
TUGboat, Volume 29 (2008), No. 2 233

Editor’s note: The following note announced the
periodic update of TEX and friends on March 18,
2008. (In this presentation, some of the verbatim
code lines have been re-broken or otherwise adjusted
to fit the narrow columns.) Work is underway to in-
clude the new versions in the next release of TEX Live.
Unless you have experience in implementing the soft-
ware, it’s advisable to wait for that release. Please
refrain from posing questions or reporting problems,
to allow the implementors to pursue their work with-
out interruptions. If you want to find out the details
of the updates, those can be found on CTAN in the
area systems/knuth/errata/.

The TEX tuneup of 2008

Donald Knuth

I’ve written this note while going through the long,
long file of bug reports and suggestions that were
submitted during the years 2003–2007. You know
that I am committed to keeping TEX and META-
FONT as stable as possible, while also correcting
serious blunders that are likely to be harmful if left
as is. It is certainly not always obvious where to
draw the line; I intend to keep drawing it as close
to the existing implementations as I can, without
feeling extremely guilty.

The index to Digital Typography lists eleven
pages where the importance of stability is stressed,
and I urge all maintainers of TEX and METAFONT

to read them again every few years. Any object of
nontrivial complexity is non-optimum, in the sense
that it can be improved in some way (while still
remaining non-optimum); therefore there’s always
a reason to change anything that isn’t trivial. But
one of TEX’s principal advantages is the fact that
it does not change — except for serious flaws whose
correction is unlikely to affect more than a very tiny
number of archival documents.

Let me give two examples. First, David Kas-
trup observes that TEX doesn’t do the best possi-
ble rounding when it converts units. One inch is
exactly 72.27 points, which is exactly 4736286.72
scaled points. When you say ‘1in’, TEX converts it
to 4736286sp; when you say ‘72.27pt’, TEX converts
it to 4736287sp, which is about 23.6 Ångstrom units
closer to the truth. With a simple change to TEX
§458, namely to add ‘denom div 2’ before dividing
by ‘denom’, the rounding would be slightly better.
But that would invalidate the line-break and page-
break decisions of an enormous number of documents.
It’s unthinkable to change TEX in such a way today.

234 TUGboat, Volume 29 (2008), No. 2

But of course the authors of other systems should
adopt superior methods when they want to.

Second, I recently installed METAPOST version
0.993, which corrected a bug in the calculation of the
bounding box of its outputs. I’m a user of META-
POST, not a developer; but I’m sort of glad that the
developers had fixed this bug. On the other hand
it was a tremendous headache for me, because it
affected nearly 200 of the illustrations for The Art of
Computer Programming, and caused severe changes
to the layouts of more than a dozen pages, even
though the individual corrections to the box sizes
were typically 2pt or less! I spent three days going
over everything so that I could once again typeset the
volumes of my main life’s work. I couldn’t reasonably
insist that the METAPOST developers retain such
a serious bug as a “feature”. With TEX, on the
other hand, it’s a different story, because people’s
accumulated investment in TEX documents is more
than a million times the total current investment in
METAPOST documents. If a comparable bug had
showed up in TEX, I would not have changed it.

Let me also observe that I never intended TEX
to be immune to vicious “cracker attacks”; I only
wish it to be robust under reasonable use by people
who are trying to get productive work done. Almost
every limit can be abused in extreme cases, and I
don’t think it useful to go to extreme pain to pre-
vent such things. Computers have general protection
mechanisms to keep buggy software from inflicting
serious damage; TEX and METAFONT are far less
buggy than the software for which such mechanisms
were designed. For instances of the philosophy that
I had while writing these programs, see for instance
TEX §9 and MF §9, which say that I expected the pro-
grams to be run with arithmetic overflow interrupt
turned on; also TEX §104: “TEX does not check for
overflow when dimensions are added or subtracted . . .
the chance of overflow is so remote that such tests
do not seem worthwhile”; MF §369 says that the
total weight in a picture “will be less than 231 unless
the edge structure has more than 174,762 edges”;
MF §558, “we shall assume that the coordinates are
sufficiently non-extreme”; MF §930, “users aren’t
supposed to be monkeying around with really big
values.”

A proposal re file errors

I think the following change would be nice for the
next versions of TEX, METAFONT, etc.: In place of
the current message

Please type another %s file name:

produced by prompt_file_name, let’s substitute

Please type another %s file name (or quit):

and then if the user’s response is ‘quit’ we do the
equivalent of control-C. If the response is null, let’s
give a help message.

This modification should be handled by change
files, keeping the master files tex.web and mf.web
and whatever.web as they are. I never have intended
to control the aspects of user interaction on particular
systems.

Maybe also introduce a finite loop, with
‘(or quit)’ replaced by ‘(or I’ll quit)’ the third
or fourth time. I agree that infinite loops are evil,
and I’m sorry that prompt_file_name is invoked
only within infinite loops in my own programs. If
I had thought of this idea earlier, I’d have added
a global variable like max_prompt_repeats, and ini-
tialized it to 3 or 4 just before those infinite loops;
then prompt_file_name would decrement it, or give
up if it’s zero.

Another possibility is ‘(or quit or retry)’,
except the last time. That wording is a bit more
suited to computer geeks, who have ideas about fixing
things by repairing file permissions, etc.; if the user
responds with either ‘retry’ or null, the intention is
clearly to try again because of some reason to hope for
success. Still, I prefer the non-geek version, because
it reaches more people and enables the null-for-help
option. Let the geeks type a few more keystrokes —
they get satisfaction in other ways.

TEX

TEX version 3.1415926 corrects a few minor bugs,
following major studies by David Fuchs. A summary
of the noteworthy changes to the Pascal code in
tex.web can be found near the end of the (long) file
errata/tex82.bug. Here are the most significant
ones, in decreasing order of importance:

1. Leaders with \mskip glue never worked prop-
erly; this feature has now been disallowed.

2. Error recovery was incorrect when an extra
right brace appeared within a macro parameter.

3. TEX’s inner loop now runs a bit faster.

4. The size of insert boxes is now displayed more
accurately by \showlists.

5. A restriction on TFM files enforced by TFtoPL

(namely that there must be at least one entry in each
of the width, height, depth, and italic correction
tables) is now enforced also by TEX, since noncom-
pliance could cause a mess.

6. TEX used to leak four words of memory
if arithmetic overflow occurred when \multiply or
\divide was applied to glue or muglue.

TUGboat, Volume 29 (2008), No. 2 235

7. The old iniTeX could leak four words of
memory in another way (but at most four total), if
“last_glue” pointed to a glue specification when the
format file was created.

There’s an undocumented feature, which
is inconvenient to explain anywhere in The
TEXbook: \pagedepth is cleared to zero when
the current page disappears into \box255; but
\pagetotal, \pagestretch, \pagefilstretch,
\pagefillstretch, \pagefilllstretch, and
\pageshrink are zeroed later, when the cur-
rent page becomes nonempty. (That’s the time
\pagegoal is set, and recorded in the log file with a
%% line if you’re tracing pages.) I don’t recall why
there is a discrepancy, but I certainly don’t want to
diddle with any of that logic at this late date.

Here are some other things that I don’t want to
touch:

i. David Kastrup found a glitch in plain TEX’s
footnote-splitting mechanism. Everything works ac-
cording to the documentation in The TEXbook and I
can’t possibly make a change to such a sensitive part
of TEX’s logic at this late date. But his example is
quite interesting, and I’d like to discuss it here for
the benefit of people planning other systems.

Here’s his construction (to be used with plain
TEX):

\def\testpage#1{\dimen0=#1

\vrule height .5\dimen0 depth .5\dimen0

\quad #1\par

Some text.\footnote*{A bigbreak follows...

\bigbreak

A bigbreak preceded.}

\par\vfill\supereject}

\testpage{8.17in}

\testpage{8.23in}

\testpage{8.2in}

The first test page is an example where the entire
footnote fits fine. In the second one, the footnote
needs to be split; so two pages are generated, one
with the first half of the footnote, as desired.

The third test page illustrates the problem:
Plain TEX uses the worst of both strategies! Namely,
it generates two pages, in which the first is under-
full, while the second has the text and footnote that
would have fit on the first page.

Why does plain TEX screw up here? Well, TEX
knows that the footnote doesn’t fit, when typeset
at its natural height+depth of 36pt. So it tries to
split it, by choosing a height threshold: It says to the
vsplit routine, “Please give me your best break that
doesn’t exceed a height of 30.089pt.” (That is what’s
left after we start with plain TEX’s vsize of 8.9in and
subtract the page-total-so-far, which is 8.2in for the

vrule, plus 1pt of lineskip, plus 7.5pt for the height
of ‘Some text.’, plus 12pt to separate the text from
its first footnote.) The vsplit algorithm discovers
two ways to break the footnote: One has height
8.5pt (the height of ‘* A bigbreak follows. . . ’), depth
1.94444pt, and penalty −200 (at the bigbreak); the
other has natural height 32.5pt, depth 3.5pt (which
comes from a strut placed by plain TEX), and penalty
−10000 (the force-out penalty at the very bottom of
the footnote). This latter break is considered viable
because 4pt of glue shrinkage is available to bring the
height down to 30.089pt. Naturally vsplit chooses
the latter alternative.

Then TEX does something dumb. It records the
result of the split in the list of contributions to the
current page, in such a way that the first part of
the split will be included on the page only if there’s
room for its natural height+depth, namely 36pt in
this case. (And in this case, the “first part of the
split” actually turns out to be the whole footnote.)
Therefore, when TEX next finds a legal breakpoint,
the current page limit has been exceeded, and the
line with its footnote is deemed not to be permissible.
The previous break, which leaves an underfull vbox,
is chosen instead of “overfilling” the page — even
though there is really enough shrinkability to bring
the page back to size.

As I said, it’s too late now to correct my age-old
faulty reasoning. If I’d known about the problem
twenty years ago, I may well have decided to make
the change that seems most appropriate to me today,
which is this:
@x module 974

best_height_plus_depth:=cur_height+prev_dp;

@y

best_height_plus_depth:=cur_height+prev_dp;

if (best_height_plus_depth>h+prev_dp)

and (b<awful_bad) then

best_height_plus_depth:=h+prev_dp;

@z

In other words, the log file (with tracingpages=1)
now gets the line

% split254 to 30.08878,36.0 p=-10000

but after that patch it would instead say

% split254 to 30.08878,33.58878 p=-10000

and the footnote would wind up on the first page
where it belongs.

When I made the mistake ages ago, I proba-
bly wasn’t thinking of shrinkability inside the foot-
note, only in the “virtual” amount of space within
\skip254 that separates the text from its footnotes.
Indeed, the present problem goes away if one sets
\skip254=12pt minus 8pt. But that workaround

236 TUGboat, Volume 29 (2008), No. 2

would be appropriate only for this particular exam-
ple.

ii. Section 798 could be made more robust with
“until q=cur_align” moved down one line. Imple-
mentors can put this into a change file if they like.

iii. The format plain.tex leaves \box0=\hbox
{\tenex B}; and it also defines \\ to be a macro
such that “\\10pt” expands to “10” (for example).
I could have cleaned these up by saying something
like

{\setbox1=\box0} \let\\=\undefined

but I decided not to change it, since plain.tex is
so widely used as is.

iv. Frank Mittelbach reported a construction of
Morten Høgholm Pedersen:

\parindent=0pt
\setbox0=\hbox{p} \hsize=\wd0
\discretionary{m-}{h}{p}\par

It gives an overfull box, because TEX doesn’t see any
feasible breakpoint. (More precisely, the pre-break
part exceeds the line width, and TEX doesn’t look
ahead to see if some fairy godmother is going to save
us.) Thus TEX is resigned to making an overfull box,
and it takes the only legal breakpoint it knows.

This must be considered a feature of TEX’s line-
break algorithm. Namely, a discretionary break is
normally never taken when the pre-break part would
make an overfull box; but it is always taken in the
unusual case that no other feasible break is possible
(without looking ahead at the third, “unbroken” al-
ternative of the discretionary). A problem can arise
only if an unhyphenated word is actually shorter than
its first hyphenated fragment. What, me worry?

Amusingly, if you put the line
\spaceskip=0pt plus 1fill
\discretionary{p}{\kern-2em}{}

before the other discretionary, you get two p’s and
nothing overfull.

v. Jonathan Kew mentioned some of the surpris-
ing effects that occur when you try to do things in
the command line (or in the very first line of TEX’s
input, at the ** prompt). There are many, many
such.

Before TEX knows the job name, it outputs just
to the terminal. Log file output won’t happen until
an \input command has occurred, or input line one
has been processed, whichever comes first, because
the log file is given its name at that time.

For example,
**\showhyphens{whatever}

will show ‘what-ever’ on the terminal, but not in
the log file. Same for

**\showhyphens{whatever} \input foo

but in this case the log file is called foo.log instead
of texput.log. With

**\input foo \showhyphens{whatever}

you see ‘what-ever’ also in foo.log.

plain TEX format

Version 3.141592653 of plain.tex is identical to
version 3.14159265, except that \errorstopmode
is no longer invoked by the \tracingall and
\loggingall macros. (That mistake had been in
plain.tex for more than 25 years, and I thank David
Kastrup for the wakeup call.)

METAFONT

Turning now to METAFONT, Thorsten Dahlheimer
gave the whole program a much-needed scrutiny and
came up with a number of bugs that have now been
corrected in version 2.718281. (Incidentally, he has
also given me invaluable help finding mistakes in the
darker corners of TAOCP.) Only one of those bugs
was serious enough to affect real programs with high
probability; the others are the sorts of things that a
good nitpicker will spot when reading code, although
the actual misbehavior requires weird scenarios. As
usual, you can find details of the significant changes
to Pascal code in the file errata/mf84.bug. The
complete source file mf.web shows many instances
of improved commentary.

1. The serious bug arose from user input such
as

boolean b[]; b1=true=b2;

earlier versions of METAFONT would go into an infi-
nite loop from such constructions, so evidently no-
body ever writes code like this. (Strings, paths, and
pictures have similar problems, not just booleans.)
No problem would occur if the statement had been
“b1=b2=true” instead. I forgot to include one instruc-
tion in my program, and it’s a glaring error in section
1003.

This bug is also in the METAPOST source,
mp.web, which I assume somebody else will fix. Who-
ever does that should also look carefully at the other
changes just made to mf.web, since so much of the
code is common to both.

2. There also were problems in the TFM files
when extremely large characters or dimensions were
present. For example, from

mode:=lowres; mode_setup; designsize:=10pt#;

beginchar("!",160pt#,-160pt#,160pt#);

endchar; end

TUGboat, Volume 29 (2008), No. 2 237

you get a TFM file with a bad character width and
depth, because of an off-by-one error in my code.
(TFtoPL doesn’t complain about the character height,
which violates some but not all of the documentation
of TFM files: A fix_word is supposed to lie between
−2048 and 2048 − 2−20, inclusive, but The META-
FONTbook says that no TFM dimension should result
in the fix_word value −2048. TEX has no problem
inputting that value.)

3. Another TFM problem was tweaked with
ultralarge design sizes:
fontmaking:=1; designsize:=2000;
fontdimen 2: 3000;
shipout nullpicture; end

used to set fontdimen 2 (the SPACE parameter) to
be about 32000 points. The correct behavior is to
reduce fontdimen 2 to just less than 2048 points.

4. Weird behavior could previously occur with
transform T;

T=identity xscaled 4 yscaled 3 rotated 180;

pickup pencircle transformed T;

show currentpen;

which always came out correctly without the (redun-
dant) rotation by 180.

5. Another bug arose in code fragments like
string a.b; a.b="lost"; outer a;
numeric a.c; showvariable a;

the string a.b was indeed now lost. (METAPOST

probably fails in the same way.)
6. METAFONT now checks that serial numbers

don’t overflow. Actually I had recommended that
the program always be run with arithmetic integer
overflow trapped; but this doesn’t seem to be cur-
rent practice. If a user creates 225 distinct numeric
variables, the “METAFONT capacity exceeded” er-
ror now occurs; formerly, this would have caused
arithmetic overflow. (Well, this correction was ac-
tually made already in TEX-live change files some
years ago; I’ve now introduced it into the master file
mf.web, in a slightly different way.)

Not a bug: The init_gf procedure has an
assignment to str_start[str_ptr+1] that looks
like it could cause a segmentation fault if str_ptr=
max_strings. Actually, however, that can’t happen.
(The test “str_ptr+3>max_strings” in end_name,
together with the fact that area_delimiter=0 in
that procedure because cur_area="", provides the
extra breathing space.) But I changed init_gf any-
way.

Anomalies that won’t be changed: Autoround-
ing does not work properly when filling certain non-
convex shapes, such as

pickup makepen((-.6,0)--(.6,0)--cycle);
filldraw (2,0){up}..(0,1){down}..%
(1,0){down}..(0,-1){down}..cycle

at point (1,0). Pens whose width and height are not
integers are deprecated; there’s no point cluttering
up the code with stuff that benefits only them.

One of METAFONT’s (and METAPOST’s) most
interesting algorithms is the way it chooses control
points and directions for paths that are partially
specified. I ran into a curious glitch some years ago
when preparing an illustration for my book Selected
Papers on Computer Languages: The two paths

(0,0){dir45}...(15,0)...(0,0){dir150}
and (0,0){dir-45}...(15,0)...(0,0){dir-150}

turn out to have amazingly different shapes. (The
first one twists around almost unbelievably, while
the second looks reasonable.) I tracked this down
to the equations in METAFONT’s “solve_choices”
routine, which chooses the desired “turning angle” at
the point (15,0). In both cases this value, psi[1],
is set to n_arg(-983040,0); here −983040 is the
internal (scaled) representation of −15, and n_arg is
supposed to determine the value of angle(-15,0).
[See page 67 of The METAFONTbook.] The answer
is 180, which is appropriate in the second case, but
the first case really wants the answer to be −180.

Computer Modern

I made a noticeable change to the shape of one (and
only one) letter in the CM family, namely the cal-
ligraphic F. The new one has a slightly different
swash, which pleases me more when I look at it in
The Art of Computer Programming. The change is
small, yet it would be nice if people would remake
the Type 1 versions of the fonts that use calu.mf,
namely cmsy* and cmbsy*.

The lowercase Greek nu could develop a tiny
notch at the bottom, especially at high resolutions
of boldface versions (brought to my attention by
Charles Duan, who conjectured its existence by read-
ing the source code!). So I corrected that problem.

Duan also found a few other places where the
source code was logically wrong in greekl.mf. I fixed
those too. However, those changes don’t actually
show up in the generated font, since the differences
in point positions are minuscule.

Karel Pǐska noticed that the bulbs of lowercase
a and c are positioned rather differently when the
“blacker” parameter of a mode varies. (He blamed
it on varying resolution, but that’s because my code
was obscure.) In those characters I essentially try
to move strokes apart so that there’s twice as much
white space as the thickness of the pen; therefore
a blacker pen makes the strokes go further apart.

238 TUGboat, Volume 29 (2008), No. 2

My logic was faulty, because the “blacker” setting
was intended to compensate for differences in the
device that make its apparent pen width too small,
thereby making the actual appearance after printing
only as black as it would have been on an ideal
device; increasing “blacker” by 1 shouldn’t make me
reposition any strokes. Yet I do actually reposition
them, on the lowercase a, by roughly 2 pixels per
unit of blacker! And the bulb on c is positioned to
be like that of a. Still, the repositioned bulbs look
OK, and I’m happy to continue forever with this
wart in the design.

TEXware

TFtoPL version 3.2 is identical to version 3.1 except
that a (missing) newline character now appears after
one of the warning messages.

Computers & Typesetting

Dozens of corrections were made to Volumes A, B,
C, D, and E of the books Computers & Typeset-
ting , bringing everything up to date with respect
to the latest sources. (This includes The TEXbook,
which is a paperback Volume A, and The META-
FONTbook, which is a paperback Volume C.) Copies
of the corrected books won’t be available for sale un-
til the publisher’s stock of already-printed volumes
is depleted; but I’ve prepared detailed errata from
which you can make hardcopy inserts to paste into
the books you have.

Summary

All of the results of my changes appear in the
following files:
tex/texbook.tex % source file for The TEXbook
tex/tex.web % complete master file for TEX in

Pascal
tex/trip.fot % torture test terminal output
tex/tripin.log % torture test first log file
tex/trip.log % torture test second log file
tex/trip.typ % torture test output of DVItype
texware/tftopl.web % complete master file for

TFtoPL in Pascal
mf/mfbook.tex % source file for The

METAFONTbook
mf/mf.web % complete master file for

METAFONT in Pascal
mf/trap* % (namely trap.fot, trapin.log,

trap.log, trap.typ, trap.pl)
mf/trap.fot % torture test terminal output
mf/trapin.log % torture test first log file
mf/trap.log % torture test second log file

mf/trap.typ % torture test output of GFtype
mf/trap.pl % torture test output of TFtoPL

cm/calu.mf % master source file for calligraphic
capital letters

cm/greekl.mf % master source file for lowercase
greek letters

cm/symbol.mf % master source file for special
symbols

errata/errata.ten % changes to Volumes
ABCDE before 2001

errata/errata.eleven % changes to Volumes
ABCDE in 2001

errata/errata.tex % changes to Volumes
ABCDE since the 2001 boxed set

errata/tex82.bug % changes to tex.web since
the beginning

errata/mf84.bug % changes to mf.web since the
beginning

errata/cm85.bug % changes to Computer
Modern metafont sources since 1985

These files are available in directory pub/tex/dist
of the ftp server cs.stanford.edu, which accepts
“anonymous” as a login name. They are a subset
of the files in pub/tex/dist/tex08.tar.gz, which
you can compare to pub/tex/dist/tex03.tar.gz if
you like. Hopefully they will be easy to incorporate
into the major distributions of TEX, and they will
presumably soon be available on CTAN.

In general the changes can be characterized as
a general cleanup, especially to the documentation.
The new versions don’t affect old documents, except
when the existing behavior was seriously incorrect.
(And except for the fact that TEX will often run a
bit faster now.)

To do this revision I waded through more than
600 K bytes of text files, not counting the binary .pdf
and .png files that were also submitted. Barbara
Beeton faithfully compiled all of this material during
the years 2003–2007, and organized it so that my task
wasn’t hopeless. She had many volunteers helping
to separate wheat from chaff; needless to say, I’m
extremely grateful for all of this assistance.

The total number of independent topics about
which I had to make a decision, after they had come
through the filtering process, was approximately 335.
Some of these needed several days of thought and
careful study; some of them needed only a few sec-
onds. More than a hundred of them were nontrivial,
and I did my best.

So now I send best wishes to the whole TEX
community, as I leave for vacation to the land of
TAOCP — until 31 December 2013. Au revoir!

