TUGboat, Volume 32 (2011), No. 3

Towards BTEX coding standards
Didier Verna

Abstract

Because ITEX is only a macro expansion system, the
language does not impose any kind of good software
engineering practice, program structure or coding
style. Maybe because in the ITEX world, collabo-
ration is not so widespread, the idea of some IXTEX
coding standards is not so pressing as with other
programming languages. Over the years, however,
the permanent flow of personal development experi-
ences contributed to shaping our own taste in terms
of coding style. In this paper, we report on all these
experiences and describe the programming practices
that have helped us improve the quality of our code.

1 Introduction

If the notion of coding style is probably almost as
old as computer science itself, the concern for style
in general is even older. An interesting starting
point is the book “The Elements of Style” [16], first
published in 1918 (the fourth edition appeared in
1999). This book is a style guide for writing Ameri-
can English and has been a source of inspiration for
similar books in computer science later on. It is in-
teresting to mention the fact that this book has been
virulently criticized since its very first publication.
Although generally considered as a reference book,
the authors were also accused of being condescending
in tone and of having only a very partial view on
what proper American English should be. This is
already a strong indication that talking about style,
whether in natural of programming languages, can
be quite controversial. Indeed, a style, in large part,
is a matter of personal taste before anything else.
Consequently, what is considered to be good style by
one person can legitimately be viewed as bad style
by another person.

The first book on style in programming lan-
guages was published in 1974 (a second edition ap-
peared in 1978) and was entitled “The Elements of
Programming Style” [8], as an explicit reference to
its aforementioned predecessor. Although this book
was not dedicated to one programming language in
particular, it was still largely influenced by the few of
that time. Since then, numerous books on program-
ming style appeared, many of them focusing on one
specific language, and being entitled “The Elements
of XXX Programming Style” to follow the tradition.
This includes recent languages such as C#.

309

- Readability
- Maintainability

- Robustness
- Reliability

“n "
- Extensibility
- Intercession

Figure 1: The coding standards many-festos

1.1 The coding standards many-festos

If one looks at the rationale behind most coding
styles, the intended purpose is always to

help programmers read and understand
source code, not only their own, but that of
others.

An interesting paragraph from the introductory sec-
tion of the GNU Coding Standards [15] reads as
follows:

Their purpose is to make the GNU system
clean, consistent, and easy to install. This
document can also be read as a guide

to writing portable, robust and reliable
programs.

From these widely accepted views on the notion of
coding style, we can draw three different points of
view on the subject, as depicted in figure 1.

Human From the human point of view, using a
proper coding style helps to improve the readability
of source code, and as a corollary, its maintainability.

Software From the software point of view, using
a proper coding style helps to make the program
more robust and reliable. Note that there is a subtle
but important difference between robustness and
reliability. Reliability means that the program should
do what it is expected to do. Robustness means that
the program should handle unexpected situations as
gracefully as possible.

Man-in-the-middle Third and last, the interme-
diate point of view is at the interface between hu-
mans and programs (note the plural). In this regard,
the GNU Coding Standards mention the question of
portability. This is essentially due to the fact that
the GNU project mostly deals with C code, for which
portability is indeed an important problem. This,

Towards IWTEX coding standards

310

however, is much less of a concern to us because prac-
tically all IATEX programs are inherently portable
(TEX itself being mostly a virtual machine). A much
more important question for us is the question of
extensibility and more generally, intercession.

By extensibility, we mean to answer the follow-
ing question: given a package that does almost what
a specific user wants, is it possible to make this
package provide the requested functionality without
modifying its internal implementation? If the an-
swer is yes, then the package (or at least one of its
functionalities) can be said to be extensible. In this
context, one of the purposes of a coding style is to
help provide more, and better extensibility.

Unfortunately, full extensibility is only a utopia
because ultimately, the specific desires of a user are
completely unpredictable. In such situations, a pack-
age may need to be internally modified. This is
what we call “intercession”. The terminology comes
from the more general field of so-called “reflexive”
languages [10, 14]. Roughly speaking, a reflexive
language provides the ability to reason about the
program itself (procedural reflection) or even the
language itself (behavioral reflection). Reflection is
usually decomposed into “introspection” (the ability
to look at yourself) and “intercession” (the ability
to modify yourself).

While extension is usually a matter of user—
package interaction, intercession is usually due to
inter-package interactions. In the MTEX world, we
can identify three major sources of intercession.

1. IXTEX core modification: a package needs to
modify ITEX itself in order to provide the re-
quired functionality.

2. Package inter-compatibility: a package needs to
co-exist with another package, and this requires
modifications in either or both of them.

3. Package conflict: two (or more) packages inter-
cede on the same piece of code but in different
ways, or one package modifies some code and
another package is not made aware of these mod-
ifications. In both cases, compilation breaks.

Every ITEX user faces the “package conflict night-
mare” one day or another [19], to the point that this
is probably the major gripe against it these days.
Consequently, we would hope that a proper coding
style addresses this issue, for example by providing
design patterns for graceful inter-package compati-
bility handling.

1.2 Consistency

One final keyword that appears quite a lot in discus-
sions on coding style is “consistency”. Given the fact

Didier Verna

TUGhboat, Volume 32 (2011), No. 3

that there is much personal taste in a coding style,
consistency means that the exact coding style that
you decide to use is actually less important than the
fact of sticking to it. A person not familiar with your
coding style can probably get used to it, provided
that it is used consistently in the whole source code,
and that for example, similar situations are identifi-
able as such because the same idioms are used in all
of them.

1.3 30 years and no style?

Since more or less official coding standards seem to
exist for many programming languages and commu-
nities, one can’t help but wonder why, after 30 years
of existence, the MTEX community still doesn’t have
any. Several reasons come to mind.

1.3.1 Learning by example

KTEX is not a real programming language. It is not
even a macro expansion system. KTEX is a library: a
macro layer written on top of TEX. Because of that,
the purpose of I“TEX can be anything you might want
to do related to typography, which can eventually be
expressed in terms of TEX. Consequently, it is im-
possible to write “The KTEX programming language”
book and in fact, this book doesn’t exist. The things
that such a book would have to describe are infinite:
they depend on every user’s goal. Note that the
BTEX Companion [12] is not a WTEX programming
book. For the most part, it describes some of the
core functionalities, plus a lot of package features.

This explains why learning by example is an
important process in the KTEX community. It is
quite easy to backtrack from a particular feature to
the way it is done: you just need to look at the im-
plementation. As a result, many IATEX programmers
(especially newcomers) start by actually looking at
what other people did before us, copy-pasting or im-
itating functionality until they reach a satisfactory
level of understanding. In doing so, they also implic-
itly (and unconsciously) inherit the coding style (or
lack thereof) of the code they are getting inspiration
from. This behavior actually encourages legacy (the
good and the bad) and leads to a very heterogeneous
code base.

1.3.2 Lack of help

Because it is only a macro library, KTEX is not a
structured language but a very liberal one. By pro-
viding such paradigms as object-oriented, functional,
logic, declarative programming, etc., traditional lan-
guages provide support for some “elements of style”
by construction: the choice of a specific program-
ming paradigm already imposes a particular design

TUGboat, Volume 32 (2011), No. 3

on your program. Omn the other hand, when you
program in IXTEX, you are essentially on your own.
You don’t get any help from the language itself.

For the same reason (lack of structure), get-
ting help from your favorite text editor is even more
complicated. Even theoretically simple things such
as indentation can be an editor’s nightmare. In-
denting within braces in a traditional language is
relatively simple: it’s a matter of syntactic analysis.
But suppose that you want to indent the contents
of \if<whatever> conditionals in (I#)TEX. First,
this is not a syntactic construct but a macro call.
Next, the closing \fi may be difficult to spot: it
may be the result of the expansion of another macro
for instance. Worse, its precise location may also
depend on a dynamic (run-time) context! This shows
that in general, it is impossible to get even simple
things right without doing a full semantic analysis
of the program, which itself may not even suffice.
In a powerful development environment such as the
combination of (X)Emacs [3] / AUC-TEX [1], you will
typically need to indent the first line of a conditional
by hand, and the rest will follow by simply hitting
the TAB key. If, on the other hand, you let the editor
do everything, you end up with a broken indentation
layout scheme.

1.3.3 Lack of need

A survey conducted in 2010 [19] shows that ETEX
is mostly a world of dwarfs. In the TEX Live 2009
distribution, the average size of a package is 327 lines
of code, the median being 134. Admittedly, very few
people would feel the need for a proper coding style,
when it comes to maintaining just a few hundred lines
of code. In addition to that, it seems that IATEX suf-
fers from an anti-social development syndrome: most
packages are single-authored and maintained, which
leads to the same kind of consequences. When no
interaction is required between people, establishing
a set of coding standards for working on a common
ground is a far less pressing issue.

On the other hand, imagine the difference with
an industrial language in which millions of lines of
code would be maintained by a team of hundreds of
developers. The need for coding standards is obvious.
Unfortunately, if you consider the IXTEX code base
on CTAN — [2], it is a huge one, only maintained in
a completely independent and uncontrolled fashion.

1.4 30 years and almost no style. ..

Claiming that there is no coding style for WTEX turns
out to be a slight exaggeration. By looking closely
enough, we can spot a few places where the question
is indeed addressed.

311

1.4.1 Tools

TEX itself provides some facilities for stylish pro-
gramming. The equivalence between blank lines and
\par encourages you to leave more room in your text,
therefore improving its readability. TEX also con-
veniently ignores blanks at the beginning of lines,
a crucial behavior when it comes to indenting your
code without leaving spurious blanks in the generated
output.

A number of packages (e.g. calc and ifthen)
provide additional layers of abstraction on top of the
ITEX kernel, therefore providing structure where it
was originally lacking. More abstraction means im-
proved readability. Some packages like record even
go as far as providing data structures or program-
ming paradigms coming from other, more traditional
programming languages. Of course, the difficulty
here is to be aware of the existence of such packages.

1.4.2 Conventions

A number of coding conventions have existed for a
long time now, including in the I#TEX kernel itself.
The use of lowercase letters for user-level macros
and mixed up/downcase for extension names (e.g.
\usepackage vs. \RequirePackage) is one of them.
The special treatment of the @ character in macro
names effectively allows one to make a clear distinc-
tion between internal and external code.

It is worth mentioning that ITEX itself does
not fully adhere to its own conventions (we see here
a typical effect of legacy). For example, the macro
\hbox is not supposed to be used externally, and
hence should have been named with an @ character
somewhere. Conversely, a better name for \m@ne
would have been \MinusOne.

1.4.3 Documentation

The E'TEX Companion contains some advice on style.
Section 2.1 describes how document files should be
structured and Section A.4 does the same for package
source code (as we will see later, we disagree with
some of the advice given there). It also mentions
some of the development tools that help making
source code more structured and modular (e.g. doc,
docstrip, 1txdoc).

Some of these packages are described at length,
although this does not count as style advice: only
mentioning their existence counts, the rest is tech-
nical documentation. Modulo this remark, it turns
out that the amount of style advice provided in the
Companion is extremely limited: it amounts to less
than 1% of the book.

Towards IWTEX coding standards

312

1.5 The need for coding standards

Even though we can explain the lack of ITEX coding
standards, and even though some people certainly
don’t feel any need for them, we still think that they
would be a valuable addition to the ITEX world,
especially in a much more developed form than what
we have described in the previous section. Some
important reasons for this are provided below.

Learning by good example We have seen ear-
lier how ITEX encourages “learning by example”.
Obviously, the existence of coding standards would
help filter out poor quality code and have people
learn mostly by good example only.

Homogeneity We have also seen how a plethora
of small packages with no coding style, or author-
specific ones only, contributes to make KTEX a very
heterogeneous world. This is the point at which it
is important to make a distinction between coding
style and coding standards. A coding style can be
seen as a set of personal tastes and habits in terms
of programming. A coding standard, by extension,
should be defined as a coding style which multiple
people agree to conform to.

In spite of the anti-social aspect of INTEX devel-
opment, that is, even if independent package develop-
ers rarely talk to each other, we know that the very
high level of intercession in KTEX implies that devel-
opers are forced to read and understand other peo-
ple’s code. In that context, it becomes apparent that
having more-or-less official coding standards would
make it easier for people to read and understand
others’ code. Homogeneity facilitates interaction.

One important problem here is that a consensus
never comes without any concession. Coming up
with coding standards that would satisfy everyone
is highly unlikely, given the importance of personal
taste, even if those coding standards leave room for
some degree of flexibility. The question that remains
open is hence the following: to what extent would
people agree to comply with coding standards that
diverge from their own habits or preferences, if it is
for the greater good of the community?

Intercession There are many other reasons why
having coding standards would be a plus. Inter-
cession is another very important one. The way a
particular package handles a particular typesetting
problem only affects itself: both the problem and the
solution are localized. The situation is however very
different when it comes to intercession. The way a
particular package handles an extension or a conflict
(for example by applying dynamic modifications to
another package or to the WTEX kernel) does affect
the outside world. As a consequence, one would ex-

Didier Verna

TUGhboat, Volume 32 (2011), No. 3

pect coding standards to help clean up the current
“intercession mess” by providing a set of rules, per-
haps even some design patterns [4, 5, 6, 7, 9, 13] for
intercession management. Intercession would become
much less of a problem if every package handled it
in the same way.

1.6 Coding style levels

Coding standards are supposed to help with writing
better code, although we need to clarify what we
mean by “better”. In our personal development
experience, we have identified four abstraction levels
at which it is interesting to consider the notion of
style. These four levels, which we are going to explore
in the next sections, are the following.

1. Layout (low). At the layout level, we are in-
terested in code formatting, indentation, macro
naming policies, etc.

2. Design (mid). The design level deals with im-
plementation: how you do the things that you do.
This is where we address software engineering
concerns such as modularity, encapsulation, the
potential use of other programming languages’
paradigms, etc.

3. Behavior (high). The behavior level is con-
cerned with functionality as opposed to imple-
mentation: what you do rather than how you do
it. At this level, we are interested in user inter-
faces, extension, intercession (notably conflict
management), etc.

4. Social (meta). Finally, the social level is a meta-
level at which we consider human behavior in
the ITEX community. Notions like reactivity
and open development are examined.

1.7 Target audience

In the BTEX world, it is customary to distinguish
the document author, writing mostly text, from the
package author (or BTEX developer) writing mostly
macros. Those two kinds of audience slightly over-
lap, however. By providing automatically generated
text (e.g. language-dependent), the package author
is a bit of a document author. By using packages,
fixing conflicts between them and providing personal
macros in the preamble, the document author is also
a bit of a KTEX developer. While this paper is mostly
targeted at the package developer, many concerns
expressed here (most notably at level 1: layout) are
also very important for the document author.

2 Level 1: Layout

In this section, we explore the first level of style,
dealing with visual presentation of source code and
lexico-syntactic concerns such as naming conventions.

TUGboat, Volume 32 (2011), No. 3

2.1 Formatting

One very important concern for readability is the way
you visually organize your code. Most of the time,
this boils down to a simple question: how and where
do you use blanks. This question is more subtle to
address in IATEX than in other, more syntactically
structured languages. We have identified four rules
which contribute to better formatting.

2.1.1 The rules

Rule #1: Stay WYSIWYG’ly coherent

BTEX (or TEX, for that matter) has bits of pseudo-
WYSIWYG behavior. The fact that a blank line ends
a paragraph is one of them. There are also some
commands whose effect can be directly simulated in
your source code (or document). In such situations,
it is probably a good idea to do so.

The two most prominent examples of this are
the \\ and \par commands. Since \\ effectively
ends the current line, we find it reasonable to do
so in the source file as well. Put it differently: we
find it confusing when a \\ command is immediately
followed by text or code that produces text. The
same goes for \par, with an additional remark: we
have seen code in which \par is followed by some
text, with the explicit intention of beginning a new
paragraph. Although ending a paragraph can, in
some circumstances, be equivalent to beginning the
next one, this use of \par is extremely confusing
because the its semantics are precisely to end the
current paragraph.

Tabular-like environments are another situation
in which it can be nice to mimic the actual output
layout. Although it requires a fair amount of work,
probably without the help of your favorite text edi-
tor, aligning the various tab commands or columns
separators across rows helps readability. If, as we
do, you prefer to remain within the bounds of 80
columns, a compromise may be necessary between
both constraints.

Rule #2: Be “spacey” in math mode
Surprisingly enough, it seems that many people for-
get that spaces don’t count in math mode. This is a
good opportunity to take as much room as you want
and make your equations easier to read. Consider
the following two alternatives. This:

$ £f(x) = £(x-1) + £(x-2) $

is probably better than this:

$f (x)=f (x-1)+£ (x-2)$

Rule #3: One “logical” instruction per line
This rule may be a wee bit fuzzier than the previous
ones. By “logical”, we roughly mean something (a

313

code sequence) which makes sense as a whole. In tra-
ditional programming languages, a logical instruction
is generally a function call along with its arguments,
or an operator along with its operands. In KTEX,
the situation is more complicated, notably because
of the throes of macro expansion.

Perhaps it is simpler to make this point by pro-
viding some examples. We assume here that our
logical instructions are small enough to fit on one
line, the idea being to avoid putting two of them
next to each other.

\hskip.1llem\@plus.33em\@minus.07em

This line constitutes only one logical instruction be-
cause the sequence of macros and quantities define a
single length.

{\raggedleft\foo\bar baz\par}

Here, the flushing instruction applies until the clos-
ing brace (assuming the paragraph ends before the
group), so it would be strange, for instance, to go
to the next source line after \bar. Note however
that for longer contents, not fitting on one line only,
we would probably go to the next line right after
\raggedleft, so that the formatting instruction(s)
are distinct from the text to which they apply.

In the same vein, it would be unwise to split
things like \expandafter\this\that, conditional
terms such as \ifx\foo\bar, and more generally,
everything that can be regarded as an argument to
what precedes.

Rule #4: Indent all forms of grouping

This rule is probably the most obvious, and at the
same time the most important, when it comes to
readability. All forms of grouping should have their
contents indented so that the beginning and end of
the groups are clearly visible. It seems that indent-
ing by 2 columns is enough when you use a fixed
width font, whereas 4 or 8 columns (or a tab) are
necessary otherwise. In general however, using tab
characters for indentation is inadvisable (notably in
document sources, but sometimes in package sources
as well). Tabs can be dangerous, for instance, when
you include code excerpts that should be typeset in
a special way.

In BTEX, grouping can occur at the syntactic
level with group delimiters ({}, [1) or math modes
($and \(\), $$ and \[\]), and also at the semantic
level (\bgroup / \egroup, \begingroup / \endgroup
or even \makeatletter /\makeatother). Your fa-
vorite text editor will most likely help you indent at
the syntactic level, but you will probably need to
do some manual work for semantic grouping. In the
case of Emacs for example, manually indenting the
first line below a call to \makeatletter is usually

Towards IWTEX coding standards

314 TUGhboat, Volume 32 (2011), No. 3
1 7% Original version:

2 \def\@docinclude#1 {\clearpage

3 \if@filesw \immediate\write\@mainaux{\string\@input{#1.aux}}\fi
4 \@tempswatrue\if@partsw \Q@tempswafalse\edef\@tempb{#1}\@for

5 \@tempa:=\@partlist\do{\ifx\@tempa\@tempb\Q@tempswatrue\fi}\fi

6 \if@tempswa \let\@auxout\@partaux \if@filesw

7 \immediate\openout\@partaux #1.aux

8 \immediate\write\@partaux{\relax}\fi

9 7 ... \fi :—(

10

11 %% Reformatted version:

12 \def\@docinclude#1{/

13 \clearpage

14 \if@filesw\immediate\write\@mainaux{\string\@input{#1.aux}}\fi
15 \@tempswatrue

16 \if@partsw

17 \@tempswafalse

18 \edef\@tempb{#1}

19 \@for\@tempa:=\@partlist\do{\ifx\@tempa\@tempb\@tempswatrue\fi}7
20 \fi

21 \if@tempswa

22 \let\@auxout\@partaux

23 \if@filesw

24 \immediate\openout\@partaux #1.aux

25 \immediate\write\@partaux{\relax}7

26 \fi

27 %o \fi :-)

Figure 2: The virtues of proper formatting

enough to have the subsequent ones follow the same
indentation level automatically. But then again, you
will also need to manually unindent the closing call
to \makeatother.

As an illustration of both rules #3 and #4,
consider the code in figure 2 in both original and
reformatted form. In each case, ask yourself: to
which conditional does the upcoming \fi belong?
This point clearly demonstrates the importance of
indentation. Line 14 contains an example of what
we called a “logical” instruction, although a longer
one this time. The contents of the conditional is a
single instruction to write something in the auxiliary
file immediately. Also, since there is no \else part
in this conditional and the whole line doesn’t exceed
80 columns, we chose to keep it as a one-liner. The
same remark can be made for line 19.

2.1.2 Formatting of syntactic groups

In the case of syntactic groups, various policies can
be observed regarding the position of the braces (this
is also true in other programming languages). The
case of an environment definition could be formatted
as follows, as is done on several occasions in the
IMTEX standard classes:

Didier Verna

\newenvironment{env}
{\opening\code
\opening\code}
{\closing\code
\closing\code}

We find this kind of formatting somewhat odd and it
doesn’t seem to be used so frequently anyway. The
conspicuous amount of indentation can be disturbing,
and it is also a bit difficult to visually distinguish
the opening argument from the closing one.

A more frequent way of formatting this would
be more or less as in a piece of C code, as follows:

\newenvironment{env}
Tk
\opening\code
\opening\code
}
{h
\closing\code
\closing\code

}

This kind of formatting is admittedly more readable,
although the two nearly empty lines between the
opening and the closing arguments may be considered
somewhat spurious. Some people hence take the

TUGboat, Volume 32 (2011), No. 3

\newcommand\text{}
\@nextentry
\noalign\bgroup
\gdef\@beforespace{...}/
\@ifstar{\@stext}{\@text}}

\newcommand\@text [1] {7
\gdef\@nextentry{}’
\egroup/, end of \noalign
\multicolumn{3}{e{}p ... \\}}

\newcommand\@stext{’
\gdef\@nextentry{\egroup\\\par}/
\egroup/, end of \noalign
\multicolumn{3}{e{}p ...} ...}

Figure 3: Inter-macro indentation

habit of joining those two lines as follows:

\newenvironment{env}
iV
\opening\code
\opening\code
H
\closing\code
\closing\code
}

Other people choose a more compact formatting
by closing a group, and possibly opening the next
one on the same line, as follows:
\newenvironment{env}{%

\opening\code
\opening\code}{%
\closing\code
\closing\code}

Again, this leads to quite compact code that
makes it difficult to visually distinguish the opening
argument from the closing one. In such a case, a
possible workaround is to introduce comments, also
an opportunity for documenting the macro’s proto-
type (imagine that in a text editor with fontification,
you might also have different colors for code and
comments):

\newenvironment{env}{Y
%% \begin{env}
\opening\code
\opening\code}{/,

%% \end{env}
\closing\code
\closing\code}

2.1.3 Inter-macro indentation

The case of semantic grouping introduces an addi-
tional level of complexity because groups may be
opened and closed in different macros (worse: the

315

opening and closing instructions may themselves be
the result of macro expansion). When possible, it is a
good idea to preserve the amount of indentation cor-
responding to the current group nesting level, even if
the group in question is not syntactically apparent.

Consider for example the code in figure 3 taken
from the GV class [17]. The \text command calls
\noalign, but the argument passed to \noalign
(enclosed in \bgroup/\egroup) starts here and ends
in either \@text or \@stext. You can see that this
group’s indentation level is preserved across all three
macros.

2.1.4 Exceptional situations

No rule goes without exception. Sometimes, and for

the greater good, one might be tempted to go against

the established rules. Here are two examples.
Consider the following call to \@ifnextchar:

\@ifnextchar[}%] syntax screwup!
{\@dothis}{\@dothat}

The left square bracket, which is in fact the first
argument of \@ifnextchar, confuses Emacs because
it thinks it’s the opening of a group, and expects
this group to be closed somewhere. In order to
compensate for this problem, we usually virtually
close the fake group by putting a right square bracket
within a comment on the same line. This forces us,
however, to provide the “then” and “else” arguments
to \@ifnextchar on the next line, something that
we would normally not do.

Another exceptional situation is the case of
empty macro arguments, where we prefer to stay
on the same line rather than consuming another one
just for an empty pair of braces, as illustrated below:

\@ifundefined{#1note}{}{%
\@fxpkgerror{a short explanation}{}
a longer one}}

2.1.5 Corollary

As a corollary to the rules described in this section,
it is essential to note that the % character is your
“worst best friend”. A very important problem when
writing macros (and even documents) is the risk of
spurious blank spaces. When you indent your code
properly, many blanks are inserted, which are not
supposed to appear in the final document. TEX helps
you with that in several ways: spaces are eaten after
a control sequence, consecutive blanks are treated as
only one (this includes the newline character), and
leading / trailing spaces are discarded on every line.

That alone, however, is not sufficient for a liberal
indentation scheme. In the previous examples, we
have seen many places (notably after braces) where

Towards IWTEX coding standards

316

it is required to create an end-of-line comment with
the % character, so that the final newline character is
not taken as a textual one (see for example figure 3
on the previous page).

In that sense, the % character is your best friend.
It is also your worst friend because determining the
exact places at which an end-of-line comment is re-
quired is far from trivial. There are even cases where
it could be necessary after opening an environment
in a final document! In any case, when there are
blanks in your source that you know you don’t want
in the output, and you’re unsure whether TEX will
skip them on its own, you can safely always insert a
comment character at the end of the line.

2.2 Naming

The second concern we want to address in this section
is that of naming schemes. Naming conventions are
obviously important for readability, but also for back-
ward compatibility. Once you get a name, it’s for life.
Starting with bad naming conventions can become
a major headache, both for your clients (using your
API) and yourself (maintaining your own code).

2.2.1 The rules

Rule #1: Use prefixes

Because KTEX lacks a proper notion of module, pack-
age, or even namespace, the use of a specific prefix
for every package that you write should be a rule of
thumb. For example, our FiXme [18] package uses £x
as a prefix, which means that every command (but
see rule #3) starts with those two letters.

The choice of the prefix is also important. In
theory, the prefix that would guarantee a minimal
risk of name clash between packages would be the
full package name. In practice however, this can
lead to very long macro names, cumbersome to type.
Therefore, a trade-off must be made between the
prefix length and its uniqueness (a possible idea is to
start by removing the vowels). fx for example has
the defects of its qualities: it is practical because it
is very short, but the risk of collision with only two
letters is not negligible.

Once you have chosen a prefix, it is also im-
portant to stay consistent and stick to it. Recently,
we discovered that for some obscure (and forgotten)
reason, our F;NK package uses a prefix of fink for
its user-level commands, but only fnk for its internal
ones. This is not only rinadvisable but also unneces-
sary since INTEX already provides the @ character con-
vention for making such a distinction (cf. rule #3).

One situation where the prefix rule should prob-
ably be relaxed is the case of classes (as opposed to
styles). Classes, by definition, are mutually-exclusive

Didier Verna

TUGhboat, Volume 32 (2011), No. 3

and perform similar, very general tasks, although
in different ways. It would hence be silly to have
to name similar things differently (imagine for in-
stance that the sectioning commands were named
\artsection, \rprtsection and \bksection!). On
the other hand, the risk of collision is still high, pre-
cisely because of the broad spectrum of class func-
tionality. This problem has already befallen us in
the GV class, which provides a \text macro, also
implemented (to do something different) by siunitx
and probably other packages. \text is the perfect
example of a very poor choice of name because it
is far too general and doesn’t really mean anything.
This demonstrates that choosing a pertinent, unique
and concise name for a macro is an important but
tricky exercise.

Rule #2: Use postfixes

In a very analogous way, there are situations in which
the use of a postfix may be a good idea in order to
avoid name clashes, although this time not with other
packages, but with yourself. N TEX provides a number
of concepts, loosely related to data types or struc-
tures, such as counters and saveboxes. Unfortunately,
the provided interfaces are rather inconsistent.

In some situations like counters, you are only
required to provide a name, and BTEX constructs the
underlying, opaque macros with a specific naming
scheme. What’s more, you are not supposed to
use those macros explicitly. Suppose for example
that you want to maintain a counter of “items”.
There is no need to name this counter myitemscount
because the standard interface makes things perfectly
readable without the postfix:

\newcounter{myitems}
... \value{myitems} % not a very good name
... \stepcounter{myitems}

Besides, the risk of name clash is minimal because
under the hood, IXTEX has used a specific and hope-
fully unique naming scheme for naming the counter
macro (\c@myitems).

Suppose now that you want to save your items
in a box. In that case, you are requested to provide
a macro name yourself, and choosing \myitems is
for sure a bad idea because that name is too general
(there is no indication that you’re talking about the
bor of them, and not the number, list or whatever
else of them). What you need to do, therefore, is
decide on a specific naming scheme for boxes, just
as IMTEX does under the hood for counters. Using a
box postfix appears to be a good solution:

\newsavebox\myitemsbox
... \savebox\myitemsbox{...}
... \sbox\myitemsbox{...}

TUGboat, Volume 32 (2011), No. 3

Of course, there is some naming redundancy in this
code, but that is what you get from an interface that
is not as opaque as it should be.

If you are developing a package (as opposed
to a document) and want to maintain an internal
list of items, you may also be tempted to follow
IATEX’s own convention for, say, counters, and call
your macro \b@myitems or something like that. We
advise against that, however, because it conflicts with
the prefix rule described previously, and also because
it would make your code less readable (remember
that you need to use the macro explicitly, not just
the “name of the thing”).

Finally, note that the ultimate solution to this
kind of problem would be to develop another, prop-
erly abstracted layer on top of the original one, in
which the actual macro names are never used explic-
itly, and standardize on it. ..

Rule #3: Obey the Companion

The BTEX Companion provides some advice on nam-
ing in section A.1. Modulo a substantial amount of
legacy code, IATEX itself tries to adhere to the nam-
ing conventions described there so it is a good idea
to honor them in your packages as well. For starters,
you are invited to name your external macros with
lowercase letters only, and reserve a mixture of lower-
case and uppercase names for extension APIs. FiXme,
for example, follows this convention by providing
an end-user command named \fxuselayout, and
at the same time an equivalent command named
\FXRequireLayout for theme authors.

The other important and well known naming
convention adopted by KTEX is the use of an @ char-
acter in internal macro names. By turning this char-
acter into a letter (category code 11) only internally
and in packages, INTEX effectively prevents the docu-
ment author from using such macros directly (one
would have to intentionally enclose a call to an @-
macro within \makeatletter / \makeatother).

Third-party packages should obviously follow
this convention in order to separate internal from
external macros. Package authors should however
do a better job at naming internal macros than
IMTEX itself (again, we see here the effect of a long
legacy). The IWTEX kernel seems to enjoy making
fun of the @ character, using it in place of different
vowels (e.g. \sixt@@n or \@filef@und) and with no
apparent rationale in terms of number and position
(e.g. \@input, \@@input but \@input@).

Although we underst@nd how this c@Qn be fun, it
is better for readability to keep a more systematic ap-
proach to naming internal macros. Typically, we find
that using the @ character is useful in two situations:

317

\DeclareRobustCommand\fxnote{
W
\@ifstar{/
A% \fxnotex*
\@ifnextchar([}]
{\@fxsnote{#2}}
{\@eefxsnote{#2}}}{/%
A% \fxnote
\@ifnextchar([}]
{\@fxnote{#2}}
{\eefxnote{#2}}}}

\long\def\@fxsnote#1 [#2] #3#4{}
Ah ...
\@efxsnote{#1}{#3}{#4}}

\long\def\@@fxsnote#1#2#3{/
\implement\me}

Figure 4: Nesting levels

e as a prefix to indicate an internal implementa-
tion of an external functionality,
e as a word separator.

For example, the current (language-dependent)
value for the “List of FiXme’s” section name is stored
in a macro named \@fxlistfixmename (an accept-
able alternative would be \fx@listfixmename).

In some situations, the implementation of a par-
ticular feature may go through different levels of
indirection. In such cases, we like to use multiple @
characters to give an indication of the current imple-
mentation level. Figure 4 illustrates this. The macro
\fxnote supports an optional * postfix as well as a
regular optional first argument provided in square
brackets. The implementation goes through a first
sub-level that detects the presence of a * charac-
ter (\@fxnote / \@fxsnote), plus another sub-level
which handles the presence of an optional argument
(\@efxnote / \@@fxsnote).

A final example is the case of “polymorphic
macros (see section 3.3 on page 319), that is, macros
whose implementations depend on some context. As
mentioned earlier, the @ character can be used to
separate words. For instance, FiXme has a macro
named \@@@fxnote@early. This macro is polymor-
phic in the sense that its actual implementation
varies according to the document’s draft or final
mode. The two corresponding effective implemen-
tations are named \@@Q@fxnote@early@draft and
\@Q@@fxnote@early@final.

7

2.2.2 Exceptional situations

From time to time, the naming rules exhibited in
the previous section may be bypassed for the sake of

Towards IWTEX coding standards

318

readability. Here are three typical situations where
exceptions are in order.

Conforming to de facto standards ITEX it-
self has some naming conventions that may impact
a package or even a document author. Lists are one
such case. For example, the behavior for the list of fig-
ures depends on two macros named \listoffigures
and \listfigurename. FiXme supports its own
list facility, and for the sake of coherence, provides
analogous macros named \listoffixmes (instead
of \fxlist or some such) and \listfixmename (in-
stead of \fxlistname). Following the usual conven-
tion makes it much easier for your users to remember
your own API.

Another example is that of conditionals. All
conditionals in (IX)TEX are named \if(something).
So here again, given that you need to implement
mycondition, it is better to name your conditional
\ifmycondition than \myifcondition.

Forced exceptions There are times where INTEX
itself will force you to depart from your own rules,
although this is seldom critical. The case of counters
is one of them. When creating a counter for myitems,
IXTEX creates a macro named \c@myitems which is
not how you would have named this macro. However,
this is not such a big deal because in general, you
don’t need to use this macro directly.

A slightly more intrusive exception is when
ITEX requires that you implement a specific macro,
following its own naming scheme. For instance, sup-
porting a list of FiXme’s involves implementing a
macro named \1@fixme. The 1@ prefix is IMTEX’s
choice, not ours.

Finally, if you implement an environment named
myenv, IXTEX will eventually turn this into a macro
named \myenv and another one named \endmyenv.
Here again, the names are ITEX’s choice, not yours.
And by the way, it is unfortunate that the envi-
ronment opening macro is not named \beginmyenv
instead of just \myenv because it means that you
can’t have both a command and an environment
with the same name. In the FiXme package, we
use a nice naming trick for this kind of situation:
environments corresponding to macros are prefixed
with “a” or “an”. For example, there is a macro
named \fxnote and the corresponding environment
is named anfxnote. This contradicts our own nam-
ing conventions but it makes the actual environment
usage as readable as if it were plain English:

\begin{anfxnote}

\end{anfxnote}

Didier Verna

TUGhboat, Volume 32 (2011), No. 3

3 Level 2: Design

In this section, we explore the second level of style,
dealing with design considerations such as modularity
and other programming paradigms. From a more
practical point of view, design here is concerned with
how to implement a particular feature, rather than
the feature itself.

3.1 Rule #1: Don’t reinvent the wheel
3.1.1 Feature libraries

In many programming languages, so-called “stan-
dard libraries” provide additional layers of function-
ality, typically functions that perform useful and
frequently needed treatments. Browsing CTAN [2]
clearly demonstrates that IATEX is no exception to
this rule. People have created packages for making
slides, curricula vitae, split bibliographies, tables
that span across several pages, etc.

When you develop a package, it is important,
although not trivial, to be aware of what’s already
existing in order to avoid reinventing the wheel. For
instance there are currently at least half a dozen dif-
ferent solutions for implementing key-value interfaces
to macros (keyval, xkeyval, kvoptions, pgfkeys,
ete.). This is very bad because each solution has its
own strengths and weaknesses, so the choice of the
most appropriate one for your personal needs can be
very complicated and time-consuming (in fact, there
might not even be a best choice).

One rule of thumb is that when you feel the need
for implementing a new functionality, someone most
probably had the same idea before you, so there is
a good chance that you will find a package doing
something close to what you want. In such a case, it
is better to try and interact with the original author
rather than to start over something new on your
own. Doing this, however, also requires some rules in
terms of social behavior (c¢f. section 5 on page 326).

3.1.2 Paradigm libraries

Furthermore, in the KTEX world the notion of stan-
dard library goes beyond common functionality: it
goes downwards to the language level. TEX was not
originally meant to be a general purpose program-
ming language, but TEX applications today can be
so complex that they would benefit from program-
ming paradigms normally found in other languages.
Because of this, there are packages that are meant
to extend the language capabilities rather than pro-
viding a particular (typesetting) functionality. The
two most prominent examples of this are calc and
ifthen. These packages don’t do anything useful
in terms of typesetting, but instead make the pro-

TUGboat, Volume 32 (2011), No. 3

grammer’s life easier when it comes to arithmetic
calculations or conditional branches. Another one,
called record, even goes as far as providing data
structures for IMTEX.

It is always a good idea to use these packages
rather than doing things at a lower level, or re-
inventing the same functionality locally. The more
abstract your code, the more readable. The BTEX
Companion advertises some of them (notably calc
and ifthen). Of course, the difficult thing is to be-
come aware of the existence of such packages (CTAN
contains literally thousands of packages).

3.2 Rule #2: Duplication/Copy-paste is evil

This rule is well-known to every programmer, al-
though the “evilness” threshold may be a bit subtle
to calculate. It is also interesting to provide some
insight on the distinction we make between “dupli-
cation” and “copy-paste”. The two examples below
will shed some light on these matters.

3.2.1 Duplication

Consider the case of FiXme which uses the xkeyval
package for defining several layout-related package
options. The bad way of doing it would be as follows:
\define@key[fx]{layout}{morelayout}{...}
\define@cmdkey [fx]{layout}{innerlayout}{...}
\def ine@key [fx] {envlayout}{envlayout}{...}

This is bad because the [£fx] optional argument (the
prefix in xkeyval terminology) is duplicated in every
single call to the xkeyval package (and it is rather
easy to forget).

This is a typical case where duplication should
be abstracted away in order to avoid redundancy. We
can improve the code by providing wrappers around
xkeyval as follows:
\newcommand\@fxdefinekey{\define@key [fx]}
\newcommand\@fxdefinecmdkey{\define@cmdkey [fx]}
\@fxdefinekey{layout}{morelayout}{...}
\@fxdefinecmdkey{layout}{innerlayout}{...}
\@fxdefinekey{envlayout}{envlayout}{...}

It should be noted that this new version is actu-
ally longer than the previous one. Yet, it is clearer
because more abstract. Using such wrappers is like
saying “define a FiXme option”. This is more abstract
than “define an option which has an fx prefix”.

Note also that in this example, two “layout”
options are defined. One could hence be tempted to
abstract the layout family, for example by providing
an \@fxdefinelayoutkey command. We decided
not to do this but it could be a legitimate choice.
This is an illustration of the flexibility and perhaps
also the difficulty there is to decide on the exact
“evilness duplication threshold” mentioned earlier.

319

3.2.2 Copy-paste

Consider again the case of FiXme which defines sev-
eral Boolean options. For each Boolean option foo,
FiXme also provides a corresponding nofoo option,
as a shortcut for foo=false. F.g. the langtrack/
nolangtrack option can be defined as follows:
\@fxdefineboolkey{lang}{langtrack} [truel {}
\@fxdefinevoidkey{lang}{nolangtrack}{/
\@nameuse{fx@lang@langtrack}{false}}

Defining the silent /nosilent option can be
lazily done by copy-pasting the previous code and
only modifying the relevant parts (the option and
family names):
\@fxdefineboolkey{log}{silent} [true]{}
\@fxdefinevoidkey{log}t{nosilent}{’

\@nameuse{fx@log@silent}{false}}

This way of doing things obviously screams for ab-
straction. It is better to make the concept of “ex-
tended Boolean” explicit by providing a macro for
creating them:
\newcommand*\@fxdefinexboolkey [3] [1{/
\@fxdefineboolkey{#2}{#3} [truel {#1}

\@fxdefinevoidkey{#2}{no#3}{%
\@nameuse{fx0#20#3}{false}}}

\@fxdefinexboolkey{lang}{langtrack}
\@fxdefinexboolkey{log}{silent}

3.3 Rule #3: Conditionals are evil

This rule may sound surprising at a first glance,
but experience proves that too many conditionals
can hurt readability. In fact, this is well known
in the object-oriented community. After all, object-
orientation is essentially about removing explicit con-
ditionals from code.

There are two main reasons why conditionals
should be avoided whenever possible.

e First, too many conditionals, especially when
they are nested, make the program’s logic diffi-
cult to read.

e Second, the presence of multiple occurrences of
the same conditional at different places is a form
of duplication, and hence should be avoided.

One particular design pattern that helps a lot in
removing explicit conditionals is to centralize the
logic and use polymorphic macros. This is explained
with the following example.

Figure 5 on the next page implements a macro
\doeverything, the behavior of which depends on
whether the document is in draft or final mode. This
macro is in fact decomposed in three parts: the “do
this” part, a middle part (left as a comment) and a
final “do that” part. Because the same conditional

Towards IWTEX coding standards

320 TUGhboat, Volume 32 (2011), No. 3
\newif\ifdraft \def\dothis@draft{\this\way}
\def\dothis@final{\this\other\way}
\def\doeverything{/
\ifdraft \def\dothat@draft{\that\way}
\dothis\this\way \def\dothat@final{\that\other\way}
\else
\dothis\this\other\way \def\doeverything{7
\fi \dothis
Y7/ o
\ifdraft \dothat}
\dothat\that\way
\else \DeclareOption{draft}{
\dothat\that\other\way \let\dothis\dothis@draft
\fi} \let\dothat\dothat@draft}

\DeclareOption{draft}{\ifdrafttrue}
\DeclareOption{final}{\ifdraftfalse}
\ExecuteOptions{final}
\ProcessOptions

Figure 5: Conditional duplication

branch clutters the code in two different places, the
three-step nature of this macro is not very apparent.

A better and clearer implementation of the same
functionality is proposed in figure 6. Here, the two
mode-dependent parts of the \doeverything macro
are explicitly implemented in different macros, with
a postfix indicating in which mode they should be
used. In the \doeverything macro, the three parts
are now clearly visible. This new version of the macro
is obviously much more concise and readable. The
important thing to understand here is that when
you read the code of \doeverything, you are in fact
not concerned with implementation details such as
how \dothis and \dothat vary according to the
document’s mode. It is more important to clearly
distinguish the three steps involved.

Finally, you can also note that the logic involving
conditionals is centralized at the end, where the
actual draft or final options are processed. As a
side note, the \ifdraft conditional is not needed
anymore and the total amount of code is smaller in
this new version. This time, clarity goes hand in
hand with conciseness.

You may still be wondering what we meant by
“polymorphic macros”. Although slightly abusive,
this term was coined because of the resemblance of
this design pattern with object-oriented polymor-
phism, encountered in virtual methods a la C++ or
generic functions a la Lisp. The macros \dothis
and \dothat are polymorphic in the sense that they
don’t have a regular implementation (in other words,
they are only wirtual). Instead, their actual imple-
mentation varies according to some context.

Didier Verna

\DeclareOption{finall}{
\let\dothis\dothis@final
\let\dothat\dothat@final}

\ExecuteOptions{final}

\ProcessOptions

Figure 6: Centralized logic

3.4 Rule #4: Be modular

Modularity is another final principle which is rather
obvious to follow, although it is perhaps even more
crucial in BTEX than in other programming lan-
guages. Modularity affects all levels of a document,
from the author’s text to the packages involved.

At the author’s level, it is a good idea to use
BTEX’s \include command and split your (large)
source files into separate chunks. When used in
conjunction with \includeonly, compilation may
be considerably sped up by making ITEX process
only the parts on which you are currently working.

From a package development perspective, mod-
ularity is important at different levels. In terms of
distribution, the docstrip package is an essential
component in that it allows you to split your source
code into separate files, provides conditional inclu-
sion and (and perhaps most importantly) lets you
generate separate distribution files from a centralized
source. This is important because splitting a package
across different files allows you to subsequently load
only the relevant ones. Less code loaded into KTEX
means reduced memory footprint and improved per-
formance. Imagine for instance if Beamer had to
load every single theme every time it is run!

At a lower level, the modularity principle dic-
tates that it is better to have 10 macros of 10 lines
each rather than one macro of 100 lines. Every pro-
grammer knows this but perhaps I TEX programmers
don’t realize that this is even more critical for them.
There is indeed one KTEX-specific reason for keeping
your macros small. That reason is, again, interces-

TUGboat, Volume 32 (2011), No. 3

sion. Since other package developers may need to
tweak your code for compatibility reasons, it is bet-
ter to let them work on small chunks rather than big
ones.

To illustrate this, let us mention the case of
GV in which, at some point, we decided to sup-
port the splitbib package. In order to do so, we
needed to override some parts of splitbib’s macro
\NMSB@writeentry. This macro was originally 203
lines long. After dead branch removal, that is, after
cutting out pieces of code that we knew would never
be executed in the context of GV, we ended up
with 156 lines that needed to be imported into Gu¥z,
only to modify 5 of them. Our modifications conse-
quently involve only 3% of the code that needed to
be imported. One can easily imagine how bad this is
in terms of maintainability. We need to keep track
of potential modifications on 203 lines of splitbib
just to make sure our 5 keep functioning correctly.

4 Level 3: Behavior

In the previous section, we claimed to be more con-
cerned with how to implement particular features,
rather than the features themselves. In this section,
we focus on features through the lens of behavior.
What we are interested in is the impact of your pack-
age features on the people that may interact with it.

4.1 Rule #1: Be user-friendly

The first category of people who will interact with
your package is its end users. Hopefully, you belong
to this category as well. There is, however, one major
difference between you and other users: you know the
package much better than they do, since you wrote it.
Being user-friendly means doing everything possible
to make your package easy to use. This can mean
many different things, but two important aspects are
documentation and backward compatibility.

4.1.1 Documentation

Nowadays, the vast majority of A TEX packages comes
with documentation. The combination of doc, 1txdoc
and docstrip, by allowing for literate programming,
has greatly helped the community in this respect.
Nevertheless, there remains a huge difference between
documentation and good documentation.

The difficulty in writing good documentation is
to put yourself in the position of the casual user —
which you are not because you know the package
so well already. Thinking from a user perspective is
probably the most difficult thing to do, but it can
also be a very rewarding experience (we will get back
to this later).

321

One of the major pitfalls to avoid when writing
documentation is forgetting that a user manual is not
the same thing as a reference manual. Just doing lit-
erate programming is not enough. Documenting your
macros around their implementation is not enough.
The casual user is not interested in the brute list of
commands, nor in the internals of your package. The
casual user wants an overview of the package, what it
is for, what it can do, what it can’t, probably a quick
start guide describing the entry points and the de-
fault behavior, with examples. Only then, when the
major concepts are understood, you may delve into
complexity and start talking about customization,
additional but less important features, and so on.

A good user manual will sacrifice sufficiency
to the benefit of gradualness and redundancy. You
shouldn’t be afraid of lying by omission to the readers.
It is for their own good. They don’t want to be
overwhelmed by information. A typical hint that you
are reading a bad manual is when the documentation
starts with the full list of package options. There
is no point in introducing an option dealing with
a concept that the reader does not understand yet
(that would be a reference manual). Another hint is
when a manual starts referring to another package
(that it happens to use internally) and assumes that
the reader knows everything about it already. The
end user shouldn’t have to read two or three other
manuals to understand yours, especially if in the end,
they will never use those other packages directly.

Why, as we said earlier, can it be rewarding to
write a good manual? Because writing documenta-
tion is in fact a feedback loop. The difficult thing,
again, is to put yourself in the position of someone
who knows nothing about the things you are going
to talk about, and ask yourself: “what do I need
to say first?” If you can do that, you will discover
that many times, the answers to that question reveal
design flaws in your package, its design or its APIs.
Things that a casual user would want to do but can’t,
things that should be simple to do but aren’t, de-
fault behavior that shouldn’t be by default, concepts
that are not apparent enough, not distinct enough,
names that are not sufficiently self-explanatory. Etc.
other words, writing or improving the quality of your
manual often helps you improve the quality of your
code, and wvice-versa.

4.1.2 Backward compatibility

Documentation is an important feature. Backward
compatibility is another. Users can get very frus-
trated when a package breaks their documents from
one version to another, or more generally, when a
document doesn’t compile anymore after a couple

Towards IWTEX coding standards

322

of years. This was in fact a concern that Donald
Knuth had in mind at the very beginning of TEX
and which had a considerable influence on the design
of the BTEX Project Public License [11], the LPPL.

Maintaining backward compatibility often goes
against the “greater good”. The natural evolution of
a design might require a complete change of API, or
at least an important amount of hidden trickery in
order to stay compatible with the “old way”. That
is why it is all the more important to take great care
with the design right from the start.

Just as in the case we made for modularity, the
very high level of intercession in IMTEX makes back-
ward compatibility an even more important concern.
Because other developers will interfere with your
code in order to fix compatibility or conflict prob-
lems between your package and theirs, the changes
you make in your internals will affect them as well.
So it turns out that backward compatibility is not
only a surface concern, but also something to keep in
mind even when working on the inner parts of your
code. In the IMTEX world, nothing is really private. ..
Of course, you may decide not to care about that,
pretending that it’s the “other guy’s responsibility”
to keep up to date with you, as he’s the one who
messes up with your code. But this is not a pro-
ductive attitude, especially for the end user of both
packages. In that regard, the following excerpt from
hyperref’s README file is particularly eloquent:

There are too many problems with varioref.
Nobody has time to sort them out. Therefore
this package is now unsupported.

In order to balance this rather pessimistic dis-
course, let us mention two cases where the burden of
backward compatibility can be lightened. The first
is the case of packages focused on the development
phase of a document. FiXme is one of them. As it is
mostly dedicated to handling collaborative annota-
tions to draft documents, the cases where you would
want to keep traces of it in a finished document are
rare. Under those circumstances, we would not care
about backward compatibility in FiXme as much as in
other packages. For a document author perspective,
it is very unwise to upgrade a KTEX distribution in
the middle of the writing process anyway. . .

When you decide that backward compatibility is
too much of a burden, it is still possible to smooth the
edges to some extent. Here is an idea that we are go-
ing to use for the next major version of Gu¥: change
the name of the package, possibly by postfixing the
(major) version number. In our case, the current
version of GV (the 1.x series) will be declared dep-
recated although still available for download, and

Didier Verna

TUGhboat, Volume 32 (2011), No. 3

\ExecuteOptionsX [my]<fami,...>{optl=defl,...}
\ProcessOptionsX*[my]<fami,...>

\newcommand*\mysetup [1]1{/
\setkeys [my]l{fami,...}{#1}}

\newcommand\mymacro [2] [1{%
\setkeys [myl{fami,...}{#1}7
.3

Figure 7: xkeyval programming example

the next version will be available in a package named
curve2. This way, former GgV¥ documents will still
compile in spite of backward incompatible changes
to the newest versions.

Even if you do so, as a convenience to your users,
it might still be a good idea to decorate your manual
with a transition guide from one version to the next.

4.1.3 Key-value interfaces

We mentioned already the importance of feature
design and the effect it can have on backward com-
patibility. The case of key-value interfaces is a typical
example. Implementing package or macro options
in a key=value style is a feature that every package
should provide nowadays.

Key-value options are user-friendly because they
are self-explanatory and allow you to provide a flexi-
ble API in a uniform syntax. It is better to have one
macro with two options and 5 values for each rather
than 25 macros, or 5 macros with 5 possible options.

As usual, the difficulty is in knowing all the exist-
ing alternatives for key-value interface, and choosing
one. For that, Joseph Wright wrote a very useful
paper that might help you get started [20]. Once
you get used to it, programming in a key-value style
is not so complicated.

Figure 7 demonstrates how easy it is to empower
your package with key-value options both at the
package level and at the macro level with xkeyval.
Assuming you have defined a set of options, you can
install a default behavior with a single macro call
to \ExecuteOptionsX, and process \usepackage op-
tions with a single call to \ProcessOptionsX. Sev-
eral packages provide a “setup” convenience macro
that allows you to initialize options outside the call
to \usepackage, or change the default settings at
any time in the document. As you can see, such a
macro is a one-liner. Similarly, supporting a key-
value interface at the macro level is also a one-liner:
a single call to \setkeys suffices.

In order to understand how key-value interfaces
provide more flexibility and at the same time make

TUGboat, Volume 32 (2011), No. 3

backward compatibility less of a burden, consider one
of the most frequently newbie-asked questions about
ETEX: how do I make a numbered section which
does not appear in the table of contents (TOC)? The
general answer is that you can’t with the standard
interface. You need to reprogram a sectioning macro
with explicit manipulation of the section counter, etc.

We know that \section creates a numbered
section which goes in the TOC. We also know that
\section* creates an unnumbered section that does
not go in the TOC. Finally, the optional argument
to \section allows you to provide a TOC-specific
(shorter) title. So it turns out that there’s no stan-
dard way to extend the functionality in a backward-
compatible way, without cluttering the syntax (either
by creating a third macro, or by providing a new set
of options in parentheses for instance). In fact, two
macros for one sectioning command is already one
too many.

Now imagine that key-value interfaces existed
when \section was designed. We could have ended
up with something like this:

% Number and TOC:
\section{Title}

% TOC-specific title:
\section[toctitle={Shorter Title}]{Title}

% Unnumbered and not in the TOC:
\section[numbered=false]{Title}

Obviously here, we intentionally reproduce the
same design mistake as in the original version: as-
suming that unnumbered also implicitly means no
TOC is suboptimal behavior. But in spite of this de-
ficiency, when somebody wanted a numbered section
not going in the TOC, we could have added a new
option without breaking anything:
\section[toc=false]{Title}

What’s more, we could also handle the opposite
request, for free: an unnumbered section still going
in the TOC:

\section[numbered=false,toc=true]{Title}

4.2 Rule #2: Be hacker-friendly

The second category of people who will interact with
your package is its “hackers”, that is, the people that
may need to examine your code or even modify it
for intercession purposes. Of course, you are the
first person to be in this category. Being hacker-
friendly means doing everything possible to make
your package easy to read, understand and modify.
Note that as the first person in this category, you
end up doing yourself a favor in the first place. Be-
ing hacker-friendly can mean many different things,

323

including concerns that we have described already,
such as modularity. In this section we would like
to emphasize some higher level aspects, notably the
general problem of code organization. In our experi-
ence, we find that organizing code in a bottom-up
and feature-oriented way works best.

4.2.1 From bottom to top

Organizing code in a bottom-up fashion means that
you build layers on top of layers and you organize
those layers sequentially in the source file(s). The
advantage in being bottom-up is that when people
(including yourself) read the code, they can rely on
the fact that what they see only depends on what
has been defined above (previously). Learning seems
to be essentially an incremental process. Reading
is essentially a sequential process. Being bottom-up
helps to conform to these cognitive aspects.

The bottom-up approach is sometimes confused
with the design of a hierarchical model in which one
tries to establish nested layers (or rings) of function-
ality. These are different things. For example, not all
problems can be modeled in a hierarchical way and
trying to impose hierarchy leads to a broken design.
Sometimes, it is better to be modular than hierar-
chical. Some concepts are simply orthogonal to each
other, without one being on top of the other. The
bottom-up approach allows for that. When you have
two orthogonal features to implement, you can just
write them down one after the other, in no particular
order. The only rule is that one feature depends only
on the preceding, or more precisely, a subset of the
preceding.

As a code organization principle, the bottom-up
approach will also inevitably suffer from a few ex-
ceptions. Any reasonably complex program provides
intermixed functionality that cannot be implemented
in a bottom-up fashion. Macro inter-dependency (for
instance, mutual recursion) is one such case. Another
typical scenario is that of polymorphic macros (cf.
figure 6 on page 320): you may need to use a poly-
morphic macro at a time when it hasn’t been \let
to its actual implementation yet. Those exceptions
are unavoidable and are not to be feared. A short
comment in the code can help the reader navigate
through those detours.

4.2.2 Feature-oriented organization

In terms of code organization, the second principle
to which we try to conform is arranging the code by
feature instead of by implementation. This means
that we have a tendency to think in terms of “what it
does” rather than “how it does it” when we organize
code sections in source files. In our case, this is a

Towards IWTEX coding standards

324

relatively recent change of perspective which, again,
comes from the idea of putting oneself in the “hacker”
position. When people need to look at your code,
they are most of the time interested in one particular
feature that they want to imitate, extend, modify
or adapt for whatever reason. In such a situation,
acquiring an understanding of the feature’s inner
workings is easier when all the code related to that
feature is localized at the same place in the source.
To illustrate this, we will intentionally take an
example which may be controversial: the case of
internationalization. The Gu¥ class has several fea-
tures which need to be internationalized: rubrics
need a “continued” string in case they extend across
several pages, bibliographic sections need a “List of
Publications” title, etc. In Gg¥% 1, the code is al-
ready organized by feature, except for multi-lingual
strings which are all grouped at the end, like this:

%% Implement rubrics

Who oo

%% Implement bibliography
%h ...

\DeclareOption{english}{%
\continuedname{continued}
\listpubname{List of Publications}}

\DeclareOption{french}{/
\continuedname{suite}
\listpubname{Liste des Publicationsl}}

%h ...

These days, we find this unsatisfactory because the
code for each feature is scattered in several places.
For instance, the \continuedname macro really be-
longs to the rubrics section and hence should not ap-
pear at the end of the file. This kind of organization
is indeed implementation-oriented instead of feature-
oriented: we grouped all multi-lingual strings at the
end because in terms of implementation, the idea is
to define a bunch of \<whatever>name macros.

In GyVe 2, we will take a different approach, as
illustrated below:

%% Implement rubrics

\newcommand*\continuedenglishname{’
continued}

\newcommand*\continuedfrenchname{
suite}

hho.

%% Implement bibliography

\newcommand*\listpubenglishname{%
List of Publications}

\newcommand*\listpubfrenchname{/,
Liste des Publications}

Bhooo

Didier Verna

TUGhboat, Volume 32 (2011), No. 3

\DeclareOption{english}{%
\def\@currlang{english}}
\DeclareOption{french}{%
\def\@currlang{french}}
Wb oo

After that, using the appropriate “continued” string
is a matter of calling

\csname continued\@currlang name\endcsname

This new form of code organization has several ad-
vantages. First, all the code related to one specific
feature is now localized in a single place. Next, it con-
forms better to the bottom-up approach (no forward
reference to a multi-lingual string macro is needed).
Finally, and perhaps unintentionally, we have im-
proved the flexibility of our package: by implement-
ing a macro such as \@currlang, we can provide
the user with a means to dynamically change the
current language right in the middle of a document,
something that was not possible before (language
processing was done when the package was loaded).

Earlier, we said that this example was taken
intentionally because of its controversial nature. In-
deed, one could object here that if someone wants
to modify the multi-lingual strings, or say, support a
new language, the first version is better because all
internationalization macros are localized in a single
place. It is true that if you consider internation-
alization as a feature, then our very own principle
would dictate to use the first version. This is simply
a demonstration that in general, there is no single
classification scheme that can work for all purposes.
However, we think that this argument is not really
pertinent. If you would indeed want to modify all
the multi-lingual strings, you would open the source
file in Emacs and use the occur library to get all
lines matching the regular expression

“\\newcommand*\\ . +name{

From the occurrence buffer, you can then reach every
relevant line directly by hitting the Return key. This
is really not complicated and in fact, could be more
good programming advice: know your tools.

4.3 Rule #3: Use filehook for intercession

The final behavioral rule we would like to propose
in this section deals more specifically with the inter-
cession problem. We recently came up with a design
pattern that we think helps smooth the implementa-
tion of inter-package compatibility.

4.3.1 Standard tools

The first thing we need to realize is that in general,
the standard IATEX tools are too limited.

TUGboat, Volume 32 (2011), No. 3

\@ifpackageloaded allows you to detect when
a package has been used or required, and possibly
take counter-measures. However, this is only a cu-
rative way of doing things: it only lets you provide
post-loading (a posteriori) code. What if you need
to take precautionary measures instead?

\AtBeginDocument allows one to massively de-
fer code execution until the beginning of a document,
that is, after every package has been loaded. This
is obviously a very gross granularity. For example,
it doesn’t provide any information on the order in
which the packages have been loaded, something that
might be needed even for post-preamble code.

Consider for example the following scenario:

e Style S calls \AtBeginDocument{\things}
e Class C loads style S

And ask yourself the following question: how does
class C intercede on \things? There is no simple
way to sort this out with the standard IXTEX tools.

4.3.2 filehook

Like probably almost every package developer, we
have fought against these problems for years with
intricate and obfuscated logic to fix inter-package
compatibility. We think however that the very recent
appearance of Martin Scharrer’s filehook package
is (should be) a crucial component in cleaning up
the current intercession mess.

The filehook package provides pre- and post-
loading hooks to files that you input in every pos-
sible way (\include’d files, packages, even class
files). Thanks to that, one can now handle inter-
cession in a context-free way, which is much better
than what was possible before. For example, you
can take both a priori and a posteriori counter-
measures against any package, without even knowing
for sure if the package is going to be loaded at all.
This notably includes the possibility of saving and
restoring functionality, much like what OpenGL does
with its PushMatrix /PopMatrix or PushAttrib/
PopAttrib functions (although OpenGL uses real
stacks for this).

Eventually, the existence of filehook allowed
us to come up with a particular design pattern for
intercession management that can be summarized as
follows. So far, this pattern works (for us) surpris-
ingly well.

e First of all, start by writing your code as if
there were no intercession problem. In other
words, simply implement the default behavior
as usual, assuming that no other package would
be loaded.

325

e Next, handle compatibility problems with pack-
ages, one at a time, and only locally: use pre-
and post-hooks exclusively to do so.

e Remember that hook code is only potential:
none of it will be executed if the correspond-
ing package is not loaded.

e Also, note that getting information on pack-
age loading order is now trivial if you use
\@ifpackageloaded in a pre-hook.

e Avoid using \AtBeginDocument for intercession,
unless absolutely necessary; for instance, if you
need to take a counter-measure against a pack-
age that already uses it. Again, in such a case,
calling \AtBeginDocument in a post-hook will
allow you to plug in the relevant code at exactly
the right position in the \@begindocumenthook
chain.

4.3.3 Bibliography management in GV,

To provide a concrete example of these ideas, let us
demonstrate how recent versions of GV handle com-
patibility with various bibliography-related packages.
A summarized version is given in figure 8 on the
following page. Roughly speaking, what this code
does is:

install the default, GuVz-specific behavior first,
step back if bibentry is loaded,

merge with multibib,

step back before splitbib and re-merge after-
wards,

e render hyperref inoperative.

Knowing where we came from, that is, how this
logic was done before filehook, it is amazing how
readable, clear, concise, and in fact simple, this new
implementation is. We cannot be sure how striking
this will be for the unacquainted reader, but in case
it is not, you are invited, as an exercise, to try an
implement this only with the standard ETEX macros
(hint: it is practically impossible).

Earlier, we claimed that filehook would allow
us to program in a context-free way. Let us explain
now what we meant by that. First of all, note that
because we use hooks exclusively to plug our inter-
cession code, the five special cases could have been
implemented in any order in the GV source file.
We can move the five blocks around without modify-
ing the semantics of the program. This is what we
mean by being “context-free”: the current dynamic
state of the program has no effect on the code we
put in hooks. Another instance of context freedom
is in the specific case of hyperref. The important
thing to notice here is that we save (and restore)
whatever state we had just before loading hyperref.

Towards IWTEX coding standards

326

TUGhboat, Volume 32 (2011), No. 3

%% Step 1: implement the default bibliographic behavior

o

%% Backup LaTeX’s original macros and replace them by our own:

\let\@curveltx@lbibitem\@lbibitem
\def\@curve@lbibitem[#1]#2{...}
\let\@lbibitem\@curve@lbibitem

A% ... do the same for \@bibitem, \bibitem etc.

%% Step 2: special cases

%% Bibentry. Restore standard definitions because bibentry just inlines

%% bibliographic contents.
\AtBeginOfPackageFile{bibentry}{
\let\@lbibitem\@curveltx@lbibitem
.}

%% Multibbl. Merge its definition of \bibliography with ours.

\AtEndOfPackageFile{multibbl}{
\def\bibliography##1##2##3{...}}

%% Splitbib.

%% Before: restore standard definitions because ours are only used as part of

%% the \endthebibliography redefinition.
\AtBeginOfPackageFile{splitbib}{
\let\@lbibitem\@curveltx@lbibitem
¥

%% After: Modify \NMSB@writeentry and re-modify \endthebibliography back.

\AtEndOfPackageFile{splitbib}{
\def\NMSBQwriteentry##1##2##3##4##5,{. ..}/
\def\endthebibliography{...}}

%% Hyperref. Currently, we don’t want hyperref to modify our bibliographic
%% code, so we save and restore whatever bibliographic state we had before

%% hyperref was loaded.
\AtBeginOfPackageFile{hyperref}{
\let\@curveprevious@lbibitem\@lbibitem
LY
\AtEndOfPackageFile{hyperref}{
\let\@lbibitem\@curveprevious@lbibitem
..}

Figure 8: Intercession management

In other words, here again we don’t need to know our
exact context (the specific definition for the macros
involved). We just need to save and restore it. And
again, it is impossible to do that without the abil-
ity to hook code before and after package loading —
which filehook now provides.

5 Level 4: Social

This section, shorter than the others, addresses a final
level (or rather, a meta-level) in coding standards:
the social level. Here, we are interested in how the

Didier Verna

human behavior may affect the I TEX world and in
particular the development of packages. We only
provide two simple rules, and a rather unfortunate,
but quite illustrative story.

We mentioned in the introduction the anti-social
development syndrome that ITEX seems to suffer
from. In our opinion, this behavior is what leads
to wheel-reinvention (cf. section 3.1 on page 318)
and hence redundancy (for instance, the existence of
half a dozen packages for key-value interfaces). In
an ideal world, the situation could be improved by
following the two simple rules described below.

TUGboat, Volume 32 (2011), No. 3

5.1 Rule #1: Be proactive

The first rule of thumb is to permanently try to ¢rig-
ger collaboration. Package development frequently
comes from the fact that you are missing a particular
functionality. However, there is little chance that
you are the first person to miss the functionality in
question. Therefore, the first thing to do is to look
for an existing solution instead of starting your own.
By the way, we know that it is fun to start one’s
own solution. We have done that before, but it is
nothing to be proud of!

Once you find an already existing solution (and
you will, most of the time), it will probably not be an
exact match. You will feel the need for implementing
a variant or an extension of some kind. Here again,
don’t take this as an excuse to start your own work,
and don’t keep your work for yourself either. Try to
be proactive and trigger collaboration: contact the
original author and see if your ideas or your code
could be merged in some way with the upstream
branch. This is the first key to avoid redundancy.

5.2 Rule #2: Be reactive

Of course, this can only work if there is a response
from the other side. And this is the second rule of
thumb: if collaboration is proposed, accept it. Main-
taining a package should be regarded as a certain
responsibility towards its users. People frequently es-
cape from their maintenance responsibility by hiding
behind the free software banner (free as in freedom
and/or as in beer). This is of course legitimate but
also abused to the point of leading to the anti-social
syndrome we have been discussing.

Being reactive means reviewing and accepting
patches from other people in a reasonable time frame
(for some definition of “reasonable”). It also means
listening to other people’s suggestions and implement-
ing them within the same reasonable time frame. We
understand that this is not always possible, but when
you feel that there is some kind of pressure on you,
there is also an alternative: trust people and open
the development. Use a version control system (VC)
of some kind. Put your code on github or a similar
place and let people hack on it. The advantage to
using a VC is that it is always possible to revert to
an earlier state in the history of the package.

5.2.1 F,NK and currfile

We realize these considerations may be somewhat ide-
alistic. In order to illustrate why they are important
anyways let us tell a short story.

Sometime in 2010, we were contacted by Martin
Scharrer, the author of filehook, about another
package of his named currfile. This package main-

327

tains the name of the file currently being processed
by KTEX. Martin was inquiring about a potential
cross-compatibility with F;NK, one of our own pack-
ages, which does exactly the same thing.

We answered politely with the requested infor-
mation and continued the email conversation for a
little while, not without a wee bit of frustration how-
ever. Why yet another package for this? Wasn’t
F;NK good enough? Couldn’t its functionality have
been extended rather than duplicated?

Interestingly enough, we were recently sorting
out some old mail when we dug up a message from
this very same Martin Scharrer, providing a patch
against F;NK in order to ground it onto filehook.
This message was one year and thirty eight weeks old.
Of course, we had completely forgotten all about it.
In terms of time frame, one year and thirty eight
weeks is way beyond “reasonable”. So much for being
reactive, lesson learned, the hard way. ..

6 Conclusion

In this paper, we addressed the notion of INTEX cod-
ing standards. We started by analyzing the reasons
why no such thing seems to exist as of yet. In short,
the lack of coding standards for ITEX can be justi-
fied by a mostly anti-social development syndrome,
a not so pressing need for them in the view of the
developers and the lack of help and support from the
usual text editors. We however demonstrated that
having a set of coding standards would be extremely
beneficial to the community. First, they would help
make the most of a programming language that is
far less structured than the more casual ones. Next,
they would also help in terms of code homogeneity
and readability, both key components in collabora-
tion. This is especially important in ETEX because
even if intentional collaboration is not so widespread,
there is a very frequent form of forced collaboration,
which is intercession (inter-package compatibility and
conflict management).

We then reported on our own development expe-
rience and proposed a set of rules and design patterns
that have helped improve our own code over the years.
Those rules were organized in four different abstrac-
tion levels: layout (formatting and naming policies),
design (modularity and other programming para-
digms), behavior (interfaces and intercession man-
agement) and finally the meta-level (social behavior).

We don’t expect that everyone would agree to
every one of these rules, as we know that a coding
style is above all a matter of personal taste. In
fact, a coding style is important, but it is even more
important to stick to it, that is, to stay coherent with
yourself. Developing a coding style is also a matter of

Towards IWTEX coding standards

328

keeping the problem in mind permanently, not unlike
a daemonized process running in the background of
one’s head. Every time you write a line of code, you
need to ask yourself, “is this the proper way to do
it?” This also means that a coding style may be
a moving target, at least partially. It will evolve
along with the quality of your code. Finally, one
should remember that there can be no rule without
exceptions. Knowing when to escape from your style
for the greater good is as important as conforming
to it.

The ideas, rules and design patterns proposed
in this article are those that work best for us, but
our hope is that they will also help you too. Many
other ideas have not been tackled in this paper, both
at the level of the document author and at the level
of the package developer. Much more could be said
on the matter, and if there is enough interest in the
community, maybe it is time for an “Elements of
ITEX Programming Style” book which remains to
be written. Perhaps this article could serve as a basis
for such a book, and we would definitely be willing
to work on such a project.

References
[1] AUC-TEX. http://www.gnu.org/s/auctex.

[2] The comprehensive TEX archive network.
http://www.ctan.org.

[3] The XEmacs text editor.
http://www.xemacs.org.

[4] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. Pattern-Oriented
Software Architecture, volume 1. Wiley, 1996.

[5] Frank Buschmann, Kevlin Henney, and
Douglas C. Schmidt. Pattern-Oriented
Software Architecture: A Pattern Language
for Distributed Computing, volume 4.
Wiley, 2007.

[6] Frank Buschmann, Kevlin Henney, and
Douglas C. Schmidt. Pattern-Oriented
Software Architecture: A Pattern Language
for Distributed Computing, volume 5.
Wiley, 2007.

[7] E. Gamma, R. Helm, R. Johnson, and
J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

[8] B.W. Kernighan and P.J. Plauger. The
Elements of Programming Style.
McGraw-Hill, 1974.

[9] Michael Kircher and Prashant Jain.
Pattern-Oriented Software Architecture:

Didier Verna

[12]

[13]

[20]

TUGhboat, Volume 32 (2011), No. 3

Patterns for Resource Management, volume 3.
Wiley, 2004.

Patty Maes. Concepts and experiments in
computational reflection. In OOPSLA. ACM,
December 1987.

Frank Mittelbach. Reflections on the
history of the ITEX Project Public License
(LPPL) — A software license for ITEX and
more. TUGboat, 32(1):83-94, 2011. http:
//tug.org/TUGboat/tb32-1/tb100mitt . pdf.

Frank Mittelbach, Michel Goossens, Johannes
Braams, David Carlisle, and Chris Rowley.
The BTEX Companion, second edition.
Addison Wesley, 2004.

Douglas C. Schmidt, Michael Stal,
Hans Rohnert, and Frank Buschmann.
Pattern-Oriented Software Architecture:
Patterns for Concurrent and Networked
Objects, volume 2. Wiley, 2000.

Brian C. Smith. Reflection and semantics
in Lisp. In Symposium on Principles of
Programming Languages, pages 23-35.
ACM, 1984.

Richard M. Stallman. The GNU coding
standards. http://www.gnu.org/prep/
standards.

William Strunk Jr. and E.B. White. The
Elements of Style. W.P. Humphrey, 1918.

Didier Verna. The GV class. http:
//www.lrde.epita.fr/~didier/software/
latex.php#curve.

Didier Verna. The FiXme style. http:
//www.lrde.epita.fr/~didier/software/
latex.php#fixme.

Didier Verna. Classes, styles, conflicts:
The biological realm of KTEX. TUGboat,
31(2):162-172, 2010. http://tug.org/
TUGboat/tb31-2/tb98verna.pdf.

Joseph Wright and Christian Feuersanger.
Implementing key—value input: An
introduction. TUGboat, 30(1):110-122,
2009. http://tug.org/TUGboat/tb30-1/
tb94wright-keyval.pdf.

¢ Didier Verna
EPITA / LRDE
14-16 rue Voltaire
94276 Le Kremlin-Bicétre Cedex
France
didier (at) lrde dot epita dot fr
http://www.lrde.epita.fr/"didier

http://www.gnu.org/s/auctex
http://www.ctan.org
http://www.xemacs.org
http://tug.org/TUGboat/tb32-1/tb100mitt.pdf
http://tug.org/TUGboat/tb32-1/tb100mitt.pdf
http://www.gnu.org/prep/standards
http://www.gnu.org/prep/standards
http://www.lrde.epita.fr/~didier/software/latex.php#curve
http://www.lrde.epita.fr/~didier/software/latex.php#curve
http://www.lrde.epita.fr/~didier/software/latex.php#curve
http://www.lrde.epita.fr/~didier/software/latex.php#fixme
http://www.lrde.epita.fr/~didier/software/latex.php#fixme
http://www.lrde.epita.fr/~didier/software/latex.php#fixme
http://www.tug.org/TUGboat/
http://tug.org/TUGboat/tb31-2/tb98verna.pdf
http://tug.org/TUGboat/tb31-2/tb98verna.pdf
http://tug.org/TUGboat/tb30-1/tb94wright-keyval.pdf
http://tug.org/TUGboat/tb30-1/tb94wright-keyval.pdf

	Introduction
	The coding standards many-festos
	Consistency
	30 years and no style?
	Learning by example
	Lack of help
	Lack of need

	30 years and almost no style…
	Tools
	Conventions
	Documentation

	The need for coding standards
	Coding style levels
	Target audience

	Level 1: Layout
	Formatting
	The rules
	Formatting of syntactic groups
	Inter-macro indentation
	Exceptional situations
	Corollary

	Naming
	The rules
	Exceptional situations

	Level 2: Design
	Rule #1: Don't reinvent the wheel
	Feature libraries
	Paradigm libraries

	Rule #2: Duplication/Copy-paste is evil
	Duplication
	Copy-paste

	Rule #3: Conditionals are evil
	Rule #4: Be modular

	Level 3: Behavior
	Rule #1: Be user-friendly
	Documentation
	Backward compatibility
	Key-value interfaces

	Rule #2: Be hacker-friendly
	From bottom to top
	Feature-oriented organization

	Rule #3: Use filehook for intercession
	Standard tools
	filehook
	Bibliography management in CurVe

	Level 4: Social
	Rule #1: Be proactive
	Rule #2: Be reactive
	FiNK and currfile

	Conclusion

