirePackage macros to first
see if there is an lwarp-provided alternative package.
If so, that version is used instead of the original. It
is up to the lwarp version of the package to either
totally ignore the original, or load the original with
its options and then perform additional patches or
other actions afterward.

Several dozen packages are already supported by
lwarp, including some of the most commonly used in
all major categories. For packages which lwarp does
not yet handle, the user may apply the print-only
environment or macro to encapsulate things which
do not apply to HTML. The user may also wish to
create a custom package for lwarp to use, containing
nullified macros and environments, along with any
booleans, counters, and lengths which may be used
in the source code. Such a package should be named

lwarp-packagename.sty

and then lwarp will use it whenever the document
calls for packagename.sty while creating HTML.

7 Using lwarp

The following is an overview of the configuration and
use of lwarp. Major advances have been made in sim-
plifying this process, including the above-mentioned
package handling code. As a result, the user may sim-
ply add the lwarp-newproject and lwarp packages to
the code at the correct place, compile the document
once in the traditional way, and then immediately
use the lwarpmk utility for further print or HTML

versions.

7.1 Project setup— lwarp-newproject

Previous versions of lwarp required the user to copy
or link a number of configuration files and scripts,
and also modify a makefile.

Recent improvements include the use of auto-
matic detection of the TEX engine, operating system,

The lwarp package

52 TUGboat, Volume 38 (2017), No. 1

and jobname. These are written to a general config-
uration file for the new lwarpmk program. lwarpmk
is a utility used to compile print and HTML versions
of the document.

Furthermore, the lwarp-newproject package is
provided, to be loaded just before lwarp. This pack-
age writes various additional configuration and utility
files. Included are a project-specific configuration
file for the lwarpmk utility (thus allowing multiple
documents to reside in the same folder), a configu-
ration file for xindy, a number of .css files, and a
fragment of JavaScript used to invoke MathJax.

Also written is a new 〈project〉_html.tex file,
whose name is the project’s \jobname with _html

appended. This is a small file which simply sets a few
options to select HTML conversion, then \input s
the user’s document. In this way, a compile of the
user’s document generates a print version, while a
compile of the _html version generates an HTML

version. Both versions and their auxiliary files co-
exist. The lwarp-newproject package is only active
when compiling the print version, and the configura-
tion files are regenerated each time the print version
is recompiled. Should the user wish to switch TEX
engines, the approach is to remove the auxiliary files,
then manually recompile the main document using
pdflatex, lualatex, or xelatex. This engine will
then be used by the lwarpmk utility for future com-
piles of either the print or HTML version.

The lwarpmk utility program is to be provided
as a LuaTEX executable by the TEX distribution, but
it is possible that someone may wish to archive it
along with the project. For this purpose, an option
for the lwarp-newproject package is available to cause
a write of a local copy of lwarpmk.

The CSS files include a master lwarp.css file
which provides the essential functions and a basic
LATEX-ish style, along with optional CSS files for
a more formal or a more contemporary style. Also
created is sample-project.css, which shows how to
load one of the provided CSS files and also provides
a place to make modifications. This file is to be
renamed, as it will be overwritten by lwarp-newproject

each time a print version is created.

7.2 Compiling the document— lwarpmk

Previous versions of lwarp relied on the make, gawk,
and grep utilities. Fortunately, modern TEX distri-
butions provide the LuaTEX program—an extension
of the Lua programming language. The use of Lua-
TEX to provide the required utility functions eases
issues of availability, installation, and portability.

lwarpmk’s configuration file tells it the operating
system, the TEX engine, the source \jobname, the

filename of the homepage, and whether the latexmk
utility should be used to compile, or whether lwarpmk
should detect changes and recompile by itself.

lwarpmk is able to compile the printed or HTML

version of the document, process the index for the
printed or HTML version, request a recompile, pro-
cess the lateximage files, clean the auxiliary files,
or process the PDF into HTML files (a subset of its
functionality, intended to be used by a makefile if
desired).

If a document name is provided, lwarpmk pro-
cesses that document according to its project-specific
configuration file, otherwise it uses its general con-
figuration file to reprocess the last document.

Several utility programs are still required for
the HTML conversion. pdftotext is used to convert
the PDF document into UTF-8 text. pdfseparate

extracts individual graphic images from the PDF file,
pdfcrop crops these images, and pdftocairo is used
to convert PDF images into SVG images. pdfcrop

is provided as part of the TEX distribution, and
the rest are commonly-available utilities from the
Poppler project, and should be made available by
the operating system’s package manager.

7.3 Customizing the HTML

Aside from the CSS files, additional customization
is provided by a number of user-adjustable settings
and macros.

HTML files may be numbered or named, and
a prefix may be applied to each file. The homepage
may have its own name. Counters control the depth
of the sideTOC and the file division.

Files may be split by the strict sectioning depth
level, or higher levels may be combined into one file.
For example, a part, its first chapter, and its first
section may be combined into one file while further
files are split at the section level until the next part
or chapter.

The HTML lang attribute may be set for the
document. The CSS file and HTML description

may be changed at each file split.
Programming hooks are provided for the top of

the home page, the top of other pages, and the bot-
tom of all pages. These are useful for logos, copyright
notices, and contact information.

Special environments and macros are provided
for functions which should be applied to only the
printed or only the HTML versions of the document.

7.4 Tutorial

A tutorial is provided which quickly guides the user
through the setup of a document, compiling printed

Brian Dunn

TUGboat, Volume 38 (2017), No. 1 53

and HTML versions, processing graphics images, gen-
erating math in SVG or MathJax format, customizing
the HTML, using latexmk, switching the TEX engine,
processing multiple documents in the same directory,
and cleaning the auxiliary files.

⋄ Brian Dunn

bd (at) bdtechconcepts dot com

http://bdtechconcepts.com

Copyright 2017 Brian Dunn

References

[1] ShareLATEX. https://www.sharelatex.com

[2] Overleaf. https://www.overleaf.com

[3] Authorea. https://www.authorea.com

[4] Papeeria. https://papeeria.com/

[5] LATEX Base. https://latexbase.com

[6] Forum topic. ResearchGate, “Why is LaTeX
not used as an end-to-end solution in the
publishing industry?”, 2013,
https://www.researchgate.net/post/Why_

is_LaTeX_not_used_as_an_end-to-end_

solution_in_the_publishing_industry

[7] Open Education Database, “The Academic’s
Guide to Self-Publishing”, 2014,
http://oedb.org/ilibrarian/the-

academics-guide-to-self-publishing/

[8] Dennis Meredith, Research Explainer,
“Self-Publishing Series”, 2013,
https://researchexplainer.com/

2013/06/26/self-publishing-series-i-

making-the-decision/

[9] Robert Ghrist, “Why I published my
mathematics text print-on-demand via
Amazon’s Createspace”, 2014, https://www.
math.upenn.edu/~ghrist/whyselfpublish.

html

[10] Nicola L. C. Talbot, Dickimaw Books,
“Self-Publishing”, 2014,
http://www.dickimaw-books.com/

nonfiction/self-publishing/

[11] Sanders Kleinfeld, “Next-Generation Book
Publishing: Of the HTML, by the HTML,
for the HTML”, Digital Book World, 2014,
http://www.digitalbookworld.com/2014/

next-generation-book-publishing-of-

the-html-by-the-html-for-the-html/

[12] Christian Lawson-Perfect, “Dark days
for MathML support in browsers”, The
Aperiodical, 2013, http://aperiodical.com/
2013/11/dark-days-for-mathml-support-

in-browsers/

[13] Stephen Shankland, “Google subtracts
MathML from Chrome, and anger multiplies”,
CNET, 2013, https://www.cnet.com/news/
google-subtracts-mathml-from-chrome-

and-anger-multiplies/

[14] Neil Soiffer, “Microsoft cripples the display
of math in IE10 & 11”, Design Science News,
2013,
http://news.dessci.com/microsoft-

cripples-display-math-ie10-11

[15] “EPUB3 Reading systems overview”, The
MathJax Consortium, 2015, http://docs.
mathjax.org/en/latest/misc/epub.html

[16] Andrew Stacey, “latex-to-internet”,
https://github.com/loopspace/latex-to-

internet

[17] TEX4ht: LaTeX and TeX for Hypertext,
http://tug.org/tex4ht

[18] HEVEA, http://hevea.inria.fr/

[19] TTH, http://hutchinson.belmont.ma.us/
tth/

[20] William F. Hammond, “GELLMU—
Introductory Survey”, http://www.albany.
edu/~hammond/gellmu/

[21] LaTeXML—A LaTeX to XML/HTML/
MathML Converter, http://dlmf.nist.gov/
LaTeXML/

[22] plasTeX, http://tiarno.github.io/
plastex/

[23] LaTeX2HTML, http://www.latex2html.
org/

[24] Dorai Sitaram, TeX2page, https://ds26gte.
github.io/tex2page/

[25] Martin Gulbrandsen and Sebastian Humenda,
GladTeX, https://humenda.github.io/
GladTeX/

[26] “LaTeX in Word”, https://github.com/
EngineeroLabs/latex_in_word

[27] TeXsword, https://sourceforge.net/
projects/texsword/

[28] Roland Baudin, “TexMaths, a LaTeX
Equation Editor for LibreOffice”, http:
//roland65.free.fr/texmaths/

The lwarp package

54 TUGboat, Volume 38 (2017), No. 1

LATEX News
Issue 26, January 2017

Contents

ε-TEX 1

Default encodings in X ELATEX and LuaLATEX 1

\showhyphens in X ELATEX 1

The fixltx2e package 1

The latexbug package 2

Updates to amsmath 2

Updates to tools 2

An addendum to the release changes in 2015 2

ε-TEX

In LATEX News 16 (December 2003) the team announced

We expect that within the next two years,
releases of LATEX will change modestly in order
to run best under an extended TEX engine
that contains the ε-TEX primitives, e.g., ε-TEX
or pdfTEX.

and also said

Although the current release does not
require ε-TEX features, we certainly
recommend using an extended TEX, especially
if you need to debug macros.

For many years the team have worked on the basis
that users will have ε-TEX available but had not revisited
the above statements formally. As of the January 2017
release of LATEX 2ε, ε-TEX is required to build the format,
and attempting to build a format without the extensions
will fail.

Practically, modern TEX distributions provide the
extensions in all engines other than the “pure” Knuth
tex, and indeed parts of the format-building process
already require ε-TEX, most notably some of the UTF-8
hyphenation patterns. As such, there should be no
noticeable effect on users of this change.

The team expect to make wider use of ε-TEX within
the kernel in future; details will be announced where
they impact on end users in a visible way.

Default encodings in X

E

LATEX and LuaLATEX

The default encoding in LATEX has always been the
original 128-character encoding OT1. For Unicode based
TEX engines, this is not really suitable, and is especially
problematic with X ELATEX as in the major distributions
this is built with Unicode based hyphenation patterns
in the format. In practice this has not been a major
problem as documents use the contributed fontspec

package in order to switch to a Unicode encoded font.

In this release we are adding TU as a new supported
encoding in addition to the previously supported
encodings such as OT1 and T1. This denotes a Unicode
based font encoding. It is essentially the same as the TU

encoding that has been on trial with the experimental
tuenc option to fontspec for the past year.

The X ELATEX and LuaLATEX formats will now default
to TU encoding and lmr (Latin Modern) family. In the
case of LuaLATEX the contributed luaotfload Lua module
will be loaded at the start of each run to enable the
loading of OpenType fonts.

The fontspec package is being adjusted in a com-
panion release to recognise the new encoding default
arrangements.

Note that in practice no font supports the full Unicode
range, and so TU encoded fonts, unlike fonts specified
for T1, may be expected to be incomplete in various
ways. In the current release the file tuenc.def that
implements the TU encoding-specific commands has
made some basic assumptions for (for example) default
handling of accent commands, and the set of command
names is derived from the command names used for
the UTF-8 support in the inputenc package, restricted
roughly to the character ranges classically provided by
the T1 and TS1 encodings, but is part of a longer term
plan seen over recent releases to increase support for
Unicode based TEX engines into the core LATEX support.

If for any reason you need to process a document
with the previous default OT1 encoding, you may switch
encoding in the usual ways, for example

\usepackage[OT1]{fontenc}

or you may roll back all the changes for this release by
starting the document with

\RequirePackage[2016/12/31]{latexrelease}

LATEX News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 2017, all rights reserved.

LATEX News #26

TUGboat, Volume 38 (2017), No. 1 55

\showhyphens in X

E

LATEX

Due to the way X ELATEX interfaces to font libraries, the
standard definition of \showhyphens does not work. A
variant definition has been available in the contributed
xltxtra package, however a (slightly different) definition
for \showhyphens is now included in X ELATEX by default.
As usual this change will be undone if an earlier release
is specified using the latexrelease package.

The fixltx2e package

As described in LATEX News 22, the fixltx2e package
has become obsolete with the new update policy.
Since 2015 it has just made a warning and exited. In
this release we have re-introduced all the code from
the original fixes in the 2014 LATEX but guarded by
\IncludeInRelease{2015/01/01}. So for current
releases fixltx2e still just makes a warning but for old
releases, whether that is an old format, or a format with
the version date reset via the latexrelease package, the
fixes in the original fixltx2e will be applied.

This improves the ability to run old doc-
uments in a way compatible with contempo-
rary formats. If you have a 2014 document
that used \usepackage{fixltx2e} and you add
\RequirePackage[2014/01/01]{latexrelease} and
process it with the current format then latexrelease will
undo most changes made since 2014, but now when the
document includes fixltx2e it will act like a 2014 version
of the package and apply the code fixes, not just give a
warning that the package is obsolete.

The latexbug package

As explained in more detail at the LATEX Project
website1 a new package, latexbug, has been produced
to help produce test files to accompany bug reports on
the core LATEX distribution. This is being published
separately to CTAN at the same time as this release.
By using the latexbug package you can easily check
that the packages involved in the test are all part of
the core release. The LATEX project can not handle
bug reports on contributed packages, which should
be directed to the package maintainer as given in the
package documentation.

Updates to amsmath

The amsmath package has two updates at this release.

• The spacing to the left of the aligned and
gathered environments has been fixed: the
spurious thin space is no longer added by default.
Package options control this to revert to the
original behaviour where required; see the amsldoc

guide for further details.

1https://www.latex-project.org/bugs/

• The large delimiters around generalised fractions
(for example in the \binom construct) did not work
in previous releases if using LuaTEX or X ETEX with
OpenType math fonts. This is related to the lack of
specific metrics for this use in the OpenType Math
table. In principle LuaTEX has two additional
named metrics to control the delimiters but these
are not initialised by default, and in X ETEX it does
not seem possible to make them work at all. So for
Unicode TEX systems, a new implementation of
\genfrac is used at this release that uses
\left\right internally but parameterised to give
spacing as close to the original as possible. The
implementation in (pdf)TEX is unaffected.

Updates to tools

The array package has been updated to fix a longstand-
ing but previously unreported issue with unwanted
interactions between tables in the page head or foot and
the body of the page, as reported in PR tools/4488.
There is also an update to the LuaTEX support in bm.

An addendum to the release changes in 2015

In 2015 we announced the introduction of the roll-back/
roll-forward concept to manage bug fixes and additions
to core LATEX in a manageable way. We also announced
at that time that we now incorporate all fixes from
fixltx2e into the kernel (as the old mechanism produced
problems instead of improving the situation). Refer to
ltnews22.pdf for details.

One of the fixes from fixltx2e was for a glaring bug
in \addvspace that was originally detected in the
mid-nineties and back then added to the fixltx2e support
package. In certain situations \addvspace would result
in a page/column break below the baseline of the last
line. As a result documents using \flushbottom would
show a clear misalignment (even more prominent when
typesetting in two-column mode).

Starting with release 2015/01/01 this is now finally
corrected already in the kernel and not only in fixltx2e.
In nearly all circumstances this will either make no
difference to existing documents, or it will locally
improve the visual appearance of that document without
changing anything on other pages. However, by the
nature of the change it is also possible that there are
further non-local changes to the page breaks due to the
different break positions introduced by the fix.

Thus, for documents that have been written before
2015 and that should be preserved unchanged at all
costs you may have to add

\RequirePackage[2014/01/01]{latexrelease}

at the top of the document, to roll back the format to a
date before the policy change.

LATEX News #26

56 TUGboat, Volume 38 (2017), No. 1

LATEX3 News
Issue 10, November 2016

There has been something of a gap since the last
LATEX3 News, but this does not mean that work has
not been going on. The Team have been working on a
number of areas, many of which reflect wider take-up
of expl3. There have also been a number of significant
new developments in the LATEX3 “sphere” in the last
two years.

l3build: Testing LATEX packages

Testing has been an important part of the work of the
team since they assumed maintenance of LATEX over
twenty years ago. Various scripts have been used over
that time by the team for testing, but these have until
recently not been set up for wider use.

With the general availability of LuaTEX it is now
possible to be sure that every TEX user has a pow-
erful general scripting language available: Lua. The
team have used this to create a new general testing
system for TEX code, l3build. This is designed to be
used beyond the team, so is now available in TEX Live
and MiKTEX and is fully documented. Testing using
l3build makes use of a normalised version of the .log
file, so can test any aspect of TEX output (e.g., by us-
ing \showbox) or its algorithms (by displaying results
in the .log).

Part of the remit for creating l3build was to enable
the team to work truly cross-platform and to allow
testing using multiple TEX engines (earlier systems
were limited to a single engine, normally ε-TEX). The
new testing system means we are in a much stronger
position to support a variety of engines (see below). It
has also enabled us to give useful feedback on develop-
ment of the LuaTEX engine.

As well as the core capability in testing, l3build also
provides a “one stop” script for creating release bun-
dles. The script is sufficiently flexible that for many
common LATEX package structures, setting up for cre-
ating releases will require only a few lines of configura-
tion.

In addition to the documentation distributed with
l3build, the project website [1, publications in 2014]
contains some articles, videos and conference presen-
tations that explain how to use l3build to manage and
test any type of (LATEX) package.

Automating expl3 testing

As well as developing l3build for local use, the team
have also set up integration testing for expl3 using the
Travis-CI system. This means that every commit to the
LATEX3 code base now results in a full set of tests be-
ing run. This has allowed us to significantly reduce the
number of occasions where expl3 needs attention before
being released to CTAN.

Automated testing has also enabled us to check that
expl3 updates do not break a number of key third-party
packages which use the programming environment.

Refining expl3

Work continues to improve expl3 both in scope and ro-
bustness. Increased use of the programming environ-
ment means that code which has to-date been under-
explored is being used, and this sometimes requires
changes to the code.

The team have extended formal support in expl3 to
cover the engines pTEX and upTEX, principally used
by Japanese TEX users. This has been possible in part
due to the l3build system discussed above. Engine-
dependent variations between pdfTEX, X ETEX, LuaTEX
and (u)pTEX are now well-understood and documented.
As part of this process, the “low-level” part of expl3,
which saves all primitives, now covers essentially all
primitives found in all of these engines.

The code in expl3 is now entirely self-contained, load-
ing no other third-party packages, and can also be
loaded as a generic package with plain TEX, etc. These
changes make it much easier to diagnose problems and
make expl3 more useful. In particular it can be used as
a programming language for generic packages, that then
can run without modifications under different formats!

The team have made a range of small refinements
to both internals and expl3 interfaces. Internal self-
consistency has also been improved, for example re-
moving almost all use of nopar functions. Performance
enhancements to the l3keys part of expl3 are ongoing
and should result in significantly faster key setting. As
keyval methods are increasingly widely used in defining
behaviours, this will have an impact on compile times
for end users.

Replacing \lowercase and \uppercase

As discussed in the last LATEX3 News, the team have
for some time been keen to provide new interfaces

LATEX3 News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 2016, all rights reserved.

TUGboat, Volume 38 (2017), No. 1 57

which do not directly expose (or in some cases even
use) the TEX primitives \lowercase and \uppercase.
We have now created a series of different interfaces that
provide support for the different conceptual uses which
may flow from the primitives:

• For case changing text, \tl_upper_case:n, \tl_
lower_case:n, \tl_mixed_case:n and related
language-aware functions. These are Unicode-
capable and designed for working with text. They
also allow for accents, expansion of stored text and
leaving math mode unchanged. At present some of
the interface decisions are not finalised so they are
marked as experimental, but the team expect the
core concept to be stable.

• For case changing programming strings, \str_
upper_case:n, \str_lower_case:n and \str_

fold_case:n. Again these are Unicode-aware,
but in contrast to the functions for text are not
context-dependent. They are intended for caseless
comparisons, constructing command names on-the-
fly and so forth.

• For creating arbitrary character tokens, \char_
generate:nn. This is based on the \Ucharcat
primitive introduced by X ETEX, but with the ideas
extended to other engines. This function can be
used to create almost any reasonable token.

• For defining active characters, \char_set_active_
eq:NN and related functions. The concept here is
that active characters should be equivalent to some
named function, so one does not directly define the
active character.

Extending xparse

After discussions at TUG2015 and some experimen-
tation, the team have added a new argument type, e
(“embellishment”), to xparse. This allows arguments
similar to TEX primitive sub- and superscripts to be
accepted. Thus

\DeclareDocumentCommand\foo{e{^_}}

{\showtokens{"#1"}}

\foo^{Hello} world

will show

"{Hello}{-NoValue-}".

At present, this argument type is experimental: there
are a number of models which may make sense for this
interface.

A new \parshape model

As part of the development of l3galley, Joseph Wright
has proposed a new model for splitting up the functions
of the \parshape primitive into three logical elements:

• Margins between the edges of the galley and the
paragraph (for example an indented block);

• Cut-out sections running over a fixed number of
lines, to support “in place” figures and so forth;

• Running or single-paragraph shape.

There are additional elements to consider here, for
example whether lines are the best way to model the
length of shaping, how to handle headings, cut-outs at
page breaks, etc.

Globally optimized pagination of documents

Throughout 2016 Frank Mittelbach has worked on
methods and algorithms for globally optimizing the
pagination of documents including those that contain
floats. Early research results have been presented at
BachoTEX 2016, TUG 2016 in Toronto and later in
the year at DocEng’16, the ACM Symposium on Docu-
ment Engineering in Vienna. A link to the ACM paper
(that allows a download free of charge) can be found on
the project website [1]. The site also holds the speaker
notes from Toronto and will host a link to a video of
the presentation once it becomes available.

The framework developed by Frank is based on the
extended functionality provided by LuaTEX, in particu-
lar its callback functions that allow interacting with the
typesetting process at various points. The algorithm
that determines the optimal pagination of a given doc-
ument is implemented in Lua and its results are then
used to direct the formatting done by the TEX engine.

At the current point in time this a working proto-
type but not yet anywhere near a production-ready
system. However, the work so far shows great poten-
tial and Frank is fairly confident that it will eventually
become a generally usable solution.

Looking forward

The LuaTEX engine has recently reached version 1.0.
This may presage a stable LuaTEX and is likely to re-
sult in wider use of this engine in production docu-
ments. If that happens we expect to implement some of
the more complex functionality (such as complex pagi-
nation requirements and models) only for LuaTEX.

References

[1] Links to various publications by members of the
LATEX Project Team.
https://www.latex-project.org/publications.

58 TUGboat, Volume 38 (2017), No. 1

A key/value interface for generating LATEX
floats— the keyfloat package

Brian Dunn

Abstract

The keyfloat package provides a key/value user inter-
face for quickly creating figures with a single image
each, figures with arbitrary contents, tables, sub-
floats, rows of floats, floats located [H]ere, floats in
the [M]argin, and floats with text [W]rapped around
them, using a consistent syntax for all.

Key/value combinations may specify a caption
and label, a width proportional to \linewidth, a
fixed width and/or height, rotation, scaling, a tight
or loose frame, an \arraystretch, a continued float,
additional supplemental text, and an artist/author’s
name with automatic index entry. When used with
the tocdata package, the name also appears in the
List of Figures.

Floats may be placed into a multi-row environ-
ment, and are typeset to fit within the given number
of columns, continuing to the next rows as necessary.
Nested sub-rows may be used to generate layouts
such as two small figures placed vertically next to
one larger figure.

Subfloats are supported by two environments.
As an example, a typical command to include a

figure with a framed image of half \linewidth could
be:

\keyfig*[hbp]{f,lw=.5,c={A caption},

l={fig:label}}{image}

1 A problem with floats

When including a figure with a graphics image into a
document, the user typically enters something such
as:

\begin{figure}

\centering

\includegraphics[width=3in]{filename}

\caption{A Figure}

\label{fig:somelabel}

\end{figure}

When doing that often enough, it makes sense to
factor the common code:

\onefigure[3in]{filename}{A Figure}

{fig:somelabel}

Expanding the capability of \onefigure via the
xparse package can lead to the general case of:

\onefigure*[loc](width){filename}

(add’l text)

[shortcap]{caption}*[label]

Attempting to add additional features such as frames
and continued floats hits the limit of nine parameters
for a TEX macro, requiring that new features use
some kind of change-state macros instead. Attempt-
ing to support rows of floats or subfloats only makes
things more complicated still.

A key/value system solves the problem of adding
more features, does not require much additional typ-
ing, is a more self-documenting syntax, and allows a
shared syntax with subfloats and groups of floats as
well. Thus, the keyfloat package.

2 The keyfloat package

Using keyfloat, the previous example becomes:

\keyfig{w=3in,c=A Figure,l=fig:somelabel}

{filename}

The \onefigure general case becomes:

\keyfig*[loc]{w=width,t={add’l text},

sc=shortcap,cstar=caption,

l=label}{filename}

2.1 Macros and environments

keyfloat provides macros and environments to create
figures and floats:

\keyfig*[〈loc〉]{〈keys〉}{〈image〉}
A figure with an image.

\keyfigbox*[〈loc〉]{〈keys〉}{〈contents〉}
A figure with arbitrary contents.

\keyparbox*[〈loc〉]{〈keys〉}{〈contents〉}
A “figure” without a caption, useful to place
uncaptioned text inside a group.

\keytab*[〈loc〉]{〈keys〉}{〈tabular〉}
A table.

keyfigure*[〈loc〉]{〈keys〉}
A figure environment.

keytable*[〈loc〉]{〈keys〉}
A table environment.

2.2 Groups of floats and subfloats

Floats may be gathered into groups, as well as gath-
ered into a subfloat, using these environments:

keyfloats*[〈loc〉]{〈#cols〉}
A group of rows and columns of floats.

keysubfigs*[〈loc〉]{〈#cols〉}{〈keys〉}
A figure containing a group of rows and columns
of subfigures.

keysubtabs*[〈loc〉]{〈#cols〉}{〈keys〉}
A table containing a group of rows and columns
of subtables.

Brian Dunn

TUGboat, Volume 38 (2017), No. 1 59

2.3 Margin float

The tufte-book class offers margin floats. These are
used if they are available, otherwise keyfloat provides
its own:

marginfigure[〈offset〉]
A figure environment placed into the margin.

margintable[〈offset〉]
A table environment placed into the margin.

2.4 Arranging floats

Rows and columns of floats are created by enclosing
\keyfig and friends inside a keyfloats environment.
The number of columns is given, and the floats are
dynamically arranged across each row, with leftovers
distributed evenly on the last row. These may be
nested (Figures 1 to 5, and Table 1).

\begin{keyfloats}{2}

\keyfig{lw=1,f,c={First in a group},

l=fig:firstinrow,

tl={\cs{raggedright} text}

}{image}

\keyparbox{}{\centering

A \cs{keyparbox} describing something.

\par With several paragraphs.}

\begin{keyfloats}{2}

\keyfig{lw=1,c={Third in a group},

l=fig:thirdinarow}{image}

\keyfig{lw=1,c={Fourth in a group}}{image2}

\keyfig{lw=1,c={Fifth in a group}}{image}

\keyfig{lw=1,c={Sixth in a group},

l=fig:sixthinrow}{image2}

\end{keyfloats}

\keytab{c={Seventh in a group},

l=tab:seventhinrow}

{\testwidetable}

\end{keyfloats}

Subfloats are arranged into rows and columns
in a similar manner (Fig. 6). Notice that fig. 6(d) is
a foreign table inside a figure.

\begin{keysubfigs}{3}

{c=Subfigures,l=fig:subfigs}

\keyfig{lw=1,f,c={First subfigure},

l=fig:firstsubfig,t=Some text}{image}

\keyfig{lw=1,f,r=90,c={Second subfigure},

l=fig:secondsubfig,

t=Lots of lots of lots of lots of text.}

{image2}

\begin{keyfloats}{1}

\keyfig{lw=1,f,c={Third subfigure},

l=fig:thirdsubfig}{image}

\keytab{c={Fourth subfigure},

l=fig:fourthsubfig}{\testtable}

An image.

\raggedright text

Figure 1: First in a
group

A \keyparbox

describing something.

With several
paragraphs.

An image.

Figure 2:
Third in a
group

Another

image

Figure 3:
Fourth in
a group

An image.

Figure 4:
Fifth in a
group

Another

image

Figure 5:
Sixth in a
group

Table 1: Seventh in a
group

A B C
D E F

An image.

Some text

(a) First subfig-
ure

A
n
o
th

e
r

im
a
g
e

Lots of lots of lots

of lots of text.

(b) Second sub-
figure

An image.

(c) Third sub-
figure

(d) Fourth sub-
figure

A B
C D

An image.

(e) Fifth subfig-
ure

Figure 6: Subfigures

\keyfig{lw=.5,f,c={Fifth subfigure},

l=fig:fifthsubfig}{image}

\end{keyfloats}

\end{keysubfigs}

2.5 Placement of floats

Floats or groups of floats may be placed [H]ere,
in the [M]argin, with text [W]rapped around them
(wrapfig with optional placement), or with the usual
[htbp] placement combinations.

Starred floats may be used to create two-column
floats.

The Keyfloat Package

60 TUGboat, Volume 38 (2017), No. 1

An image.

Mr. First Last III

About the illustration.

Figure 7: An artist’s work

2.6 Options controlled by key/values

Most of the keys are one or two letters long, allowing
them to be entered quickly.

Continued floats are available to repeat the pre-
vious float’s number.

Tabular \arraystretch may be set per table.
An image inside a figure may be sized, rotated,

and placed inside a tight, loose, or custom frame.
Boxes of arbitrary contents may be sized and framed.
Along with a fixed width or height, contents may
also be sized as a fraction of \linewidth. Doing
so allows them to automatically scale appropriately
as they are moved into or out of groups of floats or
subfloats.

Additional descriptive text may be placed inside
the float with left/right/center alignments, and an
artist/author’s name may be added as well (Fig. 7):

\keyfig{ft,lw=1,

ap=Mr.,af=First,al=Last,as={~III},

tc={\textit{About the illustration.}},

c=An artist’s work,l=fig:artist}{image}

Subfloats may be used to create a collection
(Fig. 8):

\begin{keysubfigs}{2}{

c=Artist’s collection,

l=fig:artistcollection,

t={Some fully-justified text just

for illustrative purposes, in case you

have a use for long explanations.

This text may be the full \cs{linewidth}

in size. \par

Multiple paragraphs of text are

allowed.},

ap=Prefix,af=First,al=Last,as={, Suffix}

}

\keyfig{lw=1,c=Artist’s First Work}

{image}

\keyfig{lw=1,c=Artist’s Second Work,

An image.

(a) Artist’s First Work

Another

image

Commentary about the

work.

(b) Artist’s Second Work

Prefix First Last, Suffix

Some fully-justified text just for illustrative purposes, in case

you have a use for long explanations. This text may be the

full \linewidth in size.

Multiple paragraphs of text are allowed.

Figure 8: Artist’s collection

tl={Commentary about the work.}}

{image2}

\end{keysubfigs}

2.7 Customizations

User-redefinable macros are provided for tight and
loose frames. A loose frame is meant to add a bit of
margin around the object, such as a closely cropped
diagram, and is the usual case. A tight frame is useful
around a photograph, giving a visual definition to
its edge. The user must set a certain LATEX length
for each type of frame, equal to the total width of
each frame and margin. These lengths are used to
compute the final size of the float contents.

The caption package is used by keyfloat, and
customized caption settings may be used for figures,
tables, subfigures/tables, and wrapped figures/ta-
bles.

As usual, \floatsep and \dblfloatsep may
be used to spread out the floats on the page.

2.8 Examples

The keyfloat documentation has more than thirty
examples demonstrating code fragments and the cor-
responding results, as well as solutions for several
special cases, such as frames using mdframed and
fancybox.

⋄ Brian Dunn
bd (at) bdtechconcepts dot com

http://bdtechconcepts.com

Copyright 2017 Brian Dunn

Brian Dunn

TUGboat, Volume 38 (2017), No. 1 61

Glisterings: Hanging; Safety in numbers

Peter Wilson

A glisterin mornin aften draws tae rain.

Anonymous

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

We must indeed all hang together, or most
assuredly, we shall all hang separately.

Spoken at the signing of the Declaration

of Independence, Benjamin Franklin

1 Hanging

1.1 Overhangs

Rui Maciel asked about a notation for the closure of
a set, saying that [8]:

When I need to refer to the closure of a set I
tend to use the \bar{} command, So, considering
the set Ω then the closure of that set would be:
$\bar{\Omega}$ -> Ω̄
However, I’ve noticed that when the symbol used to
reference a given set also has a superscript then Ω̄s

doesn’t look very good. I’ve also tried \overline{}

instead but it appears even worse
$\overline{\Omega^{s}}$ -> Ωs.

Enrico Gregorio recommended [3]:

\newcommand*{\closureG}[2][3]{%

{}\mkern#1mu\overline{\mkern-#1mu#2}}

while Bill Hammond said [5] that he found the follow-
ing to work better, also noting that he used amsmath:

\newcommand*{\closureH}[2][3]{%

\overline{{}\mkern#1mu#2\mkern-#1mu}}

In each case the optional argument is the value
of an \mkern (in mu) applied to the overline to move
it sideways; the default is 3.

Dan Luecking felt [7] that there should be two
controls over the overline — one to shift the line
(which is provided by the previous macros) and a sec-
ond to adjust the length of the line — and suggested
the \closureL macro.

%% \closureL{right shift}{trim}{symbol}

\newcommand*{\closureL}[3]{%

\mkern#1mu\mkern#2mu

\overline{\mkern-#1mu \mkern-#2mu #3%

\mkern-#2mu \mkern#1mu}%

\mkern#2mu\mkern-#1mu}

Table 1 shows the results of applying the three
closure macros to a variety of variables with a range
of kerns, along with the result of a vanilla \overline.

There is no one ideal value for the \mkern; a
‘good’ value depends on whether the set variable is
upright (e.g., Ω) or slanted (e.g., B) and whether or
not it has a super- or subscript. Basically it comes
down to what you think is most appropriate. In my
view I prefer the following:

Upright variable (e.g. Ω) \closureG[0]{},
\closureH[0]{}, \closureL{0}{0}{}, which
are all equivalent to \overline{}

Slanted variable (e.g., B) \closureG[3]{},
\closureH[-3]{}.

I think that \closureL{0}{3}{} and
\closureL{3}{0}{} are close but not quite as
good. Something like \closureL{1}{2} would
seem to give a better result.

As the old saying goes, ‘Yer pays yer money and
takes yer choice’.

1.2 Paragraphs in equations

‘Cooch’ wrote [2]:
In a number of the chapters for one of my books,

I ‘define’ a series variables, generally embedded in
the form

variable = text to define the variable

For example (the page I’m currently staring at)

$\phi^{rst}_{i-1,i}$= the probability that

a particle in state \emph{r} at time

\emph{i}-1 and state \emph{s} at time

\emph{i} is in state \emph{t} at time

\emph{i}+1.

. . . I want to force the RHS of the expression to ‘wrap’
and be indented after the first sentence, to the right
of the equal sign. So, that the above looks like:

$\phi^{rst}_{i-1,i}$= the probability that

a particle in state ...

In other words, something analogous to a ‘hanging
indent’ after the first line, but where the indentation
is relative to where the equal sign falls.

There were several responses to this and for
the following, in order to save space and make the
examples easier to read, I have defined

\newcommand*{\mathdef}{\phi^{rst}_{i-1,i}=}

\newcommand*{\textdef}{the probability that

a particle in state r at time $i-1$

and state s at time i is in state

t at time $i+1$.}

\newcommand*{\smath}{D_{n}=}

\newcommand*{\stext}{the definition of the

variable as used herein.}

All the respondents disagreed with the use of \emph

to indicate a math variable. As Enrico Gregorio
said [4]:

Glisterings: Hanging; Safety in numbers

62 TUGboat, Volume 38 (2017), No. 1

Table 1: Various closures

‘closure’ Ω Ω∗ Ωs B B∗ Bs

\overline{...} Ω Ω∗ Ωs B B∗ Bs

\closureG[-3]{...} Ω Ω∗ Ωs B B∗ Bs

\closureG[0]{...} Ω Ω∗ Ωs B B∗ Bs

\closureG[3]{...} Ω Ω∗ Ωs B B∗ Bs

\closureH[-3]{...} Ω Ω∗ Ωs B B∗ Bs

\closureH[0]{...} Ω Ω∗ Ωs B B∗ Bs

\closureH[3]{...} Ω Ω∗ Ωs B B∗ Bs

\closureL{-3}{-3}{...} Ω Ω∗ Ωs B B∗ Bs

\closureL{-3}{0}{...} Ω Ω∗ Ωs B B∗ Bs

\closureL{-3}{3}{...} Ω Ω∗ Ωs B B∗ Bs

\closureL{0}{-3}{...} Ω Ω∗ Ωs B B∗ Bs

\closureL{0}{0}{...} Ω Ω∗ Ωs B B∗ Bs

\closureL{0}{3}{...} Ω Ω∗ Ωs B B∗ Bs

\closureL{3}{-3}{...} Ω Ω∗ Ωs B B∗ Bs

\closureL{3}{0}{...} Ω Ω∗ Ωs B B∗ Bs

\closureL{3}{3}{...} Ω Ω∗ Ωs B B∗ Bs

Don’t use \emph{i} for representing a vari-
able: it’s simply i; notice also the difference
between $i-1$ (i − 1) and \emph{i}-1 (i-1);
the second one is definitely wrong.

Lars Madsen said [9] that he normally used1

\begin{equation*}

\phi^{rst}_{i-1,i}=

\parbox[t]{<length>}{\raggedright the

probability that a particle in state r

at time $i-1$ and ...}

\end{equation*}

which, with 〈length〉 = 0.8\columnwidth results in

φrst
i−1,i = the probability that a particle in state r

at time i − 1 and state s at time i is in
state t at time i + 1.

Enrico Gregorio provided [4] the following envi-
ronment:

\newenvironment{qdesc}[1]%

{\par\addvspace{\medskipamount}

\sbox{0}{$#1$ }\dimen0=\textwidth

\advance\dimen0 by -\wd0

\noindent\usebox{0}

\begin{minipage}[t]{\dimen0}}%

{\end{minipage}

\par\addvspace{\medskipamount}}

which applied to the example as

\begin{qdesc}{\mathdef}

\textdef

\end{qdesc}

1 equation* is from the amsmath package

and results in:

φrst
i−1,i = the probability that a particle in state r at

time i − 1 and state s at time i is in state t

at time i + 1.

Jean-François Burnol presented [1] the following
macro:

\newcommand{\start}[1]{%

\setbox0=\hbox{#1}%

\hangindent\wd0%

\noindent\box0}

\start{$\phi^{rst}_{i-1,i}$= }\textdef

φrst
i−1,i= the probability that a particle in state r at

time i − 1 and state s at time i is in state t

at time i + 1.

Jean-François’ \start macro is a TEX version
of the LATEX kernel’s command \@hangfrom, which
the memoir class provides as a user-level macro
\hangfrom{text} by copying the original definition:

\newcommand{\hangfrom}[1]{%

\setbox\@tempboxa\hbox{{#1}}%

\hangindent \wd\@tempboxa%

\noindent\box\@tempboxa}

\hangfrom{<text>} puts text in a box and makes a
hanging paragraph of the following material (some-
what like a description item). Applying this:

\hangfrom{\mathdef }\textdef \par

\hangfrom{\smath }\stext

Peter Wilson

TUGboat, Volume 38 (2017), No. 1 63

φrst
i−1,i = the probability that a particle in state r at

time i − 1 and state s at time i is in state t

at time i + 1.
Dn = the definition of the variable as used herein.

As the last example shows, each ‘definition’ is
treated individually. If it is required that, say, several
definition texts should be aligned in a set of defini-
tions then using one of the tabular environments
could be an advantage. For example:

Using \texttt{tabular} \\

\begin{tabular}{lp{0.7\columnwidth}}

\mathdef & \textdef \\

\smath & \stext \\

\end{tabular}

Using \texttt{tabularx} \\

\begin{tabularx}{\linewidth}{lX}

\mathdef & \textdef \\

\smath & \stext \\

\end{tabularx}

Using tabular

φrst
i−1,i = the probability that a particle in

state r at time i − 1 and state s at
time i is in state t at time i + 1.

Dn = the definition of the variable as used
herein.

Using tabularx

φrst
i−1,i = the probability that a particle in state

r at time i − 1 and state s at time i is
in state t at time i + 1.

Dn = the definition of the variable as used
herein.

Some of the suggestions require a length to be
specified for the definition text while others auto-
matically use all the available space. It is really a
matter of individual preference which is most suited
for a particular desired outcome.

It was a bright cold day in April, and the
clocks were striking thirteen.

Nineteen Eighty-Four, George Orwell

2 Safety in numbers

Gordon Haverland posted [6] to the texhax mailing
list:

I don’t suppose there is some easy way to deal
with superstitions in LATEX? I looked around CTAN

a bit and nothing jumped out at me.
I suspect the company I am doing work for is

superstitious, or customers are. But I ran across
an enumerated list where there is no 13th element.

What I’ve done is:
13. Purposely blank.

But is there something else that is more universal?
Heiko Oberdiek responded [10] with a univer-

sal solution by changing the definition of \@arabic,
which is the underlying LATEX macro for typesetting
the value of a counter in arabic form:

\makeatletter

\newcommand*{\safe}{%

\renewcommand*{\@arabic}[1]{%

\ifnum##1=13\relax

12a%

\else

\ifnum##1=-13\relax

-12a%

\else

\expandafter\@firstofone\expandafter{\number##1}%

\fi

\fi}}

\makeatother

Following the \safe declaration every setting ‘13’
will be typeset as ‘12a’.

To save space in the following examples I have
defined:

\makeatletter

\newcommand*{\setlistctr}[1]{%

\setcounter{\@listctr}{#1}%

\protected@edef\@currentlabel

{\csname p@\@listctr\endcsname

\csname the\@listctr\endcsname}}

\makeatother

which can be used to reset the enumerate list counter.
Applying Heiko’s suggestion to an enumerate

list as:

Standard enumeration:

\begin{enumerate}

\item One \par

\ldots \setlistctr{11}

\item Twelve

\item Thirteen

\item Fourteen

\end{enumerate}

‘Safe’ enumeration:

\begin{enumerate}\safe

\item One \par

\ldots \setlistctr{11}

\item Twelve

\item Thirteen

\item Fourteen

\end{enumerate}

the result is:

Standard enumeration:

1. One

. . .

Glisterings: Hanging; Safety in numbers

64 TUGboat, Volume 38 (2017), No. 1

12. Twelve

13. Thirteen

14. Fourteen

‘Safe’ enumeration:

1. One

. . .

12. Twelve

12a. Thirteen

14. Fourteen

However Gordon had explicitly mentioned the
enumerate list and I thought that perhaps something
specific for that would suit. To that end I defined
the \skipit macro that ensures that the counter in
an enumerate skips the value ‘13’, and the macro
\fixitem to append it to the end of LATEX‘s internal
\@item macro.

\makeatletter

\newcommand*{\skipit}{%

\if@nmbrlist

\ifnum12=\csname c@\@listctr\endcsname

\refstepcounter\@listctr

\fi

\fi}

\let\old@item\@item

\newcommand{\fixitem}{%

\def\@item[##1]{\old@item[##1]\skipit}}

\makeatother

An example of this approach is:

‘skipit’ enumeration:

\begin{enumerate}\fixitem

\item One \par

\ldots \setlistctr{11}

\item Twelve

\item Thirteen

\item Fourteen

\end{enumerate}

‘skipit’ enumeration:

1. One

. . .

12. Twelve

14. Thirteen

15. Fourteen

With a second level list, though, you might not
get what you expect:

Standard enumeration:

\begin{enumerate}

\item Including a ‘skipit’ enumeration:

\begin{enumerate}\fixitem

\item One \par

\ldots \setlistctr{11}

\item Twelve

\item Thirteen

\item Fourteen

\end{enumerate}

\item Two \par

\ldots \setlistctr{11}

\item Twelve

\item Thirteen

\item Fourteen

\end{enumerate}

Standard enumeration:

1. Including a ‘skipit’ enumeration:

(a) One

. . .

(l) Twelve

(n) Thirteen

(o) Fourteen

2. Two

. . .

12. Twelve

13. Thirteen

14. Fourteen

References

[1] Jean-François Burnol. Re: Variable definitions /
indenting on = sign. comp.text.tex, 25 March
2011.

[2] cooch17. Variable definitions / indenting on =
sign. comp.text.tex, 25 March 2011.

[3] Enrico Gregorio. Re: Math notation for the closure
of a set? comp.text.tex, 30 March 2011.

[4] Enrico Gregorio. Re: Variable definitions /
indenting on = sign. comp.text.tex, 25 March
2011.

[5] William Hammond. Re: Math notation for the
closure of a set? comp.text.tex, 16 April 2011.

[6] Gordon Haverland. [texhax] superstitions. texhax

mailing list, 23 April 2011.

[7] Dan Luecking. Re: Math notation for the closure
of a set? comp.text.tex, 19 April 2011.

[8] Rui Maciel. Math notation for the closure of a set?
comp.text.tex, 30 March 2011.

[9] Lars Madsen. Re: Variable definitions / indenting
on = sign. comp.text.tex, 25 March 2011.

[10] Heiko Oberdiek. Re: [texhax] superstitions. texhax

mailing list, 23 April 2011.

⋄ Peter Wilson
12 Sovereign Close
Kenilworth, CV8 1SQ UK
herries dot press (at)

earthlink dot net

Peter Wilson

The optimal value for \emergencystretch

Udo Wermuth

Abstract

As a reaction to authors using very high values for
the integer parameter \tolerance in their texts in-
stead of rewriting them if TEX creates overfull lines,
Donald E. Knuth introduced in TEX 3.0 the dimen
\emergencystretch and a third pass for TEX’s line-
breaking algorithm. The parameter should only be
used in an emergency situation but such a situation
can occur, for example, if a typist cannot change
the text written by an author and TEX produces
overfull lines. Then this parameter comes to the res-
cue although the output might not look good, as
spaces can spread much more than before. This ar-
ticle tries to find all factors that have an impact
on the value of \emergencystretch. Besides pure
theory, experiments are performed and the impact
factors are briefly discussed.

1 Introduction

Since its introduction with TEX 3.0 in 1989 [8, p. 327]
the parameter \emergencystretch has asked for at-
tention as no hints about useful values are given in
the article. Of course, it could be used to avoid awful
lines in a better way than before: “[P]eople [. . .] tried
to do this by setting \tolerance = 10000, but the
result was terrible because TEX would tend to con-
solidate all the badness in one truly horrible line.” So
its usage is a “better way to avoid overfull boxes, for
people who don’t want to look at their documents
to fix unfeasible line breaks manually.”

The TEXbook describes this dimen [3, p. 107]
and gives its default value in the plain format, 0 pt.
I assume that—whatever research went into the
design and the implementation—the idea remains
that authors should rewrite their texts if they cannot
be broken by TEX. The dimen is an instrument for
people who have to work with a text which cannot
be changed by them.

The number of relevant publications about this
parameter appears to be very small. In the first years
after its introduction the LATEX3 group looked for
volunteers to make experiments with the parameter
[12, p. 511]. But it seems that no one has published
such experiments or research. A check with several
well-known textbooks to find a hint about useful
settings and not merely the description of this pa-
rameter resulted in just one hit: In [1], p. 333, it is
written that “a likely value seems to be around 5 pt.”

TUGboat, Volume 38 (2017), No. 1 65

A search in TUGboat archives produces again only
one hit: In [13], p. 139, the following statement is
made: “However, a sound rule of thumb is to set it
to 1 em (based on the primary text font); this value,
strange as it may seem, appears equally suitable for
both wide and narrow measures.” (His “pragmatic
approach” can result in high values for \tolerance.)

Of course a single value cannot always solve
the problem and make TEX find line breaks without
overfull lines. It might nevertheless be seen as an up-
per bound on what is seen as tolerable for the visual
output. A value of 5 pt appears to be small but in
a line with only one stretchable interword space it
creates a hole in the text as it stretches the space to
twice its maximal value in cmr10. Therefore, what-
ever value for the parameter \emergencystretch is
used, the output should be checked to see if it does
not create awful looking lines. The author of a text
should think about a textual change before eliminat-
ing overfull lines with \emergencystretch.

Here is a short overview of the structure of
this article: Section 2 sketches briefly and somewhat
vaguely aspects of glue and establishes the nota-
tion that helps to write about spaces and stretch-
ability. Section 3 presents an experiment with many
overfull lines and shows how they can be removed
by assigning appropriate values to the dimension
\emergencystretch. The situation is analyzed from
a theoretical point of view in section 4. Section 5 ap-
plies the formula created in section 4 to some cases of
experiment 1 and presents numerical results as well
as ideas for TEX macros to do the calculations. The
next three sections look at the various parameters
that occur in the formula for \emergencystretch

stated in section 4. The theoretical results are ex-
tended in section 9 and applied to a second exper-
iment in section 10. Removing overfull lines is only
one application of \emergencystretch; another is
discussed in section 11. The last section summarizes
the results and gives a rule of thumb for the calcu-
lation of \emergencystretch.

2 Notational conventions

A paper about the dimension \emergencystretch

should explain the material that is able to stretch or
shrink: glue. Therefore the basic principles of glue in
texts and in math mode are reviewed first. To handle
all the different forms a consistent notation for num-
bers, dimensions, and skips is needed. So let’s start
with some notational conventions and definitions.

Conventions. I use the following notation for vari-
ables and functions; variables are written in lower-
case, functions in uppercase letters:

The optimal value for \emergencystretch

1. math italic Latin for dimensions, the most fre-
quently used variables and functions;

2. numbers are written with Greek letters;
3. boldface Latin is used for glue, i.e., a triple of

dimensions, for example, g = (g◦, g+, g−) for
glue, that has the natural width g◦ with the
ability to stretch by g+ and to shrink by g−;

4. boldface Greek is used for pairs of numbers and
triples of such pairs.

A typewriter font is used for the input: String
variables are written in uppercase and single com-
mand or character input get letters in lowercase.

When glue is added the values of the corre-
sponding components are added; multiplication and
division by an integer is also done by multiplying
or dividing each component by that integer. These
operations are represented in TEX by the commands
\advance, \multiply, and \divide for skips.

Some important elements receive fixed names:

e is the value of \emergencystretch;
fν denotes the \fontdimen ν of the current font;
h stands for the \hsize;
k represents a kern;
m is the current value of \mathsurround at the

end of a formula, i.e., at the math-shift charac-
ter that ends the math mode;

o is the value by which an overfull line is too wide;
ǫ specifies the environmental condition that ex-
plains how spaces get their width (see below);

τ represents the value of \tolerance;
π stands for a penalty;
l = (l◦, l+, l−) is the \leftskip;
r = (r◦, r+, r−) is the \rightskip;
s = (s◦, s+, s−) represents the \spaceskip;
x = (x◦, x+, x−) stands for the \xspaceskip;
z = (0 pt, 0 pt, 0 pt) is the zero glue; in the plain

format it is called \z@skip;
Z = (0, 0) is the pair of two zeros.

Important functions are:

W(T) is the width of the input T with an unspec-
ified stretch or shrink amount; otherwise the
subscript “nw” or “mt” are used for the natu-
ral width and the maximal tight width, resp.;

L(S&T) stands for the change of width that the con-
catenation of S and T differs from the sum of the
individual widths because of ligatures or kern-
ing, i.e.,Wnw(ST) = Wnw(S)+Wnw(T)+L(S&T);

Φ(T) returns the value of the space factor that is
active at the end of input T;

Ω(T) stands for a triple of pairs—each pair gives
the amounts of stretchability and shrinkability
of one of the three infinite glue orders in input T;

66 TUGboat, Volume 38 (2017), No. 1

Gǫ(σ, W) is the finite glue that stems from the input
W for white space, given that the space factor is
σ at the start of the input;

Sǫ(T) represents all finite glue contained in T.

The first three functions should be clear enough
from the given description. They are easily com-
puted by TEX. The last two functions compute glue.
Together with the fourth function they are explained
and precisely defined in the next subsections to-
gether with a few more specialized functions.

The rest of this section describes and defines
these functions; skip to section 3 if you are not in-
terested in the details.

Glue in paragraphs. In general an input T can
be seen as a sequence of text parts Tκ, which do not
have any author-entered glue except if it is already
set, for example, in an \hbox, and input Wκ that
represents the glue w◦

κ plus w+
κ minus w−

κ :

T = T0W0T1W1 . . . Tω−1Wω−1Tω. (∗)
The text elements Tκ contain more than char-

acters that are typeset, for example, TEX control se-
quences, implicit kerns, mathematics, or boxes. An
assumption is made: The input can be processed
unconditionally, that means control sequences like
\if, \unkern, etc. are resolved and token lists are
expanded. This is not a real restriction but avoids
subcases and is reasonable for user input. Each en-
tered white space sequence is related to a glue item
Wκ = wκ,1wκ,2 . . . wκ,µκ

, whose elements might be not
only spaces but also penalties and dimens from a
kern or a math-on/math-off switch. For example,
the author might have entered an italic correction
wκ,1 and then a space wκ,2: The natural width of the
glue item w◦

κ is the sum of the kern and the natu-
ral width of a space. Penalties are also allowed in
Wκ, though they are not white space. Then a kern
followed by a tie is covered by the description too.

If leaders are used then the skip part is listed as
glue input, since the box part just fills the created
white space with some pattern [3, p. 223].

The glue function. A function is needed to find a
unified way to write about finite glue in a text. TEX
has several mechanisms to deal with it [3, pp. 75–
77] which result in many different cases in equations
about glue. Therefore, the environmental condition,
called ǫ, is introduced. It is a number defined as

ǫ :=

0, s = z = x;
1, s = z 6= x;
2, s 6= z = x;
3, s 6= z 6= x.

So ǫ = 0 means that the normal interword spaces are
used, odd values stand for a nonzero \xspaceskip,

Udo Wermuth

Nonzero \(x)spaceskip setting

alters not relevant

math
mode only

space

factor aware

\hskip

\hglue

\quad
\qquad

\enskip

\mskip

\,

\;
\>

\!

\

~

\space

Figure 1: Input methods in plain TEX for glue
influenced by nonzero \(x)spaceskip (shaded area)
and glue that is space factor-aware (lower left area)

and values 2 and 3 signal that the \spaceskip is
nonzero.

TEX knows several kinds of white space. Some
are aware of the environment, while others ignore it;
let’s call the former kind eaglue. For example, the
normal spaces, the control word \space, the con-
trol space and the tie belong to eaglue but author-
entered white space through \hskip is not eaglue.
Further, normal spaces and control spaces are differ-
ent as the first is affected by the space factor before
the white space [3, p. 76]. To distinguish between
these two kinds of eaglue the first one is called sfglue

in the following discussion.

Figure 1 gives an overview of the different kinds
of finite glue, including muglue which is used only in
math mode. The TEX control sequences for infinite
glue, such as \hfil, are not listed, since such glue is
collected by the function Ω described below. Tech-
nically, not only glue counts, although all values are
treated as glue in this discussion. A user can enter
an explicit kern with the italic correction, or TEX
inserts the value of \mathsurround when it reads a
math-shift character.

It is possible to have several glue items in a se-
quence; sometimes this second glue is ignored and
sometimes it counts: Two \hskips create glue in
which each component is the sum of the correspond-
ing values of the skips, but two normal spaces count
usually only as a single space. When white space is
placed in a sequence the space factor must be con-
sidered for all items. For example, in :\hglue0pt

plus1pt \space\space the last \space is still influ-
enced by the space factor that occurs after the colon.

TUGboat, Volume 38 (2017), No. 1 67

So it requires several cases to define a function
that returns the glue value for any glue item w when
the space factor σ is applied under the environmen-
tal condition ǫ:

Gǫ(σ, w) :=

(f2, σf3/1000, 1000f4/σ),
w is sfglue, ǫ < 2, σ < 2000;

(s◦, σs+/1000, 1000s−/σ),
w is sfglue, ǫ = 2;

(s◦, σs+/1000, 1000s−/σ),
w is sfglue, ǫ = 3, σ < 2000;

(f2 + f7, σf3/1000, 1000f4/σ),
w is sfglue, ǫ = 0, σ ≥ 2000;

(x◦, σx+/1000, 1000x−/σ),
w is sfglue, ǫ is odd, σ ≥ 2000;

(f2, f3, f4),
w is eaglue, not sfglue, ǫ < 2;

(s◦, s+, s−),
w is eaglue, not sfglue, ǫ ≥ 2;

(w◦, v+, v−),
w is explicitly entered glue,
\hskip or the like;
v+ := w+ and v− := w− if they
are finite, otherwise 0 pt;

(k, 0 pt, 0 pt),
w is a kern or mkern with width k;

(m, 0 pt, 0 pt),
w is a math-shift character; m
is the value of \mathsurround;

(0 pt, 0 pt, 0 pt),
w is ignored or not white space.

As usual the three components of Gǫ(σ, w) have the
names G◦

ǫ (σ, w), G
+
ǫ (σ, w), and G−

ǫ (σ, w).

Before the sum of the individual parts of Wκ =
wκ,1wκ,2 . . . wκ,µκ

can be built, one technicality needs
to be addressed: The value of \spacefactor can be
changed. When wκ,0 is the empty string, the def-
inition is

Gǫ(Φ(Tκ) , Wκ) :=

µκ
∑

ι=1

Gǫ(Φ(Tκwκ,1 . . .wκ,ι−1) , wκ,ι).

To state the amount of stretchability or shrink-
ability of the input T of the model of eq. (∗) in one
function, the following summations are necessary:

ω−1
∑

κ=0

G+
ǫ (Φ(Tκ) , Wκ) and

ω−1
∑

κ=0

G−

ǫ (Φ(Tκ) , Wκ).

This looks very complicated, but is a simple
function if the default settings of plain TEX are
considered. In this case only a counting of spaces
and punctuation marks in a single line L is necessary
if the author hasn’t entered \hskips. Let

νc(L) := number of occurrences of character c in L

The optimal value for \emergencystretch

and define an extension for more than one character

νc1 . . .cω (L) :=

ω
∑

κ=1

νcκ(L).

The counts of the “relevant” punctuation marks, i.e.,
those punctuation marks not preceded by an upper-
case letter, not at end of line, and not followed by
a control space or tie, and the plain TEX settings
give total stretchability and shrinkability:

(

ν (L) +
5

4
ν,(L) +

3

2
ν;(L) + 2ν:(L) + 3ν.?!(L)

)

f3,

(

ν (L) +
4

5
ν,(L) +

2

3
ν;(L) +

1

2
ν:(L) +

1

3
ν.?!(L)

)

f4,

where ν (L) numbers the spaces that are not pre-
ceded by a relevant punctuation mark in L. Note the
terms f3 and f4, which are \fontdimens 3 and 4, are
replaced by s+ and s− if ǫ = 2.

Infinite glue. Inspired by [4, §822], infinite glue is
written as a triple of pairs of numbers. Each pair
represent one of the three orders of infinite glue: fil,
fill, and filll. So the amount of infinite glue in g is
Ω(g) = (Ω1(g),Ω2(g),Ω3(g)) and each pair has two
numbers: Ωι(g) = (Ω+

ι (g),Ω
−

ι (g)).
For example, the glue specification g = \hskip

χ pt plus 2α fil minus −β fill has two different
orders of infinite glue, therefore Ω1(g) = (2α, 0),
Ω2(g) = (0,−β), and Ω3(g) = Z.

To define for T of eq. (∗)
Ω(T) = (Ω1(T),Ω2(T),Ω3(T))

a definition ofΩι(T) for 1 ≤ ι ≤ 3 is needed. With

Ω+
ι (w) :=

{

α, if w contains the amount α
of infinite stretchability of order ι

0, otherwise

Ω−

ι (w) :=

{

α, if w contains the amount α
of infinite shrinkability of order ι

0, otherwise

Ωι(Wκ) when Wκ = wκ,1wκ,2 . . . wκ,µκ
is defined as

Ωι(Wκ) = (Ω+
ι (Wκ),Ω

−

ι (Wκ))

:=

(

µκ
∑

χ=1

Ω+
ι (wκ,χ),

µκ
∑

χ=1

Ω−

ι (wκ,χ)

)

so that

Ωι(T) = (Ω+
ι (T),Ω

−

ι (T))

:=

(

ω−1
∑

κ=0

Ω+
ι (Wκ),

ω−1
∑

κ=0

Ω−

ι (Wκ)

)

.

Glue in math mode. TEX is often used to type-
set mathematics, so the glue that is present in math
mode should be analyzed too. Only inline formu-
las are treated here. (Overfull lines in display math

68 TUGboat, Volume 38 (2017), No. 1

mode are a different topic, not handled in this arti-
cle; see [3], pp. 195–197.)

When TEX operates in math mode the space
factor and normal spaces have no meaning: TEX in-
serts the spacing according to its own rules.

In math mode TEX typesets the formulas in
styles. Eight styles are defined: the four basic styles
are scriptscript style SS, script style S, text style
T , and display style D, each with two versions [3,
pp. 140–141]. They are usually sorted as

SS ′ < SS < S′ < S < T ′ < T < D′ < D

so that it makes sense to represent them by the num-
bers 0 to 7. Inside the formulas TEX operates with
atoms. There are thirteen types, but only eight are
important for spacing as the others are transformed
into these eight (see [3], p. 158 and Appendix G).
Again the types are sorted

Ord < Op < Bin < Rel

< Open < Close < Punct < Inner

< Over < Under < Acc < Rad < Vcent

so that the numbers 0 to 12 can be assigned to the
atoms. The names stand for atoms of types ordinary,
large operator, binary operator, relation, opening,
closing, punctuation, inner, overline, underline, ac-
cented, radical, and vcenter; examples of atoms for
the first eight types are given in Fig. 2, first column.
Note, however, it is not the symbol that counts but
its usage: In $+1$ the ‘+’ is not a binary operator
and therefore not of type Bin.

In math mode TEX doesn’t use single fonts but
font triples combined in a family; there are up to
16 families. A triple of fonts consists of a font for
normal text symbols, one for subscripts, and one for
sub-subscripts; the first font is called the \textfont.
In plain TEX, family 1 contains the math italic let-
ters, family 2 the math symbols, and family 3 large
symbols. The fonts in families 2 and 3 need special
\fontdimen parameters but only one of them is of
interest for our glue concerns: \fontdimen6 of fam-
ily 2’s \textfont (named f t2

6), the quad width of
the font, plays an important role. It is used to con-
vert the muglue, which is measured in mu, into glue
measured in pt: 1mu = f t2

6 /18.
As mentioned above, TEX inserts glue in math

mode and ignores normal white space but, of course,
an author can explicitly enter \hskip or \kern or
\mskip or \mkern commands; the latter two use
muglue. In the model (∗) each explicitly entered glue
is represented by a Wκ but inserted glue in math
mode does not create such a glue token. The in-
put Tκ may contain material in math mode which
stretches or shrinks because of glue inserted by TEX.

Udo Wermuth

Insert the specified glue after Atom
if it is followed by an atom of type

Ex. Atom type 0 1 2 3 4 5 6 7

a Ord 0 n1 m t n
∑

Op 1 n1 n1 t n

+ Bin 2 m m m m

= Rel 3 t t t t

(Open 4
) Close 5 n1 m t n

: Punct 6 n n n n n n n
1
2 Inner 7 n n1 m t n n n

1 applied in styles 0–7; otherwise 4–7 only

Figure 2: TEX’s space table [3, p. 170], with examples
for the atoms

There are three amounts of glue that TEX in-
serts into formulas:

n is the glue created by the command
\mskip\thinmuskip in pt, i.e., it is
muglue expressed in pt;

m is like n but \medmuskip is used;
t is like n but \thickmuskip is used.

What type gets inserted is determined by the
space table shown in Fig. 2. Most glue is inserted
only in styles T ′, T , D′, and D.

The glue of these three types is inserted around
selected atoms only if certain conditions are met. So
first a counting of atom pairs is defined:

µ(χ, α1α2, T) := number of times that the atom
sequence α1α2 occurs in style χ
inside text T.

The bracket notation (a.k.a. Iverson’s convention)

[statement] :=
{

1 statement is true
0 statement is false

helps to describe the glue inside math mode in (∗)
with three functions.

N(T) :=

ω
∑

κ=0

(7
∑

χ=0

(

µ(χ, α1, Tκ)n [α ∈ {0, 1, 5, 7}]

+ µ(χ, 10, Tκ)
)

+
7
∑

χ=4

(

µ(χ, α7, Tκ)n [α ∈ {0, 1, 5}]

+ µ(χ, 6α, Tκ)n [α ∈ {0, 1, 3, 4, 5, 6, 7}]

+ µ(χ, 7α, Tκ)n [α ∈ {0, 4, 6, 7}]
)

)

.

The formula form looks only at styles 4–7:

M(T) :=

ω
∑

κ=0

7
∑

χ=4

(

µ(χ, 2α, Tκ)m [α ∈ {0, 1, 4, 7}]

+ µ(χ, α2, Tκ)m [α ∈ {0, 5, 7}]
)

.

TUGboat, Volume 38 (2017), No. 1 69

And for t, T(T) is computed in a similar way:

T(T) :=
ω
∑

κ=0

7
∑

χ=4

(

µ(χ, 3α, Tκ)t [α ∈ {0, 1, 5, 7}]

+ µ(χ, α3, Tκ)t [α ∈ {0, 1, 4, 7}]
)

.

At least with the defaults of plain TEX, the
split into three functions makes some sense as only
M(T) can stretch and shrink; T(T) cannot shrink
and N(T) can neither stretch nor shrink. For the ap-
plications of this paper the shrinkability and stretch-
ability is of interest, so the function N(T) is never
used as long as \thinmuskip is not changed.

Again this looks more complicated than it is in
order to cover all theoretical aspects: M(T) counts
the number of Bin atoms in text and display style
and this number is multiplied by 2m. Similarly, T(T)
counts the number of Rel atoms that don’t follow a
Punct atom; this count is multiplied by 2t. The iden-
tification of the relevant atoms is easily described for
the styles T ′ and T that appear in paragraphs if the
style isn’t explicitly changed with \displaystyle:
A Bin or Rel atom is typeset in text style if it is nei-
ther raised nor lowered with respect to the baseline.

To capture inserted glue at a line break the glue
function is extended to math mode. In styles 4–7,
TEX inserts a penalty after Bin and Rel atoms to
create an opportunity to break formulas.

Gǫ(σ, m) :=

{

m, m is a Bin atom in styles 4–7
t, m is a Rel atom in styles 4–7.

Summary: Glue in the input. In the model (∗)
the infinite glue is captured by Ω(T).

The finite glue of explicitly entered glue W that
follows the input T is Gǫ(Φ(T) , W). Three functions
are defined to represent the finite glue that TEX in-
serts into input T which contains material in math
mode: T(T), M(T), and N(T). Therefore:

Sǫ(T) := finite glue in T

=

ω−1
∑

κ=0

Gǫ(Φ(Tκ) , Wκ) +T(T) +M(T) +N(T)

when T = T0W0T1W1 . . . Tω−1Wω−1Tω as defined in (∗).
Of course, Sǫ(T) = (S◦

ǫ (T), S
+
ǫ (T), S−

ǫ (T)).

3 An experiment

I use a well-known text [3, p. 24] for the first exper-
iment. The text is typeset with a smaller \hsize

than the column width in order to produce over-
full boxes. Then the value of the dimension parame-
ter \emergencystretch is increased up to the point
where an overfull box disappears.

For example, when \hsize = 100 pt, five over-
full boxes are produced. Then the value of the dimen

The optimal value for \emergencystretch

\emergencystretch is increased in steps of 0.1 pt,
and at \emergencystretch = 1.5 pt TEX is able to
typeset the text with only two overfull lines.

An experiment starts with a boldface line show-
ing the number of the experiment for reference and
it ends with this end-of-experiment marker: .

Experiment 1: TEX definitions

\hsize=100pt \overfullrule=1pt

TEX input

Once upon a time, in a distant galaxy called

\"O\"o\c c, there lived a computer named

R.~J. Drofnats.

Mr.~Drofnats---or ‘‘R. J.,’’ as he preferred to

be called---was happiest when he was at work

typesetting beautiful documents.

TEX output

i) \emergencystretch: left col. 0.1 pt, right 0.2 pt
Once upon a time,

in a distant galaxy called
Ööç, there lived a com-
puter named R. J. Drof-
nats.

Once upon a time,
in a distant galaxy called
Ööç, there lived a com-
puter named R. J. Drof-
nats.

Mr. Drofnats—or “R.
J.,” as he preferred to
be called—was happiest
when he was at work
typesetting beautiful doc-
uments.

Mr. Drofnats—or “R.
J.,” as he preferred to
be called—was happi-
est when he was at work
typesetting beautiful doc-
uments.

ii) \emergencystretch: left 1.4 pt, right 1.5 pt
Once upon a time,

in a distant galaxy called
Ööç, there lived a com-
puter named R. J. Drof-
nats.

Once upon a time,
in a distant galaxy called
Ööç, there lived a com-
puter named R. J. Drof-
nats.

Mr. Drofnats—or “R.
J.,” as he preferred to
be called—was happi-
est when he was at work
typesetting beautiful doc-
uments.

Mr. Drofnats—or
“R. J.,” as he preferred
to be called—was hap-
piest when he was at
work typesetting beau-
tiful documents.

iii) \emergencystretch: left 9.2 pt, right 9.3 pt
Once upon a time,

in a distant galaxy called
Ööç, there lived a com-
puter named R. J. Drof-
nats.

Once upon a time,
in a distant galaxy
called Ööç, there lived
a computer named R. J.
Drofnats.

Mr. Drofnats—or
“R. J.,” as he preferred
to be called—was hap-
piest when he was at
work typesetting beau-
tiful documents.

Mr. Drofnats—or
“R. J.,” as he preferred
to be called—was hap-
piest when he was at
work typesetting beau-
tiful documents.

70 TUGboat, Volume 38 (2017), No. 1

iv) \emergencystretch: left 11.1 pt, right 11.2 pt

Once upon a time,
in a distant galaxy
called Ööç, there lived
a computer named R. J.
Drofnats.

Once upon a time,
in a distant galaxy
called Ööç, there lived
a computer named
R. J. Drofnats.

Mr. Drofnats—or
“R. J.,” as he preferred
to be called—was hap-
piest when he was at
work typesetting beau-
tiful documents.

Mr. Drofnats—or
“R. J.,” as he preferred
to be called—was hap-
piest when he was at
work typesetting beau-
tiful documents.

During the experiment seven overfull lines oc-
cur. Five exist at the beginning, and two are created
during the experiment. We’ll name the five cases a)
to e); the overfull line that is created in the first
paragraph is referenced by b′), the other by d′).

The result of the experiment is captured in the
following summary, stating in the first line the num-
ber of the experiment and its parameters and in the
second line the measured values for the dimension
\emergencystretch. Values separated by a slash
mean: The resolution of one overfull line created an-
other, which was resolved with the second value.

Experiment 1 continued: Results
a) parameters; b) used \emergencystretch

1a): \hsize=100 pt
b): 9.3 pt 9.3 pt/11.2 pt 1.5 pt 0.2 pt/1.5 pt 1.5 pt

A few dimensions. TEX reports by how much the
overfull lines are too wide.

W(called) = 25.00005 pt juts 5.88911 pt (1a)
W(Drof-) = 22.94449 pt juts 2.13905 pt (1b)
W(‘‘R.) = 15.13892 pt juts 12.36128 pt (1c)

W(happiest) = 36.7223 pt juts 2.33350 pt (1d)
W(doc-) = 18.61115 pt juts 10.61136 pt (1e)

where W(text) stands for the width of text as de-
fined in the previous section. For a single word or
word fragment this is always the natural width, i.e.,
there is no stretching or shrinking. When we explic-
itly mention that the natural width of a text with
white space is computed then we use the subscript
“nw” with W .

As mentioned above, later two more lines be-
come overfull:

Wnw(R. J.) = 21.38892 pt juts 1.97240 pt (1b′)
W(work) = 21.13893 pt juts 2.08344 pt (1d′)

The overfull lines are resolved by various means:
in a) and c) only stretchability is needed, in d) a
word gets hyphenated, d′) is similar to a) and c) but
some fixed width material is added at the left side
of the line, variable sized material is added to b), in
b′) variable sized material is moved to the next line,

Udo Wermuth

and e) is similar to that but a word is hyphenated
instead of breaking at glue.

In order to have all dimensions at hand for
later calculations, here are the values of the mate-
rial moved to the next line in cases with hyphenation
and the material added to some lines at the left:

Wnw(a com) = 26.11116 pt is added (2b)
W(est) = 12.27779 pt is moved (2d)
W(pi) = 8.33336 pt is added (2d′)

Wnw(tiful doc-) = 40.00009 pt is moved (2e)

The badness values. With the help of the param-
eter \tracingparagraphs, the badness values of the
line-breaking algorithm can be found [14]. The lines
of the paragraph without using \emergencystretch
and the paragraphs at the right of runs i) to iv) have
the following badness values:

7, *, 15, *, 0 and *, 17, *, 171, *, 0 (3)

7, *, 15, *, 0 and *, 15, 190, *, *, 0 (3i)

7, *, 15, *, 0 and 184, 17, 0, 113, 2, 0 (3ii)

7, 198, 0, *, 0 and 4, 17, 0, 15, 2, 0 (3iii)

7, 136, 0, 200, 0 and 3, 17, 0, 11, 2, 0 (3iv)

The symbol ∗ stands for the infinite badness
of the overfull lines. Such a line has the fitness class
tight [3, p. 97]. Finite badness values of lines contain-
ing glue that shrinks are written with a bar above
them. In this way all fitness classes can be identified.

In this list the badness values for lines in the
fitness classes very loose and loose change to lower
values when the \emergencystretch increases. The
values of some decent lines change too and then it
is known that the white space in such a line has to
stretch. Only tight lines and decent lines, in which
the glue shrinks, keep a constant badness value. As
indicated by the bar the 7 and the 2 in (3iv) belong
to decent lines in which the glue shrinks.

But the “real” badness values obtained with
\hbadness [14, p. 367] in the last run are

7, 4660, 7, 10000, 0 and 1264, 17, 0, 206, 2, 0. (3iv′)

4 Some theory

Do we need to perform this stepwise increment in
order to obtain the values for \emergencystretch,
or is there a way to compute the values?

First, let’s think about infinite glue. TEX throws
an error if it finds infinite shrinkability in a para-
graph. Infinite stretchability in a line makes it nearly
impossible to generate an overfull line as TEX can
break at any glue, penalty or hyphenation possibil-
ity. Therefore, in this analysis all glue in the text is
assumed to be finite.

TUGboat, Volume 38 (2017), No. 1 71

As was noted above TEX can get rid of an over-
full line in many different ways. It is too complex
to handle all the cases at once. It is better to start
with a simple model. Therefore, let’s make the fol-
lowing assumption: The overfull line is changed only
by moving material to the next line. In other words,
no new material is added to the previously overfull
line, so that only the cases a), b′), c), and d) of
experiment 1 are considered in this section.

A formula for \emergencystretch. The badness
is a heuristic based on the amount by which the
available spaces have to shrink or to stretch in order
to make the line fill a predefined length. Sometimes
the formula for the badness is stated as

100×

used
stretch
shrink

ability in the line

available
stretch
shrink

ability in the line

3

(4)

but this is only an approximation [3, p. 97]. (Of
course, the same word in the numerator and de-
nominator must be selected.) It’s not only that the
badness is always an integer ≤ 10000, but the com-
putation given in §108 of [4] computes it without
the “need to squeeze out the last drop of accuracy.”
The section further states that the routine is “capa-
ble of computing at most 1095 distinct values.” For
the purpose of the heuristic this computation is suf-
ficient. Nevertheless it should be remembered that
the badness value is not computed by a continuous
function as the formula might suggest.

As the case of an overfull line is analyzed, for-
mula (4) is used for the stretchability of a line. Let
β be the badness, u the dimension of used stretch-
ability, a the available stretchability in the line, and
e the value of \emergencystretch. Then for e large
enough to remove the overfull line

β ≈ 100

(

u

a+ e

)3

.

Of course, a + e 6= 0pt. But to see an impact of
\emergencystretch a line must have some stretch-
ability, i.e., a > 0 pt.

The badness of a line is difficult to estimate. As
mentioned, it can be seen in the data written to the
log file if \tracingparagraphs is set to 1.

The badness β of a non-overfull line is a fraction
of the \tolerance τ > 0; so for ϕ with 0 ≤ ϕ ≤ 1
the equation

β = ϕτ

holds. Replacing the left hand side of the approxi-
mation with the right hand side of the equation gives

ϕτ ≈ 100

(

u

a+ e

)3

or 3

√

ϕτ

100
≈ u

a+ e

The optimal value for \emergencystretch

and if ϕ 6= 0

e ≈ 3

√

100

ϕτ
u− a. (5)

Therefore three values a, u, and ϕ must be found to
get an approximation of e to resolve a given overfull
line. In such a line ϕ > 0, of course.

As stated here, the values are not obvious to
calculate or even to guess but they can be factored
to a level which allows estimation of their values.
The values a and u can be computed from trace
output shown by TEX but not when an overfull line
is reported—this is discussed later.

The plan for the analysis. It’s probably best
to look at the situation when the overfull line gets
the right amount for \emergencystretch so that a
break creating an acceptable line occurs. Therefore
the first question is: Where can TEX break a line?
On p. 96 of [3], five cases are listed. A line break
might be at

1. glue if a non-discardable item (not glue, kern,
penalty or a math switch) appears before the
glue;

2. a kern if it is followed by glue;
3. a math-off if it is followed by glue;
4. a penalty;
5. a hyphen, either inserted by TEX or an explicit

hyphen present in the text.

The first three items are combined in this analy-
sis into one case (named “break at glue”) using the
definitions made in section 2. The glue might be en-
tered by the author or it is inserted by TEX after a
binary operation or a relation in math mode. Num-
ber 4 can also be added except when the penalty is
not followed by glue. So the second case is a break af-
ter a penalty that is not followed by glue. The third
case represents number 5, the discretionary break.

Case 1: Break at glue. A before and after com-
parison of the line contents shows the situation when
the overfull line gets the right amount for the dimen-
sion \emergencystretch so that a break at the last
breakable white space can occur.

In the following analysis, we assume the input L
doesn’t start and the input M doesn’t end with glue
that can be dropped at the beginning or end of a
line. Such glue is ignored by TEX and it makes the
description much easier if such glue isn’t present in
the first place.

lmt Wmt(L) gmt Wmt(M) rmt

h o
→ lW(L) r

h

Figure 3: Resolve overfull line with break at glue

72 TUGboat, Volume 38 (2017), No. 1

At the left side of Fig. 3 some input L of width
Wmt(L) is typeset, with \leftskip at the left, then
it is followed by glue g of width gmt at a place with
a certain \spacefactor Φ(L) and some material M
that contains no breakable glue and that is followed
by \rightskip. The width of the material is named
Wmt(M). The white space in the texts, the glue and
the skips on both sides are shrunk to their maximum
as the line is overfull and therefore it is maximally

tight; this is indicated by the subscript “mt” to W
and other variables. The length of the line at the
left is the sum of the \hsize h (it may be the width
of a \parshape or a \hangindent) and the amount
that the line is too wide, let’s call it o.

The right hand side contains also some infor-
mation. The natural width of the three items in the
line, l◦+Wnw(L)+r◦, must be smaller than h because
of the following observation: TEX would not create
an overfull line if the stretchability in the line would
allow a break at the glue g; at the left the amount of
stretchability was too small to resolve the problem.
The width l◦ +Wnw(L) + r◦ can only stretch to the
width h with the help of e, so it must be smaller
than the width l +W(L) + r.

The available stretchability of the resolved
overfull line (the right side of Fig. 3) lies in the
stretchability of the two glue items l and r and in
the stretchability of the text L. All these elements
were named in section 2: The available stretchabil-
ity on the right hand side of Fig. 3 is the sum of the
stretchability of the \leftskip, l+, of the text L,
S+
ǫ (L), and of the \rightskip, r+:

a = l+ + S+
ǫ (L) + r+. (6)

The used stretchability is the next difficult-
to-guess value. As explained above in the right hand
side of Fig. 3 the text is typeset with some amount
of stretch. This is the used stretchability u. So the
following equations hold:

h = l +W(L) + r = l◦ +Wnw(L) + r◦ + u.

This leads to an equation for u: u = h − l◦ +
Wnw(L)+r◦. But it is too soon to stop here. A term
like Wnw(L) is so content-dependent that it should
be analyzed further. In (6) the value S+

ǫ (L) is used.
This is more or less the number of spaces in L. It
is an important characteristic and not dependent on
all elements of the input L. Wnw(L) is different, as
hardly any other text will have the same width as L.

Ok, the analysis continues and the equation for
the right hand side is reordered

l◦ +Wnw(L) + r◦ = h− u.

The left hand side gives another equation

h+ o = lmt +Wmt(L) + gmt +Wmt(M) + rmt .

Udo Wermuth

where Wmt(L) typesets the text L with the mini-
mal amount of white space as explained above. Of
course, lmt = l◦− l− and rmt = r◦− r−. For the sec-
ond term the equation Wmt(L) = Wnw(L) − S−

ǫ (L)
holds. And gmt = G◦

ǫ (Φ(L) , g) − G−

ǫ (Φ(L) , g) with
the function Gǫ of section 2.

When all these equations are applied to the
equation of the left hand side it becomes:

h+ o = l◦ − l− +Wnw(L)− S−

ǫ (L) +G◦

ǫ (Φ(L) , g)

−G−

ǫ (Φ(L) , g) +Wmt(M) + r◦ − r−

= l◦ +Wnw(L) + r◦ − l− − S−

ǫ (L)− r−

+G◦

ǫ (Φ(L) , g)−G−

ǫ (Φ(L) , g) +Wmt(M) .

Now the first three summands are replaced by h−u
from the equation of the right hand side:

h+ o = h− u− l− − S−

ǫ (L)− r−

+G◦

ǫ (Φ(L) , g)−G−

ǫ (Φ(L) , g) +Wmt(M) .

The goal is reached if u is moved to the left side and
o to the right:

u = Wmt(M)− o− l− − S−

ǫ (L)− r−

+G◦

ǫ (Φ(L) , g)−G−

ǫ (Φ(L) , g).

All values exceptWmt(M) are known and the width of
the material M that is moved to the next line is much
easier to estimate than the value of u, especially if
it is of fixed width. Otherwise the material that is
moved contains one or more ties. As Wmt(M) is the
width of the material with all white spaces shrunk
to maximum the following equation with the natural
width Wmt(M) = Wnw(M)− S−

ǫ (M) can be applied to
the result. In total this gives

u = Wnw(M)− S−

ǫ (M)− o− l− − S−

ǫ (L)− r−

+G◦

ǫ (Φ(L) , g)−G−

ǫ (Φ(L) , g).
(7)

Case 2: Break at penalty. As mentioned above
the only situation that must be considered here is
a break at a penalty that is not followed by glue.
Let’s call the penalty π; it separates inputs L and M

such that no kerning or ligatures must be taken into
account.

lmt Wmt(L) πWmt(M) rmt

h o
→ lW(L) r

h

Figure 4: Resolve overfull line with break at penalty

The resulting line at the right in Fig. 4 looks
identical to the right hand side in Fig. 3. So (6) holds
without a change. The first difference occurs when
the formula for the left hand side is written down;
now the summand gmt disappears. Or one can say
the glue g of Fig. 3 must be replaced by z and all
formulas stay the same. Therefore the equation for
u becomes

u = Wnw(M)− S−

ǫ (M)− o− l− − S−

ǫ (L)− r−.

TUGboat, Volume 38 (2017), No. 1 73

Using the bracket notation of section 2, an ab-
breviation for the case when the line break occurs
at glue is defined

Γ := [break occurs at glue]

so that the cases 1 and 2 can be combined:

u = Wnw(M)− S−

ǫ (M)− o− l− − S−

ǫ (L)− r−

+
(

G◦

ǫ (Φ(L) , g)−G−

ǫ (Φ(L) , g)
)

Γ.
(8)

Case 3: Break at hyphen. Another form of re-
moving an overfull line is given in Fig. 5. Here the
material that sticks out in the overfull line is not
moved completely to the next line. It is a discre-
tionary break and only the fragment of width W(M)
is moved; material with width W(K′) is kept on the
line together with the hyphen character of width
W(-). (The format plain TEX assigns the value of
\defaulthyphenchar to \hyphenchar. Here W(-)
is used instead of W(\char\hyphenchar\font).) As
the characters of a font can interact through liga-
tures and kerns, the sum of the two widths is not
necessarily the width of the concatenated strings.
The notation L(S&T) is used to denote the change
of width (compared to the sum) either through a lig-
ature or kern when the strings S and T are concate-
nated, i.e., Wnw(ST) = Wnw(S) +Wnw(T) + L(S&T)
as explained in section 2.

lmt Wmt(KM) rmt

h o
→ l W(K′)L(K′&-)W(-) r

h
=

l W(L-) r

h

Figure 5: Resolve overfull line with break at hyphen

If the discretionary break occurs at an explicit
hyphen then K = K′-; otherwise, K = K′. The dis-
tinction can be handled via the abbreviations

Θ := [the line ends with an inserted hyphen]

Ξ := [the line ends with an explicit hyphen]

to avoid long statements in bracket notation in the
formulas.

Using the first abbreviation the widths of K and
K′ fulfill the following equation:

Wnw(K)+
(

L(K&-) +W(-)
)

Θ =

Wnw(K
′) + L(K′&-) +W(-) .

(9)

Note that K′ might end in a hyphen, for example, if
the break occurs at an em-dash, and therefore the
summand L(K′&-) is important.

The available stretchability comes from the
\leftskip, the \rightskip, and the text K′. But

The optimal value for \emergencystretch

as Fig. 5 shows, the concatenation of this string to-
gether with the fixed width hyphen is L- and there-
fore all the stretchability comes from L, the text that
remains in the line: Equation (6) is still valid.

The used stretchability requires a bit more
complicated equivalence of the left and right hand
side equations that were discussed in case 1. Figure 5
together with an application of (9) gives

h = l◦ +Wnw(L-) + r◦ + u

= l◦ +Wnw(K
′) + L(K′&-) +W(-) + r◦ + u

= l◦ +Wnw(K) +
(

L(K&-) +W(-)
)

Θ+ r◦ + u
or

l◦ +Wnw(K) + r◦ = h−
(

L(K&-) +W(-)
)

Θ− u.

The left hand side gives

h+ o = lmt +Wmt(KM) + rmt

= lmt +Wmt(K) + L(K&M) +Wmt(M) + rmt

= l◦ +Wnw(K) + r◦ − l− − S−

ǫ (K)− r−

+ L(K&M) +Wmt(M) .

With the equation for the right hand side and with
S−

ǫ (K) = S−

ǫ (L) this equals

h+ o = h−
(

L(K&-) +W(-)
)

Θ− u

− l− − S−

ǫ (L)− r− + L(K&M) +Wmt(M)

and therefore with Wmt(M) = Wnw(M)− S−

ǫ (M)

u = Wnw(M)− S−

ǫ (M)− o− l− − S−

ǫ (L)− r−

−
(

L(K&-) +W(-)
)

Θ+ L(K&M) .

The last step is to remove the reference to K.
When the hyphen is inserted L(K&-) = L(L&-) and
L(K&M) = L(L&M). If the hyphen is explicit, then
L(K&M) = L(L-&M). Using Ξ the equation for u can
be stated without K as

u = Wnw(M)− S−

ǫ (M)− o− l− − S−

ǫ (L)− r−

+
(

L(L&M)− L(L&-)−W(-)
)

Θ

+ L(L-&M) Ξ.

(10)

Combining the cases. The equations (8) and (10)
can be combined:

u = Wnw(M)− S−

ǫ (M)− o− l− − S−

ǫ (L)− r−

+
(

G◦

ǫ (Φ(L) , g)−G−

ǫ (Φ(L) , g)
)

Γ

+
(

L(L&M)− L(L&-)−W(-)
)

Θ

+ L(L-&M) Ξ

(11)

and (6) is used in all three cases for a.

The factor ϕ. Two of the three variables have been
transformed into “simpler” forms (6) and (11); at
least they are simpler to estimate.

The value ϕ can be set to 1 with the following
reasoning: The overfull line is removed as soon as
possible, so the maximum allowed stretchability will
be used that results in the badness τ . See the data in

74 TUGboat, Volume 38 (2017), No. 1

(3iii), (3iv), (3ii), and (3i) which show the badness
values after the overfull line disappears for the cases
a), b′), c), and d), resp. That ϕ is sometimes less
than 1 in experiment 1 can be explained by the fact
that the increment for the stretchability was done
in steps by 0.1 pt instead of 1 sp.

For example, if, let’s say, 0.00001 pt is needed
as additional stretchability when eι has already been
applied, the situation can be described by the follow-
ing approximation using τ = 200:

200 ≈ 100

(

u+ 0.00001 pt

a+ eι + 0.00001 pt

)3

,

but

α ≈ 100

(

u+ 0.00001 pt

a+ eι + 0.1 pt

)3

is computed with the strategy of experiment 1 where
eι+1 = eι + 0.1 pt. If we divide the left side of the
second equation by the left side of the first equation,
and the right side of the second equation by the right
side of the first equation, the quotients are

α

200
≈
(

a+ eι + 0.00001 pt

a+ eι + 0.1 pt

)3

.

With a + eι = 5pt the quotient on the right hand
side is (5.00001 pt/5.1 pt)3 ≈ 0.983 = 0.941192, so
that α ≈ 188. And with a + eι = 10pt α gets no
larger than 194.

Again, this argument is only valid if a > 0 pt,
as otherwise TEX cannot make use of the additional
stretchability, i.e., if the line has no place to stretch
additional stretchability cannot change the output.

The result. With ϕ = 1 and equations (6) and (11)
the optimal value of the dimen \emergencystretch

e is given for the abovementioned cases by

e≈ 3

√

100

τ

(

Wnw(M)− S−

ǫ (M)− o− l− − S−

ǫ (L)− r−

+
(

G◦

ǫ (Φ(L) , g)−G−

ǫ (Φ(L) , g)
)

Γ

+
(

L(L&M)− L(L&-)−W(-)
)

Θ

+ L(L-&M) Ξ
)

− l+ − S+
ǫ (L)− r+

(12)
if l+ + S+

ǫ (L) + r+ > 0 pt.

5 Numerical calculations

Approximation (12) looks rather complicated with
its many parameters but some of them are zero when
others are nonzero. Several parameters are deter-
mined by the font used and some are specified via
the line-breaking parameters. Here are the relevant
values for the situation of experiment 1.

Udo Wermuth

1. First, the environmental condition ǫ is 0, mean-
ing that the font-related parameters have to be
used. These have the following values in cmr10:

1a. \fontdimen2 = f2 = 3.33333 pt
1b. \fontdimen3 = f3 = 1.66666 pt
1c. \fontdimen4 = f4 = 1.11111 pt
1d. \fontdimen7 = f7 = 1.11111 pt
1e. and it means that s = z as well as that x = z.

The \tolerance equals 200 in plain TEX when
the emergency pass is performed so

2. 3

√

100/τ = 3
√
0.5 ≈ 0.794.

The plain format leaves both \leftskip and
\rightskip zero.

3. l = z, i.e., l+ = 0pt and l− = 0pt
4. r = z, i.e., r+ = 0pt and r− = 0pt

Two values can be determined for all cm fonts:

5. L(T&-) = 0 pt for all T not ending in a hyphen,
6. L(S-&T) = 0 pt for any text S and all T not

beginning with a hyphen.

A hyphen has no kerning with any other character
and ligatures are built only with other hyphens. But
a hyphen is never inserted when explicit hyphens are
present to break the line.

The width of a hyphen in cmr10 is:

7. W(-) = 3.33333 pt.

The following parameters are not used in the
calculations as no math typesetting occurs in the
experiment. Nevertheless the values are given for
completeness:

8. \fontdimen6\textfont2 = f t2
6 = 10.00002 pt

as the \textfont2 is cmsy10;
9. \medmuskip = (4mu, 2mu, 4mu) and therefore

m = (4, 2, 4) × 10.00002/18 pt which gives the
glue (2.22223 pt, 1.11111 pt, 2.22223 pt);

10. similarly, \thickmuskip = (5mu, 5mu, 0mu)
so t = (5.55557 pt, 5.55557 pt, 0 pt).

The next parameters depend upon the content
of the line and the type of the break. The value of o
is shown by TEX in the message about the overfull
line. From this message the possible type of break,
i.e., Γ, Θ, or Ξ can be determined.

case a) case b′) case c) case d)
11. o/pt = 5.88911 1.97240 12.36128 2.3335
12. Ξ = 0 0 0 0
13. Θ = 0 0 0 1
14. Γ = 1 1 1 0

Then L and Φ(L) as well as two values of the
glue g = (g◦, g+, g−) where the break occurs if Γ = 1
are calculated. The values of the Sǫ function can be
counted by the method described in section 2.

TUGboat, Volume 38 (2017), No. 1 75

case a) case b′) case c) case d)
15. (end of) L = galaxy named or happi
16. Φ(L) = 1000 1000 1000 n/a
17. g◦ = f2 f2 f2 n/a
18. g− = f4 f4 f4 n/a
19. S+

ǫ (L) = 3f3 2f3 f3 2f3
20. S−

ǫ (L) = 3f4 2f4 f4 2f4

The text M is shown by TEX in the message
about the overfull line, but the value Wnw(M) must
be either measured or guessed. For experiment 1 the
values have been documented in (1) and (2).

case a) case b′) case c) case d)
M = called R. J. “R. est

21.Wnw(M)/pt=25.00005 21.38892 15.13892 12.27779
22. S−

ǫ (M) = 0 f4 0 0
23. L(L&M) = n/a n/a n/a 0 pt

Although 23 parameters have been listed, yet
more are involved which are hidden in other param-
eters. One is the set of \sfcodes for all the charac-
ters, which are used in the calculation of S−

ǫ () and
S+
ǫ (). Another is the font size (or the width of the

characters), which is important for Wnw(M).

As mentioned above, a and u can be derived
from the trace data written by TEX, but only af-
ter the overfull line has been resolved. The output
from \tracingoutput can be used: The sum of the
stretchability of a line gives a and the multiplica-
tion with the glue set value computes u ([3], p. 75
and p. 79, resp.). The values are listed in lines A and
B, their product u rounded up to five places is given
in C.

case a) case b′) case c) case d)
A. stretch/pt = 4.99998 3.33332 1.66666 3.33332
B. glue set = 3.59998 5.49165 2.33325 1.31664
C. A ∗ B/pt =17.99983 18.30543 3.88873 4.38878

D. a/pt (6) = 4.99998 3.33332 1.66666 3.33332
E. u/pt (11) =17.99963 18.30541 3.88875 4.38874
F. e/pt (12) ≈ 9.286 11.196 1.4198 0.15

G. e/pt ex. 1 = 9.3 11.2 1.5 0.2

The calculated values in line F agree with the
stepwise measured data in row G. In the rest of this
article, the computations round up the value of e to
one decimal place; a higher precision is not needed.

Macros. When the parameter \showboxbreadth is
large enough, say 100 for lines with 60–70 characters,
the complete overfull line is written by TEX to the
log file and there all stretch and shrink values of the
glue can be found. But since the glue set ratio is
reported as −1.0 in an overfull line, only the value
of a can been determined from the message.

The optimal value for \emergencystretch

Nevertheless, macros can be written to make
the calculation from the message shown. In this sub-
section a brief description for the design of a set of
macros based on (12) is given.

Except for the cube root the calculation uses
only simple arithmetic, which is available in TEX.

For the cube root I use the formula 3

√

α3 + β ≈
α + β/(3α2). The number of parameters makes the
calculations a little bit complicated but TEX can do
it, especially as it knows all the font parameters,
the \tolerance, and the width of strings. A set of
macros can be designed that receives the data about
the moved and the kept material, the type of the
expected line break, and the overhang to perform
the calculation to get e.

Usually only five values must be specified as
parameters or by macro names—three of them are
displayed by TEX and two are known by the user.
The other parameters can be calculated by TEX, al-
though a user should be able to change them.

The following four macros are used, for exam-
ple, to compute the value of \emergencystretch in
case a) of experiment 1:

1. \dataEtextM(called)

2. \dataEtextL(in a distant galaxy)

3. \breakEglue(1000)

4. \calcEoverhang(5.88911pt)

1. The first macro receives the text M. It allows the
calculation of Wnw(M) and S−

ǫ (M).
2. The second macro gets the text L and it deter-

mines its stretch and shrink units S+
ǫ (L) and

S−

ǫ (L).
Now a is known and for u only the three terms
which are multiplied by Γ, Ξ, and Θ as well as
o are missing.

3. One of the following five macros is called to
specify the type of break:
a) \breakEhyphen,
b) \breakEexhyphen,
c) \breakEmath with a parameter for the atom
(Bin or Rel) after which the break occurs, and
a glue specification for user-entered glue,
d) \breakEotherglue—used when the glue is,
for example, an \hskip—which gets the three
dimen values g◦, g+, and g−; or it is a break
with glue z at penalty and
e) \breakEglue that has one parameter: Φ(L).
Now u+ o is known.

4. The last macro receives the value o as param-
eter. It calculates u, the factor with the cube
root and determines e rounded up to one deci-
mal place.

5. All macros use the plain TEX defaults for their
calculation. As mentioned above, to change the

76 TUGboat, Volume 38 (2017), No. 1

font, \leftskip, etc., some macros are writ-
ten that can be called before the first macro to
specify different values.

This makes it easy to find e for the original five
cases of overfull lines in experiment 1:

Case a): 9.3 pt Case c): 1.5 pt
Case b): 10.7 pt Case d): 0.2 pt

Case e): 5.6 pt

and for the two created overfull lines:

Case b′): 11.2 pt Case d′): 6.7 pt

although the theory of section 4 does not apply to
the cases b), e), and d′). So their computed values
do not agree with the measured ones.

6 Line-breaking parameters

In the approximation (12) for e many different val-
ues are used, and it seems useful to discuss some of
them. As \tolerance plays a very prominent rôle,
and is the only parameter with a non-linear rela-
tionship to \emergencystretch, the group of line-
breaking parameters is analyzed first.

The \tolerance. The dimen \emergencystretch

was introduced to avoid large values of \tolerance.
The latter is more of a document-wide parameter,
while the former should be applied to a single para-
graph. An increase of \tolerance in order to lower
the value of \emergencystretch is therefore not a
good idea: Tight lines cannot become tighter and
loose lines benefit from \emergencystretch.

When (5) is written as a function of the param-
eter \tolerance for an overfull line

f(ξ) =
3
√
100u ξ−1/3 − a, ξ > 0,

it is a monotone decreasing function as in a situation
with an overfull line u > a > 0 and its derivative is
< 0. For ξ → ∞ the limit is −a. As usual, values
above 10000 are of no use in the application and the
\emergencystretch cannot be a negative distance.

With ξ0 = 100, which is the plain TEX default
value of \pretolerance, the function value f(ξ0) is
u−a > 0 pt so there must be a ξ1 for which the func-
tion becomes zero. This is ξ1 = 100(u/a)3, which
is the approximation for the badness. Or in other
words: With the real badness values, as in (3iv′),
the required \emergencystretch is 0 pt. The value
f(τ) computes the right hand side of (5) so it is the
additional stretchability e that is needed to resolve
the overfull line.

A concrete numerical example might help to un-
derstand this better. For case d) the values u =
4.38878 pt and a = 3.33332 pt were stated above.

Udo Wermuth

fd)

fc)

fb′)

fa)

0 100 200 300

0

5

10

15

\tolerance ξ

e in pt

Figure 6: Graphs of function f for the cases
discussed in section 4

As 3
√
100 ≈ 4.642 the function becomes

fd)(ξ) = 20.37091 ξ−1/3 pt− 3.33332 pt.

The other three cases a), b′), and c) have simi-
lar formulas. The graphs of all four functions are
drawn in Fig. 6. It shows the typical curve of these
functions: A small ξ has a high value but the func-
tion values drop quickly as ξ is increased. This ef-
fect slows down and a larger ξ reduces the required
\emergencystretch by only a small amount. The
value of ξ = τ = 200 gives e.

Hyphenation. In the context of the removal of
overfull lines the assumption was made that the hy-
phenation of words is a valid option. This might
not always be the case. There are several primi-
tive TEX commands that prevent hyphenation com-
pletely or for certain words only: The assignment of
10000 to the penalty \hyphenpenalty and its com-
panion \exhyphenpenalty suppresses hyphenation
completely as does the assignment \hyphenchar =
−1. And \uchyph = 0 suppresses hyphenation of
words that start with an uppercase letter. All these
settings influence the possibility of hyphenating cer-
tain words and therefore the values that are available
to remove overfull lines with \emergencystretch

might increase. If hyphenation is suppressed only Γ
can be 1, Θ and Ξ must be 0 in (12).

The commands act like switches, not continu-
ous functions. As the final result of experiment 1
doesn’t hyphenate a word which starts with an up-
percase letter, the switch \uchyph = 0 only changes

TUGboat, Volume 38 (2017), No. 1 77

the initial situation (“Drofnats” cannot be hyphen-
ated) but the data for \emergencystretch doesn’t
change, as the following experiment shows. Its re-
sults are found by the procedure used in experi-
ment 1.

Experiment 2: Description
Suppress hyphenation of words that start with an up-
percase letter.

TEX definitions

\uchyph=0

Result (experiment 1 vs. experiment 2)
a) parameters; b) used \emergencystretch

1a): \hsize=100 pt
b): 9.3 pt 9.3 pt/11.2 pt 1.5 pt 0.2 pt/1.5 pt 1.5 pt

2a): \uchyph=0
b): 9.3 pt 9.3 pt/11.2 pt 1.5 pt 0.2 pt/1.5 pt 1.5 pt

The next two experiments show that the penal-
ties \hyphenpenalty and \exhyphenpenalty act as
switches. The badness of an overfull box is reported
as 1000000 [3, p. 229]. An overfull line is so bad in
TEX’s opinion that no finite setting for the hyphen-
ation parameters should make a difference.

Experiment 3: Description
All penalties are set to the maximum finite value and all
demerits are set to a high value.

TEX definitions

\hyphenpenalty=9999 \exhyphenpenalty=9999

\linepenalty=9999 \finalhyphendemerits=1000000

\adjdemerits=1000000 \doublehyphendemerits=1000000

Result (experiment 1 vs. experiment 3)
a) parameters; b) used \emergencystretch

1a): \hsize=100 pt
b): 9.3 pt 9.3 pt/11.2 pt 1.5 pt 0.2 pt/1.5 pt 1.5 pt

3a): \...penalty=9999 and \...demerits=1000000
b): 9.3 pt 9.3 pt/11.2 pt 1.5 pt 0.2 pt/1.5 pt 1.5 pt

The situation is different when hyphenation is
completely suppressed, since the final result of ex-
periment 1 contains hyphenated words.

Experiment 4: Description
Hyphenation of all words is suppressed.

TEX definitions

\hyphenpenalty=10000 \exhyphenpenalty=10000

Result (experiment 1 vs. experiment 4)
a) parameters; b) used \emergencystretch

1a): \hsize=100 pt
b): 9.3 pt 9.3 pt/11.2 pt 1.5 pt 0.2 pt/1.5 pt 1.5 pt

4a): \hyphenpenalty=\exhyphenpenalty=10000
b): 9.3 pt 9.3 pt/11.2 pt 1.5 pt 15.2 pt 5.6 pt

The necessary values for e are found with (12)
when only the break at glue or penalty is considered
although TEX will still show hyphenation points in
the messages for the overfull lines. Note: case e) is
now covered by (12); the computation at the end of
section 5 gives e.

The optimal value for \emergencystretch

7 Character- and font-related parameters

Some of the parameters of (12) are directly related
to the properties of characters. Among them are
the \sfcode and, closely related, the \spacefactor.
But the largest group of parameters in (12) are re-
lated to the font used; for example, there are the
\fontdimen 2, 3, 4, and 7 and the ligtable entries
L(L&-), L(L&M), and L(L-&M). And with Wnw(M)
the width of a character string occurs. Some of the
listed values can be changed by an author with the
help of TEX; others must be handled as constants.

The \spacefactor. The integer \spacefactor is
an important characteristic for horizontal mode and
the \sfcode assigned to each character modifies it.
(The assignments are made by INITEX and the for-
mat, so the \sfcode is not directly a font-related pa-
rameter.) In (12) the four parameters S−

ǫ (M), S−

ǫ (L),
S+
ǫ (L), and Φ(L) are affected by all of these. In this

subsection the relation of \spacefactor to the for-
mula for \emergencystretch is analyzed; a TEX
command to change the \sfcodes is discussed in
the next subsection.

Experiment 5: Description
Set \spacefactor = 1200 if it is 1000 before a space.

TEX definitions

\def\1{\ifnum\spacefactor<1200 \count255=1200

\else \count255=\spacefactor

\fi \spacefactor=\count255 }

TEX input

Once\1 upon\1 a\1 time,\1 in\1 a\1 distant\1

galaxy\1 called\1 \"O\"o\c c,\1 there\1 lived\1

a\1 computer\1 named\1 R.\1~J.\1 Drofnats.

Mr.\1~Drofnats---or\1 ‘‘R.\1 J.,’’\1 as\1 he\1

preferred\1 to\1 be\1 called---was\1 happiest\1

when\1 he\1 was\1 at\1 work\1 typesetting\1

beautiful\1 documents.

Result (experiment 1 vs. experiment 5)
a) parameters; b) used \emergencystretch

1a): \hsize=100 pt
b): 9.3 pt 9.3 pt/11.2 pt 1.5 pt 0.2 pt/1.5 pt 1.5 pt

5a): \spacefactor=1200 instead of 1000
b): 8.3 pt 8.3 pt/10.5 pt 1.5 pt 0.0 pt/1.5 pt 1.5 pt

As expected, the increase by 20% of the stretch-
ability per space reduces the required value for the
\emergencystretch. As 0.2f3 = 0.2× 1.66666 pt =
0.333332 pt the values of cases a) and b) with three
spaces can be up to ≈ 1 pt smaller and this is what
the experiment shows. Of course the amount in the
resolved line is stretched to its maximum and the
additional stretchability is used to its maximum too.

For case b′) with two spaces it is only ≈ 0.7 pt
and case c) stays at 1.5 pt as no space was changed.

78 TUGboat, Volume 38 (2017), No. 1

Case d) vanishes and the cases d′) and e) do not
change as the added material is more important than
the change in the stretchability of the spaces.

The \sfcodes. A plain TEX control sequence that
changes the \sfcodes of the punctuation marks . ?

! : ; , is \frenchspacing. It makes a space after
a punctuation mark equal to a normal space for any
text T; let’s call this space g. But in our cases its
use will not change anything because there are so
few punctuation marks in the text: three commas
and seven periods. The space factor of the periods
has no influence on the text as two of the seven
periods are at the end of the paragraphs, two are
followed by a tie which resets the value to 1000, and
three follow an uppercase letter so that the value is
changed from 999 to 1000. And the three commas
are never part of an overfull line.

Therefore, experiment 1 can be treated as if the
command \frenchspacing was given and so the
equalities S−

ǫ (L) = ν (L)g
− and S+

ǫ (L) = ν (L)g
+

hold. Approximation (12) can be stated as a func-
tion of ξ = ν (L), the number of spaces in L:

g(ξ) = −
(

3

√

100

τ
g− + g+

)

ξ

+
3

√

100

τ

(

Wnw(M)− S−

ǫ (M)− o− l− − r−

+
(

g◦ − g−
)

Γ

+
(

L(L&M)− L(L&-)−W(-)
)

Θ

+ L(L-&M) Ξ
)

− l+ − r+.

It is a linear equation with negative slope. For
plain TEX and cmr10 3

√

100/τ g− + g+ ≈ 2.43 pt.
So each space gives a relief of this amount when the
command \frenchspacing is active.

Let’s perform a concrete calculation to find the
value of the intercept. For case d) three other terms
are nonzero: Wnw(M) = 12.27779 pt by (2d), o =
2.3335 pt by (1d), and as Θ = 1 L(L&M)−L(L&-)−
W(-) = 0pt − 0 pt − 3.33333 pt = −3.33333 pt, so
0.794×(12.27779−2.3335−3.33333) pt ≈ 5.2491 pt.

Similar equations can be created for the other
three cases of section 4, as shown in Fig. 7 (next
page). A small dot on the lines shows how many
spaces are present in that case. As a parameter to g
this gives the value of e because no other input can
stretch or shrink. These spaces must additionally
stretch; each space widens by \emergencystretch

divided by the number of spaces in the line.

The \fontdimens. The \fontdimen parameters are
read by TEX from a font’s tfm file. Although they

Udo Wermuth

gd)

gc)

gb′)

ga)

0 1 2 3 4 5

0

5

10

15

number of spaces ξ

e in pt

Figure 7: Graphs of function g for the cases
discussed in section 4

can be changed by an author, this is not recom-
mended except in very unusual situations. I consider
them to be constants. Here is a list for several fonts:

fν cmr10 cmbx10 cmr12 cmtt10

2 3.33333 pt 3.83331 pt 3.91663 pt 5.24995 pt
3 1.66666 pt 1.91666 pt 1.95831 pt 0.0 pt
4 1.11111 pt 1.27777 pt 1.30554 pt 0.0 pt
7 1.11111 pt 1.27777 pt 1.30554 pt 5.24995 pt

6 10.00002 pt 11.49994 pt 11.74988 pt 10.4999 pt

The \fontdimen parameters change when dif-
ferent sizes of the same font are used, as shown in
the column for cmr12 compared to the values for
cmr10. For the Computer Modern fonts the rela-
tions f3 = f2/2, f4 = f2/3, and f7 = f4 seem to
hold except for the monospaced font cmtt10. But
it is better to express this relationship in terms of
f6, the quad width, also known as 1 em: f2 = f6/3,
f3 = f6/6, f4 = f6/9, and f7 = f6/9.

The ligtable. The values must be treated as con-
stants. For the font cmr10 L(L&-) = L(L-&M) = 0 pt
as explained in section 5. The dimension L(L&M) can
be taken from Fig. 8. The values are small but they
can be negative or positive.

The easiest way to get the values is to look at
the property list of a font, which can be generated
from the tfm file with the utility TFtoPL [7]. But
note, sometimes letter pairs might have more than
one entry, for example, in cmr10 two values for the
letter pair “ka” are specified [6, p. 37]. The first value
counts, as explained in [5, p. 317]; so it does not

TUGboat, Volume 38 (2017), No. 1 79

L(C&l) when letter l follows input of column C

C −0.55556 pt −0.27779 pt 0.27779 pt 0.55554 pt
a v w y j
b v w x y c d e o q j
c c k
f f i l
ff i l
g j
h b t u v w y
k a c e o
m b t u v w x y
n b t u v w x y
o v w x y c d e o q j
p v w x y c d e o q j
t w y
u w
v a c e o
w a c e o
y a e o

Figure 8: Measured ligature and kerning values
of lowercase letters in cmr10

seem to be a “mistake” [2, p. 322], but rather an
optimization [11].

8 Paragraph shape parameters

The last group of parameters in (12) is formed by l

and r, the \leftskip and the \rightskip. Some-
times these skips are used only with their natural
width, for example, in the command \narrower but
in (12) only the stretchability and shrinkability of
the glue counts.

It might have been a surprise that the dimen-
sion \hsize has no influence on the required value
of \emergencystretch. At least there is a basic re-
lationship between the two as

0 ≤ optimal value of \emergencystretch

value of \hsize
≤ 1.

Therefore, the parameter \hsize is also analyzed.

No influence: \hsize. Of course, a change of the
\hsize means different line breaks and that influ-
ences other parameters. Often overfull lines go away
when the \hsize is changed. In this sense this di-
mension has influence. But when a concrete line-
breaking situation is given—which is the precondi-
tion for the analysis that leads to (12)— it doesn’t
have any influence.

In the next experiment a “comparable” line-
breaking situation for a larger \hsize is used. By
“comparable” I mean a situation in which the line
breaks are the same as with the previous \hsize.
Therefore the content must be changed: Each line

The optimal value for \emergencystretch

gets more or less in its middle part a rule with a
length equal to the increment of \hsize.

Experiment 6: Description
The \hsize is increased by 40 pt. As input, an instru-
mented version of the text of experiment 1 is used: In
each line the control symbol \0, which represents a 40 pt
long rule, is added before one word.

TEX definitions

\hsize=140pt \def\0{\hbox to 40pt{\hrulefill}}

TEX input

Once upon \0a time, in \0a distant galaxy

called \"O\"o\c c, there \0lived a computer

\0named R.~J. Drofnats.

Mr.~Drofnats\0---or ‘‘R. J.,’’ as \0he preferred

to be \0called---was happiest when \0he was at

work \0typesetting beautiful documents.

TEX output
Once upon a time,

in a distant galaxy called
Ööç, there lived a com-
puter named R. J. Drof-
nats.

Mr. Drofnats —or “R.
J.,” as he preferred to
be called—was happiest
when he was at work

typesetting beautiful doc-
uments.

o = 5.88911 pt

o = 2.13905 pt

o = 12.36128 pt

o = 2.3335 pt

o = 10.61136 pt

Result (experiment 1 vs. experiment 6)
a) parameters; b) used \emergencystretch

1a): \hsize=100 pt
b): 9.3 pt 9.3 pt/11.2 pt 1.5 pt 0.2 pt/1.5 pt 1.5 pt

6a): \hsize=140 pt with instrumented content
b): 9.3 pt 9.3 pt/11.2 pt 1.5 pt 0.2 pt/1.5 pt 1.5 pt

As expected, the experiment generates the iden-
tical values for eliminating overfull lines.

Ragged-right setting. As mentioned above the
\fontdimen values should only be changed in very
unusual situations; an example is given in [3], p. 355.
If a change of the interword space is required the in-
ternal glue registers \spaceskip and \xspaceskip

can be used as explained in section 2. An applica-
tion occurs when text is typeset ragged-right with
the help of a stretchable \rightskip.

The plain macro \raggedright initializes the
ragged-right settings:

\def\raggedright{\rightskip=0pt plus2em

\spaceskip=.3333em \xspaceskip=.5em\relax}.

The interword spaces are fixed and the \rightskip
has a large value of stretchability: 2 em is 12f3 in
cmr10. So it is not surprising that the text of ex-
periment 1 can be typeset ragged right without any

80 TUGboat, Volume 38 (2017), No. 1

overfull lines. But with an \hsize of 108 pt case a)
returns.

Experiment 7: Description

Change the \hsize to 108 pt and typeset the text ragged
right.

TEX definitions

\hsize=108pt \raggedright

TEX output
Once upon a time,

in a distant galaxy called
Ööç, there lived a com-
puter named R. J. Drof-
nats.

Mr. Drofnats—or
“R. J.,” as he preferred
to be called—was happi-
est when he was at work
typesetting beautiful
documents.

o = 2.33217 pt

Result (experiment 1 vs. experiment 7)
a) parameters; b) used \emergencystretch

1a): \hsize=100 pt
b): 9.3 pt 9.3 pt/11.2 pt 1.5 pt 0.2 pt/1.5 pt 1.5 pt

7a): \hsize=108 pt and \raggedright

b): 0.6 pt

The theory developed in section 4 applies as
all the different space types were included in the
analysis; (12) computes the value: 0.6 pt.

9 More theory

Three cases of experiment 1 remain: b), d′), and e).
In these cases text is not only moved to the next
line but the preceding line hands over new mate-
rial to the previously overfull line. This changes the
picture completely as one of the basic elements on
which the theory of section 4 is based is no longer
true: The line that appears after applying the mini-
mal \emergencystretch is no longer stretched to its
maximum. See (3ii) for the case e) where the new
badness is 2 and the white space shrinks as (3iv′)
shows. I doubt that there is a precise approxima-
tion to calculate e from the output that contains
the overfull line only if new material is added to the
line.

As the cases b) and b′) show, it can happen that
an overfull line is transformed into another overfull
line before the computed \emergencystretch re-
solves the original problem. And the newly created
overfull line needs a larger additional stretchability
than the original one. Therefore a second calculation
of e is sometimes necessary. The repeated applica-
tion of the theory developed in section 4 is required.

Udo Wermuth

A procedure. Compute with (12) all values for the
overfull lines. Use the smallest value and apply it to
the paragraph. For the selected overfull line and the
other overfull lines the following possibilities exist.

1: Text is moved from the overfull line to the next
line, no material comes from the previous line.
This scenario was analyzed in section 4. There
the problem is solved for the selected overfull
line. Two results are possible:
i) The computed value e works and no other
overfull line is created—success. The cases
a), b′), and c) belong to this scenario. Other
overfull lines might disappear too, this hap-
pens in the cases d′) and e).

ii) The computed value e works for the selected
line, but a new overfull line is created. This is
the case d); the procedure must be repeated.

2: Text is moved from the selected overfull line
and new material is added to it. The computed
value e, which would work for the original line,
is not relevant to the changed line.
i) The overfull line is gone and no other overfull
line is created—success, but a smaller value
of e might be successful too. No case of this
kind occurs in experiment 1.

ii) The overfull line is gone, but a new overfull
line is created. This is the case b). The pro-
cedure must be repeated.

The procedure terminates as either the number of
overfull lines is decreased or the new overfull line
occurs later in the paragraph.

The remaining cases of experiment 1 are han-
dled by this procedure. The only scenario that must
be looked at further is 2i) as in other cases at most
the procedure must be restarted.

The main question is: Why is some new mate-
rial moved to the overfull line? Of course, TEX can
use the value of \emergencystretch to stretch one
or more previous lines with less text so that it finds
line breaks which avoid the overfull line.

The missing scenario. This scenario is described
more formally in order to have a clear definition. As
the way in which the lines are broken, i.e., whether
at glue, at penalty, at an explicit hyphen, or at an
inserted hyphen, is not important in the following
discussion that part is ignored. Assume that the
line L0M0 is overfull and the method of section 4
has computed e0. But when \emergencystretch is
set to that value the former overfull line doesn’t be-
come L0 but M−1L0. Let −ω be the first preceding
line that has not received material from its previous
line; such a line must exist as the first line of the
paragraph qualifies.

TUGboat, Volume 38 (2017), No. 1 81

So the lines L−ωM−ω, L−ω+1M−ω+1, . . . , L0M0, in
which the last line is overfull, are transformed into
the lines L−ω, M−ωL−ω+1, . . . , M−1L0.

Some of the new lines must stretch to benefit
from e; let the index sequence κ−µ, . . . , κ0 represent
the indices of lines that stretch. We have to calculate
an eκι

for all of these lines—although except for one
they might not be overfull— to stretch them by the
expected amount. The maximum dimension of these
calculations is sufficient for \emergencystretch in-
stead of the originally calculated e0 to make all tran-
sitions happen.

Therefore two formulas are needed. One that
computes e0 from the transition L0M0 → M−1L0; it
can only give a useful result if M−1L0 stretches. The
second formula computes the required amount of
\emergencystretch that is needed to transform a
non-overfull line into another: Lκι

Mκι
→ Mκι−1Lκι

.
The computation is valid only if Mκι−1Lκι

stretches.

The first formula. Figure 9 shows how the cases
that were discussed in section 4 change when new
material is added to the right side. Note the new
material N might end in glue. It must be the empty
string if L stands for the first line of a paragraph. So
there is no problem with an \indent or \noindent.

lmt Wmt(L) gmt Wmt(M) rmt

h o
→ lW(NL) r

h

lmt Wmt(L) πWmt(M) rmt

h o
→ lW(NL) r

h

lmt Wmt(KM) rmt

h o
→ l W(NL-) r

h

Figure 9: Resolve overfull line with new material

The right hand sides must stretch and they
must need \emergencystretch, i.e., each real bad-
ness ̺ must be greater than τ to benefit from the
following theory.

As only the right hand sides change, all equa-
tions for the left hand sides developed in section 4
are still valid. In the equations for the right hand
sides the input L must be replaced by NL. The equa-
tion Wnw(NL) = Wnw(N) + L(N&L) +Wnw(L) shows
that only two new terms occur in these equations;
the equation is valid as L doesn’t begin with ignored
spaces as explained above.

Equation (6) changes to

a = l+ + S+
ǫ (NL) + r+

= l+ + S+
ǫ (N) + S+

ǫ (L) + r+.
(13)

The optimal value for \emergencystretch

Equation (10) is no longer valid, now the computa-
tion is:

h = l +W(NL) + r

= l◦ +Wnw(NL) + r◦ + u

= l◦ +Wnw(L) + r◦ +Wnw(N) + L(N&L) + u.

The equations for the left hand sides stay the same
and with the techniques of section 4 the equivalent
of (8) is:

u = Wnw(M)− S−

ǫ (M)− o− l− − S−

ǫ (L)− r−

−Wnw(N)− L(N&L)

+
(

G◦

ǫ (Φ(L) , g)−G−

ǫ (Φ(L) , g)
)

Γ.

The first two cases are handled; the last one
is not difficult but the argument must involve the
strings K and K′. One more figure might help:

lmt Wmt(KM) rmt

h o
→ lW(NK′)L(NK′&-)W(-) r

h
=

l W(NL-) r

h

Figure 10: Break at hyphen and add new material

The replacement of (9) must deal with NK and
NK′. The relationship becomes

Wnw(NK)+
(

L(NK&-) +W(-)
)

Θ =

Wnw(NK
′) + L(NK′&-) +W(-)

and for the right hand side the new formula is

h = l◦ +Wnw(NL-) + r◦ + u

= l◦ +Wnw(NK
′) + L(NK′&-) +W(-) + r◦ + u

= l◦ +Wnw(NK) +
(

L(NK&-) +W(-)
)

Θ+ r◦ + u

= l◦ +Wnw(N) + L(N&K) +Wnw(K)

+
(

L(NK&-) +W(-)
)

Θ+ r◦ + u

so

l◦ +Wnw(K) + r◦ = h−
(

L(NK&-)−W(-)
)

Θ− u

−Wnw(N)− L(N&K) .

The equation for the left hand side remains valid
and its first three summands are replaced by the
right hand side of the previous equation:

h+ o = h−
(

L(NK&-) +W(-)
)

Θ− u

−Wnw(N)− L(N&K)− l− − S−

ǫ (K)− r−

+ L(K&M) +Wnw(M)− S−

ǫ (M).

The final rearrangement involves the replacement of
K by L as was done before.

u = Wnw(M)− S−

ǫ (M)− o− l− − S−

ǫ (L)− r−

−Wnw(N)− L(N&L)

+
(

L(L&M)− L(NL&-)−W(-)
)

Θ

+ L(L-&M) Ξ.

82 TUGboat, Volume 38 (2017), No. 1

Summary. Two new summands are added com-
pared to (10), and all the formulas can be combined
as in section 4 to get the equivalent of approxima-
tion (12):

e ≈ 3

√

100

τ

(

Wnw(M)− S−

ǫ (M)− o− l− − r−

− S−

ǫ (L)−Wnw(N)− L(N&L)

+
(

G◦

ǫ (Φ(L) , g)−G−

ǫ (Φ(L) , g)
)

Γ

+
(

L(L&M)− L(NL&-)−W(-)
)

Θ

+ L(L-&M) Ξ
)

− l+ − S+
ǫ (N)− S+

ǫ (L)− r+

(14)
if ̺ > τ and if there is stretchability in the line, i.e.,
l+ + S+

ǫ (N) + S+
ǫ (L) + r+ > 0 pt.

The second formula. Now the situation changes
completely as— to speak in the terms that we have
been using—the left hand side is not overfull.

Case 1: Break at glue. Let’s look at the situation
again in the form of a simple picture, Fig. 11, the
companion of Fig. 3.

l W(L) gW(M) r

h
→ lW(NL) r

h

Figure 11: Break at glue and add new text

As before the text N might end in a glue item; the
glue g might be user-entered or TEX-inserted.

Much of the information from the above Fig. 3
is lost. But on both sides the badness values are now
finite, and as observed in the previous subsection for
the first formula, the right hand side must stretch;
further, it must stretch so much that the additional
stretchability of \emergencystretch is required. In
other words: The real badness ̺ of the right hand
side must be larger than \tolerance. The glue of
the left side has no restriction, i.e., it can shrink,
stretch or use its natural width. To distinguish the
common variable names for the right and the left
sides the subscripts ρ and λ are used for a and u.

The right hand sides have been analyzed for
the first formula and the value aρ is given by (13);
as before, both sides give an equation for h:

h = l◦ +Wnw(N) + L(N&L) +Wnw(L) + r◦ + uρ.

= l◦ +Wnw(L) +G◦

ǫ (Φ(L) , g) +Wnw(M) + r◦

+ δuλ.

The factor δ ∈ {−1,+1} represents the fact that
the value uλ has to be added if the line on the left
stretches otherwise it must be subtracted.

Udo Wermuth

The equations can be rearranged to find the
equation for uρ:

uρ = Wnw(M)−Wnw(N)− L(N&L) + δuλ

+G◦

ǫ (Φ(L) , g).

The finite badness values allow to write the fol-
lowing approximations (compare to (5)):

ρ ≈ 100

(

uρ

aρ + e

)3

or uρ ≈ 3

√

ρ

100
(aρ + e).

As above ρ = τ to get the minimal e:

e ≈ 3

√

100/τ uρ − aρ. (∗∗)
Therefore

e ≈ 3

√

100

τ

(

Wnw(M)−Wnw(N)− L(N&L) + δuλ

+G◦

ǫ (Φ(L) , g)
)

− l+ − S+
ǫ (N)− S+

ǫ (L)− r+

if stretchability is present in the line.
The term δuλ could be analyzed further, but

that leads to a lot of subcases. I think it is best to
keep it in the formula.

Case 2: Break at penalty. This case is handled
exactly like the previous one. If Γ is introduced, as
in section 4, then the combined equation becomes

e ≈ 3

√

100

τ

(

Wnw(M)−Wnw(N)− L(N&L) + δuλ

+G◦

ǫ (Φ(L) , g)Γ
)

− l+ − S+
ǫ (N)− S+

ǫ (L)− r+.

Case 3: Break at hyphen. Again the formula for
aρ is given by (13).

l W(KM) r

h
→ lW(NK′)L(NK′&-)W(-) r

h
=

l W(NL-) r

h

Figure 12: Break at hyphen and add new text

The right hand side was analyzed above for the
first formula and the left hand side gives the equa-
tion:

h = l◦ +Wnw(K) + L(K&M) +Wnw(M) + r◦ + δuλ.

Therefore
uρ = Wnw(M)−Wnw(N) + L(K&M)− L(N&K′)

−
(

L(NK&-) +W(-)
)

Θ+ δuλ

and with the replacement of K by L as it was done
for the first formula it becomes

uρ = Wnw(M)−Wnw(N)− L(N&L)

−
(

L(NL&-)− L(L&M) +W(-)
)

Θ

+ L(L-&M) Ξ + δuλ.

TUGboat, Volume 38 (2017), No. 1 83

Summary. The previous equation can be applied
to (∗∗). The result isn’t shown here as all cases can
be combined directly as before into one equation.
The approximation of e for the second formula is

e ≈ 3

√

100/τ
(

Wnw(M)−Wnw(N)− L(N&L) + δuλ

+G◦

ǫ (Φ(L) , g)Γ

+
(

L(L&M)− L(NL&-)−W(-)
)

Θ

+ L(L-&M) Ξ
)

− l+ − S+
ǫ (N)− S+

ǫ (L)− r+

(15)
if ̺ > τ and −l+ − S+

ǫ (N)− S+
ǫ (L)− r+ > 0 pt.

10 A second experiment

The theory is completely developed. The following
experiment contains aspects not seen before, for ex-
ample, an overfull line in math mode and a break at
an explicit hyphen, and it shows a complete cycle to
get rid off all overfull lines in a paragraph according
to the theory of section 9.

Experiment 8: Description
Combine both paragraphs of experiment 1 and add a
sentence with mathematics. Reduce \hsize by 2 pt.

TEX definitions

\hsize=98pt

TEX output

Once upon a time, in
a distant galaxy called
Ööç, there lived a com-
puter named R. J. Drof-
nats. Mr. Drofnats—
or “R. J.,” as he pre-
ferred to be called—was
happiest when he was
at work typesetting beau-
tiful documents. In one
text he proved eiπ+1 =
0.

e1 ≈ 9.1 pt by (12)

e2 ≈ 1.8 pt by (12)

e3 ≈ 4.1 pt by (12)
e4 ≈ 4.1 pt by (12)
e5 ≈ 0.6 pt by (12)

As in experiment 1 there are five overfull lines.
To remove them the procedure of section 9 that is
based on the results of section 4 can be used. As
described, e5, the smallest of the five values, can
be applied first, which of course resolves the last
overfull line and only this line. Then the application
of the next smallest value, e2, resolves the second
and fourth overfull lines and transfers the third one
into a new overfull line. And so on.

But with the formulas of the previous section
the maximum value can be used directly and if it is
too large the value can be corrected; so the largest
value e1 is assigned to \emergencystretch.

The optimal value for \emergencystretch

Experiment 8 continued: TEX definitions

\emergencystretch=9.1pt

TEX output

Once upon a time,
in a distant galaxy
called Ööç, there lived
a computer named R. J.
Drofnats. Mr. Drofnats—
or “R. J.,” as he pre-
ferred to be called—
was happiest when he
was at work typeset-
ting beautiful docu-
ments. In one text he
proved eiπ + 1 = 0.

e6 ≈ 9.6 pt by (12)
e7 ≈ −0.0 pt by (12)

The value of e1 was too small to solve all prob-
lems; new overfull lines were created.

Note the value of e7 is given as −0.0 pt—an
impossible result. The reason lies in the content of
the line. The space after “Mr.” in line 5 is entered as
a tie (see the TEX input of experiment 1) so the line
cannot be broken there. And “Drofnats---” can-
not be hyphenated as it contains, in TEX’s view, an
explicit hyphen. Therefore the line break must occur
after the end-of-sentence period. With the theory of
section 4 this results in a line that would contain
only “Drofnats.”, i.e., the line has no stretchabil-
ity. Therefore approximation (12) cannot compute a
valid value for the \emergencystretch—expressed
by the impossible value −0.0 pt.

But as the other line reports a valid dimension
e6, this can be used in the next run to remove at
least this overfull line.

Experiment 8 continued: TEX definitions

\emergencystretch=9.6pt

TEX output

Once upon a time,
in a distant galaxy
called Ööç, there lived
a computer named
R. J. Drofnats. Mr. Drofnats—
or “R. J.,” as he pre-
ferred to be called—
was happiest when he
was at work typeset-
ting beautiful docu-
ments. In one text he
proved eiπ + 1 = 0.

e8 ≈ 22.5 pt by (12)

There is still one overfull line. The value 9.6 pt
was too small but line 5 now gives a usable value
as two spaces occur in the line after a break at the
end-of-sentence period. The value e8 removes the
overfull line.

84 TUGboat, Volume 38 (2017), No. 1

Experiment 8 continued: TEX definitions

\emergencystretch=22.5pt

TEX output

Once upon a time,
in a distant galaxy
called Ööç, there
lived a computer
named R. J. Drofnats.
Mr. Drofnats—or “R.
J.,” as he preferred to
be called—was hap-
piest when he was
at work typesetting
beautiful documents.
In one text he proved
eiπ + 1 = 0.

e9 ≈ 8.2 pt by (15)
e10 ≈ 7.7 pt by (15)
e11 ≈ 15.4 pt by (15)
e12 ≈ 16.2 pt by (15)
e13 ≈ −0.0 pt by (14)

This is the scenario 2i) of the procedure in sec-
tion 9. The check with the four preceding lines of the
previously overfull line shows that the value 16.2 pt
is sufficient to resolve this problem as the input
“named ” is moved to that line. The output for the
\emergencystretch set to 16.2 pt isn’t shown as it
is identical to the version with 22.5 pt.

Note the value e13 cannot be computed as the
former overfull line is transformed into a line of bad-
ness 0. Formula (14) needs a line that stretches and
has a real badness larger than \tolerance.

11 Another application

In [14, example 5], \emergencystretch—together
with \looseness to have a trigger for a third line-
breaking pass—was used to remove a stack of hy-
phens. The first three lines of a paragraph end with
an inserted hyphen. In the example the value of
\emergencystretch was set to the width of the
string “Ar”, i.e., to 11.41669 pt to remove the stack.
The text is taken from [9].

Experiment 9: Description
Remove a stack of hyphens via \emergencystretch; first
show the original line breaking and then give the addi-
tional stretchability the amount 11.4 pt. Force TEX to
use a third pass with the setting \looseness = 1.

TEX output

So instead, I worked only at Stanford, at the Ar-
tificial Intelligence Laboratory with the very primi-
tive equipment there. We did have television cam-
eras, and my publisher, Addison-Wesley, was very
helpful — they sent me the original press-printed
proofs of my book, from which The Art of Com-

puter Programming had been made. The process in
the 60s . . .

So instead, I worked only at Stanford, at the
Artificial Intelligence Laboratory with the very

Udo Wermuth

primitive equipment there. We did have television
cameras, and my publisher, Addison-Wesley, was
very helpful — they sent me the original press-
printed proofs of my book, from which The Art

of Computer Programming had been made. The
process in the 60s . . .

No overfull lines are output, but the second for-
mula of section 9 calculates e for a transition that
doesn’t involve overfull lines. Here are the values for
the first three lines of the second paragraph of the
above output:

1st line: e1 ≈ −0.0 pt by (15)

2nd line: e2 ≈ 6.9 pt by (15)

3rd line: e3 ≈ −0.0 pt by (15)

So let’s try what happens when the value of the
dimen \emergencystretch is set only to 6.9 pt.

Surprise—nothing happens! The output looks
identical to the first paragraph. Well, maybe it is
not that much of a surprise as one of the principles
on which the derived formula (15) is based is vio-
lated: TEX does not have to avoid an overfull line,
and therefore it uses the line breaks that result in
the minimal sum of the line demerits. The total for
the text without the three hyphens is nearly 36,000
demerits higher than for the shown paragraph with
≈ 11.4 pt additional stretchability. Note that the
second line, which determines the value of e, gets
a badness of 200 by (15), the default \tolerance.

Either the penalty for hyphenation must be in-
creased, for example, to 200 to compensate for the
value of \tolerance, or \emergencystretch must
be increased because then the lines that stretch get
lower badness values, as observed in experiment 1.
The correct amounts are not easy to determine. For
example, setting \hyphenpenalty to 128 solves the
problem, or setting \emergencystretch to the min-
imal 10.9 pt to create the output as shown above, or
to 9.8 pt to get a solution that removes the three
hyphens but creates a new one.

12 Final remarks

In this article theoretical results show how to com-
pute the optimal value for \emergencystretch in
the case when TEX produces an overfull line. Ap-
proximation (12) is always successful as long as the
line contains stretchability and (14) and (15) extend
the result but need an additional condition: the bad-
ness of the new line must be larger than the given
\tolerance. (This condition is automatically ful-
filled when (12) can be used.) The analysis provides
some insight into the factors that influence the value
for the additional stretchability.

TUGboat, Volume 38 (2017), No. 1 85

One question has not been addressed yet: Why
is a minimal value useful? As explained in [14], and
observed in experiment 1, TEX uses the badness
value computed from the available stretchability for
its line-breaking decision and the stretchability that
comes from \emergencystretch. High values for
the latter assign to every stretchable line a low bad-
ness value, and thus TEX starts to prefer stretched
lines in the paragraph during the line-breaking pro-
cedure, resulting in an excess of spaced-out lines.

Everyone who wants to use a nonzero value for
\emergencystretch should be aware that an ac-
ceptable value depends on the available glue in a
line—or in other words: the number of spaces in the
line. A high average number of spaces in a text can
tolerate higher values of \emergencystretch. And
a line break with an inserted hyphen is an advan-
tage. Although the following advice is not obeyed in
all of the experiments in this article I recommend
to apply a positive \emergencystretch only to a
single paragraph at a time.

A rule of thumb. The accuracy with which e was
computed in this article is not required, though.
This allows us to create a rule of thumb to make
the theory useful in everyday applications. A close
look at (12) shows that many of the summands are
zero or small if the plain TEX defaults and cmr10

is used. Only four values are needed:

1. the amount that the line is too wide: opt,
2. the number of characters in M which are moved

to the next line,
3. the number of spaces in L, i.e., in the rest of the

line,
4. the type of break: glue, penalty, explicit or in-

serted hyphen.

The rule of thumb is not very simple, maybe it
is too complicated to be easily remembered:

4e ≈ (15× chars in M− 11× spaces in L

− 3× o+ 8

− 18 if a hyphen is inserted) pt.

(RoT)

Of course, if the number of spaces in L is zero, the
computed value for e makes no sense as the input L
has no stretchability.

For example, in experiment 1 the message

Overfull \hbox (5.88911pt too wide) in paragraph

\tenrm in a dis-tant galaxy called|

is shown and therefore o ≈ 5.89, 6 characters are
moved and three spaces remain when “called” is
moved at a break at glue. Now use (RoT) to com-
pute 4e ≈ (90 − 33 − 17.67 + 8) pt = 47.33 pt and
therefore e ≈ 11.8 pt.

The other cases are treated in the same way.

The optimal value for \emergencystretch

The results compared to the measured values of
experiment 1 are:

a) parameters; b) used \emergencystretch

1a): \hsize=100 pt
b): 9.3 pt 9.3 pt/11.2 pt 1.5 pt 0.2 pt/1.5 pt 1.5 pt

RoT a): calculated values with the rule of thumb

b): 11.8 pt 10.8 pt/13.7 pt 4.9 pt 1.4 pt/4.4 pt 6.2 pt

All computed values are large enough to remove
the overfull line. Nevertheless there can be cases, for
example, M is “WWW”, when the factor 15 might be
too small—although it looks as if the RoT computes
values that are often too large. The simplification
compared to (12), (14), and (15) comes with a price.

Aesthetics. The results given in this article are
rather technical, and do not consider any aesthetic
aspects. Of course, aesthetics cannot be measured
objectively, as different individuals will prefer differ-
ent aspects: hyphenation or not, justified or ragged-
right text, etc.

This paper is already too long to discuss this,
but one more TEX parameter might be briefly men-
tioned: \hfuzz. This has nothing to do with line-
breaking decisions, it is used to suppress the warn-
ing message for overfull lines, nothing more. As long
as an overfull line juts less than \hfuzz into the
margin, TEX does not output a warning message.
The plain format sets \hfuzz to 0.1 pt. Note that
in section 10 the line preceding the overfull line, for
which e1 is calculated, is overfull by 0.02792 pt. It
is not mentioned by TEX as the value is less than
0.1 pt. Sometimes higher values, for example, 1 pt,
are suggested. But an overfull line that is 1 pt too
wide is often easily detected by the eye.

An author may change his text to improve aes-
thetics but of course typesetting problems will al-
ways be present. Whatever the author or typesetter
prefers or dislikes in a specific situation a manual in-
tervention is sometimes necessary. Never forget: The
visual output counts; it must always be checked, es-
pecially when \emergencystretch is used.

References

[1] Malcolm Clark, A plain TEX primer,
Oxford University Press, 1992

[2] Bogus law Jackowski, Piotr Strzelczyk and Piotr
Pianowski, “GUST e-foundry font projects,”
TUGboat 37:3 (2016), 317–336

tug.org/TUGboat/tb37-3/tb117jackowski.pdf

[3] Donald E. Knuth, The TEXbook, Volume A of
Computers & Typesetting, Boston, Massachusetts:
Addison-Wesley, 1984
The text of experiment 1 can be found in
ctan.org/tex-archive/systems/knuth/dist/lib/

story.tex

86 TUGboat, Volume 38 (2017), No. 1

[4] Donald E. Knuth, TEX : The Program, Volume B
of Computers & Typesetting, Boston,
Massachusetts: Addison-Wesley, 1986

[5] Donald E. Knuth, The METAFONTbook,
Volume C of Computers & Typesetting, Boston,
Massachusetts: Addison-Wesley, 1986

[6] Donald E. Knuth, Computer Modern Typefaces,
Volume E of Computers & Typesetting, Boston,
Massachusetts: Addison-Wesley, 1986

[7] Donald E. Knuth, “The TFtoPL processor,”
in TEXware, Stanford Computer Science Report
STAN-CS-86-1097, Stanford, California: Stanford
University, 1986 (The first TFtoPL program was
designed by Leo Guibas in the summer of 1978)

ctan.org/pkg/texware

[8] Donald E. Knuth, “The New Versions of TEX and
METAFONT,” TUGboat 10:3 (1989), 325–328;
“Erratum: The New Versions of TEX and META-
FONT TUGboat Vol. 10, No. 3,” TUGboat 11:1
(1990), 12; reprinted as Chapter 29 in [10], 563–570

tug.org/TUGboat/tb10-3/tb25knut.pdf

tug.org/TUGboat/tb11-1/tb27erratum.pdf

[9] Donald E. Knuth, “CSTUG, Charles University,
Prague, March 1996: Questions and Answers with
Prof. Donald E. Knuth,” TUGboat 17:4 (1996),
355–367; reprinted as Chapter 32 in [10], 601–624

tug.org/TUGboat/tb17-4/tb53knuc.pdf

[10] Donald E. Knuth, Digital Typography, Stanford,
California: Center for the Study of Language and
Information, CSLI Lecture Notes No. 78, 1999

[11] Jerry Leichter, “Re: Strange kern in cmr10,”
TEXhax Digest 89:70 (1989), 25 July 1989

ctan.org/tex-archive/info/digests/texhax/89/

texhax.70.gz

[12] Frank Mittelbach, Chris Rowley, Michael Downes,
“Volunteer work for the LATEX3 project,” TUGboat

13:4 (1992), 510–513

tug.org/TUGboat/tb13-4/tb37mitt-l3.pdf

ctan.org/tex-archive/info/ltx3pub/vol-task.

tex

[13] Philip Taylor, “A Pragmatic Approach
to Paragraphs,” TUGboat 14:2 (1993), 138–140

tug.org/TUGboat/tb14-2/tb39taylor-para.pdf

[14] Udo Wermuth, “Tracing paragraphs,” TUGboat

37:3 (2016), 358–373

tug.org/TUGboat/tb37-3/tb117wermuth.pdf

⋄ Udo Wermuth
Babenhäuser Straße 6
63128 Dietzenbach
Germany
u dot wermuth (at) icloud dot com

Udo Wermuth

TUGboat, Volume 38 (2017), No. 1 87

TheTreasure Chest

This is a selection of the new packages posted to
CTAN (ctan.org) from November 2016–March 2017,
with descriptions based on the announcements and
edited for extreme brevity.

Entries are listed alphabetically within CTAN

directories. More information about any package
can be found at ctan.org/pkg/pkgname. A few
entries which the editors subjectively believe to be
of especially wide interest or otherwise notable are
starred; of course, this is not intended to slight the
other contributions.

We hope this column and its companions will
help to make CTAN a more accessible resource to the
TEX community. See also ctan.org/topic. Com-
ments are welcome, as always.

⋄ Karl Berry
tugboat (at) tug dot org

fonts

arimo in fonts

Arimo fonts (Arial-compatible), with LATEX support.
arphic-ttf in fonts

Chinese Arphic fonts in TrueType format.
* baskervillef in fonts

Design similar to Fry’s Baskerville, with math
support. [See article in this issue of TUGboat.]

gandhi in fonts

Gandhi fonts, with LATEX support.
* gofonts in fonts

Go fonts designed by Bigelow&Holmes for the
Go language project. [See item in this issue’s
editorial.]

missaali in fonts

Late medieval OpenType textura font.
montserrat in fonts

Montserrat fonts, with LATEX support.
paduak in fonts

TrueType font supporting the Myanmar script.
ptex-fontmaps in fonts

Font maps and configuration for CJK fonts and
(u)ptex, superseding jfontmaps.

tinos in fonts

Tinos fonts (compatible with Times New Roman),
with LATEX support.

txuprcal in fonts

Upright calligraphic based on txfonts.
variablelm in fonts

Font definitions for variable Latin Modern fonts.

graphics

awesomebox in graphics

Add admonition blocks using FontAwesome icons.
callouts in graphics/pgf/contrib

Simple annotations and notes inside a TikZ picture.
karnaughmap in graphics/pgf/contrib

Karnaugh maps in TikZ, with up to six variables
and implicants.

pst-shell in graphics/pstricks/contrib

Seashells in 3D using PSTricks.
scsnowman in graphics/pgf/contrib

Snowman variants in TikZ.
stanli in graphics/pgf/contrib

Structural analysis library for TikZ.
tikz-kalendar in graphics/pgf/contrib

Typeset calendars with TikZ.
tikzpeople in graphics/pgf/contrib

People-shaped nodes, such as ‘chef’, for TikZ.

info

* docsurvey in info

Survey of LATEX documentation. [See article in
this issue of TUGboat.]

forest-quickstart in info

Introduction to forest, for linguistic trees.
mendex-doc in info

Mendex index processor manual.
platexcheat in info

Japanese translation of Winston Chang’s LATEX
cheat sheet, with additions.

* undergradmath in info

Cheat sheet for writing math in LATEX.

language/japanese

jlreq in language/japanese

Document class supporting Japanese text layout
requirements.

macros/latex

See also LATEX news items in this issue of TUGboat,
or latex-project.org/news.

latexrelease,... in macros/latex/base

Use new TU encoding by default in X ELATEX and
LuaLATEX, instead of OT1, among other changes
and fixes.

l3kernel,... in macros/latex/contrib

LATEX3 packages now support (u)pTEX, among
much other work.

macros/latex/contrib

apxproof in macros/latex/contrib

Defer proofs to an appendix.
conv-xkv in macros/latex/contrib

Support alternative key/value syntaxes.
css-colors in macros/latex/contrib

Define the 143 named web-safe colors.

macros/latex/contrib/css-colors

88 TUGboat, Volume 38 (2017), No. 1

delimset in macros/latex/contrib

Declare sets of delimiters with adjustable sizes.
dtxdescribe in macros/latex/contrib

Additional object types in dtx files.
eqnalign in macros/latex/contrib

Make the eqnarray environment behave like
align.

fgruler in macros/latex/contrib

Rulers on the page foreground or within text.
fnspe in macros/latex/contrib

Math notation macros and shortcuts, developed
for FNSPE CTU in Prague.

footmisx in macros/latex/contrib

footmisc with support for hyperref.
grayhints in macros/latex/contrib

Initial text in PDF form fields, via JavaScript.
gtrlib-largetrees in macros/latex/contrib

Library for genealogytree, aimed at large trees.
halloweenmath in macros/latex/contrib

Math symbols based on traditional Halloween
iconography (pumpkins, witches, etc.).

iscram in macros/latex/contrib

Class for ISCRAM articles (International Conference
on Information Systems for Crisis Response and
Management).

keyfloat in macros/latex/contrib

Key/value interface for generating (sub)floats.
[See article in this issue.]

lion-msc in macros/latex/contrib

Class for theses at the Leiden Instition of Physics.
* lwarp in macros/latex/contrib

Convert LATEX to HTML5.
[See article in this issue.]

mpostinl in macros/latex/contrib

Embed MetaPost figures in a LATEX2ε document.
mucproc in macros/latex/contrib

Class for “Mensch und Computer” conference
contributions.

numspell in macros/latex/contrib

Spelling cardinal and ordinal numbers in several
languages.

oplotsymbl in macros/latex/contrib

Unusual symbols used in scientific plots, etc.
pxtatescale in macros/latex/contrib

Graphics driver support for pTEX vertical direction
scaling.

pythonhighlight in macros/latex/contrib

Highlighting Python code, based on listings.
soup in macros/latex/contrib

Generate alphabet soup (word search) puzzles.
studenthandouts in macros/latex/contrib

Manage and style student handout projects.
wtref in macros/latex/contrib

Namespaces and scopes for LATEX cross references.
yaletter in macros/latex/contrib

Flexible macros for letters, envelopes, label sheets.

macros/latex/contrib/biblatex-contrib

biblatex-archaeology in m/l/c/biblatex-contrib

Support for German humanities, especially the
German Archaeological Institute.

biblatex-arthistory-bonn in m/l/c/biblatex-contrib

Support for art historians.

macros/luatex/latex

luahyphenrules in macros/luatex/latex

Loading patterns in lualatex independent of
babel.

novel in macros/luatex/latex

Class for authors of original fiction, particularly
for print-on-demand.

macros/xetex/latex

simple-resume-cv in macros/xetex/latex

Simple resume/CV template for X ELATEX.
simple-thesis-dissertation in macros/xetex/latex

Simple thesis/dissertation template for X ELATEX.
unicode-bidi in macros/xetex/latex

Mixing RTL and non-RTL without markup.

support

fribidixetex in support

X ETEX preprocessor for supporting the Unicode
bidirectional algorithm.

gladtex in support

Python program to enable use of LATEX math in
HTML.

tlaunch in support

Windows GUI to run networked TEX Live.

m/l/c/biblatex-contrib/biblatex-archaeology

TUGboat, Volume 38 (2017), No. 1 89

Book review: More Math Into LATEX,

5th edition by George Grätzer

Jim Hefferon

George Grätzer, More Math Into LATEX, 5th edition.
Springer. 609 pp. Paperback, US$67.99. ISBN 978-
3319237954.

Although More Math Into LATEX by George Grätzer is
a classic, I happen not to have studied it. So with the
appearance of the fifth edition, I grabbed the chance. I
was not disappointed.

The audience for this book is professionals such as
working mathematicians or graduate students. The pre-
sentation is organized, thorough, and clear. The coverage
is wide: certainly not everything about LATEX is in here
but it does cover, or at least provide a pointer to, the
great majority of what an author would want to know
to prepare a journal article, a book, or a presentation.

A technical book must balance being an introduction
against being a reference. Professor Grätzer finesses the
question by having a first chapter called Short course.
This gets a beginner up and running. The rest of the
book is suitable for dipping into when you have a specific
problem, although you absolutely can read it as well.

This seems to me to be an excellent approach. Cer-
tainly if a graduate student preparing to write a thesis
were asked to first master a six hundred page technical
work, that would be discouraging. But here the short
course is forty pages, eminently reasonable. The student
could, in an afternoon, read the introduction, become fa-
miliar with the rest, and produce a first document or two.

It is an approach that expects that the reader is busy
working on something else and I suspect most readers
will be grateful for it.

More Math Into LATEX has six Parts, and seven
appendices. First is the short course mentioned above.
Then comes the heart of the book, Text and Math. I’ll
talk more about this below. Part III, Document Struc-

ture, discusses such things as front and back matter, and
also the amsart class. Then Part IV on PDF Documents

covers hyperlinks, and also includes a chapter on pre-
sentations and a chapter introducing TikZ. Part V on
Customization covers writing your own commands, in-
cluding list environments. Finally, in Part VI, Professor
Grätzer discusses things most relevant to Long Docu-

ments, such as BibTEX and MakeIndex, as well as tables
of contents, etc.

The appendices include symbol tables for mathe-
matics as well as for text, which I found useful almost im-
mediately. I noted that contact information for the TEX
Users Group is also included, with a suggestion that the
reader may want to join. That’s great to see, of course.

The longest Part of the book, nearly two hundred
pages, and the one that will be the most often-thumbed
is the second one, Text and Math.

This Part also typifies the feel of the entire book. It
is filled with information. The chapter names will give
you a sense of the extensive coverage: Typing text, Text
environments, Typing math, More math, and Multiline
math displays.

Just as one instance, there is a table with all of the
font family switching commands. I can never remember
the darn things and so right away onto that page went a
sticky note, to ease finding it next time, in the heat of
writing.

This Part is also filled with examples. I find that
in working with students learning LATEX, they start from
examples. The ones given in More Math Into LATEX are
ones that come up in practice, which gets these students
started, and also conveys to them that LATEX is something
they will find useful. That’s very well done.

Professor Grätzer also gives advice, tips. There are
documents in the LATEX world where in my opinion the
author moves past suggestions and into intrusiveness.
Not so here. While I didn’t find that every tip I read
accords with my own sense of best practice, I did find
that they are all reasonable.

One thing about this Part, and about the book as
a whole, is its good sense of where users have problems.
Anyone who has spent time in online TEX forums knows
that there are themes to the questions that people ask.
More Math Into LATEX does a fine job heading off these
questions, before they become a frustration.

There are many major LATEX packages that the book
does not cover. Just as one example, I’ll cite SIunits

(http://ctan.org/pkg/siunits) as something that a
person may well find useful in preparing professional
technical documents and that I don’t find here. But no
book can cover everything, and Professor Grätzer is wise
not to try. The subject is just too extensive, and so this
is not a deficiency.

This is an excellent choice, for an individual or for
an institutional library. It spans a great deal of the
subject of LATEX and does so without losing the reader.
And, with this latest edition, it is up to date with recent
developments. This classic continues on.

⋄ Jim Hefferon
jhefferon (at) smcvt dot edu

Book review: More Math Into LATEX, 5th edition by George Grätzer

90 TUGboat, Volume 38 (2017), No. 1

Book review: The Noblest Roman:

A History of the Centaur Types of Bruce

Rogers by Jerry Kelly and Misha Beletsky

Boris Veytsman

Jerry Kelly and Misha Beletsky, The Noblest Roman:

A History of the Centaur Types of Bruce Rogers.
David R. Godine, Publisher, Boston. 2016. 128 pp.
Hardcover, US$45.00. ISBN 978-1-56792-582-1.

The history of fonts and font design is an im-
portant part of our heritage. The TEX community,
in a tradition started by Knuth, appreciates the fine
aspects of typography, and has always been keenly
interested in fonts.

The Centaur font by Bruce Rogers is a classical
font created at the beginning of the last century
based on the immortal designs by Nicolas Jenson
in the 15th century. The first full version of this
font was cast in 1915. The book by Jerry Kelly and
Misha Beletsky is a tribute to the centennial of this
typographic treasure.

There are poets’ poets and painters’ painters:
the writers and artists who foremost influenced their
colleagues and inspired their creativity. Bruce Rogers
probably deserves the title of typographers’ typog-

rapher: his fame among book artists became, as
another great typographer and Rogers’ rival, Stan-
ley Morison called it, “a BR cult”. The quotation
below by Joseph Blumenthal, beautifully typeset by
Jerry Kelly for the Book Club of California edition
of The Noblest Roman, well describes the opinion of
professionals about Centaur:

Kelly and Beletsky quote similar praise for the font by
such masters as D.B. Updike and Robert Bringhurst.

Interestingly enough, this acclaim among artists,
as often happens, did not translate into commercial
success. As the authors note, during the entire pro-
duction run of Monotype Centaur from 1929 to 1980
only 754 sets of matrices were sold— fifty times less
than Times New Roman and ten times less than
Monotype Garamond. The font is not well known by
the general public. Maybe this is why we do not have
free Centaur digital fonts for use with TEX; certainly
such fonts would be a great contribution to the TEX
typographic arsenal.

The authors note that the high regard for Cen-
taur among typographers created many legends about
its history. The incomplete and often unreliable
recollections by Bruce Rogers himself, amplified by
other narrators, lead to a situation where “little can

Boris Veytsman

TUGboat, Volume 38 (2017), No. 1 91

be taken at face value”. Kelly and Beletsky took
great pains to check details using archives, letters
and other little explored sources. They performed a
great service in elucidating the true story of Centaur.
The book explores the relations between Rogers and
his employees and contemporaries, the evolution of
the design, and many interesting details, such as
the attempt to create a version of the font for the
Justowriter typesetting typewriter (1948).

While the book text is very interesting, its il-
lustrations are truly superb. The Noblest Roman

reproduces many pages of books typeset with Cen-
taur. Below is the page from a book designed by
Hermann Zapf:

Besides comprehensive type samples, The No-

blest Roman includes a list of books typeset with the
original Centaur as well as detailed notes, a bibliog-
raphy and a carefully compiled index.

The book is beautifully typeset by Jerry Kelly,
whose work has been reviewed several times before
in these pages. It is a masterpiece of the typographic
art. The book is printed in two colors, with black
and red marginal notes. The marginalia contain
succinct biographies of typographers of this time,

small illustrations and captions for larger illustrations
in text:

To tell the truth, I am not sure why other notes, such
as bibliographic references, are relegated to the back
of the book rather than being typeset in the margins
as well.

The book is typeset in Centaur (of course!) using
three recent digital revivals of the font: the body
text in the font by Jerry Kelly, the captions in the
version by Toshi Omagari (used for the first time in
this book), and displays in Monotype Centaur. The
body text is justified with ragged right marginalia.

The publisher, David R. Godine, is well known
for his books of highest quality, also often mentioned
in these TUGboat review pages.

I thoroughly enjoyed this book and heartily rec-
ommend it to typophiles in the TEX community.

⋄ Boris Veytsman

Computational Materials Science

Center, MS 6A2

George Mason University

Fairfax, VA 22030 USA

borisv (at) lk dot net

http://borisv.lk.net

Book review: The Noblest Roman: A History of the Centaur Types . . . by Jerry Kelly and Misha Beletsky

92 TUGboat, Volume 38 (2017), No. 1

Book review: Track Changes by

Matthew G. Kirschenbaum

David Walden

Matthew G. Kirschenbaum, Track Changes:

A Literary History of Word Processing.
The Belknap Press of Harvard University
Press, 2016, xvi+344 pp. Hardcover, US$29.95.
ISBN 978-0674417076.

In the Acknowledgments section of Matthew Kirsch-
enbaum’s Track Changes, he notes that in December
2011 he gave a lecture on his research at the New
York Public Library, and a New York Times reporter
wrote about his interest in the history of word pro-
cessing.1 The resulting “burst of publicity [flooded
his inbox] with tips, anecdotes, contacts, and sugges-
tions”. Much of this helped the author develop his
book; and, although the book is now published, the
author says that “this is still very much an active
project, and I’d be grateful to hear from any readers
who have additional information”.

The author is a professor in the English De-
partment of the University of Maryland who “is a
devoted scholar of all things digital and literary”. In
this book he studies the steps and impact on their
writing of authors moving from pens or typewriters
to word processors, from the earliest word processing
kludges of equipment before word processing was
really available as a product and continuing through
writers who cling to “boutique” word processing sys-

tems (e.g., Scrivener and WriteRoom) in spite of the
“hegemony” of Microsoft Word. While there is a soci-
ological slant to the book, anyone who (a) has lived
through the era of the development of interactive
editors and word processors or (b) who is a reader
of fiction (particularly genre fiction), will find in the
book many authors, books, and systems to remember
and a plethora of previously unknown information.

The book’s style falls somewhere between cre-
ative non-fiction and an academic monograph. It is
not based on a few characters used to drive a narra-
tive ahead (like most books by, e.g., Tracy Kidder
and Michael Lewis); rather, it’s a collection of stories
about hundreds of individual authors. Although it
has 80 pages of notes and the chapter titles appear
to be working on moving along an academic thesis,
the book is easy and fun to read.

Knuth and TEX are mentioned once in the book,
on page 30 where author Neal Stephenson is de-
scribed as transcribing his Baroque Cycle, originally
drafted longhand, into TEX using Emacs; then, when
the publisher wanted to typeset the book in the
QuarkXPress, Stephenson wrote a conversion pro-
gram in Lisp.2,3 Perhaps the longest of the hundreds
of authors mentioned in the book is the story of
author Len Deighton’s adoption of early word pro-
cessing technology (i.e., IBM’s MT/ST system).

The book also has a nice index of systems and
author names, which lets one see if one’s favorite
author is mentioned in the book or to look up history
on an early word processing system such as WordStar.
Track Changes is a pretty useful reference book as
well as being fun reading. I am glad to have a copy.

To get a better feel for Track Changes, you can
“Look Inside” on the book’s Amazon page. Also take
a look at the author’s website4 to see other essays and
videos as he continues his work at the intersection
of the literary and the digital worlds. I am finding it
all quite fascinating. At minimum, I can recommend
borrowing Track Changes from your library.

Notes
1Jennifer Schuessler, “The Muses of Insert, Delete and

Execute”, 2011-12-26, tinyurl.com/times-schuessler
2Somewhat irrelevant aside: If you have not read Stephen-

son’s In the Beginning was the Command Line, I highly
recommend it still, even though it is now quite dated: http:
//cryptonomicon.com/beginning.html

3I am wondering about other fiction authors who may have
used TEX et al. to do their composing. If you know of any, you
might communicate what you know to author Kirschenbaum
(see the last sentence of the first paragraph).

4https://mkirschenbaum.wordpress.com/

⋄ David Walden
walden-family.com/texland

David Walden

TUGboat, Volume 38 (2017), No. 1 93

Book review: Manuale Calligraphicum.

Examples of Calligraphy by Students of

Hermann Zapf, David Pankow, ed.

Boris Veytsman

Manuale Calligraphicum. Examples of Calligraphy

by Students of Hermann Zapf, David Pankow, ed.
RIT Cary Graphic Arts Collection; Rochester, 2016,
60pp, ill. Hardcover, paper over boards with vellum
spine. US$195.00.

For ten years, from 1979 to 1988, Hermann Zapf
taught summer master classes on calligraphy at the
Rochester Institute of Technology. This book is a
tribute to him by his former students. It contains
nineteen specimens—or, rather, nineteen pieces of
calligraphy art by Larry and Marsha Brady, Annie Ci-
cale, Rick Cusick, Claude Dieterich A., Reggie Ezell,
Peter Fraterdeus, Kris Holmes, Jerry Kelly, Peter
Noth, Marcy Robinson, Ina Saltz, Steven Skaggs,
John Stevens and Julian Waters. A TEX user prob-
ably knows some of these names from DEK’s 3:16

Bible Texts Illuminated, and, of course, from the
Lucida fonts by Bigelow and Holmes. However, I
would argue that calligraphy by itself is important
for anybody interested in the philosophy behind TEX
and METAFONT. One of the origins of our letters is
the art of scribes, who for centuries developed the
technique of combining legibility and beauty using
pen and ink (another being the stone cutters making
the monumental inscriptions). A careful study of cal-
ligraphy helps open the world of good typesetting—
and is enjoyable in itself.

Besides the illustrations the book has an intro-
duction by David Pankow, a foreword by RIT Cary

Figure 1: Kris Holmes’s contribution

Figure 2: Steven Skaggs’s contribution

Graphic Arts Collection curator Steven Galbright,
and artists’ biographical sketches. It was designed by
renowned typographer Jerry Kelly. The spartan title
page and Kelly’s Rilke typeface of the text contribute
to the general impression of a tasteful book. It is
printed on a letter press by Bradley Hutchinson on
Hahnemühle paper with vellum spine in 325 copies.

The book was designed as a luxury item, thus
its rather steep price. Still, since the Web version
of this review is going to appear before 2016 holiday
season, it might give you a gift idea for a calligraphy
lover dear to you.

On the other hand, I wonder whether RIT Cary
Graphic Arts Collection might consider a trade edi-
tion of this book: it might benefit many students of
calligraphy and fonts.

⋄ Boris Veytsman

Systems Biology School and

Computational Materials

Science Center, MS 6A2

George Mason University

Fairfax, VA 22030

borisv (at) lk dot net

http://borisv.lk.net

Book review: Manuale Calligraphicum, David Pankow, ed.

94 TUGboat, Volume 38 (2017), No. 1

Seminar review: Presenting data and

information by Edward Tufte,

November 9, 2016, Arlington, VA

Boris Veytsman

Edward Tufte, a prominent advocate of beauty and
clarity in data presentation, is rather well known
to the TEX community. There are several packages
on CTAN inspired by his ideas, for example, tufte-
latex and sparklines. Tufte’s essay about the cogni-
tive style of PowerPoint (2003) was quoted by many
TEXnicians at that time (I must say, however, that
we now have TEX tools quite capable of reproducing
PowerPoint style). His web site (edwardtufte.com)
and Twitter (@EdwardTufte) have been sources of
many interesting ideas and beautiful pictures.

For quite some time, I have wanted to attend his
seminar (edwardtufte.com/tufte/courses), and
this November my employer (Harris Corp.) kindly
agreed to pay for it. (Disclaimer: this review reflects
only my personal opinion, and does not necessarily
reflect opinions of my employer, other Harris employ-
ees or officers. This review cannot be construed as
an endorsement or recommendation by Harris or any
other corporate entity.)

Despite a rather steep price ($420.00, which
includes four books by Tufte in paperback editions,
coffee & tea, but does not include parking or lunch),
the big ballroom of the Hyatt at DCA airport was
packed. This is a good sign: there is an interest in
high quality data presentation by the public.

The presentation itself, as a matter of course,
followed Tufte’s recommendations. It started with
an hour of silent reading, it emphatically did not use
slides with bullets, and it did not assume that the
attention span of the audience was close to that of a
two year old. Many of the topics covered would be
familiar to those who have read Tufte’s books: from
the famous map by Charles Joseph Minard to the
beautiful examples of the “small multiples” graphs.
There were also many new topics, including a very in-
teresting analysis of the styles of Web sites. Despite
my previous knowledge of Tufte’s ideas, the presen-
tation turned out useful for me: it is one thing to
read about the general principles, but quite another
thing is to see them in action.

Edward Tufte did not limit himself to typogra-
phy or graphic design. Rather, he showed a holistic
approach to the presentation of data and informa-
tion. He talked about such things as preparation
before the presentation, ways to deal with anxiety
and technology malfunction, and many other topics
that are important for a successful practitioner, but
often overlooked.

Tufte discussed both sides of a presentation: the
point of view of a presenter, and the point of view of
an audience. There was plenty of advice on both how
to show information and how to understand what
was shown—and recognize when the presenter is not
forthright with the truth.

This leads to another dimension of the semi-
nar, one which was rarely mentioned explicitly, but
definitely was present: the moral dimension. Tufte
explained how to show the story behind the data,
always assuming this was a true story. It was not
only that he did not teach how to mislead the audi-
ence and conceal the truth; rather, his methods are
not compatible with such subterfuge (more on this
below). Data presentation as practiced by Tufte is
not a neutral trade, which can be used for any goal,
being it telling the truth or telling lies. Honesty is
hardwired in the approach.

The seminar used projections, videos and music.
The current jargon suggests the word “multimedia”.
However, this word now often means some haphaz-
ardly selected fragments joined together in a more
or less arbitrary fashion. Unlike those “multimedia
presentations”, this one embedded the non-speech el-
ements with tact and taste, creating an organic whole.
Perhaps the closest analogy would be a theater play
set by a good director, rehearsed to perfection and
skillfully executed. Indeed, Tufte’s presentations are
one person shows. It is strange that among the arts
discussed by the author (typography, painting, music,
literature) the thespian art was not mentioned— it
would seem to be very relevant to the ideas espoused
in the seminar.

While it is impossible to write here about all
the topics raised by Tufte, I would like to mention
several of them, which, in my opinion, would be of a
special interest to the readership of TUGboat and
the TEX community.

Tufte spent much time advocating high resolu-
tion of information. One of his villains, mentioned
several times during the course, was the famous
“rule of seven ± two”, which prescribes no more
than about seven chunky sentences on a presentation
page. Tufte thinks that audience can grasp complex
ideas and flowing texts. He says that the best ex-
ample of a high resolution information medium is
a classic printed page. This strikes a chord with us
TEXnicians, brought up in the traditions of classical
typography as embodied by TEX design.

Tufte brought with him a couple of rare books
to demonstrate these traditions and inherent innova-
tion: one by Galileo (Istoria e dimostrazioni intorno

alle macchie solari, Rome, 1613) with small images
embedded in the text, and a second by Oliver Byrne

Boris Veytsman

TUGboat, Volume 38 (2017), No. 1 95

(The Elements of Euclid, London, 1847) with 3D

cutouts of stereometric bodies. For some bibliophiles
the opportunity to see these books alone might well
justify the cost of admission.

Another important topic of the seminar was
providing the audience of a presentation multiple
paths through the data. The common low resolution
presentation assumes a single path followed by the
audience, bullets being stepping stones across the
sea of information. The high resolution presentation
espoused by Tufte assumes the audience members
may choose different paths through the data and
reach their own conclusions, perhaps unforeseen by
the presenter. The recommended way of starting the
presentation with a period of silent reading actively
encourages this approach.

There are two aspects to this approach. First,
it seems to be surprisingly close to the Free Soft-
ware philosophy. One of the fundamental purposes
of Free Software is to give anyone the ability to mod-
ify and combine programs in new ways, sometimes
not foreseen by the original authors. Tufte applies
this principle to data. Like Free Software users, his
audience is expected to be active participants rather
than passive consumers fed with pre-digested pieces
of information. It is not coincidental that Tufte
made highly complimentary remarks about the re-
producible research movement, which is an analog
of Free Software in the data world.

Second, as mentioned above, this approach is
inherently incompatible with misleading and manip-
ulation. A manipulator wants the audience to reach
the pre-defined conclusions, and carefully constructs
the path to them, avoiding anything which might
accidentally reveal the truth. The last thing a ma-
nipulator wants is to let the audience engage in an
independent analysis. While reproducible research
and high resolution presentation were not specifi-
cally designed to prevent data manipulation, it is
an inherent feature of these approaches. Similarly,
while Free Software was not specifically designed to
prevent backdoors in software, backdoors are not
compatible with it.

It should be said that Free Software was promi-
nent in the recommendations spelled out in the course
handouts. Besides TEX, Tufte mentioned R, which
is used by many TEXnicians. By the way, there are
several R packages inspired by Tufte: for example,
ggthemes includes a Tufte theme and Tufte plots
such as range frames are part of the ggplot2 frame-
work. (There is a detailed review of these packages
by Lukasz Piwek at motioninsocial.com/tufte.)

Still, there was a topic of the seminar which left
a mixed aftertaste for me. Namely, Tufte several
times exhorted the audience to produce high quality
presentations. This was done in a way that seemed
to imply that the common low quality presentations
are caused by the laziness of the practitioners. This
is definitely not the complete case. The high quality
display Tufte espouses requires a huge amount of
thought. While they are immensely satisfying for
the producer and very useful to the audience, they
require a most valuable resource: the work of an
extremely skilled professional. Therefore they are
insanely expensive to make. In many corporate envi-
ronments, where an incessant stream of (necessarily
low quality) presentations is expected, Tufte’s ideas
are a losing proposition. In a sense, Tufte’s exhorta-
tions in the Hyatt ballroom could be taken as similar
to a motivation speech by a renowned haute cuisine

chef to an audience of fast food cooks. Of course
these cooks would be happy to work on something
better than greasy burgers. However, they are not
in the position to decide: the menu is determined by
their managers, and ultimately by the customers. If
we want to change the bleak landscape of corporate
presentations, we need to change corporate culture,
including the expectations of upper management and
individual choices of the information producers and
consumers. It seems this would also imply rather
fundamental changes in our society. At any rate,
shaming the overworked practitioners, in my opinion,
would not help.

Nonetheless, there is a role for us TEXnicians,
especially those who are in the business of writing
packages. Obviously our tools cannot do the creative
thinking for the presentation producer. However,
there is much mundane work, which we can and
should make much easier, leaving the practitioner
free to be creative. Many common tools today subtly
(or not so subtly) nudge the users in the direction
of making poor presentations. It is possible (albeit
difficult) to make tools nudging the users to make
better ones.

A seminar like this one could be an inspiration
and a source of ideas for this effort. Thus I would
recommend it for TUG members.

⋄ Boris Veytsman

Systems Biology School and

Computational Materials

Science Center, MS 6A2,

George Mason University,

Fairfax, VA 22030

borisv (at) lk dot net

http://borisv.lk.net

Seminar review: Presenting data and information by Edward Tufte, November 9, 2016, Arlington, VA

96 TUGboat, Volume 38 (2017), No. 1

Die TEXnische Komödie 4/2016–1/2017

Die TEXnische Komödie is the journal of DANTE e.V.,
the German-language TEX user group (dante.de).
(Non-technical items are omitted.)

Die TEXnische Komödie 4/2016

Rainer-M. Fritsch, Koch- und Backrezepte
sammeln mit KOMA-Script [Collecting cooking
recipes with KOMA-Script]; pp. 42–49

A common problem: At some point one has
collected a couple of dozen cooking recipes on paper
and amended them with written notes. But when
one wants to make the recipe, it does not match the
present cooking routine, or the recipe is wrong.

Rainer-M. Fritsch, TextMate 2 –LATEXing unter
MacOS [TextMate 2—LATEXing under MacOS];
pp. 50–56

There is hardly a more emotional topic than the
choice of the “right” editor. Some rely on Emacs or
Vim, others use more TEX-centric editors like Kile,
TEXmaker, TeXShop, etc.

Norbert Preining, Build- und Testing
Infrastruktur für TEX Live [Build- and testing
infrastructure for TEX Live]; pp. 57–61

Every year European and non-European TEX
enthusiasts meet in Bachotek, Poland, for BachoTEX.
The friendly atmosphere and reduced options to es-
cape allow for intensive discussions and progress in
developing new TEX features, as well as reducing
the beer cellars. This year I was able to attend for
the first time since my migration to Japan and used
the time to discuss proposals with other team mem-
bers (Mojca Miklavec und Arthur Reutenauer) for a
TEX Live testing infrastructure.

Rolf Niepraschk, Schreibmaschinenschriften –
eine Betrachtung [Typewriter fonts—a review];
pp. 62–66

Within the last few years the supply of high-
quality fonts for LATEX has increased. Partly this is
due to new TEX compilers like LuaTEX and X ETEX,
and partly due to many new or updated fonts released
under free licenses.

Die TEXnische Komödie 1/2017

Bogusław Jackowski, Piotr Strzelczyk,

Piotr Pianowski, GUST e-foundry font projects;
pp. 13–52

[Published in TUGboat 37:3.]

Philipp Pilhofer, Der Satz kritischer Editionen
mit LATEX und reledmac [Typesetting critical
editions with LATEX and reledmac]; pp. 53–66

Preparing the final ready-to-print version of
a critical edition is a complex task. This article
presents a way to meet the highest requirements
by using LATEX with the packages reledmac and
reledpar. This approach offers many possibilities
regarding a flexible workflow. The open file formats
easily allow further processing, for example a digital
edition.

Uwe Ziegenhagen, Wie man einen eigenen
TEX Live-Mirror aufsetzt [How to setup your own
TEX Live mirror server]; pp. 67–71

In this article I show how NAS (network attached
storage) can be used to set up a private TEX Live
mirror server.

Christine Römer, Strukturbäume mit TikZ
[Structure trees with TikZ]; pp. 72–78

A supplement to my article on the forest pack-
age.

Herbert Voß, Im Netz gefunden [Found on the
net]; pp. 79–81

On various mailing lists, web portals and news-
groups one always finds helpful tips and tricks around
(LA)TEX. This time:

• The value ranges of \escapechar,
\newlinechar, \endlinechar in various
TEX engines

• Creating a reference on an equation inside
\lstinputlisting

[Received from Herbert Voß.]

TUGboat, Volume 38 (2017), No. 1 97

Zpravodaj 2015/3–4, 2016/1–4

Editor’s note: Zpravodaj is the journal of CSTUG,
the TEX user group oriented mainly but not entirely
to the Czech and Slovak languages (cstug.cz).

Zpravodaj 2015/3–4

Petr Sojka, Úvodník [Editorial]; p. 97
Three papers in this issue are introduced to the

kind readers.

Martin Pecina, Knížky jsou mánie jako každá
jiná [Books are an obsession like any other];
pp. 98–103

The author describes his approach to prepare
the typographic design of a book. He focuses on
the topics of choosing a typeface and size, and the
overall design. 10.5300/2015-3-4/98

Antonín Jeřábek, ISBN a online publikace
[ISBN and online publications]; pp. 104–109

The paper briefly reviews the history of ISBNs,
from the initial purpose of assigning ISBNs to printed
publications, describing the development of this num-
ber from 8-digit through 9- and 10-digit up to the
presently used 13-digit number. The new environ-
ment of the ISBN system, connected with the revival
of electronic book publication — offline and online —
is described, followed by the three conditions ac-
cepted within the ISBN community which an e-book
must fulfill to get an ISBN. World-wide problems
caused by assigning ISBNs to online publications are
mentioned, too. In conclusion, the paper gives brief
guidelines for Czech publishers for assigning ISBNs
to online publications. 10.5300/2015-3-4/104

Luigi Scarso, Dvě užití SWIGLIB:
GraphicsMagick a Ghostscript [Two applications
of SWIGLIB: GraphicsMagick and Ghostscript];
pp. 110–119

[Printed in TUGboat 36:3.] 10.5300/2015-3-4/110

Zpravodaj 2016/1–4

Petr Sojka, Úvodník staronového předsedy
[An introductory word by the once and future
president]; pp. 1–6

This editorial discusses CSTUG’s past and future,
membership issues and shaping the organization in
the Internet era, together with changes related to
the publishing of Zpravodaj CSTUG.

Go forth and participate in CSTUG to make the
bright future of TEX & Friends a reality! You can!

Bogusław Jackowski, Piotr Strzelczyk,
Piotr Pianowski, Fontové projekty e-písmolijny
GUST [GUST e-foundry font projects]; pp. 7–46

[Printed in TUGboat 37:3.] 10.5300/2016-1-4/7

Luigi Scarso, Projekt SWIGLIB [The SWIGLIB

project]; pp. 47–61
[Printed in TUGboat 36:1.] 10.5300/2016-1-4/47

Marek Pomp, Dobře dokumentované statistické
výpočty [Well-documented statistical calculations];
pp. 62–77

The paper describes the usage of the literate pro-
gramming paradigm in the environment of statistical
computations. In particular, the package Sweave for
writing documents with the assistance of the statis-
tical program R is presented. 10.5300/2016-1-4/62

Vít Novotný, Sazba textu označkovaného
v jazyce Markdown uvnitř TEXových dokumentů
[Rendering Markdown inside TEX documents];
pp. 78–93

The article describes a new package for plain
TEX derivatives that enables the direct inclusion of
Markdown-formatted text into TEX documents. The
author describes their motivation for the creation of
the package and its inner workings. The usage of the
package is explained through examples. 10.5300/2016-

1-4/78

Michal Hoftich, Elektronické knihy a systém
TEX4ebook [E-books and the TEX4ebook system];
pp. 94–105

This article describes the process of conversion of
a TEX document to an e-book using the TEX4ebook
system. Concrete examples of configuration and
caveats are provided. 10.5300/2016-1-4/94

Dávid Lupták, Sadzba bibliografie podľa
normy ISO 690 v systéme LATEX [Typesetting
bibliographies compliant with the International
Standard ISO 690 in LATEX]; pp. 106–120

The preparation of bibliographic references and
citations compliant with the international standard
ISO 690 is required by many institutes, not limited
to Czech and Slovak academia. However, the type-
setting of bibliographies conforming to the respective
standard is not yet supported in the LATEX document
preparation system. The biblatex-iso690 package has
been revised and improved to fully meet the require-
ments of the international standard and thus greatly
simplifies the typesetting of bibliographies for all
kinds of information resources. 10.5300/2016-1-4/106

Peter Wilson, Mělo by to fungovat V – Cykly
[It might work. V — loops]; pp. 121–127

This paper shows how to process strings, charac-
ter by character, in LATEX. The paper also describes
the LATEX macro \@for and shows its application for
typesetting tables. 10.5300/2016-1-4/121

[Received from Michal Růžička.]

98 TUGboat, Volume 38 (2017), No. 1

Eutypon 36–37, October 2016

Eutypon is the journal of the Greek TEX Friends
(http://www.eutypon.gr).

Linus Romer, The evolution of the Miama
typeface; pp. 1–6

At the beginning of 2016, the free typeface
Miama Nueva was released along with a correspond-
ing LATEX package. This article describes how the
typeface has evolved over the years.
(Article in English.)

Giorgos Katsamakis, Eighteenth century
utopias in Nikolaos Glykys’ dropcaps; pp. 7–14

The dropcaps in books printed in Venice in the
18th century, at the press of Nikolaos Glykys “of
Ioannina”, are images of a world that never existed,
but we can find some, 250 years later. (Article in

Greek with English abstract.)

George D. Matthiopoulos, Adrian Frutiger:
Reshaping the post-war æsthetics of typographical
art; pp. 15–26

At a time when the photomechanical produc-
tion of fonts and texts started exceeding the physical
presence of metal type, Adrian Frutiger (1928–2015)
was the first typographic designer to face decisively
and creatively the new challenges, and it was he who
actually shaped the æsthetic rules and technical im-
plementation of phototypesetting. (Article in Greek

with English abstract.)

Apostolos Syropoulos, The digitization of the
Frederika font; pp. 27–31

The Frederika typeface was designed by the fa-
mous German designer Hermann Zapf around 1953,
as the Greek complement of his own Latin Virtuosa
font. Until recently, Frederika existed only in metal
type. This article presents an overview of the digiti-
zation of Frederika, and some basic characteristics of
the new digital font. (Article in Greek with English

abstract.)

Pablo Garćıa-Risueño, Apostolos

Syropoulos and Natàlia Vergés, On new
ideograms for Physics and Chemistry; pp. 33–39

The svrsymbols package and its accompanying
font provide access to new symbols (or ideograms)
for use in texts in Physics and Chemistry. The ratio-
nale for the creation of the package is presented and
discussed. Also, the development model employed is
briefly described. (Article in English.)

Dimitrios Filippou, TEXniques: (a) Vignettes,
dropcaps and other decorative designs; (b) PDF

files for . . . filing; pp. 41–44
This regular column shows (a) how to produce

scalable images for book decoration, and (b) how to
prepare PDF/A files with X ELATEX and pdfx. (Article
in Greek.)

Dimitrios Filippou, Book presentations;
pp. 45–46

The following books are presented: (a) Jean-luc
Doumont, Trees, Maps, and Theorems, Principiæ,
Kraainem, Belgium 2009; and (b) George Grätzer,
Practical LATEX, Springer, Cham, Switzerland 2014.
(Article in Greek.)

[Received from Dimitrios Filippou
and Apostolos Syropoulos.]

TUGboat, Volume 38 (2017), No. 1 99

TUG financial statements for 2016

Klaus Höppner, TUG treasurer

The financial statements for 2016 have been reviewed
by the TUG board but have not been audited. As a
US tax-exempt organization, TUG’s annual informa-
tion returns are publicly available on our web site:
http://tug.org/tax-exempt.

Revenue (income) highlights

Membership dues revenue was down about $ 6,000 in
2016 compared to 2015. Product sales and other in-
come categories were close to steady, with two excep-
tions: The annual conference produced a small loss,
while Contributions Income was up $ 2,000, mainly
due to a generous anonymous donation. Overall,
2016 income was down 7%.

Cost of Goods Sold and Expenses highlights,
and the bottom line

The TUG board felt it necessary to seek legal ad-
vice regarding the possible appeal by the suspended
president, incurring extraordinary expenses of about
$ 14,000, marked as Professional Fees.

While we saved some money on DVD production,
TUGboat costs were up $ 7,000, partly due to many
color pages in the 2016 conference proceedings issue.

The bottom line for 2016 was very negative:
about $ 21,100. Even disregarding the exceptional
Professional Expenses the result was a loss of $ 7,200.

Balance sheet highlights

TUG’s end-of-year asset total is down by around
$ 11,200 (5.5%) in 2016 compared to 2015.

Committed Funds are reserved for designated
projects: LATEX, CTAN, the TEX development fund,
and others (http://tug.org/donate). Incoming
donations are allocated accordingly and disbursed as
the projects progress. TUG charges no overhead for
administering these funds.

The Prepaid Member Income category is mem-
ber dues that were paid in earlier years for the current
year (and beyond). The 2016 portion of this liabil-
ity was converted into regular Membership Dues in
January of 2016. The payroll liabilities are for 2016
state and federal taxes due January 15, 2017.

Summary

We ended 2016 with 67 less members than in 2015.
This was an important cause for the bottom-line loss,
and the board continues to work to reverse this trend.
Ideas for attracting members are always welcome!

TUG 12/31/2016 (vs. 2015) Revenue, Expense

Dec 31, 16 Dec 31, 15

ORDINARY INCOME/EXPENSE

Income

Membership Dues 86,460 92,550

Product Sales 5,801 5,736

Contributions Income 10,681 8,320

Annual Conference (699) 1,837

Interest Income 575 484

Advertising Income 315 320

Services Income 1,176 2,616

Total Income 104,309 111,863

Cost of Goods Sold

Membership Drive

TUGboat Prod/Mailing (24,896) (17,722)

Software Prod/Mailing (2,479) (3,200)

Postage/Delivery - Members (1,356) (2,147)

Lucida Sales to B&H (2,263) (2,195)

Member Renewal (384) (412)

Total COGS (31,378) (25,676)

Gross Profit 72,931 86,187

Expense

Contributions made by TUG (2,000) (2,000)

Office Overhead (14,934) (15,444)

Payroll Expense (63,167) (63,256)

Professional Fees (13,878)

Interest Expense (50)

Total Expense (94,029) (80,700)

Net Ordinary Income (21,098) 5,487

OTHER INCOME/EXPENSE

Prior year adjust (1) (95)

Net Other Income (1) (95)

NET INCOME (21,099) 5,392

TUG 12/31/2016 (vs. 2015) Balance Sheet

Dec 31, 16 Dec 31, 15

ASSETS

Current Assets

Total Checking/Savings 193,913 205,581

Accounts Receivable 715 300

Total Current Assets 194,628 205,881

LIABILITIES & EQUITY

Current Liabilities

Committed Funds 35,842 31,248

Administrative Services 4,017 1,528

Deferred Contributions

Prepaid Member Income 6,850 4,085

Payroll Liabilities 1,083 1,087

Total Current Liabilities 47,792 37,948

Equity

Unrestricted 167,934 162,543

Net Income (21,098) 5,391

Total Equity 146,836 167,934

TOTAL LIABILITIES & EQUITY 194,628 205,882

100 TUGboat, Volume 38 (2017), No. 1

TUGBusiness

TUG 2017 election

Nominations for TUG President and the Board of
Directors in 2017 have been received and validated.

For President, Boris Veytsman was nominated.
As there were no other nominees, he is duly elected
and will serve for a two-year term.

For the Board of Directors, the following 14
individuals were nominated:

Karl Berry, Johannes Braams, Kaja Christiansen,
Enrico Gregorio, Taco Hoekwater, Klaus Höppner,
Frank Mittelbach, Ross Moore, Steve Peter,
Arthur Reutenauer, Will Robertson,
Herbert Schulz, Michael Sofka, Herbert Voß.

There were more Board nominations than open posi-
tions. Thus, an election ballot is required, in accor-
dance with the TUG election procedures (http://
tug.org/elecproc.html). This year, voting online
is strongly recommended, through the TUG members
area, https://www.tug.org/members. (A printable
ballot is also available there, or on request from the
TUG office, if you wish to vote on paper.)

Terms for both President and members of the
Board of Directors will begin at the Annual Meeting.

Board members Steve Grathwohl, Jim Hefferon,
and Geoffrey Poore have decided to step down at the
end of this term. On behalf of the Board, I wish to
thank them for their service, and for their continued
participation until the Annual Meeting.

Statements for all the candidates are appended,
both for President and for the Board (order deter-
mined by lot). They are also available online, along
with announcements and results of previous elections.

The deadline for voting in the election is April 9,
which is still some time away as this issue goes to
press. The results will be announced on the TUG

web site and in the electronic newsletter, as well as
the next issue of TUGboat.

⋄ Barbara Beeton
for the Elections Committee
http://tug.org/election

Boris Veytsman

(Candidate for TUG President.)
I was born in 1964 in Odessa, Ukraine and have

a degree in Theoretical Physics. I worked for vari-
ous sci-tech employers, including TEX consulting for
Google and contractor work with NASA. At present
my main work is in aviation safety with Harris Cor-
poration. I teach and do research at George Mason
University. I also do TEX consulting for a number
of customers, including FAO UN, US Government
agencies, universities and publishers worldwide. My
CV is at http://borisv.lk.net/cv/cv.html.

I have been using TEX since 1994 and have been
a TEX consultant since 2005. I have published a
number of packages on CTAN and papers in TUG-
boat. I have been a Board member since 2010 and
Vice-President since 2016. I am an Associate Editor
of TUGboat and support http://tug.org/books/.

Over the years I have done some thinking about
the future of TEX Users Group. In the old days if
you wanted tapes with TEX distributions or sought
help, you joined TUG. Now things have changed: you
easily can download any distribution or ask questions.
Thus the steady decline in our membership. While
TEX is used by many people, TUG is shrinking.

If we want to remain relevant, we need to con-
sider our role in the new user community. I think
there are several areas where TUG is needed:

1. A point of contact for the community. The
most important things we are doing are our
conferences and TUGboat. We need to continue
these and promote TUGboat for libraries. We
need to promote our Web site and make it more
useful for our community.

2. Coordination and steering of technical, educa-
tion and outreach efforts. We have several work-
ing groups (see http://tug.org/twg). I am
trying to jump-start Education and Accessibil-
ity work groups.

3. Help with financing TEX-related efforts. Being
a tax-exempt (in the US) 501(c)(3) organiza-
tion, we are in an exceptionally good position
to collect funds for various projects.

We should remember that we serve not just our
members, but the wide community of TEX users. We
should actively promote TUG among the commu-
nity and make easier the option to support TUG by
volunteering or donating.

TUG 2017 election

TUGboat, Volume 38 (2017), No. 1 101

I think we need to work to be relevant in the
changing world. If the TUG members trust me to
lead this effort, I would be greatly honored.

Karl Berry

(Candidate for TUG Board of Directors.)
TEX biography: I served as TUG president from

2003–2011 and was a board member for two terms
prior to that, and also subsequently. I am running
again for a position on the board.

I co-sponsored the creation of the TEX Develop-
ment Fund in 2002. I’m one of the primary system
administrators and webmasters for the TUG servers,
and the production manager for our journal TUG-

boat.
On the development side, I’m currently the edi-

tor of TEX Live, the largest free software TEX distri-
bution, and thus coordinate with many other TEX
projects around the world, such as CTAN, LATEX,
and pdfTEX. I developed and still (co-)maintain
Web2c (Unix TEX) and its basic library Kpathsea,
Eplain (a macro package extending plain TEX), and
other projects. I am also a co-author of TEX for

the Impatient, an early comprehensive book on plain
TEX, now freely available. I first encountered and
installed TEX in 1982, as a college undergraduate.

Statement of intent: I believe TUG can best
serve its members and the general TEX community
by working in partnership with the other TEX user
groups worldwide, and sponsoring projects and con-
ferences that will increase interest in and use of TEX.
I’ve been fortunate to be able to work pro bono on
TUG and TEX activities the past several years, and
plan to continue doing so if re-elected.

Johannes Braams

(Candidate for TUG Board of Directors.)
Biography: I encountered TEX and friends some-

time around 1985 when it was installed on our re-
search VAX. It didn’t take long for me to get hooked
on LATEX and I started to think about and work
on multilingual support, later to be known as babel.
Besides that I have been active on quite a number
of activities:

• For TEX and the TEX User Group

– Co-founder and board member of the NTG,
the Dutch-speaking TEX User group

– As chairman of NTG I have served on the
board of directors in 1994/1995 as special
director for the NTG

– designer of a couple of PhD-theses

– Original author of the babel language sup-
port system

– Member of the LATEX3 team, author of one
of the chapters in the LATEX Companion

– author, co-author or maintainer of a couple
of publicly available LATEX packages and
classes

• Professionally

– System administrator for VAX/VMS and
Unix systems

– Manager of a team of System administra-
tors

– Functional administrator of one of the large
administrative systems of KPN (PTT Tele-
com back then)

– Project manager for various IT-projects
within KPN for about 18 years

– Consultant in the area of cyber security in
Industrial Control Systems since 2015

Statement: In the last couple of years I have
been coming back into the TEX-community. I would
very much like to serve this wonderful community by
taking up a role in the board of directors of TUG. I
think TEX should and will be alive and well for many
years to come, as the quality of typesetting that can
be achieved by using TEX is still unsurpassed.

Kaja Christiansen

(Candidate for TUG Board of Directors.)
I was born in Warszawa, Poland and live in the

city of Aarhus, Denmark. I heard about TEX for the
first time in the fall of 1979. In Palo Alto at the time,
I wanted to audit courses at Stanford and my top
priority was lectures by Prof. Donald Knuth. That,
I was told, was not possible as Prof. Knuth was
on leave due to work on a text processing project. . .
This project was TEX! Back home, it didn’t take
long till we had a runnable TEX system in Denmark.

I have served as a Board member since 1997,
co-sponsored the creation of the TEX Development

TUG 2017 election

102 TUGboat, Volume 38 (2017), No. 1

Fund and have been the chair of TUG’s Technical
Council since 1999. I am also a member of the Bur-
sary and Election committees and served as TUG
vice-president from 2003–2011. I share system ad-
ministrator’s responsibilities for the TUG server and
TUG’s web site, and actively contributed to several
earlier versions of TEXlive. Finally, I am a board
member of the Danish TEX Users Group (DK-TUG)
and served as the president of DK-TUG in 2002–
2011.

Statement: TEX and friends are the only soft-
ware I know of that, after 30+ years, is not only alive
and well, but also the best typesetting system to pro-
duce beautiful books and papers. In my rôle as a
member of the board, my special interests have been
projects of immediate value to the TEX community,
among them system administration, TEX Live and
TUGboat.

Enrico Gregorio

(Candidate for TUG Board of Directors.)
Biography: I am associate professor of Algebra

since 1992, currently at the University of Verona
(Italy).

I’m active in TEX related matters since I started
loving it, which was around 1986. I’m the author of
a LATEX programming book in Italian and a member
of GuIT, the Italian TEX users group, which I also
served as president and board member.

Since 1996 I deliver a LATEX course at my Depart-
ment, which is academically recognized and grants
two credits to students who follow it and get their
assignments approved.

I am quite active at the tex.stackexchange.com
site, being the highest reputation member, with
the nickname egreg and also in the GuIT forum
as egreg9.

I have authored some LATEX packages and papers
for TUGboat and ArsTEXnica.

Personal statement: My main interest for the
TEX world is in developing good documentation and
in promoting good style in document writing and
programming.

Supporting LATEX3 development should be one
of the important tasks for TUG in the next years.

Taco Hoekwater

(Candidate for TUG Board of Directors.)
TEX biography: Taco Hoekwater (born in 1969

in Netherlands) has been a ConTEXt user for two
decades. He has been the first user of ConTEXt
outside of PRAGMA ADE and works in tight co-
operation with Hans Hagen to develop TEX engines
and macros for ConTEXt ever since. He has been the
president of the Dutch language-oriented TEX users
group (NTG) from 2009 until 2015 and was the main
editor of the NTG’s magazine MAPS. He has been
the maintainer of MetaPost for a number of years
and a core participant in the LuaTEX development
team. He organised the first international ConTEXt
User Meeting in Epen, Netherlands in 2007, and
various other TEX- and ConTEXt-related conferences
since. He was previously on the TUG board from
2011 to 2015, and is the current president of the
ConTEXt user group (CG).

Statement of intent: As a board member, I
hope to be able to promote future extensions and
applications of Knuth’s amazing piece of software,
as well as raise awareness of ConTEXt outside its
current user base.

Klaus Höppner

(Candidate for TUG Board of Directors.)
Biography: I got a PhD in Physics in 1997.

After several years in the control systems group of an
accelerator center in Darmstadt, I’ve been working at
an accelerator for cancer therapy in Heidelberg. My
first contact to LATEX was in 1991, using it frequently
since then.

I have been preparing the CTAN snapshot on
CD, distributed to the members of many user groups,
from 1999 until 2002. I was the local organizer of
TUG2015 and was heavily involved in the organi-
zation of several DANTE conferences and EuroTEX
2005. I’ve been a member of the TUG board since

TUG 2017 election

TUGboat, Volume 38 (2017), No. 1 103

2005 and was a member of the DANTE board un-
til 2016, including terms acting as president, vice
president, and treasurer.

Statement: As in the past, I want to be the
voice of European users, in particular those who
need characters with funny accents. TUG’s last year
was troublesome. The board had to make a hard
decision. It’s up to you to decide whether it was
right or wrong. Anyway, we have to look forward,
coming back to a stable and constructive cooperation.
TUG has an efficient office and a well-working board,
against all blames. Looking at other user groups,
that’s not too common.

Renovation was an often mentioned goal regard-
ing TUG. Renovation is fine, it just has to be per-
formed by working with the developers of TEX dis-
tributions and maintainers of TEX repositories and
web sites, not by blaming them for the work they do
in their spare time. I’ve seen many improvements in
the past, regarding the installation process of TEX
distributions (e.g. TEX Live) and in the user inter-
face of CTAN. The rather plain and simple layout of
TUG’s web pages may be improved, of course giving
the usability, especially for handicapped, the prece-
dence over fanciness. However, the key information is
there. The TEX community needs volunteers instead
of hot-air merchants. And the TUG board needs
constructive directors. I think the TUG conference
and AGM in Toronto created the base for a new start
that shouldn’t be spoiled.

Frank Mittelbach

(Candidate for TUG Board of Directors.)
I came in contact with TEX in the mid-eighties

and over the years TEX, LATEX and typography in
general became a very important part of my life. In
1990 I took over the maintenance and further devel-
opment of LATEX from Leslie Lamport and together
with a small number of people (most notably David
Carlisle, Chris Rowley and Rainer Schöpf at that
time) we designed and implemented what became
LATEX2e in 1994—the LATEX you still essentially use
today (even though it has undergone smaller modifi-
cations and improvements through by now 25 further
releases).

Despite all predictions made during the last
decades, TEX and LATEX are alive and kicking as
proven by their (still?) strong use in various ways
around the world.

Nevertheless the world has changed and is chang-
ing further and in that changing world user groups
like TUG need to find their place and possibly rein-
vent themselves by redefining and reshaping their
role. With my work on the TUG board I would like
to help in that process and ensure a future for high
quality typography as provided by TEX.

Ross Moore

(Candidate for TUG Board of Directors.)
I would like to offer my services to the TUG

Board. Having been active in the TEX community
for more than 20 years, writing code for packages,
my first TUG meeting was in 1997. Previously I’ve
been a board member, but have taken a rest these
past 2 years. In January, Boris asked if I’d be willing
to return; I was happy to say ‘yes’.

Well, 2017 is likely to be a very important year
for the PDF format, hence for TEX, and for TUG
and other user groups around the world. Already
on 18 January, a document “Information and Com-
munication Technology (ICT) Final Standards and
Guidelines” was published into the US Federal Regis-
ter, effectively becoming law. This affects “standards
for electronic and information technology developed,
procured, maintained, or used by Federal agencies
covered by section 508 of the Rehabilitation Act of
1973, as well as guidelines for telecommunications
equipment [. . .]. These revisions [. . .] are intended to
ensure that information and communication technol-
ogy covered by the respective statutes is accessible to
and usable by individuals with disabilities.” It speci-
fies that “authoring tools capable of exporting PDF
files must conform to PDF 1.7 [. . .] and be capable
of exporting PDF files that conform to PDF/UA-1.”

While documents produced by TEX-based soft-
ware are compatible with PDF 1.7, it is certainly
not the case that they conform to PDF/UA, which
requires producing ‘Tagged PDF’. Thus if LATEX or
other TEX-based software can be used within US
government agencies only as part of a processing
chain requiring other software to complete the final
document. This is not how we normally work with
TEX. Furthermore, the PDF 2.0 standard, also based
upon ‘Tagged PDF’, may appear as early as June.

Over the past 8 years (or more), I have given
talks at annual TUG meetings, demonstrating PDF

TUG 2017 election

104 TUGboat, Volume 38 (2017), No. 1

features that tagging allows, produced using an ex-
tended version of pdf-TEX. Currently I’m working
on a set of LATEX macros that produce valid ‘Tagged
PDF’ documents satisfying the WCAG 2.0 Accessibil-
ity standard. Examples, using different LATEX docu-
ment classes and built with the current pdfTEX, can
be found on my web page http://maths.mq.edu.

au/~ross/TaggedPDF/. These developments need
to be enhanced to become de rigeur for the way we
use TEX and LATEX, else there will be no new TEX
users in years to come. As a Director of TUG, this
outlines an agenda that I’ll be supporting.

Steve Peter

(Candidate for TUG Board of Directors.)
Biography: I am a linguist and publisher orig-

inally from Illinois, but now living in New Jersey.
I first encountered TEX as a technical writer docu-
menting Mathematica. Now I use TEX and friends
for a majority of my publishing work, and work with
several publishers customizing TEX-based publishing
systems. I am especially interested in multilingual
typography and finding a sane way to typeset all of
those crazy symbolisms linguists create. As if that
weren’t bad enough, I also design typefaces. (Do I
know lucrative markets, or what?)

I got involved in TUG via translations for TUG-

boat. I was on the TUG board of directors for several
terms before becoming TUG president in 2011, serv-
ing two terms, after which I returned to the board.

Statement: The future of TEX and TUG lies in
global communication and cooperation to promote
and sustain the amazing typographic quality associ-
ated with TEX and friends. Projects such as LuaTEX
show that there remains a dynamic and bright future
for our preferred typesetting system. I am especially
interested in having TUG support projects (techni-
cal and artistic) that will serve to bolster TEX and
TUG’s visibility in the world at large.

Arthur Reutenauer

(Candidate for TUG Board of Directors.)
Biography: I first joined TUG in 2005 and have

been a member of the board for the past four years.
My interest in TEX started during my university

years when, being a student of mathematics and
physics, I had to use it for typesetting reports. I
was prompted to dive deeper because of my interest
in languages and writing systems, and soon got pas-
sionate about it (see my entry in the TUG interview
corner for excruciating details).

Statement: Today, I am active in TEX develop-
ment as the maintainer of various packages and pro-
grams related to multilingual typesetting (polyglos-
sia, hyph-utf8, X ETEX), and I regularly give talks at
conferences and write articles in journals. I have been
on the board of several TEX users groups, founded
the ConTEXt group, and have contributed to promot-
ing TEX which in my opinion is, still today, one of
the best typesetting systems available. I am truly
amazed at how vibrant our user community is.

If I am reelected to the TUG board, I will do
my best to represent that community in all its diver-
sity. Our organisation has been through some hard
times recently, and I want to help moving forward
and foster the use of TEX and Metafont in the 21st
century.

Will Robertson

(Candidate for TUG Board of Directors.)
My background is mechanical engineering, and

having (finally) completed my PhD in magnetic lev-
itation and vibration control in 2013, I am now a
full-time lecturer at The University of Adelaide. My
interest in LATEX was preceded by an interest in com-
puter typesetting, and I came into LATEX in the midst
of a general transition to Unicode. Early in X ETEX’s
life I wrote some LATEX code to aid the font-loading
process, and from there I became hooked and devel-
oped a number of LATEX packages, including fontspec
and unicode-math. After some time I also became
a member of the LATEX3 project, helping to develop
the expl3 programming language.

Although my day-to-day programming contribu-
tions have diminished in recent years as my personal
and professional responsibilities have increased, my
passion and appreciation for TEX in all its forms only
increases with the years. Personally, I see TEX as
the only typesetting system worth using for most
forms of document production, although I’m happy
for people to hold their own opinions on the matter.
I teach LATEX to our entire mechanical engineering
honours project student cohort, and every year I

TUG 2017 election

TUGboat, Volume 38 (2017), No. 1 105

have overwhelmingly positive feedback on both its
style and utility over what they’re used to.

As a member of the TUG Board of Directors,
I would seek greater recognition for TEX from the
world’s universities and technical companies. Recog-
nition by way of TUG membership, of course, to
allow the TUG organisation to flourish. In addi-
tion, I would seek initiatives for younger users and
developers to engage with TUG, with an emphasis
on open discussion with the number of companies
that now sell access to their online TEX editors and
document previewers.

I believe that my immersion in the current tech-
nical landscape of TEX and friends gives me a view
of the TEX world that is both broad and deep. I
would not sit on the TUG Board as a LATEX3 devel-
oper, but rather as one who has a great wish to see
success across the whole TEX world, from ConTEXt
in its technical mastery, to eplain in its hackability,
to LATEX in its rich ecosystem. TEX has a bright
future, and it would be an honour to contribute to
that future as a member of the TUG Board.

Herbert Schulz

(Candidate for TUG Board of Directors.)
I’ve been using TEX since the mid-1980s; well,

except for several years in the mid- to late-1990s.
During that time period I received a great deal of
help from others as I tried to better understand the
subtleties of using TEX, and later LATEX. After retir-
ing in 2001 I decided to give back to the community
and have helped put together MacTEX as well as
MacTEXtras as well as help others on multiple (both
Mac and non-Mac centric) on-line forums and email
lists.

I would like to become a member of the TUG
Board to further help develop on-line help through
the TUG Web Pages by gathering links to as many
on-line and up-to-date TEX, LATEX and Distribution
help locations along with descriptions of what they
provide. I believe this would be one way to help
increase TUG membership and speed up the learning
curve for new users of TEX.

Michael Sofka

(Candidate for TUG Board of Directors.)
Biography: I have been a TEX user for nearly 30

years, and a member of TUG for 28 years, including
a term on the Board (2001–2005). My use of TEX
started as a programmer for a full service typesetting
company writing macro packages for books, device
drivers for various laser typesetters. I continued
using TEX and LATEX in my work and personal life
after switching to IT in Academia. During this time
TEX and LATEX have changed tremendously, and I
am continually amazed by the creativity of the TEX
community. It is no exaggeration to say my continued
interest and membership in TUG derives from the
delight of discovering new tools and techniques for
traditional and electronic publishing.

Statement: TEX and TUG have come a long way
from the days of half-inch tape distribution, CWEB,
and the Berkeley Pascal compiler. The typesetting
engines available have expanded and grown, and
become far easier to install. The ways in which people
find information about TEX has also changed. When
I joined TUG I was desperate for quality information.
Through TUGboat articles, and many readings of
The TEXbook, I learned how to program and write
using TEX. Today, the World Wide Web, through
sites such as StackExchange, has become the first
source of information. Most people who use TEX
and LATEX might not even be aware of the TEX Users
Group, and the role it plays in funding and promoting
the programs and packages they depend upon. Going
forward, TUG will grow and adapt to this new way
of sharing information, and explore new methods of
attracting TEX users, whether it be through Web
pages, sponsoring development, annual meetings, or
local conferences. I hope you will support me in
being a part of that process.

TUG 2017 election

106 TUGboat, Volume 38 (2017), No. 1

Herbert Voß

(Candidate for TUG Board of Directors.)
I am retired from my job as a teacher for physics,

mathematics and computer science at a so-called
Gymnasium (higher education school), led by the
Jesuit order. For more than ten years I am also a
lecturer at the Free University of Berlin. I started
with one course per year in scientific writing with
LATEX and have now eight courses per year.

I like reading and writing and created together
with the publisher Lehmanns Media the so-called
DANTE Edition, (LA)TEX books from members for
members of DANTE, the German speaking TEX user
group. For DANTE’s 25th anniversary I created a
new edition of Victor Eijkhout’s book TEX by Topic

which was also published in the DANTE series.
I am very interested in creating an ebook from a

LATEX source, which is, of course, still not really easy.
And my other major interest is “LATEX for beginners”:
how can one minimize the problems of the installation
of a TEX distribution and the troubleshooting when
running (LA)TEX on source documents.

Statement: I still believe that TEX has a future.
With LuaTEX we have a great potential to keep TEX
running and I think that TUG can play a major role
to make this public to the rest of the world.

Comic by Randall Munroe (https://xkcd.com),

licensed under CC BY-NC.

[TUG 2017 [

[25th annual GUST [

joint conference

Bachotek, Poland

April 29–May 3, 2017

tug.org/tug2017

[11th ConTEXt meeting [

Butzbach-Maibach, Germany

September 11–17, 2017

meeting.contextgarden.net/2017

The information here comes from the consultants themselves.
We do not include information we know to be false, but we
cannot check out any of the information; we are transmitting
it to you as it was given to us and do not promise it is correct.
Also, this is not an official endorsement of the people listed
here. We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at tug.org/
consultants.html. If you’d like to be listed, please see there.

Aicart Martinez, Mercè

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, LATEX or TEX page layout
and typesetting services to authors or publishers world-wide.
We have been in business since the beginning of 1990. For
more information visit our web site.

Dangerous Curve

+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

We are your macro specialists for TEX or LATEX fine typogra-
phy specs beyond those of the average LATEX macro package.
We take special care to typeset mathematics well.

Not that picky? We also handle most of your typical TEX
and LATEX typesetting needs.

We have been typesetting in the commercial and academic

worlds since 1979.
Our team includes Masters-level computer scientists, jour-

neyman typographers, graphic designers, letterform/font de-
signers, artists, and a co-author of a TEX book.

de Bari, Onofrio and Dominici, Massimiliano

Email: info (at) typotexnica.it

Web: http://www.typotexnica.it
Our skills: layout of books, journals, articles; creation of

LATEX classes and packages; graphic design; conversion be-
tween different formats of documents.

We offer our services (related to publishing in Mathemat-
ics, Physics and Humanities) for documents in Italian, En-
glish, or French. Let us know the work plan and details;
we will find a customized solution. Please check our website
and/or send us email for further details.

Latchman, David

2005 Eye St. Suite #4 Bakersfield, CA 93301

+1 518-951-8786
Email: david.latchman (at) texnical-designs.com

Web: http://www.texnical-designs.com
LATEX consultant specializing in the typesetting of books,
manuscripts, articles, Word document conversions as well as
creating the customized packages to meet your needs. Call or
email to discuss your project or visit my website for further
details.

TUGboat, Volume 38 (2017), No. 1 107

TEXConsultants

Peter, Steve

+1 732 306-6309
Email: speter (at) mac.com

Specializing in foreign language, multilingual, linguistic, and
technical typesetting using most flavors of TEX, I have typeset

books for Pragmatic Programmers, Oxford University Press,
Routledge, and Kluwer, among others, and have helped nu-

merous authors turn rough manuscripts, some with dozens

of languages, into beautiful camera-ready copy. In addition,
I’ve helped publishers write, maintain, and streamline TEX-
based publishing systems. I have an MA in Linguistics from
Harvard University and live in the New York metro area.

Sofka, Michael

8 Providence St.
Albany, NY 12203
+1 518 331-3457
Email: michael.sofka (at) gmail.com

Skilled, personalized TEX and LATEX consulting and program-

ming services.
I offer over 25 years of experience in programming, macro

writing, and typesetting books, articles, newsletters, and the-
ses in TEX and LATEX: Automated document conversion; Pro-
gramming in Perl, C, C++ and other languages; Writing and
customizing macro packages in TEX or LATEX; Generating
custom output in PDF, HTML and XML; Data format con-

version; Databases.
If you have a specialized TEX or LATEX need, or if you

are looking for the solution to your typographic problems,
contact me. I will be happy to discuss your project.

Veytsman, Boris

46871 Antioch Pl.
Sterling, VA 20164
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net
TEX and LATEX consulting, training and seminars. Integra-
tion with databases, automated document preparation, cus-
tom LATEX packages, conversions and much more. I have
about two decades of experience in TEX and three decades
of experience in teaching & training. I have authored several
packages on CTAN, Perl packages on CPAN, R packages on
CRAN, published papers in TEX related journals, and con-

ducted several workshops on TEX and related subjects.

Webley, Jonathan

2/4 31 St Andrews St
Glasgow, G1 5PB, UK
07914344479
Email: jonathan.webley (at) gmail.com

I’m a proofreader, copy-editor, and LATEX typesetter. I spe-
cialize in math, physics, and IT. However, I’m comfortable

with most other science, engineering and technical material
and I’m willing to undertake most LATEX work. I’m good

with equations and tricky tables, and converting a Word doc-
ument to LATEX. I’ve done hundreds of papers for journals
over the years. Samples of work can be supplied on request.

2017

March 26 TUG2017, deadline for presentation
proposals. tug.org/tug2017

Mar 30 – 31 Centre for Printing History & Culture,
“From Craft to Technology and
Back Again: print’s progress in the
twentieth century”,
National Print Museum, Dublin, Ireland.
http://www.cphc.org.uk/events

Apr 9 TUG election, deadline for receipt of
ballots. tug.org/election/2017

TUG2017: TUG@BachoTEX2017

Bachotek, Poland.

Apr 29 –
May 3

The 38th annual meeting of the
TEX Users Group, jointly with the

25th meeting of GUST

and GUST’s 25th birthday.
“Premises, predilections, predictions”.
tug.org/tug2017

www.gust.org.pl/bachotex/2017-en

May 12 TUGboat 38:2 (proceedings issue),
submission deadline.

May 21 – 26 16th Annual Book History Workshop,
Texas A&M University,
College Station, Texas.
cushing.library.tamu.edu/programs/

bookhistoryworkshop

May 25 – 27 TYPO Berlin 2017, “Wanderlust”,
Berlin, Germany.
typotalks.com/berlin

Jun 5 – 16 Mills College Summer Institute for
Book and Print Technologies,
Oakland, California.
millsbookartsummer.org

108 TUGboat, Volume 38 (2017), No. 1

Calendar

Jun 9 – 12 SHARP 2017, “Technologies of the Book”.
Society for the History of Authorship,
Reading & Publishing.
Victoria, BC, Canada.
www.sharpweb.org/main

Jun 26 – 29 Book history workshop, Institut d’histoire
du livre, Lyon, France. ihl.enssib.fr

Jul 5 – 7 The Fifteenth International Conference
on New Directions in the Humanities
(formerly Books, Publishing, and
Libraries), “New Directions of the
Humanities in the Knowledge Society”,
Imperial College, London, UK.
thehumanities.com/2017-conference

Jul 30 –
Aug 3

SIGGRAPH 2017, “At the ♥ of
Computer Graphics & Interactive
Techniques”, Los Angeles, California.
s2017.siggraph.org

Aug 8 – 11 Digital Humanities 2017, Alliance of
Digital Humanities Organizations,
“Access/Accès”, McGill University,
Montréal, Canada. dh2017.adho.org

Aug 23 – 27 TypeCon 2017, Boston, Massachusetts.
typecon.com

Sep 1 TUGboat 38:3 (regular issue), submission
deadline.

Sep 11 – 17 11th International ConTEXt Meeting,
“ConTEXt Gardening”,
Maibacher Schweiz, Germany.
meeting.contextgarden.net/2017

Sep 23 DANTE 2017 Herbsttagung and

57th meeting,
VHS, Mönchengladbach, Germany.
www.dante.de/events.html

2018

Mar 2 TUGboat 39:1 (regular issue), submission
deadline.

Status as of 15 March 2017

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 815 301-3568. e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

User group meeting announcements are posted at lists.tug.org/tex-meetings. In-
terested users can subscribe and/or post to the list, and are encouraged to do so.

Other calendars of typographic interest are linked from tug.org/calendar.html.

TUGBOAT Volume 38 (2017), No. 1

Introductory

5 Barbara Beeton / Editorial comments
• typography and TUGboat news

31 Brian Dunn / Programming LATEX—A survey of documentation and packages
• resources for writing LATEX packages and code

3 Jim Hefferon / President’s note
• TUG news and reflections

34 Gerd Neugebauer / CTAN goes 2.0—New community features and more
• user ratings and descriptions, activity reports, newsfeeds, and more

10 David Teplow / What’s a Professor of Neurology doing using LATEX?
• personal history and experiences of LATEX in a non-LATEX world

7 David Walden / Interview with Scott Pakin
• developer of many LATEX packages and other TEX-related tools

Intermediate

87 Karl Berry / The treasure chest
• new CTAN packages, November 2016–March 2017

18 Charles Bigelow / Review and summaries: The History of Typographic Writing—The 20th century
• chapter-by-chapter summaries of this set of extended essays; volume 1 of 2

16 Peter Flynn / Typographers’ Inn
• Layouts; afterthought

54 LATEX Project Team / LATEX news, issue 26, January 2017
• ε-TEX; default encodings in X ELATEX and LuaLATEX; \showhyphens; fixltx2e, latexbug, amsmath, tools

56 LATEX Project Team / LATEX3 news, issue 10, November 2016
• l3build; automating expl3 testing; \lowercase and \uppercase; \parshape model; global pagination

44 Hal Snyder / SageMathCloud for collaborative document editing and scientific computing
• open-source web platform for real-time technical document collaboration

41 Behzad Salimi / How to use basic color models in LATEX
• tutorial on RGB, CMYK, grayscale color model usage, and more

28 Michael Sharpe / BaskervilleF
• a revival of Fry’s Baskerville, adapted from Libre Baskerville

39 Thomas Thurnherr / An introduction to the LATEX cross-referencing system
• built-in commands and useful packages: cleveref, varioref, hyperref, xr[-hyper], showlabels

Intermediate Plus

23 Simon Cozens / SILE: A new typesetting system
• a new Lua typesetter using TEX algorithms, Unicode, and major libraries

58 Brian Dunn / A key/value interface for generating LATEX floats— the keyfloat package
• overview of features of this package for convenient float specifications

48 Brian Dunn / Producing HTML directly from LATEX—the lwarp package
• modular and convenient system for producing HTML directly from LATEX

61 Peter Wilson / Glisterings: Hanging; Safety in numbers
• overhangs; paragraphs in equations; superstitious enumerations

Advanced

65 Udo Wermuth / The optimal value for \emergencystretch
• thorough discussion of the theory and practice of the third pass of line breaking

Reports and notices

96 From other TEX journals: Die TEXnische Komödie 4/2016–1/2017; Zpravodaj 2015/3–4–2016/1–4;
Eutypon 36–37 (October 2016)

89 Jim Hefferon / More Math Into LATEX, 5th edition, by George Grätzer
• review of this new edition of a classic LATEX text

90 Boris Veytsman / The Noblest Roman: A History of the Centaur Types . . . by Jerry Kelly and Misha Beletsky
• review of this comprehensive history of the famous Centaur type design

93 Boris Veytsman / Manuale Calligraphicum, David Pankow, ed.
• review of this beautiful collection of calligraphy by students of Hermann Zapf

94 Boris Veytsman / Seminar review: Presenting data and information by Edward Tufte
• review of and reflections on this seminar by the renowned Edward Tufte

92 David Walden / Track Changes, by Matthew G. Kirschenbaum
• review of this study of numerous authors’ stories of adopting writing software

106 Randall Munroe / File extensions (cartoon)

100 TUG Election committee / TUG 2017 election

2 Institutional members

99 Klaus Höppner / TUG financial statements for 2016

107 TEX consulting and production services

108 Calendar

