
TUGBOAT

Volume 30, Number 2 / 2009
TUG 2009 Conference Proceedings

TUG 2009 154 Conference program, delegates, and sponsors

159 Profile of Eitan Gurari (1947–2009)

LATEX 163 Boris Veytsman / LATEX class writing for wizard apprentices

169 Arthur Reutenauer / LuaTEX for the LATEX user: An introduction

Accessibility 170 Ross Moore / Ongoing efforts to generate “tagged PDF” using pdfTEX

Education 176 Frank Quinn / The EduTEX TUG working group

Software & Tools 177 Jim Hefferon / Becoming a CTAN mirror

179 Karl Berry / TEX Live 2009 news

180 Tim Arnold / Getting started with plasTEX

183 Hans Hagen / LuaTEX: Halfway to version 1

187 Hans Hagen / LuaTEX and ConTEXt: Where we stand

191 Bob Neveln and Bob Alps / ProofCheck: Writing and checking complete proofs

in LATEX

Publishing 196 Karl Berry and David Walden / TEX People: The TUG interviews project and book

203 David Walden / Self-publishing: Experiences and opinions

Graphics 209 Klaus Höppner / Introduction to METAPOST

214 Andrew Mertz and William Slough / A TikZ tutorial: Generating graphics in the

spirit of TEX

227 Boris Veytsman and Leila Akhmadeeva / Medical pedigrees: Typography

and interfaces

Fonts 236 Jim Hefferon / A first look at the TEX Gyre fonts

241 Hans Hagen / Plain TEX and OpenType

243 Aditya Mahajan / Integrating Unicode and OpenType math in ConTEXt

Macros 247 Aditya Mahajan / LuaTEX: A user’s perspective

Bibliographies 252 Nelson Beebe / BIBTEX meets relational databases

Electronic Documents 272 Kaveh Bazargan / TEX as an eBook reader

274 Christian Rossi / From distribution to preservation of digital documents

281 D. P. Story / Rich media annotations and AcroFLeX

Hints & Tricks 285 Claudio Beccari / Use of the \write18 feature for composing indexes

287 Peter Wilson / Glisterings: Repetition; Rectangular text

290 Will Robertson / Peter Wilson’s Herries Press packages

Abstracts 293 Biuletyn GUST : Contents of issues 25–26 (2009)

296 Die TEXnische Komödie: Contents of issue 2009/3

296 Zpravodaj : Contents of issue 19(1–2) (2009)

298 TUG 2009 abstracts (Cho, de Souza, Hamid, Høgholm, Rowley)

TUG Business 299 TUG institutional members

Sponsors 300 Cheryl Ponchin Training; O’Reilly Media; Design Science

301 MacKichan Software; River Valley Technologies; A-R Editions

302 River Valley Technologies

News &

Announcements

302 TUG2010 announcement

303 Calendar

Advertisements 304 TEX consulting and production services

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the TEX
Users Group.

Memberships and Subscriptions

2008 dues for individual members are as follows:
Ordinary members: $85.
Students/Seniors: $45.

The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to
receive TUGboat in a name other than that of an
individual. The subscription rate is $100 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing con-
tinuing interest in and support for both TEX and
the TEX Users Group, as well as providing a dis-
counted group rate and other benefits. For further
information, see http://tug.org/instmem.html or
contact the TUG office.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2009 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not be

reproduced, distributed or translated without the authors’

permission.

For the editorial and other material not ascribed to

a particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice are

preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations

of this permission notice itself. Lacking such approval, the

original English permission notice must be included.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Karl Berry, President∗

Kaja Christiansen∗, Vice President

David Walden∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Jon Breitenbucher
Jonathan Fine
Steve Grathwohl
Jim Hefferon
Klaus Höppner
Ross Moore
Steve Peter
Cheryl Ponchin
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for a roster of all
past and present board members, and other official
positions.

Addresses

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 206 203-3960

Web

http://tug.org/

http://tug.org/TUGboat/

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

Have a suggestion? Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: October 2009]

Printed in U.S.A.

The Communications of the TEX Users Group

Volume 30, Number 2, 2009
TUG 2009 Conference Proceedings

TEX Users Group

TUGboat (ISSN 0896-3207) is published by the TEX
Users Group.

Memberships and Subscriptions

2008 dues for individual members are as follows:
Ordinary members: $85.
Students/Seniors: $45.

The discounted rate of $45 is also available to
citizens of countries with modest economies, as
detailed on our web site.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed, as well as software distributions and other
benefits. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site.

Also, (non-voting) TUGboat subscriptions are
available to organizations and others wishing to
receive TUGboat in a name other than that of an
individual. The subscription rate is $100 per year,
including air mail delivery.

Institutional Membership

Institutional membership is a means of showing con-
tinuing interest in and support for both TEX and
the TEX Users Group, as well as providing a dis-
counted group rate and other benefits. For further
information, see http://tug.org/instmem.html or
contact the TUG office.

TEX is a trademark of the American Mathematical
Society.

Copyright c© 2009 TEX Users Group.

Copyright to individual articles within this publication

remains with their authors, so the articles may not be

reproduced, distributed or translated without the authors’

permission.

For the editorial and other material not ascribed to

a particular author, permission is granted to make and

distribute verbatim copies without royalty, in any medium,

provided the copyright notice and this permission notice are

preserved.

Permission is also granted to make, copy and distribute

translations of such editorial material into another language,

except that the TEX Users Group must approve translations

of this permission notice itself. Lacking such approval, the

original English permission notice must be included.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana
†

Karl Berry, President∗

Kaja Christiansen∗, Vice President

David Walden∗, Treasurer
Susan DeMeritt∗, Secretary
Barbara Beeton
Jon Breitenbucher
Jonathan Fine
Steve Grathwohl
Jim Hefferon
Klaus Höppner
Ross Moore
Steve Peter
Cheryl Ponchin
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
†honorary

See http://tug.org/board.html for a roster of all
past and present board members, and other official
positions.

Addresses

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 206 203-3960

Web

http://tug.org/

http://tug.org/TUGboat/

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

Contact the Board
of Directors:
board@tug.org

Have a suggestion? Problems not resolved?

The TUG Board wants to hear from you:
Please email board@tug.org.

[printing date: October 2009]

Printed in U.S.A.

2009 Conference Proceedings

TEX Users Group

Thirtieth Annual Meeting

University of Notre Dame

Indiana, USA

July 29–31, 2009

COMMUNICATIONS OF THE TEX USERS GROUP

TUGBOAT EDITOR BARBARA BEETON

PROCEEDINGS EDITOR KARL BERRY

VOLUME 30, NUMBER 2 • 2009
PORTLAND • OREGON • U.S.A.

TUG2009
University of Notre Dame Indiana, USA

July 28–July 31, 2009

Sponsors

TEX Users Group Notre Dame Journal of Formal Logic DANTE e.V.

A-R Editions Design Science MacKichan Software
O’Reilly Media River Valley Technologies

Thanks to all!

Acknowledgments

Many thanks to all the speakers and teachers, without whom there would be no conference,
and also special thanks to:

Martha Kummerer, for the local research and organization.
Duane Bibby, for the (as always) excellent and fun drawings.
University of Notre Dame, for the facilities, with particular thanks to Harriet Baldwin.

Conference committee

Karl Berry Martha Kummerer Robin Laakso Steve Peter

Bursary committee

Sam Rhoads, chair Jana Chlebikova Kaja Christiansen Bogus law Jackowski

Participants

Leyla Akhmadeeva, Bashkir State Medical Univ.
Bob Alps

Tim Arnold, SAS

Kaveh Bazargan, River Valley Technologies
Nelson Beebe, University of Utah
Barbara Beeton, American Mathematical Society
Karl Berry, TEX Users Group
Jin-Hwan Cho, University of Suwon
Dennis Claudio, Richmond, CA
Jennifer Claudio, St. Lawrence Academy
Joseph Corneli, PlanetMath
Paulo Ney de Souza, UC Berkeley
Sue DeMeritt, Center for Communications

Research, La Jolla, CA
Dorothy DiFranco, American Physical Society
Terri Fizer, Duke University Press
Steve Grathwohl, Duke University Press
Hans Hagen, Pragma ADE

Michele Hake, American Physical Society
Idris Samawi Hamid, Colorado State University
Jim Hefferon, St. Michael’s College
Morten Høgholm, LATEX Project and

Technical University of Denmark

Klaus Höppner, DANTE e.V.
Ned Hummel, Indiana University-Purdue

University Indianapolis
Mirko Janc, INFORMS

Jonathan Kew, Mozilla Corporation
Dick Koch, University of Oregon
Martha Kummerer, Notre Dame Journal of

Formal Logic
Aditya Mahajan, University of Michigan
Andrew Mertz, Eastern Illinois University
Ross Moore, Macquarie University
Bob Neveln, Widener University
Lynn Newton, Interhack Corp.
Cheryl Ponchin, Center for Communications

Research, Princeton, NJ

Gianluca Puliti, University of Notre Dame
Arthur Reutenauer, GUTenberg
Chris Rowley, Open University
Herbert Schulz, College of DuPage (retired)
William Slough, Eastern Illinois University
Boris Veytsman, George Mason University
David Walden, E. Sandwich, MA

Alan Wetmore, US Army

LATEX workshop participants

Jason Bray, University of Notre Dame
Dorothy DiFranco, American Physical Society
Huijing Du, University of Notre Dame
Terri Fizer, Duke University Press
Michele Hake, American Physical Society
Shari Hill, Notre Dame Graduate School

Judy Hygema, University of Notre Dame
Brenda Jackson, University of Notre Dame
Matthew Jobbins, University of Notre Dame
Gianluca Puliti, University of Notre Dame
Aaron Segal, University of Notre Dame

TUG2009 program
Tuesday
July 28

8:30 am registration
9 am–5 pm track 1: LATEX workshop, Sue DeMeritt & Cheryl Ponchin

9 am track 2: LATEX color/graphics workshop, Boris Veytsman
10:30–10:45 am break

10:45 am track 1 continues
10:45 am track 2: PSTricks workshop, Boris Veytsman

12:15–1:30 pm lunch
1:30 pm track 1 continues
1:30 pm TEX Live 2009 round table, Karl Berry

3:00–3:15 pm break
3:15 pm track 1 continues
3:15 pm CTAN round table, Jim Hefferon
5–7 pm registration & reception, Morris Inn, Irish Courtyard

Wednesday
July 29

8 am registration
8:30 am Karl Berry, TEX Users Group Welcome

8:45 am Ross Moore, Macquarie University Towards tagged PDF

9:25 am Kaveh Bazargan, River Valley Tech. TEX as an eBook reader

10:05 am break
10:20 am Andrew Mertz & William Slough, EIU A TikZ tutorial: Generating graphics in the spirit of TEX

11:00 am Klaus Höppner, DANTE e.V. Introduction to MetaPost

11:40 am Jim Hefferon, St. Michael’s College Gyre Fonts for the easily confused

12:20 pm lunch

1:30 pm Aditya Mahajan, Univ. of Michigan LuaTEX: A user’s perspective

2:10 pm Arthur Reutenauer, GUTenberg LuaTEX for the LATEX user

2:50 pm break
3:05 pm Frank Quinn, Virginia Tech EduTEX: A source format for self-scoring tests

3:30 pm Jin-Hwan Cho, University of Suwon Extended DVI formats and DVIasm

4:10 pm Nelson Beebe, University of Utah BIBTEX meets relational databases

4:50 pm q&a

Thursday
July 30

8:45 am Boris Veytsman, George Mason Univ. Class writing for wizard apprentices

9:25 am Karl Berry & David Walden, TUG TEX People: The TUG interviews project and book

10:05 am break
10:20 am David Walden Self-publishing: experiences and opinions

11:00 am Paulo Ney de Souza, MSP The MSP TEX production system: Restoration of TUGboat

11:40 am Idris Hamid, Colorado State Univ. Arabic typography: Past, present, and TEX

12:20 pm lunch

1:30 am Hans Hagen, Pragma ADE The LuaTEX Project: Halfway to version 1

2:10 pm Aditya Mahajan ConTEXt math: Integrating Unicode and OpenType

2:50 pm break
3:05 pm Hans Hagen Plain TEX and OpenType

3:45 pm Idris Hamid Dynamic Arabic: Towards the philosopher’s stone

of Arabic-script typography

4:25 pm q&a, TUG meeting
7 pm banquet Morris Inn, Donors Room

Friday
July 31

8:45 am Bob Neveln, Widener University &
Bob Alps

Writing and checking complete proofs in LATEX

9:25 am Morten Høgholm, LATEX Project Next steps for breqn

10:05 am break
10:20 am Boris Veytsman & Leyla Akhmadeeva,

Bashkir State Medical University
Medical pedigrees: typography and interface

11:00 am Tim Arnold, SAS Getting started with plasTEX

11:40 am Chris Rowley, Open University TEX-free LATEX, an overview

12:20 pm lunch

1:30 pm Chris Rowley Standards for LATEX documents and processors

2:10 pm Morten Høgholm Consolidation of expl3

2:50 pm Hans Hagen Why I still use TEX

3:30 pm end

156 TUGboat, Volume 30 (2009), No. 2

Cheryl Ponchin and Sue DeMeritt, at the reception.

Boris Veytsman and Leyla Akhmadeeva.

Dennis Claudio, Jonathan Kew, Paulo Ney de Souza.

Hans Hagen and Jin-Hwan Cho.

Gianluca Politi.

Idris Hamid, Barbara Beeton, Nelson Beebe.

TUGboat, Volume 30 (2009), No. 2 157

Kavah Bazargan, our estimable banquet MC.

Morten Høgholm and family: Evguenia, David,
and Abigail.

Frank Quinn, Joe Corneli, Martha Kummerer.

Idris Hamid and Hans Hagen.

Our after-dinner entertainment provided by Morten
and Evguenia’s son David.

Steve Grathwohl and Peter Cholak.

158 TUGboat, Volume 30 (2009), No. 2

MacTEX at work: Jonathan Kew and Dick Koch.

Martha Kummerer, our excellent tour guide, with
Nelson Beebe.

Tim Arnold, Jim Hefferon, Andrew Mertz, and
Bill Slough. Background: Karl Berry, Bob Neveln,
Bob Alps, Leyla Akhmadeeva, Chris Rowley.

The TEX pack on tour.

TUG 2009 gathering.
Front row: Dennis Claudio, Terri Fizer, Dorothy DiFranco, Michele Hake, Bram Otten, Martha Kummerer,

Ross Moore, Tim Arnold, Kaveh Bazargan, Cheryl Ponchin, Sue DeMeritt, Jin-Hwan Cho.
Second row: Jennifer Claudio, Andrew Mertz, Jonathan Kew, Leyla Akhmadeeva, Mirko Janc, Steve Grathwohl,

Bob Alps, Frank Quinn, Barbara Beeton, Dave Walden, Ned Hummel, Bob Neveln, Dick Koch.
Back row: Hans Hagen, Idris Hamid, Klaus Höppner, Gianluca Puliti, Joe Corneli, Boris Veytsman,

Nelson Beebe, Arthur Reutenauer, Aditya Mahajan, Karl Berry, William Slough, Herb Schulz,
Paulo Ney de Souza, Peter Cholak, Jim Hefferon, Morten Høgholm, Chris Rowley.

Photos courtesy of Jennifer Claudio and Alan Wetmore.

TUGboat, Volume 30 (2009), No. 2 159

Profile of Eitan Gurari (1947–2009)

Eitan Gurari died unexpectedly on June 22, 2009.
The TEX community mourns the loss of this impor-
tant contributor.

Eitan Gurari was born in March 1947 in Haifa, Israel,
and grew up in Tivon, a small town near Haifa. He
met his wife, Shaula, who was born and raised in
Haifa, at a dance. They had five children: A daughter
Inbal, sons Itai and Erez, and twin daughters Netta
and Danna. Eitan’s son, Itai, says, “My father’s sole
hobbies were his work and family. He enjoyed both
immensely. Also, in recent years he and my mother
began traveling a lot.” The children had all grown to
adulthood at the time of Eitan’s death. Eitan’s 1989
book, An Introduction to the Theory of Computation,
was dedicated,
To Shaula, Inbal, Itai, Erez, Netta, and Danna.

Eitan was educated at Technion–Israel Institute of
Technology where, in 1971, he received a Bachelor of
Science degree in physics. He continued his studies
there, but changed his focus to computer science,
receiving a Masters degree in 1974. At that point
he, his wife, and their then only child, a daughter,
moved to the United States where Eitan studied at
the University of Minnesota, which granted him a
PhD degree in computer science in 1978. Eitan’s
faculty advisor at the University of Minnesota was
Oscar Ibarra.

After graduation from the University of Min-
nesota, Eitan moved to the University of Wisconsin–
Milwaukee, where until 1980 he was an assistant
professor in the Department of Electrical Engineer-
ing and Computer Science. He next moved to the
State University of New York at Buffalo, Department
of Computer Science, where he served as an assistant
professor until 1982. In 1982, Eitan moved to the
Ohio State University, where he was an associate pro-
fessor teaching computer science and doing research
until his death.

At Ohio State, Eitan taught a wide variety of
courses, suggesting that he pitched in to teach what-
ever needed teaching and that he used the need to
teach a course in a new area as a way of broadening
his own knowledge. His web site at the time of his
death listed the following courses that he had taught
(we don’t know if this is a complete list): Introduction

to Computer Graphics, 1993; Introduction to Computer

Networks, 1998; Introduction to Data Structures, 1999;

Introduction to Automata and Formal Languages, 1999;

Introduction to Programming with Java, 2003; Advanced

Technologies with Java, 2004; Programming Challenges,

2004; XML Technologies, 2005; Compiler Design and Im-

plementation, 2008; Introduction to Programming with

C++, 2008; Data Structures for Information Systems,

2008; Introduction to Database Systems, 2009.

Early in his career, Eitan’s interest was in the the-
ory of computation, and between 1978 and 1987 he
had 18 papers in this field published in refereed jour-
nals, many of them co-authored with Oscar Ibarra.
Two typical titles are “Two-Way Counter Machines
and Diophantine Equations” and “Some Decision
Problems Concerning Sequential Transducers and
Checking Automata”. During this period Eitan also
had six papers published in conference or symposium
proceedings. The culmination of this work appears
to have been his already mentioned 1989 book on
the theory of computation.

Eitan’s obituary notice on the website of the
Computer Science and Engineering Department of
Ohio State University said the following:

Dr. Gurari started his career as a theoretician.
He made fundamental contributions to au-
tomata and complexity theory. His textbook,
An Introduction to the Theory of Computa-
tion, was highly praised, and he published
frequently in JACM, SIAM Computing, ACM
STOC, and IEEE FOCS.

The obituary notice continued,

After joining OSU, Gurari switched his re-
search focus, starting to build software sys-
tems.

We can see this transition from his writings and
presentations in the succeeding years.

1991 “A WYSIWYG Literate Programming System”
(Preliminary Report), with J. Wu, Nineteenth
ACM Computer Science Conference.

1994 TEX and LATEX: Drawing and Literate

Programming, A manual for DraTEX, AlDraTEX,
ProTEX, and AlProTEX, McGraw-Hill

Writing with TEX, McGraw-Hill.

1997 “A Demonstration of TEX4ht”, TUG ’97

“Drawing with DraTEX”, TUG ’97

Profile of Eitan Gurari (1947–2009)

160 TUGboat, Volume 30 (2009), No. 2

1999 “LATEX to XML/MathML”, with S. Rahtz,
TUG ’99 workshop and abstract in TUGboat

The LATEX Web Companion, by M. Goossens
and S. Rahtz, with contributions by E. Gurari,
R. Moore, and R. Sutor, Addison-Wesley

2000 “From LATEX to MathML and Back with
TEX4ht and PassiveTEX”, with S. Rahtz,
The first MathML International Conference,
Urbana–Champaign, Illinois.

2003 “From LATEX to MathML and Beyond”, TUG ’03

2004 “TEX4ht: HTML production”, Practical TEX
2004

“XML and MathML production through
LATEX”, keynote presentation at the Second
European Workshop on MathML & Scientific
e-Contents, Kuopio, Finland

2005 “SwiExr: Spatial math exercises and
worksheets, in Braille and print”, TUG ’05

“MathML via TEX4ht and other tools”,
Practical TEX 2005

2007 “LATEX conversion into normalized forms and

speech”, TUG ’07

Sebastian Rahtz remembers becoming aware of Ei-
tan’s work in the world of TEX as follows:

I first came across Eitan Gurari when I was
looking at LATEX to SGML conversion in the
late ’90s. I had worked on a system at Elsevier
in which we took apart a DVI file decorated
with \special commands, and I was rather
pleased with it. Then I saw a reference to Ei-
tan’s TEX4ht system, and realized that he had
gone down the same road, but with a much
more sophisticated setup. Michel Goossens
and I had earlier tried to document Eitan’s
clever DraTEX drawing macros, so when we
were about to start on the LATEX Web Com-
panion, we decided to ask Eitan to contribute
a chapter about his system. I like to think
that this helped bring even more people’s no-
tice to Eitan’s remarkably ingenious work in
this fascinating side road of TEX.

I did not meet Eitan in person until the
TUG 1999 meeting, at which we did a joint
session. He turned out as I expected — quiet,
humble, and seemingly quite surprised (but
pleased) to find out that people appreciated
his work. That set the tone for our communi-
cation over the following years as the LATEX
Web Companion was completed, and he con-
tinued to improve TEX4ht. He was always
apparently pleased to be told of errors, and
quickly fixed them, and was pleased with feed-
back on his writing. I don’t remember a cross
word or a disagreement.

I shall remember Eitan with pleasure and
gratitude for his careful and innovative con-
tribution to TEX.

Obviously Eitan’s TEX4ht had a large impact on
the TEX world, as a number of notes since his death
to the comp.text.tex list and to TUG president
Karl Berry have testified.

Karl Berry himself remembers,

I had two kinds of dealings with Eitan over the
years: TUGboat papers and TEX4ht software.
The TUGboat interactions were all straight-
forward and completely cordial. He got his
stuff in on time and was perfectly happy to
accept all editing changes. If only all authors
were so accommodating!

With TEX4ht, things were a bit more ex-
tensive. The TEX Live guide (http://tug.
org/texlive/doc.html) is written in LATEX,
and translated into several languages. All
are converted to HTML using TEX4ht. Se-
bastian set it up this way back in the first
releases of TEX Live, and I stayed with the
same procedure when I became the TL editor.
Both of us would inevitably find problems
with the HTML output at the last minute
(the doc is always the last thing to be done),
especially given the plethora of translations.
Eitan logged in to tug.org many times to
debug the problems; he invariably found solu-
tions within a day or two, usually sooner. It
was amazing to me, given how complex and
huge TEX4ht is.

The TEX Live doc has always had this
paragraph in the list of thanks:

• Eitan Gurari, whose TEX4ht was used
to create the HTML version of this docu-
mentation, and who worked tirelessly to
improve it at short notice.

The TL 2009 documentation is dedicated to
Eitan, in honor of his remarkable contribu-
tions.

While many people in the TEX community have
used TEX4ht at one time or another to convert a
TEX file to HTML (some with considerable regularity
as Karl Berry described), TEX4ht was also used by
some as a key component in their business workflow.
CV Radhakrishnan of River Valley Technologies de-
scribes their use as follows:

We use TEX4ht on a daily basis; in short, the
existence of River Valley is wholly dependent
on the TEX4ht system. It is one of the brilliant
pieces of software written in the TEX language.
TEX4ht can digest any LATEX document and

TUGboat, Volume 30 (2009), No. 2 161

output appropriate XML or HTML depending
on users’ requirements. We use it for generat-
ing different kinds of XML from LATEX docu-
ments based on different client DTDs, without
human intervention. The main point is that
TEX4ht permits command line invocation (in
fact, there is no graphical interface) and, there-
fore, integrates well into our fully automated
work flow. Many people see TEX4ht as a mon-
ster which defies taming. Our experience is
different; TEX4ht is a highly configurable and
scalable system which can effectively be used
to derive different kinds of formats from LATEX
sources including HTML, XML, OpenOffice
documents, braille, etc. with remarkable ease.
I have even used TEX4ht to convert an author-
macro-ridden LATEX document into standard
LATEX by degrading all the complex author
macros into corresponding TEX/LATEX primi-
tives!

To this, CVR’s partner in River Valley, Kaveh
Bazargan, adds:

Eitan’s death is a great loss to our commu-
nity, greater than most realise. I echo CVR’s
comments. It is no exaggeration that our
company is based around TEX4ht which is an
order of magnitude more capable of doing the
complex tasks we undertake than any other
software.

A common thread among comments about Ei-
tan was his quick responsiveness when problems were
found with his software. A quote from Kapil Hari
Paranjape, who maintains the “downstream” pack-
aging of TEX4ht for Debian, illustrates the extent to
which Eitan went to be responsive:

I always found [Eitan to be] a responsive up-
stream who was willing to be patient and
explain his way of maintaining the package
to the Debian developer community. As soon
as I mentioned that it was possible for him
to obtain Debian bug reports directly by sub-
scribing to the Package Tracking System, he
did so and started responding to such reports
with fixes.

The major request which Debian made
was that the literate sources of TEX4ht be
made available in order to comply with the
Debian Free Software Guidelines. This was a
big task for him as he described his system
as “put together in the basement/garage”.
However, he took up this task and did it and
we are all grateful for it.

Dr. Susan Jolly, a computational scientist retired
from Los Alamos National Laboratory, was instru-
mental in Eitan becoming involved with braille. Su-
san, who is not blind, has a deep interest and commit-
ment in improving the efficiency of transcription of
books and journals, especially math books and jour-
nals, into braille (www.dotlessbraille.org). She
recalls,

I first wrote to Eitan on July 26, 2001, to
ask him about TEX4ht (which I’d found via
Google) and to tell him that it should be pos-
sible to use TEX4ht as the basis for a project
that would mean “that a huge legacy of math-
ematics could be made available in braille”.

Eitan wrote back two hours and eight min-
utes later to say, “I would love to be involved
in such a project”. And we were off and run-
ning. Of course, at that point, neither of us
appreciated how difficult the project would
turn out to be nor how long it would take nor
how much fun we’d have.

By the end of September 2001, Eitan had
drafted a proposal to the NSF. This first pro-
posal was not funded but the similar second
one was.

The issue, as described by Susan, is roughly
as follows. Braille involves “cells” of six embossed
(raised) dots (in a 2-wide 3-high arrangement) allow-
ing 63 different configurations of dots. What these
dot configurations mean depends on the “braille code”
that is being used: there is a basic code for novice
learners, a more advanced code, a literary code, codes
for math, music, and different languages, etc. The
various codes involve context dependent meanings
and contractions, signals for changing among codes,
etc.; with the exception of the most basic code for
new learners, things are not nearly as simple as just
spelling out every printed word, which is impossible
in any case for mathematics. All in all, it is far from
straightforward to transcribe from print to braille.
In many cases the transcription process begins with
optical character recognition of a printed page, which
must be corrected by transcribers as they also con-
vert the sequence of characters and words into ap-
propriate plain text representations of each of the 63
different cell configurations, typically with the aid of
commercial print-to-braille software. Software and
hardware can then convert these plain text files into
pages of embossed braille. The reverse conversion is
also sometimes used as a way of checking the initial
transcription. The entire process is time consuming
and expensive with not nearly enough people avail-
able to do the transcriptions to braille, especially

Profile of Eitan Gurari (1947–2009)

162 TUGboat, Volume 30 (2009), No. 2

transcriptions involving math (which is also an area
of weakness for print-to-braille software).

The reasons why Eitan’s work was valuable are
as follows:

• There has not been much math (or science more
generally) in braille because of the effort required
to convert to braille. There is a particular short-
age of transcribers familiar with the Nemeth
code used for transcribing technical material.

• There is a large legacy of math, etc., already in
journals which accept TEX (by which we also
mean LATEX, AMS-LATEX, etc.) input and books
written using TEX, and new TEX-based books
and journals are being produced all the time.
Increasingly these are available in machine read-
able form, e.g., at arXiv.org and an initiative
of the American Physical Society to make the
source files of its publications available which
hopefully will spread to other organizations.

• However, source TEX usually has all sorts of stuff
about how to make it look on the printed page
which is uninteresting to someone just trying
to transcribe it to another format (i.e., Nemeth
braille). But TEX4ht already does the job of
throwing away all that finicky detail about ac-
tual printing and converts the output of a TEX
system to a much simpler HTML format. Also,
the source TEX code has the math in a form that
maintains its meaning (not just combinations
of characters on a printed page), and TEX4ht
already knows how to convert that format into
something else, i.e., MathML.

• Thus, a good place to add braille conversion is
as an optional output of TEX4ht.

But, of course, there were lots of unsolved details
plus the actual prototyping effort which thus made it
a plausible academic project requiring grant funding.
For instance, some spatial or planar (2-D) items,
i.e., elementary arithmetic, tables and matrices, have
prescribed planar renderings in braille. Eitan was
especially interested in automating the associated
complex formatting problems.

Eitan was scheduled to make a presentation
on his work with braille at TUG ’09 (held a month
after his death) entitled, “SuBrl: A LATEX to braille
converter: A first look at a forthcoming system”. His
pre-conference abstract said,

SuBrl is a system under development for trans-
lating LATEX and XML data into braille. The
presentation will demonstrate the translation
of LATEX and XML into braille, describe the
architecture of the system, discuss issues that
require special attention in LATEX and XML

sources, and argue the benefit of a LATEX front
end for braille production.

Regarding the name of Eitan’s system, he wrote
to Susan Jolly in an email dated March 19, 2009:

I was asked to give a talk at the end of July
to the annual TEX Users Group meeting. I
decided to give a talk about some insight into
LATEX translation to braille (with the hope
that at that time I’ll have some core system
nearly ready to release). I’m going to call the
system SuBrl. I would like to publicly dedi-
cate the “su” component to your suggesting
the project and generously introducing me [to
the world of] braille. I hope you’ll permit me
to do so.

Eitan’s children are working with his university
to get access to his files for his work with braille with
the hope that someone can be found to continue his
work in this area.

Also with the encouragement and support of
Eitan’s children, TEX4ht in general will continue to
be maintained and supported. CV Radhakrishnan
and Karl Berry have created a public project (see
http://tug.org/tex4ht) and welcome any involve-
ment. Having this effort continued by the TeX com-
munity and others will be one appropriate memorial
to Eitan’s life and work.

Compiled by David Walden, July 2009

TUGboat, Volume 30 (2009), No. 2 163

LATEX class writing for wizard apprentices

Boris Veytsman

Abstract

A number of excellent articles explain LATEX class
writing for beginners (Hefferon, 2005; Flynn, 2007;
Pakin, 2008; Mansfield, 2008). Of course, true wiz-
ards do not need any instructions. This paper is
intended for those TEXnicians who are no longer
beginners, but may not (yet) qualify as wizards. It
discusses some tips and tricks of the trade: pack-
ages you may want to use and packages you must
be compatible with; why the first two pages of a
book take 60% of your time; what is wrong with
the LATEX sectioning interface but why you better
stick with it, and more. It is based on the experience
of the author in writing LATEX classes for various
customers (Veytsman, 2008c).

1 Audience and scope

The New Hacker’s Dictionary (Raymond, 1996) de-
fines the word “user” in the following way:

user: n.

1. Someone doing “real work” with the com-
puter, using it as a means rather than
an end. Someone who pays to use a
computer. See real user.

2. A programmer who will believe anything
you tell him. One who asks silly ques-
tions. [GLS observes: This is slightly un-
fair. It is true that users ask questions (of
necessity). Sometimes they are thought-
ful or deep. Very often they are annoying
or downright stupid, apparently because
the user failed to think for two seconds or
look in the documentation before both-
ering the maintainer.] See luser.

3. Someone who uses a program from the
outside, however skillfully, without get-
ting into the internals of the program.
One who reports bugs instead of just
going ahead and fixing them.

The general theory behind this term is
that there are two classes of people who work
with a program: there are implementors (hack-
ers) and lusers. The users are looked down
on by hackers to some extent because they
don’t understand the full ramifications of the
system in all its glory. (The few users who
do are known as real winners.) The term is a
relative one: a skilled hacker may be a user
with respect to some program he himself does
not hack. A LISP hacker might be one who

maintains LISP or one who uses LISP (but
with the skill of a hacker). A LISP user is one
who uses LISP, whether skillfully or not. Thus
there is some overlap between the two terms;
the subtle distinctions must be resolved by
context.

In our TEX world the distinction between users
and implementors is sometimes represented as a dis-
tinction between users and TEXnicians. The latter
word was introduced by DEK himself (Knuth, 1994).
A TEXnician is a person who helps other people to
use TEX. This paper is intended for them.

More specifically, here we discuss writing LATEX
classes. I hope some of these issues might be of
interest for the macro writers working with other
formats, but I personally have been dealing mostly
with LATEX.

The TEXnicians working with macro packages
can be divided into three groups. First, there are
true wizards (see the definition and discussion in
New Hacker’s Dictionary). They can easily and con-
fidently write pages of TEX code with all manner of
\expandafter and \futurelet uses. Clearly these
people do not need to be taught how to write classes
(at least by me!).

Next, there are beginners. I do not mean here
beginning users, just the opposite: this group largely
consists of experienced users trying themselves in
class writing. There is good and useful literature for
this category of TEXnicians; I heartily recommend
the papers by Hefferon, 2005; Flynn, 2007; Pakin,
2008; Mansfield, 2008.

The third group consists of people who already
authored one or several classes, know how to use the
DTX format, have a dog-eared copy of the Compan-
ion (Mittelbach, Goossens, Braams, Carlisle, and
Rowley, 2004) and can recite paragraphs from the
Class Guide (2006). For the lack of better term
we will call such people wizard apprentices. I am
proud to belong to this group myself. One of my
longstanding complaints has been the relative dearth
of literature intended for this category of macro writ-
ers. The great book by Eijkhout, 2007, is one of the
rare exemptions from this rule. This article is also
intended to partially fill this need.

I provide here some anecdotes and snippets from
my experience as a LATEX macro writer. If it seems
rather subjective and opinionated, you, the reader,
are welcome to offer your own point of view. I am
certainly open to suggestions and critique from my
fellow apprentices, as well as from the wizards and
the beginners.

LATEX class writing for wizard apprentices

164 TUGboat, Volume 30 (2009), No. 2

2 LATEX interfaces

It is well known that the design of the standard LATEX
classes is not optimal from the typographer’s point
of view. The fact that its user interfaces also leaves
much to be desired is probably less appreciated.

Let us consider, for example, the LATEX section-
ing commands. The standard \chapter command
and its sisters \section, \subsection, etc. have
two arguments: the mandatory title and the optional
short title. The latter, if present, is used for the table
of contents and headers. This means that the entry
in the table of contents must be the same as the
headers. This is not what we want in most cases. It
is more common for modern books to use the “long”
title in the table of contents and the “short” one in
the headers.

The starred variants \chapter*, \section*,
etc. have their own problems. First, the star is
overloaded: it signifies both that this heading is not
numbered and that it does not produce an entry in
the table of contents. This is a wrong idea in most
cases. Such unnumbered subdivisions as Bibliogra-
phy and Index should be mentioned in the table of
contents. The same is true for front matter headings
like Foreword, which are usually not numbered, but
nevertheless belong in the table of contents. One of
the frequently asked questions in the Usenet news-
group comp.text.tex is “how to add the bibliog-
raphy to the TOC?” Of course there are packages
which achieve this, but they are correcting a design
misfeature which should not be there in the first
place. Another problem is the fact that the starred
sectioning commands do not have the optional argu-
ment (and do not change the headers in the standard
classes). Again, in most cases we do want to change
the headers for unnumbered subdivisions and thus
need a way to set up a short version of the title.

It is reasonable for a class writer to correct these
misfeatures and create a more rational interface de-
sign. For example, most of the problems discussed
above can be easily solved in a new class. However,
one must be very careful when changing the inter-
faces — even if it is tempting to do so. First, the
users are accustomed to the LATEX design, and dras-
tic changes might be too difficult for them. Second,
many computer editors are “LATEX-aware”, and of-
fer users ready-made templates. Third, some useful
packages like hyperref (Rahtz and Oberdiek, 2006)
redefine LATEX commands, and expect certain inter-
faces to be there.

The following example from my experience illus-
trates this point. Books published by Nostarch Press
have so-called circular art : a small round picture

in the beginning of each chapter. In the prelimi-
nary version of the class for this publisher I used
the following interface with one optional and two
mandatory arguments:

\chapter[〈Short Title〉]{〈Long Title〉}{〈Artwork〉}

This was a disaster. It turned out to be difficult
for me to remember that \chapter now has two
mandatory arguments, so I got a slew of errors during
testing. Moreover, hyperref refused to understand
this syntax, and I decided that patching it would
be too cumbersome. In the end I opted for another
design (Veytsman, 2008b):

\chapter[〈Short Title〉]{〈Long Title〉}
\chapterart{〈Artwork〉}

3 Compatibility issues

In the previous section we briefly touched on the issue
of compatibility. Let us discuss it more thoroughly.

The LATEX world can be described as a motley
collection of packages written by different authors
with various philosophies, goals, design ideas and skill
levels. Nobody ever guaranteed that these packages
would work together. The fact that TEX has no
concept of namespace makes the combination of these
packages even more daunting.

To tell the truth, though, the situation is better
than it could be. Most packages are compatible, and
the authors usually take care to patch them if they
turn out not to be. Still, sometimes interactions
between packages lead to unexpected results.

Some publishers, when accepting LATEX manu-
scripts, restrict the authors’ choice of packages. Nev-
ertheless there are always situations when an author
or an editor really needs a package.

A macro writer should expect the users to load
some packages. A good policy is to proactively test
the class with the most popular ones and mention
such “approved” packages in the documentation. In
some cases it makes sense to automatically load these
packages from the class.

If an electronic publication is intended (which is
almost always the case nowadays), hyperref (Rahtz
and Oberdiek, 2006) is usually called. This package
has many settings changing the appearance of links
(the default ones are almost never satisfactory). How-
ever, setting them presents the following problem.
This package usually should be loaded last, after
others. If you load it from your class, the packages
called by the users may not work properly.

There are two ways to solve this problem. First,
you can write a wrapper package that calls hyper-

ref, sets it up and even patches it if necessary. I

Boris Veytsman

TUGboat, Volume 30 (2009), No. 2 165

adopted this approach for the nostarch class (Veyts-
man, 2008b). Second, you can automatically check at
the beginning of the document whether hyperref is
loaded, and set it up if necessary with a construction
like this:

\AtBeginDocument{%

\@ifpackageloaded{hyperref}{%

\hypersetup{〈Your customization〉}}{}}

I used this method for the class for an online journal
Philosophers’ Imprint (Veytsman, 2007).

Most people use the graphics bundle (Carlisle,
2005) and sometimes other graphics solutions for
illustrations. If your users are mathematicians, they
probably are going to load amsmath (2002). Pro-
grammers usually call listings (Heinz and Moses,
2007). Many people working in “natural sciences”
need natbib (Daly, 2009). You may want to test your
class with these packages. In general, a class writer
should understand the users’ ways of doing things
and anticipate their actions.

It is difficult enough to ensure compatibility
with the plethora of LATEX packages, but in fact the
problem is even more complex, because these package
are not frozen. Sometimes when a user upgrades a
package, it breaks many existing documents. This
requires constant vigilance from the class author.

4 Some useful tools

Besides creating problems for a class author, the
great variety of LATEX packages has positive value
too. Some packages turn out to be great tools for
macro writers. In this section I list some tools I often
use.

The package ifpdf (Oberdiek, 2006) provides
the information whether the document is compiled
via the DVI route or the direct PDF output is chosen.
This is useful, for example, if the class uses a non-
standard paper size (this is common for books). We
can tell LATEX the paper size, but to communicate it
to e.g. dvips, we must instruct the user to put the
corresponding option in the program call. If the di-
rect PDF route is chosen, however, we can make the
user’s life slightly simpler with the commands like
these (taken from the memoir code (Wilson, 2004)):

\ifpdf\relax

\pdfpageheight=\paperheight

\pdfpagewidth=\paperwidth

\pdfvorigin=1in

\pdfhorigin=1in

\fi

The package geometry (Umeki, 2008) is quite
handy for easy setup of paper size and margins.

The package fancyhdr (van Oostrum, 2004) sup-
ports defining complex headers and footers, with or
without decorative rules.

The package caption (Sommerfeldt, 2007) is use-
ful for setting up captions for tables, figures and
other floats.

Nowadays many designers prefer ragged layout
of the copy. The package ragged2e (Schröder, 2003)
helps to implement it in a rational way.

In many cases the “house style” includes specific
rules for the bibliography. Then the custom-bib

package (Daly, 2003) can help to create a customized
BibTEX style according to the requirements.

There are many more tools that should be in
a class writer’s toolbox. A constant monitoring of
Usenet groups and CTAN announce lists helps to
keep abreast of the TEX development. However,
there is always something to learn. When presenting
this talk at TUG 2009, I complained that the LATEX
\@addtoreset command does not have a counterpart
that removes some counters from the reset list. Bar-
bara Beeton immediately recalled a small package
(Carlisle, 1997) that provides a very useful command
\@removefromreset.

Another matter related to the reuse of somebody
else’s code is whether to start a new class from scratch
or to load a base class and then to redefine it as
necessary. I guess this is a matter of taste. I myself
prefer the second approach, but often it turns out in
the end that the new class redefines so many macros
that there is not much left from the original class.

5 These first pages . . .

The cover, title and copyright pages are only a small
fraction of the copy. Nevertheless they require a large
percentage of a class author’s effort. My experience
shows that macros for these pages take about 60% of
the total time for articles and 80% of the total time
for books.

These pages require highly formal typesetting
presenting structured information. This is easy to
note in books (see the title and copyright pages
for the nostarch class (Veytsman, 2008b)), but it is
also true in reports: see the samples for the erdc

class written for the reports of US Army Corps of
Engineers (Veytsman, 2009).

For these macros we can dispense with the ad-
vice of Section 2 and change the standard LATEX
interfaces, since they are woefully inadequate, and
most classes completely redesign front matter macros
anyway. However there is one idea of front matter
macros in standard LATEX which is worth keeping. It
is the idea of the separation of macros for collecting
data, like \author, \title, etc. — and the macros

LATEX class writing for wizard apprentices

166 TUGboat, Volume 30 (2009), No. 2

for typesetting like \maketitle. This approach al-
lows entering the front matter data in any order, and
to start typesetting only when we know which data
are present and how large they are.

The commands for collecting data store them
in internal macros. There are three kinds of such
commands, which we discuss below.

The commands of the first kind are very simple.
They have just one argument, and they store it in an
internal macro. For example, the date in standard
LATEX can be defined as:

\def\date#1{\gdef\@date{#1}}

\date{\today}

In a more complex case the command has two
arguments: the mandatory one and the optional one,
with the usual convention that in the absence of the
optional argument the mandatory one is used instead.
As an example let us consider the \title command.
In standard LATEX it has just one argument, but we
might want to have a full title for the title page and
a short one for running heads, etc. This is a common
enough case for books (Veytsman, 2008b), but can
be found in articles if the journal uses article titles in
headers (Veytsman, 2007; Veytsman, 2008a). With
this command we can say something like

\title[Robinson Crusoe]{%

The Life and strange Surprizing Adventures

of Robinson Crusoe of York, Mariner:

Who lived Eight and Twenty Years, all

alone in an un-inhabited Island on the

coast of America, near the Mouth of the

Great River of Oroonoque; Having been cast

on Shore by Shipwreck, where-in all the Men

perished but himself. With An Account how

he was at last as strangely deliver’d by

Pyrates. Written by Himself}

(by the way, the long title is the actual title of De-
foe’s book!). This effect can be achieved by the
\@ifnextchar[macro:

\def\title{\@ifnextchar[{%

\title@i}{\title@ii}}

\def\title@i[#1]#2{%

\gdef\@shorttitle{#1}\gdef\@title{#2}}

\def\title@ii#1{%

\title@i[#1]{#1}}

The result is that the internal macro \@title gets
the full title, while the macro \@shorttitle gets the
short title.

The most complex case is cumulative macros:
each command can be repeated several times, and
the consecutive macros add to the stored information.
Suppose for example that we have several groups of
authors with shared affiliations. Than a natural syn-
tax (following the ideas of American Mathematical

Society classes, Downes and Beeton, 2004) to enter
the information is the following:

\author{A.U.~Thor \and C.O.R.~Respondent

\and C.O.~Author}

\affiliation{Construction Engineering

Research Laboratory\\

U.S. Army Engineer Research and

Development Center\\

2902 Newmark Drive\\

Champaign, IL 61826-9005}

\author{John~M.~Smith}

\affiliation{Coastal and Hydraulics

Laboratory\\

U.S. Army Engineer Research and

Development Center\\

3909 Halls Ferry Road\\

Vicksburg, MS 39180-6199}

This can be achieved in the following way:

\def\author#1{%

\ifx\@empty\@authors

\gdef\@authors{#1}%

\else

\g@addto@macro{\@authors}{\and#1}%

\fi

\ifx\@empty\@addresses

\gdef\@addresses{\author{#1}}%

\else

\g@addto@macro{\@addresses}{%

\par\author{#1}}%

\fi}

\def\affiliation#1{%

\ifx\@empty\@addresses

\gdef\@addresses{#1\par}%

\else

\g@addto@macro{\@addresses}{%

#1\par\vspace{\baselineskip}}%

\fi}

As the result of these commands we have two internal
macros: \@authors keeping the authors separated
by \and, and \@addresses keeping the authors and
their affiliations. Now we need to substitute \and

inside them by the proper punctuation. Here the
command \andify from Downes and Beeton, 2004, is
very handy. By default it uses American punctuation
(Tom, Dick, and Harry), but it has options for other
variants. I used this possibility in packages ijmart

and erdc (Veytsman, 2008a; Veytsman, 2009). The
latter package provided an interesting challenge: it
required the full list of authors without affiliations
separated by commas and and on the cover, and
separate lists of authors with shared affiliations on

Boris Veytsman

TUGboat, Volume 30 (2009), No. 2 167

the title page. Having a separate macro with just
the authors’ names helped to do this properly.

Another interesting thing to do is to automati-
cally set up metadata for PDF output. Many pub-
lishers do not specify this in their requirements, but
a class writer should know better. In any case this
must be done when online publication is intended. As
discussed above, we can determine whether hyperref

is loaded and whether the PDF output is specified.
If these conditions are true, then the construction of
the title page should include lines like these:

\hypersetup{pdfauthor=\@author,%

pdftitle=\@title,%

pdfsubject=\@subject,%

pdfkeywords=\@keywords}

6 Final remarks and conclusion

In the previous sections we discussed the computer-
related aspects of class writing. There are, however,
even more important human aspects.

It is essential to have a good interaction with
the typographic designer and the users. A good
typographer can explain what is required from the
class and convey her or his ideas to the class writer.
Some class writers try to double as designers; I always
felt that the design requires years of training and
apprenticeship. Just the fact that you can code
complex things in TEX does not mean these things
are beautiful or proper.

Good users can test the code and write sensible
bug reports. This is also essential for the success of
the class.

If you have good typographic artists and patient
users, class writing is fun and rewarding. I personally
enjoyed writing the macros for my LATEX classes.

Acknowledgements

The author is grateful to the users and typographic
designers of his LATEX classes for their patience and
tireless work, to the audience of TUG 2009 for many
interesting suggestions.

References

User’s Guide for the amsmath Package
(Version 2.0). American Mathematical
Society, 2002. http://mirror.ctan.org/
macros/latex/required/amslatex/math/

amsldoc.pdf.

LATEX2ε for Class and Package Writers. LATEX3
Project, 2006. http://mirror.ctan.org/
macros/latex/doc/clsguide.pdf.

Carlisle, David. remreset Package, 1997.
http://mirror.ctan.org/macros/latex/

contrib/carlisle.

Carlisle, D. P. Packages in the ‘Graphics’ Bundle,
2005. http://mirror.ctan.org/macros/
latex/required/graphics.

Daly, Patrick W. Customizing Bibliographic Style
Files, 2003. http://mirror.ctan.org/macros/
latex/contrib/custom-bib.

Daly, Patrick W. Natural Sciences Citations
and References (Author-Year and Numerical
Schemes), 2009. http://mirror.ctan.org/
macros/latex/contrib/natbib.

Downes, Michael, and B. Beeton. The amsart,
amsproc, and amsbook document classes.
American Mathematical Society, 2004.
http://mirror.ctan.org/macros/latex/

required/amslatex/classes.

Eijkhout, Victor. TEX by Topic. Lulu, 2007.
http://eijkhout.net/texbytopic/

texbytopic.html.

Flynn, Peter. “Rolling Your Own Document
Class: Using LATEX to Keep Away From the
Dark Side”. TUGboat 28(1), 110–123, 2007.
http://tug.org/TUGboat/Articles/tb28-1/

tb88flynn.pdf.

Hefferon, Jim. “Minutes in Less Than Hours:
Using LATEX Resources”. TUGboat 26(3),
188–192, 2005. http://tug.org/TUGboat/
Articles/tb26-3/tb84heff.pdf.

Heinz, Carsten, and B. Moses. The Listings

Package, 2007. http://mirror.ctan.org/
macros/latex/contrib/listings.

Knuth, Donald Ervin. The TEXbook. Computers
& Typesetting A. Addison-Wesley Publishing
Company, Reading, Mass., 1994. Illustrations
by Duane Bibby.

Mansfield, Niall. “How to Develop Your
Own Document Class — Our Experience”.
TUGboat 29(3), 356–361, 2008. http:
//tug.org/TUGboat/Articles/tb29-3/

tb93mansfield.pdf.

Mittelbach, Frank, M. Goossens, J. Braams,
D. Carlisle, and C. Rowley. The LATEX
Companion, Second Edition. Addison-Wesley
Series on Tools and Techniques for Computer
Typesetting. Addison-Wesley Professional,
Boston, 2004.

Oberdiek, Heiko. The ifpdf Package, 2006.
http://mirror.ctan.org/macros/latex/

contrib/oberdiek.

Pakin, Scott. “Good Things Come in Little
Packages: An Introduction to Writing .ins and
.dtx Files”. TUGboat 29(2), 305–314, 2008.
http://tug.org/TUGboat/Articles/tb29-2/

tb92pakin.pdf.

LATEX class writing for wizard apprentices

168 TUGboat, Volume 30 (2009), No. 2

Rahtz, Sebastian, and H. Oberdiek. Hypertext
Marks in LATEX: a Manual for Hyperref, 2006.
http://mirror.ctan.org/macros/latex/

contrib/hyperref.

Raymond, Eric S., editor. New Hacker’s
Dictionary. The MIT Press, Boston, MA, third
edition, 1996. http://catb.org/jargon.

Schröder, Martin. The ragged2e Package, 2003.
http://mirror.ctan.org/macros/latex/

contrib/ms.

Sommerfeldt, Axel. Typesetting Captions with the
caption Package, 2007. http://mirror.ctan.
org/macros/latex/contrib/caption.

Umeki, Hideo. The geometry Package, 2008.
http://mirror.ctan.org/macros/latex/

contrib/geometry.

van Oostrum, Piet. Page Layout in LATEX, 2004.
http://mirror.ctan.org/macros/latex/

contrib/fancyhdr.

Veytsman, Boris. Typesetting Articles for the
Online Journal Philosophers’ Imprint, 2007.
http://mirror.ctan.org/macros/latex/

contrib/philosophersimprint.

Veytsman, Boris. LATEX Class for The Israel
Journal of Mathematics, 2008a. http:
//mirror.ctan.org/macros/latex/contrib/

ijmart.

Veytsman, Boris. LATEX Style for No Starch Press,
2008b. http://mirror.ctan.org/macros/
latex/contrib/nostarch.

Veytsman, Boris. “Observations of a TEXnician
for Hire”. TUGboat 29(3), 484, 2008c.
http://tug.org/TUGboat/Articles/tb29-3/

tb93abstracts.pdf.

Veytsman, Boris. LATEX Style for Technical
Information Reports of the Engineer Research
and Development Center, US Army Corps of
Engineers, 2009. http://mirror.ctan.org/
macros/latex/contrib/usace.

Wilson, Peter. The Memoir Class for Configurable
Typesetting, 2004. http://mirror.ctan.org/
macros/latex/contrib/memoir.

⋄ Boris Veytsman
Computational Materials Science

Center, MS 6A2
George Mason University
Fairfax, VA 22030
borisv (at) lk dot net

Boris Veytsman

TUGboat, Volume 30 (2009), No. 2 169

LuaTEX for the LATEX user: An introduction

Arthur Reutenauer

Abstract

LuaTEX, the TEX extension that incorporates the
Lua scripting language and Ω extensions, has been
available for three years already and was added to
TEX Live in 2008. Yet, the LATEX packages that
have been developed for it are rather little known
and, because the main developers of LuaTEX are
deeply involved in ConTEXt, there seems to be a gap
between LuaTEX and LATEX users. This note is a
beginning at overcoming this difference.

1 Introduction

LuaTEX is the extension of TEX that incorporates
Lua, as well as the capabilities of Ω. It has also been
programmed with hooks to interact with the internals
of TEX’s algorithms (callbacks in Lua parlance), that
can now be rewritten using Lua code. However, most
of the power of LuaTEX resides at a very low level
and is available to the user only with the help of
macros, that have been written for ConTEXt over the
past several years, and only recently begun for LATEX.
I will give a brief descriptions of some of these LATEX
packages.

All the packages mentioned here are available
in TEX Live 2009.

2 \ifluatex

The package ifluatex provides the conditional com-
mand \ifluatex to test whether we’re running Lua-
TEX or some other TEX engine.

3 Input encodings

LuaTEX reads source files in Unicode UTF-8 encod-
ing, and it is highly recommended to use that encod-
ing in order to take full advantage of the capabilities
of LuaTEX. However, for people who want or need
to use 8-bit encodings like Latin 1 or KOI-8, the
luainputenc package emulates the behaviour of the
standard inputenc in LuaTEX. It recognizes all the
encodings that the latter package knows about and
can therefore be used for legacy documents, with
some limitations.

4 Fonts

One of the most elaborate packages for use with
LuaLATEX is luaotfload.

In this section, I will use the free Linux Liber-
tine fonts (http://linuxlibertine.sourceforge.
net/) as an example; these fonts have many features
that demonstrate OpenType capabilities. I will as-
sume that the font files are available to TEX and that
the four faces (roman, italic, bold and bold italic) are
respectively called LinLib-Re.otf, LinLib-It.otf,
LinLib-Bd.otf, and LinLib-BI.otf.

luaotfload implements a X ETEX-like syntax for
\font, hence a commands such as

\font\librm="LinLib-Re"

will load the font, and subsequently issuing the
\librm control sequence will switch to it. This ex-
ample:

\font\librmliga

="LinLib-Re:script=latn:+liga"

will load the same font while activating the liga fea-
ture of the Latin script.

Other useful OpenType feature names include

• smcp, for small capitals;

• onum, for old-style numerals;

• subs, for subscript;

• sups, for superscript.

Here is a complete NFSS declaration of the Linux
Libertine family for LATEX:

\DeclareFontFamily{T1}{libertine}{}

\DeclareFontShape{T1}{libertine}{m}{n}

{<-> "LinLib-Re:+liga"}{}

\DeclareFontShape{T1}{libertine}{m}{sc}

{<-> "LinLib-Re:+liga:+smcp"}{}

\DeclareFontShape{T1}{libertine}{m}{it}

{<-> "LinLib-It:+liga"}{}

\DeclareFontShape{T1}{libertine}{bx}{n}

{<-> "LinLib-Bd:+liga"}{}

\DeclareFontShape{T1}{libertine}{bx}{it}

{<-> "LinLib-BI:+liga"}{}

Then, after defining \libertine as follows:

\newcommand\libertine

{\fontfamily{libertine}\selectfont}

we can use \libertine to switch to the Libertine
family.

More examples of using LATEX with LuaTEX are
gathered on http://code.google.com/p/mingyue.

⋄ Arthur Reutenauer

GUTenberg, France

arthur dot reutenauer (at)

normalesup dot org

LuaTEX for the LATEX user: An introduction

Ongoing efforts to generate “tagged PDF”

using pdfTEX

Ross Moore

Mathematics Department, Macquarie University, Sydney, Australia
ross@maths.mq.edu.au

Abstract. Recently PDF has been accepted as a standard for produc-
tion of electronic documents, as ISO 32000-1:2008, with an acronym of
PDF/UA (for “Universal Accessibility”). The second draft ISO 32000-
2:2009 is to include specifications for including MathML tagging of math-
ematical environments and expressions. This talk presents a report on
work-in-progress, aimed at:
(a) developing the primitive commands for pdfTEX needed to support

the production of fully tagged PDF documents;
(b) writing appropriate TEX and LATEX macros to make effective use of

the new primitives;
(c) authoring changes to internal LATEX structures to use these macros

automatically at appropriate places within the existing code-base for
LATEX.

This is work that is being undertaken together with Hàn Thé̂ Thành,
author of pdfTEX [2], who has added some new primitive commands to
an experimental version of this software tool.

1 Background

In July 2008, Adobe’s PDF Reference 1.7 [1] became ISO 32000 [4]. Since 2005,
the PDF Reference 1.4 has served as the basis for ISO 19005 [3], as an archival
format for technical documents. Both of these standards rely heavily on “Tagged
PDF”, so that not only is the content displayed at the highest quality, but also
its structure is provided, allowing for selective extraction of content and “reflow”
on small-screen devices (such as a PDA or modern mobile-phone), and screen-
reading perhaps in alternate languages. Work is under way on revision of ISO

19005, called PDF/A-2, to accommodate extra features introduced with PDF

1.5, 1.6 and 1.7. Furthermore, in November 2008 it was agreed that a revised
ISO 32000-2 should include tagging of the structure of mathematical expressions
and formulae, using MathML tags. It may take as long as 2–3 years before these
updated standards are released in their final form.

TEX and LATEX remain de facto standards for technical documents, par-
ticularly those having a large amount of mathematical content, though other
methods are starting to gain significant usage. Whilst PDF is the main output

Reprinted with permission from Ross Moore: Ongoing Efforts to Generate “Tagged
PDF” using pdfTEX. In: Petr Sojka (ed.): DML 2009, Towards a Digital Mathematics
Library, Masaryk University Press, pages 125–131, ISBN 978-80-210-4781-5.

170 TUGboat, Volume 30 (2009), No. 2

Ross Moore

Catalog 1

Pages

Page 101

Contents

Page 102

Contents

Contents 201

Contents 202

Pages 100

Kids [...]

StructTreeRoot

StructTreeRoot 300

K [...]

ClassMap

RoleMap

StructElem 301

P

K [...]

StructElem 302

P

Pg

K 0

StructElem 303

P

Pg

K [...]

StructElem 304

P

Pg

K [...]

Chap Head1 Para Para

Head 1 <<MCID 0>>

Para <<MCID 1>>

Para <<MCID 0>>

Para <<MCID 1>>

Para <<MCID 2>>

StructParents 0

StructParents 1

ParentTree

Parent tree 400

Nums [...] 401

 [...]

402

 [...]

ParentTreeNextKey

IDTree

403

Kids [...]

Fig. 1. Interleaving of structure and content tagging within a 2-page PDF doc-
ument, structured as a heading and two paragraphs. (based on an example in [1])

format for LATEX, there have been no automated methods to include the structure
and content tagging that the above standards require. Work being undertaken
here is aimed at providing this missing support when pdfTEX [2] is used as the
PDF-producing software. As well as requiring new primitive commands to mark
content and build the structure trees that are needed for this tagging, a large
amount of the LATEX codebase will need to be revised to take advantage of the
new features. In this paper and associated talk, examples are shown of work
done so far, towards this aim.

Section 2 gives an idea of how tagging in PDF works, indicating the com-
plexity of the extra structures that PDF-producing software needs to provide;
Figure 1 gives a schematic view of these structures, within a document having a
quite simple structure. On the other hand, MathML tagging generally requires a
much deeper structure tree. In Section 3 an example (see Figure 2) is presented,
showing how the MathML tagging is represented, using new TEX primitives and
within the PDF, such that it can then be faithfully exported to XML.

TUGboat, Volume 30 (2009), No. 2 171

Ongoing efforts to generate “tagged PDF” using pdfTEX

2 Tagging PDF documents

Figure 1 indicates the extra structures that need to be created when producing
“Tagged PDF”. The upper half of the image shows the kinds of object that are
needed to display a PDF file as a series of pages. These kinds of objects include:

(i) page content streams, which consist of the low-level commands to select
fonts and place text on the page — the blue boxes headed as ‘Contents . . . ’;

(ii) an indexing object for each page — the blue boxes headed as ‘Page . . . ’;
(iii) an indexing object, headed ‘Pages’ that acts as a parent for the collection

of ‘Page . . . ’ objects;
(iv) the previous object is a child of the ‘Catalog’, which is the root node for

the complete document structure.

With tagged PDF there is also a Structure Tree whose root node ‘StructTree-

Root’ is another child of the ‘Catalog’. This is itself the root node for a tree of
objects headed as ‘StructElem . . . ’, which describe the abstract structure of the
textual content of the document. Each ‘StructElem’ node has both references to
its children, and a back-pointer to its parent node within the Structure Tree.

To define the content that is encompassed within the structure, there need
to be references from the nodes of the Structure Tree to specific locations within
the ‘Contents’ streams. The locations are indicated by the (round) rectangles,
with arrows indicating how the structure relates to these. Extra arrows point
from structure nodes to ‘Page’ nodes, which help identify where the content can
be seen; that is, on which page does it (mostly) occur.

A second tree is linked-to from the ‘StructTreeRoot’; this is called the ‘Parent-

Tree’, containing a node for each physical page. These nodes are each an array of
references to all the ‘StructElem’ nodes that have content on the corresponding
page. There is a link from each ‘Page . . . ’ object to the ‘ParentTree’, which allows
the corresponding node to be easily located.

Finally a third ‘IDTree’ is an optional feature. Each ‘StructElem’ node can be
given a unique name. The ‘IDTree’ acts as the root node for a tree built up to
include arrays of these names, each paired with a pointer to the corresponding
‘StructElem’ node. This possibility of associating names to structure is for the
benefit of Application software that produces or manipulates PDF files. It can
use whatever naming scheme it likes to facilitate access to the kinds of structured
objects that it needs to work with.

Figure 1 is based on an example in the PDF Reference document [1]. The
structure it represents consists of a document section (chapter) having a heading
and a paragraph stretching across two pages, together with another paragraph.

3 MathML tagging within a PDF document

Figure 2 shows the effect of having a piece of mathematics tagged (using MathML

syntax) within a PDF document. The middle part of the image shows how the
page would appear within an Adobe Reader, or (in this case) Acrobat, browser.

172 TUGboat, Volume 30 (2009), No. 2

Ross Moore

This view is partly obscured by Acrobat’s ‘Order Panel’, which displays the tag-
ging of a mathematical expression, with an <mrow> selected. The corresponding
content is highlighted with rectangles back in the browser view. On the left side
we see the result of an ‘Export to XML 1.0’ action, writing the tagged contents
out into a text file. This export has included the mathematical symbols using
UTF8 format, so the correct Unicode Plane 1 “Mathematical Alphanumerics”
are shown within a text editor that supports the full Unicode range.

This example was produced using an experimental version of pdfTEX. The
fonts being used are from the Computer Modern family, which are the stan-
dard fonts that have traditionally been used with TEX and LATEX. Mappings
to Unicode Plane 1 characters are achieved using the LATEX package mmap.sty,
described within a recent TUGboat article [5].

Fig. 2. MathML tagging within a PDF document

The LATEX coding below shows part of what was used to produce the tagging
of mathematics shown in Figure 2. It shows how to use new primitive commands
\pdfstructelem, \pdfstartmarkedcontent and \pdfendmarkedcontent.

TUGboat, Volume 30 (2009), No. 2 173

Ongoing efforts to generate “tagged PDF” using pdfTEX

\pdfstructelem attr{/S /Formula} 3 27

\pdfstructelem attr{/S /math} 27 28

\pdfstructelem attr{/S /mrow} 28 29

\pdfstructelem attr{/S /msup} 29 30

\pdfstructelem attr{/S /mrow} 30 31

\pdfstructelem attr{/S /mo} 31 32

\pdfstartmarkedcontent attr{/ActualText(\050)

/Alt(, open bracket,)} 32 {mo}\biggl(\pdfendmarkedcontent

\pdfstructelem attr{/S /mi} 31 33

\pdfstartmarkedcontent attr{/Alt(alpha)}noendtext

33 {mi}\alpha \pdfendmarkedcontent

\pdfstructelem attr{/S /mo} 31 34

\pdfstartmarkedcontent attr{/Alt(plus)}noendtext

34 {mo}+ \pdfendmarkedcontent

...

The primitive \pdfstructelem requires two numbers specifying a unique
identifier for the structure node being created, preceded by the identifier of its
parent node, and attributes including the type of tag. Leaf nodes, constructed
with \pdfstartmarkedcontent, require the identifier of the parent structure
node. Their attributes can include /Alt text to be read by a screen-reader,
and an /ActualText alternative for text-extraction. The kind of node for a
mathematical symbol agrees with its parent structure node, (e.g., /mi, /mo or
/mn). This is followed by the TEX coding to produce a visual representation,
terminated by \pdfendmarkedcontent. Part of the PDF content stream resulting
from this coding is given below, showing how the tagging is interspersed with
positioning and font-changing commands, and the font characters themselves.

1 0 0 1 70.69 -23.949 cm

/mo <</MCID 15 /ActualText(\050) /Alt(, open bracket,)>>BDC

1 0 0 1 0 17.036 cm BT

/F1 9.9626 Tf/F18 1 Tf()Tj/F1 9.9626 Tf [(\040)]TJ ET EMC

1 0 0 1 7.887 -17.036 cm

/mi <</MCID 16 /Alt(alpha)>>BDC BT

/F11 9.9626 Tf/F18 1 Tf()Tj/F11 9.9626 Tf [(\013)]TJ ET EMC

1 0 0 1 6.41 0 cm

/mo <</MCID 17 /Alt(plus)>>BDC

1 0 0 1 2.214 0 cm BT

/F8 9.9626 Tf/F18 1 Tf()Tj/F8 9.9626 Tf [(+)]TJ ET EMC

This kind of coding, directly in pdfTEX primitives, is really only useful for
testing and “proof of concept” examples, such as Figure 2. Any mistake in the
numerical identifiers can result in a broken PDF that may appear to render
properly, but nevertheless crashes Acrobat due to a malformed structure tree.

Handling those numerical identifiers and parent relationships is something
better done using an extra layer of LATEX macros, as in the coding example
below. A \taginlinemath macro sets up an enclosing /Formula structure tag.
Presentation MathML structure is specified using \tagmathbranch. MathML

content tags are associated with TEX source using \tagmathbleaf, which has

174 TUGboat, Volume 30 (2009), No. 2

Ross Moore

an optional argument for spoken text. A variant \tagmathaleaf accommodates
/ActualText replacements for large delimiters and extended constructions which
require more than one glyph to display a single symbol.

\taginlinemath{%

\tagmathbranch{msup}{\storePDFparentID

\tagmathbranch{mrow}{%

\tagmathaleaf[, open bracket,]{mo}{/stretchy /false

/minsize(1.2em) /maxsize(1.2em)}{\050}{\bigl(}%

\tagmathbleaf[alpha]{mi}{}{\alpha}%

\tagmathbleaf[plus]{mo}{}{+}%

\tagmathbleaf[beta]{mi}{}{\beta}%

\tagmathaleaf[, close bracket,]{mo}{/stretchy /false

/minsize(1.2em) /maxsize(1.2em)}{\051}{\bigr)^{%

\adjustendcontent \tagmathbleaf[all squared,]{mn}{}{2}%

}%end of ^

}% </mo>

}% </mrow>

}% </msup>

...

In the above examples, the MathML tagging has been coded by hand to
get working LATEX source. Ultimately such markup, that interweaves MathML

tagging with TEX code, needs to be generated automatically. This will require
new coding structures called from modified expansions for existing LATEX internal
commands and environments (as used with paragraphs, headings, etc.), as well
as with mathematical environments. For math the proposed strategy is to write
the LATEX source of a complete environment to disk, run a 3rd-party MathML

converter to generate the tagging, then read the result back into the running job,
merging the two coded views of the same piece of mathematics. Any external
MathML converter could be used, provided it can be run as a command-line
program using TEX’s \write18 facility. Alternatively, if a MathML version is
already available for a piece of LATEX source, then this could be used instead.

References

1. Adobe Systems Inc.; PDF Reference 1.7, November 2006.
http://www.adobe.com/devnet/pdf/pdf_reference.html

2. Hàn Thé̂ Thành; Thesis—pdfTEX, published as: TUGboat, 21:4, (2000).
http://www.tug.org/TUGboat/Contents/contents21-4.html

3. ISO 19005-1:2005; Document Management—Electronic document file format for
long term preservation—Part 1: Use of PDF 1.4 (PDF/A-1).
http://www.iso.org/iso/catalogue_detail?csnumber=38920

4. ISO/DIS 32000; Document management—Portable document format (PDF 1.7),
July 2008. http://www.iso.org/iso/catalogue_detail?csnumber=51502

5. Moore, Ross R.; Advanced features for publishing mathematics, in PDF and on the
Web. TUGboat, 29:3, (2008), pp. 464–473.
http://www.tug.org/TUGboat/Contents/contents29-3.html

6. PDF/UA Universal Accessibility; websites at http://pdf.editme.com/pdfua and
http://www.aiim.org/Standards/article.aspx?ID=27861.

TUGboat, Volume 30 (2009), No. 2 175

Ongoing efforts to generate “tagged PDF” using pdfTEX

176 TUGboat, Volume 30 (2009), No. 2

The EduTEX TUG working group

Frank Quinn

Abstract

This note introduces the EduTEX working group and
sketches goals for the startup period.

Introduction

The EduTEX working group is concerned with ex-
tended usage of TEX designed to support student
learning. We have a wiki at http://edutex-wiki.

tug.org and a mailing list (see http://lists.tug.

org/edutex). This note is a brief introduction; see
the wiki for more detail and an explanation (if you
need one) of why TEX is the best setting for this.

Learning environments

The core objective is a setting for producing learn-
ing environments that masquerade as tests. These
objects are tests in the sense that they are used
for assessment, but the main reason for presenting
them this way is to provide motivation, and lure stu-
dents into an environment where they can be given
feedback and easy access to resources.

Startup

Initial development of EduTEX is constrained by
objectives specified in the grant from the National
Science Foundation. So, our concerns for now:

• a focus on mathematics;
• creating educationally effective functionality;
• avoiding exciting but ineffective functionality.

Rigid educational constraints are out of place in a
software user group. After startup (i.e., when the
funding runs out) we will separate the software and
educational threads. We anticipate a continued rich
interaction between the two, but the software thread
will follow its own interests with more freedom.

Clever new machines, clever new software,
same old brains

This is the guiding thought for my approach to educa-
tion. The point is that human learning uses primitive
(or at least undeveloped) facilities and is haphazard
and highly variable. Thus:

• Software design driven by needs of human chil-
dren often seems dull and boring from a tech-
nology point of view.

• Software that seems exciting and powerful to ex-
perienced users rarely connects with the needs of
real-life learners, and is often counterproductive.

Two examples:

Video and animations In the Math Emporium at
Virginia Tech (http://www.emporium.vt.edu)
we have found that video clips and animations
almost always put students into spectator mode.
They may be interested, amused, even “engaged”
while in this mode, but are essentially incapable
of real learning.

We surmise this is because they have had
much more practice being spectators than learn-
ers. Further, the entertainment industry has
taught them to suspend critical facilities, and
the advertising industry has taught them to
resist learning while being entertained.

Distraction Modern students tend to have short
attention spans. Distractions such as pictures,
cute illustrations, unnecessary links, anything
that moves, and vague or unfocused discussion,
tend to break attention focus and impede learn-
ing. Effective learning environments tend, there-
fore, to be drab and boring to those who are not
actually learning.

For these reasons the startup period will focus
on core functionality. Once the core is solidly in
place we can be more adventurous.

Contribute?

Comments, suggestions, pointers to useful materials,
and any other contributions are very welcome. In
particular, significant sub-projects that need fleshing
out are on the ‘Functionality’ page of the wiki.

⋄ Frank Quinn
Virgina Tech
http://edutex-wiki.tug.org

TUGboat, Volume 30 (2009), No. 2 177

Becoming a CTAN mirror

Jim Hefferon

Have you downloaded something from CTAN that
you found useful? Would you like to be useful in
return?

Sites on the Comprehensive TEX Archive Net-
work come in two types. There are three core sites,
where every day the archivists place new materials
in the file tree. The other sites are mirrors — every
night they sync their holdings with a core site and
then offer those materials for download by others.

A mirror site, once set up, mostly runs itself.
So, if you are able to run a mirror site, that

would be a big help to CTAN and to TEX users near
you, without causing too much trouble for you. This
note describes the technical requirements for doing
this, with the specific steps to become an official
CTAN mirror.

1 Requirements

You need a computer with 20–30 gigabytes of avail-
able disk space and an Internet connection with a
permanent IP address. If you have a firewall then
you must make sure external users can get through
to your site. And, you also need some experience
running a Unix-like system, such as GNU/Linux or
MacOSX (a Windows-based system could work but
the directions below don’t cover this case).

2 You are only three steps away

To set up a mirror you need to (1) give visitors access
to files by running either a web or FTP daemon, or
both, (2) set up your system to sync your holdings
with a core site every day, and (3) sign up to be an
official mirror.

2.1 Give your visitors access

The two most popular way to offer the files to your
visitors are over HTTP and over FTP. The examples
below assume that you keep the archive materials in
your /var/ftp/pub/tex-archive directory.

To offer the materials over HTTP you need a
web server. We use Apache.1 Setting up a server is
beyond our scope but here are tips.

• One way to make the archive available is to put
a link inside your document root. For example,
this command (adjust paths as needed) makes
http://your site/tex-archive show the top
of the archive.

ln -s /var/ftp/pub/tex-archive \

/var/www/html/tex-archive

1 http://httpd.apache.org

• You don’t want files named index.html to be
served as the index of its directory. See the
directives in Figure 1.

To offer materials over FTP, you must have an
FTP daemon running. We use ProFTPD2 but there
are many others. Setting up this daemon is also
beyond our scope but if your documentation does
not cover how to allow anonymous access then we
suggest choosing different software.

2.2 Sync with a core site

To get the materials, and to keep them up to date,
run rsync.3 This program does the transfers effi-
cently, saving both you and us network usage.

You must mirror from one of the core sites.
Pick the one nearest you. Use rsync://rsync.cam.
ctan.org/CTAN for the one in England, or rsync://
rsync.dante.ctan.org/CTAN for the German site,
or rsync://rsync.tug.ctan.org/CTAN for the one
in the northeast USA. (The examples below use the
first.)

The following command will get everything on
CTAN and put it on your hard drive.

rsync -av --delete \

rsync://rsync.cam.ctan.org/CTAN \

/var/ftp/pub/tex-archive

The first time that you run it, this command can
take quite a long time (an hour or more, perhaps,
depending on the connection speed). Before you
commit to it, you can try using the -n option, as
in rsync -avn --delete ..., which will say what
would be done without doing it.

You must run the rsync command every day.
To set this up, run crontab -e at the command
prompt. In the editor that appears enter a line like
this (the line breaks are only for TUGboat; it must
be one line in the editor):

31 2 * * * rsync -a --delete

rsync://rsync.cam.ctan.org/CTAN

/var/ftp/pub/tex-archive

This makes your system run the rsync command at
31 minutes past the hour, of the second hour of the
day, on every day of the month, and during every
month of the year, and every day of the week, that
is, Sunday thru Saturday.

Please change these numbers when you set your
system up, so that not everyone in the world hits
CTAN at the same instant. Pick a time that is in
the middle of the night at the location of the core
site that you are mirroring.

2 http://www.proftpd.org/
3 http://rsync.samba.org

Becoming a CTAN mirror

178 TUGboat, Volume 30 (2009), No. 2

<Directory /> # web visitors can’t see outside web tree

Order Deny, Allow

Deny from all

</Directory>

<Directory /var/www/html> # web visitors can see the web tree

Order Allow, Deny

Allow from all

Options +FollowSymLinks

</Directory>

<Directory /var/www/html/tex-archive> # soft link to CTAN tree

Order Allow, Deny

Allow from all

Options -ExecCGI, +FollowSymLinks, -Includes, -IncludesNOEXEC, +Indexes

DirectoryIndex # no value, so ‘index.html’ is not used

</Directory>

Figure 1: Part of your web configuration file

2.3 Become official

When you have the files, and the cron job, and you
are offering public access, visit http://www.ctan.

org/mirror_signup to sign up to become an official
mirror.

After a day or two, you will be added to a mail-
ing list that is very low volume, perhaps a half dozen
messages a year. And, you will be put into the CTAN

system, so that you will start seeing traffic.

3 Thanks

If you can run a mirror, then we at CTAN would
appreciate it. It is a much needed service — we could
not continue without our mirrors.

⋄ Jim Hefferon
Saint Michael’s College
Colchester, Vermont USA
ftpmaint (at) tug dot ctan dot org

Jim Hefferon

TUGboat, Volume 30 (2009), No. 2 179

TEX Live 2009 news

Karl Berry

Abstract

Notable changes in the TEX Live 2009 release.

Introduction

TEX Live is a cross-platform TEX distribution sup-
ported by the TEX user groups worldwide. Our
native distribution provides its own installer and
management tools; it also serves as the basis for the
TEX packages in most GNU/Linux, BSD-related, and
other system distributions. It was first released in
1996 by Sebastian Rahtz, based on Thomas Esser’s
teTEX. By the time this note reaches print, we hope
the 2009 release will be in final production.

News for 2009

In TEX Live 2009, the most visible change is that
pdf(LA)TEX now automatically converts a requested
Encapsulated PostScript (EPS) file to PDF, via the
epstopdf package, when and if the LATEX config-
uration file graphics.cfg is loaded, and PDF is
being output. The default options are intended to
eliminate any chance of hand-created PDF files be-
ing overwritten, but you can also prevent epstopdf
from being loaded at all by putting \newcommand

{\DoNotLoadEpstopdf}{} (or \def...) before the
\documentclass declaration. For details, see the
package documentation for epstopdf (http://ctan.
org/pkg/epstopdf-pkg).

A related important change is that execution of
a few external commands, via the \write18 feature,
is now enabled by default — for example, epstopdf,
makeindex, and bibtex. The exact list of commands
is defined in the texmf.cnf file. Installations which
must disallow all such external commands can dese-
lect this option in the TEX Live installer, or override
the value in texmf.cnf after installation.

The default output format for Lua(LA)TEX is
now PDF, to take advantage of LuaTEX’s OpenType
support, et al. New executables named dviluatex

and dvilualatex run LuaTEX with DVI output. The
LuaTEX home page is http://luatex.org.

The original Omega engine and Lambda format
have been excised, after discussions with the Omega
authors. The updated Aleph and Lamed remain, as
do the Omega utilities.

A new release of the amsfonts package is in-
cluded, including updates to the Computer Modern
fonts in Type 1: a few shape changes made over the
years by Knuth in the Metafont sources have been
integrated, and the hinting has been updated. The

Euler math fonts have been thoroughly reshaped
by Hermann Zapf (see http://tug.org/TUGboat/

Articles/tb29-2/tb92hagen-euler.pdf). In all
cases, the metrics are unchanged. The AMS fonts
home page: http://ams.org/tex/amsfonts.html.

The new GUI front end TEXworks is included
for Windows, and is also in MacTEX. For other
platforms, and more information, see its home page,
http://tug.org/texworks. TEXworks is a cross-
platform front end aiming at initial ease-of-use, in-
spired by the TeXShop editor for MacOSX.

The graphics program Asymptote is included for
most platforms. This implements a text-based graph-
ics description language somewhat akin to MetaPost,
but with advanced 3D support and other features.
The Asymptote home page, with documentation and
more, is http://asymptote.sourceforge.net.

The separate dvipdfm program (no longer main-
tained) has been replaced by dvipdfmx, which op-
erates in a special compatibility mode under that
name. dvipdfmx includes CJK support and has ac-
cumulated many other fixes over the years since the
last dvipdfm release. The DVIPDFMx home page is
http://project.ktug.or.kr/dvipdfmx.

Executables for the cygwin and i386-netbsd

platforms are now included, while the other BSD

distributions have been dropped; we were advised
that OpenBSD and FreeBSD users get TEX through
their package systems, plus there were difficulties in
making binaries that had a chance of working on
more than one version.

Lastly, a miscellany of smaller changes: we now
use xz compression, the stable replacement for lzma
format (http://tukaani.org/xz/); a literal $ is
allowed in filenames (when it does not introduce a
known variable name); the Kpathsea library is now
multi-threaded (made use of in MetaPost); the entire
TEX Live build is now based on Automake.

In summary

Thanks to all the many people involved in this and
past releases. See the documentation for acknowl-
edgements, as well as installation and usage informa-
tion — http://tug.org/texlive/doc.html.

All releases of TEX Live, along with ancillary
material such as CD labels, are available at ftp:

//tug.org/historic/systems/texlive.
TEX Live and MiKTEX account for a substantial

portion of the total traffic to CTAN. So more mirrors
are always welcome; if you can help, please see http:

//ctan.org/mirroring.html, and thanks.

⋄ Karl Berry
http://tug.org/texlive/

180 TUGboat, Volume 30 (2009), No. 2

Getting started with plasTEX

Tim Arnold

Abstract

The software package plasTEX converts LATEX doc-
uments to other markup languages. This article
describes typical usage with examples of how to cre-
ate HTML and DocBook XML from LATEX sources,
an overview of how to extend the package to handle
custom commands and environments, and a demon-
stration of converting a simple LATEX source file.

1 Introduction

1.1 What plasTEX does

plasTEX is a document-processing framework that
converts LATEX sources to HTML, XML, and other
markup formats. The author uses plasTEX as part
of a publishing workflow to produce statistical docu-
mentation at SAS Institute Inc.

The software is released as free and open source,
under the MIT license. It is written in Python by
Kevin Smith of SAS.

1.2 Math support

plasTEX is designed to use plug-ins for math support.
You select the format of the math output by speci-
fying the plug-in that plasTEX should use to render
the document.

This plug-in design keeps plasTEX flexible so
it can produce a mathematical format that is most
appropriate for the current state of browser capabili-
ties. Once browsers fully support MathML and their
display is production quality, any software program
that produces MathML from LATEX math can be used
as the engine.

The default plug-in is dvipng, which replaces
mathematics with images in the form of PNG for-
matted bitmap graphics. Optionally, you can use
the dvisvg plug-in, which produces mathematics in
SVG vector graphics.

2 How it works

2.1 Interface

plasTEX provides a command line interface. The
interface includes options that enable you to:

• specify themes and navigational elements. A
theme is a special template that sets the look
and feel of the header, footer, and navigation
elements such as breadcrumbs. plasTEX comes
with several themes. You can specify a particu-
lar theme to match each output format (for ex-
ample, HTMLHelp, EclipseHelp, and JavaHelp).

• specify input and output encoding. Different
input encoding provides options for writers. Dif-
ferent output encoding enables matching the out-
put to the destination; for example, HTMLHelp
must be encoded as Windows-1252.

• set specific counters. It is useful to be able to
process extremely large books one chapter at a
time. Using the command line option, you can
set the chapter counter for each chapter.

• set the depth of the table of contents and section
numbering.

• specify image generation engine. This allows for
PNG or SVG format mathematics and enables
flexibility to use any future external process for
handling LATEX math.

2.2 Internals

There are two steps in plasTEX processing:

1. plasTEX parses the LATEX source to create a doc-
ument object model (DOM), which is a nested,
tree-like data structure that contains the con-
tent plus the document data elements for the
commands, environments, and their arguments.

2. plasTEX renders the DOM to the output for-
mat by combining a set of templates with the
document data.

We now describe these steps in more detail.

2.2.1 Create the document object model

For every built-in LATEX command and environment,
plasTEX provides a corresponding Python class so
it can recognize and digest the tokens as they are
encountered in a document.

As an example, plasTEX implements the LATEX
\framebox command:

\framebox[width][position]{text}

with the following snippet of Python code, which
defines the framebox class:

class framebox(TextBoxCommand):

args = ’[width] [pos] self’

The framebox class inherits from the internal
plasTEX base class TextBoxCommand and maps the
arguments to variables. During parsing, plasTEX
reads the framebox command according to its defini-
tion and saves the resulting named tokens (values of
the variables) in the document data structure. These
variables are used in the next step, rendering.

2.2.2 Render the document

plasTEX rendering uses templates (a popular method-
ology in web publishing frameworks). A data struc-
ture (DOM) and a set of templates are combined to
automatically generate documents.

Tim Arnold

TUGboat, Volume 30 (2009), No. 2 181

Suppose you have a framebox command in your
document:

\framebox[15em]{Note: this is an example}

LATEX renders the markup as follows:

Note: this is an example

When plasTEX encounters the markup, it parses the
\framebox into its constituent data and finally ren-
ders that data to HTML with the following template:

name: framebox

<span tal:attributes="style

string:width:${self/attributes/width}"

tal:content="self">

The final output appears as follows:

Note: this is an example

2.2.3 Summary of plasTEX processing

plasTEX parses each of the LATEX commands and text
in the source document to create the DOM. Parsing
occurs one time for each input document.

The plasTEX parser must recognize every com-
mand and environment encountered in the document.
plasTEX understands built-in LATEX and TEX com-
mands in addition to the following packages:

a4wide alltt amsart amsfonts

amsmath amssymb amsthm babel

beamer changebar color comment

fancybox fancyhdr fancyvrb float

fontenc geometry graphics graphicx

hyperref ifpdf ifthen inputenc

keyval lipsum longtable makeidx

minitoc natbib pslatex rotating

shortvrb subfig subfigure textcomp

times ucs url verbatim

wrapfig

To create the output, plasTEX applies a set of
corresponding templates for each document element
that it encountered. The rendering step can be done
multiple times using different sets of templates to
create different output formats from a single DOM.

2.3 Rendering formats

plasTEX is bundled with the following template sets,
i.e., it can render documents into these formats:

• HTML

• well-formed XML (the internal representation of
a document within plasTEX is well-formed XML,
which uses the plasTEX namespace)

• DocBook 4.5 and 5.0 XML

• plain text (useful to “detex” documents since
all tagging is removed except for math)

• ePub, an emerging e-book standard format based
on XHTML

• S5, a simple standards-based slide show system
• BrlTEX, an open source LATEX-to-braille trans-

lator that is designed to handle math

2.4 Extending plasTEX

plasTEX can be extended in two ways:

• You can add new commands or environments
that plasTEX can understand and parse by cre-
ating a corresponding Python class. The new
class enables the plasTEX parser to tokenize doc-
uments that contain the new markup. This can
often be a simple subclass of an existing class.

• You can add a new type of output format by
adding a set of corresponding templates so that
the plasTEX renderer can produce the appropri-
ate output for each element.

3 Examples & demonstrations

The presentation of this paper included a live demon-
stration of converting LATEX documents. To view the
demonstration, install the plasTEX distribution and
give the appropriate command, as follows:

• plastex sample2e.tex

renders the familiar sample2e.tex example file
into HTML. You can view the contents with any
browser; open the file sample2e/index.html.
See Figure 1.

• plastex --renderer Text \

--split-level 0 sample2e.tex

renders the same source file into a single file of
plain text, leaving the math as it was entered
in the document.

Also during the presentation, two research ar-
ticles in LATEX format were downloaded from the
website ArXiv.org and rendered to HTML. (Two
small bugs were noted by audience members. The
bugs have been fixed in the current version of the
plasTEX distribution.)

As a larger example, the Python Library Refer-
ence (a substantial documentation package written
in LATEX) was converted to HTML with no errors in
about 45 minutes time.

In short, give plasTEX a try on your favorite
documents; it can handle a lot.

4 Summary

In conclusion, plasTEX provides an easy-to-use com-
mand line interface with which to convert LATEX
sources to a variety of output formats. The frame-
work can easily be extended by adding Python classes
or templates, making it a useful tool for both simple
documents as well as production-quality publishing
workflows.

Getting started with plasTEX

182 TUGboat, Volume 30 (2009), No. 2

Figure 1: PlasTEX HTML output for sample2e.tex.

5 References

ArXiV is an e-print service in the fields of physics,
mathematics, nonlinear science, computer sci-
ence, quantitative biology and statistics.
http://arxiv.org/

BrlTEX is an open source LATEX-to-braille transla-
tor.
http://brltex.sourceforge.net/

DocBook is a schema maintained by the DocBook
Technical Committee of OASIS. It is particularly
well suited to books and papers about computer
hardware and software.
http://www.docbook.org/

IDPF (International Digital Publishing Forum) is
a trade and standards organization dedicated
to the development and promotion of electronic
publishing.
http://www.idpf.org/

plasTEX is a LATEX document-processing frame-
work written entirely in Python, with the capa-
bility to output in many formats.
http://plastex.sourceforge.net/

S5 is a slide show format based entirely on XHTML,
CSS, and JavaScript.
http://www.s5.com/

⋄ Tim Arnold
SAS Institute Inc.
Cary, NC USA

tim dot arnold (at) sas dot com

Tim Arnold

TUGboat, Volume 30 (2009), No. 2 183

LuaTEX: Halfway to version 1

Hans Hagen

Abstract

We’re close to releasing version 0.50 of LuaTEX. In
this article I give an overview of what has happened
so far, what is currently being done and where we
expect to end up.

1 Introduction

We are about halfway into the LuaTEX project now.
At the time of writing this document we are only
a few days away from version 0.40 (the BachoTEX
cq. TEX Live version) and around EuroTEX 2009
we will release version 0.50. Starting with version
0.30 (which we released around the conference of the
Korean TEX User group meeting) all one-decimal
releases are supported and usable for (controlled)
production work. We have always stated that all
interfaces may change until they are documented to
be stable, and we expect to document the first stable
parts in version 0.50. Currently we plan to release
version 1.00 sometime in 2012, 30 years after TEX82,
with 0.60 and 0.70 in 2010, 0.80 and 0.90 in 2011.
But of course it might turn out different.

In this update we assume that the reader knows
what LuaTEX is and what it does.

2 Design principles

We started this project because we wanted an ex-
tensible engine. We chose Lua as the glue language.
We do not regret this choice as it permitted us to
open up TEX’s internals reasonably well. There have
been a few extensions to TEX itself, and there will
be a few more, but none of them are fundamental in
the sense that they influence typesetting. Extending
TEX in that area is up to the macro package writer,
who can use the Lua language combined with TEX
macros.

In a similar fashion we made some decisions
about Lua libraries that are included. What we have
now is what you will get. Future versions of LuaTEX
will have the ability to load additional libraries but
these will not be part of the core distribution. There
is simply too much choice and we do not want to
enter endless discussions about what is best. More
flexibility would also add a burden on maintenance
that we do not want. Portability has always been a
virtue of TEX and we want to keep it that way.

3 Lua scripting

Before 0.40 there could be multiple instances of the
Lua interpreter active at the same time, but we have
now decided to limit the number of instances to just

one. The reason is simple: sharing all functional-
ity among multiple Lua interpreter instances does
more bad than good and Lua has enough possibil-
ities to create namespaces anyway. The new limit
also simplifies the internal source code, which is a
good thing. While the \directlua command is now
sort of frozen, we might extend the functionality of
\latelua, especially in relation to what is possible in
the backend. Both commands still accept a number
but this now refers to an index in a user-definable
name table that will be shown when an error occurs.

4 Input and output

The current LuaTEX release permits multiple in-
stances of kpse which can be handy if you mix, for
instance, a macro package and MPlib, as both have
their own ‘progname’ (and engine) namespace. How-
ever, right from the start it has been possible to bring
most input under Lua control and one can overload
the usual kpse mechanisms. This is what we do in
ConTEXt (and probably only there).

Logging, etc., is also under Lua control. There
is no support for writing to TEX’s opened output
channels except for the log and the terminal. We
are investigating limited write control to numbered
channels but this has a very low priority.

Reading from zip files and sockets has been
available for a while now.

Among the first things that have been imple-
mented is a mechanism for managing category codes
(\catcode) although this is not really needed for
practical usage as we aim at full compatibility. It
just makes printing back to TEX from Lua a bit more
comfortable.

5 Interface to TEX

Registers can always be accessed from Lua by number
and (when defined at the TEX end) also by name.
When writing to a register grouping is honored. Most
internal registers can be accessed (mostly read-only).
Box registers can be manipulated but users need to
be aware of potential memory management issues.

There will be provisions to use the primitives
related to setting codes (lowercase codes and such).
Some of this functionality will be available in version
0.50.

6 Fonts

The internal font model has been extended to the
full Unicode range. There are readers for OpenType,
Type 1, and traditional TEX fonts. Users can create
virtual fonts on the fly and have complete control
over what goes into TEX. Font specific features can

LuaTEX: Halfway to version 1

184 TUGboat, Volume 30 (2009), No. 2

either be mapped onto the traditional ligature and
kerning mechanisms or be implemented in Lua.

We use code from FontForge that has been
stripped to get a smaller code base. Using the Font-
Forge code has the advantage that we get a similar
view on the fonts in LuaTEX as in this editor which
makes debugging easier and developing fonts more
convenient.

The interface is already rather stable but some
of the keys in loaded tables might change. Almost
all of the font interface will be stable in version 0.50.

7 Tokens

It is possible to intercept tokenization. Once inter-
cepted, a token table can be manipulated before
being piped back into LuaTEX. We still support
Omega’s translation processes but that might be-
come obsolete at some point.

Future versions of LuaTEX might use Lua’s so-
called “user data” concept but the interface will
mostly be the same. Therefore this subsystem will
not be frozen yet in version 0.50.

8 Nodes

Users have access to the node lists in various stages.
This interface has already been quite stable for some
time but some cleanup might still take place. Cur-
rently the node memory maintenance is still explicit,
but eventually we will make releasing unused nodes
automatic.

We have plans for keeping more extensive in-
formation within a paragraph (initial whatsit) so
that one can build alternative paragraph builders
in Lua. There will be a vertical packer (in addition
to the horizontal packer) and we will open up the
page builder (inserts etc.). The basic interface will
be stable in version 0.50.

9 Attributes

This new kid on the block is now available for most
subsystems but we might change some of its default
behaviour. As of 0.40 you can also use negative values
for attributes. The original idea of using negative
values for special purposes has been abandoned as
we consider a secondary (faster and more efficient)
limited variant. The basic principles will be stable
around version 0.50, but we reserve the freedom to
change some aspects of attributes until we reach
version 1.00.

10 Hyphenation

In LuaTEX we have clearly separated hyphenation,
ligature building and kerning. Managing patterns as
well as hyphenation is reimplemented from scratch

but uses the same principles as traditional TEX. Pat-
terns can be loaded at run time and exceptions are
quite efficient now. There are a few extensions, like
embedded discretionaries in exceptions and pre- as
well as posthyphens.

On the agenda is fixing some ‘hyphenchar’ re-
lated issues and future releases might deal with com-
pound words as well. There are some known limita-
tions that we hope to have solved in version 0.50.

11 Images

Image handling is part of the backend. This part of
the pdfTEX code has been rewritten and can now be
controlled from Lua. There are already a few more
options than in pdfTEX (simple transformations).
The image code will also be integrated in the virtual
font handler.

12 Paragraph building

The paragraph builder has been rewritten in C code
(soon to be converted back to CWEB). There is a
callback related to the builder so it is possible to
overload the default line breaker by one written in
Lua.

There are no further short-term revisions on the
agenda, apart from writing an advanced (third order)
Arabic routine for the Oriental TEX project.

Future releases may provide a bit more control
over \parshapes and multiple paragraph shapes.

13 MetaPost

The closely related MPlib project has resulted in a
MetaPost library that is included in LuaTEX. There
can be multiple instances active at the same time
and MetaPost processing is very fast. Conversion to
PDF is to be done with Lua.

On the to-do list is a bit more interoperability
(pre- and postscript tables) and this will make it into
release 0.50 (maybe even in version 0.40 already).

14 Mathematics

Version 0.50 will have a stable version of Unicode
math support. Math is backward compatible but
provides solutions for dealing with OpenType math
fonts. We provide math lists in their intermediate
form (noads) so that it is possible to manipulate
math in great detail.

The relevant math parameters are reorganized
according to what OpenType math provides (we use
the Cambria font as our reference). Parameters are
grouped by style. Future versions of LuaTEX will
build upon this base to provide a simple mechanism
for switching style sets and font families in-formula.

Hans Hagen

TUGboat, Volume 30 (2009), No. 2 185

There are new primitives for placing accents
(top and bottom variants and extensible characters),
creating radicals, and making delimiters. Math char-
acters are permitted in text mode.

There will be an additional alignment mecha-
nism analogous to what MathML provides. Expect
more.

15 Page building

Not much work has been done on opening up the
page builder although we do have access to the in-
termediate lists. This is unlikely to happen before
0.50.

16 Going CWEB

After releasing version 0.50 around EuroTEX 2009
there will be a period of relative silence. Apart from
bug fixes and (private) experiments there will be no
release for a while. At the time of the 0.50 release
the LuaTEX source code will probably be in plain C
completely. After that is done, we will concentrate
hard on consolidating and upgrading the code base
back into CWEB.

17 Cleanup

Cleanup of code is a continuous process. Cleanup is
needed because we deal with a merge of traditional
TEX, ε-TEX extensions, pdfTEX functionality and
some Omega (Aleph) code.

Compatibility is a prerequisite, with the excep-
tion of logging and rather special ligature reconstruc-
tion code.

We also use the opportunity to slowly move
away from all the global variables that are used in
the Pascal version.

18 Alignments

We do have some ideas about opening up alignments,
but it has a low priority and it will not happen before
the 0.50 release.

19 Error handling

Once all code is converted to CWEB, we will look into
error handling and recovery. It has no high priority
as it is easier to deal with after the conversion to
CWEB.

20 Backend

The backend code will be rewritten stepwise. The
image related code has already been redone, and
currently everything related to positioning and direc-
tions is redesigned and made more consistent. Some
bugs in the Aleph code (inherited from Omega) have
been removed and we are trying to come up with a

consistent way of dealing with directions. Conceptu-
ally this is somewhat messy because much direction-
ality is delegated to the backend.

We are experimenting with positioning (preroll)
and better literal injection. Currently we still use
the somewhat fuzzy pdfTEX methods that evolved
over time (direct, page and normal injection) but we
will come up with a clearer model.

Accuracy of the output (PDF) will be improved
and character extension (hz) will be done more effi-
ciently. Experimental code seems to work okay. This
will become available from release 0.40 and onwards
and further cleanup will take place when the CWEB

code is there, as much of the PDF backend code is
already C code.

21 ConTEXt MkIV

When we started with LuaTEX we decided to use a
branch of ConTEXt for testing as it involves quite
drastic changes, many rewrites, a tight connection
with binary versions, etc.

As a result for some time we now have two ver-
sions of ConTEXt: MkII and MkIV, where the former
targets pdfTEX and X ETEX, and the latter exclu-
sively uses LuaTEX. Although the user interface is
downward compatible the code base starts to diverge
more and more. Therefore at the last ConTEXt meet-
ing it was decided to freeze the current version of
MkII and only apply bug fixes and an occasional
simple extension.

This policy change opened the road to rather
drastic splitting of the code, also because full com-
patibility between MkII and MkIV is not required.
Around LuaTEX version 0.40 the new, currently still
experimental, document structure related code will
be merged into the regular MkIV version. This might
have some impact as it opens up new possibilities.

22 Future

In the future, MkIV will try to create (more) clearly
separated layers of functionality so that it will be-
come possible to make subsets of ConTEXt for special
purposes. This is done under the name MetaTEX.
Think of layering like:

• I/O, catcodes, callback management, helpers
• input regimes, characters, filtering
• nodes, attributes and noads
• user interface
• languages, scripts, fonts and math
• spacing, par building and page construction
• XML, graphics, MetaPost, job management, and

structure (huge impact)
• modules, styles, specific features
• tools

LuaTEX: Halfway to version 1

186 TUGboat, Volume 30 (2009), No. 2

23 Fonts: future

At this moment MkIV is already quite capable of
dealing with OpenType fonts. The driving force
behind this is the Oriental TEX project which brings
along some very complex and feature rich Arabic
font technology. Much time has gone into reverse
engineering the specification and behaviour of how
these fonts behave in Uniscribe (which we use as our
reference for Arabic).

Dealing with the huge CJK fonts is less a font
issue and more a matter of node list processing.
Around the annual meeting of the Korean User
Group we got much of the machinery working, thanks
to discussions on the spot and on the mailing list.

24 Math: future

Between LuaTEX versions 0.30 and 0.40 the math
machinery was opened up (stage one). In order to
test this new functionality, MkIV’s math subsystem
(that was then already partially Unicode aware) had
to be adapted.

First of all Unicode permits us to use only one
math family and so MkIV now does that. The im-
plementation uses Microsoft’s Cambria Math font
as a benchmark. It creates virtual fonts from the
other (old and new) math fonts so they appear to
match up to Cambria Math. Because the TEX Gyre
math project is not yet up to speed MkIV currently
uses virtual variants of these fonts that are created
at run time. The missing pieces in for instance Latin
Modern and friends are compensated for by means
of virtual characters.

Because it is now possible to parse the interme-
diate noad lists MkIV can do some manipulations
before the formula is typeset. This is for instance

used for alphabet remapping, forcing sizes, and spac-
ing around punctuation.

Although MkIV already supports most of the
math that users expect there is still room for im-
provement once there is even more control over the
machinery. This is possible because MkIV is not
bound to downward compatibility.

As with all other LuaTEX related MkIV code,
it is expected that we will have to rewrite most
of the current code a few times as we proceed, so
MkIV math support is not yet stable either. We
can take such drastic measures because MkIV is
still experimental and because users are willing to
do frequent synchronous updating of macros and
engine. In the process we hope to get away from all
ad-hoc boxing and kerning and whatever solutions
for creating constructs, by using the new accent,
delimiter, and radical primitives.

25 Tracing and testing

Whenever possible we add tracing and visualization
features to ConTEXt because the progress reports
and articles need them. Recent extensions concerned
tracing math and tracing OpenType processing.

The OpenType tracing options are a great help
in stepwise reaching the goals of the Oriental TEX
project. This project gave the LuaTEX project its
initial boost and aims at high quality right-to-left
typesetting. In the process complex (test) fonts are
made which, combined with the tracing mentioned,
help us to reveal the secrets of OpenType.

⋄ Hans Hagen
Pragma ADE
The Netherlands
http://luatex.org

Hans Hagen

TUGboat, Volume 30 (2009), No. 2 187

LuaTEX and ConTEXt: Where we stand

Hans Hagen

Abstract

We consider the release of LuaTEX 0.50 to be a very
important one, both for LuaTEX and for MkIV, so
here I will reflect on the state around this release. I
will do this from the perspective of processing docu-
ments because usability is an important measure.

1 Where do we stand?

There are several reasons why LuaTEX 0.50 is an
important release, both for LuaTEX and for MkIV.
Let’s start with LuaTEX.

• Apart from a couple of bug fixes, the current
version is pretty usable and stable. Details of
what we’ve reached so far have been presented
previously.

• The code base has been converted from Pascal
to C code, and as a result the source tree has
become simpler (being CWEB compliant hap-
pens around 0.60). This transition also opens
up the possibility to start looking into some of
the more tricky internals, like page building.

• Most of the front end has been opened up and
the new backend code is getting into shape. As
the backend was partly already done in C code
the moment has come to do a real cleanup. Keep
in mind that we started with pdfTEX and that
much of its extra functionality is rather interwo-
ven with traditional TEX code.

If we look at ConTEXt, we’ve also reached a
crucial point in the upgrade.

• The code base is now divided into MkII and
MkIV. This permits us not only to reimplement
bits and pieces (something that was already in
progress) but also to clean up the code (only
MkIV).

• If you kept up with the development you already
know the kind of tasks we can (and do) delegate
to Lua. Just to mention a few: file handling,
font loading and OpenType processing, casing
and some spacing issues, everything related to
graphics and MetaPost, language support, color
and other attributes, input regimes, XML, multi-
pass data, etc.

• Recently all backend related code was moved
to Lua and the code dealing with hyperlinks,
widgets and alike is now mostly moved away
from TEX. The related cleanup was possible
because we no longer have to deal with a mix
of DVI drivers too.

• Everything related to structure (which includes
numbering and multi-pass data like tables of
contents and registers) is now delegated to Lua.
We move around way more information and will
extend these mechanisms in the near future.

2 Performance testing

Tracing on Taco’s machine has shown that when
processing the LuaTEX reference manual the engine
spends about 10% of the time on getting tokens, 15%
on macro expansion, and some 50% on Lua (callback
interfacing included). Especially the time spent by
Lua differs per document and garbage collections
seems to be a bottleneck here. So, let’s wrap up how
LuaTEX performs around the time of 0.50. We use
three documents for testing (intermediate) LuaTEX
binaries: the reference manual, the history document
‘mk’, and the revised Metafun manual.

The reference manual has a MetaPost graphic
on each page which is positioned using the ConTEXt
background layering mechanism. This mechanism is
active only when backgrounds are defined and has
some performance consequences for the page builder.
However, most time is spent on constructing the
tables (tabulate) and because these can contain para-
graphs that can run over multiple pages, constructing
a table takes a few analysis passes per table plus some
so-called vsplitting. We load some fonts (including
narrow variants) but for the rest this document is
not that complex. Of course colors are used as well
as hyperlinks. The report at the end of these runs is
shown in figure 1.

The runtime is influenced by the fact that some
startup time and font loading takes place. The more
pages your document has, the less the runtime is
influenced by this.

More demanding is the ‘mk’ document (figure 2).
Here we have many fonts, including some really huge
CJK and Arabic ones (and these are loaded at several
sizes and with different features). The reported font
load time is large but this is partly due to the fact
that on my machine for some reason passing the
tables to TEX involved a lot of pagefaults (we think
that the cpu cache is the culprit). Older versions of
LuaTEX didn’t have that performance penalty, so
probably half of the reported font loading time is
kind of wasted.

The hnode processing time refers mostly to
OpenType font processing and attribute processing
time has to do with backend issues (like injecting
color directives). The more features you enable, the
larger these numbers get. The MetaPost font loading
refers to the punk font instances.

LuaTEX and ConTEXt: Where we stand

188 TUGboat, Volume 30 (2009), No. 2

input load time - 0.109 seconds

stored bytecode data - 184 modules, 45 tables, 229 chunks

node list callback tasks - 4 unique tasks, 4 created, 20980 calls

cleaned up reserved nodes - 29 nodes, 10 lists of 1427

node memory usage - 19 glue_spec, 2 dir

h-node processing time - 0.312 seconds including kernel

attribute processing time - 1.154 seconds

used backend - pdf (backend for directly generating pdf output)

loaded patterns - en:us:pat:exc:2

jobdata time - 0.078 seconds saving, 0.047 seconds loading

callbacks - direct: 86692, indirect: 13364, total: 100056

interactive elements - 178 references, 356 destinations

v-node processing time - 0.062 seconds

loaded fonts - 43 files:

fonts load time - 1.030 seconds

metapost processing time - 0.281 seconds, loading: 0.016 seconds,

execution: 0.156 seconds, n: 161

result saved in file - luatexref-t.pdf

luatex banner - this is luatex, version beta-0.42.0

control sequences - 31880 of 147189

current memory usage - 106 MB (ctx: 108 MB)

runtime - 12.433 seconds, 164 processed pages,

164 shipped pages, 13.191 pages/second

Figure 1: Timing reports for the LuaTEX reference manual.

input load time - 0.125 seconds

stored bytecode data - 184 modules, 45 tables, 229 chunks

node list callback tasks - 4 unique tasks, 4 created, 24295 calls

cleaned up reserved nodes - 116 nodes, 29 lists of 1411

node memory usage - 21 attribute, 23 glue_spec, 7 attribute_list,

7 local_par, 2 dir

h-node processing time - 1.763 seconds including kernel

attribute processing time - 2.231 seconds

used backend - pdf (backend for directly generating pdf output)

loaded patterns - en:us:pat:exc:2 en-gb:gb:pat:exc:3 nl:nl:pat:exc:4

language load time - 0.094 seconds, n=4

jobdata time - 0.062 seconds saving, 0.031 seconds loading

callbacks - direct: 98199, indirect: 20257, total: 118456

xml load time - 0.000 seconds, lpath calls: 46, cached calls: 31

v-node processing time - 0.234 seconds

loaded fonts - 69 files:

fonts load time - 28.205 seconds

metapost processing time - 0.421 seconds, loading: 0.016 seconds,

execution: 0.203 seconds, n: 65

graphics processing time - 0.125 seconds including tex, n=7

result saved in file - mk.pdf

metapost font generation - 0 glyphs, 0.000 seconds runtime

metapost font loading - 0.187 seconds, 40 instances,

213.904 instances/second

luatex banner - this is luatex, version beta-0.42.0

control sequences - 34449 of 147189

current memory usage - 454 MB (ctx: 465 MB)

runtime - 50.326 seconds, 316 processed pages,

316 shipped pages, 6.279 pages/second

Figure 2: Timing reports for the ‘mk’ document.

Looking at the Metafun manual one might ex-
pect that one needs even more time per page but this
is not true. We use OpenType fonts in base mode
as we don’t use fancy font features (base mode uses
traditional TEX methods). Most interesting here is
the time involved in processing MetaPost graphics.

There are a lot of them (1772) and in addition we
have 7 calls to independent ConTEXt runs that take
one third of the total runtime. About half of the
runtime involves graphics. See figure 3.

By now it will be clear that processing a doc-
ument takes a bit of time. However, keep in mind

Hans Hagen

TUGboat, Volume 30 (2009), No. 2 189

input load time - 0.109 seconds

stored bytecode data - 184 modules, 45 tables, 229 chunks

node list callback tasks - 4 unique tasks, 4 created, 33510 calls

cleaned up reserved nodes - 39 nodes, 93 lists of 1432

node memory usage - 249 attribute, 19 glue_spec, 82 attribute_list,

85 local_par, 2 dir

h-node processing time - 0.562 seconds including kernel

attribute processing time - 2.512 seconds

used backend - pdf (backend for directly generating pdf output)

loaded patterns - en:us:pat:exc:2

jobdata time - 0.094 seconds saving, 0.031 seconds loading

callbacks - direct: 143950, indirect: 28492, total: 172442

interactive elements - 214 references, 371 destinations

v-node processing time - 0.250 seconds

loaded fonts - 45 files: l.....

fonts load time - 1.794 seconds

metapost processing time - 5.585 seconds, loading: 0.047 seconds,

execution: 2.371 seconds, n: 1772,

external: 15.475 seconds (7 calls)

mps conversion time - 0.000 seconds, 1 conversions

graphics processing time - 0.499 seconds including tex, n=74

result saved in file - metafun.pdf

luatex banner - this is luatex, version beta-0.42.0

control sequences - 32587 of 147189

current memory usage - 113 MB (ctx: 115 MB)

runtime - 43.368 seconds, 362 processed pages,

362 shipped pages, 8.347 pages/second

Figure 3: Timing reports for the Metafun manual.

that these documents are a bit atypical. Although . . .
the average ConTEXt document probably uses color
(including color spaces that involve resource manage-
ment), and has multiple layers, which involves some
testing of the about 30 areas that make up the page.
And there is the user interface that comes with a
price.

3 Fonts and performance

It might be good to say a bit more about fonts.
In ConTEXt we use symbolic names and often a
chain of them, so the abstract SerifBold resolves
to MyNiceFontSerif-Bold which in turn resolves to
mnfs-bold.otf. As X ETEX introduced lookup by
internal (or system) fontname instead of filename,
MkII also provides that method but MkIV adds some
heuristics to it. Users can specify font sizes in tradi-
tional TEX units but also relative to the body font.
All this involves a bit of expansion (resolving the
chain) and parsing (of the specification). At each of
the levels of name abstraction we can have associ-
ated parameters, like features, fallbacks and more.
Although these mechanisms are quite optimized this
still comes at a performance price.

Also, in the default MkIV font setup we use a
couple more font variants (as they are available in
Latin Modern). We’ve kept definitions sort of dy-
namic so you can change them and combine them in
many ways. Definitions are collected in typescripts
which are filtered. We support multiple mixed font

sets which takes a bit of time to define but switching
is generally fast. Compared to MkII the model lacks
the (font) encoding and case handling code (here we
gain speed) but it now offers fallback fonts (replaced
ranges within fonts) and dynamic OpenType font
feature switching. When used we might lose a bit
of processing speed although fewer definitions are
needed which gets us some back. The font subsystem
is anyway a factor in the performance, if only be-
cause more complex scripts or font features demand
extensive node list parsing.

Processing The TEXbook with LuaTEX on Taco’s
machine takes some 3.5 seconds in pdfTEX and 5.5
seconds in LuaTEX. This is because LuaTEX inter-
nally is Unicode and has a larger memory space. The
few seconds more runtime are consistent with this.
One of the reasons that The TEXbook processes fast
is that the font system is not that complex and has
hardly any overhead, and an efficient output routine
is used. The format file is small and the macro set
is optimal for the task. The coding is rather low
level so to say (no layers of interfacing). Anyway,
100 pages per second is not bad at all and we don’t
come close with ConTEXt and the kind of documents
that we produce there.

4 Engine performance comparisons

This made me curious as to how fast really dumb
documents could be processed. It does not make
sense to compare plain TEX and ConTEXt because

LuaTEX and ConTEXt: Where we stand

190 TUGboat, Volume 30 (2009), No. 2

they do different things. Instead I decided to look at
differences in engines and compare runs with different
numbers of pages. That way we get an idea of how
startup time influences overall performance. We
look at pdfTEX, which is basically an 8-bit system,
X ETEX, which uses external libraries and is Unicode,
and LuaTEX which is also Unicode, but stays closer
to traditional TEX but has to check for callbacks.

In our measurement we use a really simple test
document as we only want to see how the baseline
performs. As not much content is processed, we focus
on loading (startup), the output routine and page
building, and some basic PDF generation. After all,
it’s often a quick and dirty test that gives users their
first impression. When looking at the times you need
to keep in mind that X ETEX pipes to DVIPDFMx and
can benefit from multiple cpu cores. All systems have
different memory management and garbage collection
might influence performance (as demonstrated in an
earlier chapter of the ‘mk’ document we can trace in
detail how the runtime is distributed). As terminal
output is a significant slowdown for TEX we run in
batchmode. The test is as follows:

\starttext

\dorecurse{2000}{test\page}

\stoptext

On my laptop (Dell M90 with 2.3Ghz T76000
Core 2 and 4MB memory running Vista) I get the
following results. The test script ran each test set 5
times and we show the fastest run so we kind of avoid
interference with other processes that take time. In
practice runtime differs quite a bit for similar runs,
depending on the system load. The time is in seconds
and between parentheses the number of pages per
seconds is mentioned.

engine 30 300 2000 10000

xetex 1.81 (16) 2.45 (122) 6.97 (286) 29.20 (342)
pdftex 1.28 (23) 2.07 (144) 6.96 (287) 30.94 (323)
luatex 1.48 (20) 2.36 (127) 7.85 (254) 34.34 (291)

The next table shows the same test but this
time on a 2.5Ghz E5420 quad core server with 16GB

memory running Linux, but with 6 virtual machines
idling in the background. All binaries are 64 bit.

engine 30 300 2000 10000

xetex 0.92 (32) 1.89 (158) 8.74 (228) 42.19 (237)
pdftex 0.49 (61) 1.14 (262) 5.23 (382) 24.66 (405)
luatex 1.07 (27) 1.99 (150) 8.32 (240) 38.22 (261)

A test demonstrated that for LuaTEX the 30
and 300 page runs take 70% more runtime with
32 bit binaries (recent binaries for these engines are
available on the ConTEXt wiki contextgarden.net).

When you compare both tables it will be clear
that it is non-trivial to come to conclusions about

performances. But one thing is clear: LuaTEX with
ConTEXt MkIV is not performing that badly com-
pared to its cousins. The Unicode engines perform
about the same and pdfTEX beats them significantly.
Okay, I have to admit that in the meantime some
cleanup of code in MkIV has happened and the Lua-
TEX runs benefit from this, but on the other hand,
the other engines are not hindered by callbacks. As
I expect to use MkII less frequently optimizing the
older code makes no sense.

5 Futures

There is not much chance of LuaTEX itself becoming
faster, although a few days before writing this Taco
managed to speed up font inclusion in the backend
code significantly (we’re talking about half a second
to a second for the three documents used here). On
the contrary, when we open up more mechanisms
and have upgraded backend code it might actually
be a bit slower. On the other hand, I expect to
be able to clean up some more ConTEXt code, al-
though we already got rid of some subsystems (like
the rather flexible (mixed) font encoding, where each
language could have multiple hyphenation patters,
etc.). Also, although initial loading of math fonts
might take a bit more time (as long as we use vir-
tual Latin Modern math), font switching is more
efficient now due to fewer families. But speedups in
the ConTEXt code might be compensated for by more
advanced mechanisms that call out to Lua. You will
be surprised by how much speed can be improved
by proper document encoding and proper styles. I
can try to gain a couple more pages per second by
more efficient code, but a user’s style that does an
inefficient massive font switch for some 10 words per
page easily compensates for that.

When processing the present 10 page document
in an editor (Scite) it takes some 2.7 seconds between
hitting the processing key and the result showing up
in Acrobat. I can live with that, especially when I
keep in mind that my next computer will be faster.

This is where we stand now. The three reports
shown before give you an impression of the impact of
LuaTEX on ConTEXt. To what extent is this reflected
in the code base? Eventually most MkII files (with
the mkii suffix) and MkIV files (with suffix mkiv)
will differ and the number of files with the tex suffix
will be fewer. Because they are and will be mostly
downward compatible, styles and modules will be
shared as much as possible.

⋄ Hans Hagen
Pragma ADE
http://pragma-ade.com

Hans Hagen

TUGboat, Volume 30 (2009), No. 2 191

ProofCheck: Writing and checking complete
proofs in LATEX

Bob Neveln and Bob Alps

Abstract

ProofCheck is a system for writing and checking
mathematical proofs. Theorems and proofs are con-
tained in a plain TEX or LATEX document. Parsing
and proof checking are accomplished through Python
programs which read the source file. A general ex-
planation of the use and structure of the system and
programs is provided and a sample proof is shown
in detail. The work done by the authors has been
based on standard sentence logic, a non-standard
predicate logic and set theory with proper classes.
Theorems and proofs based on other foundations
may be checked if external data files are modified.
Four such data files and their possible modifications
are described. In addition, the extent to which the
formal language can be shaped to accommodate an
author’s preferences is discussed.

1 Introduction

The purpose of ProofCheck is to enable mathemati-
cians to write readable proofs that are computer
checkable. Such readable, computer-checkable proofs
could also be of value in the refereeing process. In a
previous article [4] the system now called ProofCheck
was described. Since then the system has been ex-
tended in several ways. The number of inference rules
and common notions has been increased. A web site
at www.proofcheck.org has been developed. Fur-
ther, the system now works with LATEX in addition
to plain TEX.

2 Other systems

Two well-known systems to which ProofCheck might
be compared are HOL [2] and Mizar [5].

HOL (Higher Order Logic) is a computer-assisted
theorem proving system operating within the OCAML

environment. OCAML (Objective CAML) is an object-
oriented programming language which can be run
interactively. Mathematical objects are treated as
OCAML objects and mathematical theorems are
stated in OCAML. Thus both ontology and syn-
tax are subsumed by OCAML type theory. Theorems
are proved by entering commands at the OCAML

prompt or by running a script. Thus a proof consists
of a record of OCAML commands.

Mizar is also a language for stating proofs in-
tended to be human-readable as well as computer-
checkable. Proofs are entered in ASCII text in the
Mizar language. The language is extensive and

based on a particular axiomatization of mathematics,
Tarski-Grothendieck set theory. The system can also
produce LATEX output.

These systems also tend to form closed math-
ematical systems. Proving a theorem using these
systems means showing that the given theorem is
provable within that system.

3 Features and goals

TEX and LATEX convert an author’s .tex source files
into DVI or PDF output. ProofCheck works with
these same .tex source files. When using ProofCheck
the work cycle is typically to run the parser and the
checker after a successful run of TEX or LATEX. Errors
encountered in each case throw the author back into
the text editor.

ProofCheck is intended to be open with respect
to mathematical foundations. When ProofCheck
checks the proof of a theorem it shows that the the-
orem follows from definitions and other theorems
which have been stated and parsed but not necessar-
ily checked. An author does not need to commit to
a particular axiom system.

In their own mathematical work the authors use
standard sentence logic, a non-standard predicate
logic, and a set theory which admits proper classes —
but none of these choices is required. Of course
checkable-proofs are easier to write when there is
an accumulated body of accepted propositions avail-
able for referral. This does constitute an implicit
pressure to use the specific development already on
the ProofCheck web-site. But nothing prevents an
author from creating another one. We will post any
such developments we receive.

4 Mathematical language

For almost a century there has been general agree-
ment that there is no obstacle in principle to writing
mathematics in a formal language and therefore to
checking proofs mechanically. One of the main obsta-
cles in practice to stating definitions and theorems
in a formal language is that the required sacrifice of
syntactical freedom may be more than a mathemati-
cal author is willing to tolerate. In devising a usable
proof-checking system therefore it is important to
maximize syntactic freedom.

ProofCheck is not built on any specific mathe-
matical language. Instead, a context-free grammar is
generated on the basis of whatever definitions have
been made. The rules of grammar are based on
syntactical ideas of A.P. Morse [3], and include a
variation on Morse’s handling of second-order vari-
ables. Definitions are presumed to take the form
(p ↔ q) for formulas and (x ≡ y) for terms. The set

ProofCheck: Writing and checking complete proofs in LATEX

192 TUGboat, Volume 30 (2009), No. 2

of definitions is taken to include a standard default
set of infix operators as well as quantifiers. The de-
fault symbols may be easily replaced and with a little
additional effort, default forms can be replaced. The
resulting language is unambiguous and possesses the
property that no term or formula can begin another.

ProofCheck minimizes the loss of syntactical
freedom by striving to keep the syntactical restric-
tions as close as possible to the absolute requirements
of logic and consistency.

5 Proof language

The following TEX macros suffice to mark up a proof
for checking. We are grateful to Karl Berry for his
help in streamlining the first two of these. The gen-
eral proof structure which these macros implement
is very similar to that defined in [1].

\prop Any proposition, whether a theorem, a defi-
nition or an axiom, must be introduced by this
macro. Its use requires ProofCheck to look for
a proof. Its syntax is \prop, followed by the
enumeration, followed by the proposition. For
example:

\prop 14.7 $(1 < 2)$

The \prop macro must be at the beginning
of a line. The enumeration is of the form n.m

where n and m are positive integers with n rep-
resenting the section or chapter number. The
proposition must be enclosed within TEX dollar
signs. References in a proof to other theorems
use the same n.m style and not LATEX labels.
When re-arrangement of theorems necessitates
renumbering, this is handled by a ProofCheck
program called renum. This program recognizes
LATEX section macros so that unless the sec-
tion counter is reset manually, consistency with
LATEX sectioning is maintained.

\note This macro is used to introduce an assertion
within the proof which can be referred to later
in the proof. The assertion may be the result of
telescoping multiple lines of proof, each having
an optional justification. The ProofCheck syn-
tax is \note, followed by the note enumeration,
followed by the (possibly multi-line) assertion.
Here the enumeration consists of a positive inte-
ger.

\By This macro is used at the end of a line to intro-
duce justification for the step. A note with a
single line of assertion may be justified by one
of the following:

\By G (Given) signals an assertion which is to
be accepted locally as a hypothesis. It

initiates a block of the proof within which
this hypothesis is in effect.

\By S (Set) indicates that the note is used to
locally define a variable for use in the proof.

\By .n H .m (Hence) where n is the number
of a note established using note m as a
Given, ends the block initiated by note
m. Such blocks are called Given-Hence
blocks. A Hence justification is typically
used to establish an assertion such as (p →
q) where p is note m and q is note n.

Notes with either a single line or more than
one line of assertion may be justified using other
notes and a .m enumeration or other proposi-
tions and n.m enumeration with punctuation as
shown in the sample proof. More discussion on
this syntax may be found in [4].

\Bye in addition to introducing a justification, sig-
nals the end of a proof and prints “Q.E.D.”.

\linea, \lineb, ... These begin a new line with
increasing degrees of indentation. They are not
proof macros per se but are used for any mathe-
matical expressions that need to go beyond one
line and need indentation. At present the parser
allows only these.

In section 7 the use of these macros in a sample
proof is shown.

6 Sample proof: Reader view

The simple proof in figure 1 is taken from a devel-
opment of the von Neumann model of the natural
numbers, ω, in which each natural number is the
set of the preceding natural numbers. The theorem
asserts that if y is an element of a natural number x

then y is a subset of x.
The first line of the proof defines a set A. This

note should be easy to read except for possibly the
quantifier notation and the classifier notation. No-
tational changes are discussed in section 9. The
second note translates the definition in note 1 into
a bi-conditional which is much more useful deduc-
tively. We often refer to steps that turn a definition
into one or more implications as “unwrapping” steps.
Explicit inclusion of such unwrapping steps is often
key in getting a proof to check. The stage is set for
an induction proof.

The theorem 4.7 referred to is just the standard
induction theorem:

(∅ ∈ A ∧
∧

x ∈ A(x ∈ A → scsrx ∈ A) → ω ⊂ A)

where “scsr x” denotes the successor of x. Its two
hypotheses are the base case which in this proof is
established in note 3 and the universalization of the

Bob Neveln and Bob Alps

TUGboat, Volume 30 (2009), No. 2 193

Theorem
4.8 (y ∈ x ∈ ω→ y ⊂ x)

Proof: To prove this by induction we begin
by letting A be the set of all x such that each element
y of x is a subset of x. We set
.1 (A ≡ ❊x

∧

y ∈ x(y ⊂ x)) ‡S

It will follow from 4.7 that ω is a subset of A.
First we unwrap .1.
.2 (x ∈ A ↔

∧

y ∈ x(y ⊂ x) ❫ x ∈ U) ‡08.3;.1

Base Case (∅ ∈ A) .
.3 (∅ ∈ A) ‡.2;09.19,09.12

Induction Step (x ∈ A→ scsrx ∈ A) .

Given
.4 (x ∈ A) ‡G

We note first that
.5 (x ∈ U) ‡09.20;.4
.6

∧

y ∈ x(y ⊂ x) ‡.2;.4

Then we have
.7 (y ∈ scsrx→ y ∈ x ❴ y = x ‡3.7

→ y ⊂ x ❴ y = x ‡.6

→ y ⊂ x ‡011.14

→ y ⊂ scsrx) ‡011.10;(
3.5;(09.20;.4))

So we can conclude that
.8 (scsrx ∈ A) ‡.2;(3.3;.5),(.7 U)

Hence
.9 (x ∈ A→ scsrx ∈ A) ‡.8 H .4

This completes the proof that
.10 (ω ⊂ A) ‡4.7;.3,(.9 U)

The conclusion now follows quickly.
.11 (y ∈ x ❫ x ∈ ω→ y ∈ x ❫ x ∈ A ‡011.7;.10

→ y ∈ x ❫
∧

y ∈ x(y ⊂ x) ‡.2

→ y ⊂ x)

Q.E.D. .11

Figure 1: Sample proof: DVI output

induction step established in note 9. This theorem is
invoked in the justification of note 10. In the proof of
the induction step, note 7 shows that any member y

of scsr x is a subset of scsr x. In note 8, we conclude
that scsr x is in A. In note 9 we join the hypothesis
from note 4 to the conclusion obtained in note 8.

Note 11 details the step from note 10 to the
theorem which is short but cannot be skipped. The
“Q.E.D. .11” at the end asserts that the theorem itself
follows from note 11.

7 Sample proof: Author view

In Figure 2 we have the LATEX source code for the
sample proof.

The first couple of lines of the sample proof
begin explaining the proof. Since they are not noted

they do not contribute to the check. But neither
do they get in the way of the check. Unchecked
text of any sort is admissible so long as it does not
interrupt mathematical expressions or interfere with
proof specification.

The reader will note that all the macros and
note justifications described in section 5 are used in
this sample proof. There is a Set statement in note 1,
a Given-Hence block in notes 4 through 9, and the
proof terminates with a \Bye macro.

Note 4 opens a Given-Hence block and estab-
lishes (x ∈ A) as a working hypothesis. Note 4 may
be referred to only within this Given-Hence block. A
Hence justification may close more than one Given
note, but each Given note must be explicitly closed
by a Hence justification. This Given-Hence block is
closed by note 9.

Note 7 is a multi-line note each line of which
has a justification. A reference to note 7 accesses the
telescoped result of the note which is

(y ∈ scsrx → y ⊂ scsrx)

The \Bye line is justified by note 11. The tele-
scoped note 11 and the statement of the theorem
differ only notationally on the left side of the impli-
cation. A supplemental parser produces a canonical
version of each of the two left sides. These two ver-
sions turn out to be identical. Consequently the rule
of inference used here merely allows one to infer p

from p.

8 Proof checking

Each assertion within a note is checked individually
using end-of-line references to theorems and/or notes.
Each of these checks is done by submitting a formula
and the formulas referred to in its justification to a
rule matcher which conducts a simple linear search
of the list of inference rules. The search must find
a rule which unifies with the submitted formulas in
order for the check of the assertion to succeed.

In Figure 3 the rectangular boxes represent TEX
files whereas the unifier and the rule matcher are
Python scripts.

9 Working with ProofCheck files

The files rules.tex and common.tex contain the
rules of inference and common notions used as the
defaults for optional command line parameters of
the checking script. In adapting the common notions
to suit a particular mathematical interest, the file
common.tex may be modified or another file alto-
gether may be written. The same applies to the
file rules.tex should the use of another logic be
required. Both of these files require the inclusion
of many redundant forms of whatever principles are

ProofCheck: Writing and checking complete proofs in LATEX

194 TUGboat, Volume 30 (2009), No. 2

\noindent{}Theorem

\prop 4.8 $(y \in x \in \omega \c y \subset x)$

\lineb Proof: To prove this by induction we begin by

letting A be the set of all x such that each element y of x

is a subset of x. We set

\note 1 $(A \ident \setof x \Each y\in x(y\subset x))$ \By S

\linea It will follow from 4.7 that ω is a subset of A. First we unwrap .1.

\note 2 $(x \in A \Iff \Each y \in x (y \subset x) \And x \in \U)$ \By 08.3;.1

\lineb Base Case $(\e \in A)$~.

\note 3 $(\e \in A)$ \By .2;09.19,09.12

\lineb Induction Step $(x \in A \c \scsr x \in A)$~.

\linea Given

\note 4 $(x \in A)$ \By G

\linea We note first that

\note 5 $(x \in \U)$ \By 09.20;.4

\note 6 $\Each y \in x(y \subset x)$\By .2;.4

\linea Then we have

\note 7 $(y \in \scsr x \c y \in x \Or y = x$ \By 3.7

\lined $\c y \subset x \Or y = x$ \By .6

\lined $\c y \subset x $ \By 011.14

\lined $\c y \subset \scsr x)$ \By 011.10;(3.5;(09.20;.4))

\linea So we can conclude that

\note 8 $(\scsr x \in A)$ \By .2;(3.3;.5),(.7 U)

\linea Hence

\note 9 $(x \in A \c \scsr x \in A)$ \By .8 H .4

\linea This completes the proof that

\Note 10 $(\omega \subset A)$ \By 4.7;.3,(.9 U)

\linea The conclusion now follows quickly.

\Note 11 $(y \in x \And x \in \omega\c y \in x \And x \in A$ \By 011.7;.10

\lined $\c y \in x \And \Each y \in x(y \subset x)$ \By .2

\lined $\c y \subset x)$

\lineb \Bye .11

Figure 2: Sample proof: LATEX input

Inference
Rules

Common
Notions

Operator
Properties

TEX or LATEX
document

Unifier✧✦
★✥✎✍ ☞✌Rule Matcher

Figure 3: Main proof checking files

included, because in application many difference vari-
ations present themselves for unification. Additions
contrived with a single application in mind should
of course be avoided — making this distinction some-

times requires a non-trivial judgment. Building up
these files is time consuming.

On the other hand, changes consisting simply
of substituting one symbol for another are easily
accommodated.

Common notions Common notions comprise all
the definitions and theorems outside of the cur-
rent working document that are needed to prove
the theorems in the document. Two files common.
tex and common.ldf are used to store informa-
tion about common notions. The file common.

ldf stores TEX macros to represent various con-
stant symbols used to state the common notions,
whereas common.tex stores the definitions and
theorems themselves. If for example an author
wished to use the quantifier ‘∀’ instead of ‘

∧

’ the
definition of \Each in this file could be changed

Bob Neveln and Bob Alps

TUGboat, Volume 30 (2009), No. 2 195

as follows:

\def\Each{\mathop{\forall}}

This would change the output but still require
the use of the \Each macro in the source file.

Rules of inference Rules of inference include ba-
sic rules such as modus ponens and universal-
ization. The role played by rules of substitution
is subsumed by the unifier. The present au-
thors have supplemented the basic rules with
over 1000 additional rules. All the additional
rules are consequences of the logic we use. In
all but the most elementary settings, such an
expansion of the rule set is essential to keeping
proofs under a reasonable length. This file may
be populated according to the author’s accepted
logic. Each entry of the rules of inference file be-
gins with the formula to be proved, followed by
<=, followed by the formulas needed to prove it.
The entry for modus ponens has the following
form:

q <= (p → q) ; p

Math and Logic Symbols The file equivmacros.
trf consists of a list of macro replacements made
prior to sending a term or formula from the au-
thor’s document to the parser. For example an
author who wanted to use \forall as the uni-
versal quantifier in the source file could include
a line in equivmacros.trf such as

forall Each

We will be happy to post any modifications of
files as described above on the ProofCheck website.

10 Conclusion

ProofCheck is a very simple system. As shown in
figure 3 it consists mainly of rules of inference, a

store of assumed elementary propositions, a slightly
enhanced unifier and a rule matching script. The
size of a download of the complete system from www.

proofcheck.org is less than one megabyte. The dis-
cussion of the proof language in section 5 approaches
a complete tutorial. We believe that the fact that
proofs can be checked with such a simple system
confirms the basic ideas on which it is based.

At the conclusion of [4] we asserted that com-
plete proofs done using ProofCheck required approx-
imately one order of magnitude more time to write
than a conventional proof, and about two or three
times as much space. Experience since then does
not lead us to revise these estimates significantly,
although the length of proofs has diminished slightly
due to the growth in the number of rules of inference.
We anticipate further progress.

References

[1] W. W. Bledsoe and E.J. Gilbert. Automatic
theorem proof-checking in set theory. Technical
Report SC-RR-67-525, Sandia Laboratories, July
1967.

[2] M. J. C. Gordon and T. F. Melham. Introduction
to HOL: A Theorem Proving Environment for
Higher Order Logic. Cambridge University Press,
Cambridge, 1993.

[3] A. P. Morse. A Theory of Sets. Academic Press,
second edition, 1986.

[4] Bob Neveln and Bob Alps. Writing and checking
complete proofs in TEX. TUGboat 28(1), 80–83,
2007.

[5] Piotr Rudnicki and Andrzej Trybulec. A collec-
tion of TEXed mizar abstracts. Technical Re-
port TR 89-18, University of Alberta, June 1989.
www.mizar.org/project/bibliography.html.

ProofCheck: Writing and checking complete proofs in LATEX

196 TUGboat, Volume 30 (2009), No. 2

TEX People: The TUG interviews project
and book

Karl Berry and David Walden

Abstract

We present the history and evolution of the TUG

interviews project. We discuss the interviewing pro-
cess as well as our methods for creating web pages
and a printed book from the interviews, using m4 as
a preprocessor targeting either HTML or LATEX. We
also describe some business decisions relating to the
book. We don’t claim great generality for what we
have done, but we hope some of our experience will
be educational.

1 Introduction

Dave had two ideas in mind when he suggested (orig-
inally to Karl) this interview series in 2004: (a) tech-
nology is created by and evolves with use by people,
and the points of view and backgrounds of the people
influence the technology; (b) there are lots of people
(such as himself) who are relatively new to the TEX
community, who therefore do not know much about
the people who are already significant contributors
to the community, and who may be curious to know
more about past and current contributors to the TEX
community. We also hoped that even long-time mem-
bers of the TEX community would enjoy reading the
interviews and learn things they did not previously
know about their fellow TEX people.

Dave got the idea for an interview series from
reading the books Mathematical People (edited by
Donald J. Albers and Gerald L. Alexanderson, Birk-
häuser, 1985) and More Mathematical People (edited
by Albers, Alexanderson, and Constance Reid, Har-
court, Brace, Jovanovich, 1990). The first of these
collections of interviews of mathematicians includes
a wonderful interview of TEX creator Donald Knuth
(posted at tug.org/interviews/interview-files/
birkhauser-knuth, by permission from Birkhäuser).

Dave’s first concern was whether anyone would
want to do an interview with him, an unknown in the
TEX community. He was gratified that Dan Luecking
(whose answers on comp.text.tex he admired) and
Lance Carnes (with whom he was working on The
PracTEX Journal, published at tug.org/pracjourn)
agreed to be the first interview subjects. These
interviews provided a model to which he could point
the next people he asked to do interviews, while
also liberally dropping Karl’s name. In time, the
interview series seemed to gain advance acceptance
with potential interview subjects.

2 The interview method

Interview subjects are1 chosen based on (a) seeking
diversity in many dimensions, (b) recommendations
from people about who should be interviewed, and
(c) potential interview subjects being willing to be
interviewed.

The interviews have almost all been done via
exchange of email using plain text; a couple of ex-
ceptions were done in LATEX.

For the first several interviews, Dave sent a
more or less complete list of questions (once the
interviewee agreed to participate), on the theory that
this would minimize the burden on the interviewee.
However, having a dozen questions to answer at one
time proved to be daunting to interviewees. Thus,
Dave switched to a process wherein he sent a couple
of standard initial questions (namely, “Tell me a
bit about yourself and your history outside of TEX,”
and “How and when did you first get involved with
TEX?”). The answers to early questions then guide
a couple of follow-on groups of questions.

The interviewees are encouraged to answer spon-
taneously and at any length they desire, both to ease
the burden of answering the questions and to spur
spontaneity. Once enough questions have been asked
and answered, Dave converts the plain text into
HTML, possibly reordering some of the questions
and answers to improve the flow, does other little
bits of necessary editing (all the while trying to main-
tain the voice of the interviewee), and submits the
near final draft to the interviewee for review and any
desired changes.

Karl proofreads every interview before posting.
He also frequently suggests additional questions, pro-
vides contact information, and generally encourages
and supports Dave in his interview efforts. The
interviews are then posted on the TUG web site:
tug.org/interviews.

The average interview takes a few weeks of
elapsed time. The shortest interview took only a
few days. The longest interview took over a year.
In a few cases, Dave has interviewed two people at
one time — people who were well known for working
closely together. In one case, Dave shared the inter-
viewing duties with another person (the interview
of Frank Mittelbach, which was also published in
the Free Software Magazine). In another case (the
interview of Raph Levien) Karl shared interviewing
duties with another person. All the rest have been
one-on-one interviews.

For quite a while Dave manually reformatted

1 The interview series remains an ongoing process, so we
describe it here in the present tense.

Karl Berry and David Walden

TUGboat, Volume 30 (2009), No. 2 197

the interviews in HTML from the original plain text
questions and answers as part of his editing pass. He
is biased toward basic tools (WinEdt, Emacs, FTP,
etc.) and does not use a “web publishing system”.

For the first interviews, we did not think about
photos. Then we decided to include photos, began
asking for them from current interviewees and also
asked the early interviewees for photos. We slipped
up here, in light of our later decision to create a book
version of the interviews: we asked for photographs
with only enough resolution for web display and not
enough for printing in a book. So we later had to go
back to most interviewees again for higher-resolution
images.

3 The idea for the book

After a while, we began to discuss the possibility
of eventually producing a book collecting the inter-
views, after we had about three years’ worth, with
a dozen or so interviews done a year. Consequently,
in our interview requests, we also started asking the
interviewee to agree for his or her interview to be
transcribed from HTML to LATEX and be included in
the book. We also confirmed that this was acceptable
to earlier interviewees.

A little while later, Dave decided to create a
small set of m4 macros (gnu.org/software/m4) in
terms of which he would transcribe the plain text
interviews, and the file with the m4 macros would be
compiled into HTML for the interviews. His idea was
that later another set of m4 macros could convert
the same m4 file to LATEX for the book. All these
definitions were in a file called htmldefs.m4, and
an interview was compiled from its m4 file with a
command such as

m4 htmldefs.m4 SomeInterviewee.m4 \

> SomeInterviewee.html

An abridged set of the initial m4-to-HTML def-
initions is listed in Table 1. Here are a couple of
specific examples:2

define([[_par]],[[<p>]]) (paragraph)
define([[_it]],[[<i>$1</i>]]) (italics)

To generate LATEX instead of HTML, alternate m4
definitions output \par and \textit{$1}.

The individual HTML interviews, both before
and after using m4 as a stepping stone to HTML, had
links in alphabetical order from the interviews home
page which Dave created manually on the TUG server
with Emacs. He also manually created the HTML

2 Readers can mentally skip over the [[and]] constructs,
which we use as the m4 “quoting” characters, allowing argu-
ments to contain characters special to m4 such as commas
and parentheses. More about this later.

Table 1: Some definitions and their purposes from an
early version of our htmldefs.m4 file.

intervieweename used in header and first question
intervieweeinitials used in following questions
interviewername used in first question
interviewerinitials used in following questions
par start paragraph
header takes photo file and blurb as

parameters
question1 formatting of first question
answer1 formatting of first answer
question formatting of following questions
answer formatting of following answers
footer date, etc., at end of interviews
link link given text to a URL

url print and link given URL

it italics
emph also italics
ti italics within italics
tt typewriter
anglebrackets print argument between 〈 and 〉
Dash em-dash
dash en-dash
amp ampersand
quote double-quote argument
verbatimstart start verbatim block
verbatimstop end verbatim block
verb inline verbatim
orderedliststart start ordered list
orderedliststop end ordered list
unorderedliststart start unordered list
unorderedliststop end unordered list
item begin an item in any list
TeX, ... lots of logos which are mostly

plain text in HTML, but
something fancier in TEX

Schopf, ... people’s names with diacritics
Ecole, ... other words with diacritics

file listing the interviews in chronological order. The
result of all was posted at tug.org/interviews.

Some readers may wonder why we didn’t use a
more au courant solution, such as creating the in-
terviews in XML and arranging for that to generate
HTML initially and LATEX later, or doing the inter-
views in LATEX (which could be used for the book)
and using one of the LATEX-to-HTML converters for
the web site. The answer is simple: Dave and Karl
already knew something about m4 and saw nothing
to be gained by struggling with anything new (and
arguably more complex).

4 Going ahead with the book

In late 2008 we made the decision to develop the
book. We anticipated self-publishing it using print-
on-demand from a company like Lightning Source

TEX People: The TUG interviews project and book

198 TUGboat, Volume 30 (2009), No. 2

(LSI, lightningsource.com). Karl chose 7 × 10
inches as the page size from the sizes supported
by LSI, because it was not so big that it would re-
quire a two-column format, but otherwise the biggest
available, so minimizing the number of pages and
print cost.

Karl developed the m4-to-LATEX definition file
(tug.org/interviews/book/texdefs.m4) for con-
verting the m4 files for each interview into LATEX files
for each interview. Naturally, this evolved as new
issues were discovered as the conversion into LATEX
proceeded. As an example, one of the shorter m4
interview files is available at tug.org/interviews/
book/gordon.m4 (Peter Gordon’s interview) and the
resulting LATEX file at tug.org/interviews/book/

gordon.inc.
Some of the interviews had never been in the

m4 format, and Karl converted the HTML for these
earlier interviews into the m4 format using Emacs,
Perl, and other Unix tools. This enabled all the
interviews to be handled uniformly for the book
and provided the option of later converting all the
interviews, as cleaned up for the book, back to HTML

to improve the interviews web site. Karl then edited
all of these m4 files further to eliminate typos, other
broken or awkward text, and generate well-typeset
LATEX, following the same general conventions long-
established for TUGboat.

In addition to Karl, Barbara Beeton (whose rep-
utation for editing prowess is well known in the TEX
community) also edited each interview, reviewed the
formatting, and so on. As with TUGboat, Barbara
and Karl strived to achieve appropriate English for
each interview while maintaining as much as possible
the interviewee’s voice.

Next, Dave circulated the edited and typeset
interviews back to the interviewees for approval and
possibly for an additional update, usually written as
an endnote; most interviewees chose to leave their
interview current as of the original interview end date.
Dave also began to solicit higher resolution photos as
part of these exchanges with the interviewees (since
we desired the photos to be about 2 inches wide, we
asked for photos that were at least 600 pixels wide);
Dave also used Photoshop to convert many of the
color photos to grayscale and to adjust the contrast,
etc., of all photos to improve how well they printed
in a black and white book.

Finally, Dave and Karl drafted the preface, title
pages, and other front matter, and integrated them
into the Makefile which built the entire book.

5 Technical LATEX details

In addition to the texdefs.m4 file mentioned above,

Karl developed a Makefile (tug.org/interviews/
book/GNUmakefile) to automatically convert all of
the m4 files into LATEX files, and then compile the
LATEX files for the interviews and the frontmatter
files into one complete PDF. The master LATEX file
which the Makefile calls to compile the book is at
tug.org/interviews/book/ivbook.tex.

5.1 Table of contents

We considered several orderings for the interviews:
alphabetical was an obvious possibility, but added
nothing over a simple list of names; another was
grouping by category, such as putting related de-
velopers together, but this proved too vague to be
meaningful. Finally we settled on chronological or-
der.

We decided to have two tables of contents, one
chronological (the normal page number order, in this
scheme, written by LATEX), and one alphabetical.
Karl wrote a script to sort the names and generate
the alphabetical contents from the chronological one
(tug.org/interviews/book/a-lphabetize).

5.2 The book style file

The master file, ivbook.tex, is mostly just a list of
the frontmatter and interview files in the order we
wanted to print them; the only notable thing is the
initial setup:

\documentclass{book}

\usepackage{ivbook}

That is, we use the basic LATEX book style, aug-
mented with a style file. We have found that collect-
ing all customizations and settings in such a central
style file is a good idea for any significant project.

Here are the main things which our book style
file does (tug.org/interviews/book/ivbook.sty):

• It loads some standard packages: geometry to
specify the page layout, graphicx for handling
the photos, microtype to help with line break-
ing, url for line breaking on urls, and fancyhdr

to specify our desired running header (and an
empty running footer).

• It loads babel with support for Vietnamese, for
the sake of two so-called “horned” letters in the
interview with Philip Taylor. We were grateful
that Hàn Thé̂ Thành had created Vietnamese
glyphs for our font (among many others) as part
of the VnTEX project (vntex.sf.net).

• It specifies the fonts used. Karl wanted to use a
freely available font that was included in TEX
Live, and looked through the online LATEX Font
Catalogue (tug.dk/FontCatalogue). He then
experimented with different choices — the Font

Karl Berry and David Walden

TUGboat, Volume 30 (2009), No. 2 199

Catalogue helpfully lists the LATEX commands
to use, making such experimentation easy — and
settled on Charter, as extended by the Math
Design Project:

\usepackage[bitstream-charter]{mathdesign}

Unfortunately, the last release of the free
Charter from Bitstream (used by Math Design)
includes a number of unfortunate kerning pairs,
especially with punctuation, such as ‘P.’. Karl
ended up remaking the TFM for the main text
font with the kerning from an older release (the
bchr8t.tfm file which is in TEX Live). He wrote
an ugly script to get this job done (tug.org/
interviews/book/kernfix).

For the typewriter material, we used the In-
consolata font by Raph Levien, one of the inter-
viewees. Karl wrote the LATEX support macros,
and later released them to CTAN (mirror.ctan.
org/fonts/inconsolata) and TEX Live.

• Because the interviews are each only a few pages
long, the style file eliminates blank verso pages
by redefining \cleardoublepage, as suggested
in the TEX FAQ (www.tex.ac.uk/faq).

• It defines a macro \ivchapter to make each
interview into a separate (unnumbered) chapter,
and add the name to the table of contents.

• Speaking of the tables of contents, it also makes
various (re)definitions for formatting those; one
that may be of interest is setting \@pnumwidth,
the page number width, to 2.5em; the default of
1.55em is not enough for three digits in Charter,
unlike Computer Modern.

• It defines a macro \ivblurb to format the be-
ginning of each interview, including the brief
description and photograph. Some of this is
pretty intricate; the interested reader may like
to study the code (due to Donald Knuth) which
makes the “[Interview completed . . .]” text be
typeset flush right on the last line if it fits, or
on its own line if not.

• It defines macros with which to format the ques-
tions and answers.

• It defines common macros \Dash for formatting
dashes (we like thinspaces around them), \acro
for acronyms (we like to set “words” in all caps
one point size smaller than the main text), etc.
We adopted these and many other conventions
from TUGboat.

• It defines a lot of logos, both simple and complex.
Because we’re not using the Computer Modern
fonts, we used the alternative logo definitions
for LATEX and the like developed by Grzegorz

Murzynowski, as written up in TUGboat 29:1
(EuroTEX 2007 proceedings).

• It changes the percent sign and dollar sign into
normal characters (\catcode 12), since they
come up from time to time in the interviews, and
enables DEL (aka ^^?) as a comment character.

• It handles indenting of verbatim blocks. Karl
was surprised to learn that verbatim mode op-
erates by typesetting a one-item list without
any list marker. This meant the usual mecha-
nisms for indentation, such as \leftskip, were
rendered ineffective. We ultimately resorted to
loading fancyvrb and using its xleftmargin

setting.

• Finally, we wanted to specify the vertical space
above lists. This turned out to be surprisingly
difficult. The LATEX parameter documented to
control this is \topsep. However, LATEX saves a
copy of the original list parameters in the macro
\@listI (source file classes.dtx), which is in-
voked after every font size change. Our docu-
ment, like most documents, changes font size
from time to time (for the heading beginning
each interview, etc.). Thus, to affect the spac-
ing above lists once and for all, it is necessary
to manually redefine \@listI, and not just set
\topsep. The FAQ entry at http://www.tex.

ac.uk/cgi-bin/texfaq2html?label=complist

discusses this, and gives some alternative pack-
ages to use.

6 Technical m4 details

We ended up being reasonably happy with our choice
of m4 as the “high-level” language in which to write
the interviews. Almost all our definitions are trivial
text expansions that took no time to write and served
the purpose of making it possible to generate either
HTML or LATEX without much trouble. Below we
discuss two of the nontrivial definitions. (Incidentally,
although all our m4 commands start with _, this is
not a requirement of the language.)

6.1 Converting date formats

One nontrivial definition related to handling the
interview dates. In the interview sources, we specify
the dates like this, for an interview completed on
June 25, 2005:

define([[_date]],[[2007-06-25]])

(As mentioned in a previous footnote, the [[...]]

construct is our way of quoting, stopping m4 from
expanding the quoted text further.) In the printed
book, though, we wanted to show the date like this:

Interview completed 25 June 2005.

TEX People: The TUG interviews project and book

200 TUGboat, Volume 30 (2009), No. 2

How to convert from one date format to the
other? We didn’t want to just change the source
since the numeric format is used online, and besides,
that would have been extra work. We ended up with
these m4 definitions to do the job:

define([[_header]],dnl

[[... completed _ivdate(_date))]])dnl

define([[_ivdate]],dnl

[[esyscmd(date +’%e %B %Y’ -d ’$1’)]])dnl

Explanation:

• dnl stands for “discard-to-newline”, i.e., starts
a comment. We use it here because there’s no
point in passing the newlines after each defini-
tion to the LATEX output file.

• We use a helper macro _ivdate to do the trans-
formation, and pass it the original (numeric)
date from the source file.

• _ivdate uses the m4 builtin function esyscmd

(“execute system command”) to call the GNU

date utility, which recognizes the numeric source
date and reformats it in the way we want. The
result is inserted in the normal output text;
esyscmd, and therefore _ivdate, expands to
the result of running the command, like ‘...‘

in many Unix shells.

Discovering the existence of esyscmd was the most
time-consuming part of handling this.

6.2 When a comma is not a comma

Our most significant complication related to m4 was
handling commas in arguments to macros. For ex-
ample, we defined a command _title to typeset
its argument as a title: it produces \textsl{...}

for TEX, and <i>...<i> for HTML. The complica-
tion is when the argument contains a comma, as in
_title(The _LaTeX Companion, Second Edition).

m4 uses the comma to separate arguments; thus,
the input _title(A, B) passes two arguments, ‘A’
and ‘B’ to _title. We don’t want that. We want to
pass one argument: ‘A, B’. The way this is done in
m4 is to use quoting to make the argument into one
string: _title([[A, B]]).

So, we added the [[...]] sequence where it was
needed, and blithely continued on. Then one day
we happened to notice that the ‘, Second Edition’
in the above title had disappeared from the output
we were proofreading, and turned out to be missing
in the generated TEX file. Being human, we had
failed to add the m4 quoting and had instead written
exactly the example above; m4 happily discarded the
unused second argument that it saw.

Clearly we had to do an automated check. Be-
sides titles, we had similar m4 commands to do

TEX People

Interviews from the world of TEX

Karl Berry and David Walden, Editors

tug.org

TE
X

P
e
o
p
le

—
In

te
rv

ie
w

s
fro

m
th

e
w

o
rld

o
f

TE
X

B
e
rry

a
n

d
W

a
ld

e
n

,
E

d
ito

rs

The TEX People in this book

Kaveh Bazargan ≈ Barbara Beeton ≈ Karl Berry

Duane Bibby ≈ Jon Breitenbucher

Mimi Burbank ≈ David Carlisle ≈ Lance Carnes

Chandroth V Radhakrishnan ≈ Jin-Hwan Cho

John Culleton ≈ Susan DeMeritt

Victor Eijkhout ≈ Thomas Esser

Robin Fairbairns ≈ Jonathan Fine ≈ Peter Flynn

David Fuchs ≈ Peter Gordon ≈ George Grätzer

Hans Hagen ≈ Hàn Thế Thành

Yannis Haralambous ≈ Jim Hefferon

Amy Hendrickson ≈ Taco Hoekwater

Klaus Höppner ≈ Bogusław Jackowski

David Kastrup ≈ Oleg Katsitadze ≈ Jonathan Kew

Dick Koch ≈ Werner Lemberg ≈ Raph Levien

Dan Luecking ≈ David MacKay ≈ Pierre MacKay

Adriana McCrea ≈ Frank Mittelbach ≈ Ross Moore

Janusz Marian Nowacki ≈ Arthur Ogawa

Haruhiko Okumura ≈ Steve Peter ≈ Cheryl Ponchin

Sebastian Rahtz ≈ Arthur Reutenauer

Yuri Robbers ≈ Will Robertson ≈ Tomas Rokicki

Christian Schenk ≈ Rainer Schöpf

Aleksander Simonic ≈ Nicola Talbot

Philip Taylor ≈ Christina Thiele

Dave Walden ≈ Gerben Wierda ≈ Peter Wilson

http://tug.org/interviews

9 780982 462607

ISBN 978-0-9824626-0-7

Figure 1: Our cover design.

footnotes, quotations, et al., which took lengthy
arguments often containing commas. Since these
commands could easily be split over input lines, we
couldn’t use grep or another line-oriented utility.

We implemented the check with the following
code in m4 (and found a dozen or so places where
arguments containing commas had not been quoted,
so it was well worth it):

define([[_title]],[[dnl

\ivtitle{$1}_iv_check_empty([[$2]])]])dnl

...

define([[_iv_check_empty]],[[dnl

ifelse($1,,,[[dnl no-op if arg is empty, else:

\misquote

errprint(__file__:__line__: misquoted $1.

)]])dnl end of ifelse

]])dnl end of _iv_check_empty

Explanation: each command such as _title passes
its second argument to the helper _iv_check_empty,
which then checks if its argument is empty and com-
plains if not, using the GNU m4 errprint builtin
command. (It took some time to get the m4 quoting
right in the definition.) The \misquote command
in the body is not defined in TEX, and is there just
to make sure we can’t run the book without fixing
these problems.

All in all, m4 proved sufficiently flexible that we
were glad to have chosen it.

7 Our cover

Our cover design (Figure 1) was inspired by the
dust cover of the Mathematical People mentioned
in section 1. That dust cover also included several
photographs of interviewees, and the names of the
interviewees were subtly listed on the cover. We did
not match the subtlety, opting for a simple list on
the back cover. We also mimicked that book’s title.

The figure here is printed in black and white for
TUGboat; for the color version that the book was

Karl Berry and David Walden

TUGboat, Volume 30 (2009), No. 2 201

actually published with, see tug.org/interviews/

book/cover.pdf.
Dave did an early mockup of our cover using

Illustrator, which he has used to create previous
book covers. However, given the simplicity of our
cover, we quickly decided to do the final version in
TEX, and we copied the process of Yuri Robbers and
Annemarie Skjold from issue 2007-1 of The PracTEX
Journal for creating a cover using PSTricks (tug.
org/pracjourn/2007-1/robbers).

Dave didn’t want to take the time to figure out
how to make the PSTricks gradient capability not
crash on the computer he was using, so he still used
Illustrator to create our cover’s background gradient.
He also used Illustrator to place a transparent version
of the TUG logo for the front cover and spine on the
background gradient rather than trying to figure out
how to do transparency with PSTricks. He used
Photoshop for various manipulations of the cover
photos.

Our PSTricks file for the cover is at tug.org/

interviews/book/cover.tex. If you compare it
with the PSTricks code in the Robbers-Skjold paper,
you will see how closely we followed their template.
The only addition we made was for our box of inter-
viewee names on the back cover.

8 Development environment

We did much of the coordination of use of files in this
project using Subversion. Although initially not sure
that we needed a version control system, we were
ultimately glad to have the notion of one “reference”
master which we could both synchronize to and be
sure we were working from the same point.

Dave works on Windows, and accessed the TUG

server using programs Putty (http://www.chiark.
greenend.org.uk/~sgtatham/putty) for basic com-
mand line work and WinSCP (winscp.net) for GUI

work, among others. Karl works on GNU/Linux, and
used the ubiquitious ssh and scp from OpenSSH
(openssh.org) for server access.

9 Self-publishing

Self-publishing is becoming more widespread (www.
walden-family.com/self-publishing/). Desktop
publishing technology and Internet sales technology
allows anyone who wants to make the effort to be
his own publisher. There are two primary advan-
tages: (1) the authors control the rights to the book
and all decisions about how the book is published
and distributed; (2) the authors don’t have to find a
“real” publisher and deal with publisher requirements
about the design and content of the book. The in-
dividual or company which acquires and owns the

ISBN (International Standard Book Number) for a
book is the publisher of record for the book. The dis-
advantages of self-publishing are obvious: you don’t
have any of the guidance and services a publisher
can provide and have to do everything yourself (or
pay to have it done). We decided to self-publish.

Of the services usually provided by a publisher,
we acquired the ISBN (in TUG’s name) and we felt
confident about doing our own book design, type-
setting and photo adjustments, and Barbara Beeton
helped with editing. Between us we also had con-
siderable experience producing, self-publishing, and
distributing several books and a journal (TUGboat)
via a variety of paths. Additionally, our plan was
to submit the book to Lightning Source Inc. (LSI)
for on-demand printing and access (via LSI’s parent
company Ingram Book Group, a giant book whole-
saler and distributor) to large (e.g., Amazon) and
small on-line (and any other) book stores.

Here’s how self-publishing via LSI usually works.
You submit a PDF file of the interior of the book
and a PDF file of the cover formatted according to
LSI’s standards. This costs about $120, and they
send back a bound proof to review. You tell LSI the
list price and a discount (typically 55% if you want
good treatment by Amazon) for the book.

Thus, for instance, Dave’s previous book had a
list price of $30 and a discount down to a wholesale
price of $13.50. When Amazon sells the book, it
collects their price (typically discounted from list, say
to $25) plus shipping costs from the buyer. Amazon
keeps the difference between $25 and $13.50 for itself
and sends $13.50 plus the money for shipping to
LSI. LSI prints a copy of the book and ships it to
the buyer, and deposits to Dave’s bank account (a
couple of months later) the difference between $13.50
and its print cost (which is about $6.25 for one copy
of a 280-page 6 × 9 inch book).

Dave can also take a book order for $30 plus
shipping via his web site and PayPal, place an order
to have the book printed and shipped to the customer
by LSI, paying LSI (immediately) the print cost plus
shipping cost, and end up keeping something like $16
for himself. Given the price difference, and people’s
desire to deal with a known entity such as Amazon,
Dave sells very few copies of his book via his web
site and, thus, ordering and shipping the orders that
come via his web site is not an undue burden.

While we want the interview book to be available
via Amazon and other retail book stores, we also want
to sell the book to members at a very modest price
(one that does not allow a 55% discount between
the list and wholesale prices), and we want to sell
the book at essentially cost to interviewees. It’s

TEX People: The TUG interviews project and book

202 TUGboat, Volume 30 (2009), No. 2

easy enough to use the LSI–Amazon path for non-
discounted sales. It is also easy enough to take orders
via the TUG web site for members and interviewees,
as long as the book is not so popular with TUG

members that the volume of placing the individual
orders on LSI’s web site for drop shipping to members
doesn’t become be a burden (although LSI supports
automated electronic orders, it isn’t available to low-
volume publishers). We’ll wait and see what our
sales volume is to TUG members and what ordering
options we can work out for LSI; making the book
available via LSI does not preclude us from having the
book printed by a second company that might lead
to a simpler procedure for processing TUG member
orders.

10 Going forward

We will continue to use HTML for the web site rather
than the LATEX-based PDFs because HTML is by far
the more effective format on the web. With all inter-
views in m4, it is now possible to use an expanded
set of m4-to-html definitions (tug.org/interviews/
book/htmldefs.m4, which will undoubtedly continue
to evolve over time) to more or less automatically
regenerate the HTML-based web site using the inter-
views improved with Karl and Barbara’s editing and
the new endnotes from a few of the interviewees.

Now that this book has been published, we will
continue to do interviews for the web site, using the
various tools and processes we have developed as
part of this book project. Maybe there will be a
volume 2 of the book in another few years; if so, it
will be easier next time.

We continue to appreciate the way the TEX
typesetting system can be smoothly integrated into
a multi-step workflow process, as part of a typical
distributed software development project involving
multiple collaborators.

Acknowledgments

We very much appreciate the willingness of the in-
terviewees to participate in the TUG interview series
and to share their stories with the TEX community.

Barbara Beeton volunteered to edit every inter-
view, already a great gift to our interviews project.
And how often does one have a first rate editor who
also knows typesetting with TEX! Our appreciation
to Barbara is unbounded. Thank you, bb.

Steve Peter was a kind source of answers to
many miscellaneous questions.

Members of the TUG board, to whom we first
announce each new interview we post on the web
site, often catch typos in interviews.

Gianluca Pignalberi and David Crossland shared
interviewing duties in two different cases.

The Computer Science Department at the Uni-
versity of Aarhus in Denmark supports the main TEX
Users Group server, where we post the interviews
online and where we developed the book. Thanks
to Kaja Christiansen, Michael Glad, and everyone
there.

⋄ Karl Berry and David Walden
http://tug.org/interviews

Karl Berry and David Walden

TUGboat, Volume 30 (2009), No. 2 203

Self-publishing: Experiences and opinions

David Walden

At TUG’09 I gave a presentation on self-publishing.
My reason for talking about self-publishing is that
after one gets done typesetting something, e.g., a
book, one needs to get it printed and distributed and
self-publishing is one option. This note is a summary
of that presentation.

The presentation and this note are based on my
experiences. Other, more experienced, self-publishers
may disagree with some of what I say. Also, things
are changing very fast in the self-publishing world so
what may be true today may be false or irrelevant
tomorrow.

1 Types of printing and publishing

I’ll start by touching briefly on offset versus digital
printing.

Offset printing is the traditional way books are
published in volume: typically at least a few thou-
sand copies are printed at a time; plates are created
that print many pages on a big sheet of paper; pages
on a sheet are folded and cut into signatures; signa-
tures are bound into books.

Digital printing is done commercially with big-
ger, faster machines that are like printing out a single
copy of a book on a home laser printer on two sides
of each sheet of paper.

The advantage of digital printing — so-called
print-on-demand — is that a short run doesn’t cost
much, e.g., $3.75 for a single copy of a 200 page book,
while a minimal offset run costs, say, $1,000. Also
you don’t have to inventory all the books from a
1,000 book run, and you can consequently update
without obsoleting lots of old books. Digital printing
is also good for a publisher wanting to keep a book
minimally in print.

The disadvantage of digital printing is that the
per-book cost of printing lots of books is not much
less than printing a single book. With offset printing,
the per-book price drops rapidly as you move from
printing 500 to 2,000 copies to perhaps $1.50 for a
run of 5,000 books.

Digital printing is still questionable for color
books and books requiring very fine production, but
it is getting better.

There are three kinds of publishers: traditional, sub-
sidy, and self-publishing.

The traditional publisher is professionally staffed,
may be large or small, is connected into traditional
distribution channels, typically invests in the develop-
ment and production of a book and pays the author

a small royalty per book, historically mostly has used
offset printing, and now can use digital printing to
keep books “in print” forever.

Subsidy (or vanity) publishers make their money
by the author paying them to develop and print a
few copies of a book. Print-on-demand has allowed
expansion of the subsidy publishing business because
they no longer have to charge thousands of dollars
to produce those few books; for instance, Lulu’s
business model is to publish 100 books for a million
authors (rather than a million books for 100 authors).

A self-publisher is someone who is neither of
the above and gets the ISBN (International Standard
Book Number) and manages development and pro-
duction of his or her book himself or herself. My
impression is that the majority of self-publishing
authors who hope to make significant money from
a book do an offset run (although they may use
print-on-demand for review copies).

By definition, the publisher of a book is the
person or entity providing the ISBN. Traditional and
subsidy publishers typically provide the ISBN. You
as an individual are a self-publisher if you provide
the ISBN.

Historically, the conventional publishing indus-
try, book reviewers, book stores, and authors are
dismissive of self-publishing. Some reasons for this
may be: the quality of the writing or publication
can be quite poor; there is confusion with the sub-
sidy publishing industry; there isn’t a connection
to traditional acquisition or distribution channels;
self-publishers don’t like returns while the norm in
the U.S. publishing industry is that all books are
returnable by bookstores for full credit.

Nonetheless, self-publishing is a venerable op-
tion. Some very famous books, including a number
of classics, by some very famous authors were origi-
nally self-published. For a list of examples, google
on “famous books that were self-published”.

2 Publishing and self-publishing economics

The rough economics for a traditional U.S. publisher
might be something like the following. The cost per
book for an offset run of a few thousand books might
be $2 per book. The retail and wholesale prices
might be $30 and $13.50 (a 55 percent discount).
Of the $11.50 margin, the publisher has to cover
development costs (perhaps $5,000 to $10,000), the
print run, marketing, business overhead, and returns
of books for full credit. The author gets perhaps $1
or $2 per book.

I have less idea about the economics of tradi-
tional publishing elsewhere in the world.

My self-published, 280-page book Breakthrough

Self-publishing: Experiences and opinions

204 TUGboat, Volume 30 (2009), No. 2

Management has the following economics. I set the
list price at $30 (and roughly equivalent amounts in
U.K. pounds and Euros). I paid about $3,800 for
editing, illustration, and proofreading. The cost of
an ISBN in the U.S. is about $25 each in lots of 10.

There was no setup cost for print at Ames On
Demand in Somerville, Massachusetts, and no ship-
ping cost since the company is close to my home and
I picked up the printed books with my pickup truck.
The per-book print cost from Ames was about $5. I
sold these books via my web site (which I already
had so there was no additional cost) for $32 for ship-
ment within the United States and $36 for shipment
outside the United States. Since shipping in the
United States actually cost closer to $5 and shipping
to outside the United States actually cost closer to
$11, I cleared between $20 and $22 on books printed
by Ames On Demand and sold via my web site.

Later I paid Lightning Source Inc. (LSI) — a
large print-on-demand company about which I will
say more later — about $120 in setup fees to upload
my interior and cover PDF files and to send me a
proof of the book. LSI charged about $4.60 to print
one book with a $1.50 handling charge per order of
books drop shipped to the same address. Thus, I
still cleared only a little less than $20 to $22 per
book for orders I took via my web site and fulfilled
via LSI (paying whatever shipping cost LSI quoted).

However, books available from LSI are also avail-
able via an electronic catalog to book stores around
the world, for which I gave a 55 percent discount to
go with my $30 list price. In this case, I received
(deposited to my bank account three months in ar-
rears) the $13.50 wholesale price minus the print
cost, netting about $8. In this case, the shipping
cost has nothing to do with me; it is collected by the
bookstore and sent to LSI to pay for drop shipping.

With a mix of sales by Amazon and other on-line
book stores and sales via my web site, I recovered my
development costs with the sale of about 300 books.

Our TEX People book (self-published on behalf
of TUG by Karl Berry and me) requires more paper
and thus the per-book print cost at LSI is greater
by $2 or $3. Barbara Beeton edited every interview
for free (thank you, bb); and she, we, and our in-
terviewees did our own proofreading. Books we sell
via Amazon and the other on-line book stores will
have a good margin (to benefit TUG). Books we sell
to members at a big discount from list via the TUG

web site will have a modest margin to go to TUG.

Self-publishing makes sense when:

• You want to control the book’s pricing and
rights, including updating, deal making with

other publishers, and long term reuse.

• You can’t get a “real” publisher (and don’t want
to use a subsidy publisher).

• A “real” publisher is willing but insists the (tech-
nical) author must buy a large number of books.

• You are not a big-name author and so aren’t
going to get big publisher distribution anyway

• You don’t want the editorial “help” a “real”
publisher wants to provide, i.e., you want to
write the book you want to write.

• You are willing to forgo the “validation” of hav-
ing a “real” publisher (and to receive some scorn
for self-publishing).

• You have a narrow, highly targeted market.

• You can afford the development costs you find
necessary to have done for you.

• You want the margin that would otherwise go
to the “real” publisher and think you can make
more money selling (most probably) fewer books
at a higher margin.

• You have much time to spare from writing the
book (and everything else you have to do in
life).

Essentially you are paying in time and money to
retain full control.

I don’t know the details of Prof. Gilbert Strang’s
situation, but his web site (wellesleycambridge.
com) lists seven books available via self-publishing.
He gives some reasons for self-publishing his books
on page 174 of Recountings: Conversations with MIT

Mathematicians (edited by Joel Segel and published
by A.K. Peters Ltd., Wellesley, Massachusetts, 2009).

My first self-published book was [in] 1986 on
applied mathematics. Essentially, I wanted
the adventure. And you work so hard on the
book, it’s like your child, and I didn’t want
to put it out for adoption. Not that I had
such terrible experiences, though editors and
publishing houses come and go with light-
ning speed, as I now know . . . But I thought
I’d have the adventure of being in contact
with people who use the book, which is still
a pleasure. And also of being able to change
it, being able to write conversationally if I
wanted to . . . And just staying with the book
rather than writing it and saying goodbye . . .

I do [supervise the typesetting, cover design,
and interior design]. Not that I know so much,
but I care so much, and maybe that makes
up for not knowing what you’re doing. I’m
still discussing the cover for the new book. I
have views about it and the interior design,

David Walden

TUGboat, Volume 30 (2009), No. 2 205

and you just have freedom to try things, and
innovate. It’s interesting to me.

In addition to the motivations above for self-
publishing, maybe Professor Strang also makes some
money with self-publishing. He has a lot of students
each year at MIT, and his books are highly regarded
beyond MIT.

[The Recountings book just quoted was also
inspired by the Mathematical People books that in-
spired our TEX People book, and I commend this
book of interviews of MIT mathematicians to you.]

3 A few resources for self-publishing

I recommend first the Yahoo Self-Publishing discus-
sion group: finance.groups.yahoo.com/group/
Self-Publishing.

Dan Poynter’s The Self-Publishing Manual and
web site (parapublishing.com) provided me with
good overall insight.

Pete Masterson’s Book Design and Production,
A Guide for Authors and Publishers and web site
(zeonix.com) was where I learned about dealing with
printers.

Morris Rosenthal’s Print-on-Demand Book Pub-
lishing and web site (fonerbooks.com) was where I
first grasped the economics of self-publishing.

Robert Bowie Johnson and Ron Pramschufer’s
Publishing Basics and Pramschufer’s web site at
selfpublishing.com was where I first learned about
different types of paper.

Later I read Aaron Shepard’s book Aiming at
Amazon, but it might be a good first place to start.

John Culleton’s annotated book list (available at
wexfordpress.com/tex/shortlist.pdf) is a place
to discover other books that can be helpful.

The “Reference Desk” area of Marion Gropen’s
web site (www.gropenassoc.com) deals with the busi-
ness issues of self-publishing.

John Culleton and Marion Gropen are two of the
moderators of the Yahoo Self-Publishing discussion
group.

4 Components of self-publishing

The components listed in this section are relevant
for both self-publishing and traditional publishing.
I limit this discussion to my thoughts about self-
publishing.

You can do any of these tasks yourself or hire
them done. I do the ones I think I can do well enough
or want to learn to do, and I hire someone to do the
ones I don’t want to spend time learning or which I
think must be done by someone other than me.

Writing the book. Before you write the book,
you should probably decide what your goal is and

whether it makes sense to write the book and if you
have a plausible path to getting it published at a
cost and effort you can afford and sufficient payback,
whether tangible or intangible.

If you are self-publishing, you can specify which
typesetting system to use. I use some version of TEX,
e.g., LATEX, memoir, or ConTEXt.

I draft in my typesetting system (some version
of TEX) rather than drafting in some other editor or
word processor and flowing the manuscript into the
typesetting system later. It helps my motivation to
keep writing if successive drafts of the manuscript,
however rough or fragmentary, are nicely typeset on
pages; it makes me feel closer to being finished.

Editing; illustration. I believe you must have
someone else edit your writing. You simply cannot
see everything that needs to be seen in your own
writing.

There are various levels of editing: (a) correcting
misspellings, punctuation errors, bad grammar, etc.,
and enforcing a particular style for titles, references,
etc.; (b) improving correct but awkwardly written
sentences; (c) suggesting substantive changes to the
content, order of presentation, etc. You need to
decide which levels of editing you want. I want all
three.

If you are paying the editor yourself, you should
select an editor who provides the levels of editing
you want and who works with you in a way you find
constructive and supportive rather than bothersome.

My management book has a large number of line
drawings. I hired an illustrator to do the original
creation of the drawings based on a style sheet (type-
face, font size, overall size compared with page size,
etc.) on which we agreed. She used Adobe Illustrator.
I did corrections to the drawings using Illustrator
after my editor reviewed the final draft manuscript.

Permissions. One school of thought in the self-
publishing discussion group is that you should always
ask permission for material you want to quote or of
which you want to include a copy. Another school
is that you should always ask a qualified lawyer. I
don’t agree with either of these ideas.

Of course, you should always give credit. Giving
credit is independent of asking permission. You also
have to ask permission when there is no question
of “fair use”. And I would ask permission if there
is a question of courtesy involved, for instance, if I
know the person and he or she would take offense if
I didn’t ask.

But, fundamentally, I believe that you need
to learn enough about fair use to understand when
there is a good case for fair use (which is not precisely

Self-publishing: Experiences and opinions

206 TUGboat, Volume 30 (2009), No. 2

defined in the United States — I don’t know about
other countries). If you ask a lawyer, he or she will
charge you lots of money and will not give a definitive
answer. If you ask permission, there is a good chance
the entity you ask (e.g., publisher of the book you
are quoting) will charge you a permission fee whether
or not fair use fits the situation. You need to be able
to assess the risk of being sued even though you have
a good case for fair use. If I have a good case for fair
use and mine is a relatively low profile publication, I
feel I am unlikely to be sued.

Interior design; typesetting. Historically book
design and typesetting were separate functions. To-
day it seems that many (perhaps most) typesetters
also see themselves as book designers.

In the self-publishing discussion group there is
lots of discussion about whether or not a person new
to self-publishing can do his or her own typesetting
at a sufficiently competent level. To summarize, I
think there is general agreement that someone can
learn to do typesetting over time and that it is best
not to try to do it in Microsoft Word (about which
beginning self-publishers ask).

One can successfully use TEX or one of its variations
to typeset a book and configure its output to be
acceptable to on-demand printers and to publishers.
However, the printers and publishers don’t provide
templates for TEX like they do for the commercial
typesetting systems such as Adobe’s InDesign (they
do provide an EPS or PDF template or at least spec-
ifications).

The self-publishing discussion group experts ad-
mit that TEX, et al., exists and “does as good a
job of typesetting as InDesign”, but with few excep-
tions they are dismissive of the non-GUI command
model of TEX and put off by its learning curve. In
other words, TEX is far from the mainstream of self-
publishing — basically irrelevant except for people
who already know and use it. I think this is unfor-
tunate since (a) I believe learning to use TEX well
is probably no harder than learning to use InDesign
well, and (b) I suspect a novice typesetter can do a
better job of typesetting with less experience using
TEX.

Obtaining the ISBN. In the United States, you get
ISBNs from isbn.org which is operated by Bowker.
As I write this in July 2009, you can buy blocks of 10,
100, or 1,000 ISBNs for about $245, $930, or $1,570
respectively. Bowker is trying to make a profit and
offers lots of options (e.g., a bar code) which clutter
the process of just trying to buy a block of ISBNs.

I believe that in some other countries an ISBN

is free.

Proofreading; indexing. I believe that proofread-
ing must be done by someone other than the author
or editor. From my experience, you need to make
clear that you only want proof reading; this is not
the time you want the page proofs to be cluttered
with additional editing suggestions.

I suppose I could learn to do indexing, but I am not
interested in doing so. For those of use who are used
to indexing commands being embedded in the TEX
manuscript (such that index entries automatically
get new page numbers if the pagination of the book
changes), my impression is that most professional
indexers don’t like embedded indexing. They prefer
to work with their own indexing software package
using absolute page numbers from the page proofs.

Cover design. For self-publishing, where likely
you will be selling books via on-line book stores
rather than from the shelves of physical book stores,
you need a cover design which shows well on-line
and which meets any relevant standards (e.g., from
Amazon and your printer).

In the self-publishing discussion group, there is
lots of talk about the importance of having an expert
cover designer. I am sure there are professional
designers who can create wonderful covers that will
somehow sell a lot of books. However, I bet the
typical self-publisher cannot afford someone with as
good a track record as, say, Paula Scher. I’ll further
bet that hiring one of the self-styled cover design
experts is not worth the money compared to doing it
yourself if you have the time and inclination to learn a
graphics system (e.g., Illustrator, PSTricks, or TikZ —
I think many self-publishers do their cover designs
as well as their interior typesetting with InDesign).

I did the first of the covers in figures 1 and 2
with Illustrator and the second with PSTricks and a
couple of manipulations with Illustrator. I also used
Adobe Photoshop to twist the background design in
example 1 and to adjust the photos in example 2.

Printing. Lightning Source Inc. (LSI) is a big print-
on-demand company with a big distribution con-
nection to on-line book stores through its parent
company, book distributor Ingram. It has printing
plants in the United States and the United Kingdom.
It does not have a store front. Many other U.S. and
Canadian printers offer print-on-demand (Pete Mas-
terson’s web site has a list). Some of them offer store
fronts. Some companies that offer print-on-demand,
e.g., Lulu, have some of their printing done by LSI.
Last year it seemed that print-on-demand was not
available much outside of the United States; it is in-
creasingly available as time goes by. Traditional off-
set printers are increasingly offering print-on-demand

David Walden

TUGboat, Volume 30 (2009), No. 2 207

Figure 1: Cover example 1

as a short-run option.
For my Breakthrough Management book, I pro-

vided interior and covers PDFs to both print-on-
demand and offset printers:

• two offset runs of 2,000 each in India for sale
by the organization with which my co-author
works;

• LSI in the United States and United Kingdom
for sale by bookstores and my web site and drop
shipping from LSI;

• Ames On Demand in Somerville, Massachusetts,
for inventory at my home and sale via my web
site (runs of 250, 100, 50, 50, 25, . . .) — I have
to handle shipping for these;

• local printers of non-profit organizations in Que-
bec, Portugal, and Pakistan to which I have
given permission to print locally and make a
profit from selling my book.

Other self-publishers also use other Amazon options
or Lulu, CreateSpace, etc.

Marketing. With self-publishing, you have to do
all the promotional work that would be done with a
book published via a traditional publisher. Review
copies are easy to get using print-on-demand. You
will also want to try all the modern communication
tools such as blogs, Twitter, podcast, etc.

Distribution; fulfillment/shipping. With self-
publishing, the odds are against you having books
on the shelves of physical bookstores, except perhaps
a few local or specialty stores where you have a
particular connection. Nonetheless, you (or on-line
bookstores) can take orders via the Internet and in
theory books can be shipped around the world.

However, if you want to get books to more than
a few friends or family, fulfillment is a hassle. Inter-
national shipping is expensive and with tremendous
variation depending on the size and weight of what

TEX People

Interviews from the world of TEX

Karl Berry and David Walden, Editors

tug.org

TE
X

P
e
o
p
le

—
In

te
rv

ie
w

s
fro

m
th

e
w

o
rld

o
f

TE
X

B
e
rry

a
n

d
W

a
ld

e
n

,
E

d
ito

rs

The TEX People in this book

Kaveh Bazargan ≈ Barbara Beeton ≈ Karl Berry

Duane Bibby ≈ Jon Breitenbucher

Mimi Burbank ≈ David Carlisle ≈ Lance Carnes

Chandroth V Radhakrishnan ≈ Jin-Hwan Cho

John Culleton ≈ Susan DeMeritt

Victor Eijkhout ≈ Thomas Esser

Robin Fairbairns ≈ Jonathan Fine ≈ Peter Flynn

David Fuchs ≈ Peter Gordon ≈ George Grätzer

Hans Hagen ≈ Hàn Thế Thành

Yannis Haralambous ≈ Jim Hefferon

Amy Hendrickson ≈ Taco Hoekwater

Klaus Höppner ≈ Bogusław Jackowski

David Kastrup ≈ Oleg Katsitadze ≈ Jonathan Kew

Dick Koch ≈ Werner Lemberg ≈ Raph Levien

Dan Luecking ≈ David MacKay ≈ Pierre MacKay

Adriana McCrea ≈ Frank Mittelbach ≈ Ross Moore

Janusz Marian Nowacki ≈ Arthur Ogawa

Haruhiko Okumura ≈ Steve Peter ≈ Cheryl Ponchin

Sebastian Rahtz ≈ Arthur Reutenauer

Yuri Robbers ≈ Will Robertson ≈ Tomas Rokicki

Christian Schenk ≈ Rainer Schöpf

Aleksander Simonic ≈ Nicola Talbot

Philip Taylor ≈ Christina Thiele

Dave Walden ≈ Gerben Wierda ≈ Peter Wilson

http://tug.org/interviews

9 780982 462607

ISBN 978-0-9824626-0-7

Figure 2: Cover example 2

is being shipped and the destination. Shipping gets
really expensive if you use a trackable method; but, if
you don’t use a trackable method, you will probably
have to absorb the cost of books lost in shipping.
Unless you are ordering a large number of books a
week, you have to do manual ordering via LSI’s web
site; electronic data interchange is not available to
you. Having books printed in another country results
in currency exchange costs and foreign transaction
fees if you pay by credit card. If you collect payments
through PayPal, they of course charge fees.

All in all, I am happiest when customers order
from Amazon (or another on-line bookstore), I am
not involved in fulfillment, and the difference between
the wholesale price and the print cost is deposited
in my bank account by LSI.

Bulk orders (where people ask for a discount)
are a particular bother for me. I have to package
the books for shipment from the local inventory I
maintain, buyers want to be invoiced and pay by
bank transfer rather than simply paying by credit
card, and in some cases they do accounts-payable
manipulations such as delaying payment or subtract-
ing the currency exchange and bank transfer fees
from the price I stated was after such fees.

You can hire a company to do fulfillment for
you. There is also an Amazon program where you
provide Amazon with an inventory of your books
and Amazon does the fulfillment.

A key to making fulfillment work is to have
enough margin to cover these costs in addition to
the printing cost. I did this with my Breakthrough
Management book. In the case of the TUG interviews
book, TEX People, we are offering the book with not
so much margin to TUG members, which complicates
things for us.

Legal and bookkeeping issues. If you are going
to self-publish and sell a lot of books, you will want

Self-publishing: Experiences and opinions

208 TUGboat, Volume 30 (2009), No. 2

to think seriously about controlling liability through
some form of incorporation. You will also want to
be legal by obtaining a state business license (which
also may allow you to avoid paying state sales tax to
suppliers such as a printer) and by collecting state
sales taxes and forwarding them to the state.

My sales in my home state of Massachusetts
were not significant enough for me to seek a state
business license, and I haven’t thought the liability
risks were big enough to justify incorporating. I pay
income taxes on the difference between book revenue
and book expenses (development and cost of sales)
in each calendar year. I tell my accountant each
year how few books I have sold within Massachusetts
(countable on less than all the fingers of one hand),
and he has so far told me that any sales tax is so
immaterial it is not worth reporting.

5 Reflections

The lines between types of publishing continue to
narrow. Traditional publishers outsource many func-
tions and use print-on-demand to keep books in
print. Authors have begun making new types of
deals with traditional publishers. Every once in a
while a self-published book gets picked up by a tradi-
tional publisher. The Espresso machine for printing
books on demand in bookstores has signed up some
traditional publishers, and it is also being used by
self-publishers to print a few books for friends and
family. E-books are beginning to sell in competition
with printed books. All types of publishers, including
self-publishers, can sell via the Internet. Traditional
barriers of all types are falling.

The barriers that are not falling fast enough
are the spread of print-on-demand throughout the
world and the price of reliable shipping throughout
the world.

My view is to use self-publishing if it fits your situa-
tion. Don’t worry about traditional discrimination
against self-publishing.

Self-publishing has been working for me, and I
will continue to use it for books which have a narrow,
easy-to-access market and for which it is worth it to
me to pay the (relatively modest) development costs
in order to have the books in print (and perhaps

enough books will be sold to cover my costs and
maybe even a little more). The list of books so far:

• Self-publishing my Breakthrough Management
book has been very satisfactory.

• Our decision to use self-publishing (nominally)
by TUG for TEX People still seems like a plausi-
bly good decision. For more about that project,
see the TEX People paper by Karl Berry and
me elsewhere in this issue.

• I am currently finishing a book on the computer
history of Bolt Beranek and Newman (where
I worked for many years), and I will use self-
publishing to produce it and make it available
to prior and current BBN people (and perhaps a
few technology historians will also buy copies).

• I will be reprinting oral histories of my mother
and of my mother-in-law which my wife cre-
ated and which were originally published using
Kinko’s copyshop technology and a thesis bind-
ing company.

• I am turning a photo slide show my son (a pro-
fessional photographer) and I created a number
of years ago into a book (typeset with ConTEXt
to take advantage of grid typesetting).

Self-publishing has fit my situation. I’ve been
happier with it than with my books which were
published by a traditional publishing company. If it
fits your situation, use it.

Acknowledgments

I have learned much from the on-going discussion of
the Yahoo Self-publishing group and from answers
to specific questions I posed to various members of
the group.

Shoji Shiba allowed me to self-publish our Break-
through Management book rather than seek a tradi-
tional publisher as we did with our previous books.

Karl Berry was involved every step of the way
in self-publishing our TEX People book, and Robin
Laakso is now involved in fulfillment for the book.

Barbara Beeton edited this paper for TUGboat.

⋄ David Walden
http://walden-family.com

David Walden

TUGboat, Volume 30 (2009), No. 2 209

A short introduction to METAPOST

Klaus Höppner

Abstract

METAPOST is a program strongly related to Knuth’s
orginal METAFONT. It uses nearly the same graph-
ics language and syntax, but instead of bitmap fonts
it produces PostScript output. So it can be used
to create high quality graphics. In METAPOST,
points and paths may be described by a set of linear
equations that are solved by the program. Thus,
METAPOST is unique compared to other tools like
PSTricks or commercial applications (e. g. Corel-
Draw). Additionally, the PostScript subset created
by METAPOST can be interpreted by pdfTEX. So
METAPOST figures can be directly included with
e. g. the standard graphics package, while normal
EPS images have to be converted first to be usable
with pdfLATEX.

1 History

When Knuth developed TEX, he also created a set of
new fonts, Computer Modern. For this, he created
his own font description language and the program
METAFONT, which converts a METAFONT source
file into a bitmap, usually stored in a file with the
extension .gf or more often .pk. The major feature
of METAFONT is that paths may be described with
a set of linear equations that determine how the sin-
gle points of the path are related, and this equation
set is solved by the METAFONT program. Addi-
tionally, Knuth extensively used parameters within
these equations, so different font series (e. g. bold
and medium) could be produced from the same
equations by changing parameters.

John D. Hobby created METAPOST as a system
using (nearly) the same programming language, but
with PostScript output. It was presented first in
TUGboat [2], while the first public versions were re-
leased in the early 1990s. Some new features were
added to the Meta language, e. g. the ability to in-
clude stuff typeset by TEX into a METAPOST draw-
ing (something that wasn’t needed in METAFONT

for creating glyphs of a font, but is very useful to
put text labels into graphics).

At present, METAPOST is maintained by the
METAPOST team, with Taco Hoekwater as chief de-
veloper. Since then, many improvements have been
made. For the future, they plan to release MPlib,
a component library that contains the METAPOST

engine and can be reused in other applications.

2 Basics

As mentioned before, METAPOST defines its own
programming language. It consists of the following
elements:

• points,
• pens,
• paths,
• numbers,
• colors (originally RGB only; now CMYK is also

supported)

Points are normally named by the letter z, rep-
resented by a pair (x, y).

Paths may contain geometrical elements (e. g.
fullcircle) or may consist of points that are con-
nected by lines or Bézier curves.

Colors are tuples of three (in case of RGB) or
four (in case of CMYK) numbers.

For a short example let’s have a look at the
following example:

Listing 1: First example

filenametemplate "%j-%3c.mps";

beginfig(1);

pickup pencircle scaled 1bp;

draw origin--(2cm,1cm)

..(1.3cm,0.3cm)..cycle;

endfig;

end

Figure 1: Example figure, as defined in listing 1

This shows that each METAPOST figure is put
between beginfig and endfig, with a number iden-
tifying the figure. So, a METAPOST source may con-
tain several figures. Originally, when processing the
source (e. g. ex.mp) with METAPOST (mpost ex),
the figure numbers were used as file extensions for
the resulting PostScript files. In later releases, the
command filenametemplate was introduced, that
uses a syntax something like the printf command
in C. In the example above, we would get a Post-
Script file with the name ex-001.mps (and if we add
a figure with number 2, the PostScript output would
be written into ex-002.mps).

Since pdfTEX recognizes files with the exten-
sion .mps as METAPOST output, the graphic can
be used in a LATEX document with a straight-
forward \includegraphics{ex-001.mps} and the
document may be processed either by pdfTEX or,

Introduction to METAPOST

210 TUGboat, Volume 30 (2009), No. 2

using the original workflow, by compiling to DVI

and using dvips.
As in C, all statements may span multiple lines

and are finished by the “;” character.
The example figure itself shows a straight line

(since two dashes were used in the source) from the
origin to the point (2cm, 1cm). Then, the path is
closed by a Bézier curve (because two dots were
used in the path definition) via the point located
at (1.3cm, .3cm). For drawing, a round pen with di-
ameter of one PostScript point is used. METAPOST

knows the same units as TEX, like bp for PS points,
cm, mm or in. The result is shown in fig. 1.

3 Defining points by linear equations

While there is nothing exciting about our first exam-
ple above, we will now see what makes METAPOST

special. Assume you want to draw a simple rectan-
gle. Then you know it consists of four corners (e. g.
with the lower left one in the origin), that we will
describe by the following equations:

Listing 2: Rectangle

path p[];

z0 = origin;

x0 = x3;

x1 = x2;

y1 = y0;

y3 = y2;

x1-x0 = 3cm;

y3-y0 = 2cm;

p0 = z0--z1--z2--z3--cycle;

fill p0 withcolor blue;

draw p0 withpen pencircle scaled 1bp;

You see, all corners except for z0 aren’t defined
directly as (x, y) pairs but described by their rela-
tions. While describing a rectangle with linear equa-
tions seems rather like overkill, this METAPOST fea-
ture becomes really powerful for the construction of
complex paths.

z0 z1

z2z3

3cm

2cm

Figure 2: Rectangle, resulting from code in listing 2

4 Transformations of paths

METAPOST supports the following transformations
of paths:

• Translations:
p0 shifted (x1, x2)

• Rotation:
p0 rotated alpha

• Scaling (in both directions, or in x or y direction
individually):
p0 scaled factor

p0 xscaled xfactor

p0 yscaled yfactor

• Slanting:
p0 slanted alpha

For example, the following ellipse

is the output of the code:

draw fullcircle xscaled 3cm

yscaled 2cm rotated 30;

5 Intersection points

Finding the intersection points of paths is another
nice METAPOST feature.

Assume you have a triangle. Mathematical the-
ory says that if you draw three lines, each of them
from one corner of the triangle to the midpoint of
the opposite side, all these lines will intersect at the
same point.

The following code shows how this can be
demonstrated in a METAPOST drawing:

Listing 3: Triangle 1

pickup pencircle scaled 1bp;

path p[];

z0 = origin;

z1 - z0 = 3cm*right;

z2 - z0 = 2.7cm*dir(40);

p0 = z0--z1--z2--cycle;

p1 = .5[z0,z1]--z2;

p2 = .5[z1,z2]--z0;

p3 = .5[z2,z0]--z1;

draw p1 withcolor blue;

draw p2 withcolor blue;

draw p3 withcolor blue;

draw p1 intersectionpoint p2

withpen pencircle scaled 3bp;

draw p0;

This code is more straightforward than it may ap-
pear. It consists of three parts.

Klaus Höppner

TUGboat, Volume 30 (2009), No. 2 211

First, the three points z0 . . . z2 are defined and
path p0 is defined as the triangle with these points
as corners.

Second, the paths p1 . . . p3 are defined. Each
consists of a line from one corner to the midpoint of
the opposite side, named a median of the triangle.
This may be easily expressed in METAPOST, since
e. g. the statement .5[z1,z2] is just the point on
halfway along the line from z1 to z2.

Finally, after drawing all the paths defined
above, we mark the intersection point of p1 and p2.
This is directly given by the command

p1 intersectionpoint p2

It may be a bit more complicated if two paths have
more than one intersection point.

The result of this drawing is shown in fig. 3.

z0 z1

z2

Figure 3: Construction of a triangle

6 Whatever it is . . .

Coming back to the triangle in the latest example,
another interesting task is the following: draw the
altitude of the triangle, that is perpendicular line to
the base line through the opposite vertex z2.

Thus, the altitude line has to fulfill the following
conditions:

1. It is orthogonal to the base line (connection of
z0 and z1).

2. The starting point is in z2, the end point shall
be on the base line.

This may be directly expressed in METAPOST:

Listing 4: Triangle 2

z10-z2= whatever*((z1-z0) rotated 90);

z10 = whatever[z0,z1];

In the code above the end point of the altitude
on the base line is named z10.

Here we see both conditions listed before: first,
the distance vector between z10 and z2 is given by
the distance vector between z1 and z0 (i. e. the base
line), rotated by 90 degrees, scaled by an arbitrary

factor.
Second, z10 is located somewhere on the line

defined by the points z0 and z1.

In both cases, I used a numerical value named
whatever. This may become an arbitrary number.
In fact, the value may change from statement to
statement, since the variable whatever is encapsu-
lated per statement.

z0 z1

z2

z10

Figure 4: Triangle 2

As shown in fig. 4, METAPOST finds the correct
position for z10 as starting point of a perpendicular
line to the base line, with z2 as end point.

7 Time variables

A path in METAPOST may be imagined as the travel
of a vehicle. Paths are parameterized by a time
variable (which might be a bit misleading, since of
course the drawing is static). So a path has a start
and end time, and any point is correlated to a time
in between (and vice versa).

Here is an example where time variables are
used:

Listing 5: Time variables and subpaths

pickup pencircle scaled 1bp;

path p[];

p0 = origin{up}..(3cm,2cm);

p1 = (-5mm,2cm)--(3cm,5mm);

draw p0 dashed withdots;

draw p1 dashed withdots;

(t0,t1) = p0 intersectiontimes p1;

draw subpath (0,t0) of p0

-- subpath (t1,length(p1)) of p1;

We have two paths, p0 and p1: a Bézier curve
from lower left to upper right, and a straight line
from upper left to lower right, drawn with dotted
lines.

To combine the subpath of p0 before the inter-
section point with the subpath of p1 after this point,
as drawn with a solid line in fig. 5, it is not sufficient
just to know the intersection point ot p0 and p1.

In this case, we need the time values of both
paths in the intersection point. For this, the state-
ment p0 intersectiontimes p1 is used. The re-
sult of this is a pair (thus a point), with the time
value of p0 in the intersection point as the first part
(x-part) and the time value of p1 as the second part
(y-part).

Introduction to METAPOST

212 TUGboat, Volume 30 (2009), No. 2

As soon as these time values are known, the
desired path is constructed using subpath. This
is a perfect example showing that METAPOST as a
standalone program has full control over the paths,
contrary to other tools like PSTricks that let Post-
Script do the job of drawing the paths.

Figure 5: Using time variables and subpaths

8 Text and labels

METAPOST supports placing labels into a figure. In
the simplest form, the text may be included directly,
without any typesetting done by TEX:

defaultfont := "ptmr8r";

defaultscale := 1.2;

label("this is a label",z0);

It will just add the text commands to write the label
text in 12pt Times Roman (a font scaling factor of
one refers to 10pt) into the PostScript code. Please
note that := is used in the code above, since new
values are assigned to the variables, while = is used
in linear equations.

The action of placing a label at z0 in the exam-
ple is rather straightforward. The label command
centers the label at the given point. In many cases,
a suffix is appended to the label command to de-
fine how the label is placed in relation to the given
point, i. e. top, bot (bottom), lft (left), rt (right)
or ulft, llft, urt, lrt (e. g. ulft means upper left
and lrt means lower right). The label command
may be replaced by dotlabel, that draws a dot at
the given point in addition to the label. For exam-
ple, the code

dotlabel.urt("this is a label",z0)

draws a dot at z0 and places the given text in upper
right direction from z0.

Only simple text may be used for labels that are
included by METAPOST directly. But for real type-
setting, we may use one of the best typesetting pro-
grams we know, TEX itself. We may include nearly
arbitrary TEX stuff into labels. All TEX snippets
that occur in the METAPOST source are extracted
and typeset with TEX, before the result is included
into the figure by METAPOST.

All the TEX stuff has to be embedded into an
environment btex ... etex, e. g.

label(btex z_0 etex, z0)

will center the label “z0” at this point. Normally,
the plain TEX compiler is used for typesetting the
btex ... etex fragments. But the name of the
program may be passed on the command line when
calling METAPOST, so to use LATEX we can give the
command

mpost --tex=latex ex1

Let’s have a look how we can typeset a label
with LATEX, using Euler math fonts to typeset a for-
mula:

Listing 6: Typesetting a label with LATEX

filenametemplate "%j-%3c.mps";

verbatimtex

\documentclass{article}

\usepackage{euler}

\begin{document}

etex

beginfig(1);

dotlabel.urt(

btex $\sqrt{\frac{1}{1+x^2}}$ etex,

origin);

endfig;

Since typesetting with LATEX requires a preamble
loading a document class and maybe some extra
packages, the example contains an environment

verbatimtex ... etex

which is included as verbatim code before typeset-
ting all the labels. In this example, we load the
article class and the euler package. While we
had to explicitly write the \begin{document}, the
closing \end{document} is inserted automatically!

The result of this code, when compiled by
METAPOST with LATEX used as typesetter — as ex-
plained above — is shown in fig. 6.

√

1

1+x2

Figure 6: Using LATEX for typesetting a label in Euler

Including labels causes some difficulties with
fonts. Normally, METAPOST doesn’t embed fonts
but just adds a reference to the used fonts into
the PostScript output. This isn’t a problem when
METAPOST is included in a TEX document, since
TEX will resolve all of these font references. But the
figures won’t be usable standalone, since PostScript
interpreters like Ghostscript will complain about un-
known fonts.

In recent versions of METAPOST it is possi-
ble to run METAPOST in a mode that will produce

Klaus Höppner

TUGboat, Volume 30 (2009), No. 2 213

standalone PostScript output that contains a “real”
EPS with all fonts embedded, that can be displayed
in any PS interpreter or may be used in other appli-
cations besides TEX documents.

A switch named prologues defines whether
METAPOST will embed fonts or not. The defini-
tion prologues:=3; at the start of your METAPOST

file will produce a standalone EPS figure. The de-
fault value of prologues is 0, which means that no
fonts will be embedded. The meaning of other values
of prologues may be looked up in the METAPOST

manual; they are relevant only for special cases.

9 Loops

The METAPOST language offers the usual features
of programming languages, like macros, loops and
conditional expressions. For illustration I present
an example where a path is constructed within a
loop (the result is shown in fig. 7):

Listing 7: Typesetting a label with LATEX

z0 = 2cm*right;

draw origin withpen

pencircle scaled 2bp;

pickup pencircle scaled 1bp;

draw

for i:=0 upto 5:

z0 rotated (i*60) --

endfor

cycle;

The syntax of the for loop is quite easy to un-
derstand, it just uses a variable i that is incremented
stepwise from zero until 5. The loop is expanded
within the definition of the path to be drawn. Please
note that the loop is ended by endfor without a
semicolon. If a semicolon were present, it would be
interpreted as end of the draw statement, leading to
a syntax error.

Figure 7: Figure constructed by a loop

10 Conclusion

This article was intended to just give a short intro-
duction to METAPOST. I left out several things,
e. g. how to use colors, defining macros, conditional
expressions, etc. Since the article is originally based
on a talk that was part of a comparison of tools, it is
focused on what makes METAPOST unique among
other drawing tools: solving linear equations and
having direct access on intersection points and time
variables of paths.

If you are interested in learning METAPOST,
please have a look into the METAPOST manual [3]
and/or the LATEX Graphics Companion [1], which
describes METAPOST (among many other tools).

References

[1] Michel Goossens, Frank Mittelbach, Sebastian
Rahtz, Denis Roegel, and Herbert Voss. The

LATEX Graphics Companion, 2nd Edition.
Addison-Wesley Professional, 2007.

[2] John D. Hobby. A METAFONT-like System
with PostScript Output. TUGboat, 10(4), 1989.
http://www.tug.org/TUGboat/Articles/

tb10-4/tb26hobby.pdf.

[3] John D. Hobby. METAPOST — A User’s
Manual, 2008. http://www.tug.org/docs/

metapost/mpman.pdf.

⋄ Klaus Höppner

Haardtring 230 a

64295 Darmstadt, Germany

klaus dot hoeppner (at) gmx dot de

Introduction to METAPOST

214 TUGboat, Volume 30 (2009), No. 2

A TikZ tutorial: Generating graphics in the
spirit of TEX

Andrew Mertz & William Slough

Abstract

TikZ is a system which can be used to specify graphics
of very high quality. For example, accurate place-
ment of picture elements, use of TEX fonts, ability to
incorporate mathematical typesetting, and the possi-
bility of introducing macros can be viewed as positive
factors of this system. The syntax uses an amal-
gamation of ideas from METAFONT, METAPOST,
PSTricks, and SVG, allowing its users to “program”
their desired graphics. The latest revision to TikZ
introduces many new features to an already feature-
packed system, as evidenced by its 560-page user
manual. Here, we present a tutorial overview of this
system, suitable for both beginning and intermediate
users of TikZ.

1 Introduction

PGF, an acronym for “portable graphics format”, is
a TEX macro package intended for the creation of
publication-quality graphics [16]. The use of PGF

requires its users to adopt a relatively low-level ap-
proach to the specification of a graphical image.
To sidestep the associated verboseness of this level,
a front-end named TikZ is also available for use.
The syntax of TikZ borrows ideas from METAFONT,
METAPOST, PSTricks, and SVG: its ultimate aim is
to simplify the task of specifying graphics.

Users seeking authoritative documentation of
TikZ are well advised to consult its thorough refer-
ence manual [15]. Those with an interest in discov-
ering the possibilities of this system may wish to
peruse the TEXample website [3], a repository with
many examples of graphics created with TikZ accom-
panied by the associated code. First-time users ready
to “take the plunge” with TikZ may benefit from
introductory-level information found in [11] and [18],
for example.

Our current purpose is to expand on our earlier
treatment of the use of TikZ. In the intervening years
since [11] appeared, a number of developments have
taken place. For example, many new capabilities —
such as the inclusion of a mathematics engine — are
now available within TikZ. Another interesting devel-
opment is the appearance of “third-party” packages
which extend TikZ to specialized domains, such as
the creation of combinatorial graphs or electrical
circuits. A third development is the appearance of
other software, such as dynamic geometry systems,
which can export in PGF and/or TikZ formats.

\documentclass{article}

...

\usepackage{tikz}

% Optional libraries:

\usetikzlibrary{arrows, automata}

...

\begin{document}

...

\begin{tikzpicture}

...

\end{tikzpicture}

...

\end{document}

Listing 1: Layout of a document which uses TikZ.

2 Some TikZ fundamentals

TikZ provides support for various input formats, in-
cluding plain TEX, LATEX, and ConTEXt. The re-
quirements for each of these are fairly similar, so we
focus on just one of these, LATEX, for simplicity.

Listing 1 illustrates the layout for a LATEX docu-
ment containing a number of TikZ-generated graph-
ics. In the preamble, the tikz package is specified,
optionally followed by one or more TikZ libraries.
Each graphic to be generated is specified within a
tikzpicture environment.

Exactly which libraries are needed depend ons
the requirements of the images being generated. For
the simplest diagrams, no library is required. Other
situations which utilize features from the various
TikZ libraries require their explicit mention. For
example, in listing 1, the arrows and automata li-
braries are referenced to gain access to a variety of
arrow tips and obtain the ability to draw finite-state
automata.

Specifications for the desired graphic appear
within the tikzpicture environment. One of the
simplest commands available is the \draw command
which, when coupled with the -- operator, joins
points with straight line segments. This syntax is
inspired by METAFONT and METAPOST. Figure 1
shows how a diamond can be drawn with a single
\draw command, joining the four points on the x and
y axes one unit from the origin. Since no dimensional
units are provided, the default, one centimeter, is
used. The cycle keyword is shorthand for the first
point on the path. The \fill command used here
fills the interior of a circle centered at (0, 0) with a
one point radius.

In this first example, Cartesian coordinates, il-
lustrated in Figure 2, have been used. An alternate
approach is to use polar coordinates, as shown in Fig-
ure 3. Angles are specified in degrees, although the
inclusion of an r suffix can be used to indicate radian

Andrew Mertz & William Slough

TUGboat, Volume 30 (2009), No. 2 215

\begin{tikzpicture}

\draw (1,0) -- (0,1)

-- (-1,0) -- (0,-1) -- cycle;

\fill (0,0) circle (1pt);

\end{tikzpicture}

Figure 1: Drawing a diamond with a closed path,
using points specified with the usual Cartesian
coordinate system. The origin is shown with a filled
circle.

x

y

b

a

P

Figure 2: Using Cartesian coordinates, the point P is
denoted (a, b).

measure. Thus, the point with Cartesian coordinates
(0,−1) can be denoted in TikZ in a number of ways:
(0,-1), (270:1), and (3/2 * pi r:1). In the last
case, in addition to specifying radian measure we are
making use of the arithmetic expression capabilities
within TikZ to compute the value of 3

2
π.

A variety of options can influence the outcome
of the \draw command. These options control such
things as the pen color and width, whether or not
to fill or shade the interior, and what line style is
to be used — solid or dashed, for instance. These
options are enclosed within square brackets and serve
to modify the \draw command. Figure 4 provides
an example of three \draw commands with a few
options in effect. Multiple options, separated by
commas, may appear.

So far, we have seen how the TikZ -- operator
can be used to draw line segments. There are other
operators, including grid, circle, rectangle, and
arc, which can be used to draw other shapes. For
grid and rectangle, two opposing points of the
desired shape are given. A circle is obtained with
circle, which takes a center point and the radius;
an ellipse requires a center point and two radii. A
circular arc is specified by giving a starting point and

α

ℓ

x

y

P

Figure 3: Using polar coordinates, the point P is
denoted (α : ℓ).

three values: two angles and a radius. Starting from
the given point, an arc with the specified radius which
sweeps between the two angles is drawn. Figure 5
shows a few examples of these operators.

The \coordinate command provides a handy
mechanism to name a point. This is especially useful
if the point is to be referenced more than once, since
its definition is only needed once and referred to by
name thereafter. Even in cases where only a single
reference is needed, readability can be improved with
the introduction of names. The Cartesian point (a, b)
can be given the name P using the command

\coordinate (P) at (a, b);

Similarly,

\coordinate (P) at (α : ℓ);

names a point with polar coordinates. Once the
coordinate P has been defined, it can appear in a
subsequent \draw command as (P), whereupon its
defined value is used. For example, the diamond of
Figure 1 can also be obtained with the code shown
in Listing 2:

\begin{tikzpicture}

% Define four points

\coordinate (P0) at (1,0);

\coordinate (P1) at (0,1);

\coordinate (P2) at (-1,0);

\coordinate (P3) at (0,-1);

% Draw the diamond

\draw (P0)--(P1)--(P2)--(P3)--cycle;

\end{tikzpicture}

Listing 2: Drawing a diamond using named points.

The \node command extends the idea of a co-
ordinate by associating shapes, such as circles and
rectangles, and labels with a specified location. For
example,

\node (N) at

(0,0) [draw, shape=circle] {v_0};

A TikZ tutorial: Generating graphics in the spirit of TEX

216 TUGboat, Volume 30 (2009), No. 2

\begin{tikzpicture}

\draw [thick, dotted]

(1,0) -- (0,1) -- (-1,0) -- (0,-1) -- cycle;

\draw [ultra thick]

(0:1.5) -- (90:1.5) -- (180:1.5) -- (270:1.5) -- cycle;

\draw [dashed, thick, color=gray]

(0 r:2) -- (pi/2 r:2) -- (pi r:2) -- (3/2 * pi r:2) -- cycle;

\end{tikzpicture}

Figure 4: Drawing diamonds using Cartesian and polar coordinates, using angles
specified with degrees and radians. Options to \draw have been introduced to change
the style of the line segments.

\begin{tikzpicture}[scale=2/3]

\draw (0,0) grid (4,4);

\draw (2,2) circle (2);

\draw (2,2) circle (1 and 2);

\draw (0,0) rectangle (4,-1);

\draw (0,4) arc (90:270:2);

\fill (0,0) circle (3pt);

\end{tikzpicture}

Figure 5: A sampling of TikZ path operators. As before, the origin is shown with
a small filled circle. The scale option applied to the entire environment is used to
resize the image.

defines a node named N which is to be placed at the
origin along with a surrounding circular shape and
an interior label of v0. Like a coordinate, its name
(in this case, N) can appear in subsequent commands.
Since nodes have associated shape information, lines
drawn between them don’t extend to the center point,
but stop at the perimeter of the shape.

If multiple nodes are defined within a graphic,
it is convenient to use the \tikzstyle command to
provide options which apply to all defined nodes. For
example,

\tikzstyle{every node}=

[draw,shape=circle]

indicates all subsequent nodes are to be drawn with
a circular shape. This would allow our previous
command to be abbreviated as:

\node (N) at (0,0) {v_0};

A complete example with nodes is shown in Figure 6.
Another capability of TikZ is the \foreach com-

mand, which provides a way to introduce looping
actions. Listing 3 shows yet another way to obtain
the diamond figure. A loop with four iterations,
one for each edge of the diamond, is established. A
subtlety with the parsing involved in this example
requires curly braces to be used in order to group
the expression corresponding to the mathematical
entity (i + 1)π

2
.

\begin{tikzpicture}

\foreach \i in {0,...,3}

{

\draw (\i * pi/2 r:1) --

({(\i + 1) * pi/2} r:1);

}

\end{tikzpicture}

Listing 3: Drawing a diamond with a \foreach loop.
Each iteration draws one edge of the diamond.

3 The mathematical engine

TikZ has access to a mathematical engine which
provides arithmetic and relational operators, as well
as a host of mathematical functions one typically
encounters in a traditional programming language.
The math engine can also be used independently of
TikZ.

The arithmetic and relational operators are +,
-, *, /, ^, <, ==, and >, which may appear within
infix expressions in the usual manner. Here are the
functions the TikZ mathematical engine supports, as
of version 2.0:

mod max min abs round floor

ceil exp ln pow sqrt veclen

pi r rad deg sin cos

tan sec cosec cot asin acos

atan rnd rand

Andrew Mertz & William Slough

TUGboat, Volume 30 (2009), No. 2 217

\begin{tikzpicture}

% Default actions for each node

\tikzstyle{every node}=[draw, shape=circle];

% Define and draw five nodes

\node (v0) at (0:0) {v_0};

\node (v1) at (0:2) {v_1};

\node (v2) at (90:2) {v_2};

\node (v3) at (180:2) {v_3};

\node (v4) at (270:2) {v_4};

% Draw radial edges

\draw (v0) -- (v1) (v0) -- (v2)

(v0) -- (v3) (v0) -- (v4);

\end{tikzpicture}

v0 v1

v2

v3

v4

Figure 6: Using nodes.

A B

C

Figure 7: A 30–60–90 triangle.

As shown earlier, coordinates can be specified
using arithmetic. For example:

\draw (0,0) -- (360.0 / 7.0 * 3.0 : 1);

Coordinates can also be defined in terms of math-
ematical functions. For example, Figure 7 shows a
30–60–90 triangle where one of the coordinates has
been defined as follows:

\coordinate [label=right:C] (C) at

(1, {sqrt(3)});

Note that curly braces distinguish the case where
parentheses are used mathematically and the case
where they denote a named coordinate.

Points can also be computed in terms of other
points. Basic calculations involving coordinates such
as addition, subtraction, and scaling can be per-
formed. For such coordinate calculations, the calc

library is required:

\usetikzlibrary{calc}

The desired coordinate calculations are then enclosed
within $ symbols. Examples of these types of calcu-
lations are illustrated in Figure 8.

Coordinate calculations can also be used to com-
pute points that are partway between two points.
The coordinate calculation

($(A)!0.25!(B)$)

becomes the point that is 25% of the way along the
segment from A to B. Figure 9 shows examples of

coordinate calculations being used to compute the
medians of a triangle.

It is sometimes useful to be able to compute
the distance between two points. Although TikZ
does not currently have a direct way to do this,
it is possible with the let operation and veclen

function. The let operation allows coordinates to be
defined that are available for just one path. Figure 10
demonstrates a simple use of the let operation; note
that the macros used to name points must begin
with a p. The let operation also allows extraction
of the x and y components of a point. An example of
this feature is given in Figure 11, which also uses the
function veclen to compute the distance between
two points.

For example, the centroid of the triangle of Fig-
ure 9 can be determined by finding the point of
intersection of any two of its medians. This point,
labeled D below, can be obtained with the following
TikZ statement:

\coordinate (D) at

(intersection of

A--Aprime and C--Cprime);

A

B

C

A′

B′

C ′

D

4 A few TikZ libraries

Libraries, optionally loaded in the preamble section
of a LATEX document, extend the capabilities of TikZ
and simplify some kinds of tasks. There are cur-
rently more than a dozen different libraries available,
providing users with tools to create specific types of
diagrams, such as finite-state automata, calendars,

A TikZ tutorial: Generating graphics in the spirit of TEX

218 TUGboat, Volume 30 (2009), No. 2

\begin{tikzpicture}

\draw[help lines] (0,0) grid (4,2);

\coordinate[label=below:A] (A) at (2, 1);

% Three points determined from a reference point

\coordinate[label=above:B] (B) at ($2*(A)$);

\coordinate[label=above:C] (C) at ($(A) + (-1,1)$);

\coordinate[label=below:D] (D) at ($(A) - (-1,1)$);

% Mark each point with a filled circle

\fill (A) circle (2pt) (B) circle (2pt)

(C) circle (2pt) (D) circle (2pt);

\end{tikzpicture}

A

BC

D

Figure 8: Using coordinate calculations.

\begin{tikzpicture}

% Three vertices of a triangle

\coordinate[label=below left:A] (A) at (0,0);

\coordinate[label=right:B] (B) at (3,1);

\coordinate[label=above:C] (C) at (1,4);

% Find the midpoints

\coordinate[label=above right:$A’$] (Aprime) at ($(B)!0.5!(C)$);

\coordinate[label=above left:$B’$] (Bprime) at ($(A)!0.5!(C)$);

\coordinate[label=below:$C’$] (Cprime) at ($(A)!0.5!(B)$);

% Draw the triangle and its three medians

\draw (A) -- (B) -- (C) -- cycle

(A) -- (Aprime) (B) -- (Bprime) (C) -- (Cprime);

\end{tikzpicture}

A

B

C

A′

B′

C ′

Figure 9: Using coordinate calculations to determine the medians of a triangle.

\begin{tikzpicture}

\draw[help lines] (0,0) grid (2,2);

\draw let \p1=(0,0), \p2=(1,2), \p3=(2,0) in

(\p1) -- (\p2) -- (\p3);

\end{tikzpicture}

Figure 10: A simple use of the let operation.

\begin{tikzpicture}

\coordinate [label=below:A] (A) at (0.5,0.75);

\coordinate [label=above:B] (B) at (1,1.85);

\draw (A) -- (B);

\draw (A) let \p1 = ($(B) - (A)$) in circle ({veclen(\x1,\y1)});

\end{tikzpicture}

A

B

Figure 11: Using let to compute the distance between two coordinates.

mind maps, Petri nets, and entity-relationship dia-
grams. There is even one a bit more whimsical in
nature, which typesets a do-it-yourself pattern for a
dodecahedron, where the twelve faces can be given
arbitrary content. In this section, we examine two
of these libraries: automata and mindmap.

The automata library is used to create diagrams

of finite-state automata and Turing machines. The
details of one such automaton is given in Figure 12.

For each state of an automaton, the following
attributes need to be specified: where on the page
it should appear, what text is needed for the state
name, and whether or not it is an initial and/or an
accepting state. For the current example, this infor-

Andrew Mertz & William Slough

TUGboat, Volume 30 (2009), No. 2 219

\usetikzlibrary{automata, positioning}

...

\begin{tikzpicture}[>=latex, shorten >=1pt,

node distance=0.75in, on grid, auto]

% Vertices of automaton

\node[state, initial] (q0) {q_0};

\node[state] (q1) [right=of q0] {q_1};

\node[state, accepting] (q2) [right=of q1] {q_2};

\node[state] (q3) [above=of q1] {q_3};

% Edges of automaton

\path[->] (q0) edge [loop below] node {0} (q0)

(q0) edge node {1} (q1)

(q1) edge [loop above] node {1} (q1)

(q1) edge [bend left] node {0} (q2)

(q2) edge [bend left] node {0} (q1)

(q2) edge [bend right] node[swap] {1} (q3)

(q3) edge [bend right] node[swap] {1} (q0)

(q3) edge [loop above] node {0} (q3);

\end{tikzpicture}

q0start q1 q2

q3

0

1

1

0

0

11

0

Figure 12: A finite automaton drawn with the TikZ automata library.

mation is provided as a sequence of \node commands.
Information about initial and accepting states is pro-
vided as options to this command; the text appears
as an argument. Layout on the page is grid based:
the positions of states of the automaton are indicated
relative to the location of others.

Each edge of the automaton has a source and
destination node, but also requires additional infor-
mation about typesetting the figure. In particular,
edges can be drawn as a straight edge or with a bend;
also, the edge label can appear on either “side” of its
associated edge. (Imagine “driving” along an edge
in the indicated direction. The edge label is either
on your left or your right.)

Referring again to Figure 12, note that edge
information is given in one extended \path command.
By default, edges are drawn as straight edges, but
this behavior can be modified with bend options.
The swap option changes the default position of the
edge label, from left to right.

Options provided to the tikzpicture environ-
ment specify such things as the type of arrowhead
desired, the spacing of nodes on the grid, and the
amount of space to leave between an arrowhead and
a circular state.

The high-quality output made possible by the
automata library can be used in conjunction with
other software concerned with formal languages and
automata theory. One such system is JFLAP [13],
which allows users to draw and simulate automata.
The creation of state diagrams with JFLAP is easily
accomplished with mouse and keyboard interactions.
We have implemented a translation utility [9] which

converts automata stored in the JFLAP file format to
TikZ format, providing an avenue for typeset output
while freeing the user from knowing the underlying
TikZ language details.

The mindmap library provides support for draw-
ing hierarchical structures consisting of multicolored,
filled shapes with text and annotations. Figure 13
shows an example of a diagram created with this
library.

In our example, there is one root node, bicycle,
with three children: tandem bicycle, mountain bicy-
cle, and road bicycle. The latter child, in turn, has
two children of its own. Observe how this hierarchi-
cal information is conveyed within the TikZ code:
one root, with three children, and two further child
nodes. The grow option provides an angle indicating
where the child node should appear relative to its
parent. For this example, we scaled the entire dia-
gram by 65% to adjust the size of the circles. For this
to be done correctly, the transform shape option
is a crucial requirement.

5 CircuiTikZ

CircuiTikZ [12] is intended for drawing electrical
networks and is based on TikZ, as the name implies.
It is inspired by circuit-macros [1], a system based
on the m4 macro language.∗ However, unlike that
system, all processing is performed within the context
of TikZ, so circuits can be edited directly in the TEX
source document.

∗ As an aside, circuit-macros is capable of producing
PGF output.

A TikZ tutorial: Generating graphics in the spirit of TEX

220 TUGboat, Volume 30 (2009), No. 2

\usetikzlibrary{mindmap}

...

\begin{tikzpicture}[scale=0.65]

\path[mindmap, concept color=black, text=white, transform shape]

node[concept] {bicycle}

child[grow=230, concept color=blue!80!black] {

node[concept]{road bicycle}

child[grow=-120] {

node[concept]{time trial bicycle}

}

child[grow=-60] {

node[concept]{road racing bicycle}

}

}

child[grow=180, concept color=red!80!black] {

node[concept]{mountain bicycle}

}

child[grow=120, concept color=red!80!black] {

node[concept]{tandem bicycle}

};

\end{tikzpicture}

bicycle

road bicycle

time trial

bicycle

road racing

bicycle

mountain

bicycle

tandem

bicycle

Figure 13: Example output of the mindmap library.

R1

+−

Figure 14: A sampling of circuit symbols available
from CircuiTikZ.

Figure 14 shows some of the symbols which
are available within CircuiTikZ. Symbols for both
American and European electrical conventions are
available.

Figure 15 shows how one might draw a diagram
for an RLC circuit. As can be seen, its specification
uses Cartesian coordinates and a sequence of \draw
commands. Most of these commands specify a start-
ing and ending point, along with a symbol (such
as a resistor) to draw midway between these two
points. Observe how electrical connections are not
explicitly described as filled circles, but instead use
the option *-* to indicate the connections at both
ends. The grid was included as an aid to understand
how the diagram was constructed. The origin for
this diagram appears at the lower left corner.

6 Combinatorial graphs via tkz-graph

Combinatorial graphs, as opposed to graphs of func-
tions, are the structures studied in the branch of
mathematics known as graph theory. Drawing such
graphs is an application made-to-order for TikZ.
However, several other packages, tkz-graph and
tkz-berge [8], are specialized for this task and pro-
vide simplifications.

Figure 16 provides a glimpse of the possibilities
with the tkz-berge package. This package, named
in honor of the mathematician Claude Berge, is pri-
marily intended for drawing the well-known graphs
in the field. Rather than explore the details of this
package, we instead turn our attention to tkz-graph

which can be used to draw arbitrary graphs.
Figure 17 illustrates a five-vertex graph drawn in

three different styles. One attractive feature of this
package is that it is very easy to switch from one style
to another, primarily by stating the desired style as
an option. As a minor complication, when vertex
labels appear outside their respective vertices, as in
the middle graph of Figure 17, additional information
about relative location must be supplied.

Figure 18 provides the details needed to draw
this graph in the “normal” style, information con-
veyed in the \GraphInit command. Mathematically,
it is unimportant where each vertex appears on the
page. However, in order to draw the graph, a location
is needed for each of the vertices. Of the various ways
allowed to specify these locations, we have chosen to
use a Cartesian coordinate system. Each \Vertex

Andrew Mertz & William Slough

TUGboat, Volume 30 (2009), No. 2 221

\usepackage[american]{circuitikz}

...

\begin{circuitikz}

\draw [help lines] (0,0) grid (6,4);

\draw (0,0) to [V=V] (0,4);

\draw (0,4) to (6,4);

\draw (1,4) node[above] {$I \rightarrow$};

\draw (6,4) to [C=C] (6,0);

\draw (4,4) to [L=L, *-*] (4,0);

\draw (2,4) to [R=R, *-*] (2,0);

\draw (6,0) to (0,0);

\end{circuitikz}

+
−V

I →

CLR

Figure 15: An RLC circuit drawn with CircuiTikZ.

Figure 16: A brief gallery of graphs drawn by tkz-berge. Images created by Alain Matthes.

A B

CD

E

A B

CD

E

Figure 17: An undirected graph drawn with tkz-graph in three different styles: normal, classic, and simple.

command introduces a desired location and a vertex
name. Each edge of the graph is specified with an
\Edge command.

To change the drawing so vertex labels are omit-
ted simply requires a modification to the GraphInit

command:

\GraphInit{vstyle=Simple}

To change the appearance of the graph so ver-
tex labels appear next to their respective vertices,
two changes are required. First, the vertex style is
changed:

\GraphInit{vstyle=Classic}

To specify each label position, another option is
included in each Vertex command. So, for example,
since vertex C is in the northeast corner relative to
its vertex, we use a specification of 45◦:

\Vertex[x=4, y=4, Lpos=45] {C}

A small syntactic detail is worth noting here: in
TikZ, commands are terminated with a semicolon,
but no semicolons are required with tkz-graph.

The addition of just one line to our example,

\tikzset{EdgeStyle/.style={post}}

yields a directed graph, as shown in Figure 19. In-
cluding the label option to each Edge command pro-
vides a way to describe a weighted, directed graph,
as illustrated in Figure 20.

7 Two-dimensional constructions
via tkz-2d

The tkz-2d package [7] is a collection of macros
intended to simplify the construction of diagrams in
a two dimensional Cartesian coordinate system. It
has particular strengths in the realm of geometric
constructions, as it provides higher level abstractions

A TikZ tutorial: Generating graphics in the spirit of TEX

222 TUGboat, Volume 30 (2009), No. 2

\usepackage{tkz-graph}

...

\begin{tikzpicture}

% Initialize tkz-graph

\GraphInit[vstyle=Normal]

% Vertices

\Vertex[x=0, y=0] {A}

\Vertex[x=4, y=0] {B}

\Vertex[x=4, y=4] {C}

\Vertex[x=0, y=4] {D}

\Vertex[x=2, y=2] {E}

% Edges

\Edge(A)(B) \Edge(B)(C)

\Edge(C)(D) \Edge(D)(A)

\Edge(A)(E) \Edge(E)(B)

\end{tikzpicture}

A B

CD

E

Figure 18: Undirected graph drawn with tkz-graph.

\usepackage{tkz-graph}

\usetikzlibrary{arrows}

...

\begin{tikzpicture}

% Initialize tkz-graph

\GraphInit[vstyle=Normal]

\tikzset{EdgeStyle/.style={post}}

% Vertices

... same as above ...

\end{tikzpicture}
A B

CD

E

Figure 19: A directed graph drawn with tkz-graph.

\usepackage{tkz-graph}

\usetikzlibrary{arrows}

...

\begin{tikzpicture}

% Initialize tkz-graph

\GraphInit[vstyle=Normal]

\tikzset{EdgeStyle/.style={post}}

% Vertices

\Vertex[x=0, y=0] {A}

\Vertex[x=4, y=0] {B}

\Vertex[x=4, y=4] {C}

\Vertex[x=0, y=4] {D}

\Vertex[x=2, y=2] {E}

% Edges

\Edge[label=10](A)(B) \Edge[label=5](B)(C)

\Edge[label=20](C)(D) \Edge[label=8](D)(A)

\Edge[label=30](A)(E) \Edge[label=16](E)(B)

\end{tikzpicture}

A B

CD

E

10

5

20

8

30 16

Figure 20: A directed graph drawn with tkz-graph.

Andrew Mertz & William Slough

TUGboat, Volume 30 (2009), No. 2 223

Figure 21: A brief gallery of pictures drawn by tkz-2d. Images created by Alain Matthes.

\begin{tikzpicture}

% Initialize tkz-2d

\tkzInit

% Define and label two points, A and B, and a segment joining them

\tkzPoint[pos=left](1,1){A}

\tkzPoint[pos=right](4,2){B}

\tkzSegment[style=thick](A/B)

% Construct two circles, each with radius AB

\tkzCircle(A,B)

\tkzCircle(B,A)

% Find and label the intersection points

% C and D of the two circles

\tkzInterCC(A,A,B)(B,B,A){C}{D}

\tkzDrawPoint[pos=above left](C)

\tkzDrawPoint(D)

% Draw the remaining sides of the equilateral triangle

\tkzPolySeg(A,C,B)

% Draw a perpendicular bisector

\tkzMidPoint(A,B){E}

\tkzSegment[style=dashed](C/D)

% Mark the 90 degree angle

\tkzRightAngle(A/E/C)

\end{tikzpicture}

A

B

C

D

E

Figure 22: A construction due to Euclid, expressed with tkz-2d.

compared to those available to the TikZ user. The
illustrations shown in Figure 21 provide a glimpse of
the possibilities afforded by this package.

For an example of tkz-2d, we consider a geomet-
ric construction due to Euclid. In this construction,
a line segment is given and the goal is to construct
an equilateral triangle, one side of which is the given
segment. A similar construction appears as a tutorial
in the TikZ manual, although we feel the approach
made possible by tkz-2d is more natural.

Figure 22 provides the full details of the con-

struction. We begin by introducing two points, spec-
ifying the position and label information, using the
\tkzPoint command. The two circles are drawn with
the \tkzCircle command, given the center and im-
plied radius. The most complicated statement shown
here is \tkzInterCC which computes the intersection
points of the two circles, storing their coordinates in
C and D. The remainder of the construction follows
easily from tkz-2d primitives.

A second example of the tkz-2d package is
shown in Figure 23. Observe that the starred form

A TikZ tutorial: Generating graphics in the spirit of TEX

224 TUGboat, Volume 30 (2009), No. 2

\begin{tikzpicture}[scale=1/2] % scaled to half-size

% Initialize tkz-2d

\tkzInit

% Define three points of a 3-4-5 right triangle

\tkzPoint*(0,0){C}

\tkzPoint*(4,0){A}

\tkzPoint*(0,3){B}

% Draw the three sides of the triangle

\tkzPolygon(C,A,B)

% Create a 4 by 4 grid and move it down

\begin{scope}[yshift=-4cm]

\tkzGrid(0,0)(4,4)

\end{scope}

% Create a 3 by 3 grid and move it left

\begin{scope}[xshift=-3cm]

\tkzGrid(0,0)(3,3)

\end{scope}

% Create a 5 by 5 grid for the hypotenuse

\begin{scope}[yshift=3cm, rotate=-atan(3/4)]

\tkzGrid(0,0)(5,5)

\end{scope}

\end{tikzpicture}

Figure 23: An illustration of the Pythagorean theorem drawn with tkz-2d.

of the \tkzPoint command used here causes a point
to be defined, but no corresponding label is drawn.
Another interesting aspect of this example is the use
of the TikZ scope environment to limit the effect of
the shift and rotation operations applied to each of
the three grids.

A few comments about these examples. Like
tkz-graph, semicolons are not needed to terminate
commands. Unlike TikZ, the use of spaces to separate
arguments within tkz-2d commands is not allowed,
an unfortunate requirement in our opinion. Finally,
it is possible to blend “pure” TikZ commands with
tkz-2d commands.

8 GeoGebra and TikZ

GeoGebra [4] is a software system intended for mathe-
matics education. Although not limited to geometry,
GeoGebra is an example of an interactive geometry
system. In these systems, geometric constructions
can be performed using fundamental objects such as
points, lines and circles. After the construction is
complete, it can be modified by dragging points or
moving sliders, while preserving the key geometric
relationships that defined the construction.

Figure 24 shows a GeoGebra session involving
the geometric construction considered in Section 7.
In contrast to specifying such a construction with

Figure 24: Screen image of a GeoGebra session.

TikZ commands, this construction was driven by the
menus provided by the GUI presented by GeoGebra,
involving construction choices such as “circle with
center through point”, “intersect two objects”, and
“segment between two points”. In brief, GeoGebra
provides for geometric constructions in a menu-driven
approach, unlike the language-based approaches of
TikZ and tkz-2d.

A relatively new feature of GeoGebra is its abil-
ity to export to the PGF/TikZ format. Once a con-

Andrew Mertz & William Slough

TUGboat, Volume 30 (2009), No. 2 225

struction is complete, it can be exported to TikZ
format with a simple menu choice. The resulting
tikzpicture environment can be placed in a TEX
document. This feature provides an avenue for pro-
ducing high quality graphics output without the
overhead of learning TikZ language details. There
are currently four different output formats supported:
LATEX, plain TEX, ConTEXt, and the LATEX beamer

class. (See [10] and [17], for example, for information
about Beamer.) With the beamer format, the geo-
metric construction is formatted for a “play-by-play”
presentation, since pauses are inserted after each key
construction step.

The GeoGebra software is free — it is open source
and licensed under the GNU General Public License.
Since it is based on Java, it runs on many different
computer systems.

9 PDF and SVG output

For many users of TikZ, the overall aim is to generate
several desired graphics, merging them with text to
produce one document. However, there are situations
where one simply wants to generate a collection of
graphics images in PDF format, one per file.

Stand-alone PDF can be generated through the
use of the preview package [5] and pdftk, the PDF

toolkit [14], free software licensed under the GNU

GPL and available for many computer systems. A
schematic of the work flow needed to produce stand-
alone PDF is shown in Figure 25.

With an appropriately constructed LATEX file,
pdflatex will generate a PDF file, where each page
consists of a tightly cropped image obtained from a
tikzpicture environment. The PDF toolkit has a
“burst” mode which can then be used to obtain the
desired files, one image per file.

Listing 4 illustrates how to use the preview

package for this purpose. For some situations, pro-
ducing tightly cropped graphics is a bit too aggres-
sive. However, the preview package conveniently
allows the amount of cropping to be specified. In
this example, we have specified a two point margin
around the edges of the graphic by setting the length
\PreviewBorder.

SVG [6], scalable vector graphics, is a format
intended for use on the World Wide Web, in large
measure due to its ability to obtain scalable graphical
rendering within a browser. One of the supported
output formats of PGF, and therefore TikZ, is SVG.
Unfortunately, as is explained in the TikZ manual,
there are some serious restrictions on the types of
TikZ pictures which can be converted.

Happily, there are alternate routes for producing
SVG output which do not suffer from these restric-

\documentclass{article}

% Use TikZ and any associated libraries

\usepackage{tikz}

\usetikzlibrary{arrows, automata}

\usepackage[tightpage, active]{preview}

\setlength{\PreviewBorder}{2pt}

\PreviewEnvironment{tikzpicture}

\begin{document}

\begin{tikzpicture} % First picture

...

\end{tikzpicture}

\begin{tikzpicture} % Second picture

...

\end{tikzpicture}

... % Other pictures

\end{document}

Listing 4: Using the preview package to generate
tightly-cropped graphics images, one per page.

tions. In fact the technique, shown in Figure 26, is
very similar to that for the production of stand-alone
PDF. The key difference lies in the conversion of PDF

to SVG, which can be accomplished with pdf2svg

[2], a free utility.

10 Summary

TikZ is a very capable system which integrates vector
graphics with TEX. Since its inception roughly four
years ago, it has continued to evolve, gaining new
capabilities and features. Moreover, a variety of
other programs which can export to TikZ and/or PGF

formats provides some evidence of its acceptance and
popularity in the TEX world. Although not shown
in our examples, TikZ’s support for color allows for
very compelling graphics, especially in conjunction
with Beamer documents.

For some specialized domains, such as graph the-
ory and theory of computing, there are relatively sim-
ple techniques which utilize TikZ to produce graphics
that meet or exceed the quality of figures found in
textbooks and journals in those areas.

References

[1] Dwight Aplevich. M4 macros for electric
circuit diagams in LATEX documents. http:

//mirror.ctan.org/graphics/circuit_macros/

doc/CMman.pdf.

[2] David Barton. pdf2svg. http://www.

cityinthesky.co.uk/pdf2svg.html.

[3] Kjell Magne Fauske. TEXample.net: Ample
resources for TEX users. http://www.texample.

net/.

A TikZ tutorial: Generating graphics in the spirit of TEX

226 TUGboat, Volume 30 (2009), No. 2

LATEX
file

Use
preview

package

pdflatex
PDF

file

one
cropped
image
per page

pdftk
(burst)

PDF

file #2

PDF

file #1

one
cropped
image
per file

PDF
file #3

Figure 25: Processing a LATEX file to obtain stand-alone PDF output.

LATEX
file

Use
preview

package

pdflatex
PDF

file

one
cropped
image
per page

pdftk
(burst)

PDF

file #2

PDF

file #1

PDF

file #3

pdf2svg

pdf2svg

pdf2svg

SVG

file #1

SVG

file #2

SVG

file #3

Figure 26: Processing a LATEX file to obtain stand-alone SVG output.

[4] Markus Hohenwarter. GeoGebra. http:

//www.geogebra.org/cms/.

[5] David Kastrup. The preview package for LATEX.
http://mirror.ctan.org/macros/latex/

contrib/preview/.

[6] Chris Lilley and Doug Schepers. W3C for the SVG
working group. http://www.w3.org/Graphics/

SVG/.

[7] Alain Matthes. tkz-2d. http://altermundus.fr/
pages/download.html.

[8] Alain Matthes. tkz-graph and tkz-berge.
http://altermundus.com/pages/tikz.html.

[9] Andrew Mertz and William Slough. jflap2tikz.
http://mirror.ctan.org/graphics/jflap2tikz.

[10] Andrew Mertz and William Slough. Beamer by
example. TUGboat, 26:68–73, 2005.

[11] Andrew Mertz and William Slough. Graphics with
PGF and TikZ. TUGboat, 28:91–99, 2007.

[12] Massimo Redaelli. CircuiTikZ. http:

//home.dei.polimi.it/mredaelli/circuitikz/.

[13] Susan H. Rodger. JFLAP. http://www.jflap.

org/.

[14] Sid Stewart. pdftk. http://www.accesspdf.com/
pdftk/.

[15] Till Tantau. PGF & TikZ. http://mirror.

ctan.org/graphics/pgf/base/doc/generic/pgf/

pgfmanual.pdf.

[16] Till Tantau. PGF and TikZ—graphic systems for
TEX. http://sourceforge.net/projects/pgf/.

[17] Till Tantau. User’s guide to the beamer class.
http://latex-beamer.sourceforge.net.

[18] Zofia Walczac. Graphics in LATEX using TikZ.
TUGboat, 20:176–179, 2008.

⋄ Andrew Mertz & William Slough
Department of Mathematics and

Computer Science
Eastern Illinois University
Charleston, IL 61920
aemertz (at) eiu dot edu,

waslough (at) eiu dot edu

Andrew Mertz & William Slough

TUGboat, Volume 30 (2009), No. 2 227

Medical pedigrees:
Typography and interfaces

Boris Veytsman and Leila Akhmadeeva

Abstract

We discuss the history of medical pedigrees and its
importance for the design of the modern pedigree
drawing software.

1 Writing on the wall

The participants of TUG 2009 could see on the wall
of Room 126, DeBartolo Hall, University of Notre
Dame, a poster 23 feet wide. This poster depicted a
pedigree of one of the authors of this paper (Leila).
The pedigree included 13 generations (since the be-
ginning of the 17th century), about three hundred
persons in total. It was created in the following
way: Leila did research in the National Archives
of Bashkir Republic, interviewed her aunt and other
relatives and deciphered the notes about family his-
tory dictated by her grandfather at mid-1980s. She
put the data into an Excel file and periodically e-
mailed the updated file to Boris, who then run it
through a custom-made Makefile, getting as the re-
sult a PDF file. This file was e-mailed back. The fi-
nal version was printed on two 16 foot sheets, which
were taped together by Leila and her cousin in Ufa.

This project became possible due to the suite
of programs for automatic drawing of medical pedi-
grees we have been developing since 2005 (Veytsman
and Akhmadeeva, 2007a; Veytsman and Akhmade-
eva, 2007c). Their previous versions were discussed
at TEX meetings (Veytsman and Akhmadeeva, 2006;
Veytsman and Akhmadeeva, 2007b; Veytsman and
Akhmadeeva, 2008) as well as conferences on genet-
ics (Akhmadeeva, 2007). Now that the programs
are no longer at the proof of concept level, we be-
came more interested in improving them and making
them of practical use for physicians, other health
care specialists, geneticists, researchers, educators,
and students.

There are basically two ways to improve a type-
setting program. First, we can improve its output,
making the result more beautiful and clear. Second,
we can improve its interface, making it more conve-
nient, user-friendly and adding new features. In this
paper we discuss both these approaches.

2 A (very) short history of pedigree
typography

A usual approach to beautiful typography is the
study of history. The aesthetics of a printed page
is based on the tradition. Thus it was natural for

us to turn to the history of pedigrees in our quest
to make them beautiful. We were fortunate to find
the seminal paper (Resta, 1993) discussing just that
topic. Resta unearthed many early pedigrees, and
this section is based primarily on his research.

One of the biggest surprises for us was the fact
that pedigree drawing is a relatively modern art,
started as late as the middle of the 19th century.
One would think that people drew genealogical trees
for ages, and thus pedigrees should have long history
with venerable traditions. Still, this is not the case.
While both genealogical trees and pedigrees are a
graphical depiction of a family history, the goals of
these two are completely different. A genealogical
tree is intended to show the lineage of an individ-
ual, while a pedigree is used to show genetic traits.
This difference in goals leads to a considerable differ-
ence in results. As an illustration of this difference,
we show in Figure 1 a very nice genealogical tree
created with PSTricks (Coustillas and Girou, 2004).
The corresponding pedigree is shown in Figure 2.
Note that the data of Figure 1 are actually not suf-
ficient for the medical analysis, so we guessed that
the marriage of Paul Joannon and Laure de Mor-
tillet was childless. We also could not guess the re-
lationship between the first and the second husbands
of Élise Vidal; were they brothers? an uncle and a
nephew? — so we decided against putting them on
the chart.

Even a casual glance at these two pictures shows
the difference between the presentations. Clearly,
the typographical traditions of genealogical trees is
not very helpful for pedigrees.

One of the first known medical pedigrees was
published by Earle in the middle of the 19th century.
He studied cases of color blindness in his own fam-
ily. The pedigree included only females. Earle found
out that his printer used to typeset musical sheets,
so taking musical notes for symbols was a natural de-
cision. Unaffected females were represented by half
note symbols, while affected ones were represented
by quarter-notes. Figure 3 shows the result.

This nomenclature was apparently not used by
anybody but Earle himself. Other scientists chose
other ways to represent pedigrees. An influential
researcher of the latter part of the century, Francis
Galton, in his books and papers published in 1869–
1904 dispensed with drawing pedigrees, and used
intricate tables instead (Resta, 1993).

The rediscovery of Mendel’s seminal works on
plant genetics might be the cause of the adoption of
the symbols of Mars (Ä) and Venus (Ã) for males
and females. A typical (hand-drawn) pedigree us-
ing this nomenclature is shown in Figure 4. It was

Medical pedigrees: Typography and interfaces

228 TUGboat, Volume 30 (2009), No. 2

Affinité d’Élise Vidal avec Sabine Vigière d’Anval, sœur de Paul

et avec Laure de Mortillet, sœur de la fiancée de Paul

Alexis Vidal

(, Pézenas – , St-Rambert-l’̂Ile-Barbe, auj. Lyon)
négociant, propriétaire

x , Lyon
Adéläıde Bourbon

(, Lyon, psse St-Pierre St-Saturnin – , Lyon er)
fille d’André, md toilier, et de Jeanne Trossier

Alexis Vidal

(, Lyon – , Bordeaux)
chevalier de la Légion d’honneur,
président du tribunal de commerce
de Lyon, membre de la chambre de
commerce de Lyon, président du

conseil d’administration de la Caisse
d’épargne de Lyon, administrateur

des hôpitaux et hospices civils
de Lyon, négociant

x , Lyon
Sabine Vigière d’Anval

(, Lyon – , Paris e)
fille de Camille, propriétaire
rentier, et de Clarisse Dumas

Élise Vidal

(, Lyon –
, Lyon e)
x o , Lyon
Pierre Joannon
(, Lyon –
, id.)

négociant, rentier
x o , Lyon

Antonin Joannon
(, Givors –
, Lyon e)
cher de la L.H.,

négociant, banquier

Paul Joannon
(, Lyon –

, Marseille ?)
avocat

Alexandre de Mortillet

(, Romans, Drôme – , Renage)
chevalier de la Légion d’honneur et

de l’ordre de St-Ferdinand d’Espagne,
capitaine de cavalerie, ptaire rentier

x , St-Vallier, Drôme
Félicité Chartron

(, St-Vallier – , Lyon e)
fille de Victor, négociant, et de

Laure Jaricot

Laure
de Mortillet

(, Renage –
, Marseille ?)

Alexandrine
de Mortillet

(, Renage –
, id.)

fiancée à Paul
Vigière d’Anval

(, Lyon –
, Belleville,

Rhône)
fils de Camille,
ptaire rentier, et

de Clarisse Dumas

x , Renage

Figure 1: A genealogical tree from Coustillas and Girou, 2004

proposed by Pearson based on Galton’s ideas. Karl
Pearson, widely known now for his works in mathe-
matical statistics, was a student of Galton, and later
took his position as the director of the Laboratory
for National Eugenics, UK.

It should be said that the relationship between
eugenics and modern genetics resembles the rela-
tionship between alchemy and chemistry or astrol-
ogy and astronomy. We no longer believe that we
can breed a better human like we breed better dogs
or chickens: people are more complex beings. We
also do not believe that stars can be used to predict
one’s fate or that base metals can be transmuted
to gold without a nuclear reactor. Nevertheless the
methods and nomenclature developed by astrologers

and alchemists are widely used today in astronomy
and chemistry. Similarly the methods and nomen-
clature developed in eugenics have found their places
in modern genetics.

Later Pearson and the Laboratory for National
Eugenics used stylized symbols for males and fe-
males, only distantly resembling the original astro-
nomical signs. A typical pedigree in this style is
shown in Figure 5.

This nomenclature was used in medical and ge-
netics journals up to the 1970s, usually as an alter-
native to the modern one. Sometimes the disputes
between the proponents of these were rather bitter.
Resta cites different possible reasons why Pearson-
Galton symbols did not survive. We would suggest

Boris Veytsman and Leila Akhmadeeva

TUGboat, Volume 30 (2009), No. 2 229

III:1 III:3 III:5III:2 III:4 III:6

I:1 I:2

IV:2IV:1

II:3II:1 II:2 II:4

I:1 André Bourbon; né: ignoré; âge au décès: ignoré.

I:2 Jeanne Trossier; né: ignoré; âge au décès: ignoré.

II:1 Alexis Vidal; né: 1777; âge au décès: 75; négociant, propriétaire.

II:2 Adéläıde Bourbon; né: 1775; âge au décès: 80.

II:3 Victor Chartron; né: ignoré; âge au décès: ignoré; négociant.

II:4 Laure Jaricot; né: ignoré; âge au décès: ignoré.

III:1 Pierre Joannon; né: 1806; âge au décès: 32; négociant, rentier.

III:2 Élise Vidal; né: 1814; âge au décès: 54.

III:3 Alexis Vidal; né: 1812; âge au décès: 73; chevalier de la Légion d’honneur, président du
tribunal de commerce de Lyon, membre de la chambre de commerce de Lyon, président
du conseil d’administration de la Caisse d’épargne de Lyon, administrateur des hôpitaux
et hospices civils de Lyon, négociant.

III:4 Alexandre de Mortillet; né: 1794; âge au décès: 65; chevalier de la Légion d’honneur
et de l’ordre de St-Ferdinand d’Espagne, capitaine de cavalerie, ptaire rentier.

III:5 Félicité Chartron; né: 1820; âge au décès: 53.

III:6 Alexandrine de Mortillet; né: 1843; âge au décès: 19; fiancée à Paul Vigière d’Anval.

IV:1 Paul Joannon; né: 1834; âge au décès: 48; avocat.

IV:2 Laure de Mortillet; né: 1840; âge au décès: 31.

Figure 2: A pedigree based on the data of Figure 1

Figure 3: One of the first pedigrees, Earle (1845). From Resta, 1993

Figure 4: A pedigree using Mars and Venus symbols, Pearson (1912). From Resta, 1993

Medical pedigrees: Typography and interfaces

230 TUGboat, Volume 30 (2009), No. 2

Figure 5: A pedigree using stylized Galton-Pearson
Symbols (Mott, 1910). From Resta, 1993

that the problem was in the legibility; sometimes it
is difficult to see the thin arrows used to differentiate
between males and females on the diagrams, espe-
cially at small sizes. The modern method of using
squares and circles leads to much better legibility.
One of the lessons of classical typography is that
the more legible solution usually wins in the long
run (the run may be very long, however).

A more legible way to represent pedigrees can
be found in the works of German authors. A rather
forceful pedigree in the GermanSippschaftstafel style
is shown in Figure 6. It is anything but illegible. Use
of circles and squares makes the task of distinguish-
ing between males and females rather easy.

This style was developed by Henry Goddard
and Charles Davenport, and approved by the pow-
erful Eugenics Records Office (ERO) in the US. ERO

popularized this style in numerous publications. It
provided instruction, free blank forms and stamps
with circles and squares to the families willing to
furnish their pedigrees to ERO. A sample pedigree
from an ERO pamphlet is shown in Figure 7. It
looks almost like a modern pedigree, especially if we
compare it to a hand drawn one (Figure 8).

Today pedigrees in Goddard-Davenport styles
are ubiquitous. It is almost impossible to find a jour-
nal in genetics, hereditary diseases or related fields
without at least several papers with pedigrees. Some
typical pedigrees are shown in Figures 9 and 10.
Note the interesting way to show haplotypes in Fig-
ure 10.

Modern pedigrees are legible and clear. They
are also beautiful. The relatively short history of
medical pedigrees shows, that the quest for clarity
and legibility also causes beauty, almost as a side
effect. This should not be surprising for students
of typographical art: we know that aesthetics of a

printed copy is always related to a clear representa-
tion of the author’s thoughts.

3 Interfaces

Since our programs (Veytsman and Akhmadeeva,
2007a; Veytsman and Akhmadeeva, 2007c) are in-
tended primarily for people with minimal TEXnical
background, user-friendly interfaces are important
for them. There are two main items to set up for a
program: what to print and how to print. Accord-
ingly there are two major interfaces: setting up the
pedigree contents and setting up the pedigree layout
and appearance.

We choose spreadsheets for the first task, set-
ting up the contents of the pedigree. A user puts the
information about proband and her or his relatives
in a table, like the one shown in Figure 11. Such ta-
bles can be easily prepared with popular spreadsheet
programs. One can argue whether a spreadsheet is
an optimal input interface, but it has the advan-
tage of being familiar to most users. Indeed, many
geneticists already store the information in spread-
sheets, so the use of our programs would be natural
to them.

Another advantage of this interface is the fact
that tables like the one in Figure 11 can be easily ob-
tained from SQL databases. Thus our program can
be integrated with larger database-driven projects.

For the second task, setting up the layout of the
pedigree, the interface is much less easy. It involves
setting up configuration files, which are snippets of
Perl code, as shown in Figure 12. This was a de-
sign decision: we did not foresee our users changing
the styles of their pedigrees. While this conclusion
might be right for some (many?) situations, it was
definitely not right for the application described in
Section 1: the default style was not designed for a
huge pedigree with more than three hundred per-
sons, so we ought to change the configuration file.
Nevertheless we still doubt that making changes in
the pedigree layout too easy is necessarily a Good
Thing. Probably a better solution would be to offer
a user a set of preconfigured layouts.

4 The future

Our quest for better typesetting of pedigrees sur-
prisingly showed that the preliminary design deci-
sions we made (Veytsman and Akhmadeeva, 2007a;
Veytsman and Akhmadeeva, 2007c) were sound. Of
course, there are still many ways to improve the pro-
gram suites.

When this work was reported at TUG 2009,
Karl Berry suggested setting up a web site, where

Boris Veytsman and Leila Akhmadeeva

TUGboat, Volume 30 (2009), No. 2 231

Figure 6: A pedigree in Sippschaftstafel style (Rüdin, 1910). From Resta, 1993

Medical pedigrees: Typography and interfaces

232 TUGboat, Volume 30 (2009), No. 2

Figure 7: Sample pedigree from a Eugenics Records Office pamphlet, 1911. From Resta, 1993

Boris Veytsman and Leila Akhmadeeva

TUGboat, Volume 30 (2009), No. 2 233

Figure 8: A modern hand-drawn pedigree. From Bennett, 1999

Figure 9: A pedigree from Krüger et al., 2008

Medical pedigrees: Typography and interfaces

234 TUGboat, Volume 30 (2009), No. 2

Figure 10: A pedigree from Nakashima et al., 2008

Id |Name |Sex |DoB | DoD|Mother|Father|Proband|Comment

AV |Alexis Vidal |male |1777|1852| | | |n\’egociant, propri\’etaire

AB |Ad\’ela\"\i{}de Bourbon|female|1775|1855|JT |AnB | |

EV |\’Elise Vidal |female|1814|1868|AB |AV | |

PJ |Pierre Joannon |male |1806|1838| | | |n\’egociant, rentier

PaJ|Paul Joannon |male |1834|1882|EV |PJ | |avocat

...

Figure 11: An example of pedigree input

people could create simple typeset pedigrees with-
out the trouble of installing the full TEX suite — and
perhaps becoming interested enough in the results
to install it anyway. This is an idea worth pursuing.

Karl Pearson noted in 1912, A complete pedigree
is often a work of great labour, and its finished form
is frequently a work of art. We hope our work helps
to make pedigree drawing less laborious — while pre-
serving the beauty of the result.

Acknowledgements

We appreciate the kind permission by Prof. Resta
to use his illustrations for this paper.

We are grateful to Karl Berry for his tireless
support and great suggestions.

One of the authors (LA) would like to acknowl-
edge the travel support from the TEX Users Group,
Russian Federation President’s Board for Support

Boris Veytsman and Leila Akhmadeeva

TUGboat, Volume 30 (2009), No. 2 235

Do we want to print a legend?

$printlegend = 1;

Fields to include in the legend.

Delete Name for privacy.

@fieldsforlegend = qw(Name DoB AgeAtDeath

Comment);

Fields to put at the node.

Delete Name for privacy.

our @fieldsforchart = qw();

Figure 12: A fragment of our configuration file

of Young Russian Scientists and Scientific Schools
(grant No. MD-1195.2008.7), Russian Foundation for
Basic Research (grant No. 09-04-08060-z) and Min-
istry of Education and Science of the Russian Fed-
eration (grant No. NK-30P/12).

References

Akhmadeeva, Leila. “Using a New Package for
Drawing Pedigrees for Teaching Medical
Genetics”. Eur. J. Hum. Gen. 15(Suppl. 1),
338, 2007.

Bennett, Robin L. The Practical Guide to the
Genetic Family History. Wiley-Liss, Inc.,
New York; Chichester; Weinheim; Brisbane;
Singapore; Toronto, 1999.

Coustillas, Françoise, and D. Girou. “[Example of
Genealogy Tree with PSTricks]”. http://tug.
org/PSTricks/main.cgi?file=Examples/

Genealogy/genealogy, 2004.

Krüger, Stefan, M. Kinzel, C. Walldorf,
S. Gottschling, A. Bier, S. Tinschert,
A. von Stackelberg, W. Henn, H. Görgens,
S. Boue, K. Kölble, R. Büttner, and H. K.
Schackert. “Homozygous PMS2 Germline
Mutations in Two Families With Early-Onset
Haematological Malignancy, Brain Tumours,
HNPCC-Associated Tumours, and Signs of
Neurofibromatosis Type 1”. Eur. J. Hum. Gen.
16(1), 62–72, 2008.

Nakashima, Mitsuko, M. Nakano, A. Hirano,
T. Kishino, S. Kondoh, N. Miwa, N. Niikawa,
and K.-i. Yoshiura. “Genome-wide linkage
analysis and mutation analysis of hereditary
congenital blepharoptosis in a Japanese
family.” J. of Hum. Gen. 53(1), 34–41, 2008.

Resta, Robert G. “The Crane’s Foot: The Rise
of the Pedigree in The Human Genetics”. J.
Genetic Couns. 2(4), 235–260, 1993.

Veytsman, Boris, and L. Akhmadeeva. “Drawing
Medical Pedigree Trees with TEX and
PSTricks”. PracTEX J. (4), 2006. http://www.
tug.org/pracjourn/2006-4/veytsman.

Veytsman, Boris, and L. Akhmadeeva. Creating
Medical Pedigrees with PSTricks and LATEX,
2007a. http://mirror.ctan.org/graphics/
pstricks/contrib/pedigree/pst-pdgr.

Veytsman, Boris, and L. Akhmadeeva. “Drawing
Medical Pedigree Trees with TEX and
PSTricks”. TUGboat 28(1), 100–109, 2007b.
http://www.tug.org/TUGboat/Articles/

tb28-1/tb88veytsman-pedigree.pdf.

Veytsman, Boris, and L. Akhmadeeva. A
Program For Automatic Pedigree Construction
With pst-pdgr. User Manual and Algorithm
Description, 2007c. http://mirror.ctan.
org/graphics/pstricks/contrib/pedigree/

pedigree-perl.

Veytsman, Boris, and L. Akhmadeeva. “Medical
Pedigrees with TEX and PSTricks: New
Advances and Challenges”. TUGboat 29(3),
484, 2008. http://www.tug.org/TUGboat/
Articles/tb29-3/tb93abstracts.pdf.

⋄ Boris Veytsman
Computational Materials Science

Center, MS 6A2
George Mason University
Fairfax, VA 22030
borisv (at) lk dot net

⋄ Leila Akhmadeeva
Bashkir State Medical University
3 Lenina St., Ufa, 450000, Russia
la (at) ufaneuro dot org

Medical pedigrees: Typography and interfaces

236 TUGboat, Volume 30 (2009), No. 2

A first look at the TEX Gyre fonts

Jim Hefferon

Most LATEX documents look alike. The authors of such

documents may respond to this observation with: the

software is a tool that is adjunct to their work and so

they just do what worked last time.

But for you, wouldn’t it be nice to make your paper

stand out, in a good way? One approach to that is to use

different fonts. Recently a new set of fonts have been

developed that are easy for TEX users and although they

are still under development, they are nonetheless very

handy today.

Besides that these fonts look good and have de-

sirable technical properties, they are great because you

will not need to do tricky incantations or to install ad-

ditional materials. If you have a recent TEX distribution

then you only need to add one line to your source file.

1 Background

In 1985, Steve Jobs persuaded Adobe to adapt their page

description language PostScript for the first LaserWriter.

Soon PostScript was so popular that authors could dis-

tribute a document in this format, trusting that recipients

had a suitable printer or could view it onscreen. This

was great for TEX users because there was no more need

to compile the document for a particular printer model.

Adobe specified a set of ten font families that any

PostScript printer must have (a family of fonts may con-

tain boldface, italic, etc.). So these ten have become

widely known and used.

Besides these ten, there are today thousands of

fonts available, either commercially or for free. (In the

past, fonts came in two formats, Type 1 and TrueType,

but there is now a standard, OpenType, that should soon

be the single format for all fonts.)

2 Gyre

So why do TEX users need new fonts when many thou-

sands are available?

Not many available fonts include characters for all

European languages (TEX can add accents and other

marks but the mechanism is annoying and interferes

with hyphenation) and not many are high quality, in-

cluding the work needed to make the characters display

correctly over a wide range of sizes. Of the fonts satis-

fying those criteria, very few are suitable for use with

mathematics. And of these, very few indeed are Free.

Hans Hagen, well-known in the TEX community as

the inventor of ConTEXt, initiated the Gyre project to

provide such a set of fonts. The execution team comes

from the Polish TEX users group GUST and includes

Bogusław Jackowski, Janusz M. Nowacki, and Marcin

Woliński. The team’s designs trace their lineage to

Tout le monde dans la province de Candahar connaît l’aven-

ture du jeune Rustan. Il était fils unique d’un mirza du

pays; c’est comme qui dirait marquis parmi nous, ou baron

chez les Allemands. Le mirza, son père, avait un bien hon-

nête. On devait marier le jeune Rustan à une demoiselle, ou

mirzasse de sa sorte. Les deux familles le désiraient passion-

nément. Il devait faire la consolation de ses parents, rendre

sa femme heureuse, et l’être avec elle.

Figure 1: Gyre Chorus

the Adobe standard ten (the descent runs through clone

fonts made freely available by URW++). Thus, these are

familiar and tested designs that fit the needs of many

users.

To transform the existing designs into fonts that

are optimal for TEX, the team went through a com-

plex sequence of steps; see the papers on the Gyre

web page [2]. This included adding characters with

accents and other diacritic marks to cover all European

languages. This also includs adding the mathematical

symbols that TEX users expect.

The team is now making the fonts as usable with

mathematics as are Knuth’s original fonts; for instance,

they are adjusting the spacing between characters and

subscripts. But you can nonetheless start using these

fonts today in documents that have mathematics, by us-

ing packages intended to work with the Adobe fonts.

3 Choices

Two of Adobe’s standard ten, Symbol and Zapf Ding-

bats, are not text fonts and so Gyre does not include ex-

tensions of them. This table gives the remaining eight

with their Gyre equivalents.

Adobe name Gyre name

Zapf Chancery Chorus

Courier Cursor

Helvetica Heros

Avant Garde Adventor

Bookman Bonum

New Century Schoolbook Schola

Times Termes

Palatino Pagella

A sample of the first in that table, Chorus, is shown

in Figure 1, which is produced by this source (from [5]).

\documentclass{article}

\usepackage{tgchorus}

\usepackage{ucs} % Unicode support

\usepackage[utf8x]{inputenc}

\usepackage[T1]{fontenc}

\usepackage[french]{babel}

Jim Hefferon

TUGboat, Volume 30 (2009), No. 2 237

x sin tan cot cos

.00 .00000 .00000 ∞ 1.00000

.01 .01000 .01000 99.997 0.99995

.02 .02000 .02000 49.993 .99980

.03 .03000 .03001 33.323 .99955

Figure 2: Gyre Cursor used for a table

\pagestyle{empty}

\begin{document}\thispagestyle{empty}

Tout le monde dans la province de Candahar

connaît l’aventure du jeune Rustan.

...

rendre sa femme heureuse, et l’être avec elle.

\end{document}

Note the lack of backslashes in the text, that is, the

French author can write in French. Note also that the

one line \usepackage{tgchorus} is all that we need

to use Gyre Chorus in this non-mathematical document.

While Chorus is a text font, the sample shows that it is

specialized for things like wedding invitations, and is

not suitable for a typical TEX document.

The table’s second entry, Cursor, is also special-

ized; see Figure 2 (from [1]); the column headers are

from a different font. This font is monospaced — the

digits have equal widths — so it is useful for showing a

table of numbers or a computer code listing. However,

a TEX author wouldn’t use it for a main body font.

Our focus is on trying Gyre in documents with

mathematics so we will not further discuss these two.

4 Math font options

There are some packages of TEX fonts that were de-

signed to provide mathematics capabilities to supple-

ment one or more of the Adobe text fonts. We can use

these with the Gyre fonts.

Young Ryu’s pxfonts matches Adobe Palatino and

Gyre Pagella, and provides all of the symbols of the

Computer Modern and AMS fonts. The txfonts pack-

age does the same for Adobe Times and Gyre Termes.

(The LATEX packages qpxmath and qtxmath use the

math from these two but leave the text font unchanged,

so you can load the text and math font in either order.)

Diego Puga’s mathpazo is a set of PostScript fonts

for typesetting mathematics in combination with Adobe

Palatino or Gyre Pagella. The fonts include the upper-

case Greek alphabet in upright and slanted shapes in

regular and bold weights, lowercase Greek alphabet in

slanted shape in regular and bold weights, several math-

ematical glyphs in regular and bold weights, and some

others. The set also includes true small-caps fonts.

The mathptmx package changes the main font to

Times, and for math uses Times Italic, Computer Mod-

ern, Ralph Smith’s Formal Script, and Adobe Symbol.

Christophe Caignaert’s package kpfonts shares its

heritage with Gyre Pagella, and among other things in-

cludes all the symbols from the AMS fonts.

5 Sans serif fonts

In the table relating Adobe’s standard fonts to the Gyre

fonts, the next two, Heros and Adventor, are sans serif

fonts. (A serif is a stroke at the ends of some characters.

In these two examples: A and A, the first has small

horizontal strokes at the bottom. Those are serifs. The

second one is sans serif.)

Sans serif fonts are typically used more for presen-

tations or short work than for long or intricate technical

material. But TEX users certainly often use sans serif

fonts, and there are several combinations that are quite

suitable. See Figure 3.

6 Serif fonts

Serif fonts are the ones typically used by TEX authors.

In Gyre these are Bonum, Schola, Termes, and Pagella.

Starting with Figure 5 (adapted from [4]), there are

a number of combinations that you may find suitable for

your document. (In addition to the math font packages

described above, one of the figures uses the Euler font.)

7 Closing

Work is continuing at a steady pace on the Gyre fonts.

When they appear, their math support should be excel-

lent. But you don’t have to wait to have a first look.

Of the combinations shown above, Gyre Termes with

qtxmath, Gyre Pagella with qpxmath, and Gyre Pag-

ella with eulervm seem particularly worth a try. (For

even more options, see [3].)

References

[1] CRC Standard Mathematics Tables. W Beyer, ed,

24ed, CRC Press, 1976. p 209.

[2] The TEX Gyre (TG) Collection of Fonts. GUST.

http://www.gust.org.pl/projects/

e-foundry/tex-gyre/

[3] A Survey of Free Math Fonts. S Hartke.

http://mirror.ctan.org/info/Free_Math_

Font_Survey/survey.html

[4] Infinite Sequences and Series. K Knopp, Dover,

1956. p 78.

[5] Le Blanc et le Noir. Voltaire, 1764, p 1.

http://www.gutenberg.org/dirs/etext03/

betn810.txt

⋄ Jim Hefferon

Saint Michael’s College

Colchester, Vermont USA

ftpmaint (a) tug dot ctan dot org

A first look at the TEX Gyre fonts

238 TUGboat, Volume 30 (2009), No. 2

Figure 3: Gyre Heros with Computer Modern math \usepackage{tgheros}

Figure 4: Gyre Adventor with txfonts math \usepackage{kmath,tgadventor}

Figure 5: Gyre Bonum with txfonts for math \usepackage{kmath,tgbonum}

Jim Hefferon

TUGboat, Volume 30 (2009), No. 2 239

Figure 6: Gyre Schola with Fourier math \usepackage{fouriernc,tgschola}

Figure 7: Gyre Termes with qtx math \usepackage{qtxmath,tgtermes}

Figure 8: Gyre Termes with ptx math \usepackage{ptxmath,tgtermes}

A first look at the TEX Gyre fonts

240 TUGboat, Volume 30 (2009), No. 2

Figure 9: Gyre Pagella with Euler math \usepackage{eulervm,tgpagella}

Figure 10: Gyre Pagella with qpx math \usepackage{qpxmath,tgpagella}

Figure 11: Gyre Pagella with pazo math \usepackage{mathpazo,tgpagella}

Jim Hefferon

TUGboat, Volume 30 (2009), No. 2 241

Plain TEX and OpenType

Hans Hagen

Abstract

This article demonstrates how you can use OpenType
fonts in plain LuaTEX, using a few generic modules
that ship with the ConTEXt distribution.

1 Running

For testing basic LuaTEX functionality it makes sense
to have a minimal system, and traditionally plain
TEX has been the most natural candidate. It is for
this reason that it had been on the agenda for a
while to provide basic OpenType font support for
plain TEX as well. Although the MkIV node mode
subsystem is not yet perfect, the time was right to
start experimenting with a subset of the MkIV code.

Using plain roughly comes down to the following.
First you need to generate a format:

luatex --ini --fmt=luatex.fmt luatex-plain.tex

This format has to be moved to a place where
it can be found by the kpse library. Since this can
differ per distribution there is no clear recipe for it,
but for TEX Live some path ending in web2c/luatex

is probably the right spot. After that you can run

luatex luatex-test.tex

This file lives under generic/context. When it
is run it is quite likely that you will get an error
message because the font name database cannot be
found. You can generate one with the following
command (which assumes that you have ConTEXt
installed):

mtxrun --usekpse --script fonts --names

The resulting file luatex-fonts-names.lua has to
be placed somewhere in your TEX tree so that it can
be found anytime. Beware: the --usekpse flag is
only used outside ConTEXt and provides very limited
functionality, just enough for this task. Again this
is a distribution specific issue so we will not dwell
upon it here.

The way fonts are defined is modelled after
X ETEX, as it makes no sense to support the some-
what more fancy ConTEXt way of doing things. Keep
in mind that although ConTEXt MkIV does support
the X ETEX syntax too, the preferred way there is to
use a more symbolic feature definition approach.

As this is an experimental setup, it might not al-
ways work out as expected. Around LuaTEX version
0.50 we expect the code to be more or less okay.

2 Implementation

The luatex-fonts.lua file is the first in a series
of basic functionality enhancements for LuaTEX de-

rived from the ConTEXt MkIV code base. Please
don’t pollute the luatex-* namespace with code
not coming from the ConTEXt development team as
we may add more files.

This file implements a basic font system for a
bare LuaTEX system. By default LuaTEX only knows
about the classic TFM fonts but it can read other font
formats and pass them to Lua. With some glue code
one can then construct a suitable TFM representation
that LuaTEX can work with. For more advanced font
support a bit more code is needed that needs to be
hooked into the callback mechanism.

This file is currently rather simple: it just loads
the Lua file with the same name. An example of a
luatex.tex file that is just the plain TEX format:

\catcode‘\{=1 % { is begin-group character

\catcode‘\}=2 % } is end-group character

\input plain

\everyjob\expandafter{\the\everyjob

\input luatex-fonts\relax}

\dump

We could load the Lua file in \everyjob but
maybe some day we will need more here.

When defining a font, in addition to the X ETEX
way, you can use two prefixes. A file: prefix forces
a file search, while a name: prefix will result in con-
sulting the names database. The font definitions
shown in figure 1 are all valid.

You can load maths fonts but as Plain TEX
is set up for Computer Modern (and as we don’t
adapt Plain TEX) loading Cambria does not give you
support for its math features automatically.

If you want access by name you need to generate
a font database, using:

mtxrun --script font --names

and put the resulting file in a spot where LuaTEX
can find it.

3 Remarks

The code loaded in luatex-fonts.lua does not
come out of thin air, but is mostly shared with Con-
TEXt; however, in that macro package we go beyond
what is provided in the plain variant. When using
this code you need to keep a few things in mind:

• This subsystem will be extended, improved etc.
at about the same pace as ConTEXt MkIV. How-
ever, because ConTEXt provides a rather high
level of integration not all features will be sup-
ported in the same quality. Use ConTEXt if you
want more goodies.

• There is no official API yet, which means that
using functions implemented here is at your own
risk, in the sense that names and namespaces

Plain TEX and OpenType

242 TUGboat, Volume 30 (2009), No. 2

\font\testa=file:lmroman10-regular at 12pt

\font\testb=file:lmroman12-regular:+liga; at 24pt

\font\testc=file:lmroman12-regular:mode=node;+liga; at 24pt

\font\testd=name:lmroman10bold at 12pt

\font\testh=cmr10

\font\testi=ptmr8t

\font\teste=[lmroman12-regular]:+liga at 30pt

\font\testf=[lmroman12-regular] at 40pt

\font\testj=adobesongstd-light % cid font

\font\testk=cambria(math) {\mathtest 123}

\font\testl=file:IranNastaliq.ttf:mode=node;script=arab;\

language=dflt;+calt;+ccmp;+init;+isol;+medi;+fina;+liga;\

+rlig;+kern;+mark;+mkmk at 14pt

Figure 1: Font definition examples in LuaTEX

might change. There will be a minimal API

defined once LuaTEX version 1.0 is out. Instead
of patching the files it’s better to overload func-
tions if needed.

• The modules are not stripped too much, which
makes it possible to benefit from improvements
in the code that take place in the perspective
of ConTEXt development. They might be split
a bit more in due time so the baseline might
become smaller.

• The code is maintained and tested by the Con-
TEXt development team. As such it might be
better suited for this macro package and integra-
tion in other systems might demand some ad-
ditional wrapping. The plain version discussed
here is the benchmark and should be treated as
a kind of black box.

• Problems can be reported to the team but as
we use ConTEXt MkIV as our baseline, you’d
better check if the problem is a general ConTEXt
problem too.

• The more high level support for features that is
provided in ConTEXt is not part of the code
loaded here as it makes no sense elsewhere.
Some experimental features are not part of this
code either but some might show up later.

• Math font support will be added but only in its
basic form once the Latin Modern and TEX Gyre
math fonts are available. Currently traditional
and OpenType math fonts can be loaded.

• At this moment the more nifty speedups are
not enabled because they work in tandem with
the alternative file handling that ConTEXt uses.

Maybe around LuaTEX 1.0 we will bring some
speedup into this code too (if it pays off at all).

• The code defines a few global tables. If this code
is used in a larger perspective then you can best
make sure that no conflicts occur. The Con-
TEXt package expects users to work in their own
namespace (userdata, thirddata, moduledata
or document). We give ourselves the freedom
to use any table at the global level but will not
use tables that are named after macro pack-
ages. Later, ConTEXt might operate in a more
controlled namespace but it has a low priority.

• There is some tracing code present but this is not
enabled and not supported as it integrates quite
tightly into ConTEXt. In case of problems you
can use ConTEXt for tracking down problems.

• Patching the original code in distributions is
dangerous as it might fix your problem but in-
troduce new ones for ConTEXt. So, best keep
the original code as it is and overload functions
and callbacks when needed. This is trivial in
Lua.

• Attributes are (automatically) taken from the
range 127–255 so you’d best not use these your-
self. Don’t count on an attribute number staying
the same and don’t mess with these attributes.

If this all sounds a bit strict, keep in mind that
it makes no sense for us to maintain multiple code
bases and we happen to use ConTEXt.

⋄ Hans Hagen
Pragma ADE
The Netherlands
http://pragma-ade.org

Hans Hagen

TUGboat, Volume 30 (2009), No. 2 243

Integrating Unicode and OpenType math

in ConTEXt

Aditya Mahajan

Abstract

In this article, I briefly explain the approach taken
by ConTEXt to integrate Unicode math with Open-
Type fonts.

1 A bit of history

Since around 2000, ConTEXt has supported Uni-
code math input. Under the utf-8 input regime
(obtained with \enableregime[utf-8]), you could
type $ $ to get the Greek letters αβγ. This was
achieved by lot of macro jugglery; similar to the kind
of macro jugglery needed for accents to work with-
out having to type in the arcane plain TEX accent
macros. Basically, the input regime ensured that in-
side math mode got mapped to \alpha, and the
rest was taken care of by the usual font mappings
that mapped \alpha to the correct glyph in the cor-
rect font. However, these mappings were not clean.
If you defined a macro, say \MACRO, that took one
argument, then \MACRO would not work; you had
to type \MACRO{ }. This small detail of grouping
UTF-8 input was a constant reminder that things
were not so clean underneath.

LuaTEX was designed to handle input encoding
cleanly. The engine only understands UTF-8 encod-
ing and provides enough hooks to implement other
encodings. ConTEXt MkIV assumes that the input
is either UTF-8 or UTF-16. The input can then be
directly mapped to the correct glyph locations in
TrueType and OpenType fonts. However, handling
of math input was much trickier, mainly because of
the effort needed to support OpenType math. So,
for some time, the handling of math fonts did not
change: in math mode was mapped to \alpha and
traditional TEX font mapping ensured that \alpha
was mapped to the correct glyph in the correct font.

Around the beginning of this year, ConTEXt
MkIV completely moved to Unicode math. Thus,
0x1D6FC (math italic small alpha) was mapped to
the same position in an OpenType math font. If
you type this Unicode character in math mode, the
output is α. For convenience, typing 0x03B1 (Greek
small letter alpha) in math mode gets mapped to
0x1D6FC; as does the macro \alpha. All this is trans-
parent to the user, except when he accidentally types
$\MACRO $ and is pleasantly surprised not to get a
nasty error message.

There are two steps involved in the integra-
tion of Unicode input with OpenType math fonts:

(i) map the input characters or macros to the correct
Unicode character; (ii) map the Unicode character to
the correct OpenType glyph at the correct size and
with the correct kerning. The bulk of these mappings
are done by five files: char-def.lua, math-ini.lua,
math-map.lua, math-noa.lua and math-vfu.lua.
Below I explain briefly what these files do. Please
take everything in this article with a pinch of salt. I
do not understand how OpenType math fonts work,
so specific details may be wrong. The main idea of
this article is to convey the gist of how things are
done in ConTEXt, and where to search if you want
to know specific details.

2 char-def.lua

Mapping UTF-8 input chapters to Unicode charac-
ters is straightforward the byte sequence of the in-
put character is the same as the Unicode slot. Thus,
input byte sequence 0x1D6FC is the Unicode char-
acter 0x1D6FC. However, mapping macros to Uni-
code byte sequences is different. We need to explic-
itly tell ConTEXt that \alpha corresponds to the
Unicode character 0x1D6FC. Furthermore, just get-
ting the correct glyph is not sufficient for typesetting
mathematics. We also need to know the math class
of the glyph, so that TEX can correctly position the
characters.

All this information is stored as a Lua table in
char-def.lua. This is a huge file, initially gener-
ated from Unicode tables and later updated man-
ually from data present in ConTEXt files and else-
where (it is still not complete). For example, the
entry for 0x1D6FC is:

[0x1D6FC]={
category="ll",
description="MATHEMATICAL ITALIC SMALL ALPHA",
direction="l",
linebreak="al",
mathclass="default",
mathname="alpha",
specials={ "font", 0x03B1 },
unicodeslot=0x1D6FC,

},

Amongst other things, this tells ConTEXt that
the macro \alpha (indicated by mathname="alpha")
corresponds to this Unicode slot. It also tells that the
math class of this character is default. Similar de-
tails are provided for a large fraction of the Unicode
characters.

Some Unicode characters correspond to more
than one macro (with different math classes). One
such example is 0x007C, which corresponds to
\arrowvert, \vert, \lvert, \rvert, and \mid,
each belonging to a different math class. This Uni-

244 TUGboat, Volume 30 (2009), No. 2

code character is represented as:

{
adobename="bar",
category="sm",
cjkwd="na",
contextname="textbar",
description="VERTICAL LINE",
direction="on",
linebreak="ba",
mathspec={
{ class="nothing", name="arrowvert" },
{ class="delimiter", name="vert" },
{ class="open", name="lvert" },
{ class="close", name="rvert" },
{ class="relation", name="mid" },

},
unicodeslot=0x007C,

},

The different macros and their corresponding
math classes are encoded as part of a mathspec key.
When the character | (0x007C) is typed the math
class is set to the class of the first element of the
mathspec table (nothing in this case).

3 math-ini.lua

All the information in the Lua table in char-def
.lua by itself is useless. We need to tell ConTEXt
how to use it. For the math mappings, this is done
in math-ini.lua.

This file begins by defining names for the differ-
ent math classes:

local classes = {
ord = 0, -- mathordcomm
op = 1, -- mathopcomm
bin = 2, -- mathbincomm
rel = 3, -- mathrelcomm
open = 4, -- mathopencomm
close = 5, -- mathclosecomm
punct = 6, -- mathpunctcomm
alpha = 7, -- mathalphacomm
accent = 8, -- class 0
radical = 9,
xaccent = 10, -- class 3
topaccent = 11, -- class 0
botaccent = 12, -- class 0
under = 13,
over = 14,
delimiter = 15,
inner = 0, -- mathinnercomm
nothing = 0, -- mathnothingcomm
choice = 0, -- mathchoicecomm
box = 0, -- mathboxcomm
limop = 1, -- mathlimopcomm
nolop = 1, -- mathnolopcomm

}

For each math class, this file has functions to
return the LuaTEX code to define the corresponding

math characters. A few examples of such functions:

local function delcode(target,family,slot)
return format('\\Udelcode%s="%X "%X ',

target,family,slot)
end
local function mathchar(class,family,slot)

return format('\\Umathchar "%X "%X "%X ',
class,family,slot)

end
local function mathaccent(class,family,slot)

return format('\\Umathaccent "%X "%X "%X ',
0,family,slot)

end

Similar functions are there for defining math sym-
bols, for example:

function setmathsymbol(name,class,family,slot)
if class == classes.accent then
texsprint(

format("\\unexpanded\\xdef\\%s{%s}",
name,
mathaccent(class,family,slot)))

elseif class == classes.topaccent then
texsprint(

format("\\unexpanded\\xdef\\%s{%s}",
name,
mathtopaccent(class,family,slot)))

elseif class == classes.botaccent then
texsprint(

format("\\unexpanded\\xdef\\%s{%s}",
name,
mathbotaccent(class,family,slot)))

...
end

math-ini.lua then defines a Lua function
named mathematics.define that goes through all
the elements in the table in char-def.lua and maps
them to the correct LuaTEX command.

These mappings are all that is needed to work
with OpenType math fonts like Cambria and Asana
Math. ConTEXt has predefined typescripts for Cam-
bria; so, to use Cambria you can just type

\usetypescript[cambria]
\setupbodyfont[cambria]

There are no predefined typescripts for Asana
Math, but defining one on our own is not too hard.
First, we need to define a math typescript:

\starttypescript [math] [asana] [name]
\definefontsynonym
[MathRoman]
[name:Asana-Math]
[features=math\mathsizesuffix]

\stoptypescript

The features=math\mathsizesuffix option acti-
vates the OpenType math features. The rest of the
typescript can be defined in the usual manner.

TUGboat, Volume 30 (2009), No. 2 245

\starttypescript [asana]
\definetypeface [asana] [rm] [serif]

[palatino] [default]
\definetypeface [asana] [ss] [sans]

[modern] [default] [rscale=1.075]
\definetypeface [asana] [tt] [mono]

[modern] [default] [rscale=1.075]
\definetypeface [asana] [mm] [math]

[asana] [default]
\quittypescriptscanning

\stoptypescript

To use this typescript, we need to type

\usetypescript[asana]
\setupbodyfont[asana]

4 math-map.lua and math-noa.lua

So far, we have mapped Unicode input and macros
to OpenType math fonts. However, when using TEX
one expects traditional TEX input to work. Thus,
a should typeset math italic a. No one is likely
to type 0x1D44E, even if Unicode suggests that. The
same is true for bold fonts. One expects ${\bfa}$ to
give bold a, even if Unicode suggests that we should
have typed 0x1D41A.

To accommodate this, in math mode ConTEXt
maps upper and lower case letters A-Z, a-z, digits
0-9, and upper and lower case Greek letters - ,
A- to the corresponding ranges in Unicode math,
depending on the current font style. These mappings
are defined in math-map.lua file.

The mappings are defined using a Lua table,
which looks like this.

mathematics.alphabets = {
regular = {

tf = { ... },
it = { ... },
bi = { ... },
bf = { ... },

},
sansserif = {

tf = { ... },
it = { ... },
bi = { ... },
bf = { ... },

},
monospaced = {

tf = { ... },
},
blackboard = {

tf = { ... },
},
fraktur = {

tf = { ... },
bf = { ... },

},
script = {

tf = { ... },

bf = { ... },
}

}

Each of these subtables maps input letters to
their corresponding Unicode characters. These sub-
tables look as follows.

regular = {
...
it = {
ucletters = 0x1D434,
lcletters = { -- H
[0x00061]=0x1D44E, [0x00062]=0x1D44F,
[0x00063]=0x1D450, [0x00064]=0x1D451,
[0x00065]=0x1D452, [0x00066]=0x1D453,
[0x00067]=0x1D454, [0x00068]=0x0210E,
... },

symbols = {
[0x0391]=0x1D6E2, [0x0392]=0x1D6E3,
[0x0393]=0x1D6E4, [0x0394]=0x1D6E5,
[0x0395]=0x1D6E6, [0x0396]=0x1D6E7,
... },

},
},

The line ucletters = 0x1D434 tells ConTEXt
to map upper case letters to Unicode characters
starting from 0x1D434. The line lcletters =
{...} tells ConTEXt to map 0x00061 to 0x1D44E,
0x00062 to 0x1D44F, as so on. For lower case letters,
simply specifying lcletters = 0x1D44E would not
work because Unicode mathematical italic small let-
ters are not in contiguous slots. For example, the
slot 0x1D455 (which corresponds to lower case h) is
empty; lower case h should map to slot 0x0210E.

Other subtables are filled in a similar manner.
math-map.lua also defines Lua functions that

use these tables to remap characters on the fly. The
actual transformation takes place in math-noa.lua
which goes through the math noad list and carries
out the actual transformations according to the map-
pings in math-map.lua.

5 math-vfu.lua

Using the above infrastructure, it is easy to use
OpenType math fonts in ConTEXt. Unfortu-
nately, at present there are only two Unicode math
fonts Cambria and Asana Math. OpenType math
version of TEX Gyre math fonts are planned, but
until they are developed, we need a way to use tradi-
tional TEX fonts in ConTEXt MkIV. ConTEXt creates
virtual OpenType math fonts to use traditional TEX
fonts. The mappings for creating the virtual font are
in math-vfu.lua. Once a virtual OpenType math
font is created, the above infrastructure can be used
to access the font.

First, math-vfu.lua defines many encoding

246 TUGboat, Volume 30 (2009), No. 2

vectors that map Unicode characters to glyph lo-
cations of the font. One such encoding vector is

fonts.enc.math["tex-mi"] = {
[0x1D6E4] = 0x00, -- Gamma
[0x1D6E5] = 0x01, -- Delta
[0x1D6E9] = 0x02, -- Theta
[0x1D6F3] = 0x02, -- varTheta (not in TeX)
[0x1D6EC] = 0x03, -- Lambda
[0x1D6EF] = 0x04, -- Xi
[0x1D6F1] = 0x05, -- Pi
[0x1D6F4] = 0x06, -- Sigma
...

}

This tells that Unicode character 0x1D6E4 should be
mapped to the font glyph 0x00 and so on. A virtual
font that associates such encoding vectors with tra-
ditional TEX fonts is created using

mathematics.make_font ("lmroman10-math", {
{ name="lmroman10-regular.otf",
features="virtualmath", main=true },

{ name="lmmi10.tfm", vector="tex-mi",
skewchar=0x7F },

{ name="lmsy10.tfm", vector="tex-sy",
skewchar=0x30, parameters=true },

{ name="lmex10.tfm", vector="tex-ex",
extension=true },

{ name="msam10.tfm", vector="tex-ma" },
{ name="msbm10.tfm", vector="tex-mb" },
{ name="lmroman10-bold.otf", "tex-bf" } ,
{ name="lmmib10.tfm", vector="tex-bi",
skewchar=0x7F },

{ name="lmsans10-regular.otf",
vector="tex-ss", optional=true },

{ name="lmmono10-regular.otf",
vector="tex-tt", optional=true },

{ name="eufm10.tfm", vector="tex-fraktur",
optional=true },

{ name="eufb10.tfm",
vector="tex-fraktur-bold", optional=true },

})

This creates a virtual font lmroman10-math which
takes bits and pieces from various fonts. This virtual
font can be used as follows.

\starttypescript [math] [modern]
...
\definefontsynonym
[LMMathRoman10-Regular]
[LMMath10-Regular@lmroman10-math]

...
\stoptypescript

The @lmroman-math in the name uses the above vir-
tual font. The LMMathRoman10-Regular font can be
used to complete the math typescript in the usual
manner.

ConTEXt provides virtual OpenType math fonts
for Latin Modern, Times (txfonts and MathTime),
Palatino (pxfonts), Iwona, Lucida, and MathDesign
(Charter, Garamond, and Utopia) fonts.

6 Conclusion

ConTEXt now supports OpenType math fonts. In
fact, even support for traditional TEX fonts now in-
volves creating a virtual OpenType math font. Thus,
as far as ConTEXt MkIV is concerned, OpenType
math fonts are the future. However, the current im-
plementation is still evolving, so some of the imple-
mentation details described in this paper will likely
change with time.

⋄ Aditya Mahajan
adityam (at) umich dot edu

TUGboat, Volume 30 (2009), No. 2 247

LuaTEX: A user s perspective

Aditya Mahajan

Abstract

In this article, I explain how to use Lua to write
macros in LuaTEX. I give some examples of macros
that are complicated in pdfTEX, but can be defined
easily using Lua in LuaTEX. These examples include
macros that do arithmetic on their arguments, use
loops, and parse their arguments.

1 Introduction

TEX is getting a new engine LuaTEX. As its name
suggests, LuaTEX adds Lua, a programming lan-
guage, to TEX, the typesetter. I cannot overempha-
size the significance of being able to program TEX
in a high-level programming language. For exam-
ple, consider a TEX macro that divides two num-
bers. Such a macro is provided by the fp package
and also by pgfmath library of the TikZ package.
The following comment is from the fp package

\def\FP@div#1#2.#3.#4\relax#5.#6.#7\relax{%

% [...] algorithmic idea (for x>0, y>0)

% - %determine \FP@shift such that

% y*10^\FP@shift < 100000000

% <=y*10^(\FP@shift+1)

% - %determine \FP@shift' such that

% x*10^\FP@shift'< 100000000

% <=x*10^(\FP@shift+1)

% - x=x*\FP@shift'

% - y=y*\FP@shift

% - \FP@shift=\FP@shift-\FP@shift'

% - res=0

% - while y>0 %fixed-point representation!

% - \FP@times=0

% - while x>y

% - \FP@times=\FP@times+1

% - x=x-y

% - end

% - y=y/10

% - res=10*res+\FP@times/1000000000

% - end

% - %shift the result according to \FP@shift

The pgfmath library implements the macro in a sim-
ilar way, but limits the number of shifts that it does.
These macros highlight the state of affairs in writ-
ing TEX macros. Even simple things like multiplying
two numbers are hard; you either have to work ex-
tremely hard to circumvent the programming limi-
tations of TEX, or, more frequently, hope that some-
one else has done the hard work for you. In LuaTEX,
such a function can be written using the / operator
(I will explain the details later):

\def\DIVIDE#1#2{\directlua{tex.print(#1/#2)}}

Thus, with LuaTEX ordinary users can write
simple macros; and, perhaps more importantly, can
read and understand macros written by TEX wiz-
ards.

Since the LuaTEX project started it has been
actively supported by ConTEXt.1 These days, the
various How do I write such a macro questions
on the ConTEXt mailing list are answered by a so-
lution that uses Lua. I present a few such examples
in this article. I have deliberately avoided examples
about fonts and non-Latin languages. There is al-
ready quite a bit of documentation about them. In
this article, I want to highlight how to use LuaTEX
to write macros that require some flow control :
randomized outputs, loops, and parsing.

2 Interaction between TEX and Lua

To a first approximation, the interaction between
TEX and Lua is straightforward. When TEX (i.e.,
the LuaTEX engine) starts, it loads the input file
in memory and processes it token by token. When
TEX encounters \directlua, it stops reading the
file in memory, fully expands the argument of

\directlua, and passes the control to a Lua in-
stance. The Lua instance, which runs with a few
preloaded libraries, processes the expanded argu-
ments of \directlua. This Lua instance has a
special output stream which can be accessed using
tex.print(...). The function tex.print(...) is
just like the Lua function print(...) except that
tex.print(...) prints to a TEX stream rather
than to the standard output. When the Lua instance
finishes processing its input, it passes the contents
of the TEX stream back to TEX.2 TEX then inserts
the contents of the TEX stream at the current lo-
cation of the file that it was reading; expands the
contents of the TEX stream ; and continues. If TEX
encounters another \directlua, the above process
is repeated.

As an exercise, imagine what happens when the
following input is processed by LuaTEX.3

\directlua%

{tex.print("Depth 1

\\directlua{tex.print('Depth 2')}")}

1 Not surprising, as two of LuaTEX s main developers Taco

Hoekwater and Hans Hagen are also the main ConTEXt

developers.
2 The output of tex.print(...) is buffered and not passed

to TEX until the Lua instance has stopped.
3 In this example, I used two different kinds of quotations to

avoid escaping quotes. Escaping quotes inside \directlua

is tricky. The above was a contrived example; if you ever

need to escape quotes, you can use the \startluacode ...

\stopluacode syntax explained later.

248 TUGboat, Volume 30 (2009), No. 2

On top of these LuaTEX primitives, ConTEXt
provides a higher level interface. There are two ways
to call Lua from ConTEXt. The first is a macro
\ctxlua (read as ConTEXt Lua), which is similar
to \directlua. (Aside: It is possible to run the Lua
instance under different name spaces. \ctxlua is the
default name space; other name spaces are explained
later.) \ctxlua is good for calling small snippets of
Lua. The argument of \ctxlua is parsed under nor-
mal TEX catcodes (category codes), so the end of
line character has the same catcode as a space. This
can lead to surprises. For example, if you try to use
a Lua comment, everything after the comment gets
ignored.

\ctxlua

{-- A lua comment

tex.print("This is not printed")}

This can be avoided by using a TEX comment
instead of a Lua comment. However, working under
normal TEX catcodes poses a bigger problem: special
TEX characters like &, #, $, {, }, etc., need to be
escaped. For example, # has to be escaped with
\string to be used in \ctxlua.

\ctxlua

{local t = {1,2,3,4}

tex.print("length " .. \string#t)}

As the argument of \ctxlua is fully expanded, es-
caping characters can sometimes be tricky. To
circumvent this problem, ConTEXt defines a envi-
ronment called \startluacode ... \stopluacode.
This sets the catcodes to what one would expect in
Lua. Basically only \ has its usual TEX meaning,
the catcode of everything else is set to other. So, for
all practical purposes, we can forget about catcodes
in \startluacode ... \stopluacode. The above
two examples can be written as

\startluacode

-- A lua comment

tex.print("This is printed.")

local t = {1,2,3,4}

tex.print("length " .. #t)

\stopluacode

This environment is meant for moderately sized
code snippets. For longer Lua code, it is more con-
venient to write the code in a separate Lua file and
then load it using Lua s dofile(...) function.

ConTEXt also provides a Lua function to con-
veniently write to the TEX stream. The func-
tion is called context(...) and it is equivalent to
tex.print(string.format(...)).

Using the above, it is easy to define TEX macros
that pass control to Lua, do some processing in Lua,
and then pass the result back to TEX. For example,

a macro to convert a decimal number to hexadeci-
mal can be written simply, by asking Lua to do the
conversion.

\def\TOHEX#1{\ctxlua{context("\%X",#1)}}

\TOHEX{35}

The percent sign had to be escaped because \ctxlua

assumes TEX catcodes. Sometimes, escaping ar-
guments can be difficult; instead, it can be easier
to define a Lua function inside \startluacode ...

\stopluacode and call it using \ctxlua. For exam-
ple, a macro that takes a comma separated list of
strings and prints a random item can be written as

\startluacode

userdata = userdata or {}

math.randomseed(os.time())

function userdata.random(...)

context(arg[math.random(1, #arg)])

end

\stopluacode

\def\CHOOSERANDOM#1%

{\ctxlua{userdata.random(#1)}}

\CHOOSERANDOM{"one", "two", "three"}

I could have written a wrapper so that the func-
tion takes a list of words and chooses a random word
among them. For an example of such a conversion,
see the sorting a list of tokens page on the LuaTEX
wiki [2].

In the above, I created a name space called
userdata and defined the function random in that
name space. Using a name space avoids clashes with
the Lua functions defined in LuaTEX and ConTEXt.

In order to avoid name clashes, ConTEXt also
defines independent name spaces of Lua instances.
They are

user : a private user instance
third : third party module instance

module : ConTEXt module instance
isolated : an isolated instance

Thus, for example, instead of \ctxlua and
\startluacode ... \stopluacode, the user in-
stance can be accessed via the macros \usercode

and \startusercode ... \stopusercode. In in-
stances other than isolated, all the Lua func-
tions defined by ConTEXt (but not the inbuilt Lua
functions) are stored in a global name space. In
the isolated instance, all Lua functions defined
by ConTEXt are hidden and cannot be accessed.
Using these instances, we could write the above
\CHOOSERANDOM macro as follows

\startusercode

math.randomseed(global.os.time())

TUGboat, Volume 30 (2009), No. 2 249

function random(...)

global.context(arg[math.random(1, #arg)])

end

\stopusercode

\def\CHOOSERANDOM#1%

{\usercode{random(#1)}}

Since I defined the function random in the user

instance of Lua, I did not bother to use a separate
name space for the function. The Lua functions
os.time, which is defined by a LuaTEX library, and
context, which is defined by ConTEXt, needed to
be accessed through a global name space. On the
other hand, the math.randomseed function, which
is part of Lua, could be accessed as is.

A separate Lua instance also makes debugging
slightly easier. With \ctxlua the error message
starts with

! LuaTeX error <main ctx instance>:

With \usercode the error message starts with

! LuaTeX error <private user instance>:

This makes it easier to narrow down the source of
error.

Normally, it is best to define your Lua func-
tions in the user name space. If you are writing a
module, then define your Lua functions in the third

instance and in a name space which is the name of
your module. In this article, I will simply use the
default Lua instance, but take care to define all my
Lua functions in a userdata name space.

Now that we have some idea of how to work
with LuaTEX, let s look at some examples.

3 Arithmetic without using a abacus

Doing simple arithmetic in TEX can be extremely
difficult, as illustrated by the division macro in the
introduction. With Lua, simple arithmetic becomes
trivial. For example, if you want a macro to find the
cosine of an angle (in degrees), you can write

\def\COSINE#1%

{\ctxlua(context(math.cos(#1*2*pi/360))}

The built-in math.cos function assumes that
the argument is specified in radians, so we convert
from degrees to radians on the fly. If you want to
type the value of π in an article, you can simply say

$\pi = \ctxlua{context(math.pi)}$

or if you want less precision (notice the percent sign
is escaped)

$\pi = \ctxlua{context("\%.6f", math.pi)}$

4 Loops without worrying about expansion

Loops in TEX are tricky because macro assignments

and macro expansion interact in strange ways. For
example, suppose we want to typeset a table showing
the sum of the roll of two dice and want the output
to look like this

(+) 1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

The tedious (but faster!) way to achieve this is to
simply type the whole table by hand. For example,

\bTABLE

\bTR \bTD $(+)$ \eTD \bTD 1 \eTD \eTR

\bTR \bTD 1 \eTD \bTD 2 \eTD \eTR

...

...

\eTABLE

It is however natural to want to write this table
as a loop, and compute the values. A first ConTEXt
implementation using the recursion level might be:

\bTABLE

\bTR

\bTD $(+)$ \eTD

\dorecurse{6}

{\bTD \recurselevel \eTD}

\eTR

\dorecurse{6}

{\bTR

\bTD \recurselevel \eTD

\edef\firstrecurselevel{\recurselevel}

\dorecurse{6}

{\bTD

\the\numexpr\firstrecurselevel+\recurselevel

\eTD}%

\eTR}

\eTABLE

However, this does not work as expected, yielding all
zeros. A natural table stores the contents of all the
cells, before typesetting it. But it does not expand
the contents of its cell before storing them. So, at the
time the table is actually typeset, TEX has already
finished the \dorecurse and \recurselevel is set
to 0.

The solution is to place \expandafter at the
correct location(s) to coax TEX into expanding

250 TUGboat, Volume 30 (2009), No. 2

the \recurselevel macro before the natural table
stores the cell contents. The difficult part is figuring
out the exact location of \expandafters. Here is a
solution that works:

\bTABLE

\bTR

\bTD $(+)$ \eTD

\dorecurse{6}

{\expandafter \bTD \recurselevel \eTD}

\eTR

\dorecurse{6}

{\bTR

\edef\firstrecurselevel{\recurselevel}

\expandafter\bTD \recurselevel \eTD

\dorecurse{6}

{\expandafter\bTD

\the\numexpr\firstrecurselevel+\recurselevel

\relax

\eTD}

\eTR}

\eTABLE

We only needed to add three \expandafters to
make the naive loop work. Nevertheless, finding the
right location pf \expandafter can be frustrating,
especially for a non-expert.

By contrast, in LuaTEX writing loops is easy.
Once a Lua instance starts, TEX does not see any-
thing until the Lua instance exits. So, we can write
the loop in Lua, and simply print the values that
we would have typed to the TEX stream. When the
control is passed to TEX, TEX sees the input as if we
had typed it by hand. Consequently, macro expan-
sion is no longer an issue. For example, we can get
the above table by:

\startluacode

context.bTABLE()

context.bTR()

context.bTD() context("$(+)$") context.eTD()

for j=1,6 do

context.bTD() context(j) context.eTD()

end

context.eTR()

for i=1,6 do

context.bTR()

context.bTD() context(i) context.eTD()

for j=1,6 do

context.bTD() context(i+j) context.eTD()

end

context.eTR()

end

context.eTABLE()

\stopluacode

The Lua functions such as context.bTABLE()

and context.bTR() are just abbreviations for run-
ning context ("\\bTABLE"), context("\\bTR"),
etc. See the ConTEXt Lua document manual for

more details about such functions [3]. The rest of
the code is a simple nested for-loop that computes
the sum of two dice. We do not need to worry about
macro expansion at all!

5 Parsing input without exploding

your head

In order to get around the weird rules of macro ex-
pansion, writing a parser in TEX involves a lot of
macro jugglery and catcode trickery. It is a black
art, one of the biggest mysteries of TEX for ordinary
users.

As an example, let s consider typesetting
chemical molecules in TEX. Normally, molecules
should be typeset in text mode rather than math
mode. For example, H2SO4, can be input as
H\low{2}SO\lohi{4}{--}. Typing so much markup
can be cumbersome. Ideally, we want a macro such
that we type \molecule{H_2SO_4^-} and the macro
translates this into H\low{2}SO\lohi{4}{--}. Such
a macro can be written in TEX as follows.

\newbox\chemlowbox

\def\chemlow#1%

{\setbox\chemlowbox

\hbox{{\switchtobodyfont[small]#1}}}

\def\chemhigh#1%

{\ifvoid\chemlowbox

\high{{\switchtobodyfont[small]#1}}%

\else

\lohi{\box\chemlowbox}

{{\switchtobodyfont[small]#1}}

\fi}

\def\finishchem%

{\ifvoid\chemlowbox\else

\low{\box\chemlowbox}

\fi}

\unexpanded\def\molecule%

{\bgroup

\catcode`_=\active \uccode`\~=`_

\uppercase{\let~\chemlow}%

\catcode`\^=\active \uccode`\~=`\^

\uppercase{\let~\chemhigh}%

\dostepwiserecurse {65}{90}{1}

{\catcode \recurselevel = \active

\uccode`\~=\recurselevel

\uppercase{\edef~{\noexpand\finishchem

\rawcharacter{\recurselevel}}}}%

\catcode`\-=\active \uccode`\~=`\-

\uppercase{\def~{--}}%

\domolecule }%

\def\domolecule#1{#1\finishchem\egroup}

This monstrosity is a typical TEX parser. Ap-

TUGboat, Volume 30 (2009), No. 2 251

propriate characters need to be made active; occa-
sionally, \lccode and \uccode need to be set; sig-
naling tricks are needed (for instance, checking if
\chemlowbox is void); and then magic happens (or
so it seems to a flabbergasted user). More sophisti-
cated parsers involve creating finite state automata,
which look even more monstrous.

With LuaTEX, things are different. LuaTEX in-
cludes a general parser based on PEG (parsing ex-
pression grammar) called lpeg [4]. This makes writ-
ing parsers in TEX much more comprehensible. For
example, the above \molecule macro can be written
as

\startluacode

userdata = userdata or {}

local lowercase = lpeg.R("az")

local uppercase = lpeg.R("AZ")

local backslash = lpeg.P("\\")

local csname = backslash * lpeg.P(1)

* (1-backslash)^0

local plus = lpeg.P("+") / "\\textplus "

local minus = lpeg.P("-") / "\\textminus "

local digit = lpeg.R("09")

local sign = plus + minus

local cardinal = digit^1

local integer = sign^0 * cardinal

local leftbrace = lpeg.P("{")

local rightbrace = lpeg.P("}")

local nobrace = 1 - (leftbrace + rightbrace)

local nested = lpeg.P {leftbrace

* (csname + sign + nobrace

+ lpeg.V(1))^0 * rightbrace}

local any = lpeg.P(1)

local subscript = lpeg.P("_")

local superscript = lpeg.P("^")

local somescript = subscript + superscript

local content = lpeg.Cs(csname + nested

+ sign + any)

local lowhigh = lpeg.Cc("\\lohi{%s}{%s}")

* subscript * content

* superscript * content

/ string.format

local highlow = lpeg.Cc("\\hilo{%s}{%s}")

* superscript * content

* subscript * content

/ string.format

local low = lpeg.Cc("\\low{%s}")

* subscript * content

/ string.format

local high = lpeg.Cc("\\high{%s}")

* superscript * content

/ string.format

local justtext = (1 - somescript)^1

local parser = lpeg.Cs((csname + lowhigh

+ highlow + low

+ high + sign + any)^0)

userdata.moleculeparser = parser

function userdata.molecule(str)

return parser:match(str)

end

\stopluacode

\def\molecule#1%

{\ctxlua{userdata.molecule("#1")}}

This is more verbose than the TEX solution, but
is easier to read and write. With a proper parser, I
do not have to use tricks to check if either one or both
_ and ^ are present. More importantly, anyone (once
they know the Lpeg syntax) can read the parser and
easily understand what it does. This is in contrast
to the implementation based on TEX macro jugglery
which require you to implement a TEX interpreter in
your head to understand.

6 Conclusion

LuaTEX is removing many TEX barriers: using sys-
tem fonts, reading and writing Unicode files, type-
setting non-Latin languages, among others. How-
ever, the biggest feature of LuaTEX is the ability to
use a high-level programming language to program
TEX. This can potentially lower the learning curve
for programming TEX.

In this article, I have mentioned only one as-
pect of programming TEX: macros that manipulate
their input and output some text to the main TEX
stream. Many other kinds of manipulations are pos-
sible: LuaTEX provides access to TEX boxes, token
lists, dimensions, glues, catcodes, direction parame-
ters, math parameters, etc. The details can be found
in the LuaTEX manual [1].

7 References

[1] LuaTEX reference manual,
http://www.luatex.org/documentation.html

[2] Sorting a list of tokens, in the Joy of LuaTEX.
http://luatex.bluwiki.com/go/

Sort_a_token_list

[3] Hans Hagen, CLD: ConTEXt Lua document ,
http://www.pragma-ade.com/general/

manuals/cld-mkiv.pdf

[4] Lpeg: Parsing Expression Grammars for Lua,
http://www.inf.puc-rio.br/ roberto/lpeg/

lpeg.html

⋄Aditya Mahajan
adityam (at) umich dot edu

252 TUGboat, Volume 30 (2009), No. 2

BIBTEX meets relational databases

Dedicated to the memory of

Edgar Frank “Ted” Codd (1923–2003) and

James Nicholas “Jim” Gray (1944–2007)

Nelson H. F. Beebe

Abstract

After giving some background and comments on the BIBTEX bibliographic database system, we discuss the problem of search-

ing large collections of such data. We briefly describe how relational databases are structured and queried.

Portable new programs, bibtosql and bibsql, are introduced and their use is illustrated. The first handles the conversion

of BIBTEX data to input for three free, popular, and portable, database systems. The second provides a uniform and simple user

interface for issuing search queries to any of the supported backend databases.

We finish with a discussion of the contributions of the two late computer scientists to whom this article is dedicated.

Contents

1 Introduction 252

2 An overview of BIBTEX 253

3 BIBTEX style-file language 253

4 BIBTEX grammar and software tools 254

5 The search problem 254

6 Relational databases 255

7 Structured Query Language (SQL) 256

8 BIBTEX database tables 256

9 BIBTEX/SQL software tools 258

10 Using SQL with bibsql 259

11 The impact of Ted Codd and Jim Gray 268

12 Conclusion 268

1 Introduction

Oren Patashnik’s BIBTEX has been in wide use in the TEX and LATEX communities now for more than two decades af-

ter it was introduced in the LATEX User’s Guide and Reference Manual (Lamport 1985, Appendix B). The first mention

of BIBTEX in that book is at the bottom of page 72, where we find

With LATEX, you can either produce the list of sources yourself or else use a separate program called BIBTEX to generate

it from information contained in a bibliographic database.

The last word on that page has been emphasized here, and the current online edition of the Oxford English Dictio-

nary defines it like this:

database, n. (’deıt@beıs) [f. DATA n. pl. + BASE n]

1. A structured collection of data held in computer storage; esp. one that incorporates software to make it accessible

in a variety of ways; transf., any large collection of information.

2. Special Comb.: database management, the organization and manipulation of data in a database; database man-

agement system, a software package that provides all the functions required for database management; abbrev.

DBMS s.v. D III.

3. database manager = database management system above; database system, a database together with a database

management system.

The earliest mention recorded in the word history in that entry is from a technical memo of System Development

Corporation, California in 1962 that describes it like this:

A ‘data base’ is a collection of entries containing item information that can vary in its storage media and in the charac-

teristics of its entries and items.

As often happens in English, increased use of a compound word has collapsed it into a single word.

Nelson H. F. Beebe

TUGboat, Volume 30 (2009), No. 2 253

2 An overview of BIBTEX

BIBTEX is a specialized database engine that takes from the .aux file a list of bibliography files, bibliographic style

information, and a reference to a publication, all encoded in TEX commands like these:

\bibdata{bibsql,master}

\bibstyle{alpha}

\citation{Lamport:1985:LDP}

BIBTEX locates bibliography files on a user-definable search path, and searches each file in turn for a BIBTEX entry

identified by the specified citation label, terminating the search at the first match. It also finds the first instance

of the style file, here alpha.bst, in another user-specified search path. It then decodes the BIBTEX entry to collect

fields such as author, title, year, and so on, and then executes functions in the style file that format the publi-

cation data, usually with TEX markup, and write it to the .bbl file. When TEX or LATEX next process the document,

the expansion of the \bibliography macro includes commands to read the .bbl file and typeset the entry, as

illustrated in the References section at the end of this article.

The key observation here is that by suitable explicit and implicit markup, computer software can attach

meaning to strings of characters.

The BIBTEX entry specifies the document authors as a list, with author names separated by the word and in

the string value of the author key. In most cases, no additional markup is needed, because BIBTEX contains hard-

coded algorithms for parsing an author name into four parts: first, von, last, and junior. Thus, BIBTEX recognizes

the name Ludwig von Beethoven, Sr. if it is coded as von Beethoven, Sr., Ludwig, and BIBTEX can convert it,

if required, to Beethoven, Ludwig von, Sr., and even abbreviate it to Beethoven, L. von, Sr. or von Beethoven, L.,

Sr., depending on format settings in the style file. Name reordering is needed both for citation styles that require

it, and also for sorting of reference list entries. Abbreviation of all but the family name is also common in some

bibliography styles.

Embedded commas and and in author names are handled by minimal extra markup in the form of enclosing

braces, such as in the corporate author {Chapman and Hall, Ltd.}. Some styles convert titles to lowercase let-

ters after the first word, but braces prevent downcasing of proper names and/or German text in titles (recall that

nouns in German, and pre-1948 Danish, are always capitalized). BIBTEX interprets a macro name at the start of a

braced group as a font change, rather than protection against lettercase conversion. An extra level of braces re-

stores the protection, as in the name of a soil-living amoeba popular in biological research: {{\em Dictyostelium

discoideum}}.

BIBTEX’s processing handles most personal names in Western Europe and the English-speaking world, but

it does not deal with the case of Hungarian, and some Asian languages, where the family name comes first:

Erd\H{o}s P\’al and K’ung Fu-Tzu are usually known as Paul Erdős and Confucius in English. Abbreviations

of Spanish surnames that include both paternal and maternal family names, in that order, like Juan Vald{\’e}s

Rodr{\’\i}guez, are also problematic, since that name can be shortened to Juan Valdés R., or J. Valdés R., or

just J. Valdés. Some South Indians, and some people from a few other cultural groups, carry only a single name:

Sureshchander and Luqi are examples found in computer-science bibliography articles. The current version of

BIBTEX, 0.99c, is dated 4 April 1988, but a final version of BIBTEX is planned, and its author expects to incorporate

additional markup to handle these difficult cases (Patashnik 2003).

Although standard BIBTEX styles recognize a dozen or so standard key names, the system permits other keys

to be used: their values are simply ignored if the style file does not reference them. Consequently, BIBTEX markup

has proved extensible, and this author has even employed it for representing equipment-inventory records and for

editorial tracking of journal-article submissions.

The flexibility of BIBTEX key/value markup, and its separation of most of the formatting job into (potentially)

user-programmable style files, has proved of great value. The TEX Live 2008 software distribution includes 277

distinct BIBTEX style files, and collections of millions of entries in BIBTEX markup exist in some communities. The

reference list in this article is typeset according to a new style, acmtrans-v2.bst, developed by the ACM for their

publications in computer science, and as-yet absent from TEX Live. A few publisher Web sites, notably in the

areas of computer science, electrical engineering, mathematics, and physics, can return dynamically-constructed

BIBTEX entries as search results.

3 BIBTEX style-file language

BIBTEX’s style-file language is unique, and it uses reverse Polish notation, like some Hewlett–Packard calcula-

BIBTEX meets relational databases

254 TUGboat, Volume 30 (2009), No. 2

tors, the Forth programming language, and the PostScriptTM page-description language. Such languages are easily

parsed with a stack onto which operands are pushed by the lexical scanner, and then popped off the stack dur-

ing the execution of operators encountered by the scanner. Parsing then requires no lookahead at all, but simply

recognition of tokens, one at time, with the parser action either a push or an execute.

In particular, this language design means that functions are called with their arguments already in place on

the stack, but the problem is, they could have been put there at any earlier time, and may not be visible at the

location of the operator in the source code. This makes errors of incorrect type or number of arguments hard to

diagnose, and even harder to find in the source code at some earlier level in the call tree.

While efficient to execute, such languages are horrid for humans to code in, except possibly for tiny programs.

Consequently, some researchers have developed other markup schemes and bibliography-style descriptions. The

TUGboat journal archives contain descriptions of work by James Alexander (Alexander 1986; Alexander 1987),

Jean-Michel Hufflen (Hufflen 2003b; Hufflen 2003a), Tristan Miller (Miller 2005), and Robert Burgess (Burgess and

Siren 2007). Patrick W. Daly’s custom-bib system (Daly 1994; Viton 2000) in the TEX Live distribution generates

dozens of BIBTEX style files from a generic file, and provides support for variants in many languages other than

English.

Had BIBTEX been developed somewhat later after the importance of scripting languages like awk, JavaScript,

lua, perl, php, python, and ruby was better appreciated, it could have been built on those software technologies.

Hans Hagen and Taco Hoekwater are now doing this with ConTEXt and lua (Hoekwater 2007), creating a new TEX-

like engine named LuaTEX whose internals are much more accessible to the author, document designer, and pro-

grammer.

4 BIBTEX grammar and software tools

Lamport’s description of BIBTEX in his cited book is informal, but BIBTEX’s markup language can be defined with

a rigorous grammar, and tools have been developed to check for adherence to that grammar, for parsing BIBTEX

files into easier-to-handle data streams, for prettyprinting and syntax checking BIBTEX files, and for converting

Web pages from numerous library catalogs and publishers into BIBTEX entries (Beebe 1993a; Beebe 1993b; Beebe

2004a).

A recent, and as-yet-undescribed, software tool, cattobib, builds on international conventions for library-

catalog markup and network catalog services to convert catalog entries to rough BIBTEX format (Beebe 2004b).

While the conversion is syntactically accurate and generally acceptable to BIBTEX, a certain amount of manual

cleanup is almost always required because of irregular and sloppy library cataloging. cattobib searches one or

more user-specified catalogs sequentially, and can communicate with large national libraries of several countries.

An obvious, although as-yet-unimplemented, extension is to perform the lookups in parallel.

5 The search problem

As the collection of data in BIBTEX markup grows, it becomes important to be able to search that data efficiently.

More than a decade ago, this author developed bibsearch (Beebe 1997), leveraging advanced search technology de-

veloped by an international team of researchers and described in their Managing Gigabytes books (Witten, Moffat,

and Bell 1994; Witten, Moffat, and Bell 1999). Their mg search engine stores documents in a highly-compressed

in-memory index, and matches a user-supplied list of words, possibly qualified with and, or, and not operators,

against the documents. It then returns an ordered list of documents that most closely match the word list. The

search is astonishingly fast, often under a millisecond on modern workstations, even for a collection of a half-

million BIBTEX entries.

Unfortunately, as so often happens with university research projects, interests changed, students graduated,

and software development ceased before mg acquired the necessary feature of subdocument searching. With

bibsearch, it is not possible to specify that a search string must, or must not, lie in, say, the author field. Such a

facility is necessary if one is to quickly identify articles about, say, the Knuth–Bendix theorem without also finding

articles by those authors themselves. As a result, bibsearch often returns much more than one would like, forcing

the human searcher to visually examine a large list of returned BIBTEX entries, or save the results for searching

with a text editor, to find the one desired.

BIBTEX was developed about the time that computer networking was evolving from the original Arpanet to

what became the Internet, and still several years before the World-Wide Web, and the search engines that be-

gan with Archie at McGill University (Emtage and Deutsch 1992), Gopher at the University of Minnesota (Lindner

1993; Anklesaria, McCahill, Lindner, Johnson, Torrey, and Albert 1993), and AltaVista at Digital Equipment Cor-

Nelson H. F. Beebe

TUGboat, Volume 30 (2009), No. 2 255

poration (Seltzer, Ray, and Ray 1997). The first of these is eponymous with a long-running American comic strip

(Archie Comics 2008), and was followed later by support tools named after strip companions Veronica and Jughead

(Jonzy’s Universal Gopher Hierarchical Extracter And Digger, created by a friend and colleague at the University of

Utah) (Harris 1993).

At the time of writing this, three large search engines at Google, Microsoft, and Yahoo! dominate the field.

They are hosted on thousands of geographically-distributed computers running highly-customized standard op-

erating systems with specialized filesystems. They run Web crawlers to collect files from Web and FTP servers and

they handle search queries with massive parallelism and sophisticated search algorithms that combine the history

of previous searches with information about the number, and trustworthiness, of links to Web pages from other

Web pages.

The search engine companies make their money from targeted advertising, and from fees paid by Web sites

to increase the frequency of crawler visits. Their historical stock market performance makes an interesting case

study of the successful commercialization of software technology.

The Google search algorithm is called PageRank, and the TUG bibliographic archives record more than two

dozen publications about it in journals in computer science, mathematics, and oriental languages. Here, we cite

only the earliest and latest of them (Page, Brin, Motwani, and Winograd 1998; Brezinski and Redivo-Zaglia 2008).

A key component of the PageRank algorithm is the mathematical algorithm known as the Singular Value Decom-

position (SVD), originally developed in 1965 by the late Gene Golub (1932–2007) at Stanford University, near where

Don Knuth would later invent TEX and METAFONT, and by William Kahan at the University of California, Berkeley

(Golub and Kahan 1965; Chan, Greif, and O’Leary 2007). These two researchers have strongly influenced modern

numerical mathematics, and Kahan is a key figure in the improvement of floating-point arithmetic on comput-

ers (Beebe 2007a; Beebe 2007b). Comprehensive BIBTEX bibliographies of their publications can be found in the

BibNet Project archives at http://www.math.utah.edu/pub/bibnet/.

Many computer users today consider Internet access a critical component of their environment, and rou-

tinely use search engines, even for tasks as mundane as finding the nearest designer caffeine-delivery service or

where a new movie is shown. While putting BIBTEX files on the Web makes them accessible to Internet search en-

gines, that action does not resolve the issue of how to restrict searches to particular subfields of entries, not does

it provide speedy access to new data without substantial cost. The remainder of this article describes a significant

solution to the BIBTEX search problem.

6 Relational databases

In their early days, computers had just two main applications: numerical computation, and data processing and

management. The human brain stores information, but it is unreliable, has comparatively slow retrieval times,

cannot be backed up reliably or quickly to other brains, and eventually, expires. Computers can solve the storage,

retrieval, and backup problems if their human companions keep them clean, cool, and supplied with energy, and

occasionally migrate their data to newer storage technologies.

Database systems were originally developed in the 1960s, but the early ones were inflexible, and searching

could require a sequential scan of the entire corpus of data. However, in 1969, IBM researcher E. F. Codd proposed

a new organization, called the relational model (Codd 1969; Codd 1970), and that idea eventually revolutionized

computer database software.

Codd’s essential idea was to consider the data as a set of tables, where each table row is a single logical item.

For example, in a parts catalog, one row might contain columns labeled customer demand, description, part num-

ber, price, profit margin, quantity available, supplier, and total sales. Software can then create a view of a subset

of the data by choosing only certain columns for consideration, with rows possibly further selected by applying

constraints like supplier in or near Madrid and price underAC100. Data subsetting can separate public information,

such as part number, description, and price that might be recorded in a catalog for customers, from proprietary

information that an organization uses for competitive advantage.

If at least one column in each row holds a unique identifier that distinguishes that row from all other rows,

then it is possible to join tables by creating a new table that appends columns to rows that share a common

unique identifier. This operation can be generalized to allow union (include all columns), intersection (include

only common columns), difference (include only columns present in the first table and absent from the second),

and symmetric difference (include only columns present in a single table). These operations are fundamental in the

mathematical field of set theory, once introduced in American schools as “New Math” (Kline 1973). That idea was

delightfully parodied by Tom Lehrer in a song of that name (Lehrer 1965), and later brought to the London (1980)

BIBTEX meets relational databases

256 TUGboat, Volume 30 (2009), No. 2

and New York (1981) stages in the play Tomfoolery (Macintosh 1980). For those interested in the mathematical

background of relational databases, there is a recent book on that subject (de Haan and Koppelaars 2007).

It is precisely the idea of a unique identifier that provides great power for the collection and management of

huge sets of data. While part numbers are possibly innocuous, personal identifiers like biometrics (blood groups,

DNA sequences, facial photographs, fingerprints, retinal scans, voice patterns, . . .), taxpayer numbers, pension-

plan numbers, credit-card numbers, vehicle-license numbers, telephone numbers, house numbers, e-mail ad-

dresses, highway toll e-passes, and so on have made it possible for governments and commercial organizations to

amass and collate enormous amounts of information about most of the population of the developed world, with

a complete loss of privacy (Rambam 2008). The database join operation allows this material to be collected and

sifted so that, for example, a medical-insurance company might maximize profits by insuring only customers who

are both healthy and wealthy. The dangers of collecting information about people are well-chronicled in the book

IBM and the Holocaust (Black 2002), and any study of human history soon shows that power and victory often go

to those with the best information technology.

7 Structured Query Language (SQL)

By the mid-1980s, it became clear that, at least for users, standardization of the search interface to database sys-

tems was desirable. Vendors eventually settled on what is now known as the Structured Query Language, usually

abbreviated as SQL, and pronounced either by its letters (ess cue ell) or like the noun sequel.

There have been several national, government, international, and industry standards for SQL, including ANSI

(X3.168-1989, X3.135-1992, 9579-2-1993, 9075-3-1995, and 9075-4-1996), FIPS (127:1990, 127-2:1993, 193:1995),

ISO/IEC, (9075:1987, 9075:1989, 9075:1992, 9075:2003, and 13249:2007), and X/Open (CAE 1994) (X/Open 1994).

Many 2008-vintage SQL systems claim conformance to most of the 1992 ISO Standard. There are more than 500

books about SQL, and BIBTEX entries for many of them can be found at http://www.math.utah.edu/pub/tex/

bib/index-table-s.html#sqlbooks. The prolific writer, Christopher J. Date, has produced dozens of books

about databases, and four editions of one of them chronicle the development of SQL (Date 1987; Date 1989; Date

and Darwen 1993; Date and Darwen 1997), and eight editions of another cover database systems in general (Date

2004). There are also very readable treatments of the use of SQL in the books by Judith Bowman and her co-

authors (Emerson, Darnovsky, and Bowman 1989; Bowman, Emerson, and Darnovsky 1993; Bowman, Emerson,

and Darnovsky 1996; Bowman, Emerson, and Darnovsky 2001; Bowman 2001). For deeper coverage of database

theory and practice, see the O’Neils’ treatise (O’Neil and O’Neil 2001).

The language SQL offers much to criticize, and Ted Codd was never happy with it. One of members of the ISO

SQL Standard Committee wrote this about it (Date and Darwen 1993, p. 374):

I lay most of the blame for the following problems firmly on SQL itself. If the world needs a better database standard, it

should prepare itself to move to a better database language.

Everyone who has searched an online bookstore or library catalog has almost certainly used SQL, but that use

is generally hidden behind a fill-in-the-box screen interface that destroys much of the true power of the language.

Three observations about SQL are relevant for our discussion here:

• The S in SQL is for Structured, not Standard. Life with SQL is very different from life with conventional pro-

gramming languages, like Fortran, C, C++, C#, and Java, for which highly-portable subsets and international

standards exist.

With SQL, there are far too many gratuitous and irritating differences between database systems that serve

no purposes but customer lock-in, database programmer job security, and user confusion.

• SQL is not a programming language: there are no variables, no loops, no conditionals, and no user-defined

functions or procedures, although particular databases may offer some of these extended features. When

programmability is required, it is conventional to embed calls to an SQL interface library, either in a high-

level compiled language like Ada, C, C++, C#, COBOL, or Java, or in a scripting language, such as JavaScript,

perl, php, python, or ruby, all of which have database module interfaces.

• SQL is complex, large, and powerful, but it is not difficult to learn a useful tiny subset: indeed, in Section 10,

we concentrate primarily on just one statement in the language.

8 BIBTEX database tables

The first step in making BIBTEX entries amenable to storage in a relational database is to identify column headings

that are likely to be useful. All that we need to do is to mentally rotate the entry by 90 degrees, so that the entry keys

Nelson H. F. Beebe

TUGboat, Volume 30 (2009), No. 2 257

become column names, their values become table-cell data, and the citation label becomes a (possibly-)unique

identifier characterizing the table row. Because a BIBTEX file often contains string definitions for use in entries,

they too are fodder for another table.

At the time of writing this, we have implemented three distinct tables for BIBTEX data:

bibtab with data from BIBTEX entries under these columns:

authorcount, editorcount, pagecount, bibtype, filename, label, author, editor, booktitle,

title, crossref, journal, volume, type, number, institution, organization, publisher,

school, address, edition, pages, day, month, monthnumber, year, CODEN, DOI, ISBN, ISBN13,

ISSN, LCCN, MRclass, MRnumber, MRreviewer, bibdate, bibsource, bibtimestamp, note, series,

URL, abstract, keywords, remark, subject, TOC, ZMnumber, entry.

strtab a table of BIBTEX string definitions with three columns:

key, value, entry.

namtab a table of personal names used in author and editor fields, with just two columns:

name, count.

Cells in the *count columns have integer values, and the cells in all of the remaining columns contain vari-

able-length character strings, where the permitted string lengths are well beyond what is needed for typical BIBTEX

entries.

The entry column in the first two tables contains the exact original text from the BIBTEX file.

It is conventional in modern database systems to use a special value, NULL, to represent indeterminate, un-

known, or unset values. NULL is distinguishable from both numeric zeros and empty strings, and most database

operators, and functions that act on column data, ignore rows with NULL values. Thus, if you take the sum or

average of a numerical column, only rows with numbers in them participate. Similarly, if you select data with an

expression year > ’2005’, rows with a NULL year do not match that expression.

The query facilities described in Section 10 allow testing for the presence or absence of NULL values with

expressions like column IS NULL and column IS NOT NULL.

While most of the key names in the bibtab table are standard ones in BIBTEX, a few are not. These include at

least these keys:

CODEN Chemical Abstracts CODE Name for serial publications.

DOI Digital Object Identifier, a unique and permanent name for the master copy of an electronic

document. If it does not look like an Internet URL, convert it to one by prefixing it with http:

//dx.doi.org/.

ISSN International Standard Serial Number: eight digits, optionally written as two groups of four digits

separated by a hyphen.

ISBN old-style International Standard Book Number: 10 digits, the last of which may be X or x. Optional

hyphens separate it into four digit groups that define the country or language, publisher, book

number, and a final check digit for error detection.

ISBN13 new-style (since 2007) International Standard Book Number: 13 digits, the last of which may be

X or x. This contains the old ten-digit ISBN, with a new prefix of 978-, and a revised check digit.

When the supply of unused ISBNs is exhausted, a new prefix 979- will be assigned, and such

numbers will then not be convertible to the old ten-digit form.

LCCN US Library of Congress Catalog Number, used for book identification at many US libraries, and at

some libraries in other countries.

MRclass list of American Mathematical Society Math Reviews five-character subject classification codes.

MRnumber Math Reviews database number.

MRreviewer Math Reviews reviewer name.

bibdate Unix date string in the formats Sat Oct 25 20:15:00 MDT 2008 or Sat Oct 25 20:15:00 2008;

it records a timestamp of the last significant change to the BIBTEX entry data.

bibsource arbitrary text indicating source(s) of bibliographic data, often as a list of Internet URLs or Z3950

library-catalog addresses.

bibtimestamp alternate representation of bibdate value in the form 2008.10.25 20:15:00 MDT, for which lex-

icographic sort order is also time order.

BIBTEX meets relational databases

258 TUGboat, Volume 30 (2009), No. 2

URL Internet Uniform Resource Locator(s) for retrieval of an electronic form of the document.

remark additional commentary about the entry that is not intended to be included in a typeset reference

list.

subject subject classification phrases.

TOC table of contents of the publication.

ZMnumber European Mathematical Society Zeitschrift für Mathematik database number.

9 BIBTEX/SQL software tools

This author has created two new programs, bibtosql and bibsql, to get BIBTEX files into relational databases with

an SQL interface and make that data searchable. The programs are freely available in various distribution formats

at http://www.math.utah.edu/pub/bibsql. Both are written as portable shell scripts, and the first of them uses

another program in the awk scripting language, which is standardly available on all Unix platforms, and versions

can be found for Microsoft Windows as well. The awk program needs no changes whatever to move between

systems, and at a given site, it is likely that the shell scripts, once configured, are identical across local systems.

The first program, bibtosql, handles the conversion of BIBTEX files to input for one of three commonly-used,

and freely-available, SQL database systems: MySQL, PostgreSQL, and SQLite. All three are reasonably portable, and

they can be installed from source code, or from binary distributions, on all common desktop platforms. In 2007,

Sun Microsystems purchased MySQL, but the source code is expected to remain available. We also investigated

use of the IBM DB2, Ingres, and Microsoft SQL Express databases, but abandoned further work with them because

their limits on the sizes of strings or table rows make them unusable for our needs, and they are not available on

the broad range of platforms that the others are. Also, their SQL input syntax is somewhat different from the three

that we support, and that would introduce unnecessary confusion for users of bibsql.

MySQL and PostgreSQL are large and complex systems that implement a client/server model of database

access. A single server can typically handle simultaneous requests from many client programs elsewhere on the

network. Large sites may already have one or more instances of them installed and operational, making it easy to

create yet another database for them to serve.

The third is much simpler, and recommended for single-user systems, and small groups. An SQLite database

consists of a single file that is independent of operating system, CPU architecture, and storage byte order. Once

created, an SQLite database file can be used on any system where SQLite can be compiled, and is ideally suited for

distribution on read-only media such as CD-ROMs or DVDs, or via the Web.

The SQLite software is public domain and may be used for any purpose, and redistributed, without restriction.

This makes it of interest, for example, for future TEX Live distributions.

The user interface to bibtosql looks like this:

% bibtosql --help

Usage: /usr/local/bin/bibtosql

[--author]

[--create]

[--database dbname]

[--help]

[--version]

[--server (MySQL | psql | PostgreSQL | SQLite)]

[--]

BibTeXfiles or <infile

>outfile

Options may begin with either one or two dashes, and lettercase in

options and database names is ignored.

Examples:

bibtosql --create *.bib | sqlite3 bibtex.db

bibtosql --create --server sqlite *.bib | sqlite3 bibtex.db

bibtosql --create --server psql *.bib | psql ...

bibtosql --create --server mysql *.bib | mysql ...

Nelson H. F. Beebe

TUGboat, Volume 30 (2009), No. 2 259

bibtosql -c *.bib | sqlite3 bibtex.db

bibtosql -c -s p *.bib | psql ...

bibtosql -c -s m *.bib | mysql ...

bibtosql newstuff.bib | sqlite3 bibtex.db

bibclean *.bib | biborder | bibtosql --create | sqlite3 bibtex.db

The manual pages for bibtosql contain extensive details about setting up the supported databases, and they need

not be repeated here. SQLite is by far the easiest to use, since a single command of the type shown in the first

example does the job.

The second program, bibsql, provides the user interface to the SQL database system, and hides the messy

details of where the data are located, and how the SQL client program communicates with the server. Its help

option reports:

% bibsql --help

Usage: /usr/local/bin/bibsql

[--author]

[--command ’ command1; command2; ... ’]

[--database dbname]

[--help]

[--options ’ ... server options ...’]

[--server (MySQL | psql | PostgreSQL | SQLite)]

[--user dbuser]

[--version]

Options may begin with either one or two dashes, and lettercase in

options and database names is ignored.

Examples:

bibsql

sqlite> ... user input here ...

bibsql -s psql

psql> ... user input here ...

The default database is currently called bibtex, but the option is there to allow access to others, should that prove

useful.

At this author’s site, SQL clients for all three database systems are operational on about 25 flavors of Unix,

including Apple Mac OS X, covering all of the common CPU architectures of the last decade. This demonstrates the

impressive portability of these database systems. The Cygwin environment on Microsoft Windows XP and Vista

systems provides clients for PostgreSQL and SQLite; see http://www.cygwin.org/. MySQL for Windows can be

downloaded from its vendor Web site, and its client program runs nicely with Cygwin. All three servers supply

essentially the same data, but they vary in performance and also in search and display facilities. The default server

is always SQLite, but users of bibsql should have few surprises if they select a different database server with a

command-line option.

The bibsql distribution includes sample C programs that can communicate with one of each of the supported

SQL databases, providing a useful coding template for those who wish to incorporate bibliographic-database ac-

cess directly into their own programs.

10 Using SQL with bibsql

It is now time to look at exactly how searches are done in SQL. The language has an imperative English-like gram-

mar that is nevertheless precise enough to allow unambiguous interpretation by computer software. Once bibsql

has started the SQL client program, all further user interaction is with that program: there is no input filtering

whatever.

BIBTEX meets relational databases

260 TUGboat, Volume 30 (2009), No. 2

For user convenience, lettercase is ignored in SQL commands. Lettercase is ignored in search strings as well,

except with PostgreSQL, where nonstandard special operators are required.

Character strings in SQL are written with surrounding single quotes, like this: ’SQL’. Some SQL clients also

support quotation-mark delimiters, "SQL".

To represent a single quote inside a string, double it: ’O”Neil’ is the name O’Neil. In MySQL, use a backslash

escape instead: ’O\’Neil’.

Long strings can be split into separate strings that are joined with the double-bar concatenation operator. For

example, these two expressions evaluate to the same string:

’Aloisius Baldwin Chadwick, IV’

’Aloisius ’ || ’Baldwin ’ || ’Chadwick, ’ || ’IV’

Comments in SQL take two forms. An Ada-style double hyphen starts a remark that continues to end of line or

end of file, whichever comes first. MySQL additionally requires that the double hyphen be followed by at least one

space to eliminate an ambiguity in the SQL expression grammar. Otherwise, C-style /* ... */ comments can

span one or more lines. Comments cannot be nested, and can appear inside commands anywhere that whitespace

can (except inside character strings).

The format of the output depends on the database system. For SQLite, it can be set by a dotted command

described in the help system like this:

.mode MODE ?TABLE? Set output mode where MODE is one of:

csv Comma-separated values

column Left-aligned columns. (See .width)

html HTML <table> code

insert \SQL\ insert statements for TABLE

line One value per line

list Values delimited by .separator string

tabs Tab-separated values

tcl TCL list elements

.nullvalue STRING Print STRING in place of NULL values

.output FILENAME Send output to FILENAME

.output stdout Send output to the screen

.separator STRING Change separator used by output mode and .import

.width NUM NUM ... Set column widths for "column" mode

The default is to separate cell values by vertical bars, with each table row output on a single line (unless the string

data contain linebreaks). Examples are given later in this section. However, other output styles chosen by the

SQLite .mode command make it easy to output the data in formats suitable for input to other databases, spread-

sheets, and Web pages.

The simplest query asks for a return of all records, where the asterisk means all data, and a final semicolon is

required to terminate the command:

select * from bibtab;

1||9|article|acm-turing-awards.bib|Perlis:1967:SAS|

Alan J. Perlis|||The Synthesis of Algorithmic Systems||

j-J-ACM|14||1|||||||1--9||jan|1|1967|JACOAH|

http://doi.acm.org/10.1145/321371.321372|||0004-5411 OR 00045411|

||||Mon Dec 05 19:37:58 1994||1994.12.05 19:37:58 ???|

|||||This is the 1966 ACM Turing Award Lecture, and the first award.||||

@Article{Perlis:1967:SAS,

author = "Alan J. Perlis",

title = "The Synthesis of Algorithmic Systems",

journal = j-J-ACM,

Nelson H. F. Beebe

TUGboat, Volume 30 (2009), No. 2 261

volume = "14",

number = "1",

pages = "1--9",

month = jan,

year = "1967",

CODEN = "JACOAH",

DOI = "http://doi.acm.org/10.1145/321371.321372",

ISSN = "0004-5411",

bibdate = "Mon Dec 05 19:37:58 1994",

acknowledgement = ack-nhfb,

remark = "This is the 1966 ACM Turing Award Lecture, and the

first award.",

}

...

Here, we wrapped the long first line for readability, and showed only the first record returned. The order of records

depends on the database creation and update history, and is unpredictable without further specifications.

Next, we limit the output to just three specified columns, and further limit the selection with a WHERE clause:

select year, author, title from bibtab

where author like ’%Perlis%’ and year = ’1967’;

1967|Alan J. Perlis|The Synthesis of Algorithmic Systems

1967|B. A. Galler and A. J. Perlis|A proposal for definitions in ALGOL

Because the command is long, we wrote it on separate lines.

The LIKE operator is followed by a string pattern wherein percent represents zero or more characters, under-

score a single character, and, in MySQL and SQLite, lettercase is ignored. Use NOT LIKE to negate the comparison.

These matches are against the full text of the string, so patterns usually need to begin and end with a percent.

To search for a literal percent or underscore, double them in the search pattern. With PostgreSQL, use the

nonstandard operator ILIKE, or its synonym ~~*, for case-insensitive searches.

To make string comparisons case sensitive in SQLite, set a library option like this:

pragma case_sensitive_like = on;

Set it to off to restore the default behavior. SQLite recognizes synonyms true, yes, and 1 for on, and false, no,

and 0 for off.

SQLite also has a GLOB operator that uses Unix pathname matching, where asterisk matches zero or more

characters, question mark matches a single character, and lettercase is always significant. Unfortunately, there is

no standard support in SQLite for regular-expression matching like that provided by many other Unix tools and

scripting languages, and some other SQL systems.

We can also use string-equality tests, but then the match must be exact, including lettercase:

select year, author, title from bibtab

where author = ’Alan J. Perlis’

order by year;

1958|Alan J. Perlis|Announcement

1963|Alan J. Perlis|Computation’s development critical to our society

1967|Alan J. Perlis|The Synthesis of Algorithmic Systems

1969|Alan J. Perlis|Introduction to extensible languages

1978|Alan J. Perlis|The American side of the development of Algol

1986|Alan J. Perlis|Two Thousand Words and Two Thousand Ideas --- The 650 at Carnegie

In the ORDER BY clause, the operand can be a comma-separated list of column names or ordinal numbers:

ORDER BY 1, 3 sorts by the first column, and when that column has the same values, by the third column.

Such a search is likely to miss many entries belonging to alternate spellings of the selected author, such as:

select year, author, title from bibtab

where author = ’A. J. Perlis’

order by year;

1964|A. J. Perlis|A format language

BIBTEX meets relational databases

262 TUGboat, Volume 30 (2009), No. 2

1964|A. J. Perlis|Programming of digital computers

1964|A. J. Perlis|How should ACM publish computer research?

1966|A. J. Perlis|A Forum on Algorithms: A new policy for algorithms?

1975|A. J. Perlis|Introduction to Computer Science

1981|A. J. Perlis|The American side of the development of ALGOL

It also misses entries where Perlis is one of multiple authors, since SQL string-equality tests always compare against

the full string values.

Use the namtab table to find the frequencies and variations of an author or editor name in the database:

select count, name from namtab

where name like ’%Steele%’

order by 1 desc;

15|Guy L. Steele Jr.

3|Guy L. Steele

2|Guy L. Steele, Jr.

1|G. L. Steele, Jr.

1|G. Steele

A more complex query requests unique output from a range of years, sorts the data in descending-year order,

and limits the number of records returned by the command to just five:

select distinct year, author, title from bibtab

where author like ’%D%Knuth’

and ’1955’ < year

and year < ’1970’

order by year desc

limit 5;

1969|Donald E. Knuth|Seminumerical Algorithms

1968|Donald E. Knuth|Very magic squares

1967|Donald E. Knuth|The Remaining Trouble Spots in ALGOL 60

1966|Donald E. Knuth|Errata: ‘‘Additional comments on a problem in concurrent ...’’

1966|Donald E. Knuth|Letter to the Editor: Additional comments on a concurrent ...

Some SQL systems permit the quotes around the year values to be omitted, but strictly, they are strings, not inte-

gers, since they occasionally contain a list or range of years.

The expression

’1955’ < year and year < ’1970’

can also be written as

year between ’1956’ and ’1969’

The endpoints of the BETWEEN operator are included in the range test.

When multiple logical operators are used in an expression without disambiguating parentheses, AND is eval-

uated before OR. Thus, a and b or c and d is treated as if it were written (a and b) or (c and d). When in

doubt about the meaning of a complex expression, parenthesize!

The SELECT command can be used for rudimentary expression evaluation in SQL, simply by omitting cell

selections, as shown in Table 1. Notice that character-string collation differs among the three systems. Numerical

expressions are evaluated in floating-point arithmetic if at least one of the operands contains a decimal point,

except in MySQL. Although the underlying arithmetic is IEEE 754, the treatment of NaN, Infinity, subnormal num-

bers, and zero divides is irregular and unreliable in the three systems. Also, large numbers are not handled sensibly.

In the view of this author, floating-point arithmetic is not to be trusted in these systems.

The larger SQL systems offer a wide range of numerical and string functions, similar to those of many pro-

gramming languages. However, SQLite has only a minimal repertoire of built-in functions. Here are examples of

some of the SQL functions that can operate on the returned results, including ones that just report counts, aver-

ages, extrema, and sums. We pose them as questions in prose, then express them in a SELECT statement to retrieve

an answer.

Nelson H. F. Beebe

TUGboat, Volume 30 (2009), No. 2 263

Table 1: Expression evaluation in SQL systems. SQLite lacks the illustrated functions from the square root to end of table.

SQL statement Value Remark

select ’ABC’ > ’DEF’; 0

select ’ABC’ < ’ABCDEF’; 1

select ’a’ < ’A’, ’a’ = ’A’, ’a’ > ’A’; 0,1,0 MySQL

select ’a’ < ’A’, ’a’ = ’A’, ’a’ > ’A’; t , f , f PostgreSQL

select ’a’ < ’A’, ’a’ = ’A’, ’a’ > ’A’; 0,0,1 SQLite

select length(’The Lion of TeX’); 15

select substr(’The Lion of TeX’, 13, 3); ’TeX’

select 1.0 / 3.0; 0.333333333333333

select 1.0 / 3; 0.333333333333333

select 1 / 3; 0

select 1 / 3; 0.3333 in MySQL

select 1/3 - 0.33333333333333333; −0.00000000033333333 in MySQL

select 1.0/3.0 - 0.33333333333333333; 0 in MySQL

select null IS NULL; 1

select max(1,2,3); 3 SQLite only

select min(1,2,3); 1 SQLite only

select (1 + sqrt(5))/2; 1.6180339887499

select sin(22); −0.00885130929040388

select pi(); 3.14159265358979

select rand(); 0.54459485182967 in [0,1] in MySQL

select random(); 0.751422385685146 in [0,1] in PostgreSQL

select random(); −5624361857185364588 in [−263,263
−1] in SQLite

select log(100); 4.6051701859881 natural logarithm in MySQL

select log10(1000); 3 base-10 logarithm in MySQL

select ln(10); 4.60517018598809 natural logarithm in PostgreSQL

select log(100); 2 base-10 logarithm in PostgreSQL

How many BIBTEX entries are in the database?

select count(*) from bibtab;

417349

How many titles are longer than 250 characters?

select count(length(title)) from bibtab where length(title) > 250;

772

What fraction of the entries have titles longer than 250 characters?

select ’1 / ’ || round(417349 / 772);

1 / 540.0

What is the average length of nonempty titles?

select avg(length(title)) from bibtab where length(title) > 0;

61.3055823817683

How long is the longest title in the database?

select max(length(title)) from bibtab;

1746

BIBTEX meets relational databases

264 TUGboat, Volume 30 (2009), No. 2

What is the average length in pages, rounded to the nearest integer, of the documents with known page counts?

select round(avg(pagecount)) from bibtab where pagecount > 0;

46.0

What is the largest page count in the database?

select max(pagecount) from bibtab;

4412

What is the largest number of editors in any document?

select max(editorcount) from bibtab;

18

What is the largest number of authors in any document?

select max(authorcount) from bibtab;

115

That number is unexpectedly large. What is the citation label and title of that document?

select label,title from bibtab where authorcount = 115;

Adiga:2002:OBS|An Overview of the BlueGene/L Supercomputer

Evidently, it takes a lot of people to build IBM’s largest computer.

What is the largest number of authors of any book?

select max(authorcount) from bibtab where bibtype = ’book’;

23

How small is the shortest BIBTEX entry?

select min(length(entry)) from bibtab;

101

How big is the longest BIBTEX entry?

select max(length(entry)) from bibtab;

19269

What is the average size of a BIBTEX entry in the database?

select avg(length(entry)) from bibtab;

770.447505564887

How many pages are in the documents that have known page counts?

select sum(pagecount) from bibtab where pagecount > 0;

13415587

What are the numbers of documents in each month of publication?

select distinct count(month), lower(month) from bibtab

where length(month) = 3

group by lower(month)

order by cast(monthnumber as number);

19111|jan

Nelson H. F. Beebe

TUGboat, Volume 30 (2009), No. 2 265

15411|feb

20423|mar

19398|apr

17489|may

21585|jun

19537|jul

16577|aug

20039|sep

18896|oct

16859|nov

20924|dec

This example shows how strings can be converted to lowercase with the lower() function (there is also an upper()

function), and to numbers with the cast() function. It may also suggest that publisher staff prefer February,

August, and November for their vacation time.

How many documents are there for each of the top ten publishers, ordering the results by descending counts?

select count(publisher), publisher from bibtab

where length(publisher) > 0

group by publisher

order by count(publisher) desc

limit 10;

5679|pub-SV

2154|pub-ORA

1820|pub-PROJECT-GUTENBERG

1593|pub-IEEE

1307|pub-AW

1076|pub-PH

891|pub-WILEY

838|pub-ACM

524|pub-PHPTR

425|pub-MCGRAW-HILL

How many documents are there for each of the top ten journals, ordering the results by descending counts?

select count(journal), journal from bibtab

where length(journal) > 0

group by journal

order by count(journal) desc

limit 10;

60788|j-LECT-NOTES-COMP-SCI

14540|j-J-MATH-PHYS

9988|j-CACM

8594|j-APPL-MATH-COMP

7896|j-SIGPLAN

7253|j-LINEAR-ALGEBRA-APPL

6435|j-THEOR-COMP-SCI

5344|j-COMPUTER

5335|j-MATH-COMPUT

4974|j-INFO-PROC-LETT

How many documents have a nonzero author count? (Remember that some document entries have only editors.)

select count(*) from bibtab where authorcount > 0;

406451

BIBTEX meets relational databases

266 TUGboat, Volume 30 (2009), No. 2

What percentage of the documents have one, two, . . . , five authors?

select round(100 * count(authorcount) / 406451) || ’%’, authorcount from bibtab

where authorcount > 0

group by authorcount

order by count(authorcount) desc

limit 5;

48.0%|1

28.0%|2

13.0%|3

5.0%|4

1.0%|5

The rule that NULL values are excluded from consideration in expressions does not apply to the special case

of the count(*) expression, because it just counts rows, and no row is completely NULL.

The last four searches are complex queries that use the SQL GROUP BY feature to simultaneously compute

counts of publishers and journals, producing a list of the top ten that occur most frequently in the database, and

do a similar computation to find the percentage of publications with one to five authors.

To avoid the need to first compute the count of documents with authors, the last pair of queries can be

rephrased as a single command with an embedded SELECT command, but we now make a further restriction.

What is the percentage of journal articles that have each of one to five authors?

select round(100 * count(authorcount) /

(select count(*) from bibtab

where authorcount > 0 and

bibtype = ’article’)) || ’%’,

authorcount

from bibtab

where authorcount > 0 and

bibtype = ’article’

group by authorcount

order by count(authorcount) desc

limit 5;

47.0%|1

29.0%|2

14.0%|3

5.0%|4

1.0%|5

BIBTEX string abbreviations are commonly used for data that are repeated in many entries, particularly for

journals, institutions, organizations, publishers, and addresses. The abbreviations can be retrieved from the

strtab table with searches like these:

Which publishers are in the Wiley family?

select entry from strtab

where key like ’pub-WILEY%’

and key not like ’%adr%’;

@String{pub-WILEY = "Wiley"}

@String{pub-WILEY-INTERSCIENCE = "Wiley-In{\e-}ter{\e-}sci{\e-}ence"}

Which publishers have offices in the city of Boston?

select entry from strtab where value like ’%Boston%’ order by entry;

@String{pub-ALLYN-BACON:adr = "Boston, MA, USA"}

Nelson H. F. Beebe

TUGboat, Volume 30 (2009), No. 2 267

@String{pub-AP-PROFESSIONAL:adr = "Boston, MA, USA"}

...

@String{pub-LITTLE-BROWN:adr = "Boston, Toronto, London"}

@String{pub-MORGAN-KAUFMANN:adrbo = "Boston, MA, USA"}

How many of the document publishers are in the city of New York?

select count(value) from strtab where value like ’%New York%’;

59

What are the string names and addresses for publishers in the Birkhäuser family?

select distinct key from strtab

where key like ’%BIRK%’

order by key;

pub-BIRKHAUSER

pub-BIRKHAUSER-BOSTON

pub-BIRKHAUSER-BOSTON:adr

pub-BIRKHAUSER:adr

It is possible, although complex, to combine searches in multiple tables to collect output data from all of

them. Here is just one example, which also introduces another SQL feature of providing short aliases for database

and table names within a single query.

Can we find the strings and BIBTEX entry for the Classic Shell Scripting book?

.separator "\n"

select s.entry, t.entry, b.entry

from bibtab b, strtab s, strtab t

where b.author like ’%Robbins%’

and b.title like ’%classic%’

and b.publisher = s.key

and b.address = t.key;

@String{pub-ORA-MEDIA = "O’Reilly Media, Inc."}

@String{pub-ORA-MEDIA:adr = "1005 Gravenstein Highway North,

Sebastopol, CA 95472, USA"}

@Book{Robbins:2005:CSS,

author = "Arnold Robbins and Nelson H. F. Beebe",

title = "Classic Shell Scripting",

publisher = pub-ORA-MEDIA,

address = pub-ORA-MEDIA:adr,

pages = "xxii + 534",

year = "2005",

ISBN = "0-596-00595-4",

ISBN-13 = "978-0-596-00595-5",

LCCN = "QA76.76.O63 R633 2005",

bibdate = "Tue Jul 12 16:13:16 2005",

URL = "http://www.oreilly.com/catalog/shellsrptg/",

acknowledgement = ack-nhfb,

}

Changing the output separator to a newline suppresses unwanted additional decoration, producing output that

can be copied directly into a BIBTEX file.

To list the column fields in the SQLite database, and to get further help, use the commands

.schema bibtab

.help

BIBTEX meets relational databases

268 TUGboat, Volume 30 (2009), No. 2

The output of .schema is similar to the CREATE TABLE command shown in the manual pages for bibtosql.

For more on the command syntax of SQLite, consult its Web site documentation collection: http://www.

sqlite.org/docs.html.

More details on additional features of MySQL and PostgreSQL searching and output formatting are provided

in the manual pages for bibsql. Here, we only note that both provide for regular-expression pattern matching, and

allow lettercase to be significant, or to be ignored. Because key is a built-in function in MySQL, when used as a

column name in MySQL search expressions, it must be protected with back quotes, like this: ‘key‘.

All three client programs record a command-history file in the user’s home directory, and support the GNU

readline library for command recall and editing. This feature is of great convenience, especially because it is com-

mon to repeat search commands after minor edits.

11 The impact of Ted Codd and Jim Gray

Since 1966, the Association for Computing Machinery (ACM) has awarded an annual prize for significant work

that furthers the young field of computer science. This is known as the Turing Award, and it has come to be

regarded as a kind of Nobel Prize for computer scientists. It is named after the renowned English mathematician

Alan Mathison Turing, who produced early important work on artificial intelligence, complexity theory, the now-

famous Turing Machine test, computer design, cryptography, and floating-point arithmetic, as well as in pure

mathematics and mathematical biology. BIBTEX biographies of Turing’s complete works, and of the ACM Turing

Awards, are available in the previously-cited BibNet Project and in the TUG bibliography archives at http://www.

math.utah.edu/pub/tex/bib/index-table-a.html#acm-turing-awards.

The first award went to Alan Perlis (1922–1990) of Yale University for his important work on compiler con-

struction and programming languages, notably, Algol. Some of his papers are mentioned in the search examples

in Section 10.

The 1981 recipient was the English computer scientist Edgar Frank “Ted” Codd (1923–2003), who revolution-

ized computing with the idea of relational databases. He spent much of his career at IBM research laboratories

in the USA, where he was influential in the development of IBM’s System R database. One of the spinoffs of that

work was the founding by Larry Ellison of Oracle Corporation, today the largest database vendor, and a fierce

competitor of others in that field, particularly Microsoft. There is a tribute to Ted Codd in one of the chapters of

a recent memorial volume (Date 2008), which notes in its first paragraph: The entire relational database industry,

now worth many billions of dollars a year, owes its existence to Ted’s original work. An earlier version appeared in a

journal article (Date 2003), and there is a Web site containing pointers to his publications (McJones 2003).

The 1998 award went to James Nicholas “Jim” Gray (1944–2007), who worked in academia, and in industry at

IBM, Tandem, DEC, and Microsoft. He was the first recipient of a Ph.D. from the Department of Computer Science

at the University of California, Berkeley, a department that is one of three great leaders in the field (the others are

MIT and Stanford), and the one that brought Unix and VAXes into academia. Jim was tragically lost without a trace

on January 28, 2007, during a solo sailing trip in clear and calm weather to the Farallon Islands offshore west of San

Francisco, California. A large satellite and sea rescue effort failed to find either him, or his boat, or any evidence

whatever of what happened; see http://openphi.net/tenacious/.

In the view of many people in the field, Jim was the person who made relational databases really work. He

made important contributions by applying database technology in the Microsoft Virtual Earth Project, and the

SkyServer database for the Sloan Digital Sky Survey (SDSS) (see http://www.sdss.org/, http://skyserver.

sdss.org/, and http://doi.acm.org/10.1145/1400214.1400231). SkyServer has revolutionized the field of

astronomy, because it makes the large and expensive-to-create astronomical data archives freely available to all of

the world’s astronomers and astrophysicists, even those who are amateurs or hobbyists.

A conference in memory of Jim Gray was held at Berkeley on 31 May 2008 (see http://www.eecs.berkeley.

edu/IPRO/JimGrayTribute/). Its proceedings are recorded in the June 2008 issue of ACM SIGMOD Record; see

http://www.math.utah.edu/pub/tex/bib/index-table-s.html#sigmod. The November 2008 issue of Com-

munications of the ACM has a charcoal-gray portrait of Jim on its cover, and articles about his work; see http:

//portalparts.acm.org/1410000/1400214/fm/frontmatter.pdf.

12 Conclusion

Connecting BIBTEX to SQL databases has been a long-term goal of mine, because the output of bibsearch is often

overwhelming due to its inability to narrow the search. However, bibsearch is much faster than any SQL database,

and my concern was that an SQL interface to bibliographic data might be too sluggish to be useful. Fortunately,

Nelson H. F. Beebe

TUGboat, Volume 30 (2009), No. 2 269

advances in computers have been dramatic in the years since BIBTEX was first developed. With the database server

running on a fast modern multicore or multiprocessor system, and particularly with SQLite and MySQL, search

speeds with bibsql are acceptably fast, and often under a second.

The ability to restrict searches to subfields of BIBTEX entries is liberating. It facilitates asking questions that

could not be answered with previous tools, as we illustrated in some of the search examples in Section 10. It also

makes it much easier, and more reliable, to collect new entries for the many subject-specific bibliographies in the

TUG archive, since the WHERE clause can use expressions that test the bibtimestamp and filename columns to

select entries newer than a given date, while ignoring entries already in the subject bibliography file.

Exploratory searches of our large body of bibliographic data have also shown that it is quite easy to detect,

report, and repair irregularities in the data, even down to such simple things as a missing period following an

author/editor initial.

My hope is that future editions of the TEX Live software distributions will include bibsql and bibtosql, along

with binaries for SQLite for all supported platforms, accompanied by URLs from which to retrieve current col-

lections of bibliographic data in SQLite format. That way, TEX users the world over can enjoy the benefits of fast

access, via SQL searches, to bibliographic data without the trouble of producing and maintaining that data them-

selves. The SQL learning experience with bibsql may then encourage them to think of other applications of SQL

databases for their own interests and problems, and appreciate the lessons from Ted Codd and Jim Gray that rela-

tional databases are really useful.

The BIBTEX entries for the publications cited in the References section that follows were collected almost

entirely with the help of bibsql, bibsearch, and cattobib.

References

James Alexander. 1986. TIb: a reference setting package for TEX. TUGboat 7, 3 (Oct.), 138–140. ISSN 0896-3207.

James Alexander. 1987. TIb: a reference setting package, update. TUGboat 8, 2 (July), 102–102. ISSN 0896-3207.

F. Anklesaria, M. McCahill, P. Lindner, D. Johnson, D. Torrey, and B. Albert. 1993. RFC 1436: The Internet Gopher

Protocol (a distributed document search and retrieval protocol). (Mar.). See ftp://ftp.internic.net/rfc/

rfc1436.txt,ftp://ftp.math.utah.edu/pub/rfc/rfc1436.txt.

Archie Comics. 1941–2008. Archie Archive. Web site. See http://www.archiecomics.com/.

Nelson H. F. Beebe. 1993a. Bibliography prettyprinting and syntax checking. TUGboat 14, 3 (Oct.), 222–222. ISSN

0896-3207.

Nelson H. F. Beebe. 1993b. Bibliography prettyprinting and syntax checking. TUGboat 14, 4 (Dec.), 395–419. ISSN

0896-3207.

Nelson H. F. Beebe. 1997. bibsearch: search BIBTEX bibliography files. (May). See http://www.math.utah.edu/

pub/bibsearch. Unpublished, but software released.

Nelson H. F. Beebe. 2004a. A bibliographer’s toolbox. TUGboat 25, 1, 89–104. ISSN 0896-3207.

Nelson H. F. Beebe. 2004b. cattobib: convert Z39.50 library catalog server data to BIBTEX markup. (15 Nov.). See

http://www.math.utah.edu/pub/cattobib. Unpublished, but software released.

Nelson H. F. Beebe. 2007a. Extending TEX and METAFONT with floating-point arithmetic. TUGboat 28, 3, 319–328.

ISSN 0896-3207.

Nelson H. F. Beebe. 2007b. New directions in floating-point arithmetic. In Computation in Modern Science and

Engineering: Proceedings of the [Fifth] International Conference on Computational Methods in Science and

Engineering 2007 (ICCMSE 2007), Corfu, Greece, 25–30 September 2007 (AIP Conference Proceedings (#963)).

Theodore E. Simos and George Maroulis (Eds.), Vol. 2A. American Institute of Physics, Woodbury, NY, USA, xxvi

+ 730 + 10 (vol. 2A) book pages, 155–158. ISBN 0-7354-0476-3 (set), 0-7354-0477-1 (vol. 1), 0-7354-0478-X (vol.

2). ISBN-13 978-0-7354-0476-2 (set), 978-0-7354-0477-9 (vol. 1), 978-0-7354-0478-6 (vol. 2). ISSN 0094-243X.

LCCN Q183.9 .I524 2007. See http://www.springer.com/physics/atoms/book/978-0-7354-0478-6.

Edwin Black. 2002. IBM and the Holocaust: the strategic alliance between Nazi Germany and America’s most

powerful corporation. Three Rivers Press, New York, NY, USA. 551 pages. ISBN 0-609-80899-0 (paperback).

ISBN-13 978-0-609-80899-3 (paperback). LCCN HD9696.2.U64 I253 2002.

Judith S. Bowman. 2001. Practical SQL: the sequel. Addison-Wesley, Reading, MA, USA. xv + 329 pages. ISBN

0-201-61638-6. ISBN-13 978-0-201-61638-5. LCCN QA76.73.S67 B695 2001.

Judith S. Bowman, Sandra L. Emerson, and Marcy Darnovsky. 1993. The practical SQL handbook: using Structured

Query Language, (second ed.). Addison-Wesley, Reading, MA, USA. xvii + 453 pages. ISBN 0-201-62623-3.

ISBN-13 978-0-201-62623-0. LCCN QA76.73.S67 E54 1993.

Judith S. Bowman, Sandra L. Emerson, and Marcy Darnovsky. 1996. The practical SQL handbook: using Structured

Query Language, (third ed.). Addison-Wesley Developers Press, Reading, MA, USA. xxvi + 454 pages. ISBN

0-201-44787-8. ISBN-13 978-0-201-44787-3. LCCN QA76.73.S67 B69 1996.

BIBTEX meets relational databases

270 TUGboat, Volume 30 (2009), No. 2

Judith S. Bowman, Sandra L. Emerson, and Marcy Darnovsky. 2001. The practical SQL handbook: using SQL

variants, (fourth ed.). Addison-Wesley, Reading, MA, USA. xxxvi + 469 pages. ISBN 0-201-70309-2. ISBN-13

978-0-201-70309-2. LCCN QA76.73.S67 B688 2001.

C. Brezinski and M. Redivo-Zaglia. 2008. Rational extrapolation for the PageRank vector. Math. Comp. 77, 263 (July),

1585–1598. CODEN MCMPAF. ISSN 0025-5718 (paper), 1088-6842 (electronic). See http://www.ams.org/mcom/

2008-77-263/S0025-5718-08-02086-3/home.html.

Robert Burgess and Emin Gün Siren. 2007. CrossTEX: A modern bibliography management tool. TUGboat 28, 3,

342–349. ISSN 0896-3207.

Raymond H. Chan, Chen Greif, and Dianne P. O’Leary (Eds.). 2007. Milestones in matrix computation: the selected

works of Gene H. Golub with commentaries. Oxford University Press, Walton Street, Oxford OX2 6DP, UK.

xi + 565 + 3 pages. ISBN 0-19-920681-3. ISBN-13 978-0-19-920681-0. LCCN QA188 .G67 2007. See http:

//www.loc.gov/catdir/enhancements/fy0737/2007276086-d.html.

E. F. Codd. 1969. Derivability, Redundancy, and Consistency of Relations Stored in Large Data Banks. Research

Report RJ599, IBM Corporation, San Jose, CA, USA. (19 Aug.).

E. F. Codd. 1970. A Relational Model of Data for Large Shared Data Banks. Commun. ACM 13, 6 (June), 377–387.

DOI http://doi.acm.org/10.1145/362384.362685. CODEN CACMA2. ISSN 0001-0782. http://dblp.

uni-trier.de/db/journals/cacm/Codd70.html. Reprinted in (Stonebraker 1988, pp. 5–15).

Patrick W. Daly. 1994. Customised BIBTEX styles. Web-accessible software. See http://www.ctan.org/tex-archive/

help/Catalogue/entries/custom-bib.html.

C. J. Date. 1987. A guide to the SQL standard: a user’s guide to the standard relational language SQL.

Addison-Wesley, Reading, MA, USA. xiv + 205 pages. ISBN 0-201-05777-8 (paperback). ISBN-13

978-0-201-05777-5 (paperback). LCCN QA76.9.D3 D36951 1987.

C. J. Date. 1989. A guide to the SQL standard: a user’s guide to the standard relational language SQL, (second ed.).

Addison-Wesley, Reading, MA, USA. xii + 228 pages. ISBN 0-201-50209-7. ISBN-13 978-0-201-50209-1. LCCN

QA76.9.D3 D24 1989.

C. J. Date. 2003. Edgar F. Codd: a tribute and personal memoir. SIGMOD Record (ACM Special Interest Group on

Management of Data) 32, 4 (Dec.), 4–13. DOI http://doi.acm.org/10.1145/959060.959061. CODEN SRECD8.

ISSN 0163-5808.

C. J. Date. 2004. An introduction to database systems, (eighth ed.). Pearson/Addison Wesley, Boston, MA, USA. xxvii

+ 983 + 22 pages. ISBN 0-321-19784-4. ISBN-13 978-0-321-19784-9. LCCN QA76.9.D3 D3659 2003.

C. J. Date. 2008. Edgar F. Codd. In Memorial Tributes. Vol. 12. National Academy of Engineering, Washington,

DC, USA, 80–87 (of xiv + 362). ISBN 0-309-12639-8. ISBN-13 978-0-309-12639-7. See http://books.nap.edu/

openbook.php?record_id=12473&page=80.

C. J. Date and Hugh Darwen. 1993. A guide to the SQL Standard: a user’s guide to the standard relational

language SQL, (third ed.). Addison-Wesley, Reading, MA, USA. xvii + 414 pages. ISBN 0-201-55822-X. ISBN-13

978-0-201-55822-7. LCCN QA76.9.D3 D3695 1993.

C. J. Date and Hugh Darwen. 1997. A guide to the SQL standard: a user’s guide to the standard database language

SQL, (fourth ed.). Addison-Wesley, Reading, MA, USA. xxii + 522 pages. ISBN 0-201-96426-0. ISBN-13

978-0-201-96426-4. LCCN QA76.73.S67 D38 1997.

Lex de Haan and Toon Koppelaars. 2007. Applied mathematics for database professionals. Apress, Berkeley, CA,

USA. xxviii + 376 pages. ISBN 1-59059-745-1. ISBN-13 9781590597453. LCCN QA76.9.D3 H239 2007. See http:

//www.loc.gov/catdir/toc/fy0804/2008299427.html. This book provides the mathematical background of

logic and set theory for relational databases.

Sandra L. Emerson, Marcy Darnovsky, and Judith S. Bowman. 1989. The practical SQL handbook: using Structured

Query Language. Addison-Wesley, Reading, MA, USA. xiii + 393 pages. ISBN 0-201-51738-8. ISBN-13

978-0-201-51738-5. LCCN QA76.73.S67 E54 1989.

Alan Emtage and Peter Deutsch. 1992. archie — An Electronic Directory Service for the Internet. Technical report,

McGill University, Montréal, Québec, Canada.

G. H. Golub and W. Kahan. 1965. Calculating the Singular Values and Pseudo-Inverse of a Matrix. Journal of the

Society for Industrial and Applied Mathematics: Series B, Numerical Analysis 2, 2, 205–224. ISSN 0887-459X.

Reprinted in (Chan, Greif, and O’Leary 2007).

Judi Harris. 1993. Mining the Internet: Networked Information Location Tools: Gophers, Veronica, Archie, and

Jughead. Computing Teacher 21, 1 (1 Aug.), 16–19. ISSN 0278-9175.

Taco Hoekwater. 2007. LuaTEX. TUGboat 28, 3, 312–313.

Jean-Michel Hufflen. 2003a. European bibliography styles and MlBIBTEX. TUGboat 24, 3, 489–498. ISSN 0896-3207.

Jean-Michel Hufflen. 2003b. MlBIBTEX’s Version 1.3. TUGboat 24, 2, 249–262. ISSN 0896-3207.

Morris Kline. 1973. Why Johnny can’t add: the failure of the New Math. Vintage Books, New York, NY, USA. xi + 208

pages. ISBN 0-394-71981-6. ISBN-13 978-0-394-71981-8. LCCN QA13 .K62 1974.

Nelson H. F. Beebe

TUGboat, Volume 30 (2009), No. 2 271

Leslie Lamport. 1985. LATEX—A Document Preparation System—User’s Guide and Reference Manual. Addison-Wesley,

Reading, MA, USA. xiv + 242 pages. ISBN 0-201-15790-X. ISBN-13 978-0-201-15790-1. LCCN Z253.4.L38 L35

1986.

Tom Lehrer. 1965. New Math. In That Was the Year That Was. Vol. R/RS 6179. Reprise Records, Burbank, CA,

USA. See http://dmdb.org/discographies/lehrer.disco.html,http://www.stlyrics.com/songs/t/

tomlehrer3903/newmath185502.html. Audio recording.

P. (Paul) Lindner. 1993. Internet Gopher User’s Guide. Tech. rep., University of Minnesota, Minneapolis, MN, USA. vi

+ 103 pages. See also RFC 1436.

Cameron Macintosh. 1980. Tomfoolery. Web site and stage play. See http://www.tomlehrer.org/tomlehrer/

enter.html.

Paul R. McJones. 2003. Collected Works of E. F. Codd. Web site. See http://www.informatik.uni-trier.de/~ley/

db/about/codd.html.

Tristan Miller. 2005. Biblet: A portable BIBTEX bibliography style for generating highly customizable XHTML.

TUGboat 26, 1, 85–96. ISSN 0896-3207.

Patrick O’Neil and Elizabeth O’Neil. 2001. Database—principles, programming, and performance, (second ed.).

Morgan Kaufmann Publishers, Los Altos, CA 94022, USA. xxiv + 870 pages. ISBN 1-55860-580-0 (paperback),

1-55860-438-3 (hardcover). ISBN-13 978-1-55860-580-0 (paperback), 978-1-55860-438-4 (hardcover). LCCN

QA76.9.D3 O489 2001. See http://www.loc.gov/catdir/toc/els033/99089041.html.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1998. The PageRank Citation Ranking: Bringing

Order to the Web. Tech. rep., Stanford Digital Library Technologies Project, Stanford University, Stanford, CA,

USA. 17 pages. (29 Jan.). See http://dbpubs.stanford.edu/pub/1999-66;http://ilpubs.stanford.edu:

8090/422/1/1999-66.pdf.

Oren Patashnik. 2003. BIBTEX yesterday, today, and tomorrow. TUGboat 24, 1, 25–30. ISSN 0896-3207.

Steven Rambam. 2008. The Grill: Privacy and Databases. ComputerWorld 42, 41 (13 Oct.), 18, 20. See http:

//www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=326821.

Richard Seltzer, Deborah S. Ray, and Eric J. Ray. 1997. The AltaVista Search Revolution: How to find anything

on the Internet. Osborne/McGraw-Hill, Berkeley, CA, USA. xxii + 274 pages. ISBN 0-07-882235-1. ISBN-13

978-0-07-882235-3. LCCN TK5105.875 .I57 S44 1997.

Michael Stonebraker (Ed.). 1988. Readings in Database Systems. Morgan Kaufmann Publishers, Los Altos, CA 94022,

USA. xii + 644 pages. ISBN 0-934613-65-6. ISBN-13 978-0-934613-65-1. LCCN QA76.9.D3 R4 1988.

Philip A. Viton. 2000. Getting Started with custom-bib: An introduction for SWP users. Web tutorial. (25 Aug.). See

http://facweb.knowlton.ohio-state.edu/pviton/support/custom-bib.html.

Ian H. Witten, Alistair Moffat, and Timothy C. Bell. 1994. Managing Gigabytes: Compressing and Indexing

Documents and Images. Van Nostrand Reinhold, New York, NY, USA. xiv + 429 pages. ISBN 0-442-01863-0.

ISBN-13 978-0-442-01863-4. LCCN TA1637 .W58 1994.

Ian H. Witten, Alistair Moffat, and Timothy C. Bell. 1999. Managing Gigabytes: Compressing and Indexing

Documents and Images, (second ed.). Morgan Kaufmann Publishers, Los Altos, CA 94022, USA. xxxi + 519 pages.

ISBN 1-55860-570-3. ISBN-13 978-1-55860-570-1. LCCN TA1637 .W58 1994. See http://www.math.utah.edu/

pub/mg/.

X/Open (Ed.). 1994. X/Open CAE specification. X/Open Co., Reading, Berkshire, UK. xvi + 156, x + 66 pages. ISBN

1-872630-58-8, 1-872630-98-7, 0-13-353558-4 (Prentice Hall). ISBN-13 978-1-872630-58-8, 978-1-872630-98-4,

978-0-13-353558-7 (Prentice Hall). LCCN QA76.73.S67 X18 1994.

Mini-colophon: The body of this article is typeset with the fourier font package and the luximono typewriter font package,

augmented with the eurosym and tipa packages for additional special characters. The bibliography style is acmtrans-v2.

⋄ Nelson H. F. Beebe

University of Utah

Department of Mathematics, 110 LCB

155 S 1400 E RM 233

Salt Lake City, UT 84112-0090

USA

WWW URL: http://www.math.utah.edu/~beebe

Telephone: +1 801 581 5254

FAX: +1 801 581 4148

Internet: beebe@math.utah.edu, beebe@acm.org, beebe@computer.org

BIBTEX meets relational databases

272 TUGboat, Volume 30 (2009), No. 2

TEX as an eBook reader

Kaveh Bazargan

Abstract

An important advantage of eBook readers is their
ability to modify text size and page orientation for
the most comfortable reading configuration. The
eBook reader has to reformat the text on the fly and
with minimum delay. Current eBook readers (e.g.
Stanza on the iPhone) can do this reformatting, but
cannot deal with complicated text such as mathe-
matics. We have been experimenting with using TEX
as the formatting engine. Of course it can handle
complex mathematics, but it also creates the best
line breaks of any eBook reader. We will report our
experiments with using TEX as an ebook reader on
the iPhone.

1 Problems in the eBook world

1.1 Format wars

There is a ‘format war’ going on in the world of
eBooks. Several formats are proprietary, and several
openly specified. This has produced confusion for
the publishers, as they don’t know which format to
distribute their books on, and don’t know whether
or not they will have to redistribute in the future,
in other formats. The XML format was originally
envisaged for just this sort of format war. By using a
single format which embodies all the logical structure
and the content of the document, any other format,
e.g. PDF, can be created automatically.

ePub is a comprehensive XML format for eBooks.
In particular it supports MathML for mathematical
text. So the ideal scenario would be that an eBook
is saved in only one format, namely ePub, and an
eBook reader would render this on the fly and present
a readable view. We’ll come back to this after dis-
cussing the workflow in our company.

1.2 Ugly output

One of the most compelling features of eBooks is
that they can reflow the text to the user’s taste. But
the line breaking engine on these small devices is
not that sophisticated, and the output does not look
professionally typeset. For example, eBook readers
on the iPhone show lots of bad breaks and large word
gaps when the font size is increased. Again, we will
come back to this.

2 Evolution of the workflow
at River Valley Technologies

The main activity at our company is typesetting
mathematical text. To explain most simply, we need

to go from a TEX file submitted by the author, to a
PDF file. Before the need for generation of XML, this
was a straightforward process. We would put the TEX
file into style, typeset it, proofread, etc. A few years
ago, publishers started requesting XML, and rightly
so. As we deal with mathematical material, we
needed to use MathML in order to keep the structure
for future re-use of XML.

But here is a problem with XML. It is easy to
produce a file that parses and validates, but it is
not easy to check the content. Checking the PDF,
on the other hand is simple — it is called reading
the document, or proofreading it. We had to find
a way of guaranteeing the fidelity of the XML and
PDF. The only solution we could think of was an
automated way of generating the PDF from the XML.
But this was a non-trivial task. XML deals only with
content and logical structure. It does not deal with
visual style, placement of figures, hyphenation, etc.
There are other anomalies. For instance an XML file
might list all figures at the top of the file, but the
PDF will have them in the order that they appear.

Here is the workflow we came up with:

Author TEX → Structured TEX →

XML → Slave TEX → PDF

The structured TEX is not for typesetting, but sim-
ply uses TEX as markup for tagging elements; for in-
stance \firstname{John} or \journalyear{1985}.
This file is then transformed automatically into the
XML. The program we use for this is a highly con-
figured version of TEX4ht, written by the late Eitan
Gurari. But for the purposes of the present discus-
sion, it is the stages from the XML onwards that are
important.

The XML file is transformed to a TEX file using
XSLT. This is what we call a ‘slave’ TEX file which
is not normally looked at. It is simply created in
order to produce the final PDF file. The important
point is that the translation of the XML to PDF is
done with 100% automation. And the intermediate
TEX file is not modified in any way, but simply run
through TEX to produce the final PDF.

So we have two fully automated processes, one
going from a TEX file to an XML file, and one from the
XML to a second TEX file. The filters for these two
processes were written independently, and checked
rigorously. So let us suppose a proofreader is com-
paring the output from the author file and that from
the final TEX file, and checks that the mathematical
symbols match. It is then almost certain that the
XML also matches. So the method gives us a high
degree of confidence in the content of the XML.

Kaveh Bazargan

TUGboat, Volume 30 (2009), No. 2 273

3 Back to eBooks

So how does all this relate to eBooks? Well, we said
in the section about ‘format wars’ that ideally ePub
should be the one and only format, and it should be
rendered on the fly by the eBook reader. So we need
a rendering engine that renders ePub in near-real
time. Well, our XML → Slave TEX → PDF is just
such an engine. So we decided to try to implement
this on an eBook reader. The only device which was
accessible to us and had a software development kit
available was the iPhone from Apple.

So there are two elements to the full process —
transforming XML to TEX, and typesetting the TEX.
The second seemed the most challenging and we
sought the help of Jonathan Kew. Within a short
time he managed to port the full TEX program to the
iPhone. We decided to created a DVI file rather than
a PDF, for speed and for compact file size. Jonathan
also wrote a DVI reader for the device. The program
runs very quickly indeed, and turning the iPhone on
its side instantly reformats the output to the new
page aspect ratio.

The transformation from ePub to the slave TEX
has not yet been done, but it seems to be the easier
part of the problem.

3.1 Quality of output

Regarding the ‘ugly output’ referred to above, we
compared our output through TEX for a purely tex-
tual file, to the output from the other eBook readers
on the iPhone and we think TEX does much better.
Of course TEXies should not be surprised by this.
We all know that the line breaking algorithm of TEX
is the best!

4 Conclusions

Our automated workflow, from XML to PDF, can be
modified and applied to eBook readers. The output
looks good with good spacing and hyphenation, and
only one format, ePub, need be produced by the
publisher.

5 Acknowledgements

I am merely the ‘Steve Jobs’ of our company, others
do the clever work and I take to the stage and take the
credit! Here the main credit must go to Jonathan
Kew who did the work reported here. Credit of
course also to Radhakrishnan CV for discussions on
the overall concept.

⋄ Kaveh Bazargan
River Valley Technologies
kaveh (at) river-valley dot com

http://www.river-valley.com

TEX as an eBook reader

274 TUGboat, Volume 30 (2009), No. 2

From distribution to preservation of
digital documents

Christian Rossi

Abstract

This article addresses the issues of conservation of
(mostly textual) electronic documents. Its main ob-
jective is to describe the problems in terms of hard-
ware and software mediators between the data and
the user rather than focusing on formats. The point
of view is that of a skeptic.

1 Introduction

The subject of this paper is the problem of preserving
digital documents. It is mainly aimed at describing
the problem of preservation in terms of the inter-
mediary hardware and software between the data
and the user, rather than in terms of file format. It
is particularly focused on text documents and cov-
ers various aspects of the problem: hardware and
software, migration, file formats, typography, XML,
conversion, duration.

2 A digital document is not directly
accessible to a human user

A key characteristic of the digital world is that there
are many intermediaries between the medium on
which digital information is stored and the user:

• the medium;
• a reader or drive;
• the operating system;
• a software application;
• the peripherals;
• operating instructions.

In the first place the medium (magnetic disk,
cdrom, etc.) on which the information is physically
held, then a drive used to convert the physical infor-
mation into binary information, then the operating
system used to group these 0s and 1s into files and di-
rectories. Finally, a software application that makes
this file accessible to a human being via an audio or
video peripheral or a printer, and this covers only
the most standard cases. Not forgetting, of course, a
person who knows how to use, and sometimes repair,
all these intermediaries.

This is the major difference in relation to paper,
which gives direct access to information.

In terms of preservation, a significant conse-
quence of the existence of these intermediaries is
that it is not only the medium itself which must
be available, but the entire chain of consultation,
and if not the original, then an equivalent. The
length of this chain is a problem in itself, but its

life expectancy, i.e. that of a computer and its pe-
ripherals, is rather short. At present, on average,
it is common practice to replace a computer every
three years, a new version of a standard operating
system is available every year and security patches
must be applied every month. And all this is neces-
sary since for “old” equipment official maintenance
soon stops or, if it is still available, is charged for
at exorbitant rates. Ensuring the preservation of
digital documents therefore now means choosing be-
tween constantly migrating all media and hardware
and software chains, or creating living IT museums
in which these intermediaries are kept in working
condition.

In fact we can end up having to migrate not be-
cause the medium is nearing the limit of its physical
life, but because of its technical/commercial obsoles-
cence: the reader or drive is no longer on the market,
is no longer maintained, and technical support is out
of date. From this point of view there is no point in
using a medium with a life expectancy of a hundred
years, since in three years’ time migration will be
necessary. The technical/commercial life expectancy
is shorter than the physical life expectancy.

Two other problems should be emphasized. The
first is knowing what to migrate to — a decision that
cannot be automated. Errors in this respect can
give rise to many unnecessary and costly migration
operations. The second is simply to guarantee, dur-
ing successive migration operations, the preservation
of document integrity. During migration, files are
copied from one medium to another. Tools must
then be used to check that the binary content of the
files is identical. But if file format conversions are
required, an automatic check appears to be impossi-
ble. How can a guarantee be given that a PostScript
file converted to PDF will give an identical graphic
output? The file is no longer the same, and neither
is the consultation software.

Other solution: emulation of older technology,
but this considerably extends and adds complexity to
the chain between the document and the user, adding
yet another intermediary. Another problem is the
fact that the specifications of the technologies to be
emulated are not necessarily in the public domain.
But an emulator is also software like any other, which
runs on a certain machine with a certain version of a
certain operating system. In other words, emulation
necessitates migrations of the emulator.

3 Autonomy and preservation

What will the life expectancy of a paper document
be if it has to be de-acidified every three years to
keep it intact? There is just one answer: the time

Christian Rossi

TUGboat, Volume 30 (2009), No. 2 275

during which the people, the financial resources and
the will to do so are all available. The situation is
very similar with digital documents.

Taking into account the rapid evolution of tech-
niques, the life expectancy of the hardware, software
versions and file formats, it is clear that migrations
and conversions of all sorts are inevitable. In other
words, an electronic document is highly dependent
on human intervention for its preservation — much
more dependent than paper documents. We are a
long way from the historic document that no one
has touched for 200 years and that is rediscovered
with great excitement. In an ideal world a document
should be autonomous in terms of its preservation.

Moreover, an important constraint is that the
preservation cost must be reasonable. This is not
at present really compatible with frequent software
and hardware migrations and the human operations
involved in these migrations. But going beyond the
issue of cost, relying on recurring and frequent human
operations to ensure the preservation of documents
in the long term does not appear to be reasonable.

4 Ease of use or life expectancy

If we consider the evolution of documentation media
over time, we can observe two key points:

• ease of use has increased;

• life expectancy has decreased.

Effectively, while it is easier to use a sheet of
paper than a tablet of stone, the life expectancy of
the paper is clearly shorter. If we start with clay
tablets, moving on to parchment, then paper, this
evolution is very clear, an evolution that has also led
to the real democratization of access to information,
but an evolution that has also given rise to a real
reduction in the life expectancy of documents. There
has been a price to pay. We can summarize this
situation by saying that for traditional media:

ease of use × life expectancy = constant

Is the situation the same with digital media? In
terms of ease of use, it is unquestionably very high.
Digital is fantastic for creating, modifying, storing,
searching, distributing, etc.

But in other respects digital is effectively com-
plex, fragile, unstable . . . and we have not had
enough time to stand back and assess it. The high
number of intermediaries between the medium and
the human user does not make either access to infor-
mation or its preservation any easier.

The situation therefore appears, for the moment,
to be the same. And if we are actually in a universe
where it is impossible to have only advantages, where
what we gain in ease of use we lose in terms of life

expectancy, it is better to use the digital media in
full knowledge of the facts.

We are not talking here about stopping the use
of digital media — as if we would want to — but of
being realistic. For instance, we do not demand that
paperback novels last forever, but no one would want
to see them disappear. A paperback novel is used
simply for its qualities, not criticized for its short-
comings. With digital media the same behaviour
is reasonable: using it for its qualities of creation
or distribution, while remaining aware of its current
shortcomings in terms of preservation.

5 From the very short term to the
long term

If the preservation time required is specific to each
type of document type and its planned use, we can
at least try to define a timescale for the preservation
of digital documents:

• very short term: corresponds to the technical
and commercial life expectancy of the consulta-
tion chain; in the case of a problem performance
is assured by a maintenance service;

• short term: physical life expectancy, it works
for as long as it works . . . ;

• medium term: access to data is assured thanks
to the implementation of an organisation respon-
sible for migrations or other operations;

• long term: from the moment at which this organ-
isation no longer exists, we return to the physical
life expectancy of the consultation chain result-
ing from the latest migration.

Once we are aware that digital data is not au-
tonomous in terms of preservation and that it must
be managed (hyperactive storage), it is possible to
guarantee its medium term sustainability. This re-
quires a reliable organisation and considerable hu-
man and financial resources. Such an organisation
must ensure data collection and preservation and
control data access. Of course there is always a pos-
sibility of loss, or of migration being forgotten — no
organisation is perfect. But this does not give any
indication of the possible duration of this medium
term, or resolve the problem in the long term. In-
deed, while medium term preservation is realistic,
long term archiving poses a real problem. What will
remain for the historians?

The remainder of this paper is focused on the
software chain.

6 From source formats to viewable formats

Starting with a file, intermediaries are required, no-
tably a software chain, so that a document can then
be read.

From distribution to preservation of digital documents

276 TUGboat, Volume 30 (2009), No. 2

The following are some of the different format
types used for text documents:

• source format (LATEX, RTF, TEI, HTML);

• viewable vector format (PostScript, PDF);

• viewable bitmap format.

And here are the possible stages involved in
converting a source file into information that is com-
prehensible to a human being:

pdftex

computer>source file =⇒ vector file

ms word

xpdf

vector file =⇒ bitmap data>peripheral>human

acrobat

A source file will contain text and information
expressed using a given language: typographic infor-
mation (justification, italics, etc.), information on
the structure (title, author, chapter, etc.), or even a
mixture of the two. This is the type of file created by
an author and therefore oriented towards document
creation.

Once processed by tools such as MS Word or
pdfLATEX, the output is a viewable vector file (type
PostScript or PDF). This is a file containing text
and positioning information: put the letter x on the
page in a specified position and use the Times font.
It is a geometric description of the page. Draw me
a circle of radius 1 in the middle of an A4 page. Of
course, the equations involved in drawing a letter are
more complicated than for a circle, but the principle
is the same.

Tools such as Xpdf, Ghostscript, Acrobat and
the PostScript interpreter on a printer are examples
of software that can read these PostScript or PDF files
and pass on this geometric description to an image
on a screen or printer — i.e. a bitmap image identical
to an image produced by a scanner. A viewable
bitmap file which is “understood” by the peripherals:
the pixel is on or off, ink must be deposited at such
and such a point on the page. The file has been
converted to an image that can be seen by a human.

With WYSIWYG tools such as MS Word or
OpenOffice, these stages are invisible and hybridized,
since all these functions are performed in the same
software.

In software terms these stages have varying lev-
els of complexity.

Displaying a bitmap file onscreen requires simple
software. No arbitration is required between the
content of the file and the final result: with a 0 the
pixel stays black, with a 1 it becomes white. All
the complex formatting work has already been done.
But there is one disadvantage: the text, in the form

of code ASCII, ISO-8859, etc.) has disappeared and
the files are voluminous.

As for software applications processing vector
data, these are of intermediate complexity. They
start, for example, with a PDF file to produce bit-
map data and send it to the screen. Since a vector
format is a mathematical description of a page, in
software terms the freedom of interpretation is lim-
ited: tracing a circle on a page is not ambiguous.
But it is greater than with a bitmap file: pixelization
must be processed, the designers have been able to
leave some grey areas in the specifications. Vector
formats are often complex, as can be seen simply by
consulting the description of PostScript or PDF for-
mat, and programming errors or difficulties are more
frequent. In terms of advantages the text is often
present, the file takes up less space than a bitmap file,
and zooming is possible. Here too, the formatting
has already been done by another application.

A software application that can process a source
file is far more complex. Its aim is to obtain a page
description in PDF or another format. With these
applications the link between the file content and
the final result is the most sustained, the artistic
component is greater and the programmer has more
freedom. In the final analysis a source file contains
very little information in terms of the expected result;
it is the task of the software to make the difference.

The problem arises from the fact that for these
formats very high level commands are used. What
does a tag <h1> signify? The link between a tag
and the graphic output is completely arbitrary. No
two browsers give the same result. This can be seen
using browsers with complex formatting, tables, CSS,
etc. What does a “justify” type command signify?
Behind this command there must be software to
implement an algorithm — varying in effectiveness —
to perform paragraph justification and hyphenation.
And the same RTF file (or another source format)
read by OpenOffice and by MS Word will not give
the same document, since the justification algorithm
is not the same. Most of the work of formatting
and graphics is done by the software and not by the
source file, which contains only text and commands.

So, in short, there are three different format
types and three types of software of varying degrees
of complexity. Files in source format are at the
start of the software chain and therefore require the
most complex processing. Bitmap files are located
at the end of this chain. Therefore, from the point
of view of file preservation, the bitmap format is
of interest, since the software chain is limited to a
single software application. Moreover this software
is simple, easy to write or to rewrite. Of course

Christian Rossi

TUGboat, Volume 30 (2009), No. 2 277

in relation to a file in PDF format many possible
functions are lost (hypertext links, zoom, full-text
search, etc.). But that is the price to be paid: by
moving closer to human beings we move away from
the machine with all its potential. And while it is
possible to print a digital text document, it should
be borne in mind that the existence of an analogue
version is not always possible or even necessary with
digital data (databases, for example). In terms of
reaching a compromise between software complexity
and functionality, PostScript and PDF appear to be
interesting formats.

In general terms, a reasonable hypothesis is to
say that a digital document has a life expectancy as
long as the software required for its access is simple
and the software chain short. The same applies to
hardware intermediaries.

7 Structure and typography

There is a current trend to limit a text document to
its structure. This can be viewed as the disappear-
ance of a typographic culture and is often associated
with the development of XML. However in areas
such as physics, mathematics or computer science,
authors may still pay great attention to formatting
and to compliance with typographical rules. These
are the main areas in which LATEX is used. Can a
document be limited to its text and its structure
expressed in command form? A document is both
content and form, in other words it is also graphic,
and respecting an author’s work means respecting
both these aspects. In the same way, what the reader
wants is a legible document, not a file. Any typogra-
phy exists to improve legibility. As for the quality
of a document, this plays an important role in the
potential pleasure of reading. Concentrating on the
structural aspect often makes us forget about graphic
aspects, and with them the importance of the soft-
ware applications controlling the graphics.

Of course, from the point of view of preservation,
it is legitimate to ask ourselves questions on the
input of each of these components. What needs to
be preserved?

In fact the problem arises from the fact that in
terms of preservation text documents have a poly-
morphous aspect:

document = text + structure + images

A text document consists of text represented
using coding (ASCII, ISO-8859, Unicode) in a source
file and in graphic form in a viewable file. It also
consists of the images included in the document. It
is a structure that may be expressed in source files
in the form of commands associated with the text

or directly in graphic form in a viewable document
thanks to formatting and typography.

software
text + structure + images =⇒ graphics

reader
graphics =⇒ text + structure + images

Take the example of the well-known RFC (Re-
quest For Comment) documents describing the Inter-
net standards. Since their creation in 1969 they have
been available in the form of simple ASCII files on
the site http://www.rfc-editor.org. Of course,
with ASCII the graphics are very simple, without any
multilingualism, maths, molecules, music, etc. . . .
but it works, and that is sufficient since the Internet
exists.

In fact, if typography is of no concern and the
document does not have any graphic components, a
text file is sufficient for saving information. It can
be read with text editor software, which is simpler
than a word-processing application.

Note that tools are available to extract text from
a LATEX, RTF or PDF file (such as detex, rtf2text and
pdftotext). These tools are also used by the full-text
indexers of search engines to process non-HTML files.

Conversely, if the graphic component is impor-
tant or we want to preserve the author’s formatting
from a source file, a complex software chain becomes
necessary to access the document as it was created by
the author. The software used has to be compatible
with that used by the author, preferably the same
application and the same version.

Generally speaking the question arises: is it
essential to guarantee the absolute integrity of a
digital recording or can it be modified along with
its consultation chain, preserving only the aspects
considered essential?

8 XML—a lasting format, and
the software?

What signifies that the XML format is lasting, and
is that really the case?

With a format such as HTML the tags are de-
fined once and for all by an international consortium,
W3C, and are not extensible to suit the user’s require-
ments. XML (eXtensible Markup Language), on the
other hand, allows users to create their own tag sets.
OpenOffice XML, TEI and XHTML are examples of
tag sets in the document domain. It is therefore pos-
sible to create XML tag sets describing the structure
of a document (such as TEI, Text Encoding Initiative)
as well as tags representing typography or formatting
(such as XHTML, OpenOffice XML or XSL-FO). XML

defines rules which must be complied with when users

From distribution to preservation of digital documents

278 TUGboat, Volume 30 (2009), No. 2

create their own tags (every start-tag must have an
associated end-tag, no intermingled tags, etc.). For
each tag set (whose characteristics are defined by
a DTD—Document Type Definition — or an XML

schema), a software application to process these tags
must be associated.

Therefore there is not really one XML format,
but rather formats complying with the rules defined
by XML; each one will then use a particular DTD.
In fact it is an over-simplification of language to use
the term “XML format”.

That said, what signifies that XML is lasting?
If it is a matter of saying that the Extensible Markup
Language (XML) 1.0 W3C recommendation is lasting,
why not: the rules that must be complied with when
creating tags to comply with version 1.0 of the XML

recommendation are lasting.
If however that means that whatever the DTD

used, from the point at which the format complies
with XML, the information is lasting, then that is
debatable. Effectively, as we have already seen, be-
tween the file and a result accessible to the user there
is always a software application. And there is nothing
to guarantee the lasting nature of the software.

One format based on XML may be no more or
no less lasting than another XML format. In fact
we cannot really talk of a lasting format, it is the
software which is or is not lasting. And software
rarely is.

In 10 years will we be able to read a document
using the XML format of OpenOffice or TEI? Yes,
if software that can process this format exists — in
fact the problem is the same as for RTF or LATEX. It
is true however that knowing the specifications of a
format is a plus, and is even necessary. For example,
the specifications of the MS Word format are not
known. The potential reader is therefore a prisoner
of the entity that knows the format and can write the
corresponding software. That said, a format speci-
fication cannot replace available software, whether
because of specifications that may be incomplete and
the new software not fully compatible with the origi-
nal, or because the financial resources required for
its redevelopment are excessive. Moreover, nothing
obliges the creator of an XML tag set to publish it.
Or the DTD/XML schema may be inexact in rela-
tion to the available software applications that are
supposed to process it.

It is true that XML has a certain advantage, if
we comply with the substance of the recommenda-
tion, which is that it is not a binary format. The
recommendation states that XML documents should
be “human-legible and reasonably clear”. The obli-
gation to use standard coding such as Unicode for

the text is important.
That said, in terms of preservation XML is one

formalism among others, even if the aims of its de-
signers are laudable and it is rather well placed in
relation to the competition. The problem, where
things are really complex, is at software level, and
it is not realistic to believe that all the problems of
sustainability can be solved by a matter of formalism.

The use of XML is often associated, in a very
positive way, with discovery of the possible separa-
tion between structure and presentation, and of the
problems posed by proprietary formats. But due to
an excess of evangelization, we can be led to forget
that a file, even based on XML, still needs a hardware
and software chain in order to be consulted.

We could even add that this freedom for users
to create their own tags while hiding behind the
protection of XML compliance can give rise to prob-
lems. For example, in the domain of sound and mu-
sical scores, music and XML, there are currently no
less than 18 different markup proposals: MusicXML,
MusiXML, MusicML, etc. (For example, see a list
on http://xml.coverpages.org/xmlMusic.html.)
From Esperanto to the Tower of Babel . . .

9 From LATEX to HTML

Format conversion often gives rise to the same prob-
lems. Since there are tools in existence for conversion
from LATEX to HTML (HEVEA, TEX4ht, Tralics, etc.),
we take a look at the situation. Here is a simplified
description of how these tools work.

In fact there are two cases: text, which is easy
to process, and the rest. Either there is a corre-
spondence between firstly a LATEX command and
secondly an HTML command that a browser can
display (title, bold) and the software performs the
conversion, or there is no correspondence. In this
case the conversion program runs LATEX to generate
a GIF or PNG image which will be inserted into the
HTML document in the form of a link.

Some years ago mathematical equations were
converted in the form of images, but the more recent
tools now convert them into MathML as browsers
are beginning to support this format. But extensions
of LATEX also represent chemical molecules or music
scores. And in these cases converters to HTML still
generate images.

This type of conversion poses two problems. The
first arises from the wealth of LATEX functions com-
pared with the lesser capacities of the HTML format.
Structured information is often converted to images.
Secondly, the formatting of PostScript or PDF files
generated by LATEX is known for its quality, while
for HTML it depends on the browser used.

Christian Rossi

TUGboat, Volume 30 (2009), No. 2 279

LATEX does not use a binary source format,
which is good. But the advantage of LATEX is not
its format. Effectively there is not much difference
between

\title{My title}

and

<title>My title</title>

The advantages of LATEX lie in the many features
of the software. And changing format also means
changing software.

10 Software and developers

PostScript and PDF formats are widely used, not
without reason. However there are in fact very few
software applications available for consulting these
files. The best known are:

• for PostScript: the Adobe interpreter, Ghost-
script;

• for PDF: Acrobat, Ghostscript and Xpdf.

And few people are involved in developing these
applications. For example, Ghostscript employs 16
people, and Xpdf one person (with some twenty
contributors).

The operational knowledge is concentrated in
a very small number of people — not because they
want to maintain a monopoly but because no one
else is really interested. There is a pyramid effect:
many users faced with few software choices and few
developers. At present this is not a problem; these
software applications exist, they work and are main-
tained, but in the long term this could become a real
problem.

11 To conclude

Long term preservation of digital documents is an
ongoing problem. More time is certainly required to
stand back and assess the situation. And while for-
mats for which the specifications are not known pose
a problem, resolving questions of formalism will not
solve all the problems. It is important to remember
the importance of hardware and software aspects in
respect of preservation of digital documents.

Today we must not think too much in terms of
everlasting formats. The formats are not everlasting,
neither is the software, still less the hardware. But we
must think in terms of file migration and hardware
migration, as well as conversion of formats. The
difficulties involved in preservation are intrinsic to
the same technique that allows such marvels in terms
of creation or distribution.

What does the future hold? In fact it is very
difficult to guess at possible developments or mira-
cles. Some aspects that appear worrying to us at

present will no longer be so in the future, not be-
cause the problems have been resolved, but because
they have simply ceased to be problems — or because
workarounds have been developed.

Note: Within the framework of the movement
for open access to knowledge, all the documents listed
in the bibliography can be consulted freely on the
Web.

References

[1] Inge Alberts. Préservation de l’information
numérique, 2003. http://www.esi.umontreal.
ca/~albertsi/INU1030/.

[2] Dutch National Archive. The Virtual
Library of the Digital Preservation Testbed.
http://www.digitaleduurzaamheid.nl/

index.cfm?paginakeuze=185&lang=en.

[3] ATICA. Guide pour la conservation des
informations et des documents numériques,
2002. http://web.archive.org/web/

20040921132039/http://www.adae.gouv.fr/

spip/article.php3?id_article=7.

[4] Michel Auffret. L’archivage pérenne des
documents numériques. In JRES Marseille,
2005. http://2005.jres.org/paper/47.pdf.

[5] Marie-Anne Chabin. Document trace
et document source. La technologie
numérique change-t-elle la notion de
document ? Revue I3, 4, 2004. http:

//www.revue-i3.org/volume04/numero01/

revue_i3_04_01_09.pdf.

[6] Archives de France. Bulletin des archives
de france sur l’archivage à long terme
des documents électroniques. http:

//www.archivesdefrance.culture.gouv.

fr/gerer/archives-electroniques/

bulletins-archives-electroniques.

[7] Groupe de travail PIN : Pérennisation
des informations numériques. http:

//www.aristote.asso.fr/PIN/.

[8] Association des Archivistes Suisses. Stratégie
globale pour la conservation à long terme
des documents électroniques en Suisse,
2002. http://www.vsa-aas.org/fr/

aktivitaet/directeurs-des-archives/

strategiestudie/.

[9] Catherine Dhérent. Les archives électroniques.
Manuel pratique, 2002. http://www.

archivesdefrance.culture.gouv.fr/

static/1062.

[10] Claude Huc. La pérennité des documents
électroniques points de vue alarmistes
or réalistes ? Bulletin des Archives de

From distribution to preservation of digital documents

280 TUGboat, Volume 30 (2009), No. 2

France sur l’archivage à long terme des
documents électroniques, 7, October 2001.
http://www.archivesdefrance.culture.

gouv.fr/static/1671.

[11] Roger Pédauque. Document: Form, sign
and medium, as reformulated for electronic
documents. @rchiveSIC, 2003. http:

//archivesic.ccsd.cnrs.fr/sic_00000594.

[12] Roger Pédauque. Document: forme,
signe et médium, les reformulations du
numérique. @rchiveSIC, 2003. http:

//archivesic.ccsd.cnrs.fr/sic_00000511.

[13] Jean-Luc Philip. Le point de vue d’un
généalogiste sur la conservation des
documents électroniques. Bulletin des Archives
de France sur l’archivage à long terme
des documents électroniques, 6, July 2001.
http://www.archivesdefrance.culture.

gouv.fr/static/1670.

[14] Christian Rossi. De la diffusion à la
conservation des documents numériques.
@rchiveSIC, 2005. http://archivesic.ccsd.

cnrs.fr/sic_00001379.

[15] Christian Rossi. De la diffusion à la
conservation des documents numériques.
Cahiers GUTenberg, 49, 2007. http:

//www.gutenberg.eu.org/publications/

cahiers/r46-cahiers49/222-rossi.html.

[16] Chris Rusbridge. Excuse me. . . some digital
preservation fallacies? Ariadne, 46, 2006.
http://www.ariadne.ac.uk/issue46/

rusbridge/.

⋄ Christian Rossi
SEISM/DSI

INRIA Grenoble –Rhône-Alpes
655 avenue de l’Europe
38334 Saint Ismier Cedex
France
christian dot rossi (at)

inrialpes dot fr

Christian Rossi

TUGboat, Volume 30 (2009), No. 2 281

Rich media annotations and AcroFLeX

D. P. Story

Abstract

The Adobe Supplement to the ISO 32000 document
introduces a new annotation type, the rich media
annotation. This paper describes rmannot, a new
LATEX package that implements this new annota-
tion. Additionally, the acroflex package, a major
application of rmannot, is also discussed with some
technical details.

Work on these two packages followed the time
the author spent working for Adobe Systems in 2008
as part of the Acrobat 9 development team.

1 Introduction

A new and exciting feature of Acrobat 9 and Adobe
Reader 9 is that an Adobe Flash player is embedded
in the application’s executable code; consequently,
version 9 offers native support for Flash video (FLV),
Flash applications (SWF), and the digital audio en-
coding format MP3. This enables a reliable cross-
platform playback experience for the user. The user
accesses the Flash player, which plays the media,
through the new rich media annotation.

The Acrobat 9 Pro user interface allows for the
creation of a rich media annotation, the specifica-
tion of the media to be either embedded or streamed
from the Internet, the selection of a skin from a col-
lection of predefined skins to control the media, and
so on. The rmannot package implements the rich
media annotation, as specified in Chapter 9.6 in the
extensions document [1], and all the user interface
features of the rich media annotation.

One of the motivations for writing the rman-
not package was the desire to write an interactive
graphing system for PDF. The acroflex package cre-
ates the AcroFLeX Graphing System, and represents
a major application of the rmannot package. To this
end, the AcroFLeX graphing widget, an SWF file,
was created using Adobe FLEX 3. The AcroFLeX
graphing widget is embedded in the document us-
ing the rmannot package, and it, as its name implies,
performs and displays the graphing.

Another important part of the Acrobat/Flash
connection is to establish a communication link be-
tween the two. The scripting language of Acrobat is
JavaScript, while the Flash player uses ActionScript.
These two scripting languages can communicate us-
ing the scripting bridge, created for Acrobat for this
purpose. Details of the scripting bridge, and how
it is used, are presented in section 3 on the acroflex
package.

2 The rmannot package

The PDF Specification, Sixth Edition, version 1.7,
see [3], has been made into an international stan-
dard, called ISO 32000 (ISO 32000-1), see [4]. The
PDF specification, as documented in [4], is no longer
under control of Adobe, consequently, Adobe now
publishes an extensions document [1] that specifies
new PDF language features that are not in ISO 32000.
The resource document for rmannot and acroflex is
the Adobe Supplement to the ISO 32000 [1].

2.1 Multimedia for Versions 6 and 9
compared

The rich media annotation, as specified in [1] turned
out to be very straightforward to implement. The
new annotation is much easier than the complex
multimedia approach of version 6. The multime-
dia of version 6 uses what the PDF Specification [3]
calls a screen annotation, and has been implemented
for LATEX in the movie15 package [5] by Alexander
Grahn.

The multimedia approach of version 6, which
supports a long list of media types, requires the un-
derlying operating system to locate and launch an
appropriate multimedia player residing on the user’s
system to play the media clip. In rich media anno-
tation of version 9, only SWF, FLV, and MP3 files
are supported (other media types can be converted
to one of these using Acrobat Pro Extended, or a
third party conversion utility), but the embedded
Flash player is used to play the media, so no exter-
nal multimedia player is used or needed.

2.2 Implementation notes for rmannot

As it is now written, rmannot requires the document
author to use Acrobat 9 Pro to create a PostScript
file, perhaps using dvips, and to distill it using Ac-
robat Distiller 9. Once the document is built into
a PDF, it can be viewed with Adobe Reader 9 (or
later). Currently, this package is not available to
users of pdftex.

The rmannot package is part of the AeB Pro
family of packages (see [7]), this family is a collection
of packages that require the use of Acrobat Distiller
to create PDF. The package, documentation, and
demo files can be obtained from the home page of
rmannot.1

2.2.1 Embedding media

To embed media (SWF, FLV, and MP3 files) in the
document, rmannot uses another package in the AeB

1 The rmannot home page is at http://www.math.uakron.
edu/~dpstory/rmannot.html.

Rich media annotations and AcroFLeX

282 TUGboat, Volume 30 (2009), No. 2

Pro family, called graphicxsp (see [7]). The rmannot
package defines a command \saveNamedPath that
is to be executed in the preamble of the document;
\saveNamedPath uses graphicxsp commands. The
syntax is as follows:

\saveNamedPath{〈name〉}{〈path〉}

The 〈path〉 is the absolute path to the media file
(with extension .swf, .flv, or .mp3 included). The
absolute path is required because Distiller does not
work with relative paths and does not have a notion
of current directory. The 〈name〉 is a symbolic name
that is used to reference this media throughout the
document.

2.3 Creating a rich media annotation

Once the media file has been embedded, in the body
of the document, rich media annotations can be cre-
ated using the \rmAnnot command:

\rmAnnot[〈options〉]{〈width〉}{〈height〉}{〈name〉}

The 〈options〉 are key-value pairs that allow the doc-
ument author to specify any of the rich media op-
tions available through the Acrobat user interface.
The 〈width〉 and 〈height〉 are the width and height,
specified in any of the scales of measurement LATEX
supports. The annotation may be resized, using, for
example, the \resizebox command of the graphicx
package, to any size while maintaining the aspect
ratio of the media clip. Finally, the 〈name〉 is the
name given the media by a \saveNamedPath com-
mand. This example,

\rmAnnot[poster=myPoster,

skin=skin3]{640bp}{480bp}{myFLV}

shows some of the many optional key-value pairs
available; here we specify a poster for the media (the
appearance of the media when the annotation is not
activated), and the skin to use to control this Flash
video.

The rmannot package embeds a media file only
once, but that media can be displayed and played
on multiple pages without significantly increasing
file size. Acrobat, by contrast, through its user in-
terface, will embed the same media multiple times,
once for each rich media annotation that uses that
media file. In this regard, the approach taken to em-
bedding by rmannot is superior to that of Acrobat.

There are other economies that should be men-
tioned as well. The embedded Flash player handles
SWF files natively, but requires an SWF applica-
tion to play video and sound files. FLV and MP3
files are actually played by VideoPlayer.swf and
AudioPlayer.swf, respectively. These two SWFs
are shipped with Acrobat Pro (and Extended). In
addition to these, there are seven skin files (also SWF

files) that are shipped with Acrobat that provide
control over Flash video. The rmannot package takes
care to embed each of these, as needed, only once;
while Acrobat embeds the players and skins multiple
times. This saving of file size becomes very impor-
tant with the acroflex package, where the document
author may want many graphing screens throughout
the document.

It should be noted that the SWF players and
skins that come with Acrobat are not distributed
with the rmannot package, which would violate the
licensing with Adobe; rather, rmannot requires the
document author to have Acrobat Pro, so these files
are already on his system. The players and skins are,
by the way, one of the problems with porting rman-
not to pdftex. The SWFs cannot be redistributed,
so a package developer must write his own players
and skin SWFs, and provide them in the package
distribution.

3 The acroflex package

The acroflex package is a major application of the
rmannot package. The keys to this package are the
AcroFLeX graphing widget, which was written using
Adobe FLEX 3, and the scripting bridge that allows
communication between Acrobat (or Adobe Reader)
and the graphing widget.

FLEX 3 — available from Adobe without charge
to educators and students — is an XML-like (MXML)
markup language that is compiled into an SWF file.2

FLEX has charting (graphing) capabilities that are
exploited by the acroflex package.

The acroflex package is part of the AeB Pro fam-
ily of packages (see [7]). The package, documenta-
tion and demo files can be obtained from the home
page of acroflex.3

3.1 Features of AcroFLeX

The AcroFLeX graphing screen (the visual appear-
ance of the AcroFLeX graphing widget) can be in-
teractive or non-interactive. The document author
can create as many graphing screens as needed; each
screen can appear in the rich media annotation at
a fixed position in the document, or in a floating
window.

For an interactive graphing screen, the user can
enter an expression (into an Acrobat form text field)
representing a function of a single variable x, a polar
function of t, or a set of parametric equations that
are functions of t. Various controls are provided to

2 Adobe FLEX 3 can be found at http://www.adobe.com/.
3 The acroflex home page is at http://www.math.uakron.

edu/~dpstory/acroflex.html.

D. P. Story

TUGboat, Volume 30 (2009), No. 2 283

change the viewing window, for shifting horizontally
and vertically, and for zooming in or out.

The author can also pre-populate the fully in-
teractive screen by creating one or more links us-
ing the \sgraphLink command. When activated by
clicking, the link passes graphing data to the graph-
ing screen to be viewed by the user. The user may
then interact with the graph.

For a non-interactive graphing screen, no con-
trols are provided to manipulate the graph; the user
can only view the graph. The screen is populated
when the user clicks a link created by the com-
mand \sgraphLink, as described above. Informa-
tion passed by the executing JavaScript of the link
to the graphing routines of AcroFLeX includes the
functional expression (or list of points to plot), do-
main, and range.

In the current version of AcroFLeX , up to four
functions can be graphed, four functions with the
shaded regions between the graph and horizontal
axis can be graphed, and four sets of plotted points
can be displayed, all on one graphing screen.

3.2 Implementation notes

The two major challenges of this package were to
write the graphing widget using FLEX 3, and to
write document-level JavaScript to calculate plot
data to be passed to the graphing widget. The plot
data is passed using the scripting bridge.

Development of the AcroFLeX graphing widget
evolved over time as my understanding of Adobe
FLEX grew. The rmannot package is then used to
embed the widget in the PDF document, and to dis-
play the widget as the graphing screen through a
rich media annotation.

On the Acrobat side, the JavaScript functions
Graph xy and Graph xyt were written to prepare
plot data for functions of a single variable, and for
polar functions and parametric equations, respec-
tively. These functions get graphing data supplied
by the user (in the case of an interactive graphing
screen), or receive graphing data as part of their
parameters (in the case of using \sgraphLink to
pre-populate a graphing screen). The exerquiz pack-
age (part of AeB, see [6]) is used to parse the target
function, and the graphing data then create the plot
data.

The plot data created by the graphing func-
tions is built as an XMList. For example, suppose
the function is x2, to be plotted over the interval
[−2, 2], with n = 5 data points, the plot data has
the following form:

cPlotData=<points>

<point><x>-2</x><y>4</y></point>

<point><x>-1</x><y>1</y></point>

<point><x>0</x><y>0</y></point>

<point><x>1</x><y>1</y></point>

<point><x>2</x><y>4</y></point>

</points>

Once this XMList has been constructed, it is con-
verted to a string,

cPlotData=cPlotData.toXMLString();

We then get the rich media annotation object,

var annot = this.getAnnotRichMedia(pNum,

"afRM"+baseName);

and send the data to the AcroFLeX graphing widget
by way of the scripting bridge,

annot.callAS("getPlotData", graph_props, oDR,

cPlotData);

The bridge from Acrobat-to-Flash is the JavaScript
callAS method of the rich media annotation. (See
[2] for information on the callAS method). The
function getPlotData is an ActionScript function
defined in the AcroFLeX graphing widget. We pass
the function name, "getPlotData", as a string; the
properties of the plot graph_props (a JavaScript
object); the range and domain specification oDR (a
JavaScript object); and finally, the plot data itself,
cPlotData.

In order for getPlotData ActionScript function
to be recognized by the widget, it must be exposed
by the ExternalInterface.addCallback method
of ActionScript. Within the source code (MXML)
of the AcroFLeX graphing widget, we have

private function initApp():void {

ExternalInterface.addCallback(

"getPlotData",getPlotData);

};

The initApp function is executed when the graph-
ing widget is activated.

The function getPlotData, on the AcroFLeX
widget side, interprets the graph_props object to
determine what type of plot is to be created (plot
points or draw a curve, draw continuous curve or
segmented curve, shade graph or not). AcroFLeX
maintains an array of length 12 to manage all the
curves and plotted points. The function passes the
viewing domain and range, the oDR object, to the
chart for labeling, and assigns a unique color for the
curve or plot. Finally, getPlotData converts the
parameter cPlotData to XML,

var xmlPlotData:XML = new XML(cPlotData);

and populates the chart with the plot data.

3.3 Compatibility with exerquiz

The exerquiz package plays an important role in the
acroflex package by providing the parsing routines

Rich media annotations and AcroFLeX

284 TUGboat, Volume 30 (2009), No. 2

for algebraic expressions; however, exerquiz was cre-
ated to provide quizzing environments for educa-
tors. The AcroFLeX graphing screens can be in-
tegrated into exerquiz quizzes using support com-
mands provided by the acroflex package. The demo
file afgraph.pdf contains several examples.

The interested reader is encouraged to view the
demo file afgraph.pdf, located at the home page of
the acroflex package.4

4 The AcroTEX PDF blog

Following the development of rmannot and acroflex,
the AcroTEX PDF Blog5 was created for the PDF

and LATEX communities; the blog covers various top-
ics in PDF, including extensive information on the
rich media annotation (RMA) and on the scripting
bridge. The reader interested in these topics may
read PDF blogs #1–11; these blog articles were writ-
ten using the rmannot package.

5 Concluding remarks on LATEX

The rmannot and acroflex packages forge no new
ground in LATEX code; they build on the AeB and
AeB Pro bundles. Developing a package has be-
come easier through the years because there are so
many basic packages that are available for develop-
ers: hyperref, xkeyval, and xcolor, to name a few. In
any case, LATEX is shown to be a fine authoring sys-
tem for new applications of emerging technologies.

4 http://www.math.uakron.edu/~dpstory/acroflex.

html
5 http://www.math.uakron.edu/~dpstory/pdfblog.html

References

[1] Adobe Systems, Inc. Adobe Supplement to the

ISO 32000, BaseLevel 1.7, ExtensionLevel 3.
http://www.adobe.com/go/pdf_developer,
2008.

[2] Adobe Systems, Inc. JavaScript for Acrobat

API Reference. http://livedocs.adobe.com/

acrobat_sdk/9/Acrobat9_HTMLHelp/index.

html, 2008.

[3] Adobe Systems, Inc. PDF Reference, Sixth

Edition, version 1.7, Adobe Portable Document

Format. http://www.adobe.com/go/pdf_

developer, November 2006.

[4] International Organization for Standardization.
ISO 32000-1:2008, Document management—

Portable document format—Part 1: PDF 1.7.
http://www.iso.com, 2008.

[5] Alexander Grahn. The movie15 package.
Available from CTAN, macros/latex/
contrib/movie15, 2008.

[6] D. P. Story. AcroTEX eDucation Bundle
(AeB). Available from CTAN, latex/contrib/
acrotex, 2008.

[7] D. P. Story. AeB Pro Family of Software.
Available from CTAN, latex/contrib/aeb_
pro, 2008.

⋄ D. P. Story
Department of Mathematics
Northwest Florida State College
Niceville, FL 32578
U.S.A.
dpstory (at) acrotex dot net

http://www.math.uakron.edu/

~dpstory/

D. P. Story

TUGboat, Volume 30 (2009), No. 2 285

Use of the \write18 feature for
composing indexes

Claudio Beccari

1 Introduction

Any LATEX user who has composed an index knows
the trouble one gets in when s/he has spent a lot
of time collecting the index entries, with the correct
formatting, and eventually finishes his/her paper but
forgets the last three runs in order to have the correct
final index typeset at the end of the paper. The three
runs are in order:

1. Run LATEX or pdfLATEX with the command
\makeindex in the preamble; this will collect
the index entries, their formatting, and the page
numbers where the entries are located in the
document; this information gets written down
in a file with extension .idx that contains all
the entries with the related information in the
order they were collected.

2. Run the program makeindex, possibly with a
personalized style file and specific options in
order to produce the sorted entry list with their
ranking and page numbers. This information
gets written into a file with extension .ind;
this file contains the whole theindex environ-
ment with each entry marked with an \item or
\subitem or \subsubitem prefix, together with
the relevant formatting instructions for both the
entries and the page numbers.

3. Run again LATEX or pdfLATEX to process the final
index file, possibly by inputting it by means of
a command such as \input{〈filename〉.ind}.

These three steps can be executed in just one run if
you make use of the command \write18{〈text〉}.

Modern TEX distributions contain an executable
file and a format file that have been created with
special switches in such a manner that the interpreter
pdftex may produce either a .dvi or a .pdf output
file; it may make use of the commands of the extended
etex interpreter, or refrain from doing so; it may
or may not “shell out” to the system and ask it
to perform some actions before resuming its main
typesetting task.

Here I will exploit this last feature in order to
produce the actual index in one run of (pdf)LATEX.

2 Auxiliary files

When the command \makeindex is executed while
the preamble gets processed, a new output stream

Editor’s note: Reprinted by permission from ArsTEXnica #8,
October 2009.

is opened in order to write the index information
into the .idx auxiliary file; at the same time, that
command activates the various \index commands
within the document that actually write the informa-
tion into the auxiliary file. The name of this output
stream is assigned to the internal LATEX kernel con-
trol sequence \@indexfile.1

This file has the specified extension .idx and
its name is the same as that of the (main) .tex file
that is being typeset; the name of this file is kept
into the TEX control sequence \jobname, that may
be used by any suitable macro.

Since the index is typically the last thing to be
typeset in a document, \input{〈filename〉.ind} is
likely the last command before the \end{document}

statement.
So, in order to sort and produce \jobname.ind

from \jobname.idx, we have to do essentially two
simple operations:

1. Close the output stream identified by the inter-
nal macro \@indexfile, and

2. execute the makeindex command in order to
produce the new updated .ind file.

3 The commands

We have to execute “immediately” the following two
commands:

\immediate\closeout\@indexfile

\immediate\write18{

makeindex -s style.ist \jobname.idx}

just before the \input{\jobname.ind} statement
or its equivalent. Of course, if no specific index
style file style.ist is being used, the whole clause
-s style.ist is omitted.

The \immediate TEX primitive instructs the
interpreter not to delay the execution of the sub-
sequent command; without it, the TEX commands
concerned with input and output streams, including
the actual read or write commands, are deferred until
a page is shipped out. Obviously \closeout closes
an output stream, in our case the one specificied by
the subsequent macro \@indexfile.

The \write18{〈text〉} command writes onto the
special output stream numbered “18”; this stream is
equivalent to writing the 〈text〉 as a system command
line in the command window of the Windows family

1 This is what the LATEX kernel and the standard classes
do. Some nonstandard classes may use other control sequences
to hold the information about the index output stream: for
example the class memoir by default uses the control sequence
\jobname extended with the suffix @idxfile, but, since memoir

may build up several indexes, each one has its own output
stream with a different name, that gets specified with the
optional argument of the command \makeindex.

Use of the \write18 feature for composing indexes

286 TUGboat, Volume 30 (2009), No. 2

of operating systems, of an xterm window of the
Unix family of operating systems, or of the terminal
window of the MacOSX operating system. When
the system command finishes its processing, control
returns to the TEX interpreter that goes on from the
very point it had suspended its processing in order
to have the operating system perform the required
task.

The presence of the @ character in the output
index stream name ‘\@indexfile’ requires that a
\makeatletter command be issued before the first
statement and a \makeatother be issued just after
the first statement, thus changing and reverting its
category code.

On the other hand, if those two statements are
defined with a macro contained in a personal .sty
file, there is no need to change the category code of
@. This would also be a good occasion to add useful
bells and whistles to the new command, for example,
checking if the output stream really exists and may be
closed; checking that \jobname.idx exists in order
to convert it; provide for an optional argument to
specify the index style file so as to insert the style
file clause in the system call; and warning and error
messages could be added so as to let the author know
if anything is inconsistent. This is not the proper
place to add long stretches of TEX or LATEX code,
but any reader should be capable of customizing a
new command suitable for his/her needs.

4 The results

By issuing those commands, or the new command de-
fined in the personal .sty file, just before giving the

command \input{\jobname.ind} (or equivalent),
the index turns out to contain exacly the index en-
tries and page numbers that were collected during
that current (pdf)LATEX run, and there is no need to
remember to update the index file after any correc-
tion to the source file(s), since the entries and the
page numbers are always up to date.

I find these simple macros extremely valuable,
and I use them myself in all my (recent) documents,
after I realized the possible benefits deriving from
the \write18 command. This facility is not widely
used, because it makes it possibile for TEX to exe-
cute external applications exposing the typesetter to
the risk of executing malicious code; therefore some
TEX distributions are distributed with this facility
disabled by default.

Nevertheless there is some good news in this
regard: TEX Live 2009, and a subsequent release
of MiKTEX, will contain a restricted version of the
\write18 command, such that \write18 will be en-
abled by default, but only a restricted list of “safe”
programs (listed in a configuration file) will be al-
lowed to be executed. And, happily, makeindex is
one of those safe programs.

I imagine there are many other possible appli-
cations of the \write18 facility: for example, the
format transformation of graphic files is already avail-
able in the package epstopdf.sty; it’s up to the
users to discover new ones.

⋄ Claudio Beccari
claudio dot beccari at gmail dot com

Claudio Beccari

TUGboat, Volume 30 (2009), No. 2 287

Glisterings

Peter Wilson

Yet in his feverish mind
He still could find
The miraging domes of Samarkand
Glistering through the roiling sand.

Doubt

The aim of this column is to provide odd hints or
small pieces of code that might help in solving a
problem or two while hopefully not making things
worse through any errors of mine.

Corrections, suggestions, and contributions will
always be welcome.

There was an old man named Michael
Finnegan
Grew some whiskers on his chinnegan.
The wind came out and blew them innegan.
Poor old Michael Finnegan. Beginnagen.
There was . . .

Traditional

1 Repetition

There are occasions when an author wants to repeat
some text that occurred in a document at some later
place, perhaps in an Appendix.

If the original is plain text then this is simple
enough — define a macro holding the text and use it
in each place the text is to appear. A variation on
this is when there is some boilerplate text that will
be used in many documents. If the text is short,
then define a macro to hold it. If the text is longer,
say a page or two, then put the text into a tex

file and define a macro that \inputs that file. I
used both these schemes when I was writing class [5]
and package [6] files for some ISO documents which
tended to have much boilerplate text, both short
and long.

Life gets more complicated if you need to repeat
something that is automatically numbered by LATEX,
as requested by David Romano [4] in this partial
quote from his posting to texhax, which was passed
on to me by Barbara Beeton:

Here is the problem I’m trying to solve. I’d
like to have a particular theorem appear twice
in a paper, and I’d like its appearance to be
identical in both, the numbering in particular,
without having to set the section and theorem
counters by hand.

For the following examples I have specified:

\newtheorem{again}{Repetitive}[subsection]

\newsavebox{\Tsaved}

\newcounter{savesub}

\newcounter{savethm}

\newcounter{restoresub}

\newcounter{restorethm}

\newcommand*{\fox}{The slow old fox

readily leaped over the quick brown dog.}

\newcommand*{\party}{All good men came

to the party.}

\newcommand*{\boring}{Some things get

terribly boring when repeated too often.}

1.1 Box it

Here is one theorem:

Repetitive 1.1.1 All good men came to the party.

and the next one is the one that is to be repeated.
One way of repeating some typeset text is to save it
in a box and then use that box wherever the text is
to be repeated. The typeset theorem (1.1.2) below
is produced by the following code:

\savebox{\Tsaved}{%

\begin{minipage}{\linewidth}

\begin{again}\label{th1}

\boring

\end{again}

\end{minipage}}

\vspace{\topsep}

\noindent\usebox{\Tsaved}

\vspace{\topsep}

Repetitive 1.1.2 Some things get terribly boring
when repeated too often.

I discovered that I had to put a vertical space
of \topsep before and after the box to match the
normal spacing around theorems.

And we can use the box again to obtain a rep-
etition of the theorem:

\vspace{\topsep}

\noindent\usebox{\Tsaved}

\vspace{\topsep}

Repetitive 1.1.2 Some things get terribly boring
when repeated too often.

Using this technique a theorem has to be put
into a minipage inside the box in order to get the cor-
rect line breaking, but minipages don’t break across
page boundaries. Provided the theorem is short and
the stars are aligned then this won’t be a problem.
On the other hand, for long theorems and normal
alignment the repetition will make a page too long.

Glisterings

288 TUGboat, Volume 30 (2009), No. 2

Here is another theorem (1.1.3) to be repeated.
This time, for use later, I save the values of the cur-
rent \subsection and the current again theorem
counters before typesetting the theorem:

\setcounter{savesub}{\value{subsection}}

\setcounter{savethm}{\value{again}}

\begin{again}\label{th2}

\party

\end{again}

Repetitive 1.1.3 All good men came to the party.

1.2 Saved the numbers

Any again theorem in this subsection will normally
have a number starting 1.2.

Having saved the relevant numbers for the first
appearance of theorem 1.1.3 we can now typeset it
again. The process is:

1. Save the current values of the \subsection and
the again theorem counters.

2. Set the current values of those counters to those
for the original again theorem.

3. Repeat the theorem.

4. Restore the values of the \subsection and the
again theorem counters.

Here, then, is a repetition of theorem 1.1.3.

\setcounter{restoresub}{\value{subsection}}

\setcounter{restorethm}{\value{again}}

\setcounter{subsection}{\value{savesub}}

\setcounter{again}{\value{savethm}}

\begin{again}

\party

\end{again}

\setcounter{section}{\value{restoresub}}

\setcounter{again}{\value{restorethm}}

Repetitive 1.1.3 All good men came to the party.

Show another theorem here:

\begin{again}

This is a new theorem.

\end{again}

Repetitive 1.2.1 This is a new theorem.

And for the third time display theorem 1.1.2:

\vspace{\topsep}

\noindent\usebox{\Tsaved}

\vspace{\topsep}

Repetitive 1.1.2 Some things get terribly boring
when repeated too often.

If the theorem to be repeated is complex then
you could either define a macro for it, or put it into
a file to be input.

\newcommand*{\foxy}{%

\begin{again}

\fox

\end{again}}

\foxy

Repetitive 1.2.2 The slow old fox readily leaped
over the quick brown dog.

A work that aspires, however humbly,
to the condition of art should carry its
justification in every line.

The Nigger of the Narcissus,
Joseph Conrad

2 Rectangular text

In an earlier column [7] I discussed how to create
paragraph shapes of various kinds. One that I had
not considered was sought after by Brad Cooper who
asked on comp.text.tex:

I am trying to do something . . . whereby two
lines of large text are justified on the right
and left without any hyphenation occurring.

Several solutions were posted and I give some of
them below, in alphabetic order of the respondents.

Donald Arseneau [1] said that the solution was
to use a ‘stretch’ tabular column type, but that
unfortunately there isn’t one. Instead he suggested

\noindent\begin{tabular}{@{}r@{}}

\hfilneg A SHORT LINE \\

\hfilneg A LITTLE LONGER LINE \\

\hfilneg Donald Arseneau

\end{tabular}

which produces:

A SHORT LINE
A LITTLE LONGER LINE
Donald Arseneau

Or, using the array package, like this:

\newcolumntype{s}{>{\hfilneg}r}

\enskip\begin{tabular}{s}

A SHORT LINE \\

...

where I have used the \enskip space, as well as the
regular paragraph indent, to set off the text from
the left margin:

A SHORT LINE
A LITTLE LONGER LINE
Donald Arseneau

Enrico Gregorio [2] posted the following solu-
tion, defining a new center-like environment:

\newenvironment{stretchcenter}%

{$$\let\\\cr\vbox\bgroup\ialign\bgroup%

Peter Wilson

TUGboat, Volume 30 (2009), No. 2 289

\unskip##\unskip\cr}%

{\crcr\egroup\egroup$$}

The stretchcenter environment is used just like
the regular center environment. The result is:

A SHORT LINE
A LITTLE LONGER LINE
Enrico Gregorio

Dan Luecking [3] posted further solutions. The
first simply involves measuring the longest line and
putting the others into boxes to match.

\newlength\gxx

\settowidth{\gxx}{A LITTLE LONGER LINE}

\noindent\makebox[\gxx][s]{A SHORT LINE}\par

\noindent\mbox{A LITTLE LONGER LINE}\par

\noindent\makebox[\gxx][s]{Dan Luecking}\par

This results in:
A SHORT LINE
A LITTLE LONGER LINE
Dan Luecking

That was the kind of method I had thought of
but it does require some manual work. Dan also pro-
vided a more elegant solution to match the others,
as:

\halign{#\cr

A SHORT LINE\cr

A LITTLE LONGER LINE\cr

Dan Luecking\cr}

which results in no indentation of the text from the
left margin:
A SHORT LINE
A LITTLE LONGER LINE
Dan Luecking

To have the text indented, add space (\quad in
the example below) inside the \halign like:

\halign{\quad#\cr

A SHORT ...

Note that the \halign and \ialign commands
used by Dan and Enrico are usually hidden from
LATEX users but are used by the LATEX kernel in
defining environments like tabular, for example.

References

[1] Donald Arseneau. Re: Text filling the line.
Post to comp.text.tex newsgroup, 24 March
2007.

[2] Enrico Gregorio. Re: Text filling the line. Post
to comp.text.tex newsgroup, 22 March 2007.

[3] Dan Luecking. Re: Text filling the line. Post
to comp.text.tex newsgroup, 23 March 2007.

[4] David Romano. Setting counters to output of
a \ref command. Post to texhax mailing list,
8 February 2007.

[5] Peter Wilson. LATEX for ISO Standards, 2002.
mirror.ctan.org/latex/macros/contrib/

isostds/iso.

[6] Peter Wilson. LATEX Package Files for ISO
10303, 2002. mirror.ctan.org/latex/

macros/contrib/isostds/iso10303.

[7] Peter Wilson. Glisterings. TUGboat,
28(2):229–232, 2007.

⋄ Peter Wilson
18912 8th Ave. SW
Normandy Park, WA 98166
USA
herries dot press (at)

earthlink dot net

Glisterings

290 TUGboat, Volume 30 (2009), No. 2

Peter Wilson’s Herries Press packages

Will Robertson

Abstract

In September 2009 I became the maintainer of the
majority of Peter Wilson’s LATEX packages. This
short article describes how this came about and what
the different packages are.

1 Who is Peter Wilson?

Frequent readers will be familiar with his name as
an active member of the LATEX community with ten
TUGboat publications in the last eight years. He is
most well known for his prodigious memoir class. He
also gave the keynote address at TUG 2007.1

2 Introduction

Earlier this year I was writing a class file for a local
conference and wrote to Peter about a minor feature
request in his abstract package. He replied, quickly
accepting the modifications I’d suggested, adding at
the end ‘Would you like to take over the package?
I’m slowly retiring from LATEX (age is calling) and
trying to pass things off to others for support.’

Knowing of Peter’s wide variety of packages on
CTAN, it didn’t make sense to me that each package
should end up being maintained by whoever next sent
a support email. Instead, I presumptuously offered
to take on maintainership for the whole lot. After
all, Peter is a well-regarded figure in the community
and surely his packages don’t receive very many bug
reports? (As far as I know, this is indeed the case.
Ask me again in a few months.) Peter seemed to
like this idea and promptly sent me a complete list
of his packages. I knew he was prolific, but I didn’t
quite realise the full extent of what I was taking
on. Thirty-two packages ended up with my name in
them, which involved a certain amount of tedium for
both me updating the contact details for each and
for the tireless CTAN administrators responsible for
uploading the new versions.

In this report, I’ll discuss what it means to be
the ‘maintainer’ for a package and list the range and
capabilities of Peter’s packages.

3 Author versus maintainer

LATEX itself and the majority of the third party con-
tributed software for it are free and open source
software, licensed under the ‘LATEX Project Public

1 “Between then and now—A meandering memoir”,
TUGboat 28:3, 2007, http://tug.org/TUGboat/Articles/
tb28-3/tb90wilson.pdf, http://river-valley.tv/
keynote-address-between-then-and-now-a-meandering-

memoir/.

License’2 (LPPL). The LPPL is similar to other well-
known free software licences such as the BSD and
Apache licences in that software may be freely dis-
tributed and modified, but access to the sources of
derived versions is not required (unlike the ‘copyleft’
licences such as the GNU General Public License).
The only restriction on redistribution is that the
modified software must be clearly differentiable from
the original by users of the code (not just people
who read the source for fun). The easiest and most
fail-safe way of doing this is simply by changing the
name of the new package.

The LPPL also contains an interesting compo-
nent that I have not seen in any other free software
licences: the concept of an explicit ‘maintainer’ for
the work who is theoretically responsible for keeping
it up-to-date and for receiving bug reports. Usually
the author of the software will be the maintainer of
the work, but people change and move on and often
lose interest in dealing with code they wrote long ago
and no longer use. The LPPL formalises the process
for new people to come along and adopt old code,
especially ‘orphaned’ works for which the original
authors can no longer be contacted.

This idea of explicit maintainership solves a real
problem in the long term. In the LATEX world, CTAN

is the first port of call for contributed software; if it
has not been uploaded there, it generally won’t be
available in TEX Live or MiKTEX. When package
authors lose interest in their code and abandon their
work, it is not clear how fixes or additions to their
packages should be handled.

One can’t simply upload patched versions of
other people’s code to CTAN, even if the original
author is no longer around. If this were not the case,
the CTAN team themselves would have to vet each
new ‘unofficial’ update, in effect acting as de facto
maintainers for all orphaned code — a preposterous
idea considering the amount of work they already do,
and certainly out of the question. Having explicit
maintainers for the software they administer, the
CTAN team can theoretically ensure that someone,
somewhere, is responsible for each and every piece
of software they (re-)distribute.

Peter himself was maintaining a number of pack-
ages for authors pre-dating his own involvement with
LATEX. This puts me in the dubious category of being
a ‘third generation LATEX package maintainer’. (I
take comfort in knowing that I’m not the only one.)

2 http://www.latex-project.org/lppl/

Will Robertson

TUGboat, Volume 30 (2009), No. 2 291

4 The Herries Press packages

Peter’s packages date from at least as far back as
1996 and fall into several rough groups:

• Replacements and better interfaces for function-
ality in the standard classes.

• Features to ease programming in LATEX.

• New and assorted document features.

In the remainder of this section are brief descriptions
of the packages I am now maintaining, concluding
with a short list of Peter’s works for which I am not
responsible. Where other packages exist with similar
functionality, I’ve listed them as well (to the best of
my knowledge — no doubt I’ve forgotten some).

CTAN holds the definitive version of each pack-
age, of course. Rather than printing a link for each
of these packages to their CTAN location, simply use
this URL to access them:3

http://tug.ctan.org/pkg/〈package name〉
They are all included in recent (and not so recent)
TEX distributions.

Development or pre-release versions of these
packages are available at GitHub, where bugs and
feature requests may be filed:

http://wspr.github.com/herries-press/

The adventurous may even wish to fork the code
there in order to suggest code changes, which I will
probably accept without too much question.

4.1 Standard class improvements

The standard LATEX classes (article, book, report)
are notoriously inflexible. You would like to change
how the abstract appears, say? Then redefine the
abstract environment. Same thing with figure cap-
tions, and document titles, and so on. Sooner or later,
someone writes a package that provides a convenient
user interface; here are those of Peter’s.

abstract Easily customise the abstract environment
for one- or two-column typesetting.

appendix Provides additional appendixing4 capabili-
ties.

ccaption Provides many features for customising and
extending captions in floating and non-floating
environments. See also the caption package.

romannum Change (any combination of) various doc-
ument counters, such as captions, sections, equa-
tions, etc., to use roman numerals.

tocloft Easily customise the table of contents and
other ‘List of . . . ’ sections. See also the titletoc
package.

3 Having said this, each package name is hyperlinked if
you’re reading this electronically.

4 I think Peter invented this word.

titling Easily customise the document title produced
with \maketitle.

tocbibind Add (perhaps with customizations) the
table of contents, bibliography, index, etc., to
the actual table of contents.

tocvsec2 Adjust the relationship between section
headings and table of contents listing, and adjust
automatic section numbering, mid-document.

For example, remove the number from a group
of subsections and suppress their appearance in
the table of contents without changing their
markup.

4.2 LATEX programming tools

LATEX 2ε’s programming interface is often limited,
offering little more in some areas than plain TEX’s
‘primitive’ functionality. Peter’s packages in this
area tend to provide abstractions for specific tasks
in LATEX, useful for other class or package authors.

bez123 & multiply Draw generalised bezier curves in
LATEX, and multiply lengths without overflow.
See also pict2e and the more ambitious drawing
packages PSTricks and pgf/TikZ.

chngcntr Change the rules for the resetting of coun-
ters, such as numbering equations per-chapter
or per-document.

chngpage and changepage Tools to locally change the
size of the typesetting space and to detect ro-
bustly whether a page is even or odd.

N.B. that the two packages perform the same
tasks, but changepage is interface-compatible
with memoir and should be used for all new
code that require these features. chngpage is an
older version that is incompatible with memoir.

docmfp Extend doc to aid documentation of code in
other programming languages. See also xdoc2
and (more recently) gmdoc.

ifmtarg Robust and expandable test for ‘emptiness’
of a macro argument.

makecmds LATEX equivalent for \def with the syn-
tax of \newcommand and \newenvironment (i.e.,
creates or overwrites the definition with equal
abandon).

newfile Convenient interface to TEX’s file reading
and writing commands.

nextpage Extending the family of \clearpage com-
mands. (E.g., \cleartoevenpage.)

printlen Print lengths of counters in specified units
(as opposed to points, the TEX default).

stdclsdv Detect whether the class provides \chapter,
and other sectional divisions.

Peter Wilson’s Herries Press packages

292 TUGboat, Volume 30 (2009), No. 2

4.3 New and assorted features

The final section contains packages that provide doc-
ument authors with features not offered by standard
LATEX classes or packages.

anonchap Makes \chapter typeset like \section.
(E.g., for converting a book chapter into an
article without changing the sectioning markup.)

booklet Typeset documents arranged on paper to be
folded into booklets.

combine Combine multiple entire LATEX documents
into a single output file.

epigraph Add quotation-like material at the begin-
ning/end of sections or chapters.

fonttable Visualise a font’s glyph repertoire.

hanging Typeset paragraphs with hanging indents,
and enable hanging punctuation using active
characters.

For hanging punctuation, the microtype pack-
age for pdfTEX is recommended instead (al-
though I may, in time, update hanging to work
without active characters in X ETEX, using the
latter’s \interchartoks feature).

hyphenat Control hyphenation: turn it off entirely
or allow the use of analphabetic symbols in hy-
phenated words.5

layouts Visualise the design of the page layout.

midpage An environment to vertically centre its con-
tents in the text block.

needspace Reserve a certain amount of space on a
page when you want to insert some material
without breaking it over pages; if it cannot fit
it will be forced it to the next page if necessary
(ending the current page prematurely).

pagenote Typeset end notes per chapter or per doc-
ument. See also the endnotes package.

verse Typeset verse material. See also poemscol.

vertbars Place vertical bars in the margin of para-
graph text. Based on lineno, with the same
caveats. See also the changebar package.

xtab Extensions and improvements to the package
supertabular for multipage tables.

4.4 Classes and packages that I do
not maintain

memoir Arguably Peter’s single most influential con-
tribution to LATEX; memoir is a complete re-
placement for the standard document classes. It

5 Good spot for a hyphen, there, hey?

incorporates many of the packages mentioned
above and contains a suite of new functionality,
all with a consistent interface for creating new
document designs. Now maintained by Lars
Madsen. See also the KOMA-Script classes.

memdesign Originally the first half of the memoir
manual. While this document is titled ‘A Few
Notes on Book Design’, it’s actually an excellent
primer on typesetting and typography in general.
Essential reading.

ledmac, ledpar, and ledarab For typesetting critical
editions, based on plain TEX code ‘edmac’ and
others. Now maintained by Vafa Khalighi.

expressg METAPOST package for drawing diagrams
that consist of boxes, lines, and annotations.

iso and iso10303 LATEX packages and classes for type-
setting ISO standards. Possibly out of date with
respect to the current typesetting standards.

isorot Rotate document elements and paragraph text.
Perhaps I should maintain this one as well; it
seems to be of more general interest than the
other ‘iso’ packages.

5 Conclusion

I think it’s important for members of open source
communities to pass down their work as they start to
retire from the field. Having a succession of maintain-
ers allows bugs to be fixed and removes any confusion
about how updates to their work should be named
and distributed.

Would I continue to take on maintainership of
yet more packages? Generally speaking, yes, pro-
vided the workload doesn’t increase too much. Of
course, we can’t continue working with older and
older packages indefinitely; at some stage new solu-
tions to old problems will be created that supersedes
the old work. (Cue my current involvement with the
LATEX3 Project.) In which case, old bugs in old code
don’t really need to be fixed.

But as long as Peter’s packages continue to be
useful (and most of them certainly are), I believe
they deserve at least enough attention to keep them
ticking along smoothly.

⋄ Will Robertson
University of Adelaide, Australia
will dot robertson (at)

latex-project dot org

Will Robertson

TUGboat, Volume 30 (2009), No. 2 293

Biuletyn GUST 25–26 (2008–2009)

Editor’s note: Biuletyn GUST is the publication of
GUST, the Polish language TEX user group. Their
web site is http://www.gust.org.pl.

Biuletyn GUST 25 (2008)

Ulrik Vieth, Zrozumieć estetykę składu
matematyki [Understanding the æsthetic of math
typesetting]; pp. 5–21

One of the core strengths of TEX is the ability
to typeset math to a very high level of æsthetic stan-
dards. However, this level of quality not only depends
on TEX alone, but relies on close interaction between
sophisticated algorithms (built into the TEX engine)
and the fine-tuning of metric information (built into
math fonts), which is not so well understood.

At a previous conference Bogusław Jackowski
presented a paper, “Appendix G Illuminated”, in
which he translated the formal description of TEX’s
algorithms for math typesetting into a visual rep-
resentation, illustrating the mathematical and ge-
ometric relations between the various font metric
parameters. While this helps to improve the under-
standing, it doesn’t resolve the question of how to
determine good values of font metric parameters
when designing a new font.

In this paper, we analyze the values of these
parameters in existing fonts and draw some conclu-
sions about the underlying design principles. In the
end, we hope to obtain a recipe for how to determine
good values of font metric parameters based on sim-
ple design parameters such as the x-height or rule
thickness.

Jonathan Kew, Co nowego w świecie X ETEX-a?
[What’s new in the X ETEX world?]; pp. 22–27

This presentation will review the current state
of the X ETEX engine and associated packages, with
an emphasis on features that have been added or
updated over the past year, and will be included in
the TEX Live 2008 release. These include updated
OpenType support, synthetic font styles, the poly-
glossia macro package, updated math font support,
built-in source/PDF synchronization support, and
more.

We will also look at how X ETEX fits in with
other TEX engines and with the wider software world.
X ETEX is not the only extension of TEX providing
Unicode and modern font support, but it is based
on a quite different approach from others, both old
(Omega) and new (LuaTEX). Each has both strengths
and weaknesses, which users should consider when
choosing the appropriate tool for their particular
needs.

Karel Ṕı̌ska, Testy fontów TEX Gyre (wiosna
2008) [Tests of the TEX Gyre fonts (Spring 2008)];
pp. 28–33

The contribution presents the results of verifica-
tion of previous and newest versions of the TEX Gyre
fonts, shows examples of various testing techniques,
overviews suggestions and bugs; many of them, re-
ported earlier, have already been fixed in the recent
releases. “Synoptic tables” have been produced to
list a full glyph repertoire to check it for correctness
of shapes, completeness, consistency between regular,
bold, italic, and bold italic faces, etc. We will also
discuss the status and the future of the Cyrillic and
Greek parts.

Mateusz Kmiecik, Od Logo do Metaposta [From
Logo to MetaPost]; pp. 34–40

The Logo language (turtle graphics) is recom-
mended for teaching of informatics at secondary
schools in Poland. It is a quite primitive language so
young people quickly hit the limits when program-
ming more advanced pictures. Could MetaPost be
used to this end?

Piotr Krakowiak and Tomasz Łuczak,
Dragonia Magazine – kulisy redakcji [The
Dragonia Magazine backstage]; pp. 41–43

The Dragonia Magazine is a monthly free e-zine
published since 2006. It is devoted to GNU/Linux
and free software. Most of the issues were typeset
with Scribus, one with InDesign but the latest are
typeset with LATEX. We will show the abilities and
restrictions of typesetting of a periodical of several
dozen pages with Scribus, the reasons behind the
migration to typesetting with LATEX and the results —
or what was gained and what was lost.

Jacek Kmiecik, Dostosowanie LATEX-a do
konkretnych potrzeb [The tuning of LATEX to one’s
purposes]; pp. 44–52

A few of the simplest ways for tuning the canoni-
cal LATEX macros to one’s own typographical require-
ments will be presented.

Jonathan Kew, TEXworks: obniżenie progu
dostępności [TEXworks: Lowering the barrier to
entry]; pp. 53–59

Published in TUGboat 29:3.

Grzegorz Murzynowski, Styl bibliograficzny
pl64.bst [A bibliography style: ‘pl64.bst’];
pp. 59–60

I generated the pl64n BibTEX bibliography style
(‘n’ for natbib) with makebst and then fine tuned-
some details by hand to make the style as compliant

294 TUGboat, Volume 30 (2009), No. 2

with the spirit of Polish standards as possible, mak-
ing my own choices where not determined by the
standards or not available with makebst.

Grzegorz Murzynowski, O składaniu listów
E. Szarzyńskiego trojako: estetycznie, X ETEX-owo,
troszkę hackersko [Threefold on typesetting of
E. Szarzyński’s letters: æsthetic-, X ETEX-, and a
little hacker-wise]; pp. 61–66

The “102 listy” by E. Szarzyński is a series of
letters which he wrote to himself just before com-
mitting suicide. Fairy tales on colorful papers with
calligraphic handwriting have been bound into a book
which by being richly adorned reminds one of me-
dieval incunabula. Preparing it for print we decided
on one color (black) ink and instead of reproducing
the adornments to provide their descriptions which
gives our edition a rather conceptual character.

I intend to report on fonts we used and typo-
graphical conventions which aim at a clear separation
of the editorial level, which describes the original,
from Szarzyński’s text, at the same time trying to
reflect the conventions used by the author.

The engine I am using since at least half a year
is X ETEX, currently at version 0.997. I am using
the availability of the system OpenType fonts, the
possibilities to easily declare the features available
through fontspec and the new conveniences offered by
X ETEX like the pseudo-feature “slant”. I will describe
how X ETEX serves the æsthetic of a book.

I intend to give the audience a few words on the
basic typesetting parameters, such as \tolerance

and \emergencystretch in the context of their role
for the appearance of the work.

If time allows, I will present a few tricks, such as
typesetting of a fragment longer than a page in such
a way that all “t” characters are typeset as crosses
(as in Szarzyński’s original).

Jean-Michel Hufflen, XSLT 2.0 vs. XSLT 1.0;
pp. 67–77

This article focuses on the new features intro-
duced by version 2.0 of XSLT, the language of trans-
formations used for XML texts. We show why these
new features — groups of XML subtrees, functions, in-
terface with schemas — ease the development of some
applications. Some examples, related to bibliography
management, will be demonstrated.

Marcin Woliński, bayerancki – mój pierwszy
font [bayerancki — my first font]; p. 78

The subject of this talk is my first attempt at
creating a font. The font is named “bayerancki” and is
(loosely) based on Herbert Bayer’s “Universal” from
1925. The font has been prepared with MetaType1.

Reinhard Kotucha, Siep Kroonenberg, and
Norbert Preining, Nowy instalator dla TEX
Live [A new installer for TEX Live]; pp. 79–81

TEX Live has a new package infrastructure, pri-
marily developed by Norbert Preining, and inspired
by the Debian/Linux packaging system.

We shall present a new TEX Live installer, based
on the new package infrastructure. It includes a text
based as well a graphical user interface. Among other
new features, installing TEX Live from the internet
is now possible. It should work on all platforms sup-
ported by TEX Live.

Jean-Michel Hufflen, Jeszcze raz o porządku
leksykograficznym wg. osób [Revisiting
lexicographic order relations on personal
names]; pp. 82–90

Published in TUGboat 29:1 as “Managing order
relations in MlBibTEX”.

Grzegorz Murzynowski, Warsztat: Krótki kurs
niepowtarzania się, czyli: Napisz klasę lub pakiet.
[A short course in “Don’t Repeat Yourself” or
“Write a class or package”]; pp. 91–95

We will elaborate on what Marcin [Woliński]
mentions rather than describes in the MWCLS doc-
umentation, i.e., we will demonstrate the writing
of our own document class based on MWCLS or on
standard classes:
• the required commands
• loading of the base class (\LoadClass)
• loading of the desired packages

(\RequirePackage)
• declaring of options and passing them to the

base class and packages (\DeclareOption,
\PassOptionsToPackage/Class)
• if time allows, options of the key-value form

Documenting the class at write-time (literate pro-
gramming) with the gmdoc package:
• where to put the class written and what should

be done for TEX to see it.
• what are the ‘at’ signs, \edef and other basic

TEX commands for; or The TEXbook and the
LATEX source as enlightening.
• See how others do it or read the .dtx instead

of the .cls and .sty files.
Placing macros in the package:
• the difference between a package and a class
• when to write a package and when a class.

Why so? The DRY rule (Don’t Repeat Yourself (Twice
Is Too Much)).

Hans Hagen, OpenType: zbyt otwarty?
[OpenType: Too open?]; pp. 96–98

One advantage of the need to provide support
for the fonts that are used in the Oriental TEX project

TUGboat, Volume 30 (2009), No. 2 295

(the primary funding project of LuaTEX code devel-
opment) is that we need to support OpenType fonts
with more than average features in ConTEXt (needed
by Oriental TEX). In this talk I will reflect on the
possible use, abuse and/or misuse of OpenType fonts,
the complications in implementing the standard(s),
and the consequence for TEX users.

Hans Hagen, Biblioteka MetaPost [The
MetaPost Library]; pp. 99–113

Published in TUGboat 28:3.

Hans Hagen and Taco Hoekwater, Lua z
TEX-em i ConTEXt-em [The luafication of TEX
and ConTEXt]; pp. 114–123

Published in TUGboat 29:2.

Hans Hagen, Taco Hoekwater, and Volker
rw Schaa, Font Euler na nowo: wspólpraca
z Hermanem Zapfem [Reshaping Euler: A
collaboration with Hermann Zapf]; pp. 124–128

Published in TUGboat 29:2.

Jean-Michel Hufflen, TEX-owe narzędzia
składu dla języków Dalekiego Wschodu [Asian
TEX-like typesetting engines]; pp. 129–131

In order to extend MlBibTEX to languages of the
Far East, we are experimenting with TEX engines for
them — e.g., pTEX — after attending the first Asian
TEX conference. We give a demonstration of that.

Paweł Jackowski, TEX: śliczności i dziwności
[TEX: Beauties and oddities]; pp. 140–144

See the TEX Pearls web page: http://www.

gust.org.pl/projects/pearls.

Biuletyn GUST 26 (2009)

Ulrik Vieth, Matematyka OpenType
iluminowana [OpenType Math Illuminated];
pp. 7–16

Published in TUGboat 30:1.

Jean-Michel Hufflen, Wprowadzenie do
XQuery [Introduction to XQuery]; pp. 17—25

XQuery is a query language for data stored in
XML form. It can be used to search such documents
and arrange the result, as an XML structure or sim-
ple text (possibly suitable for a TEX engine). Like
XSLT 2.0, it is based on XPath 2.0. We propose an
introduction to XQuery, and some comparisons with
XSLT to allow readers to discern the applications for
which XQuery is suitable.

Jean-Michel Hufflen, Jak jest zorganizowana
dokumentacja MlBibTEXa [How MlBibTEX’s
documentation is organised]; pp. 26–30

MlBibTEX’s documentation is planned to be
multilingual — that is, written in several languages —

and to be able to share as many examples as possible.
Different people can write translations of the orginal
English documentation in parallel. In addition, we
show how the translations of this documentation can
be updated if need be. This documentation can be
used as printed text or an on-line document. The
features for managing this documentation can be
reused for other programs. In a first part, we explain
our requirements in detail. Then we show how they
are implemented.

Marek Ryćko, Projektowanie programowalnych
aspektów oprogramowania typograficznego
[Designing programmable aspects of typographic
software]; pp. 31–33

It has been 32 years from the time when Donald
Knuth started to design and write a typographic
system, consisting of a program for computer type-
setting, and a program for creating character shapes.
Those programs are still in use now and a lot of effort
is put into creating their contemporary versions.

One of the recent achievements in programming
in the typographic area is a new version of the Meta-
Post program, for creating vector graphics. The effort
went into separating the program code into a library,
called MPlib, and a small program, MetaPost, that
uses this library.

In the talk I plan to look closely at the current
implementation of MPlib (version 1.110) from the
software designer point of view. I will show, in a step-
by-step style, a possible way of thinking in designing
a new program, that will include a functionality of
MetaPost/MPlib, but will be created using program-
ming techniques and tools that were not available
32 years ago. The design will be object-oriented and
based on a very high-level programming language.

The result of the design process, carried on in
the presented way, will be transparent program code,
easily understandable, extendable, and easy to use
as a part of other programs and systems.

Philip Taylor, Preprocesor parshape [A
Parshape Pre-processor]; pp. 34–36

\parshape is a powerful but potentially verbose
primitive that provides the hooks necessary for wrap-
ping text around graphics or other figures. When the
outline of the inserted figure is rectangular, consider-
able simplification can be accomplished by providing
a \parshape pre-processor in TEX.

Jean-Michel Hufflen, Skład wielokierunkowy w
XSL-FO [Multi-directional typesetting in XSL-FO];
pp. 37–40

XSL-FO is an XML format that aims to describe
high-quality print output. This article complements
the introduction to XSL-FO given at EuroBachoTEX

296 TUGboat, Volume 30 (2009), No. 2

2007. We show how XSL-FO allows users to typeset
texts belonging to different writing systems: from
left to right, from right to left, etc. We compare this
implementation to TEX-like typesetting engines, e.g.,
TEX--XET.

Ryszard Kubiak, Tworzenie dokumentacji
oprogramowania dla użytkowników w LATEXu
i Hyperlatexu [Creating software documentation
for users with LATEX and Hyperlatex]; pp. 41–46

A LATEX-based notation is shown in the article
as a language for writing source versions of software
manuals for its users. Books or brochures as PDF

files can be prepared simply by using TEX and their
HTML version can be generated from the same source
files by calling Hyperlatex from the Emacs editor.
The author describes his experience in using this
technology.

Chris Rowley, Składanie poza \box-em:
zaczyn dyskusji [Typesetting outside the \box: A
discussion item]; pp. 47–49

There are a some fundamental problems in bas-
ing the future of high-quality, highly-automated ty-
pographic software on extending the monolithic and
programmatic paradigm of current TEX-related soft-
ware developments.

It is therefore time to take seriously other par-
adigms and strategically different software architec-
ture, moving on to a development path that will
attract and exploit both the typographic and pro-
gramming expertise of TEX gurus and also other
sources of high-quality software design for document
processing.

Paweł Jackowski, TEX: śliczności i dziwności
[TEX: Beauties and oddities]; pp. 59–65

See the TEX Pearls web page: http://www.

gust.org.pl/projects/pearls.

[Received from Tomasz Przechlewski]

Die TEXnische Komödie 2009/3

Editor’s note: Die TEXnische Komödie is the jour-
nal of DANTE e.V., the German-language TEX user
group (http://www.dante.de).

Jürgen Fenn, News regarding LATEX export from
OpenOffice.org

This article presents news regarding the LATEX
export from the free office suite OpenOffice.org 3.1
(Writer2LaTeX, Calc2LaTeX).

Christine Römer, Linguistic examples put in
perspective

There are several packages available for the cus-
tomary continuous numbering of German examples
as well as for mono- and multilingual interlinear
glosses. This article presents the TIPA package, the
gb4e package including its extension cgloss4e and
the new package expex which has connections with
PSTricks. The covington package is also mentioned.
The advantage of the expex package is that the user
can customise the layout of the examples to his needs.
As it uses TEX commands, it is more flexible than
the existing LATEX packages, but presumably not
very convenient for beginners. None of the consid-
ered packages are suitable for including interlinear
translations with non-Latin characters.

Adelheid Grob, Easy typesetting of lists with
easylist

LATEX provides the environments itemize and
enumerate for typesetting lists. A nesting depth
of four is allowed, but sometimes it is not easy to
prevent errors when having a depth of three or four.
The package easylist from Paul Isambert allows any
depth and easy modifications of list parameters.

Rolf Niepraschk, Formatting table columns—
all bets are off

This article presents a universal way to format
table columns.

Rolf Niepraschk, Automatic tables
This article describes one possibility to produce

lines in LATEX tables automatically.

[Received from Herbert Voß.]

Zpravodaj 19(1–2) (2009)

Editor’s note: Zpravodaj is the journal of CSTUG,
the TEX user group oriented mainly but not only to
the Czech and Slovak languages (http://www.cstug.

cz).

Pavel Stř́ıž, Úvodńık [Opening Letter from the
Editorial Board]; p. 1

Subjekty dlouhodobě podporuj́ıćı Zpravodaj
[Parties supporting the journal on a long-term
basis]; p. 2

Jiř́ı Veselý, Několik poznámek k historii CSTUG.
Trocha neformálńıch vzpomı́nek [Historical notes
on the Czechoslovak TEX Users Group (CSTUG)];
pp. 3–6

TUGboat, Volume 30 (2009), No. 2 297

The report gives a long history of the Czechoslo-
vak TEX Users Group from its early beginnings.

Let’s go back in time to 1977 (TEX beginnings),
1986 (typesetting documents with heavy math in
Central Europe at that time), 1989 (paper prepa-
rations of CSTUG), 1990 (CSTUG was born), 1991
(the first Zpravodaj journal, issue No. 1/1991, was
published), 1992 (EuroTEX organised by Czechoslo-
vaks), 1996 (Knuth lecturing at Masaryk University
in Brno, Czech Republic) and back to the present.

Robert Mař́ık, Osĺı okénka v PDF [The
fancytooltips package]; pp. 7–13

The article presents the fancytooltips package
which includes a wide range of material in PDF

tooltips. The package was inspired by the cooltooltips
package. In contrast to cooltooltips, fancytooltips al-
lows the inclusion of tooltips which contain arbitrary
TEX material or a series of TEX materials (animated
graphics) from an external PDF file. To see the
tooltips, you have to open the files in Adobe Reader.
The links and JavaScripts are inserted using the
eforms package from the AcroTEX bundle (acrotex).
The conversion into HTML format is also discussed.
The package is available at www.ctan.org.

Norbert Preining, TEX Live 2008 a správa
inštalácie TEX Live [TEX Live 2008 and the TEX
Live Manager, Slovak version; translated from
English by Ján Buša]; pp. 14–36

TEX Live 2008 has been released recently, and
the DVDs are ready to go gold. This is the first
release of TEX Live shipping the TEX Live Manager.

Besides taking over some of the tasks from
texconfig (which has never been available for Win-
dows) it finally brings many new features to the
TEX Live world, most importantly the option for
dynamic updates.

This article presents the new TEX Live installer,
the TEX Live Manager, and at the end lists other
changes in TEX Live 2008.

Pavel Stř́ıž, Vybrané partie knižńı sazby aneb
Ṕı̌seme divadelńı hru [Selected problems from book
typesetting: The case of stageplay typesetting];
pp. 37–89

This article summarizes the author’s experience
of typesetting a drama playbook. The paper itself is
not meant to be a package description because there
is no new package. Readers and potential playwrights
are encouraged to think about what they would like
to typeset and then to get on with their paper. In
this extended version, the author demonstrates about
a dozen partial problems concerned with stageplay
typesetting and presents his solutions.

Marcel Svitalský, Google Summer of Code
– představeńı [Google Summer of Code: An
Introduction]; p. 90

The report is a translation of the first paragraphs
of the wiki page about Google Summer of Code,
http://en.wikipedia.org/wiki/GSoC/.

Marcel Svitalský, Google Summer of Code 2008
a TUG [Google Summer of Code 2008 and TUG,
English version: Karl Berry]; pp. 91–93

The report presents application information and
code sample sources of three projects which were
accomplished by students working with the TEX
Users Group for Google Summer of Code 2008, http:
//tug.org/gsoc/2008.html.

Marcel Svitalský, Google Summer of Code 2009
a TUG [Google Summer of Code 2009 and TUG,
English version: Karl Berry]; pp. 94–101

The report is a Czech translation of the web page
presenting ideas for the TEX Users Group for Google
Summer of Code 2009, http://tug.org/gsoc/.

Marcel Svitalský, Projekt Dublin Core
metadata interface [The Dublin Core Metadata
Interface Project, English version: Matthew
Leingang & Peter Flynn]; pp. 102–106

The report brings a Czech translation of the web
page http://tug.org/gsoc/dublincore.html, de-
scribing one of the projects proposed for the GSoC
2009 with TUG as a mentoring organisation. The
goal of the project was the implementation of the
Dublin Core Abstract Model in TEX.

Nové a staronové knihy [New and older books];
pp. 107–111

Donald E. Knuth: Uměńı programováńı.
Základńı algoritmy [The Art of Computer Program-
ming, Volume 1, Czech translation].

Pavel Kočička, Filip Blažek: Praktická typo-
grafie [Practical Typography, in Czech].

Frantǐsek Štorm: Eseje o typografii [Essays on
Typography, in Czech].

Helmut Kopka, Patrick W. Daly: LATEX. Kom-
pletńı pr̊uvodce [A Guide to LATEX, Czech transla-
tion].

Petr Oľsák: TEXbook naruby [TEXbook Inside
Out, in Czech].

Petr Oľsák: Typografický systém TEX [Typeset-
ting System TEX, in Czech].

Jǐŕı Rybička: LATEX pro začátečńıky [LATEX for
Beginners, in Czech].

Redakčńı poznámky a pokyny autor̊um [Notices
and instructions for the authors, versions in Czech
and English]; pp. 112–116

[Received from Pavel Striz]

298 TUGboat, Volume 30 (2009), No. 2

TUG 2009 abstracts

Editor’s note: Many of the conference presentations
are available at http://www.river-valley.tv in
video form, thanks to Kaveh Bazargan and River
Valley Technologies.

Jin-Hwan Cho

Extended DVI formats and DVIasm

DVIasm is a TEX utility program that is designed
for editing DVI files with three steps: disassembling,
editing, and assembling.

The first stage of DVIasm [1] supported the stan-
dard DVI file format as in DVItype and DTL, but
in a much more flexible way than those utilities.
In the second stage [2], DVIasm made it possible
to handle two-byte characters, CJK and Unicode
characters. The extended DVI formats generated
by Omega, Japanese pTEX were all supported, as
well as ordinary LATEX packages with subfont scheme
such as CJK-LATEX and Korean ko.TEX. The final
stage of DVIasm confronts the two advanced TEX
engines, LuaTEX and X ETEX, both of which can han-
dle OpenType and TrueType files in a direct way
without TFM files.

In this talk we introduce DVIasm with a few
interesting applications to the TEX world, and dis-
cuss how DVIasm handles the extended DVI formats
generated by LuaTEX and X ETEX.
[1] Jin-Hwan Cho, Hacking DVI files: Birth of

DVIasm, The PracTEX Journal (2007), no. 1,
and TUGboat 28 (2007), no. 2, 210–217.
http://tug.org/TUGboat/Articles/tb28-2/

tb89cho.pdf.
[2] Jin-Hwan Cho, Handling Two-Byte Characters

with DVIasm, The Asian Journal of TEX 2
(2008), no. 1, 63–68. http://ajt.ktug.kr/

assets/2008/5/1/0201cho.pdf.

Paulo Ney de Souza

The MSP TEX production system: Restoration
of TUGboat

Mathematical Sciences Publishers will begin to offer
TUGboat to its subscribers (primarily academic li-
braries) soon. This talk will discuss the challenges in
bringing all thirty volumes of TUGboat into MSP’s
electronic delivery system via its web site, http:

//www.mathscipub.org.

Idris Hamid

Dynamic Arabic: Towards the philosopher’s stone
of Arabic-script typography

We discuss the present status of the Oriental TEX
project, particularly the problem of Arabic-script

microtypography. This includes glyph substitution
and hz parameterization.

Idris Hamid

Arabic typography: Past, present, and TEX

Accommodating the classical Arabic script to print
typography has always been a challenge. In this
talk we go over some of the history of this effort —
including TEX-based solutions — with a view to pro-
viding a backdrop to the Oriental TEX Project and
its progress.

Morten Høgholm

Consolidation of expl3

The expl3 language used as the foundation of LATEX3
has gone through a consolidation phase where almost
each and every concept has been questioned, taken
apart and put back, sometimes in the same form as it
was and sometimes in radically different forms. We
will go through some of the most interesting changes
and highlight the areas where special effort has been
made to ensure simple and natural interfaces.

Morten Høgholm

Next steps for breqn

The next version of the breqn package for automatic
line breaking of displayed equations is underway. We
will discuss different areas of math typesetting: some
things breqn handles well, some areas have room for
improvement, and some areas are simply not covered.
We will spend some time talking about the technical
challenges posed by these requirements.

Chris Rowley

TEX-free LATEX, an overview & Standards for LATEX
documents and processors or Whither LATEX? (The
language)

The LATEX is the message. As some of you will
be aware, and all should be, LATEX code, possibly
with some variations, extensions or simplifications,
has for a long time been used, raw and unprocessed,
as a lingua franca for communicating mathematics
via text files in computers. [I have even seen it used
on napkins and coffee tables.]

This has led to a proliferation of LATEX-like in-
put systems for mathematical information and this
in turn produced a reluctance by users of maths no-
tation to adopt any other type of input. However,
much of this math input is not intended (primarily)
to ever be input to a TEX machine. (It may get
swallowed by a TEX-like system after, for example,
some copy/paste actions.)

TUGboat, Volume 30 (2009), No. 2 299

More recently, systems are being developed to
produce whole LATEX-encoded documents that are to
be processed by systems such as OMDoc or LATEXML

and so will not necessarily ever pass through a TEX-
like engine. Systems such as PlasTEX also belong in
this category, despite using TEX as a helper utility
in their implementation.

A very recent discovery surprised me more than
a little: that many systems in the maths world are
not only able to produce LATEX output (e.g., com-
puter algebra packages) but, currently at least, have
LATEX maths as their only or primary output! This
is because: it is wanted or preferred by mathemati-
cians; it is widely accepted by other mathematical
software; or simply that nothing else is known to be
available for a consistent and familiar encoding of
maths notation.

A more sophisticated reason put forward for the
increasing ubiquity of LATEX is that if you are looking
for a user-friendly and flexible editor for structured
documents, then there are no rivals to the various
environments available for the production and editing

of LATEX documents (such as auctex+(x)emacs).

Standards. What standards? It would be possible to
make an exhaustive list of everything that is allowed
to appear in a Standard Basic LATEX document. But
that would be both tedious, uncheckable and ignored.

It is currently much easier to pin down which
parts of the LATEX language are accepted by the
various non-TEX-like processors of LATEX (from the
first part). Also, there are corpora that can be
automatically studied to produce definitions of the
subsets actually used by various communities.

Amongst those who handle mathematics in com-
puters there is a growing demand to analyse these
de facto standards, at least for LATEX-math, and
to produce reference standards in this area. These
would be used to compare systems and communities
and make recommendations for usage. This could
possibly lead to some more formal standards and,
most importantly, extension mechanisms so that, for
example, general-purpose parsers can be used to read
such code.

TUG

Institutional

Members

American Mathematical Society,

Providence, Rhode Island

Aware Software, Inc.,

Midland Park, New Jersey

Banca d’Italia,

Roma, Italy

Center for Computing Sciences,

Bowie, Maryland

Certicom Corp.,

Mississauga, Ontario, Canada

CSTUG, Praha, Czech Republic

Florida State University,

School of Computational Science

and Information Technology,

Tallahassee, Florida

IBM Corporation,

T J Watson Research Center,

Yorktown, New York

Institute for Defense Analyses,

Center for Communications

Research, Princeton, New Jersey

MacKichan Software, Inc.,

Washington/New Mexico, USA

Marquette University,

Department of Mathematics,

Statistics and Computer Science,

Milwaukee, Wisconsin

Masaryk University,

Faculty of Informatics,

Brno, Czech Republic

Moravian College,

Department of Mathematics

and Computer Science,

Bethlehem, Pennsylvania

MOSEK ApS,

Copenhagen, Denmark

New York University,

Academic Computing Facility,

New York, New York

Princeton University,

Department of Mathematics,

Princeton, New Jersey

Springer-Verlag Heidelberg,

Heidelberg, Germany

Stanford University,

Computer Science Department,

Stanford, California

Stockholm University,

Department of Mathematics,

Stockholm, Sweden

University College, Cork,

Computer Centre,

Cork, Ireland

University of Delaware,

Computing and Network Services,

Newark, Delaware

Université Laval,

Ste-Foy, Québec, Canada

University of Oslo,

Institute of Informatics,

Blindern, Oslo, Norway

Do you need on-site training for LATEX?

Contact Cheryl Ponchin at

cponchin@comcast.net

Training will be customized for your company needs.

Any level, from Beginning to Advanced.

New MathType6.5 for Windows

• Create equations by typing TeX and insert them into Microsoft Word,

PowerPoint, Wikipedia pages, and 1000's of other applications.

• Save equations as GIF images for blogs and wikis.

• Wikipedia and other wikis contain many equations that can be copied

into MathType, and then into other applications and document types.

Download a free, 30-day evaluation — www.dessci.com

MathType,“The best thing for writing equations since chalk!” and “How Science Communicates” are trademarks of Design Science. All other company and product names are trademarks and/or registered trademarks of their respective owners.

MathType™

The best thing for writing equations since chalk!
™

Design Science, Inc. 140 Pine Avenue, Long Beach, CA 90802, USA Toll-free: 800-827-0685 or 562-432-2920, Fax: 562-432-2857, Email: sales@dessci.com

MacKichan
S O F T W A R E , I N C .

LATEX

LATEX

LATEX

 A-R Editions, Inc.
8551 Research Way, Suite 180
Middleton, WI 53562
608-836-9000 • 800-736-0070

www.areditions.com

Your source for outstanding

music and more!

Congratulations to the TeX Users Group!

Donald E. Knuth’s
3:16 Bible Texts

Illuminated
What happens when a renowned
computer scientist applies scientific
methodology to studying the Bible,
writes about his findings, and has
persuaded some of the world’s best
calligraphers to illustrate the work?
The result is 3:16, a treasure which
will illuminate your mind, eyes, and
spirit. It is a great book to share!

ISBN 978-0-89579-252-5

$29.95 plus shipping
Poster available for
$12.00 plus shipping
(additional for poster)

T E C H N O L O G I E S

RIVER VALLEY

TUG 2010: TEX’s 2
5 anniversary

and the 31st annual meeting of the TEX Users Group

Sir Francis Drake Hotel, Union Square

San Francisco, California

June 28–30, 2010

http://www.tug.org/tug2010/

With guests of honor

Donald E. Knuth

and many other members of

the Stanford TEX project

2009

Sep 6 –
Nov 23

“Marking Time”: A traveling juried
exhibition of books by members of the
Guild of Book Workers. San Francisco
Public Library, San Francisco,
California. Sites and dates are listed at
palimpsest.stanford.edu/byorg/gbw

Sep 15 – 18 ACM Symposium on Document
Engineering, Munich, Germany.
www.documentengineering.org

Sep 25 “A Short History of Printing”: lecture by
Frank Romano, Museum of Printing,
North Andover, Massachusetts.
www.museumofprinting.org/txp/Events

Sep 30 –
Oct 1

XML-in-Practice 2009, Arlington,
Virginia. www.idealliance.org/

conferences_and_events

Oct 16 – 18 American Printing History Association’s

34th annual conference, “The Book
Beautiful”, Newport, Rhode Island.
www.printinghistory.org/htm/

conference/2009/CFP-2009.htm

Oct 16 – 18 The Seventh International
Conference on the Book,
University of Edinburgh, Scotland.
booksandpublishing.com/conference-2009

Oct 17 GuIT meeting 2009 (Gruppo
utilizzatori Italiani di TEX), Pisa, Italy.
www.guit.sssup.it/guitmeeting/2009

Oct 26 – 30 Association Typographique Internationale
(ATypI) annual conference, “The
Heart of the Letter”, Mexico City.
www.atypi.org

Oct 26 –
Nov 13

“Late letterpress: The work of Desmond
Jeffrey”, exhibition, with a talk on
Oct 27, St Bride Library, London,
England. stbride.org/events

Oct 29 – 31 Guild of Book Workers, Standards
of Excellence Annual Seminar,
San Francisco, California.
palimpsest.stanford.edu/byorg/gbw

TUGboat, Volume 30 (2009), No. 2 303

Calendar

Nov 21 Journée GUTenberg & Assemblée
générale, Centre FIAP, Paris, France.
www.gutenberg.eu.org/manifestations

Dec 7 –
Feb 19

“Marking Time”: A traveling juried
exhibition of books by members of the
Guild of Book Workers. Allen Library,
University of Washington, Seattle.
See September 6 entry for additional
information.

2010

Mar 5 –
Apr 22

“Marking Time”: A traveling juried
exhibition of books by members of the
Guild of Book Workers. University of
Utah Marriott Library, Salt Lake City.
See 6 September 2009 entry for additional
information.

May 3 –
Jun 25

“Marking Time”: A traveling juried
exhibition of books by members of
the Guild of Book Workers. Denver
Public Library, Denver, Colorado. See
6 September 2009 entry for additional
information.

TUG2010

San Francisco, California.

Jun 28 – 30 The 31st annual meeting of the TEX
Users Group—TEX’s 25 Anniversary.
tug.org/tug2010

Jul 26 – 30 SIGGRAPH 2010, Los Angeles, California.
www.siggraph.org/conference/s2010

Aug 17 – 20 TypeCon 2010: Los Angeles, California.
www.typecon.com

Aug 17 – 21 SHARP 2010, “Book Culture from Below”,
Society for the History of Authorship,
Reading & Publishing, Helsinki, Finland.
www.helsinki.fi/sharp2010

Oct 16 – 18 The Eighth International Conference on
the Book, University of St.Gallen,
St.Gallen, Switzerland.
booksandpublishing.com/conference-2010

Status as of 15 September 2009

For additional information on TUG-sponsored events listed here, contact the TUG office
(+1 503 223-9994, fax: +1 206 203-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

A combined calendar for all user groups is online at texcalendar.dante.de.
Other calendars of typographic interest are linked from tug.org/calendar.html.

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants
at http://tug.org/consultants.html. If you’d
like to be listed, please see that web page.
To place a larger ad in TUGboat, please see
http://tug.org/TUGboat/advertising.html.

Dangerous Curve

PO Box 532281
Los Angeles, CA 90053
+1 213-617-8483
Email: typesetting (at) dangerouscurve.org

Web: http://dangerouscurve.org/tex.html

We are your macro specialists for TEX or LATEX fine
typography specs beyond those of the average LATEX
macro package. If you use X ETEX, we are your
microtypography specialists. We take special care to
typeset mathematics well.

Not that picky? We also handle most of your
typical TEX and LATEX typesetting needs.

We have been typesetting in the commercial and
academic worlds since 1979.

Our team includes Masters-level computer scientists,
journeyman typographers, graphic designers,
letterform/font designers, artists, and a co-author of a
TEX book.

Martinez, Mercè Aicart

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) ono.com

Web: http://www.edilatex.com

We provide, at reasonable low cost, TEX and LATEX
typesetting services to authors or publishers world-
wide. We have been in business since the beginning of
1990. For more information visit our web site.

Peter, Steve

New Jersey, USA
+1 732 287-5392
Email: speter (at) mac.com

Specializing in foreign language, linguistic, and
technical typesetting using TEX, LATEX, and ConTEXt,
I have typeset books for Oxford University Press,
Routledge, and Kluwer, and have helped numerous
authors turn rough manuscripts, some with dozens of

304 TUGboat, Volume 30 (2009), No. 2

TEXConsultants

languages, into beautiful camera-ready copy. I have
extensive experience in editing, proofreading, and
writing documentation. I also tweak and design fonts.
I have an MA in Linguistics from Harvard University
and live in the New York metro area.

Shanmugam, R.

No. 38/1 (New No. 65), Veerapandian Nagar, Ist St.
Choolaimedu, Chennai-600094, Tamilnadu, India
+91 9841061058
Email: rshanmugam (at) yahoo.com

As a Consultant I provide consultation, technical
training, and full service support to the individuals,
authors, corporates, typesetters, publishers,
organizations, institutions, etc. and I also
support to leading BPO/KPO/ITES/Publishing
companies in implementing latest technologies
with high level of automation in the field
of Typesetting/Prepress/Composition,
ePublishing, XML2PAGE, WEBTechnology,
DataConversion, Digitization, Cross-media
publishing, etc. I have sound knowledge in creating
Macros/Styles/Templates/Scripts and Conversions
with automation using latest softwares in industry.

Sievers, Martin

Im Treff 8, 54296 Trier, Germany
+49 651 81009-780
Email: info (at) schoenerpublizieren.com

Web: http://www.schoenerpublizieren.com

As a mathematician I offer TEX and LATEX services
and consulting for the whole academic sector and
everybody looking for a high-quality output. From
setting up entire book projects to last-minute help,
from creating citation styles to typesetting your math,
tables or graphics— just contact me with information
on your project.

Veytsman, Boris

46871 Antioch Pl.
Sterling, VA 20164
+1 703 915-2406
Email: borisv (at) lk.net

Web: http://www.borisv.lk.net

TEX and LATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom LATEX packages, conversions and
much more. I have about fourteen years of experience
in TEX and twenty-seven years of experience in
teaching & training. I have authored several packages
on CTAN, published papers in TEX related journals,
and conducted several workshops on TEX and related
subjects.

olume 30, Number 2—TUG 2009 Conference Proceedings 2009

TUGBOAT Volume 30 (2009), No. 2

Introductory

180 Tim Arnold / Getting started with plasTEX
• introduction to plasTEX: converting LATEX to HTML, DocBook, plain text, and more

272 Kaveh Bazargan / TEX as an eBook reader
• report on using TEX for better line breaking and mathematics support on the iPhone

179 Karl Berry / TEX Live 2009 news
• brief summary of notable changes in the TEX Live 2009 software release

236 Jim Hefferon / A first look at the TEX Gyre fonts
• samples and recipes for using the Gyre font collection, especially for math

209 Klaus Höppner / Introduction to METAPOST

• focusing on the unique features of METAPOST, such as solving linear equations

176 Frank Quinn / The EduTEX TUG working group
• clever new machines, clever new software, same old brains

290 Will Robertson / Peter Wilson’s Herries Press packages
• a new maintainer for most of Wilson’s packages, and descriptions thereof

159 David Walden / Profile of Eitan Gurari (1947–2009)
• the creator of TEX4ht and other projects, in memoriam

203 David Walden / Self-publishing: Experiences and opinions
• printing, distribution, economics, and other aspects of self-publishing

Intermediate

196 Karl Berry and David Walden / TEX People: The TUG interviews project and book
• the interviewing process, using m4 to create HTML or LATEX, publication decisions

241 Hans Hagen / Plain TEX and OpenType
• introduction to facilities for accessing OpenType fonts from plain LuaTEX

177 Jim Hefferon / Becoming a CTAN mirror
• steps for helping the community by running a CTAN mirror

247 Aditya Mahajan / LuaTEX: A user’s perspective
• using Lua to greatly simplify programming in TEX

274 Christian Rossi / From distribution to preservation of digital documents
• issues of conservation of (mostly textual) electronic documents

214 Andrew Mertz & William Slough / A TikZ tutorial: Generating graphics in the spirit of TEX
• tutorial overview of this major graphics package

169 Arthur Reutenauer / LuaTEX for the LATEX user: An introduction
• brief note on some notable LATEX packages providing basic LuaTEX support

163 Boris Veytsman / LATEX class writing for wizard apprentices
• compatibility, interfaces, tips, and experiences in writing LATEX classes

227 Boris Veytsman and Leila Akhmadeeva / Medical pedigrees: Typography and interfaces
• historical and new typesetting of medical pedigrees

Intermediate Plus

285 Claudio Beccari / Use of the \write18 feature for composing indexes
• automatically keeping indexes up to date via external command execution

252 Nelson Beebe / BibTEX meets relational databases
• searching large bibliographic collections using SQL databases

183 Hans Hagen / LuaTEX: Halfway to version 1
• overview of past, present, and future of LuaTEX

187 Hans Hagen / LuaTEX and ConTEXt: Where we stand
• taking stock of current LuaTEX and ConTEXt, with performance comparisons

243 Aditya Mahajan / Integrating Unicode and OpenType math in ConTEXt
• implementation in LuaTEX of both OpenType and traditional math

281 D. P. Story / Rich media annotations and AcroFLeX
• multimedia support in PDF via Acrobat and LATEX

287 Peter Wilson / Glisterings
• Reprise; Repetition; Rectangular text

Advanced

170 Ross Moore / Ongoing efforts to generate “tagged PDF” using pdfTEX
• extending pdfTEX and LATEX to support accessible PDF

191 Bob Neveln and Bob Alps / ProofCheck: Writing and checking complete proofs in LATEX
• a system for writing formal proofs in (LA)TEX and automatically checking them

Contents of publications from other TEX groups

293 Biuletyn GUST: 25–26 (2008–2009); Die TEXnische Komödie: 2009/3; Zpravodaj: 19(1–2) (2009)

Reports and notices

154 TUG 2009 conference information

298 TUG 2009 abstracts (Cho, de Souza, Hamid, Høgholm, Rowley)

299 Institutional members

302 TUG 2010 announcement

303 Calendar

304 TEX consulting and production services

TUGBOAT

Volume 30, Number 2 / 2009
TUG 2009 Conference Proceedings

TUG 2009 154 Conference program, delegates, and sponsors

159 Profile of Eitan Gurari (1947–2009)

LATEX 163 Boris Veytsman / LATEX class writing for wizard apprentices

169 Arthur Reutenauer / LuaTEX for the LATEX user: An introduction

Accessibility 170 Ross Moore / Ongoing efforts to generate “tagged PDF” using pdfTEX

Education 176 Frank Quinn / The EduTEX TUG working group

Software & Tools 177 Jim Hefferon / Becoming a CTAN mirror

179 Karl Berry / TEX Live 2009 news

180 Tim Arnold / Getting started with plasTEX

183 Hans Hagen / LuaTEX: Halfway to version 1

187 Hans Hagen / LuaTEX and ConTEXt: Where we stand

191 Bob Neveln and Bob Alps / ProofCheck: Writing and checking complete proofs

in LATEX

Publishing 196 Karl Berry and David Walden / TEX People: The TUG interviews project and book

203 David Walden / Self-publishing: Experiences and opinions

Graphics 209 Klaus Höppner / Introduction to METAPOST

214 Andrew Mertz and William Slough / A TikZ tutorial: Generating graphics in the

spirit of TEX

227 Boris Veytsman and Leila Akhmadeeva / Medical pedigrees: Typography

and interfaces

Fonts 236 Jim Hefferon / A first look at the TEX Gyre fonts

241 Hans Hagen / Plain TEX and OpenType

243 Aditya Mahajan / Integrating Unicode and OpenType math in ConTEXt

Macros 247 Aditya Mahajan / LuaTEX: A user’s perspective

Bibliographies 252 Nelson Beebe / BIBTEX meets relational databases

Electronic Documents 272 Kaveh Bazargan / TEX as an eBook reader

274 Christian Rossi / From distribution to preservation of digital documents

281 D. P. Story / Rich media annotations and AcroFLeX

Hints & Tricks 285 Claudio Beccari / Use of the \write18 feature for composing indexes

287 Peter Wilson / Glisterings: Repetition; Rectangular text

290 Will Robertson / Peter Wilson’s Herries Press packages

Abstracts 293 Biuletyn GUST : Contents of issues 25–26 (2009)

296 Die TEXnische Komödie: Contents of issue 2009/3

296 Zpravodaj : Contents of issue 19(1–2) (2009)

298 TUG 2009 abstracts (Cho, de Souza, Hamid, Høgholm, Rowley)

TUG Business 299 TUG institutional members

Sponsors 300 Cheryl Ponchin Training; O’Reilly Media; Design Science

301 MacKichan Software; River Valley Technologies; A-R Editions

302 River Valley Technologies

News &

Announcements

302 TUG2010 announcement

303 Calendar

Advertisements 304 TEX consulting and production services

TUGBOAT Volume 30 (2009), No. 2

Introductory

180 Tim Arnold / Getting started with plasTEX
• introduction to plasTEX: converting LATEX to HTML, DocBook, plain text, and more

272 Kaveh Bazargan / TEX as an eBook reader
• report on using TEX for better line breaking and mathematics support on the iPhone

179 Karl Berry / TEX Live 2009 news
• brief summary of notable changes in the TEX Live 2009 software release

236 Jim Hefferon / A first look at the TEX Gyre fonts
• samples and recipes for using the Gyre font collection, especially for math

209 Klaus Höppner / Introduction to METAPOST

• focusing on the unique features of METAPOST, such as solving linear equations

176 Frank Quinn / The EduTEX TUG working group
• clever new machines, clever new software, same old brains

290 Will Robertson / Peter Wilson’s Herries Press packages
• a new maintainer for most of Wilson’s packages, and descriptions thereof

159 David Walden / Profile of Eitan Gurari (1947–2009)
• the creator of TEX4ht and other projects, in memoriam

203 David Walden / Self-publishing: Experiences and opinions
• printing, distribution, economics, and other aspects of self-publishing

Intermediate

196 Karl Berry and David Walden / TEX People: The TUG interviews project and book
• the interviewing process, using m4 to create HTML or LATEX, publication decisions

241 Hans Hagen / Plain TEX and OpenType
• introduction to facilities for accessing OpenType fonts from plain LuaTEX

177 Jim Hefferon / Becoming a CTAN mirror
• steps for helping the community by running a CTAN mirror

247 Aditya Mahajan / LuaTEX: A user’s perspective
• using Lua to greatly simplify programming in TEX

274 Christian Rossi / From distribution to preservation of digital documents
• issues of conservation of (mostly textual) electronic documents

214 Andrew Mertz & William Slough / A TikZ tutorial: Generating graphics in the spirit of TEX
• tutorial overview of this major graphics package

169 Arthur Reutenauer / LuaTEX for the LATEX user: An introduction
• brief note on some notable LATEX packages providing basic LuaTEX support

163 Boris Veytsman / LATEX class writing for wizard apprentices
• compatibility, interfaces, tips, and experiences in writing LATEX classes

227 Boris Veytsman and Leila Akhmadeeva / Medical pedigrees: Typography and interfaces
• historical and new typesetting of medical pedigrees

Intermediate Plus

285 Claudio Beccari / Use of the \write18 feature for composing indexes
• automatically keeping indexes up to date via external command execution

252 Nelson Beebe / BibTEX meets relational databases
• searching large bibliographic collections using SQL databases

183 Hans Hagen / LuaTEX: Halfway to version 1
• overview of past, present, and future of LuaTEX

187 Hans Hagen / LuaTEX and ConTEXt: Where we stand
• taking stock of current LuaTEX and ConTEXt, with performance comparisons

243 Aditya Mahajan / Integrating Unicode and OpenType math in ConTEXt
• implementation in LuaTEX of both OpenType and traditional math

281 D. P. Story / Rich media annotations and AcroFLeX
• multimedia support in PDF via Acrobat and LATEX

287 Peter Wilson / Glisterings
• Reprise; Repetition; Rectangular text

Advanced

170 Ross Moore / Ongoing efforts to generate “tagged PDF” using pdfTEX
• extending pdfTEX and LATEX to support accessible PDF

191 Bob Neveln and Bob Alps / ProofCheck: Writing and checking complete proofs in LATEX
• a system for writing formal proofs in (LA)TEX and automatically checking them

Contents of publications from other TEX groups

293 Biuletyn GUST: 25–26 (2008–2009); Die TEXnische Komödie: 2009/3; Zpravodaj: 19(1–2) (2009)

Reports and notices

154 TUG 2009 conference information

298 TUG 2009 abstracts (Cho, de Souza, Hamid, Høgholm, Rowley)

299 Institutional members

302 TUG 2010 announcement

303 Calendar

304 TEX consulting and production services

