
Aligning Text in Diagrams Exported
by Mathematica: A Question about the
PostScript Infrastructure

Michael P. Barnett
Abstract: I produce many LATEX documents that contain

diagrams exported by MATHEMATICA graphics. Usu-

ally, these contain text. Often, this is misaligned hor-

izontally. I think that getting correct alignment needs

an understanding of PDF font encoding. This note de-

scribes the problem in the hope of getting feedback.∗

1 Introduction

This note seeks advice from POSTSCRIPT experts
about certain details of font encoding. I need this in-
formation to align built-up text expressions that mix
different fonts, in diagrams that are constructed by
MATHEMATICA graphics. I include these diagrams
in LATEX manuscripts on topics in the natural sci-
ences, mathematics and the humanities. The text
is aligned by the TMG (text in MATHEMATICA)
package that I coded. Fig. 1 and nearly 30 similar
diagrams are in a recent paper on nuclear magnetic
resonance (NMR) that I wrote with István Pelczer
[1]. The construction of these diagrams prompted

90° 90°

decouple

1H t1�2 t1�2 1�H2 JL 1�H3 JL

180 ° 90°
13C t1�2 t1�2 1�H2 JL 1�H3 JL FID

Figure 1: An NMR pulse sequence diagram.

the work on TMG. The package contains an encode
function that tries to position the contents of sep-
arate MATHEMATICA Text commands precisely.
This is a standard need when a set of related dia-
grams consists of varied selections of modules that
contain text. The definitive description of the Text
command in The Mathematica Book [2] states:

“Text[expr, coords, offset] specifies an offset for the
block of text relative to the coordinates given.”

The description goes on to mention sample offsets
that include “{-1,0} left-hand end at {x, y}” and
“{0, -1} centered above {x, y}”. The obvious exten-
sion is that {-1,-1} puts the lower left corner of the
text at {x, y}. The description in [2] refers to the
“bounding rectangle that surrounds the text”.

∗ MATHEMATICA is a registered trademark of Wolfram
Research Inc.

The idea of bounding rectangles that surround
text has been inherent in the use of moveable type
for millenia [3] and, more recently, in phototypeset-
ting [4]. It is associated with the idea of a baseline,
defined as “the line upon which most letters ‘sit’ and
below which descenders extend” [5]. Fig. 2 shows
a sequence of words and isolated characters in serif,
sans-serif and Greek fonts, that were typeset by el-
ementary LATEX coding. The rectangles that sur-
round the characters and the baseline were drawn
by \rule commands. Typesetting software has cus-

Mary Elizabeth Mary Elizabeth αβ
Figure 2: Bounding boxes — consistent baselines.

tomarily treated the vertical coordinate of a piece of
text as the position of its baseline, since the incep-
tion of the field in the late 1950s [4]. Digital fonts
were developed that treated each character as if it
were contained in a rectangle, that had the point
size as its height, with baselines positioned for con-
sistency between characters in the same font and in
different fonts. This paralleled the design of metal
type slugs.

Fig. 3 shows some bad alignment produced by
MATHEMATICA Text commands. These all contain
the offsets {-1,-1}, and the same y value is used in
the Text and Line commands that produced each
row. Line[{{x1, y1}, {x2, y2}}] draws a line from
(x1, y1) to (x2, y2).

a aα
Henry

Mary Elizabeth

Mary Elizabeth

0 1 2 3 4 5 6 7 8 9

Figure 3: Examples of unexpected misalignment.

{Text[Style["a", FontFamily -> "Times-Roman",

FontSize -> 20], {0,600}, {-1, -1}],

Text[Style["a", FontFamily -> "Courier",

FontSize -> 20], {15, 600}, {-1, -1}],

Text[Style["a", FontFamily -> "Symbol",

FontSize -> 20], {30, 600}, {-1, -1}],

Line[{{0, 600}, {80, 600}}],

(* *)

Text[Style["H", FontFamily -> "Courier",

FontSize -> 10], {6, 580}, {-1, -1}],

Text[Style["e", FontFamily -> "Courier",

FontSize -> 10], {12, 580}, {-1, -1}],

1001



1002 BARNETT

...

Text[Style["y", FontFamily -> "Courier",

FontSize -> 10], {30, 580}, {-1, -1}],

Line[{{0, 580}, {80, 580}}],

(* *)

Text[Style["Mary",

FontFamily -> "Times-Roman", FontSize -> 6],

{0, 560}, {-1, -1}],

Text[Style["Elizabeth",

FontFamily -> "Times-Roman",

FontSize -> 6], {20, 560}, {-1, -1}],

Line[{{0, 560}, {80, 560}}],

(* *)

Text[Style["Mary",

FontFamily -> "Times-Roman",

FontSize -> 12], {0, 540}, {-1, -1}],

Text[Style["Elizabeth",

FontFamily -> "Times-Roman",

FontSize -> 12], {30, 540}, {-1, -1}],

Line[{{0, 540}, {80, 540}}],

(* *)

Text[Style["0", FontFamily -> "Courier",

FontSize -> 6], {0, 520}, {-1, -1}],

Text[Style["1", FontFamily -> "Courier",

FontSize -> 6], {6, 520}, {-1, -1}],

...

Text[Style["9", FontFamily -> "Courier",

FontSize -> 6], {54, 520}, {-1, -1}],

Line[{{0, 520}, {80, 520}}]};

An earlier version of these commands is shorter but
needs more explanation. There are several reasons
for the alignment effects in Fig. 3.

1. In the 1st row, the letter “a” in Times-Roman
and Courier fonts and the α do not line up be-
cause the different fonts are coded with different
baselines in their respective bounding boxes.

2. In the 2nd row, the bases of the rectangles
that fit tightly around the individual letters in
“Henry” are aligned. This makes the “y” high
relative to the other letters.

3. In the 3rd and 4th rows, the string ”Mary” has
consistent baselines. So does ”Elizabeth”. But
the “y” in ”Mary” pushes the entire string up,
relative to “Elizabeth”.

4. In the 5th row, I think that the digits do not
line up because 0, 3, 5, 6, 8 and 9 were coded
using one set of conventions, and 1, 2, 4 and 7
using a different set.

Fig. 4 shows a practical consequence of the align-
ment of personal names. I wrote a MATHEMATICA

script in the 1990’s to display genealogies. Fig. 4 is a
minimalistic display of relationships that dominated
British society for half a century. The misalignment
would be unacceptable in a scholarly journal that

dealt with the substantive issues that this presents.

Henry VII

Arthur Henry VIII others

Mary Elizabeth Edward VI

Figure 4: The simplified Tudor succession.

Some forms of undesirable alignment become
more pronounced as font size decreases. This may
be related to an apparent drift in the snugness of
the bounding rectangle. Although I have not found
relevant data directly, some simple syntactic errors
make the system display the rectangles that it seems
to use. This is done in the 3rd row of Fig. 5 by using
null as the y offset. The system treats it as 0. In
the 1st row, the string “Ay” is set successively in 40,
20, 10 and 5 point Courier type. The y coordinate in
the Text expressions is 550, and a Line expression
draws a line with y = 550 across the page. The serif
of the “y” touches this line in 40 point type, but not
in the smaller sizes. A line drawn with y = 557.6
shows the elevation of the serifs of the “A” relative
to those of the “y” in 40 point type.

In the 2nd row, the two letters “A” and “y”
are set by separate Text statements, with y = 500.
The serif of the 40 point “y” touches a line with this
coordinate, but the relative elevation of the “A” has
dropped to 6.1 points. As the size decreases, the “y”
continues to move up relative to the “A”.

In the 3rd row the rectangles surrounding the
“y” have moved down slightly, with decreasing point
size, relative to the serif. Fig. 6 shows the 5 point

Ay Ay Ay Ay

"Ay" is set in 40, 20, 10 and point Courier using:
Text@Style@"Ay", ð@@1DDD, 8ð@@2DD, 550<, 8-1, -1<D& ��

88C40, 20<, 8C20, 75<, 8C10, 108<, 8C05, 125<<,
Line@880, 550<, 8500, 550<<D, Line@8815, 557.6<, 850, 557.6<<D

Base of 1st "y" is on reference line. Base of 1st "A" is 7.6 points higher.

Ay Ay Ay Ay

"A" and "y" are set as separate characters using
8Text@Style@"A", ð@@1DDD, 8ð@@2DD, 500<, 8-1, -1<D,
Text@Style@"y", ð@@1DDD, 8ð@@3DD, 500<, 8-1, -1<D<& ��

88C40, 20, 45<, 8C20, 75, 88<, 8C10, 108, 115<, 8C05, 125, 128<<,
Line@880, 500<, 8500, 500<<D, Line@8815, 506.1<, 850, 506.1<<

Base of 1st "y" is on reference line. Base of 1st "A" is only 6.1 points higher.

Ay Ay Ay Ay

Uses "null" for y offset. This deliberate syntactic error makes the system
show the bounding boxes, and use 0 offset.

Figure 5: Forced demonstration of bounding box.

example, magnified 8-fold by the scale parameter



TEXT IN MATHEMATICA GRAPHICS 1003

in the LATEX \includegraphics command. The po-
sition of the horizontal line at y = 450 emphasizes
the change.

Ay Ay Ay Ay

"Ay" is set in 40, 20, 10 and point Courier using:
Text@Style@"Ay", ð@@1DDD, 8ð@@2DD, 550<, 8-1, -1<D& ��

88C40, 20<, 8C20, 75<, 8C10, 108<, 8C05, 125<<,
Line@880, 550<, 8500, 550<<D, Line@8815, 557.6<, 850, 557.6<<D

Base of 1st "y" is on reference line. Base of 1st "A" is 7.6 points higher.

Ay Ay Ay Ay

"A" and "y" are set as separate characters using
8Text@Style@"A", ð@@1DDD, 8ð@@2DD, 500<, 8-1, -1<D,
Text@Style@"y", ð@@1DDD, 8ð@@3DD, 500<, 8-1, -1<D<& ��

88C40, 20, 45<, 8C20, 75, 88<, 8C10, 108, 115<, 8C05, 125, 128<<,
Line@880, 500<, 8500, 500<<D, Line@8815, 506.1<, 850, 506.1<<

Base of 1st "y" is on reference line. Base of 1st "A" is only 6.1 points higher.

Ay Ay Ay Ay

Uses "null" for y offset. This deliberate syntactic error makes the system
show the bounding boxes, and use 0 offset.

Figure 6: 8-fold magnification of 5 point example.

2 The TMG encode function

I try to achieve the horizontal alignment of a body of
text that is displayed on a single line by putting the
i-th character, denoted here by ci, into a separate
expression of the form

Text[Style[ci,FontFamily->fi, FontSize->si],

{x0 + hi, ȳ},{-1,σ(fi, si, ci)}]

where
1. hi =

i−1∑
j=1

sj

10
w(fj , cj),

2. ci, fi and si are the i-th character and the font
style and font size in which it is set,

3. w(fi, ci) is the width of ci in 10 point font fi

(giving w("Courier", c) the value 6 for the en-
tire character set),

4. σ(fi, si, ci) is the offset that puts the baseline
of the character, in the specified size and style,
onto the line y = ȳ, that is specified in the
coordinates part of the Text statement,

5. x0 is the starting x coordinate of the text.
I developed methods to find widths and offsets by
trial and error. Using these, I found the widths for
the Courier, Times-Roman and Symbol fonts with
ease and accuracy. I found the offsets for the Courier
and Symbol fonts for point sizes 4 to 10, and Times-
Roman for size 12, with considerable difficulty and
tedium and some uncertainty.

I would like advice on finding the offsets al-
gorithmically from the font tables.

The information may be in the chapter on fonts in
the Postscript Language Reference manual [6]. The
learning curve for this seems non-trivial, and I do
not want to climb it unnecessarily.

The TMG expression
encodeString[font, size, x, y, string]

sets string in the specified font face and font size,
starting with the left edge of the bounding box of
the 1st character at x, and the baseline at y. In the
more general expression

encodeSequence[item1, item2, . . .]

each item is either
1. a character string, e.g. “delay”, that is set in

uniform font and size on a common baseline,
2. a character sequence with no quote marks, e.g.

delay, that the system envelops in quote marks
and treats as just described (this 2nd kind of
item actually is restricted to objects that in
MATHEMATICA syntax are symbols).

3. one of the following commands
(a) ps[n]: changes font to size n without al-

tering the baseline,
(b) tf[f]: changes the font to style f ,
(c) tf[f, n]: changes the font to style f and

size n,
(d) sub[s]: sets the string s in the decoration

size, sunk to subscript level,
(e) sup[s]: sets s in decoration size, raised to

superscript level,
(f) subSup[s1, s2]: sets s1 and s2 as subscript

and superscript, left aligned,
(g) lSubSup[s1, s2]: sets s1 and s2 as right

aligned subscript and superscript,
(h) tab[x̄]: changes the x coordinate for the

next displayed object to x̄,
(i) vtab[ȳ]: changes the y coordinate for the

next displayed object to ȳ,
(j) hs[n̄]: increases x by n,
(k) vs[n̄]: increases y by n.

I hope to extend this set of commands to provide
algorithmic formating capabilities.

The file alignedByEncode.pdf that produced
Fig. 7 for comparison with Figs. 3 and 4 was written
by the following statement, that contains encode
and encodeString expressions.
export[alignedByEncode =

{AbsoluteThickness[.1],

encode[ps[20], vtab[620], tab[20],

tf["Times-Roman"], "a", tab[40],

tf["Courier"], "a", tab[60],

tf["Symbol"], "a"],

Line[{{20, 620}, {80, 620}}],

encodeString["Courier", 10, 20, 600,

"Henry"],

Line[{{20, 600}, {50, 600}}],

encodeString["Times-Roman", 6, 20, 580,

"Mary"],

encodeString["Times-Roman", 6, 40, 580,

"Elizabeth"],

Line[{{20, 580}, {70, 580}}],

encodeString["Times-Roman", 12, 20, 560,

"Mary"],

encodeString["Times-Roman", 12, 50, 560,

"Elizabeth"],



1004 BARNETT

Line[{{20, 560}, {100, 560}}],

encode[tf["Courier"], ps[6], tab[20],

vtab[540], "0", "1", "2", "3", "4", "5",

"6", "7", "8", "9"],

Line[{{20, 540}, {60, 540}}]}]

a a α
Henry

Mary Elizabeth

Mary Elizabeth

0123456789

Figure 7: Output of encode expressions.

The file refinedTudors.pdf, that produced Fig. 8
was written by the following statements.

tudorTreeEdges =

{Line[{{200, 600}, {200, 590}}],

Line[{{135, 590}, {265, 590}}],

Line[{{135, 590}, {135, 580}}],

Line[{{200, 590}, {200, 580}}],

Line[{{265, 590}, {265, 580}}],

Line[{{200, 570}, {200, 560}}],

Line[{{145, 560}, {255, 560}}],

Line[{{145, 560}, {145, 550}}],

Line[{{200, 560}, {200, 550}}],

Line[{{255, 560}, {255, 550}}]}

encodedTudorNames =

{encodeString[

"Courier", 8, 178.4, 605, "Henry VII"],

encodeString[

"Courier", 8, 120.6, 575, "Arthur"],

encodeString[

"Courier", 8, 186.0, 575, "Henry VIII"],

encodeString[

"Courier", 8, 250.6, 575, "others"],

encodeString[

"Courier", 8, 135.4, 545, "Mary"],

encodeString[

"Courier", 8, 178.4, 545, "Elizabeth"],

encodeString[

"Courier", 8, 233.4, 545, "Edward VI"]}

export[refinedTudors =

{tudorTreeEdges, encodedTudorNames}]

The alignment is imperfect but I believe it can be
improved by fine tuning the offsets. I think that
each letter has a range of offsets that are acceptable
in one context, and a different range in another con-
text, with very narrow overlap. I have been using
just one or two contexts to determine the offsets for

Henry VII

Arthur Henry VIII others

Mary Elizabeth Edward VI

Figure 8: More output of encode expressions.

each letter, and picking an offset within the range
of acceptability in a somewhat arbitrary manner.

The present technique supports the alignment
of short expressions with each other, as needed in
the pulse sequence diagram of Fig. 1. That dia-
gram, and the other diagrams in [1], were produced
by ad hoc coding before I started TMG. Using TMG,
I will be able to extend the options for including ex-
planatory text in the diagrams, even in its present
crude form. An algorithmic basis for TMG would
enable many other applications of MATHEMATICA
graphics in the kernel mode.

Acknowledgements

I thank Barbara Beeton, Karl Berry and Andrew
Roberts for advice on coding and on sources of in-
formation.

Supplementary Material

This is in tmgDistribution.tar.gz on site to be spec-
ified by Editor. It contains

1. the TMG software described in this note,

2. an account of how to measure widths and offsets,

3. software that I used to explore MATHEMATICA

fonts, with a detailed explanation.

References
[1] M. P. Barnett and I. Pelczer, Pulse sequence editing

by symbolic calculation, J. Magn. Reson. 204 (2010)
189–195.

[2] S. Wolfram, The Mathematica Book, 2nd ed.
Addison-Wesley, New York, 1991, or later editions.

[3] Movable type, http://en.wikipedia.org/wiki/

Movable_type.

[4] M. P. Barnett, Computer Typesetting, Experiments
and Prospects, MIT Press. 1965.

[5] Baseline (typography), http://en.wikipedia.org/

wiki/Baseline_(typography).

[6] PostScript Language Reference, Adobe Systems
Incorporated, http://www.adobe.com/devnet/

postscript/pdfs/PLRM.pdf.

� Michael P. Barnett
Meadow Lakes
Hightstown, NJ 08520
USA
michaelb@princeton.edu

http://www.princeton.edu/

~michaelb/nmr/

http://en.wikipedia.org/wiki/Movable_type
http://en.wikipedia.org/wiki/Movable_type
http://en.wikipedia.org/wiki/Baseline_(typography)
http://en.wikipedia.org/wiki/Baseline_(typography)
http://www.adobe.com/devnet/postscript/pdfs/PLRM.pdf
http://www.adobe.com/devnet/postscript/pdfs/PLRM.pdf

	Introduction
	The TMG encode function

