
48 TUGboat, Volume 37 (2016), No. 1

Paragraph designer with galley approach

Oleg Parashchenko

Abstract

The LATEX package paravesp.sty controls the space
above and below paragraphs.

The Python script parades.py generates para-
graph styles with support of space above, space below
and tabulators.

The system imposes the galley approach on the
document.

1 Introduction

The goal was to support one layout specification
defining the space above and below paragraphs. This
is not how TEX works. To satisfy the requirement,
the package paravesp (PARAgraph VErtical SPace)
was developed.

The solution imposes the galley approach on
the document. Paragraphs need to be wrapped by
a tracking code, which controls how the material is
added into the TEX vertical list.

The paragraph designer appeared as a gener-
alization of the tracking code to other paragraph
properties. The user describes the formatting op-
tions in a Python file. The program parades.py
converts the definitions into TEX code.

The system works successfully in production,
but so far is limited to my needs. A complete set
of paragraph properties is not an immediate goal.
Switching to the package xgalley from the LATEX3
project might be a step in future development.

This article starts with the definition of the
space between paragraphs and how it is implemented.
The example demonstrates the use of the commands,
which are then described using pseudocode.

The paragraph designer is first illustrated by a
sample LATEX fragment, which uses the paragraph
styles. For each of the three types of styles, we
give a sample definition in Python and the result
of translating to TEX code, with explanations. Fi-
nally, a reference section lists all the supported para-
graph properties and the commands of the Python
parades.py tool.

The article concludes with information on how
to get the code and run it.

2 Space between paragraphs

The notion of “space between paragraphs” can be
defined in various ways.

In one definition, the space between paragraphs
is the amount of additional space relative to what
happens inside a paragraph. This is what most

typesetting engines implement, and what is named
parskip in TEX.

The definition for paravesp.sty is: the space
between paragraphs is the distance between the base-
line of the preceding paragraph and the top of the
next paragraph. The code ensures that this distance
is larger than prevdepth.

..Apq.

Apq

.

\parskip

.

space as
defined by
paravesp

2.1 Usage

The package paravesp imposes restrictions on how to
construct a document. Otherwise it can’t guarantee
the desired space above or below paragraphs.

• Switches between the vertical and horizontal
modes must be controlled. TEX’s automatic
switching is partially forbidden.

• The register \parskip belongs to the controlling
code.

• The commands rely on the automatic insertion
of parskip glue by TEX.

The guidelines for the controlling code are:
• At the end of a paragraph (after \par) use the

command \ParaSpaceBelow.
• At the beginning of a paragraph, while still in

the vertical mode, use \ParaSpaceAbove.
• At the beginning of block content, for which
TEX will not insert \parskip automatically, use
both \ParaSpaceAbove and \IssueParaSpace.
An example:

\ParaSpaceAbove{20pt}%
{\HeadingStyle Heading}\par
\ParaSpaceBelow{20pt}%
%
\ParaSpaceAbove{10pt}%
A paragraph of normal text. . . \par
\ParaSpaceBelow{10pt}%
%
\ParaSpaceAbove{10pt}%
Another paragraph of normal text. . . \par
\ParaSpaceBelow{10pt}%
%
\ParaSpaceAbove{20pt}\IssueParaSpace
\vbox{\fbox{Some info in a box}}%
\ParaSpaceBelow{20pt}%

Oleg Parashchenko



TUGboat, Volume 37 (2016), No. 1 49

2.2 Technical details

Below is a simplified version of what happens. Special
cases are not shown.

After \ParaSpaceBelow{length}:
• vertical list is not changed
• parskip := length − prevdepth
• prevdepth is not changed

The command \ParaSpaceBelow splits its argu-
ment between two lengths, prevdepth and parskip.
This is a precaution for the case when the next ele-
ment in the vertical list is not controlled by the galley.
Thanks to the retained prevdepth, a possible layout
corruption is avoided.

After \ParaSpaceAbove{length}:
• vertical list: vskip −prevdepth,

penalty as before vskip
• parskip := max(length, old_length)
• prevdepth := −1000pt
The command \ParaSpaceAbove, which pre-

cedes a paragraph, can’t know how much interline
glue induced by baselineskip will be added. As a
solution, the command disables this glue completely
by setting prevdepth to minus infinity.

After \IssueParaSpace:
• vertical list: vskip parskip,

penalty as before vskip
• parskip := 0pt
• prevdepth := −1000pt

You need the command \IssueParaSpace when
TEX does not insert \parskip automatically, for
example, before a box.

The command expects that it is called after
\ParaSpaceAbove.

After \IgnoreSpaceAboveNextPara:
• vertical list is not changed
• parskip := −0.01pt
• prevdepth is not changed

The special case is parskip less than 0pt, which
cancels the vertical spacing. It is useful when display
content (image, list, etc.) is the first element inside
a table cell.

3 Paragraph designer

The paragraph designer transforms Python objects
with desired paragraph properties into TEX code
which implements these properties.

The main benefit is that the paragraphs defini-
tions can be constructed in such way that the repe-
titions (for example, font names) can be extracted
into common settings.

The system proposes that every block-level ele-
ment of a document should be wrapped into a com-
mand or an environment, which support the galley
approach. The suggested sorts of the paragraphs:

• long body text paragraphs, wrapped by an en-
vironment,

• short paragraphs, wrapped by a command, and
• short paragraphs with tab stops, also wrapped

by a command.
A document made using this approach looks

structured. Here is an example.
\HeadI{Universal Declaration of Human Rights}
\HeadII{Preamble}
\begin{para}Whereas recognition...\end{para}
\begin{para}Whereas disregard

and contempt...\end{para}
...
\HeadII{Article 14}
\begin{udhrlist}
\listitem{1}{Everyone has the right ...}
\listitem{2}{This right may not be invoked ...}
\end{udhrlist}

The sample is generated automatically from the
XML source. The generation script, the paragraph
styles as Python definition, the .sty code, and the
PDF result are included in the package in the direc-
tory example.

3.1 Example: the command \HeadI

Commands are recommended for small paragraphs,
such as headings and captions.
\HeadI{Universal Declaration of Human Rights}

A sample definition in Python:
add_style(ParagraphOptions(cmd=’HeadI’,

space_above=’20pt’,
space_below=’20pt’,
fontsize=’12pt’, baseline=’14pt’,
fontcmd=r’\fontseries{b}\selectfont’,
afterpar=r’\nobreak’,
))

The properties of the paragraph are stored inside
the object ParagraphOptions. As in many other
programming languages, the backslash (\) is nor-
mally an escape character (not in the TEX sense!),
and must be doubled inside strings (\\). An alter-
native in Python, as seen in the example here, is to
prefix the string with r, which disables the escape.

The function add_style remembers the object
in the global styles list. At the end of the Python
script, the objects in the list are converted to TEX
code.

The result of the conversion:
\newcommand{\HeadI}[1]{{%

Paragraph designer with galley approach



50 TUGboat, Volume 37 (2016), No. 1

\fontsize{12pt}{14pt}\fontseries{b}\selectfont%
\ParaSpaceAbove{20pt}%
\noindent #1\par}%
\nobreak\ParaSpaceBelow{20pt}}

The peculiarities are:
• The paragraph is created explicitly with
\noindent #1\par.

• The text and the pre-paragraph settings are in
a group. This way settings such as font changes
affect only the given paragraph and not the rest
of the document.

3.2 Example: the environment para

Environments are recommended for wrapping para-
graphs in the text body.
\begin{para}Whereas recognition...\end{para}
\begin{para}Whereas disregard

and contempt...\end{para}

A sample definition in Python:
add_style(ParagraphOptions(cmd=’paracmd’,

env=’para’,
space_above=’10pt plus1pt minus1pt’,
))

The result of the conversion, in a .sty file:
\newenvironment{para}{%

\ParaSpaceAbove{10pt plus1pt minus1pt}%
\noindent \ignorespaces}

{\par\global\def\pd@after@para{%
\ParaSpaceBelow{0pt}}%
\aftergroup\pd@after@para}

The paragraph is started explicitly with the
command \noindent, followed by \ignorespaces,
and finished, also explicitly, with \par.

The changes inside an environment, including
post-paragraph settings, are again local and thus au-
tomatically discarded when the environment’s group
is finished. Therefore, using \aftergroup, the post-
paragraph settings are applied after the end of the
environment.

3.3 Example: tab stops in listitem

Paragraphs with tab stops are used to implement list
items, captions, table of content entries and similar
elements. The list paragraphs in the following exam-
ple have one tab stop to store the list numbering.
\listitem{1}{Everyone has the right ...}
\listitem{2}{This right

may not be invoked ...}

A sample definition in Python:
add_style(ParagraphOptions(cmd=’listitem’,

moresetup=’\\interlinepenalty=150\\relax’,
space_above=’8pt’,
boxes=((’0cm’, ’0.5cm’),),
leftskip=’0.5cm’))

The argument boxes is a list of pairs. Each
pair gives the offset of the tab stop from left and
the width of the box. Due to peculiarities of Python,
one-element lists of pairs need an extra comma inside.

The position of the paragraph text should be
tuned manually to avoid overlapping with the tab
stop boxes. In the example above, the left margin is
set to 0.5cm using \leftskip.

The result of the conversion, in a .sty file, is
complicated:

\newcommand{\listitem}[2]{{%
\ParaSpaceAbove{8pt}%
\interlinepenalty=150\relax%
\noindent \advance\pd@leftskip by 0.5cm %
\hbox to 0pt{\hss\hbox to 0.5cm{#1\hss}%

\dimen0=0.5cm %
\advance\dimen0 by -0cm %
\advance\dimen0 by -0.5cm \hskip\dimen0}%
\the\everypar #2\par}%

\ParaSpaceBelow{0pt}}

The skeleton of the list paragraph has these
elements:

\noindent tab stops \everypar text \par

The use of \noindent and \par is clear. The
paragraph starts with the tab stop boxes, therefore
TEX does not insert \everypar automatically, there-
fore the code does it.

The token \pd@leftskip is a \let-synonym for
\leftskip. In a right-to-left document one would
set the token to \rightskip.

A tab stop is constructed from two nested boxes.
The inner box gives the width of the tab stop and
aligns the content to the left:

\hbox to width{content \hss}

The outer box puts the inner box at the specified
offset.

\hbox to 0pt{\hss inner_box%
\dimen0=leftskip
\advance\dimen0 by -offset
\advance\dimen0 by -width
\hskip\dimen0}%

The calculation is not obvious. The illustration
in figure 1 provides the source for it.

The image reflects how the boxes, glues and
lengths are related. We see that offset+width+x is
leftskip, therefore x (\dimen0) is leftskip minus
offset minus width.

4 Paragraph designer reference

Denomination: cmd, env, stylecmd. These are
the names for the generated commands and environ-
ments.

Oleg Parashchenko



TUGboat, Volume 37 (2016), No. 1 51

..

Inner hbox

..

\hbox to 0pt

.

\leftskip

.

offset

.

\hss

.

width

.

x

Figure 1: Calculation for tab stops.

Examples of cmd and env have already been
given. The command for stylecmd makes a char-
acter style, which affects the font and does not set
the paragraph properties (vertical spacing, tabulars,
etc.).

A sample paragraph definition:
ParagraphOptions(cmd="Caption,

stylecmd="UseCaption", ...)
In a LATEX document you could then write:

{\UseCaption Article 1.} All human beings
are born free and equal in dignity ...

All the three denominators can be mixed to-
gether at once. You must specify cmd even if you
don’t need it.
Fonts: fontsize, baseline, fontcmd.

The only supported font properties are its size
and line spacing. The other properties, such as width
and series, need to be manually defined in fontcmd:
ParagraphOptions(...,

fontcmd=r’\fontseries{b}\selectfont’,
...)

Dimensions: leftskip, hsize, space_above and
space_below.

The names are self-explanatory.
The default value for both space_above and

space_below is 0pt. This means that if you haven’t
given a value, then two consecutive paragraphs will
touch each other, as if \nointerlineskip were given
between them.

Use the special value #natural to disable the
use of \ParaSpaceAbove or \ParaSpaceBelow and
instead restore the default TEX behaviour.
ParagraphOptions(...,

space_above=’#natural’,
space_below=’#natural’, ...)

Tuning: moresetup, afterpar, preamble_arg1,
preamble_arg2, preamble_arg3, preamble_arg4.

The content of moresetup is literally copied into
the style definition at the end of the paragraph setup,

just before \noindent. A few ideas what can be set
in moresetup:

• A color for the paragraph text,
• \penalty to suggest a page break,
• \interlinepenalty for list item paragraphs, to

avoid a page breaks inside.
The content of afterpar is literally copied into

the style definition directly after {...\par}. This is
a good place to put \nobreak or some other penalty.

The content of preamble_argN is copied literally
into the style definition directly before #N. Possible
applications:

• Add \ignorespaces if the text might contain
spurious spaces at the beginning.

• For list item paragraphs, \hfil centers the tab
box content, \hfill aligns to the right.

Tab stops. Tab stops are hboxes of a given width
at given offset. All the offsets are relative to the left
border of the text flow.
ParagraphOptions(...,

boxes=(
(offset1,width1),
(offset2,width2),
...,
(offset_n,width_n)),

...)

Due to Python peculiarities, a one-element list
of lists needs an additional comma, otherwise Python
unwraps one level of parentheses. Thus, the correct
way is:
ParagraphOptions(...,

boxes=((offset,width),), # comma inside
...)

The content of the boxes is left-aligned. To cen-
ter or right-align the content, add \hfil or \hfill
through the parameter preamble_argN.

Inheritance. The parameter parent uses an ex-
isting paragraph object as the starting point for the
paragraph being defined. Properties not specified
in the new paragraph definition are taken from the
parent.
head_i = ParagraphOptions(

cmd=’HeadI’,
fontsize=’12pt’, baseline=’14pt’,
fontcmd=r’\fontseries{b}\selectfont’,
... )

ParagraphOptions(cmd=’HeadII’,
parent=head_i, # Inheritance
fontsize=’11pt’, baseline=’13pt’,
... )

Paragraph designer with galley approach



52 TUGboat, Volume 37 (2016), No. 1

In the example, the paragraph HeadII inherits
fontcmd from HeadI, but uses the custom fontsize
and baseline settings.

The infrastructure. A Python file with defini-
tions: (1) starts by importing the support code;
(2) continues with collecting the definitions; and
(3) finishes with the command to dump the TEX
result.
from parades import * # (1)

add_style(ParagraphOptions(...)) # (2)
add_style(ParagraphOptions(...))
...
add_style(ParagraphOptions(...))

main(’paras’) # (3)

The parameter of the function main (in this
example paras) is the name of the generated sty-
package as given by \ProvidesPackage.

5 Getting and running the code

All the files, including the example, are contained
in the CTAN package parades (http://ctan.org/
pkg/parades). Alternatively, you can get the source
code from github in the repository http://github.
com/olpa/tex, in the folder paragraph_designer.

Put the file paravesp.sty into a directory in
which TEX will find it. Put the file parades.py into
a directory in which Python will find it.

The paragraph generator runs from the com-
mand line.
$ python input-defs.py [output-defs.sty]

The script input-defs.py is the file with the
Python definitions of the paragraphs. The optional
argument is the name of a .sty file with the gener-
ated TEX definitions. If the output file is not speci-
fied, the code is dumped to the standard output.

The directory example contains a sample project.
Refer to the file README in this directory for details
how to use it.

6 Conclusion

The paragraph designer helps both on the technical
and organization levels. On the technical level, it
helps generating code for paragraph styles. It would
be an unpleasant and error-prone task to write this
code manually:

• Space above and below a paragraph.
• Paragraphs with tab stops such as list items,

table of content entries, headers.
On the organizational level, the Python scripts

allow one to have a common code base and adapt it
to the needs of specific layouts.

The LATEX package paravesp can be used inde-
pendently of the paragraph designer to implement
vertical spacing.

There are problems with the package paravesp
and the paragraph designer:

• Many features are not implemented and some
need rework.

• The LATEX code written in the galley style is too
verbose to be typeset manually.
The paragraph designer has been used in a pro-

duction system for years. Thus the benefits can
outweigh the problems.

� Oleg Parashchenko
bitplant.de GmbH
Fabrikstr. 15
89520 Heidenheim, Germany
olpa (at) uucode dot com
http://uucode.com/

Oleg Parashchenko

http://ctan.org/pkg/parades
http://ctan.org/pkg/parades
http://github.com/olpa/tex
http://github.com/olpa/tex

	Introduction
	Space between paragraphs
	Usage
	Technical details

	Paragraph designer
	Example: the command HeadI
	Example: the environment para
	Example: tab stops in listitem

	Paragraph designer reference
	Getting and running the code
	Conclusion

