
EuroBachoTEX 2007
TUGboat, Volume 29, Number 1, 2008
Biuletyn GUST, Zeszyt 24, 2007
Die TEXnische Komödie, 20. Jahrgang, 1/2008

EuroBachoTEX 2007 2 Conference program, delegates, and sponsors
6 Jerzy Ludwichowski and Petr Sojka / EuroBachoTEX 2007: Paths to the Future

13 Sam Guravage / Confessions of a teenage TEX user

Typography 14 Grażyna Jackowska / Handmade paper: A mixture of handcraft, art and fun
16 Andrzej Tomaszewski / Designing a special book: With both pleasure and . . . fear
20 Dorota Cendrowska / Enumerations as an interesting form of text appearance

Fonts 25 Jerzy Ludwichowski, Bogusław Jackowski and Janusz Nowacki / Five years after:
Report on international TEX font projects

27 Janusz Nowacki / Cyklop: A new font family
28 Hans Hagen / Do we need a font system in TEX?
34 Taco Hoekwater / OpenType fonts in LuaTEX

36 Hàn Thế Thành / Font-specific issues in pdfTEX
42 Karel Horák / Those obscure accents . . .

45 Klaus Höppner / Creation of a PostScript Type 1 logo font with MetaType 1
50 Karel Ṕı̌ska / Procedures for font comparison
57 Karel Ṕı̌ska / Comments and suggestions about the Latin Modern fonts
66 Jerzy Ludwichowski and Karl Berry / The GUST Font License: An application of the

LATEX Project Public License

Resources 68 Arthur Reutenauer / A brief history of TEX, volume II
73 Ulrik Vieth / Overview of the TEX historic archive
77 Joanna Ludmiła Ryćko / TEX Clinic

Multilingual
Document
Processing

79 Ameer Sherif and Hossam Fahmy / Parameterized Arabic font development for AlQalam
89 Atif Gulzar and Shafiq ur Rahman / Nastaleeq: A challenge accepted by Omega

95 Hàn Thế Thành / Typesetting Vietnamese with VnTEX (and with the TEX Gyre fonts too)
101 Jean-Michel Hufflen / Managing order relations in MlBIBTEX

Electronic Documents 109 Jean-Michel Hufflen / Introducing LATEX users to XSL-FO

117 Tomasz Łuczak / Using TEX in a wiki

Publishing 118 Petr Sojka and Michal Růžička / Single-source publishing in multiple formats for different
output devices

125 Péter Szabó / Practical journal and proceedings publication on paper and on the web

Software & Tools 133 Jim Hefferon / An experimental CTAN upload process
136 Norbert Preining / TEX (Live) on Debian
140 Siep Kroonenberg / Epspdf: Easy conversion between PostScript and PDF

143 Martin Schröder / pdfTEX 1.40: What’s new
146 Jonathan Kew / X

E

TEX Live
151 Gerd Neugebauer / Conventional scoping of registers—An experiment in εXTEX
157 Jean-Michel Hufflen / MlBIBTEX: Reporting the experience
163 David Kastrup / Writing (LA)TEX documents with AUCTEX in Emacs
164 Tomasz Łuczak / LYX: An editor not just for secretaries
166 Péter Szabó / Automated DVD menu authoring with pdfLATEX

LATEX 176 Zofia Walczak / Graphics in LATEX using TikZ
180 Grzegorz Murzynowski / LATEX vs. LATEX —a modification of the logo
181 David Kastrup / Benefits, care and feeding of the bigfoot package
184 Johannes Große / MathPSfrag: LATEX labels in Mathematica plots
190 David Kastrup / makematch, a LATEX package for pattern matching with wildcards
193 David Kastrup / qstest, a LATEX package for unit tests

Macros 199 Grzegorz Murzynowski / gmverse and gmcontinuo— some nontrivial placement of text on a page
201 Grzegorz Murzynowski / The gmdoc bundle — a new tool for documenting (LA)TEX sources

Hints & Tricks 207 Paweł Jackowski / TEX beauties and oddities: A permanent call for TEX pearls

Puzzle 216 Janusz Nowacki / Crossword

Abstracts 217 Abstracts (Hagen, Hoekwater, Kastrup, Lotz, Moore, Ryćko, Tomaszewski)

ConTEXt 219 Aditya Mahajan / ConTEXt basics for users: Table macros II

TUG Business 223 TUG institutional members

Advertisements 223 TEX consulting and production services

Memorial 224 Maurice Laugier / In memoriam Bernard Gaulle

Copyright c© 2007 TEX Users Group.

Copyright to individual articles within this
publication remains with their authors, so the
articles may not be reproduced, distributed or
translated without the authors’ permission.

For the editorial and other material not ascribed to
a particular author, permission is granted to make
and distribute verbatim copies without royalty, in
any medium, provided the copyright notice and
this permission notice are preserved.

Permission is also granted to make, copy and
distribute translations of such editorial material
into another language, except that the TEX Users
Group must approve translations of this permission
notice itself. Lacking such approval, the original
English permission notice must be included.

TUGboat (ISSN 0896-3207) is published by the
TEX Users Group.

Biuletyn Polskiej Grupy Użytkowników Systemu
TEX (ISSN 1230-5630) is published by GUST.

Die TEXnische Komödie (ISSN 1434-5897) is
published by DANTE e.V.

This publication was distributed by the
Czechoslovak TEX Users Group to its members.

For web sites and information on all the TEX user
groups, see http://tug.org/usergroups.html.
Please join the user group best for you!

The script typeface used on the covers and title
page of this issue is Vassallo 1.0, created by
Jefferson J. Vorzimmer, «bang the drum» graphics.

TEX is a trademark of the American Mathematical
Society.

Printed in Germany, December 2007.

EuroBachoTEX 2007
Paths to the Future

TUGboat Volume 29, Number 1, 2008
Biuletyn GUST, Zeszyt 24, 2007

Die TEXnische Komödie, 20. Jahrgang, 1/2008

EuroBachoTEX 2007
Paths to the Future

XVII European TEX Conference
Bachotek, Poland

April 28 – May 2, 2007

TUGboat Volume 29, Number 1, 2008
Biuletyn GUST, Zeszyt 24, 2007

Die TEXnische Komödie, 20. Jahrgang, 1/2008

PROCEEDINGS EDITORS
Barbara Beeton

Karl Berry
Jerzy Ludwichowski

Tomasz Przechlewski
Stanisław Wawrykiewicz

EuroBachoTEX 2007 — Paths to the future
XVII European TEX Conference • XV GUST conference

April 28–May 2, 2007 • Bachotek, Poland

CS

G

UT

Organizers

Československé sdruženi uživatel̊u TEXu (CSTUG) • Polska Grupa Użytkowników systemu TEX (GUST)

Organizing committee

Jerzy Ludwichowski (Chairman) • Petr Sojka (Co-chairman)
• Bogus law Jackowski • Taco Hoekwater • Volker RW Schaa • Jolanta Szelatyńska

Program committee

Bogus law Jackowski (Chairman) • Hans Hagen (Co-chairman)
• Petr Sojka • Jonathan Kew • Jerzy Ludwichowski

Sponsors

Polish Ministry of Science and Higher Education, http://www.nauka.gov.pl
Information & Communication Technology Centre, Nicolaus Copernicus University, http://www.uci.umk.pl
Institute of Physics, Nicolaus Copernicus University, http://www.fizyka.umk.pl/phys
Focal Image Ltd, http://www.focalimage.com
Sun Microsystems Poland Sp. z o.o., http://pl.sun.com
TEX Users Group (TUG), http://www.tug.org
Die Deutschsprachige Anwendervereinigung TEX e.V. (DANTE), http://www.dante.de
De Nederlandstalige TEX Gebruikersgroep (NTG), http://www.ntg.nl
Československé sdruženi uživatel̊u TEXu (CSTUG), http://www.cstug.cz
Polska Grupa Użytkowników Systemu TEX (GUST), http://www.gust.org.pl

Participants

Alexander S. Berdnikov, Institute of Analytical
Instrumentation, Russian Academy of Sciences,
Russian Federation

Piotr Bolek, 7bulls.com Sp. z o.o., Poland

Maria Bolek, Poland

Danuta Bolek, Poland

Andrzej Borzyszkowski, GUST, Poland

Jaros law Brykalski, Poland

Dorota Cendrowska, Poland

Natalia Chlebus, Uniwersytet Gdański, Instytut
Oceanografii, Poland

Leszek Czerwiński, Poland

Marek Czubenko, Uniwersytet Miko laja Kopernika,
Uczelniane Centrum Informatyczne, Poland

Hossam A. H. Fahmy, Electronics and Communications
Department, Cairo University, Egypt

Deimantas Galčius, VTEX Ltd., Lithuania

Agnieszka Gdaniec, Poland

Johannes Große, Institute of Physics, Jagiellonian
University, Poland

Olga Große, Poland

Atif Gulzar, Center for Research in Urdu Language
Processing, National University of Computer and
Emerging Sciences, Pakistan

Janusz Gumkowski, Uniwersytet Miko laja Kopernika,
Uczelniane Centrum Informatyczne, Poland

Michael A. Guravage, Literate Solutions, The
Netherlands

Sam Guravage, The Netherlands
Hans Hagen, PRAGMA ADE, The Netherlands
Taco Hoekwater, Elvenkind BV, The Netherlands
Klaus Höppner, DANTE e.V., Germany
Karel Horák, Mathematical Institute, Academy of

Science, Czech Republic
Jean-Michel Hufflen, LIFC — University of

Franche-Comté, France
Marise Hufflen, France
Andrzej Icha, Pomorska Akademia Pedagogiczna,

Instytut Matematyki, Poland
Grażyna Jackowska, PSOUU, Poland
Bogus law Jackowski, BOP s.c., Poland
Pawe l Jackowski, GUST, Poland
Arkadiusz Jasiński, Uniwersytet Kazimierza

Wielkiego, Poland
Katarzyna Jaskólska, Poland
Aleksandra Kaptur, Uniwersytet Śląski, Instytut

Matematyki, Poland
David Kastrup, QuinScape GmbH, Germany
Jonathan Kew, SIL International, England

2 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Ewa Kmiecik, Zak lad Hydrogeologii i Ochrony Wód
AGH, Poland

Jacek Kmiecik, Uczelniane Centrum Informatyki
AGH, Poland

Sabina Kmiecik, Poland
Mateusz Kmiecik, Poland
Ewa Koisar, Polskie Towarzystwo Mechaniki

Teoretycznej i Stosowanej, Redakcja JTAM, Poland
Adam Kolany, Uniwersytet Jagielloński, Wydzia l

Matematyki i Informatyki, Poland
Dorota Kolany, Poland
Micha l Kolany, Poland
Harald König, DANTE e.V., Germany
Reinhard Kotucha, DANTE e.V., Germany
Siep Kroonenberg, Rijksuniversiteit Groningen,

Economische Wetenschappen, The Netherlands
Jano Kula, Czech Republic
Johannes Küster, Typoma GmbH, Germany
Ulrike Küster, Germany
Dag Langmyr, Department of Informatics, University

of Oslo, Norway
Jerzy Ludwichowski, Uniwersytet Miko laja Kopernika,

Poland
Tomasz Luczak, TECHNODAT Sp. z o.o., Poland
Ewelina Luczak, Poland
Ma lgorzata Luczak, Poland
Wojciech Lukaszewicz, Global Village Sp. z o.o.,

Poland
W lodzimierz J. Martin, Poland
Mojca Miklavec, Slovenija
Ross Moore, D-MTH (SAM), Switzerland
Grzegorz Murzynowski, GUST, Poland
Janusz Nowacki, FOTO-ALFA, Fotosk lad

Komputerowy, Poland
Heiko Oberdiek, University Freiburg & DANTE e.V.,

Germany
Andrzej Odyniec, Macrologic S.A., Poland
Bram Otten, The Netherlands
Robyn Parkinson, Switzerland
Karel Ṕı̌ska, Institute of Physics, Academy of

Sciences, Czech Republic
Norbert Preining, Università di Siena, Italy
Arkadiusz Prokop, Polskie Towarzystwo

Informatyczne, Poland
Arthur Reutenauer, École Normale Supérieure, France
Jan Ryćko, V Liceum Ogólnokszta lcące, Gdańsk,

Poland
Joanna Ludmi la Ryćko, Humboldt Universität

zu Berlin, Germany
Marek Ryćko, Wydawnictwo Do, Poland
Volker RW Schaa, DANTE e.V., Germany
Martin Schröder, pdfTEX team, Germany
Petr Sojka, Masaryk University, Faculty of

Informatics, Czech Republic
Vytas Statulevičius, VTEX Ltd., Lithuania
Péter Szabó, Budapest University of Technology and

Economics, Department of Computer Science and
Information Technology, Hungary

Ewa Szelatyńska, Poland
Jolanta Szelatyńska, Uniwersytet Miko laja Kopernika,

Uczelniane Centrum Informatyczne, Poland
Hàn Thé̂ Thành, River Valley Technologies, Germany

Andrzej Tomaszewski, GUST, Poland
John Trapp, England
Rados law Tryc, RTC Rados law Tryc, Poland
Ulrik Vieth, DANTE e.V., Germany
Stanis law Walczak, GUST, Poland
Zofia Walczak, Uniwersytet Lódzki, Wydzia l

Matematyki, Poland
Stanis law Wawrykiewicz, Poland
Ferenc Wettl, BME Institute of Mathematics,

Hungary
Marek Wójtowicz, Uczelniane Centrum Informatyki

AGH, Poland
Agnieszka Wójtowicz, Poland
Marta Wolińska, Instytut Biocybernetyki i Inżynierii

Biomedycznej PAN, Poland
Marcin Woliński, Instytut Podstaw Informatyki PAN,

Poland
Agata Wylot, Redakcja IO PAN, Poland
Jakub Zdroik, Uniwersytet Gdański, Instytut

Oceanografii, Poland

Copyright c© 2007 TEX Users Group.

Copyright to individual articles within this
publication remains with their authors, so the articles
may not be reproduced, distributed or translated
without the authors’ permission.

For the editorial and other material not ascribed to
a particular author, permission is granted to make
and distribute verbatim copies without royalty, in
any medium, provided the copyright notice and this
permission notice are preserved.

Permission is also granted to make, copy and
distribute translations of such editorial material into
another language, except that the TEX Users Group
must approve translations of this permission notice
itself. Lacking such approval, the original English
permission notice must be included.

TUGboat (ISSN 0896-3207) is published by the TEX
Users Group.

Biuletyn Polskiej Grupy Użytkowników Systemu TEX
(ISSN 1230-5630) is published by GUST.

Die TEXnische Komödie (ISSN 1434-5897) is
published by DANTE e.V.

This publication was distributed by the Czechoslovak
TEX Users Group to its members.

For web sites and information on all the TEX user
groups, see http://tug.org/usergroups.html.
Please join the user group best for you!

The script typeface used on the covers and title page
of this issue is Vassallo 1.0, created by Jefferson J.
Vorzimmer, «bang the drum» graphics, with
modifications by Bogusław Jackowski.

TEX is a trademark of the American Mathematical
Society.

Printed in Germany, December 2007.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 3

EuroTEX 2007 — Regular sessions

Saturday, April 28

10:00 coffee
chair: Volker RW Schaa

10:30 Jerzy Ludwichowski Conference Opening
11:00 Jonathan Kew X

E

TEX in TEX Live and beyond
11:30 Taco Hoekwater Have no fear, MEGAPOST is here!
12:00 Hans Hagen LuaTEX: messing around with tokens
12:45 Joanna Ludmi la Ryćko The TEX Clinic
13:00 lunch

chair: Jonathan Kew
15:00 Johannes Große ‘MathPSfrag’: creating LATEX labels in Mathematica plots
15:30 Siep Kroonenberg ‘epspdf’: easy conversion between PostScript and pdf
16:00 Zofia Walczak Graphics in LATEX using TikZ
16:30 coffee

chair: Petr Sojka
17:00 Norbert Preining

for Jim Hefferon
An experimental CTAN upload process

17:30 Jean-Michel Hufflen Introducing LATEX users to XSL-FO

18:00 Grzegorz Murzynowski The ‘gmdoc’ bundle: a new tool for documenting (LA)TEX sources
18:20 Grzegorz Murzynowski The ‘gmverse’ package
18:40 Marek Ryćko Polishing typesetting blocks
19:10 dinner and bonfire

Sunday, April 29

chair: Karel Horak
09:00 Andrzej Tomaszewski Designing a book: with both pleasure and . . . fear
10:00 Dorota Cendrowska Enumerations as an interesting form of text appearance
10:15 Karl Berry, Jerzy Ludwichowski GUST Font License: an application of the LATEX Project Public License
10:30 Jean-Michel Hufflen MlBibTEX: reporting the experience
11:00 coffee

chair: Ross Moore
11:30 Jean-Michel Hufflen Managing order relations in MlBibTEX
12:00 David Kastrup Writing LATEX documents with AUCTEX in Emacs
12:45 Péter Szabó Automated DVD menu authoring with pdfLATEX
13:05 Norbert Preining TEX (Live) on Debian
13:35 lunch

chair: Klaus Höppner
15:00 Atif Gulzar, Shafiq-ur Rahman Nastaleeq: a challenge accepted by Omega
15:30 Amir M. S. Hamdy,

Hossam A. H. Fahmy
Parameterized Arabic font development for AlQalam

16:00 Martin Schröder pdfTEX 1.40: What’s new
16:30 coffee

chair: Hossam A. H. Fahmy
17:15 Karel Horák Those obscure accents . . .

17:45 Hàn Thế Thành Typesetting Vietnamese with VnTEX (and with the TEX Gyre fonts too!)
18:15 Tomasz Luczak LYX: an editor not only for secretaries
18:45 Tomasz Luczak From wiki to TEX
19:05 dinner

Tuesday, May 1

chair: Alexander Berdnikov
09:00 Hans Hagen ConTEXt and OpenType: what kind of font system do we need
09:45 Taco Hoekwater Open Type fonts in LuaTEX
10:15 Hàn Thế Thành Font-specific issues in pdfTEX
10:45 Grzegorz Murzynowski LATEX: a modification of the logo

4 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

11:00 coffee
chair: Hans Hagen

11:30 Sam Guravage Confessions of a teenage TEX user
11:45 Jerzy Ludwichowski

for Jonathan Fine
MathTran — TEX as a Web service

12:15 David Kastrup ‘qstest’, a LATEX package for unit tests
12:35 David Kastrup ‘makematch’, a LATEX package for pattern matching with wildcards
12:55 David Kastrup Benefits, care and feeding of the ‘bigfoot’ package
13:30 lunch

chair: Taco Hoekwater
15:00 Klaus Höppner Creation of a PostScript Type 1 logo font with MT1

15:45 Petr Sojka, Michal Růžička Single-source publishing in multiple formats for different output devices
16:15 Péter Szabó Practical journal and proceedings publication on paper and on the web
16:45 David Kastrup DocScape Publisher: a large scale project based on TEX
17:15 coffee

chair: Hàn Thế Thành
17:45 Karel Ṕı̌ska Procedures for font comparison
18:05 Karel Ṕı̌ska Comments and suggestions about the Latin Modern fonts
18:45 Janusz M. Nowacki Cyklop: A new font family
19:15 dinner

Wednesday, May 2

chair: Hans Hagen
09:00 Pawe l Jackowski TEX: Beauties and oddities
09:45 Ross Moore Advanced mathematics features, for PDF and the Web
10:30 coffee
11:00 Arthur Reutenauer A brief history of TEX
11:45 Ulrik Vieth Overview of the TEX history archive
12:15 Bogus law Jackowski,

Jerzy B. Ludwichowski,
Janusz M. Nowacki

Recent advances in LUGs’ font projects

13:00 Marek Ryćko Data structures in TEX
13:45 Jerzy Ludwichowski Conference Closing
14:00 lunch

EuroTEX 2007 — Workshops

Saturday, April 28

12:00 Andrzej Tomaszewski Designing graphical signs and logotypes

Sunday, April 29

9:00 Grażyna Jackowska Handmade paper: A mixture of handcraft, art and fun

Conference outing to Toruń and Che lmno

Monday, April 30

Highlights:
— visit to the Wojewódzka Biblioteka Publiczna–Książnica Kopernikańska (“District Public Library–

Copernican Library”),
— a guided tour through the Toruń city center,
— a quick stroll through the city center of Che lmno,
— conference dinner and live performance of the “Schola Teatru Wiejskiego Węgajty” band,

led by Kasia Jackowska.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 5

EuroBachoTEX 2007: Paths to the Future

The XVIIth European TEX conference was a dou-
ble double — joint with the XVth BachoTEX, the
yearly GUST (the Polish TEX users group) confer-
ence, and co-organized by CSTUG (the Czechoslovak
TEX users group). It took place in Bachotek, the
traditional place for GUST conferences, from April 28
until May 2, 2007, hence its other name: EuroBacho-
TEX 2007.

By publishing these proceedings we follow the
“new tradition” started in 2005 by DANTE and GUT-
enberg with the Pont-à-Mousson EuroTEX proceed-
ings, of trying to reach with the material presented
the widest possible audience. The “Paths to the
future” theme of this conference was coined to ac-
count for the flurry of recent developments: X ETEX,
LuaTEX, TEX Gyre and Latin Modern fonts, con-
tinued efforts by the εXTEX team, new versions of
pdfTEX, METAPOST (the future MEGAPOST?), Ml-
BibTEX (a prospective successor to BibTEX) as well
as new efforts by the Arab-speaking TEXies to en-
hance their fonts and typesetting facilities. A special
mention should go to the efforts of Jim Hefferon and
the other members of the CTAN team who quietly
and behind the scenes are working on enhancements
to this TEX gold mine.

We think that these developments should be-
come known all over the TEX world. Achieving this
ambitious goal wouldn’t be possible without exten-
sive cooperation. First let us mention the authors —
they replied favorably to the Calls for Papers so we
had all the above-mentioned efforts presented at the
conference. When we announced the intention to
publish this volume, the authors further took the op-
portunity to revise their papers, and updated them
with the most recent information. Then there was
the effort of the marvelous TUGboat editing team,
Barbara Beeton and Karl Berry, who took care of
the proofreading and other editorial and typesetting
chores. Bogusław Jackowski, supported by Karl, has
done a splendid job of designing the cover and the
photo pages (more on that below). Had not Karl
Berry pushed the remaining members of the Edito-
rial Board, we would not have been able to meet the
December deadline. The printing itself and the com-
plicated shipping logistics were arranged by Volker
RW Schaa and Klaus Höppner from DANTE. Per-
haps the most important factor in this undertaking is
that so many user groups (DANTE, TUG, UK-TUG,
GuIT, CSTUG, MaTEX and GUST) expressed their
interest and ordered copies of this volume for their

members — the print run is in excess of 5000.
To stress that this volume originates in Europe,

and to follow the “new tradition”, the cover colors are
the same as the EuroTEX 2005 volume — (eu)blue
and (eu)yellow from the Europe flag.

Now a little about the volume content and what
was happening during the conference. We hope that
thanks to the efforts of the authors (about 50 papers)
the goal of giving an overview of what is happening
in the TEX universe and what lurks in the future was
achieved. We also wanted to give those who were not
present at the venue a glimpse of the atmosphere,
hence the color photo section. It was composed
by Bogusław Jackowski, who chose a selection of
photographs from shots taken by Jacek Kmiecik,
Andrzej Odyniec, Volker RW Schaa, Ulrik Vieth and
Jakub Zdroik. A far larger collection of photos is
available at the GUST conference site, http://www.

gust.org.pl/BachoTeX/EuroBachoTeX2007, in the
gallery section. The movies section hosts movies
taken by Jan Ryćko, and in the presentations section
slides for some of the sessions are available.

Two workshops were held. A great success was
the “Handmade paper: A mixture of handcraft, art
and fun” workshop run by Grażyna Jackowska —
a glimpse of it can be had by reading the color-
illustrated report following. Andrzej Tomaszewski
also gave an excellent workshop on designing graph-
ical signs and logotypes — a smaller, self-selected
group of interested participants picked Andrzej’s
brain to their benefit.

There were two surprise events. The presenta-
tion by Sam Guravage, the youngest ever presenter
at a EuroTEX conference was distinguished as the
best presentation of the conference and he received a
special diploma — please read the report in this vol-
ume. A surprise even to the organizers was Janusz M.
Nowacki’s exhibition of his early photographs — a
mirror of his artistic soul, so well expressed in his
font achievements.

The hard conference work was interrupted by a
day’s outing to the not-so-far-away cities of Toruń
and Chełmno. In Toruń the participants visited the
District Public Library — Copernican Library with
a special presentation of their incunabula collection
(see the gallery section of the conference site), fol-
lowed by a guided tour through the medieval city
center, a monument listed by the UNESCO World
Heritage. On to Chełmno, a nice, small city, spread
out on seven hills — a quick stroll through the city

6 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

EuroBachoTEX 2007: Paths to the Future

center with many medieval traces followed by the
conference dinner at the local Karczma Chełmińska
(Chełmno Hut). The highlights (see gallery) were
good food, the conference cake and dancing to the
performance of the “Schola Theatrum Węgajty” band
led by Kasia Jackowska, Jacko’s daughter. This tir-
ing day of rest ended in Bachotek at about 3 am.

A user’s report on the conference, written by
Michael Guravage, was published in the recent issues
of NTG’s MAPS, DANTE’s Technische Komödie, and
TUG’s TUGboat, therefore it is not reprinted here.

A special mention should go to Kasia Jackowska
for designing the conference logo (cf. the cover and
the conference site for the color versions) and Andrzej
Tomaszewski for the conference poster, which was
prepared in the three conference languages: English,
Czech and, of course, Polish.

Special thanks go to all the members of both
the Program and Organizing Committees (the names
are listed elsewhere in this volume), the IT team
(Marek Czubenko and Janusz Gumkowski, who en-
joyed the support by Harald Köenig), the session

TEX contra TEX—Is the future now?

} Invitation to BachoTEX 2008 }

GUST—the Polish TEX users group

invites you to the jubilee XVIth BachoTEX conference

to be held at the usual location in Bachotek

near Brodnica, Poland, from April 30 to May 4, 2008.

http://www.gust.org.pl/BachoTeX/2008

And an invitation to TUG 2008

TUG invites you to its 2008 annual conference as well,

celebrating TEX’s 30th birthday!

University College Cork • Cork, Ireland

21–24 July 2008 • http://tug.org/tug2008

chairs (their names are also listed elsewhere in this
volume) for keeping us on track with a very tight
schedule, the official Conference Still Photographers
(Andrzej Odyniec, Jacek Kmiecik), the Conference
Chief Cinematographer (Jan Ryćko) and even more
special thanks to Jolanta Szelatyńska, the one-woman
institution of GUST conferences, and all her helpers.

The conference would not be possible without
the aid of the sponsors, as they made it financially
viable. The list of sponsors is given elsewhere in the
volume. Very many thanks!

Last but not least: the participants. They came
in great number, brought their spouses and chil-
dren and seemed to enjoy the conference despite
some organizational slips and the not-so-good-as-
usual weather.

Come back to future TEX conferences, with
BachoTEX 2008 being no exception. In the meantime:
enjoy the volume and . . . Happy TEXing!

Jerzy Ludwichowski and Petr Sojka

December 2007

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 7

8 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 9

10 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 11

12 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Confessions of a teenage TEX user

Sam Guravage
Literate Solutions, Loenen
Holland
guravage (at) literatesolutions (dot) com

Abstract

In this presentation I will tell the audience a bit about how I use TEX for my
everyday school work. I will explain what tools I use, how my father convinced
me to try it, and finally if I like it or not. Of course there will be plenty of time
for questions of how it came thus far.

Figure 1: Sam Guravage — the youngest ever to
present at EuroTEX

Unlike the other articles in these proceedings,
this note (except for the abstract) was written not
by the author but by one of the members of the au-
dience, who had the happy opportunity to be there
to see Sam’s presentation (fig. 1),1 the youngest ever
to give a talk at a EuroTEX conference, a represen-
tative of those who are just starting on the “Paths
to the Future”.

In a very matter-of-fact, straightforward and
confident (but not overly so) manner (fig. 3, right)
he told us why and for what he uses TEX, what he
finds easy and what hard to do with TEX and how
he benefits from using TEX.

At the end of the presentation we received an
insight into the future of the young generation of
the Guravage family: they have the potential to be-
come TEX dealers. Those who are puzzled are en-
couraged to look at Sam’s slides, available from the
“presentations” folder at http://www.gust.org.pl/

BachoTeX/EuroBachoTeX2007. What I especially

1 Photographs: 1, 2, and the right part of 3 are by Andrzej
Odyniec; the left part of 3 is by Volker RW Schaa.

like about them is that they were completely — form
and content — done by Sam.

“Next slide, please”: Sam was watched by his,
perhaps a bit skeptical, but surely very proud father,
who also gave him a hand (fig. 2).

During conference closing, Sam was awarded a
diploma for the best presentation (fig. 3, left).

We surely hope that he will be returning and
others will follow.

Figure 2: Under parental supervision.

Figure 3: Left: with the diploma; right: self-confident

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 13

Handmade paper: A mixture of handcraft, art and fun

Grażyna Jackowska
PSOUU, Poland
grazynajackowska (at) wp dot pl

Abstract

The idea of a paper making workshop was devised to counterbalance the serious
technical discussions. It turned out that many were interested: both adults and
“conference children” wanted to participate in this adventure (fig. 1).

Figure 1: Participants waited patiently in a queue;
children, youngsters and grown-ups were interested
in touching the in statu nascendi paper.

First: thanks to Jacek Kmiecik for the photographs!

1 How we did it

The aim was to walk through almost all stages of
the technological process — from making the pulp,

Figure 2: Helping hands: the pulp was scooped with
a wire screen or sieve.

scooping it with with a sieve, removing excess water
with a press (figs. 2 and 3), drying the paper sheets,
up to putting the product to use.

The work was accompanied by stories about the
history of paper — its way from China through the
Arabic empire to Europe and about the improve-
ments in fabrication technology.

2 How we used it

One person wrote a letter (fig. 4), another a solemn
memorial — a sheet of such paper was used to pre-
pare a diploma for Sam Guravage as an award for
the best presentation (fig. 5).

3 Why we did it

Also important was coming to grips with the creative
process, i.e., composing a decorated paper sheet with
such additions as dyes, grass leaves, flowers and even
. . . banknotes (fig. 6). On one of the sheets a four-
leaf clover grows — will it bring luck to somebody?

The unaided composing of the paper-picture
seems to have been the greatest attraction of the
workshop — all the time new students were turning
up — “I will yet do this so. . . or perhaps so. . . ”

Figure 3: Strong hands: excess water was removed
using a hand press.

14 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Handmade paper: A mixture of handcraft, art and fun

Figure 4: Nice paper needs thorough concentration
to write a nice letter. . .

Figure 5: Sam Guravage receives his handmade
diploma from Jerzy Ludwichowski.

The results were presented at a post-workshop
exhibition (fig. 7) — it can be seen that amazingly
varied ideas emerged despite the simple means, and
the number of works created in such a short time
bespeaks that we are much in need of such “amuse-
ments” — of such creativity written even with the

Figure 6: “Here are the colors of nature so that you
see what I see” reads the text in the Arabic script
by Hossam A.H. Fahmy. Hossam explained further
that: “The blue/green background represents the
lake and the trees. The flowers and the leaves are
for the blooming spring around us and for a hope for
a fruitful TEX/METAFONT future” — perfect touch!

Figure 7: The variety of the ideas was impressive,
indeed. . .

smallest “c”, even if our everyday occupation is a so-
called serious one. Or, perhaps, besides for a playful
moment, something will remain in one of the type-
setting souls? A broader, different view of the mys-
terious charm of paper as a medium not only for
history, tradition, information, but also beauty?

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 15

Designing a special book: With both pleasure and . . . fear

Andrzej Tomaszewski
Warszawa, Poland
andrzej (at) stegny dot 2a dot pl

Abstract

I will present the various conditions and limitations which should be taken into
account when designing and producing an album-like book: contents, typography,
materials. The work was for a company which never before had anything to do with
publishing: the Municipal Water Supply and Wastewater Treatment Company —
master of the life arteries of greater Warsaw. The publication is a jubilee edition,
not for sale, although it may later appear in second-hand bookshops.

Warsaw’s Filtry, that is, “Miejskie Przedsiębiorstwo
Wodociągów i Kanalizacji” (Municipal Water Supply
and Wastewater Treatment Company) is celebrating
its 120th anniversary. The company’s history started
during the presidency of the highly esteemed Sokrat
Starynkiewicz, an artillery general of the Russian
tsar, with a time of activity of an excellent team
of designers and builders which was assembled and
directed by William Lindley, an English engineer.

A paradox of history! We are now looking from
a different perspective at the occupying forces which
built in Warsaw a powerful fortress for the Russian
garrison, in whose dungeons Polish patriots suffered
and whose walls were covered by gallows. The tsar’s
commissioner, Starynkiewicz, simply fell in love with

Figure 1: One
of the book’s
design sketches
showing the title
page and the
fly-leaf glued into
the spine with a
reproduction of a
wood-engraved
panorama of XIV

century Warsaw.
The trim size
dimensions are
226 by 320 mm.

the occupied city! Even today he is regarded as its
best president, a president who had a vision of a
modern city agglomeration and implemented this
vision unceasingly. The jubilee was an occasion
to produce a publication of over 200 pages: “Dla
dobra publicznego. 120 lat Wodociągów Warszaw-
skich” (For the public welfare. 120 years of the
Warsaw Waterworks), an album with a complicated
structure, edited by Piotr Stankiewicz, and designed
and typeset by myself. The work contains — ex-
cept for text materials — mainly archival illustrations,
often unique, coming from the company’s collec-
tion, Warsaw museums and libraries, and in the con-
temporary era — mostly — photographs by Krzysztof
Kobus. The publisher received high-quality Post-

16 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Designing a special book: With both pleasure and . . . fear

Script files for the printing process from Katarzyna
Ciemny.

The typesetting was done in the Walbaum type-
face (from the Linotype Library font collection). The
font, popular in the XIX century, was designed by a
German type founder from Weimar. It perfectly cor-
responds to the spirit of the epoch during which the
Warsaw waterworks and sewage system were built.
The breaking-up of pages and illustrations follows a
quite simple modular setup which was not followed
very strictly — in a few places aesthetic reasons called
for modifications.

The archival illustration materials caused con-
siderable difficulties. I had to reproduce lithographs,
chromolithographs, guaches, wood engravings, origi-
nal and printed photographs (all of different resolu-
tions). The easiest were — of course — the contem-
porary digital photographs made by a professional
photographer. Each of these types of images required
a different scanning procedure and adherence to a
different color regime. By the way, every printer
knows that the qualities and “warmth” of traditional
graphic techniques cannot be mimicked absolutely
by a CMYK reproduction.

This impressive, and very difficult to produce,
publication was printed and bound by the Olsztyń-
skie Zakłady Graficzne — in a very short time and
while retaining the highest quality. It was made pos-
sible only by an exceptional devotion of the printers
from Olsztyn.

Figure 2:

Design sketch
showing how
illustrations are
to be placed in
the historical part
of the book.

Several kinds of paper were used for the book.
For the historical section, where the resolution was
175 lpi, Lessebo Design Ivory 120 g was applied. To
accommodate a set of archival photographic mate-
rials from the Warsaw Uprising, a sheet of compo-
sition enclosed in a cover of Owl Grey (Card) from
the Kaskad catalog was inserted between the histor-
ical and contemporary parts. The chapter on the
sewers’ role in the Warsaw Uprising was printed in
duotone with Pantone Black 2C and 409C Gray. The
contemporary part was printed — also with 175 lpi
resolution — on chloride free Media Print Matt 150 g
paper.

The historical part opens with a fly-leaf of the
Warsaw panorama printed on Century Free Life Vel-
lum White 100 g. In two places — between printing
sheets — glued inserts on quasi-parchment Golden
Extra White 110 g tracing paper with XIX century
design drawings were placed.

The album, printed with a Speedmaster CD102
printing machine, is bound in a natural brick-red
cloth, Brillant, made by Van Heek Schoco. End-
papers were printed on Fabrizia Brizatto 120 g from
Cartiere Fabriano. The front cover has an insert
glued precisely into an inset rectangle. The title on
the spine is stamped with a golden foil.

One arrives at the full picture of the difficulty of
the binding task if one realizes that such an already-
rarely encountered binding was additionally compli-
cated by two parchment paper glued inserts, two

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 17

Andrzej Tomaszewski

Figure 3: The
design of the
part devoted to
the role of the
sewers in the
Warsaw Uprising.
The insurgents
and civilians
used them as
emergency routes
between streets
and even between
different quarters
of the city.

Figure 4: A
fragment of the
design of the
contemporary
part. The inner
city of Warsaw
is the only place
in Europe where
modern water
and sewage
installations
work next to XIX

century engineers’
installations
deployed
full-scale.

18 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Designing a special book: With both pleasure and . . . fear

fly-leaves (one of which is in an atypical format) as
well as an internal cover of one of the chapters.

And the additional complication was . . . time —
from the technological point of view — not enough
of it. The jubilee celebrations could not be delayed.
Descendants of William Lindley came from all over
the world. The floors of the Royal Castle in Warsaw
had been polished, Kayah1 was all geared up for a
concert at the Wisła bank. And what . . . no album?
Happily, the book binding team valiantly managed
to complete this complicated operation in time.

To those present at Bachotek, I showed two

1 Kayah (Katarzyna Rooĳens) — a Polish pop singer.

copies of this bibliophile piece. Not many people are
going to have a chance to get to know the precision
accomplished by the editors, graphic artists, photog-
rapher and typesetters from Olsztyn — the print run
was a little over one thousand copies and the book
was not for sale. Perhaps in the future it might show
up in the secondary circulation but no doubt already
as a rare and valuable item.

(During the presentation, PDF versions of the ob-
jects comprising the book were also shown and techni-
cal aspects of the realization were discussed. The slides
are available from the “presentations” folder at http:

//www.gust.org.pl/BachoTeX/EuroBachoTeX2007.)

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 19

Enumerations as an interesting form of text appearance

Dorota Cendrowska
Polsko-Japońska Wyższa Szkoła Technik Komputerowych, Warszawa
dorota dot cendrowska (at) pjwstk dot edu dot pl

Abstract

The paper presents classical types of enumerations and the ways to create them.
The rules for single- and multi-sentence as well as nested enumerations are dis-
cussed. Even if (LA)TEX is treated as a king in the science and technical depart-
ments of higher education institutions, we will show that sometimes the king’s
gown might be in need of mending. We will discuss methods that are available for
changing the appearance of enumerations in their wide and varied usage (printed
text, multimedia presentations).

Introduction

One can successfully defend the proposition that
one needs to know quite a lot to typeset a good-
looking text using an ordinary word processor, and
also that one has to learn quite a lot to do things
with LATEX in one’s own way. As a consequence, doc-
uments typeset with LATEX usually have a friendly,
familiar, look. This feature and the fact that no
other tool exists which typesets mathematics better
than the TEX family makes (LA)TEX an unquestioned
king of technical departments at universities. As is
well known, one doesn’t question the king. If some-
thing was typeset with LATEX then, by default, it is
typeset well.
Although trying to improve something good

might not turn out to be the best idea, in the rest of
this article we will try to find “something better” us-
ing the example of enumerations. Nowadays it is al-
most impossible not to stumble upon enumerations
at almost every “corner”. We will describe “classi-
cal” rules of typesetting enumerations and then dis-
cuss their relationship to the enumerations readily
available with LATEX.

1

1 The classics of enumerations

Several centuries of typesetting experience brought
with it a typesetting canon. Typography, the “art of
printing”, has quite a lot to offer in a seemingly nar-
row area as enumerations. Enumerations (or lists)
may be categorized depending on the nature of the
“constituting points”.
If consecutive items constitute a single sentence

(Example 1) then we have a single-sentence enumer-
ation. In such a case the enumeration can be typeset
properly in several ways: treating it as a single text

1 Only Polish typography rules will be discussed, but they

might be of general interest.

paragraph (Example 1) or putting each item into a
new line (Examples 2–4).
According to the rules of annotating consecu-

tive items, lower case letters or Arabic numerals are
used, after which the closing bracket follows (Exam-
ples 1–3). Periods should not be used as, except for
abbreviations, they denote the end of a sentence and
we have here a single-sentence enumeration. When
each of the items is placed on a separate line, an
em-dash might be used (Example 4).

(. . .) you always have at least four choices. . . a) the
two opposites and then b) the middle ground and
c) “taken under further contemplation.”2

Example 1: Single-sentence enumeration

(. . .) you always have at least four choices. . .
a) the two opposites and then
b) the middle ground and
c) “‘taken under further contemplation.”2

Example 2: Single-sentence enumeration

(. . .) you always have at least four choices. . .
1) the two opposites and then
2) the middle ground and
3) “taken under further contemplation.”2

Example 3: Single-sentence enumeration

2 Clarissa Pinkola Estés, Women Who Run With the

Wolves: Myths and Stories of the Wild Woman Archetype,

Ballantine Books, 1997.

20 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007

Enumerations as an interesting form of text appearance

(. . .) you always have at least four choices. . .
— the two opposites and then
— the middle ground and
— “taken under further contemplation.”2

Example 4: Single-sentence enumeration

It is enough to concentrate a little to see that the
seemingly simplest things and events from everyday
experience can awaken a feeling of an impenetrable
mystery:
1) time, freedom, existence, space;
2) cause, awareness, matter;
3) number, love, “I”, death.3

Example 5: Commas and single-sentence enumerations

In single sentence enumerations the period is
used only once, at the end of the last item of the enu-
meration. The preceding items are terminated with
commas or— if the items contain many commas al-
ready—with semicolons. This rule is illustrated by
Example 5.

If the contents of an enumeration cannot be ex-
pressed in the form of one sentence, then we have to
deal with a multi-sentence enumeration. Each item
takes the form of an arbitrary number of full, indi-
vidual, sentences. To annotate the consecutive items
of such an enumeration, numbers or uppercase let-
ters followed by a period should be used. The period
informs that “what will immediately follow is the
beginning of a sentence.” Important to note is that
for both single- and multi-sentence enumerations the
sentences (not their annotations) begin at the same
distance from the page edge. A multi-sentence enu-
meration, typeset in the classical way, is given in
Example 6.

Consider this:
A. Rafer Johnson, the decathlon champion, was
born with a club foot.

B. Winston Churchill was unable to gain atten-
dance to the prestigious Oxford or Cambridge uni-
versities because he “was weak in the classics.”

C. In 1905, the University of Bern turned down a
doctoral dissertation as being irrelevant and fanciful.
The young physics student who wrote the disserta-
tion was Albert Einstein, who was disappointed but
not defeated.4

Example 6: Multi-sentence enumeration

3 Leszek Kołakowski, Mini wykłady o maxi sprawach, se-

ria druga, Znak, Krakòw 1999.
4 Jack Canfield, Mark Victor Hansen, A 3rd Serving of

Chicken Soup for the Soul, Health Communications, 1996.

Enumerations might be nested, which means
that an enumeration becomes an item of a differ-
ent, higher ordered item. One can thus talk about
a hierarchy of enumerations which should be clearly
distinguished in the typeset text so that no ambigu-
ity arises as to which “matrioshka” is put into which.
The following rule applies when annotating items of
a multilevel enumeration: When moving from the
main (outermost) enumeration to the most nested
enumeration, i.e., from the biggest to the smallest
“matrioshka”, the consecutive items are labeled with

— uppercase roman numerals,
— uppercase letters,
— Arabic numerals,
— lower case letters.

Some of the labeling types might be omitted
but their order should be kept. The period or closing
bracket is used depending on whether the enumera-
tion is single- or multi-sentence.
LATEX allows up to four levels of enumerations

of the type itemize or enumerate. The typesetting
rules say that— if possible—nested enumerations
should be limited to two levels. Example 7 illustrates
multilevel enumerations.

A. Outermost enumeration—1st item:
1) first item of a subordinate single-sentence
enumeration,

2) second item,

3) third item,

B. Outermost enumeration—2nd item:
1. An item of a nested enumeration, which
is a multi-sentence enumeration and may
consist of an arbitrary number of of sen-
tences:
a) first element,
b) second element,
c) third element.

2. Second item.

3. Third item.

C. Outermost enumeration—3rd item.

D. Outermost enumeration—4th item.

Example 7: Multi-level enumerations

2 Tradition and LATEX

In the previous section we sketched the traditional
Polish conventions for typesetting enumerations. Per-
haps the Anglo-Saxon tradition is completely differ-
ent (what are the rules?), hence the default number-
ing and bulleting rules in the LATEX environments

TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007 21

Dorota Cendrowska

• Level 1, item 1

– Level 2, item 1

∗ Level 3, item 1

· Level 4, item 1

Example 8: An enumeration based on the LATEX
itemize environment.

1. Level 1, item 1

(a) Level 2, item 1

i. Level 3, item 1

A. Level 4, item 1

Example 9: An enumeration based on the LATEX
enumerate environment.

— item 1,

— item 2,

— item 3.

\renewcommand{\labelitemi}{---}

\begin{itemize}

\item item 1,

\item item 2,

\item item 3.

\end{itemize}

Example 10: “The classics” in the LATEX
environment itemize

enumerate and itemize—Examples 8 and 9. Any-
way, if we treat the rules described above as a clas-
sic ensemble, then in principle we will feel properly
dressed wearing it for any occasion. It suffices to
redefine some internal LATEX commands to get the
desired look of the labels (Examples 10 and 11).

3 Classics, LATEX and tiny details

A paragraph is a self-contained unit of text consti-
tuting a logical entity, “indivisible” from the point of
view of the information conveyed; hence it is obvious
that the following information should make exactly
one paragraph:

Remember that whichever day of the week it
is you always have the following choice for
supper: a) to eat or b) not to eat. For break-
fast you have no choice: you must eat it!

The same text formatted as a single-sentence enu-
meration (Example 12) confuses the reader by mak-
ing the impression that the consecutive lines do not
have much in common. This is caused by too much
space between the consecutive items. Moreover, be-
cause the vertical space between the preceding para-
graph and the enumeration is exactly the same as

I. Level 1, item 1

A. Level 2, item 1

1. Level 3, item 1

a. Level 4, item 1

\renewcommand{\labelenumi}{\Roman{enumi}.}

\renewcommand{\labelenumii}{\Alph{enumii}.}

\renewcommand{\labelenumiii}%

{\arabic{enumiii}.}

\renewcommand{\labelenumiv}{\alph{enumi}.}

\begin{enumerate}

\item Level 1, item 1

\begin{enumerate}

\item Level 2, item 1

\begin{enumerate}

\item Level 3, item 1

\begin{enumerate}

\item Level 4, item 1

\end{enumerate}

\end{enumerate}

\end{enumerate}

\end{enumerate}

Example 11: “The classics” in the LATEX
environment enumerate

Remember that whichever day of the week it is you
always have the following choice for supper:

— to eat or

— not to eat.

For breakfast you have no choice: you must eat it!

Example 12: A (confusing) single-sentence
enumeration presented with standard spacing

between the enumeration and the following para-
graph, one may be under the impression that the
items of the enumeration have no logical relation to
any of these paragraphs—each item of the enumera-
tion seems to live its own life—but this is not so. We
could live undisturbed by such a tiny detail, but—
quietly—would prefer the result to be presented as
in Example 13. (The exact spacing adjustment will
vary with the class used.)
The enumerate and itemize environments have

no means to take into account if the typeset enu-
meration is single- or multi-sentence because they
simply “don’t know” anything of this nature. There-
fore, one should take care to produce a less confusing
spacing of the items. The scheme presented in Exam-
ple 15 concerns itself with lengths defined in LATEX,
at least some of which we can modify in the enumer-
ate and itemize environments, just before the first
item.

22 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007

Enumerations as an interesting form of text appearance

Remember that whichever day of the week it is you
always have the following choice for supper:
— to eat or
— not to eat.
For breakfast you have no choice: you must eat it!

Example 13: A single-sentence enumeration as an
entity

Remember that whichever day of the week

it is you always have the following

choice for supper:\vspace{-.6ex}

\renewcommand{\labelitemi}{---}

\begin{itemize}

\setlength{\parskip}{0ex}

\setlength{\itemsep}{0ex}

\item to eat or

\item not to eat.

\end{itemize}\vspace{-.6ex}

For breakfast you have ...

Example 14: How to typeset Example 13

An analysis of the code presented in Example 14
and a comparison with the output in Example 15
leads to the conclusion that the scheme of the mean-
ing of the various lengths within the enumeration
environment, although copied by many sources (also
by [1]), is not very well in sync with the current prac-
tice. This one tiny detail should be remembered.

4 “Modern” enumerations

The classical methods of typesetting enumerations
work well for paper publications. They are com-
pletely unsuitable for multimedia presentations, fly-
ers or technical documentation. Such creations are
typeset so as to facilitate quick access to various por-
tions of text which, similar to dictionary entries, are
self-contained entities.
Accordingly, the nature of enumerations is dif-

ferent. Spacing is more important and the same is
true of the shape and position (with respect to the
contents of the enumeration) of the symbols used
to label the consecutive items—these are usually
just entries. The nature of the symbols has also
changed—they play a different role than in the clas-
sical enumerations. They are now rather “road signs”
saying: “here is the beginning of the information
which might be important for you.” Therefore they
should be readable, of a proper size and, if possible,
in a color contrasting with the color of the item’s

 preceding text

label

\topsep+\parskip [+partopsep]

following text

label

\rightmargin

\labelwidth

\leftmargin

\topsep+\parskip [+partopsep]

\parsep

\listparindent

\itemsep + parsep

\itemindent

\labelsep

item 1
paragraph 1

item 1
paragraph 2

item 2

Example 15: Enumerations and LATEX’s lengths

text (especially so in presentations).
It seems that the creator of LATEX had a pre-

cognition of the direction the world would roll. To
create a “modern” enumeration, not yet covered by
any norm, it suffices to change the labeling of the
items. And so, Example 6, typeset to the classical
rules, might be modified by changing the spacing
and the way items are aligned (standard LATEX enu-
meration)—Example 16—or by also modifying the
item label—Example 17. Example 18 is given to
show that we do not need to throw away all of the
features of the classical enumerations, especially in
brochures or flyers.

Summary

The world moves on, we are changing, enumerations
change as well. It remains to wait for the day when
an announcement found on our doormat will make
us happy instead of dandering up—to our joy, the
leaflet will be typeset with LATEX . . .

References

[1] Kopka H., Daly P. W.: A Guide to LATEX,
4th Edition, Addison-Wesley, 2003

[2] Chwałowski R.: Typografia typowej książki,
Helion, Gliwice 2002

[3] Polish norms: PN-78/N-01222/03,
BN-76/7440-03

TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007 23

Dorota Cendrowska

Consider this:

A. Rafer Johnson, the decathlon champion, was
born with a club foot.

B. Winston Churchill was unable to gain atten-
dance to the prestigious Oxford or Cambridge
universities because he “was weak in the clas-
sics.”4

Example 16: Multi-sentence enumeration differently

Consider this:

◮ Rafer Johnson, the decathlon champion, was
born with a club foot.

◮ Winston Churchill was unable to gain atten-
dance to the prestigious Oxford or Cambridge
universities because he “was weak in the clas-
sics.”4

Example 17: Multi-sentence enumeration differently

� First year: Sugar, I’m worried about my little
baby girl. You’ve got a bad sniffle. I want to put you
in the hospital for a complete checkup. I know the
food is lousy, but I’ve arranged for your meals to be
sent up from Rossini’s.

� Second year: Listen, honey, I don’t like the sound
of that cough. I’ve called Dr. Miller and he’s going
to rush right over. Now will you go to bed like a
good girl just for me, please?

� Third year: Maybe you’d better lie down, honey.
Nothing like a little rest if you’re feeling bad. I’ll
bring you something to eat. Have we got any soup
in the house?

� Fourth year: Look, dear. Be sensible. After
you’ve fed the kids and washed the dishes, you’d
better hit the sack.

� Fifth year: Why don’t you take a couple of as-
pirin?

� Sixth year: If you’d just gargle or something
instead of sitting around barking like a seal.

� Seventh year: For heaven’s sake, stop sneezing.
What are you trying to do, give me pneumonia?5

Example 18: Enumeration—modern and “about life”

5 A. L. McGinnis, The Romance Factor, Harper & Row,

1990.

24 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007

Five years after: Report on international TEX font projects

Jerzy B. Ludwichowski
GUST, Poland
jerz

·
ly udwichowski@uni

·
torun

·
pl

Bogusław Jackowski
GUST, Poland
_jb ackowski@gust

·
org
·
pl

Janusz M. Nowacki
Foto-Alfa, Grudziądz, Poland
·
NJ owacki@gust

·
org
·
pl

Abstract

Two large font projects are being currently developed by the TEX user groups:
Latin Modern (begun in 2002) and TEX Gyre. Both aim at greatly increasing the
number of diacritical characters in the freely available collections of fonts.

1 Introduction

Since nearly the very beginning of their existence,
Adobe’s products have been accompanied with a ba-
sic collection of fonts, first containing only 13 com-
ponents, then extended to 35: ITC Avant Garde

Gothic (4 fonts), ITC Bookman (4 fonts), Courier

(4 fonts), Helvetica (8 fonts), New Century School-

book (4 fonts), Palatino (4 fonts), Times (4 fonts),
ITC Zapf Chancery Medium (1 font, italic), Symbol

(1 font), and ITC Zapf Dingbats (1 font). Of course,
they were only available under proprietary licenses.

The situation changed in 1996, when L. Peter
Deutsch, then the developer and maintainer of the
marvelous free PostScript interpreter Ghostscript,
released in conjunction with URW++ a free collec-
tion of PostScript fonts, being a reasonable replace-
ment for Adobe’s 35 (see http://tug.org/fonts/

deutsch-urw.txt).1

Within a few years the collection was enhanced
with Vietnamese and Cyrillic characters (by Hàn
Thế Thành and Valek Filippov, respectively). Still,
the repertoire of glyphs present in the fonts was in-
sufficient to meet the needs of those who have to
typeset in Latin-based languages.

2 The Latin Modern project

In Spring 2002 (hence the present title), several TEX
user groups launched the Latin Modern Project, with
the aim of extending the Computer Modern fonts
with a rich repertoire of Latin diacritical charac-
ters. This resulted in the Latin Modern collection
of 92 fonts (72 text and 20 math) in the PostScript

1 Actually, four URW++ free fonts appeared for the first
time in Ghostscript 2.6.1 in 1993.

Type 1 and OpenType formats, (http://www.gust.

org.pl/projects/e-foundry/latin-modern).
The warm reception of the project (despite var-

ious slips, though significantly reduced in number
thanks to Karel Píška’s continued efforts — see, e.g.,
his article in these proceedings) encouraged the user
groups to make use of the Latin Modern experience
to enhance the 35 basic PostScript fonts.

3 The TEX Gyre project

Already in 1996, immediately after the release of
the Ghostscript/URW++ fonts, the Polish TEX users
group, GUST, launched the Qfonts project, aimed
at supplementing the relevant text fonts from the
collection with a set of diacritical characters. The
project was suspended after releasing a few fonts —
other challenges became more important. However,
with the success of the Latin Modern project, the
groups supporting it decided to resume the Qfonts
project, and indeed, greatly broaden its scope. The
new incarnation became known as TEX Gyre.

4 Licensing issues

Neither Adobe’s nor URW++’s font names could be
retained, due to legal issues. Therefore we have
coined alternative names as follows:

TFM name
Origin PS name

(kernel)

ITC Avant Garde Gothic TeXGyreAdventor qag
ITC Bookman TeXGyreBonum qbk
Courier TeXGyreCursor qcr
Helvetica TeXGyreHeros qhv
Palatino TeXGyrePagella qpl
Times TeXGyreTermes qtm
New Century Schoolbook TeXGyreSchola qcs
ITC Zapf Chancery TeXGyreChorus qzc

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 25

Jerzy B. Ludwichowski, Bogusław Jackowski and Janusz M. Nowacki

(Note that the TFM names are, in a way, the legacy
of the Qfonts project.)

Some licensing issues are unsolved. For exam-
ple, it remains an open question whether the TEX
Gyre fonts can be released under the GUST Font Li-
cense (GFL), a legal equivalent of the LATEX Project
Public License (LPPL) — see http://www.gust.org.

pl/projects/fonts/licenses/ and http://www.

latex-project.org/lppl/.
The user groups are attempting to negotiate an

agreement with the donor of the fonts, URW++.

5 The TEX Gyre fonts

As of this writing, all 33 text fonts from the basic 35
fonts have been released (http://www.gust.org.

pl/projects/e-foundry/tex-gyre/). Each con-
tains nearly 1200 glyphs, including small caps, old
style figures, Cyrillic and Greek. An exception is
TEX Gyre Chorus alias Zapf Chancery, which lacks
Greek and small caps; incidentally, using capital
forms of Chancery characters for typesetting whole
words should be forbidden by law.

Note, however, that Cyrillic and Greek charac-
ters were included only provisionally (for the sake of
uniformity and backward compatibility) and their
quality must be improved as soon as possible. Only
in TEX Gyre Bonum (Bookman) is the Greek of
better quality: with the kind permission of Apos-
tolos Syropoulos and Antonis Tsolomitis, we im-
ported the Greek glyphs from the Kerkis collection
(http://iris.math.aegean.gr/kerkis/).

All fonts are available in OpenType and Post-
Script Type 1 formats. Of course, TEX-oriented add-
ons, that is, TFM files for various encodings plus the
relevant MAP and ENC files, plus LATEX support, are
also provided. At present, the following encodings
are available: CS (CSTUG), EC (Cork), L7X (Lithua-
nian), QX (GUST), RM (Regular Math or OT1), LY1
(Y&Y aka TEX’n’ANSI), T5 (Vietnamese), TS1 (Text
Companion for EC fonts) T2A, T2B, T2C (Cyrillic).
The TEX Gyre support for ConTEXt is shipped sep-
arately with the ConTEXt package.

Below are samples of the available fonts:

TEX Gyre Adventor is available in Regular, Small Caps,

Bold, Oblique, and Bold Oblique variants.

abcde ABCDE 0123456789 0123456789 abcde ABC

DE 0123456789 0123456789 abcde ABCDE 0123456

789 0123456789 abcde ABCDE 0123456789 012345

6789

TEX Gyre Bonum is available in Regular, Small Caps,

Bold, Italic, and Bold Italic variants.

abcde ABCDE 0123456789 0123456789 abcde AB

CDE 0123456789 0123456789 abcde ABCDE 01

23456789 0123456789 abcde ABCDE 0123456

789 0123456789

TEX Gyre Cursor is available in Regular, Small

Caps, Bold, Oblique, and Bold Oblique vari-

ants.

abcde ABCDE 0123456789 0123456789 abcde ABC

DE 0123456789 0123456789 abcde ABCDE 0123456

789 0123456789 abcde ABCDE 0123456789 012345

6789

TEX Gyre Heros is available in Regular, Small Caps, Bold,

Oblique, and Bold Oblique variants.

abcde ABCDE 0123456789 0123456789 abcde ABCDE

0123456789 0123456789 abcde ABCDE 0123456789

0123456789 abcde ABCDE 0123456789 0123456789

TEX Gyre Heros Condensed is available in Regular, Small Caps,

Bold, Oblique, and Bold Oblique variants.

abcde ABCDE 0123456789 0123456789 abcde ABCDE 0123456

789 0123456789 abcde ABCDE 0123456789 0123456789

abcde ABCDE 0123456789 0123456789

TEX Gyre Pagella is available in Regular, Small Caps,
Bold, Italic, and Bold Italic variants.
abcde ABCDE 0123456789 0123456789 abcde ABC

DE 0123456789 0123456789 abcde ABCDE 012345

6789 0123456789 abcde ABCDE 0123456789 012345

6789

TEX Gyre Schola is available in Regular, Small
Caps, Bold, Italic, and Bold Italic variants.
abcde ABCDE 0123456789 0123456789 abcde

ABCDE 0123456789 0123456789 abcde ABC

DE 0123456789 0123456789 abcde ABCDE 01

23456789 0123456789

TEX Gyre Termes is available in Regular, Small Caps,

Bold, Italic, and Bold Italic variants.

abcde ABCDE 0123456789 0123456789 abcde ABCDE

0123456789 0123456789 abcde ABCDE 0123456789

0123456789 abcde ABCDE 0123456789 0123456789

TEX Gyre Chorus is available only in the Medium Italic variant:

abcde ABCDE 0123456789 0123456789.

6 Plans for the future

There is a lot to do: we plan to add the two remain-
ing non-text fonts (for the sake of completeness),
bugs reported so far have to be removed, Cyrillic
and Greek are in need of improvement, kerning and
hinting should be improved wherever needed, etc.

There are also much broader plans: to incor-
porate math into the TEX Gyre collection — a truly
serious task. It implies including math information
in OpenType fonts and this requires research.

No fear that the TEX Gyre spiral will ever reach
its end. . .

26 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Cyklop: A new font family

Janusz Marian Nowacki
ul. Śniadeckich 82 m. 46
86-300 Grudziądz
Poland
janusz (at) jmn dot pl; http://www.jmn.pl

Abstract

Cyklop, pl. Cyclops, (gr. cyclos: round + ops: eye) in Greek mythology, a giant
with one round eye in the middle of its forehead. Cyclops were herdsmen and
builders of giant (cyclopean) fortifications. They also worked for Hephaestus at
his forge, where they forged Zeus’ thunderbolts. It is fortunate that they were
only mythical characters.

The Cyklop typeface was designed and cast in lead by the “J. Idźkowski i S-ka”
Warsaw foundry. It is a very heavy sans-serif two-element typeface, produced only
in the oblique form, in sizes from 8 to 48 pt. It was frequently used for newspaper
titles and for one-off prints like posters, forms, labels or invitations.

The Cyklop typeface was designed in the 1920s by
the Warsaw “Idźkowski i S-ka” foundry. This two-
element, sans serif typeface is characterized by strong
contrast. The vertical stems are far thicker than the
horizontal stems. The internal letter openings are
in most cases of the shape of an elongated rectangle.
This gives the glyphs their unique shape.

Cyklop, in the form of lead type, was produced
only in the oblique variant in sizes from 8 to 48 pt.
Quite probably, the upright version was not designed
and hence not produced. Cyklop was very often used
for newspaper titles and jobbing prints. Typesetters
often reached for it during the whole period between
the wars, and continued to use it in the underground
newspapers during the second world war. It contin-
ued to be used until the beginnings of offset printing

and computer typesetting. Nowadays it is difficult
to find it in the form of metal type.

The present font was generated with MetaType1.
I extended it to cover the complete set of accented
Latin characters and those glyphs which were miss-
ing from the original set. I also set out to create
the upright variant, which has proved to be a more
complicated task than it initially seemed. I hope to
be able to release the beta version of the Cyklop
fonts at the end of this year.

The slides of the presentation, cyklop.pdf,

are available from the “presentations” folder

at http://www.gust.org.pl/BachoTeX/

EuroBachoTeX2007. To get the current version

of the font files, visit the GUST e-foundry site at

http://www.gust.org.pl/projects/e-foundry.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 27

Do we need a font system in TEX?

Hans Hagen
PRAGMA ADE

http://pragma-ade.com

Abstract

In this article I will reflect on the font system(s) currently built into ConTEXt.
From this perspective I will mention the current directions in the development
of TEX engines and how they may influence ConTEXt. I will also put this in the
context of document layout design.

1 Introduction

This article was written while Taco Hoekwater and I
were working on LuaTEX and ConTEXt MkIV, work
that is ongoing. This process gives us much time
and opportunity to explore new frontiers and recon-
sider existing ConTEXt features. We also use this
process to write down some ideas as they evolve.
Much detail is missing and I assume that the user is
somewhat familiar with fonts.

Since this article is not typeset using my regular
TEX setup I will not give many examples. After
all, it’s just meant as a teaser for users who want
to discuss future font support in TEX (especially in
ConTEXt). In the related presentation I will give a
few examples.

2 Starting point

One of the characteristics of a TEX macro package
is that it provides some kind of font system. Such a
system deals with two issues:

• consistent switching between different styles and
sizes (mostly in text mode)

• handling relative scales of fonts in super- and
subscripts in math mode

The TEXbook and its related plain TEX for-
mat demonstrate what such a system may look like.
However, it sets up a 10-point system and when
users want, for instance, a 12-point setup, more def-
initions are needed. As soon as a user switches be-
tween 10 and 12 points a whole set of commands
needs to be redefined or at least commands need to
adapt their behaviour.

3 Into context

The macro package ConTEXt evolved over time and
in principle permits you to set up your own font
system, but in practice users will use the built-in
font support which is organized as follows.

The main classification is style. Examples of
font styles are serif (rm), sans (ss) and mono (tt) but
math (mm) is also a style. Of course this is a rather

arbitrary classification, but it’s kind of rooted in the
fact that Computer Modern came in these variants.
When I started using the Lucida fonts I introduced
handwriting (hw) and calligraphic (cg) styles and
more are possible.

Next we have style alternatives such as normal,
slanted, bold, italic and the like. Again, these are
rooted in the fonts that came with TEX. Slanted is
kind of artificial and italic is not always really italic,
which is why the term ‘oblique’ is used as well.

Then comes size. In addition to the normal size
one can switch between predefined but configurable
additional sizes: larger ones denoted by the charac-
ters a, b, c, etc., and smaller sizes by x and xx.

Font switches are either written as part of the
source stream or set as property of (structural) ele-
ments. Examples of stream commands are:

\rm \tt \tf \tfx \bf \bfx \bfxx

\sl \sla \slb \tttfx

Style properties are defined and used like this:

\setuphead[subsection][style=bold]

\definefontalternative[LargeAndBold][\bfd]

\setuphead[section][style=LargeAndBold]

If a user is in control of the style, such a system
works rather well. One can conveniently switch to a
different style, alternative and/or relative size.

4 Typefaces

When one is not in control of the document design,
there’s always a chance that one has to deal with
yet another level of organization. Think of a journal
where some articles are typeset with FontFont Meta
for the running text combined with Lucida Math,
and other articles are typeset in Palatino for both
text and math. Add to that yet another choice of
fonts for the headers and footers and we’re talking
of three distinctive font setups for one publication.

This is where typefaces come into play. These
are combinations of styles within one collection. One
can for instance define a typeface palatino which is a
combination of Palatino Nova (serif), Palatino Sans

28 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Do we need a font system in TEX?

(sans) and Palladio Px (math) completed with Latin
Modern Typewriter (mono). Of course we need to
make sure that we scale the Latin Modern to match
the Palatinos. The following definitions were used
for the reader of the ConTEXt conference in Epen
(2007):

\definetypeface[mainface] [rm][serif]

[palatino-nova-regular] [default]

\definetypeface[mainface] [ss][sans]

[palatino-sans-regular] [default]

\definetypeface[mainface] [tt][mono]

[latin-modern-light] [default]

\definetypeface[extraface][rm][serif]

[palatino-nova-regular] [default]

\definetypeface[extraface][ss][sans]

[palatino-sans-informal][default]

\definetypeface[extraface][tt][mono]

[latin-modern-light] [default]

These are applied with:

\setupbodyfont[mainface]

\setuplayout[style=

{\switchtobodyfont[extraface,sans]}]

The default parameter selects the scaling model,
in this case not based on design sizes, but derived
from 10-point variants.

To make life (and choosing) even more complex,
users more and more run into fonts that come in dif-
ferent weights (light, regular, medium, dark, ultra),
thus ending up with multiple typeface definitions
becomes the norm. It also means that users will al-
ways have to face the difficulties of font definitions:
the burden of too much choice. What combination
looks best?

\starttypescript [mono]

[latin-modern-regular] [name]

\usetypescript[mono][fallback]

\definefontsynonym[Mono]

[lmtypewriter10-regular]

\definefontsynonym[MonoItalic]

[lmtypewriter10-oblique]

\definefontsynonym[MonoBold]

[lmtypewriter10-dark]

\definefontsynonym[MonoBoldItalic]

[lmtypewriter10-darkoblique]

\stoptypescript

\starttypescript [mono]

[latin-modern-light] [name]

\usetypescript[mono][fallback]

\definefontsynonym[Mono]

[lmtypewriter10-light]

\definefontsynonym[MonoItalic]

[lmtypewriter10-lightoblique]

\definefontsynonym[MonoBold]

[lmtypewriter10-regular]

\definefontsynonym[MonoBoldItalic]

[lmtypewriter10-oblique]

\stoptypescript

Did I discuss design sizes yet? Computer Mod-
ern comes in design sizes. Apart from the esthetic
aspect, this made much sense in a time where bit-
map fonts were the rule. I must admit that I have
no other fonts on my machine that come in design
sizes. The core font system of ConTEXt is set up
with design sizes in mind, but later extensions made
defining typefaces based on one design size conve-
nient (normally 10 point). For this reason users will
never deal with the low level font definition system
directly.

Recently we see design sizes come back in an-
other disguise. Instead of variants in terms of size
we get ‘caption’ and ‘display’. Technically one can
embed different design sizes in an OpenType font
but this does not happen often yet.

5 Simple definitions

Occasionally we needed a special font definition, for
instance when typesetting a title page. There we
can use definitions like

\definefont [TitleFont] [SerifBold sa 3.5]

This means as much as: define a font TitleFont
which uses the current SerifBold (symbolic names
are used all over the place in the definitions, aka
typescripts) and scale it to 3.5 times the current
bodyfontsize. This means that we’re freed of hard
coded (and cryptic) font file names.

6 Features

One thing to keep in mind when setting up fonts is
the font encoding. An encoding is a subset of glyphs
out of the whole repertoire available in a font. Font
encodings (not to be confused with file encodings or
input regimes) are a side effect of TEX being an 8-
bit system, a restriction which is removed by Omega
(Aleph), X ETEX and LuaTEX. Other characteristics
are mappings (from upper- to lowercase and reverse)
and, more recently, features as part of OpenType
fonts.

For typesetting the mentioned reader I used
LuaTEX in combination with the experimental Con-
TEXt version MkIV and so the OpenType variants
could be used. The fact that the font itself pro-
vides features puts some demands on the font sys-
tem. How do we pass them to TEX (in the case of
X ETEX) or Lua (in the case of LuaTEX)? In X ETEX

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 29

Hans Hagen

one can say:

\font\MyFont=

palatinonova-regular:liga;dlig; at 12pt

But this does not go well with the abstraction
and separation of name and style in ConTEXt. In
LuaTEX one can implement any interface but at the
price of taking care of translating features defined
in the font into something that TEX can deal with.
This is a fundamental difference with X ETEX: it
takes a macro package writer more effort to provide
font support in LuaTEX, but this is compensated by
more flexibility. As with X ETEX we expect macro
package writers to take care of that.

Recent versions of pdfTEX also introduced fea-
tures, like hz optimization and protruding. These
features can be applied to individual fonts as well
as to styles and typefaces. For this we can use the
‘font handling’ subsystem that we will not discuss
in this article. In short, that subsystem deals not
with real font features, but with TEX applying its
own features to a font.

In pdfTEX one can add inter-character spacing
to a font using the low level commands:

\font\MyFont=somefont at 12pt

\letterspacefont

\MyLetterSpacedFont=\MyFont 50

This means that 0.025 em is added on each side
of a character. The problem with this TEX feature
is that it refers to an already defined font. Also, one
has to compensate for spacing before and after the
sequence of characters manually. What complicates
matters even more is that each feature uses a slightly
different interface and that features are applied to
global font definitions. Such low level commands are
not something the average TEX user wants to deal
with so we need some kind of high level interface.

Because the distinction between font features
and TEX features is somewhat fuzzy, we will use the
term features for both. From the user’s perspective
it does not really matter.

7 Interface

For a ConTEXt user, a more natural interface is the
following:

\definefeature[myfeatures]

[ligatures=yes,oldstyle=yes,spacing=.025em]

\definefont[MyFont]

[somefont][feature=myfeatures]

How do we implement these and other features?
Fonts can have small caps and oldstyle numerals.
One may want these but not always. Here we face
a dilemma: do we need a complete small caps type-
face (many definitions) or is it just an alternative

selection of glyphs. When we set up the base font
system small caps were often of limited availability,
so it ended up as an alternative by default. However,
now that we have enough memory in our machines,
and now that fonts often come with small caps in
all styles and alternatives, we can equally well de-
fine it as an additional typeface. So, we can define
a palatino alongside a palatino-sc and palatino-os.

Consider the regular shapes. In this case a
macro package can decide to create three fonts out
of, say, PalatinoNova-Regular: a normal one, one
with lowercase characters replaced by small caps,
and one with digits replaced by oldstyle numerals.
But the package can also decide to pass the font as it
is to TEX and at some point in the typesetting pro-
cess swap lowercase characters by uppercase ones,
and/or replace digits. This saves two font instances
at the cost of some extra processing. Because the
design of the document often includes a consistent
choice for oldstyle numerals, it makes sense to create
the extra font here, but in the case of small caps I’m
not sure which alternative is better.

You may wonder what this has to do with in-
terfacing so let’s give another example. Sometimes
a large chapter or section head looks better when a
bit of inter-character spacing is applied. Do we cre-
ate a spaced font for just a few occasions or do we
move that to internal (node) processing? Defining
a truckload of extra fonts just because we want to
space a few times does not really make sense. Also,
a spaced font is no real solution because one has to
deal with the begin and end of a spaced sequence
then.

What does a user actually want to tell the sys-
tem? Is it:

some text {\UseMyLetterSpacedFontHere

some text} some text

or maybe:

some text {\LetterSpacedThisText

some text} some text

In the first case the user asks for a font switch,
but in the second case we’re dealing with a property
which is not really related to a font at all, apart from
the fact that the spacing may depend on font charac-
teristics. I can also envision several variants: spac-
ing based on character kerning, or equally spaced
fonts, or slightly randomly spaced.

Or consider that at some point you want to use
the outline variant of a font. This is a drawing prop-
erty, not so much a font property, so again, the sec-
ond approach may make more sense.

So, certain features may influence the interface
as well: are we talking of a feature attached to a font

30 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Do we need a font system in TEX?

definition, or is it applied to a range of characters
(glyphs) in the document? In the first case we need
to enable the feature when we define the font, but
in the second case we can do that in the style when
it’s needed. What do users prefer most?

8 Frontends

For over 25 years the TEX engine was essentially
frozen. With ε-TEX, some programming features
were added, Omega added directional typesetting
and pdfTEX built in the backend. Speaking for Con-
TEXt none of them really demanded a redesign of the
macro package as a whole or one of its subsystems.
Even X ETEX with its font features could be sup-
ported rather easily until the moment that the name
specification was extended to support font names as
well as filenames at which point the low level inter-
face (using brackets) started interfering badly with
the ConTEXt user interface. The greatest differenti-
ation was in the handling of backends and that was
implemented by separating specific backend code
into driver files (think of color support or graphic
inclusion).

The differences in frontends were negligible and
could be dealt with by code branches or selective
macro definitions at format generation time. How-
ever with the evolution of font systems, the frontend
part became more tricky, and not only from the per-
spective of user interfacing. Suddenly we were deal-
ing with features being present or not, or being im-
plemented differently. So, from now on, even with a
consistent user interface the users need to be aware
of what exactly is supported by the frontend and
with the font itself. We have to see where this leads.

9 Math

We have hardly mentioned math, so how about it?
A substantial part of TEX and therefore its font ma-
chinery is dealing with math. Math in TEX is a fam-
ily business. A family groups fonts in sizes: normal,
small and smaller. Following the Plain TEX tradi-
tion we use families for math roman, italic, sym-
bols, extension symbols as well as what we previ-
ously called alternatives (bold and so on).

And there the problem strikes. First our popu-
lation only counts 16 families, which is not enough to
deal with regular, slanted, italic, bold, bold italic, all
kinds of extra symbols, also in variants, and more.
Another complication is that one may want to use
bold text but not bold math or the reverse. Add
to this that TEX is programmed in such a way that
changing families mid-formula is not an option (the
last definition counts), you can imagine that it’s
hard to please users in this area. More families

would make life easier, but that only partially bal-
ances the equation of demand and supply. Font en-
codings also may play a role here: specific math
encodings and regular text font encodings (not all
math documents are written in English).

10 Daily practice

If after this exploration you’re still with us, we’re
ready to review this system. Over the years the
ConTEXt user base has widened and the range of
applications is impressive. This also means that we
need to provide the current font related subsystems
in future versions. Where do we stand with a font
system that is set up for consistency and convenient
definition of fonts in terms of base characteristics?

My own application of ConTEXt ranges from
special applications, via manuals, to (often) fully
automated generation of documents as part of a big-
ger workflow. For the last group of applications we
have to provide the mechanisms as well as the styles.
Most of the styles that I have to define are proto-
typed in desktop publishing applications. Not only
is any systematic approach to using fonts missing,
also many fonts are mixed together. This means
that in practice one can forget about a proper font
system. Of course I try to fit these into some kind
of system, but since the input is often rather simple
too, font usage is also predictable. I frequently end
up with a simple typeface definition for the main
body font where I also define the math and mono-
spaced variants, because one never knows what fall-
backs are needed.

Life is actually worse: designs are seldom con-
sistent in terms of font usage, color application, (in-
terline) spacing, layout and structure. But these are
the cornerstones of ConTEXt and that means that
in such cases they are much of what ConTEXt pro-
vides (no big deal because we have hooks all over
the place).

11 Open type

At the same time we see OpenType fonts showing
up and these provide features that were not available
and/or were distributed over multiple fonts. On the
one hand, these (often Unicode) base fonts are great,
especially when used with a modern TEX implemen-
tation. Quite often I get specifications in a way that
indicates that the designer thinks in terms of her/his
application. For instance, when 10 pt is specified, in
most cases 10 bp (or PostScript points) are meant.
And is an ‘H-height’ the same as an ‘X-height’? I’m
not sure that the abundance of features in Open-
Type fonts will be dealt with consistently and with
care.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 31

Hans Hagen

Here is an example: schoolbooks that teach kids
French are typeset using systems that come precon-
figured for English. Suddenly fonts have language-
related features and you can bet that these are used.
However, in the past, awareness of such features is
dim. How many schoolbooks use the proper French
spacing around colons and semi colons? And how
many use the right French quotation symbols? If it
does not happen today, how about the future? How
consistent will designs be? Just watch how suddenly
we see those relatively unknown ligatures (like st)
show up, simply because they are there. The fact
that these are language dependent does not bother
some users.

As it happens, support for languages in TEX has
always been quite strong. Users are aware of their
language needs, and TEX supports them. Actually,
in many areas TEX provides a lot of detailed control,
and this may conflict with less sophisticated control
driven by fonts. We cannot assume that all font
designers and foundries pay an equal amount of care
to each (often big) OpenType font.

The number of available math fonts is not large.
This means that when those are converted to Open-
Type and use the Unicode encoding, we can get rid
of many nasty tricks at the macro level. There will
be no more need for tricky family magic, nor for font
switches at unfortunate moments: we only have a
few fonts left. Because LuaTEX provides a way to
define virtual fonts on the fly, missing bits and pieces
can be filled in and style alternatives can be pro-
vided even if the math fonts themselves lack them.
Of course this only works out well if we are willing
to rewrite and/or extend parts of macro packages
substantially.

12 Control

So, in addition to the question whether we need
a full-blown font system, we need to ask ourselves
where we let the font drive the machinery (the font
controls TEX) and where we let TEX be in control
(TEX controls the font). In LuaTEX we (the LuaTEX
team) provide access to the font definition mecha-
nisms, which permits macro package writers to let
the font be the driving force. For instance, one can
define a font complete with ligature information and
let TEX do the job. But one can equally well bypass
this mechanism and process node lists (one of TEX’s
internal representations of the typeset text) by us-
ing special Lua code hooked into TEX. Or take the
mentioned kerning around French punctuation: this
can be a font property but also a matter of node pro-
cessing. Because most TEX users leave such details
to macro packages, one can expect both solutions to

show up. Instead of hard coding alternatives in the
TEX kernel, we just provide the machinery to macro
writers.

Recently I had to write a style for a project
and rewrite it many times because automated type-
setting suddenly forces those involved to pin down
designs. It’s often hardly a challenge for a TEX user
to identify the inconsistencies between different vol-
umes of a series of books (equally well one can iden-
tify systematic problems with TEX macros because
they show up each time). When reverse engineer-
ing an existing design inconsistencies creep in, and
quality control depends on which volume is taken
for comparison today. In this case it also happened
that the design of this series was based on a font
that was not only very incomplete, but also buggy.
Familiar characters were missing, names in the en-
coding vector were wrongly applied. So, we had to
come up with a special font encoding that in itself
was wrong with regards to the names used. This
is a bit of a nightmare because a different encoding
results in extra map files as well an extra instance
of hyphenation patterns, i.e. another format file.

In LuaTEX this can be done differently. There
one can add some code to the loader that takes care
of special remapping and filling in gaps with place-
holders. Of course this can be embedded in a higher
level user interface. I already have quite a lot of
experimental code marked to be turned into pro-
duction code some day.

13 Conclusion

When dealing with complex and/or very structured
documents we can benefit from a font system as cur-
rently found in ConTEXt. Users can be sure that
when they switch to another style or alternative,
that the system will follow.

But what about a font system for situations
where TEX has to compete with (or replace) desk-
top publishing? There we can roughly conclude the
following.

• We can stick to a simple font model: one size
for the main text, a few definitions for different
alternatives (regular, bold, italic, bolditalic) be-
cause this is what the designer has available.

• In addition we have to define a truckload of
fonts for all kind of elements (structure, orna-
ments, bits and pieces of the page body, cap-
tions, tables, etc.). We can stick to dumb font
switches since the (structural) editing tools used
don’t permit anything beyond the specs any-
way.

• Small caps, oldstyle numerals, inter-character
spacing in titling, and so on can be applied

32 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Do we need a font system in TEX?

when constructing an internal font representa-
tion or handling can be delayed to node pro-
cessing time. Depending on the quality of the
font, some tweaking needs to be done. It is still
open whether we treat them as font features or
as a property of a part of the text.

• Math is a different story. If dealing with third
party input, it’s often more a matter of clean-
ing up than of advanced font trickery. Unicode
math fonts may simplify our life but may as well
complicate it. But whatever solution we end up
with, more families are welcome. We need to be
prepared for exceptions (especially when deal-
ing with specialized math, schoolbook math)
and also need to keep in mind that TEX no
longer dominates this market or at least is fed
with input coming from word processors with
math editing capabilities.

• Advanced features like hz and protruding are of
course possible but will often be interpreted as
errors by QA people. Applying them in TEX is
not complex, but explaining them to designers
may be. Anyway, in most cases ragged right is
to be used, if only because designers don’t trust
systems to do a proper justification. Here TEX’s
25 year reputation of creating nice paragraphs
does not help much.

It goes without saying that a simple font sys-
tem will be faster than an advanced one normally
used in TEX. So, any time that we lose in pro-
cessing node lists, we may well gain back in a sim-
plified font system. On the other hand, life may
become more complex now that TEX engines pro-
vide more (distinctive) font related features, which
in turn may drive user demand into all directions
possible: I want these ligatures but not those! This
may be compensated for by the fact that we need to
load fewer fonts, and get rid of font encodings and
character/glyph fall-back trickery.

In retrospect, the way the plain TEX format de-
fines fonts is not that bad for most situations where
some third party is responsible for the overall doc-
ument design. The complication arises when one
writes manuals and needs to switch frequently be-
tween sizes and styles.

Actually many dirty tricks used in macro pack-
ages also result from the simple fact that one needs
to typeset user manuals about TEX, which means
that one has to deal with characters in special ways
which in turn may be reflected on the font system.

Of one thing there can be no doubt: the land-
scape of font usage is changing and TEX macro pack-
ages have to adapt.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 33

OpenType fonts in LuaTEX

Taco Hoekwater
http://luatex.org

Abstract

Since the start of February 2007, LuaTEX has supported the use of OpenType
fonts directly, without the need for separate metrics and font map files. This talk
will explain and demonstrate how this works in practice.

1 Introduction

This is an updated version of the paper that was in
the preprint. There has been considerable progress
in the time between the preprint (early April) and
now (early August). The current paper documents
the state of affairs in LuaTEX 0.10, the first public
beta.

2 OpenType fonts in LuaTEX

If you want to do typesetting with TEX, you have to
get the required font metric information from some-
where. METAFONT- or fontinst-based fonts typi-
cally come as a set of TFM and VF files, and for
those, LuaTEX behaves in a way that is backward
compatible with any other traditional version of TEX.

But loading metrics for OpenType (.otf) and
TrueType (.ttf and .ttc) fonts can also be done
through a Lua extension interface, in which case
there is no need for TFM, VF, ENC, and MAP files.
Instead, you (or more precisely, a macro package
writer) has to write a bit of Lua code.

There are two separate parts to this process,
that will be explained in turn in the next para-
graphs:

1. You have to make LuaTEX use the Lua exten-
sion interface instead of the compatibility mode
metrics loading, by setting up a Lua callback.

2. You have to write the necessary Lua code to
make it possible for LuaTEX to use the Open-
Type fonts you have installed.

3 Font definitions through Lua callbacks

Installing ‘callbacks’ is one of the most important
concepts in LuaTEX. A callback is what we call
the situation whereby LuaTEX is instructed to run
a user-supplied Lua function instead of a bit of in-
ternal compiled code. A few dozen of these intercep-
tion points are defined at this time, and they have
all been given names.

You install a callback by connecting a Lua func-
tion to one of these names. For this purpose, there
is a predefined ‘register’ Lua function provided. The

most relevant callback for font definitions is named
‘define font’, and it could be set up like so:

\directlua0 {

function read_font (name, size, fontid)

local file = kpse.find_file (name, ’tfm’)

local metrics = font.read_tfm (file, size)

return metrics

end

callback.register(’define_font’, read_font)

}

This example first defines a function to do the work
(read_font), and then registers that function as a
callback. The function does essentially the same
as what TEX would have done without any call-
back. It uses the functions kpse.find_file and
font.read_tfm, which are predefined helper func-
tions.

When LuaTEX next runs into a \font com-
mand, it will gather the user-supplied font name
and size specification, and pass those values on to
the Lua function read_font as the first two argu-
ments. The task of read_font is to create a data
structure (in Lua this is called a ‘table’) that con-
tains the metric information needed for typesetting
in the font name loaded at size size.

The internal structure of the Lua table that is
to be returned by read_font is explained in detail
in the LuaTEX manual. Fortunately for the length
of the example, that structure is a super-set of the
structure returned by font.read_tfm, so it can just
be passed along without further manipulation.

In the example you can see that there is a third
argument to read_font, ignored in this case. Lua-
TEX also passes the internal id number of the font
that is going to be defined. This is because, in macro
packages, it is not abnormal for the same font to be
defined more than once using the same name and
size specification, so instead of returning a Lua ta-
ble defining the metrics for a font, it is also legal to
return just a number, referencing the fontid of an
already defined font. That way, you could set up a
lookup table of already defined fonts.

34 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

OpenType fonts in LuaTEX

4 Handling OpenType fonts

There is a Lua module included in LuaTEX that can
be used to read a font’s metrics from the disk, using
the font reading code from the open source program
FontForge.

The contents of this module are available in the
Lua table named fontforge. Using it, the basic way
to get the metric information is like this:

function load_font (filename)

local metrics = nil

local font = fontforge.open(filename)

if font then

metrics = fontforge.to_table(font)

end

return metrics

end

This code first loads the font into program mem-
ory with fontforge.open, and then converts it to
a Lua table by calling fontforge.to_table.

The font file is parsed and partially interpreted
by the font loading routines from FontForge. The
file format can actually be any one of OpenType,
TrueType, TrueType Collection, CFF, or Type 1.

There are a few important advantages to using
this approach with a dedicated Lua module, com-
pared to having a single dedicated helper function
to read an OpenType font file:

• The internal font encoding is automatically pro-
cessed, so that the returned metrics table also
contains the Unicode encoding information for
all the included glyphs.

• Many OpenType features are pre-processed into
a format that is easier to handle than just the
bare feature tables would be.

• And looking at it from the other side: it is
still possible to completely alter any feature you
want to change, as nothing at all is hardwired
in the executable.

• PostScript-based fonts do not store the charac-
ter height and depth in the font file (in Type 1
fonts, this information is in the AFM file, in
CFF fonts it is not present at all). For CFF

fonts, this means that the character bounding
box has to be properly calculated, a task that
is handled internally by FontForge.

• In the future, it may be interesting to allow
Lua scripts access to the actual font program,
perhaps even creating or changing a font file
itself.

However, there is also a downside: the data
structure of the table returned by the OpenType
reading routines is very low-level and very close to
the internal format used by FontForge itself.

This means that it is not compatible with the
table structure required by the font definition call-
back, so some modifications to the structure are
needed before the table can be passed on to Lua-
TEX proper. This area is still under development.
We plan to provide a set of helper functions for this
task eventually but for the moment, this has to be
done by Lua code you write yourself.

To finish off this introduction, here is a small
peek into the table returned by fontforge.open.
What follows is a human-readable representation of
the ligature glyph for ‘fi’ in the font lmroman10-
regular.otf:

{

["boundingbox"]={ 27, 0, 527, 705 },

["lookups"]={

["ls_l_10_s"]={

{

["specification"]={

["char"]="f_i",

["components"]="f i",

},

["type"]="ligature",

},

},

},

["name"]="f_i",

["unicodeenc"]=64257,

["width"]=556,

}

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 35

Font-specific issues in pdfTEX

Hàn Thế Thành
River Valley Technologies
http://river-valley.com

Abstract

In this paper I try to give a summary of some font-related topics in pdfTEX. Some
of them are already described in the pdfTEX manual, such as font expansion and
margin kerning, some have been mentioned only in various places like relevant
mailing lists, README or example files coming with patches, and email exchanged
between people interested in a particular topic. This article attempts to put
everything into one place, hoping to make it easier to follow.

1 Introduction

A large part of the pdfTEX extensions is related to
font handling. Having an overview of all those font-
related issues is not always easy, since the pdfTEX
manual is a somewhat dry thing to read as a whole.
Apart from that, there are also things that are not
described in the manual yet. In this paper I will
try to give an overview of font extensions in pdfTEX.
Instead of listing all relevant primitives with their
description, I will write on particular topics that I
consider interesting to mention here.

2 Font expansion and margin kerning

Since these features have been mentioned many times,
I simply skip their description here and only give the
references to relevant sources: [1], [2].

LATEX users who want to try out these features
should start with the LATEX microtype package.
ConTEXt users should consult the ConTEXt manual
first.

Primitives relevant to font expansion:

• \pdfadjustspacing,

• \pdffontexpand,

• \efcode;

Primitives relevant to margin kerning:

• \pdfprotrudechars,

• \lpcode,

• \rpcode.

All those primitives are described very well in
the pdfTEX manual.

3 Additional micro-typographic features

Apart from the above features, pdfTEX has some
additional support for finer control on interword
spacing and kerning. The microtype package pro-
vides an easy access to those features. Furthermore,

the microtype manual [1] has a very good introduc-
tion to these additional features, which I copy here
for convenience (slightly edited):

. . . On the contrary, pdfTEX was extended with
even more features: version 1.30 introduced the
possibility to disable all ligatures, version 1.40 a
robust letterspacing command, the adjustment of
interword spacing and the possibility to specify
additional character kerning.

Robust and hyphenatable letterspacing (track-
ing) has always been extremely difficult to achieve
in TEX. Although the soul package undertook
great efforts in making this possible, it could
still fail in certain circumstances; even to adjust
the tracking of a font throughout the document
remained impossible. Employing pdfTEX’s new
extension, this no longer poses a problem. The
microtype package provides the possibility to
change the tracking of customisable sets of fonts,
e. g. small capitals. It also introduces two new
commands \textls and \lsstyle for ad-hoc let-
terspacing, which can be used like the normal text
commands.

Adjustment of interword spacing is based on
the idea that in order to achieve a uniform grey-
ness of the text, the space between words should
also depend on the surrounding characters. For
example, if a words ends with an ‘r’, the follow-
ing space should be a tiny bit smaller than that
following, say, an ‘m’. You can think of this
concept as an extension to TEX’s ‘space factors’.
However, while space factors will influence all
three parameters of interword space (or glue) by
the same amount — the kerning, the maximum
amount that the space may be stretched and
the maximum amount that it may be shrunk —
pdfTEX provides the possibility to modify these
parameters independently from one another. Fur-
thermore, the values may be set differently for
each font. And, probably most importantly, the
parameters may not only be increased but also

36 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

Font-specific issues in pdfTEX

decreased. This feature may enhance the appear-
ance of paragraphs even more. Emphasis in the
last sentence is on the word ‘may’: this extension
is still highly experimental — in particular, only
ending characters will currently have an influence
on the interword space. Also, the settings that
are shipped with microtype are but a first ap-
proximation, and I would welcome corrections
and improvements very much. I suggest reading
the reasoning behind the settings in section 15.8.

Setting additional kerning for characters of a
font is especially useful for languages whose ty-
pographical tradition requires certain characters
to be separated by a space. For example, it is
customary in French typography to add a small
space before question mark, exclamation mark
and semi-colon, and a bigger space before the
colon and the guillemets. Until now, this could
only be achieved by making these characters ac-
tive (for example by the babel package), which
may not always be a robust solution. In contrast
to the standard kerning that is built into the fonts
(which will of course apply as usual), this addi-
tional kerning is based on single characters, not
on character pairs.

The possibility, finally, to disable all ligatures
of a font may be useful for typewriter fonts.

The microtype package provides an interface
to all these micro-typographic extensions. All
micro-typographic aspects may be customised
to your taste and needs in a straight-forward
manner.

3.1 Letterspacing

We all probably know what letterspacing is and re-
lated problems when using it with TEX. The robust
and reliable way to letterspace a font in TEX is to
create a virtual font which inserts a fixed kern around
each character. The famous fontinst package can
be used to do this, however, it must be done for each
font we want to letterspace. Furthermore, fontinst
is not a tool for everybody.

There have been several attempts in pdfTEX to
solve this problem: one idea was to insert an ex-
plicit kern before and after each character, when the
character is typeset by TEX, roughly like typing i. e.
\kern.1em X\kern.1em for each character ‘X’. This
approach had several problems; the most serious one
is that it disabled hyphenation. Another attempt
used implicit kerns instead of explicit ones; while
this method allowed hyphenation, it caused other
problems. In the end, a method that generates a vir-
tual font on-the-fly was implemented. It works very
much like the way one uses fontinst to letterspace
a font, but it is done automatically in pdfTEX, at
run time. A minimal example looks like this:

\font\f=cmr10
\letterspacefont\fx=\f 100
\fx <letterspaced text>

The above commands create a letterspaced ver-
sion of \f (which is cmr10) as a virtual font. This
virtual font is accessible to the user via the con-
trol sequence \fx. Each character from \fx is type-
set using its counterpart from \f, plus a kern of
50*quad(\f)/1000 at each side.

There are some issues with compensating for the
kern at the beginning/end of letterspaced text. Since
the kern amount is known, it is possible to compen-
sate that kern manually if needed, for example when
using \fx inside an hbox.

In a multiple-line paragraph, one can compen-
sate for the kern at the margin using margin kerning
like follows:

\pdfprotrudechars=2
\newcount\n
\n=0
\loop

\lpcode\fx\n 50
\rpcode\fx\n 50
\advance\n 1

\ifnum\n<256\repeat

This is still not perfect, since you lose the effect
of margin kerning (now all marginal kerns are the
same, so the margins are aligned mechanically as
in the case without margin kerning). If you want
to have both letterspacing and margin kerning, you
need to compensate for the margin kern as follows,
given that you have set up margin kerning for \f
already:

\newcount\n
\newcount\m
\n=0
\loop

\m=\lpcode\f\n
\advance\m 50
\lpcode\fx\n \m
%
\m=\rpcode\f\n
\advance\m 50
\rpcode\fx\n \m
%
\advance\n 1

\ifnum\n<256\repeat

The current version of pdfTEX (1.40.3) still has
a problem when using letterspacing with font expan-
sion. This problem will be fixed soon (not hard to
do).

Relevant primitive: \letterspacefont

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 37

Hàn Thế Thành

3.2 Adjustment of interword spacing

TEX treats all interword spaces from input text as
glue items, while sometimes people need finer control
over interword spaces, since this is one of the most
important elements in paragraph building. Instead
of describing the topic using my own words, I find
it more convenient to quote the conversation via
email between me and people interested in this topic
(Frank Mittelbach and Ulrich Dirr).

Frank: what TEX is missing is a way to kern with
the white space between words. The Adobe fonts
and others might have such kerns but they have
been written for software which does use “space
chars” not glue.

Thành: I also would like to see the space character
to be handled in a different way than it is now.
Turning it into glue is probably not the best so-
lution. It disallows fine adjustment of interword
spaces to make them optically even rather than
mechanically. Kerning with respect to the space
can be used to improve this, but it is certainly not
sufficient. Moreover, the boundary char mecha-
nism has its limitations.

Frank: It would be a very radical step if one would
introduce real space characters which (perhaps)
just before typesetting are replaced by glue not
early on. But again, we have now stayed and
worked with TEX as it is for 20 years and if cer-
tain areas and their underlying ideas prove to
be insufficient, why not experiment with alterna-
tives?

However one other comment, if you look at
what some typographers write about making the
white space visually even, it make me wonder if
you really can do much good about having “kerns”
if you then end up with

<last char><kern><interword glue><kern>

<first char next word>

i. e. with the middle part stretching or shrinking
at a constant rate, or if you really need <glue>

adjustments here.
At least this is what some typographers claim:

that if you need to shrink the interword glue that
this should not be a constant factor as done with
TEX but rather differing depending on the letter
shapes at each side of the interword space.

Ulrich: I have had a short conversation with Frank
(Mittelbach) about an extension/improvement
of the paragraph building algorithm. First I
thought it would be maybe possible with the
help of \sfcode or \spaceskip etc. but this will
not really work.

The idea is — analogous to the tables for ex-
pansion and protrusion — to have tables for opti-
cal reduction/expansion of spaces in dependence
of the actual character so that the distance be-
tween words is optically equal.

When reducing distances the (weighting) or-
der is:

• after commas

• in front of capitals which optically have
more room on their left side, e.g., ‘A’, ‘J’,
‘T’, ‘V’, ‘W’, and ‘Y’

• in front of capitals which have circle/oval
shapes on their left side, e.g., ‘C’, ‘G’, ‘O’,
and ‘Q’

• after ‘r’ (because of the bigger optical room
on the righthand side)

• before or after lowercase characters with
ascenders

• before or after lowercase characters with
x-height plus descender with additional op-
tical space, e.g., ‘v’, or ‘w’

• before or after lowercase characters with
x-height plus descender without additional
optical space

• after colon and semicolon

• after punctuation which ends a sentence, e.g.
period, exclamation mark, question mark

The order has to be reversed when enlarging
is needed.

Note: The principle of how this works can be
seen in figure 1, where the numbers indicate the
preference/order of each interword space when it
needs to be stretched/shrunk.

Figure 1: Interword spaces should be changed with
respect to the adjacent characters.

Thành: I remember discussing this issue long time
ago, when Frank also got involved. The problem
with interword spaces in TEX is that Knuth de-
cided to treat interword spaces like glue, while
IMHO it needs special care because this is one
of the most important factors in building a para-
graph and hence we need a way to distinguish it
from other glues.

From the experience with margin kerning, I
think we should better make some small steps
to see whether it makes sense, rather than start
heavily changing the paragraph building engine.

Thành: I implemented an approach to allow more
control on interword space as we discussed before.
Sorry for the long delay.

I introduced three primitives:
\knbscode — kern before space code,

38 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

Font-specific issues in pdfTEX

\stbscode — stretch before space code,
\shbscode — shrink before space code.

These primitives have the same syntax as
\rpcode etc., i. e.

\knsbcode\font‘\.=200

means that if a period sits before an interword
space (glue), then the interword glue will be in-
creased by an amount of 1em*200/1000, i. e. the
value is given in thousandths of an em as in the
case of \rpcode etc. \stbscode and \shbscode

are similar but adjust the stretch/shrink compo-
nents of the interword glue.

Adjusting the interword glue only has effect
when the space factor of the previous char is
different from 1000.

For now I leave out ligatures and the case
after the interword glue.

A minimal test file might look as follows:

\font\f=cmr10

\pdfadjustinterwordglue=1

\sfcode‘\.=1000

\knbscode\f‘\.=100

\shbscode\f‘\.=200

\stbscode\f‘\.=300

\f <text>

\bye

The above example would adjust every in-
terword glue following a period by adding an
amount of .1em, .2em and .3em to the glue width
resp. shrink resp. stretch component. The prim-
itive \pdfadjustinterwordglue is to switch the
feature on/off at the global level, and setting
\sfcode to 1000 is required to activate this fea-
ture (so they do not interfere with each other).

These features are available in pdfTEX since ver-
sion 1.40, and are also supported by the microtype
package. However, the predefined values are not yet
optimal—probably more experimenting is needed
to tune the parameters to get a good result. Please
refer to the microtype documentation for further
details.

There is no support to adjust the interword
space with respect to the next character. The main
reason is that it is not easy to do in current pdfTEX
code. Hopefully when LuaTEX is ready, this can be
changed.

Relevant primitives:

• \knbscode— “kern before space” code,
• \stbscode— “stretch before space” code,
• \shbscode— “shrink before space” code,
• \pdfadjustinterwordglue—turns on/off the

feature.

4 Additional kerning

This is a feature that allows inserting a kern before

or after a certain character from a font. A minimal
example looks like this:

\font\f=cmr10
\pdfprependkern=1
\knbccode\f‘\:=500
\f <text>

The above example prepends a kern of .5em
before each colon. It is also possible to append a
kern after a character:

\font\f=cmr10
\pdfappendkern=1
\knbccode\f‘\;=100
\f <text>

These features are also supported by microtype
already. However these new features are not flexible
enough to get rid of the need to have active characters
in babel/french, as shown in this email by Daniel
Flipo:

I have heard about new kerning facilities coming
with pdfTEX1.40 and started playing with them
(through the microtype interface, latest version
1.37 2006-09-09 with \betatrue). I would love
to get rid of the four active characters (:;!?) in
babel/frenchb.

Unfortunately, after discussing with Robert
(in copy), it appears that these new kerning fa-
cilities do not quite fulfil what would be needed
for French. I’d like to make a summary of the
required specifications in case you can think of
a possible solution for future developments of
pdfTEX.

1) People who type correctly in French, are
used to type a (normal) space before ‘;:!?’. pdfTEX
1.40 can add a kern before them, but cannot do an
\unskip to remove the typed space. It is hopeless
to try to convince French writers to change their
habits and refrain from entering a space before
‘;:!?’ ;-)

frenchb currently handles the four (active)
punctuation chars ;:!? in two different ways:

—with the option \NoAutoSpaceBeforeFDP,
frenchb replaces the normal space with an un-
breakable one of the correct width, if and only

if a space (normal or ‘ ’) is present before ‘;:!?’.
If no space is typed, frenchb does nothing and
lets the punctuation mark stick to the preced-
ing word. This avoids a spurious space in URLs
(http://...), Windows paths (C:/path), etc.

— with the option \AutoSpaceBeforeFDP (the
default), you can carelessly type any of bonjour!,
bonjour ! or even bonjour~!; frenchb will al-
ways output it correctly—but then you cannot
complain if you get a spurious space in URLs.

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 39

Hàn Thế Thành

2) Another (minor) issue occurs with ‘:’. Again,
there are currently two different options in frenchb:

— Most people agree with our « Imprimerie
nationale » that ‘:’ should be surrounded by two
spaces of the same length, the first one being
unbreakable, while the other three (;!?) get a thin
space (kern in TEX) before and a normal space
(glue) after. That’s what frenchb does by default.

—Some typographers argue that ‘:’ should
be treated like the other three, so an option is
provided in frenchb to satisfy them.

AFAIK pdfTEX 1.40 can add a kern before a
character but not a glue, so the spaces around ‘:’
might look asymmetrical in the first case if TEX
stretches the second one.

3) Guillemets are less problematic because
they are currently entered with commands (\og
and \cg), not as characters. Spaces after the
opening ‘«’ and before the closing ‘»’ should
be unbreakable but stretchable (currently these
are .8\fontdimen2 plus .3\fontdimen3 minus

.8\fontdimen4). Moreover, a kern after ‘«’ breaks
hyphenation of the following word as Robert al-
ready pointed out on the pdfTEX bug list.

So the current situation still needs improvement,
which is likely left to LuaTEX.

Relevant primitives:

• \knbccode— “kern before character” code,

• \pdfprependkern — toggle prepending of kerns,

• \knaccode— “kern after character” code,

• \pdfappendkern— toggle appending of kerns.

5 Support for ToUnicode map

ToUnicode map is a concept in the PDF specification
that allows mapping from character codes in a font to
corresponding Unicode numbers. The purpose is to
allow PDF browsers to perform properly operations
related to text contents like search, cut and paste.
Support for this feature was added mainly to make
PDF files produced with the MinionPro package [3]
searchable. If you are having trouble with PDF pro-
duced by pdfTEX not being searchable with some
fonts, give this feature a try (N. B.: this feature only
works for Type 1 fonts). A minimal example:

\input glyphtounicode.tex
\pdfgentounicode=1
<text>

If glyphtounicode.tex is not available in your
TEX distribution, it can be downloaded from [4].
This file covers most common cases. If you want to
add your own entries, here is an example how it can
be done:

Suppose that you have a font which has another
variant of letter ‘A’, named e. g. ‘myCoolA’, and

you wish that glyph to be found when you search
for ‘A’. Then you add to glyphtounicode.tex (or
insert somewhere in your TEX file) a line saying:

\pdfglyphtounicode{myCoolA}{0041}

which means that the glyph with name ‘myCoolA’
has the corresponding Unicode number 0041 (which
is the same as for the normal ‘A’). This would make
your ‘myCoolA’ behave like ‘A’ regarding operations
like search, cut and paste.

6 Support for subfont

TEX was designed to work with 8-bit fonts only. CJK

languages however use fonts with thousands of glyphs.
To make those fonts work with TEX, a trick called
‘subfont’ was developed by Werner Lemberg for his
CJK package. The subfont technique splits a huge
font into smaller fonts, each of them containing up
to 256 characters.

Explaining the subfont mechanism is out of
scope for this paper, so I simply refer people with
further interest in this topic to [5]. Here I try to give
a simple example.

Suppose we want to use the Bitstream Cyberbit
Unicode font. This font has about 30 000 glyphs
and covers many languages. The fontfile is called
cyberbit.ttf. We want to use this font to typeset
CJK languages written in UTF-8 encoding.

The first step is to generate the TFM subfonts:

ttf2tfm cyberbit.ttf cyberb@Unicode.sfd@

The ttf2tfm program is part of the FreeType 1
bundle; it comes with all major TEX distributions
like TEX Live or MiKTEX. Unicode.sfd is a subfont
definition that comes with the CJK package. It is
basically a text file containing instructions how to
split a large font into subfonts. The above command
will produce a bunch of TFM files with names in
form cyberbxx.tfm, where xx are two lowercase
hexadecimal digits. Copy the TFMs to a location
where pdfTEX can find them.

The next step is to tell pdfTEX about the sub-
fonts by adding to your TEX file a line saying:

\pdfmapline{+cyberb@Unicode@ <cyberbit.ttf}

The effect of the above command is that pdfTEX
will be able to pick up the right glyphs for those TFMs
from cyberbit.ttf and embed them as subsetted
TrueType fonts in the PDF output. So it is no longer
necessary to convert cyberbit.ttf to Type 1 sub-
fonts and embed them, or to run ttf2pk. A complete
minimal example:

\documentclass{article}
\usepackage{CJK}
\pdfmapline{+cyberb@Unicode@ <cyberbit.ttf}

40 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

Font-specific issues in pdfTEX

\DeclareFontFamily{C70}{cyberbit}
{\hyphenchar\font -1}

\DeclareFontShape{C70}{cyberbit}{m}{n}
{<-> CJK * cyberb}{}

\begin{document}
\begin{CJK}{UTF8}{cyberbit}
\CJKnospace
<some CJK text in UTF-8 encoding>
\end{CJK}
\end{document}

There are many details that are not mentioned
here, however the above example should give a good
feeling about what can be done.

7 runpdftex — a wrapper to run pdfTEX

This section is not about a font-related topic in
pdfTEX, but it is also relevant to pdfTEX so I take
this opportunity to mention it.

runpdftex is a wrapper that allows applications
to call pdfTEX via a well-defined API in C. The main
intention is to hide TEX-specific details from the
application that calls pdfTEX to generate a PDF file.
A developer can call pdfTEX to convert a TEX file
to PDF using library calls that are robust, easy to
understand and use, and take care of error handling.
This way, a Web developer who is not a TEX expert
can set up a system that uses pdfTEX to create PDF

output on-demand, for example some report, form,
timetable or bank statement. The Web developer
can ask or hire a TEX guru to write a TEX file or
template that produces the required output.

This is still an experimental project, however
I hope it will make pdfTEX more friendly to Web
developers who need to create PDF on-demand but
are too scared by TEX’s complexity to give it a try.
The API is available only for C at the moment, but
support for other languages will be added. This
wrapper has been designed with pdfTEX in mind,
but can be used to run other TEX variants as well,
for example LuaTEX when it is ready. For further
information about runpdftex see [6].

References

[1] The manual of the LATEX microtype
package by Robert Schlicht is available at
http://ctan.org/tex-archive/macros/
latex/contrib/microtype/microtype.pdf

[2] Hàn Thế Thành, Micro-typographic extensions
of pdfTEX in practice, TUGboat, vol. 25
(2004), no. 1—Proceedings of the Practical
TEX 2004 Conference, pp. 35–38. (Online at
http://www.tug.org/TUGboat/Articles/
tb25-1/thanh.pdf)

[3] The MinionPro package containing LATEX
support for Adobe MinionPro fonts is available
at http://www.ctan.org/tex-archive/
fonts/minionpro

[4] Definitions for ToUnicode entries can be
downloaded from http://pdftex.sarovar.
org/misc/glyphtounicode.zip

[5] The CJK package for LATEX is available at
http://cjk.ffii.org/

[6] The runpdftex wrapper is available at
http://runpdftex.sarovar.org/

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 41

Briefly from the history

The motto quoted in the abstract, which states in
the condensed form the final lesson I learned during
the long (never finished) way to understand typo-
graphic quality, would be sufficient. Nevertheless I
try to give a brief summary of this rather old his-
torical problem which (as far as I know) was never
touched in our Grand Wizard’s creativity (at least
not in the five books of the Computer & Typesetting

series, I suspect).
It is believed that usage of accents in Czech or-

thography comes from Jan Hus (sometimes quoted
as John Huss in English literature) or from his cir-
cle (the famous tractate De orthographia Bohemica

which is also usually designated to Jan Hus origi-
nated around 1406). It solves the problem of how
to write consonants which do not exist in the Latin
alphabet: not as a pair of letters (digraph) but with
only one letter, as close as possible to the original
one, with some diacritic sign (caron or háček for soft
consonants and acute for long consonants).

The accent for softening appears often as a dot,
then a hook, not exactly in the same shape as to-
day — in many cases it is closer to the shape of the
hook of letters ť or ď:

Note that the original form of dot still exists in
Polish ż and also that the original digraphs sz and
cz are still in use there.

42 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Those obscure accents . . .

Karel Horák
Institute of Mathematics, Academy of Sciences, Praha

horakk (at) math dot cas dot cz

Abstract

»A special shape of a háček, similar to an apostrophe, is used in Czech and Slovak
with ď, ľ, Ľ and ť characters. It could be derived from the apostrophe or comma,
but it should be more humble, smaller, and, importantly, narrower. Generally,
the symbol should draw less attention than the comma. This special form could
also take a straight shape similar to acute; this usually occupies less space than
an apostrophe-like form and it does not cause as many problems in kerning.
Vertically, the symbol is most often placed towards the ascender line, but its
position does not necessarily have to be constant (with ť, it is often necessary
to place the accent higher that with the other characters). With capital Ľ, it
is desirable that the accent exceeds the height of the character. This is mostly
equivalent with justifying the upper edge of the accent to the ascender line.«

[DIACRITICS, a project by typo.cz and designiq.cz]
An excursion into history with many examples of good, bad and ugly solutions.

It should be noticed that black letters (frak-
tur) were widely used in those times for typesetting.
And for many years, types were often not created
in the country but brought from abroad. Black let-
ters were used in printing until the end of 18th cen-
tury. Roman letters were used rarely, mostly in ti-
tles only. With the exception of Comenius’ book
published 1659 in Amsterdam the first Czech book
printed in roman letters appears only in 1738.

One exception is shown in Comenius’ manu-
script of Didactica (Leśno 1627–32):

The change from blackletters to old good roman
types came in Bohemia only with a national revival.
Roman types served as a symbol of liberation from
the German influence. But the problem with appro-
priate accents survives, as one of the first primers
(spelling-books) clearly shows.

The name caron seems to be more popular in
typography, while háček is widely used in linguistics.
In Czech, háček means the diminutive form of ‘little
hook’. On the other hand, the etymology of the word
caron is quite unclear (there is an idea that it may
derive from a fusion of the words caret and macron).
In various languages which use this accent, caron is
called ‘softener’ or ‘palatalization mark’, ‘little roof’
or even ‘hat’ (in Finnish).

Today the caron is also used by the Slovaks,
Slovenians, Croats, Bosnians; Serbs and Macedo-
nians (when romanizing the official Cyrillic); Upper
Lusatian and Lower Lusatian Sorbs, Lithuanians,
Latvians, and Belarusians (formerly in the Latin
alphabet, now only in romanization of the official
Cyrillic).

Writing and printing carons

In printed text, the caron combined with letters t,
d, l, and L is reduced to a small stroke. This usu-
ally does not happen in handwritten text. Although
the stroke can look similar to an apostrophe, there
should be a significant difference in kerning.

Using apostrophe in place of a caron looks quite
ugly though it can be still found in many contem-
porary examples, such as:

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 43

Those obscure accents . . .

On the other hand, in some cases apostrophe
is used as sign of ‘palatization’ in transliteration of
some languages, e.g. Russian.

Virtual fonts. Thanks to our Grand Wizard, vir-
tual fonts provide an easy method to prepare a font
with the necessary accents, with of course the palatal
hook serving as an exception confirming the rule . . .

Unfortunately most “localized” versions of commer-
cial fonts distributed not very long ago were pre-
pared in much the same way: i.e. ľ as l with apostro-
phe being ‘close enough’. One can see the difference
with the text set in metal type

and one of the first electronic versions of Baskerville

The quality of system fonts in Windows is not much
better:

 žlu
oučký k�� úp�l �ábelské ódy! 1234567890

 žlu
oučký k�� úp�l �ábelské ódy! 1234567890

 žluťoučký kůň úpěl ďábelské ódy!

 žluťoučký kůň úpěl ďábelské ódy!
(all lines were printed to a PostScript file from the
Windows font viewer). Not understanding the text
one could guess that there are more than five words
in the line! Perhaps all the effort of the best Czech
typographers including Vojtěch Preissig, Karel Dy-
rynk and Oldřich Menhart was not forgotten?

The above first example of a Goudy font with Preis-
sig accents may look little bit extravagant, mainly
the rather original ring of uppercase U which was
eventually not generally accepted, but in a more
moderate form can be also found in Menhart’s Man-
uscript. His solution for accents is usually taken as
one of the best in Czech typography:

Finally, everyone can be extremely pleased with
the results of František Štorm whose Storm Type
Foundry brought during the last decade many beau-
tiful fonts for moderate price (with the rise of Open-
Type perhaps one can fortunately forget about his
quite unusable afm files). I find his accents the best!

Příliš žluťoučký kůň úpěl ďábelské ódy! 1234567890

Příliš žluťoučký kůň úpěl ďábelské ódy! 1234567890
Příliš žluťoučký kůň úpěl ďábelské ódy! 1234567890

Příliš žluťoučký kůň úpěl ďábelské ódy! 1234567890

Příliš žluťoučký kůň úpěl ďábelské ódy! 1234567890

His variant of Times in the last line is quite original
and together with another rather good variant of
Times from Macron, which sells Adobe fonts:

žluťoučký kůň úpěl ďábelské ódy!

could serve as a good inspiration for the TEX Gyre
project whose Termes from the narrow point of view
of ‘palatal hook’ (the next fourth line) seems to be
less acceptable . . .

žluťoučký kůň úpěl ďábelské ódy!
žluťoučký kůň úpěl ďábelské ódy!
žluťoučký kůň úpěl ďábelské ódy!
žluťoučký kůň úpěl ďábelské ódy!

On the other hand Pagella is much more accept-
able than the following two versions of Palatino —

44 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Karel Horák

the first is from the Windows fonts directory, and
the other from the older Czech localization of Adobe
Palatino:

���	
�	������������������������
 žluťoučký kůň úpěl ďábelské ódy!

Many other well-localised fonts of Adobe can be
seen at [6].

Inspired by the ambitious and promising TEX
Gyre Project I humbly started some basic attempts
with the Utopia family, which also belongs to the
group of freely available fonts of Ghostscript and
TEX installations. I have liked to use Utopia for
typesetting for a very long time (having previously
implemented accented letters via virtual fonts gener-
ated with J. Zlatuška’s program accents). I decided
to try the following strategy:

• use Petr Olšák’s program a2ac which adds com-
posite characters into an afm file (of course with
quoteright instead of appropriate accent);

• use t1tidy, a small and rather old program
(its version from [7] works only under the old
DOS) which is able to transform composites in
a Type 1 program into real characters;

• edit the shape and placement of ‘caron’ with
help of Fontographer by hand;

• convert the result with MT1 package.

Acknowledgement. Many thanks to Bogusław —
not least for his idea that this year is an appropriate
time to celebrate 600 years of introducing accents
into our languages . . .

References

1. Mirjam Bohatcová & kol.: Česká kniha v pro-
měnách staletí (Czech book on changes over the
centuries, in Czech), Panorama, Praha, 1990.

2. Oldřich Hlavsa: Book of type and design (Ty-
pografická písma latinková, in Czech), SNTL,
Praha, 1960.

3. Bogusław Jackowski: Latin Modern fonts at the
eleventh hour, talk at CSTUG meeting, Brno,
26 November, 2005.

4. Písmo ve výtvarné výchově (Types in Lessons
of Aesthetics, in Czech), textbook for pedagogic
faculties, SPN, Praha, 1989.

5. Karel Stejskal, Petr Voit: Illuminated manu-
scripts of the Hussite age (in Czech, English
summary), National Library of Prague, Grafit,
Praha, 1990.

6. www.caron.cz/pisma/pisma.html

7. fonts/utilities/t1tools/t1tidy on CTAN

Creation of a PostScript Type 1 logo font with MetaType 1

Klaus Höppner
Haardtring 230 a
64295 Darmstadt
Germany
klaus dot hoeppner (at) gmx dot de

Abstract

MetaType 1 is a tool created by Bogusław Jackowski, Janusz Nowacki, and Piotr
Strzelczyk for creating PostScript Type 1 fonts. It uses METAPOST, t1utils and
some AWK scripts to start from a METAPOST source with some special macros,
resulting in the AFM, TFM and PFB files needed to use the font as any other
PostScript font.

MetaType 1 was used to create the Latin Modern fonts, derived from Com-
puter Modern fonts but including many more accented characters and nowadays
part of most TEX distributions. Other new fonts such as Iwona and Kurier have
also been created by the developers of MetaType 1.

I came into contact with METAPOST when I wanted to convert an existing
logo font from METAFONT to PostScript Type 1. Unfortunately there doesn’t
yet exist a tutorial or cookbook for using MetaType 1. So I started to play with
the example fonts supplied as part of MetaType 1 and to read the comments in
the source. This tutorial will give an example and the lessons I learned.

1 Introduction

When Donald E. Knuth invented TEX, he also cre-
ated his own description language for high quality
fonts. It was named METAFONT. So the process
from a TEX source to some paperwork was as fol-
lows: Compile the TEX source to get a DVI file that
contains references to the fonts that were used in the
document — in fact the only thing that TEX knows
about a font is its metrics. To produce the docu-
ment on paper, the DVI driver invoked METAFONT

(the program) to convert the METAFONT source of
the font, i. e. the geometrical description of the font
outlines, to a bitmapped font suited for the resolu-
tion and technical details of the printer by using the
METAFONT mode for this special printer.

While this approach works fine if you work
alone and just send your documents to your personal
printer, it has some disadvantages if you want to
exchange documents electronically. Normally, dis-
tributing DVI isn’t the best idea, since it requires
that the recipient has a TEX system installed includ-
ing all fonts that were used in your document — not
to mention any graphics included in your document.
So in most cases you will send a PostScript file or
nowadays a PDF file. In this case, all the fonts from
METAFONT sources will be embedded as bitmapped
PostScript Type 3 fonts. When the recipient prints
your document, it may look fine, but it may look
poor if the METAFONT mode used to create the bit-

mapped font didn’t match the printer, and the doc-
ument will probably look very poor on the screen
(especially in old versions of Acrobat Reader).

So when exchanging documents, it is preferable
to embed the fonts as outline fonts. For these, the
usual format used in the TEX world is PostScript
Type 1 (though this is gradually being replaced by
OpenType). The Type 1 format uses a subset of the
well established PostScript language.1

Meanwhile, most of the fonts used in the TEX
world are available as PostScript Type 1 fonts, start-
ing with the Type 1 version of Knuth’s CM fonts up
to the Latin Modern fonts that augment CM with a
complete set of diacritic characters.

2 MetaType 1

MetaType 1 is the tool that was used to create the
Latin Modern fonts from the METAFONT sources of
CM fonts, and for the creation of completely new
fonts such as Iwona.

MetaType 1 relies on METAPOST, a variant of
METAFONT producing small pieces of PostScript as
output, written by John Hobby. Bogusław Jackow-
ski, Janusz Nowacki, and Piotr Strzelczyk wrote a
set of METAPOST macros and added some AWK
scripts to create the input files that can be con-

1 It is sometimes said that Type 1 fonts are outline fonts
while Type 3 are bitmap fonts. That’s not true, since Type 3
fonts may comprise both outlines and bitmaps.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 45

Klaus Höppner

verted to Type 1 with t1utils. Thus, one advantage
of MetaType 1 is that it uses a source format that is
very similar to the old METAFONT sources.

3 Our example

I came into touch with MetaType 1 when I wasn’t
satisfied with the DANTE logo being typeset from
the old METAFONT source with all the disadvan-
tages mentioned above. So I wanted to give Meta-
Type 1 a try to convert the DANTE logo font into
a PostScript Type 1 font.

Fortunately, the DANTE logo font contains just
the characters needed to set the logo:

DANTE
So, it was just five characters for which the META-
FONT source had to be made suitable to be pro-
cessed with MetaType 1.

Unfortunately, I found out that the available
documentation for MetaType 1 was rather limited:
articles from conference talks [1, 2], the commented
source for the MetaType 1 macros and two sample
fonts that are part of the MetaType 1 distribution.

But in the end, I found my way, and as you
will see, was able to create my own Type 1 font.
To make things a bit simpler for this tutorial, I will
show the steps I made for a small test font with just
two characters, “a” and “t”, simplified compared to
the original characters from the DANTE logo font.
Hopefully it will make the presented source more
understandable, even if you haven’t programmed in
METAPOST before.

3.1 Installation

Installing MetaType 1 was easy enough. I down-
loaded the ZIP archive file from CTAN [3] and copied
the files to the appropriate locations of my lo-
cal texmf tree: the .mp files into metapost/mt1,
the .mft files into mft/mt1, the .sty files into
macros/generic/mt1, and finally the .awk and
.dat files into scripts/mt1.2

The main problem in my case was that Meta-
Type 1 was shipped with a set of DOS batch files
that are used to create the fonts, but I was using
GNU/Linux. So I looked into these files to find out
what they do — in fact they were rather simple, just
calling METAPOST to produce a small PostScript
file for every glyph in the font and then using some
AWK scripts to merge and assemble these files into
a raw PostScript font that is converted into Post-

2 This location isn’t required since these files aren’t found
by the Kpathsea library, but instead via an environment vari-
able, but at least this location seemed to be meaningful.

Listing 1: First definition of “a” and “t”.

encode ("a") (ASCII "a");

introduce "a" (store+utilize) (0) ();

beginglyph("a");

path pa, pb, pc;

z0 = (round_hdist+radius,radius);

z1 = (round_hdist+2radius-strength,0);

pa = fullcircle scaled 2 radius shifted z0;

pb = reverse fullcircle

scaled (2radius-2strength) shifted z0;

pc = unitsquare xscaled strength

yscaled 2radius shifted z1;

Fill pa;

unFill pb;

Fill pc;

fix_hsbw(2radius+round_hdist+hdist,0,0);

endglyph;

encode ("t") (ASCII "t");

introduce "t" (store+utilize) (0) ();

beginglyph("t");

path pa, pb;

z0 = (hdist+3.5strength,1.5strength);

x1 = hdist + 2strength;

x2 = x1 + strength;

y1 = y2 = height;

z3 = (hdist,height-3strength);

pa = z1

-- (halfcircle rotated 180

scaled 3strength shifted z0)

-- (reverse halfcircle rotated 180

scaled strength shifted z0)

-- z2 -- cycle;

pb = unitsquare xscaled 5strength

yscaled strength shifted z3;

Fill pa;

Fill pb;

fix_hsbw(2hdist+5strength,0,0);

endglyph;

Script Type 1 with t1asm (part of t1utils). So sev-
eral immediate files and steps are involved, but the
workflow is straightforward. Eventually, I wrote a
small Makefile that does the job on a Unix system,
as shown in listing 3. From this point, I could cre-
ate the TFM, PFB and MAP files for a font with the
command make FONT=myfont.

I also manually created an FD file for using
the font in LATEX. These files could all be installed
into the appropriate locations inside a texmf tree.
Testing of a font is convenient in pdfTEX since one
can use a MAP file locally in a document using the
\pdfmapfile primitive, while for a real font one nor-
mally will install the MAP file using the updmap

script (or equivalent).

46 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Creation of a PostScript Type 1 logo font with MetaType 1

3.2 The first font

After these prerequisites were done, I could start
with my first font. I copied the file tapes.mp (a
sample font that is part of the MetaType 1 distri-
bution) into myfont.mp, found several settings with
font parameters starting with pf_info_*, changed
them where appropriate (font name, family, creator,
etc.) and kept the rest unchanged.

Then I defined the first two characters accord-
ing to the following rule:

Characters consist of closed paths, filled or

unfilled paths, where filled paths always turn

counter clockwise and unfilled paths always

clockwise.

So when designing the letter “a”, I defined an
outer circle that was filled and then an inner circle
to be unfilled and then a rectangular shape as ver-
tical stem. And the letter “t” was just built from a
vertical stem (with a hook at the right bottom) and
a horizontal bar. The definitions for the characters
are shown in listing 1.

Please notice in the definition of letter “a”, that
the path for the outer circle is a (counter clockwise)
fullcircle, while the inner circle is a reverse fullcircle,
since the former one is filled while the latter one is
unfilled. Filling and unfilling of the paths is done
by the macros Fill and unFill; these macros warn
you if the turning direction of the path is wrong.

Proofs for the glyphs are produced by compiling
the file myfont.mp with METAPOST. As you can
see, they really do look like an “a” and a “t”:

Now let’s see how the Type 1 font looks:

Something went wrong. After taking a closer
look, it becomes obvious. The regions where filled
paths overlap become unfilled. This is due to the
fact that filling of paths is done with an exclusive-or

fill, i. e. when filling a path, regions inside that are
already black become white. As this isn’t what we
want to achieve, we formulate another rule to keep
in mind:

Paths must not overlap!

Although it is possible with pure METAPOST to
find the intersection points of paths to remove over-
lapping parts, this tends to be painful. Since Meta-
Type 1 was used to attach cedilla and ogonek accents
to various characters in the extension of CM to LM,
this painful work of finding the outline of two over-
lapping paths was encapsulated into a macro that is
part of MetaType 1, named find_outlines. Let’s
see how this macro is utilized for the letter “a”:

find_outlines(pa,pc)(r);

Fill r1;

It finds the outline of the two overlapping paths pa

and pc, with the result written in the path array
r. The result is an array because the outline of the
paths may consist of more than one path, but in our
case it is just one path, accessible as r1. The same
is applied for the letter “t” (just the names of the
two paths slightly differ).

When filling the new outlines instead of the
overlapping paths, we now get the following result:

a t
So, obviously finding the outline path for the

“t” worked, but it failed for the “a”. Why? Be-
cause in the case of the “a”, both paths touch in one
point without crossing at the right side of the ver-
tical stem, i. e. they have an intersection point with
the same direction vector. This confuses the macro
that finds the outlines since it doesn’t know which
path to follow — and in this case it chooses wrong.
So, let’s bear in mind another rule:

Paths must not touch tangentially!

To resolve the problem, we use a simple trick:
Shift the vertical stem a tiny amount to the right,
so that the paths don’t touch anymore. In META-
POST you can use eps as a tiny positive number (in
mathematics, an arbitrary small number is usually
denoted by ǫ). The following lovely characters are
the result (the METAPOST definitions are shown in
listing 2):

a t
3.3 Kerning

Our glyphs are ready, but a normal font has more
features, such as kerning pairs and ligatures. In the

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 47

Klaus Höppner

Listing 2: Definition of “a” and “t” with outlines.

encode ("a") (ASCII "a");

introduce "a" (store+utilize) (0) ();

beginglyph("a");

path pa, pb, pc, r;

z0 = (round_hdist+radius,radius);

z1 = (round_hdist+2radius-strength+eps,0);

pa = fullcircle scaled 2 radius shifted z0;

pb = reverse fullcircle

scaled (2radius-2strength) shifted z0;

pc = unitsquare xscaled strength

yscaled 2radius shifted z1;

find_outlines(pa,pc)(r);

Fill r1;

unFill pb;

fix_hsbw(2radius+round_hdist+hdist,0,0);

endglyph;

encode ("t") (ASCII "t");

introduce "t" (store+utilize) (0) ();

beginglyph("t");

path pa, pb, r;

z0 = (hdist+3.5strength,1.5strength);

x1 = hdist + 2strength;

x2 = x1 + strength;

y1 = y2 = height;

z3 = (hdist,height-3strength);

pa = z1

-- (halfcircle rotated 180

scaled 3strength shifted z0)

-- (reverse halfcircle rotated 180 scaled

strength shifted z0)

-- z2 -- cycle;

pb = unitsquare xscaled 5strength

yscaled strength shifted z3;

find_outlines(pa,pb)(r);

Fill r1;

fix_hsbw(2hdist+5strength,0,0);

endglyph;

former case, for a pair of characters the horizontal
spacing between them is changed, while in the latter
case a character pair is replaced by another glyph.

Defining a kerning pair in MetaType 1 is sim-
ple. After the definition of the glyphs, we can add
a kerning table. In our case it looks like this:

LK("a") KP("t")(-3ku); KL;

In the list of ligatures and kernings for the letter “a”
we define a kerning of −3 ku if it is followed by the
letter “t” to remove the optical gap between them
(the kerning unit ‘ku’ is defined elsewhere in the
METAPOST source). The effect of kerning is shown
in figure 1.

Ligatures don’t make sense for our sample font,

at
at

Figure 1: Our font without (top) and with (bottom)
kerning.

Figure 2: Hinting information (shaded areas).

so I leave them out for this tutorial. In principle they
work similarly; you merely define from which slot in
the font the replacement for a specified character
pair is to be taken.

3.4 Hinting

When you embed fonts as outline fonts, you leave
the task of rasterizing the glyphs to your output de-
vice (printer or viewer). Unfortunately, this final
result may look rather poor, especially on low res-
olution devices such as screens. Imagine the letter
“H” and how it is rasterized into pixels. If we’re
unlucky, the left and right vertical stem will have
a different width. On a printer with 1200 dpi it’s
nearly unnoticeable, but on the screen a difference
of one pixel makes it look quite ugly.

To prevent this, high quality fonts use a mech-
anism called “hinting” to help the rasterizer (e. g.
the PostScript RIP in a printer) to keep vertical or
horizontal stems the same width.

MetaType 1 supports hinting by providing the
macros fix_hstem and fix_vstem that try to find
horizontal or vertical stems of a given width and add
hinting information for them. For example, since we
know that our letters “a” and “t” have stems of the
width strength, we add hinting information by

fix_hstem(strength,pa,pb);

fix_vstem(strength,pa,pb);

You can see what hinting information was found
as shaded areas in the proofs (figure 2).

4 Conclusions

I found that MetaType 1 is a suitable tool to create
PostScript Type 1 fonts. Though there is a lack of

48 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Creation of a PostScript Type 1 logo font with MetaType 1

beginning documentation, I was able to create a first
font quite quickly by relying on an existing META-
FONT source. Of course, knowledge of METAPOST

or METAFONT is highly desirable. Understanding
hinting is a bit more difficult, but finally possible.

References

[1] Bogusław Jackowski, Janusz M. Nowacki, Piotr
Strzelczyk, MetaType 1: A MetaPost-based
engine for generating Type 1 fonts, Proc. of
EuroTEX 2001, published in MAPS 26, 2001,
111–119. http://www.ntg.nl/maps/pdf/26_15.pdf

[2] Bogusław Jackowski, Janusz M. Nowacki, Piotr
Strzelczyk, Programming PostScript Type 1
fonts using MetaType 1: Auditing, enhancing,
creating, TUGboat, volume 24 (2003), no. 3.
http://tug.org/TUGboat/Articles/tb24-3/

jackowski.pdf

[3] http://ctan.org/fonts/utilities/metatype1/

Listing 3: Makefile for font creation with MetaType 1.

METATYPE1 = /home/klaus/texmf/scripts/mt1

.PHONY: tfm pfb proof all

all: pfb tfm

proof: $(FONT).pdf

pfb: $(FONT).pfb

tfm: $(FONT).tfm

%.p: %.mp

mpost "\generating:=0; \input $<"

gawk -f $(METATYPE1)/mp2pf.awk \

-vCD=$(METATYPE1)/pfcommon.dat \

-vNAME=‘basename $< .mp‘

%.pn: %.p

gawk -f $(METATYPE1)/packsubr.awk \

-vVERBOSE=1 -vLEV=5 -vOUP=$@ $<

%.pfb: %.pn

t1asm -b $< $@

%.tfm: %.mp

mpost "\generating:=1; \input $<"

%.pdf: %.ps

ps2pdf $< $@

%.ps: %.dvi

dvips -o $@ $<

%.dvi: %.tex

tex $<

%.tex: %.mp

mpost $<

cp $< _t_m_p.mp

mft _t_m_p.mp -style=mt1form.mft

echo ’\input mt1form.sty’ > $@

test -f piclist.tex && cat piclist.tex >> $@

test -f _t_m_p.tex && cat _t_m_p.tex >> $@

echo ’\endproof’ >> $@

Listing 4: The complete font.

% A sample font

input fontbase;

% Global parameters for all characters

size := 1000; depth := 0; math_axis := 1/2size;

radius := 300; hight := 900; strength := 80;

ku := 18; hdist := 3ku; round_hdist := 1ku;

% Font settings

pf_info_familyname "MyFont";

pf_info_fontname "MyFont-Regular";

pf_info_weight "Normal";

pf_info_version "0.01";

pf_info_capheight hight;

pf_info_xheight 2radius;

pf_info_space 10ku;

pf_info_adl size, 0, 0;

pf_info_author "Made by KH"

pf_info_overshoots (1000,10), (0, -10);

pf_info_encoding "at";

pf_info_creationdate;

beginfont

encode ("a") (ASCII "a");

introduce "a" (store+utilize) (0) ();

beginglyph("a");

path pa, pb, pc, r;

z0 = (round_hdist+radius,radius);

z1 = (round_hdist+2radius-strength+eps,0);

pa = fullcircle scaled 2 radius shifted z0;

pb = reverse fullcircle scaled (2radius-2strength)

shifted z0;

pc = unitsquare xscaled strength yscaled 2radius

shifted z1;

find_outlines(pa,pc)(r);

Fill r1; unFill pb;

fix_hstem(strength,pa,pb,pc);

fix_vstem(strength,pa,pb,pc);

fix_hsbw(2radius+round_hdist+hdist,0,0);

endglyph;

encode ("t") (ASCII "t");

introduce "t" (store+utilize) (0) ();

beginglyph("t");

path pa, pb, r;

z0 = (hdist+3.5strength,1.5strength);

x1 = hdist + 2strength;

x2 = x1 + strength;

y1 = y2 = hight;

z3 = (hdist,hight-3strength);

pa = z1 -- (halfcircle rotated 180

scaled 3strength shifted z0)

-- (reverse halfcircle rotated 180

scaled strength shifted z0)

-- z2 -- cycle;

pb = unitsquare xscaled 5strength yscaled strength

shifted z3;

find_outlines(pa,pb)(r);

Fill r1;

fix_hstem(strength,pa,pb);

fix_vstem(strength,pa,pb);

fix_hsbw(2hdist+5strength,0,0);

endglyph;

LK("a") KP("t")(-3ku); KL;

endfont.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 49

Procedures for font comparison

Karel Ṕı̌ska
Institute of Physics of the ASCR, v. v. i.
CZ-182 21 Prague, Czech Republic
piska (at) fzu dot cz

Abstract

This contribution presents several programs: Linux standalone scripts for com-
parison and visualization of font elements. Simplified versions of the programs
are restricted to use with the fonts already installed in a TEX system and show,
for example, how to solve the following tasks:

• Comparison of two bitmapped or outline representations of a glyph pair at
two different resolutions or from two related TEX fonts using a color mix
technique in pdfTEX.

• Comparison of kerning pairs in two (or three) related TEX fonts or in two
releases of one font.

• Comparison of a glyph pair in two versions or in two outline fonts, analyzing
sequences of cubic curve segments in font programs.

The programs will be demonstrated by several examples.

1 Common characteristics

The purpose of the tfcpr package, containing pro-
cedures for TEX font comparison, is to provide tools
for checking and comparison of the fonts used in a
TEX environment. This paper is a complementary
work to the article “Font verification and compar-
ison in examples” [9]. The programs are written
in the form of Linux scripts, written in the bash

shell language. After download they are unzipped
into a local working directory. The simplest method
is to start the programs locally with the ‘./’ prefix.
They invoke various programs from Linux or its TEX
subsystem, such as gawk [6], METAFONT, LATEX or
pdfLATEX, dvips, etc., and Acrobat Reader is usu-
ally called in the final step. They read the font files:
metrics (tfm), METAFONT sources, Type 1 (pfb)
or OpenType (otf); generate intermediate font bit-
maps (pk) and PostScript; and produce PDF doc-
uments. The kpathsea library is used to find font
files. Uninstalled fonts, including unused versions
or releases, should be copied for testing purposes
also into the current local directory. Additionally,
we have to change their file names to avoid name
collisions if it is necessary to distinguish them from
fonts already existing in our system. FontForge [8]
and t1utils [7] are also used for preprocessing of
data from outline fonts.

The real testing software is under permanent
revision depending on a font family being processed
at the moment, since it must often be modified for

various encoding schemes and naming conventions;
usually all glyphs and all character pairs for a given
encoding should be processed. It has no general or
common user interface and it would be too diffi-
cult and expensive to transform it to a transpar-
ent and computer independent form. The programs
presented here are simplified excerpts restricted to
processing of a single glyph or a character pair and
extended with a user interface to call them via com-
mands and produce the visual output in PDF. They
can be used quickly. On the other hand, they do not
work efficiently. In most examples, fonts from the
Computer Modern [2, 3], CS fonts [4], and the Latin
Modern [5] families are presented.

2 Glyph comparison for bitmapped fonts

The aim in comparing a METAFONT font and its
Type 1 version at various resolutions is to check the
correctness of the font design in METAFONT and its
proper conversion into an outline font format.

We can compare glyph images for one META-
FONT font at two different resolutions or the bit-
mapped representation with the Type 1 version of
the font converted from its METAFONT sources.

The execution of the command
./cprpk cmr10 97 1200 2400

starts by generating bitmaps with METAFONT. The
four parameters define the font name, the decimal
(or octal, for example \’141) character code and

50 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Procedures for font comparison

Figure 1: ./cprpk csbx10 193 1200 5333

Figure 2: ./cprpk cmr10 97 1200 2400

two resolutions. Then we produce two glyph in-
stances for both resolutions distinguished by postfix
“a” or “b” with pdfLATEX — see the example docu-
ment in Fig. 6. After that, again with pdfLATEX we
mix both components into one picture (Fig. 7). All
these LATEX sources have been generated automat-
ically and dynamically according to the command.
The final results are shown in Figure 1: the bit-
mapped csbx10 “Á” at 1200 dpi and 5333 dpi; and
in Fig. 2: the Computer Modern Roman cmr10 “a”
at 1200 dpi and 2400 dpi. The first resolution glyph
image is filled with cyan (light), the second one or
Type 1 is filled (stroked) with red (dark), and the
common area is in pink (looks lightest). (For the
printed issue, the figures have been manually con-
verted to grayscale.) The Type 1 counterpart can
substitute one bitmap (Fig. 3) or may be expressed
in the contour mode “1 Tr” — see figures 4 and 5.
The figure captions contain the commands generat-
ing the corresponding pictures.

Figure 3: ./cprpkt1 cmr10 97 1200

Figure 4: ./cprpkt1c cmr10 97 1200

Figure 5: ./cprt1cpk cmmib5 55 2400

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 51

Karel Ṕı̌ska

\documentclass{article}\pagestyle{empty}\usepackage{graphicx}

\font\fa=cmr10a

\begin{document}\scalebox{40}{{\fa\char97}}\end{document}

\documentclass{article}\pagestyle{empty}\usepackage{graphicx}

\font\fb=cmr10b

\begin{document}\scalebox{40}{{\fb\char97}}\end{document}

Figure 6: Generating of glyph images for comparison.

\documentclass{article}

\usepackage{graphicx}

\def\Default{\pdfliteral{0 g 0 G}}

\pdfpageresources

{/ExtGState

<< /Luminosity << /Type /ExtGState /BM /Luminosity >> >>}

\def\Acolor{0 1 1 rg 0 1 1 RG}% cyan

\def\Bcolor{1 0 0 rg}% red

\begin{document}

\setlength{\fboxsep}{0pt}\setlength{\fboxrule}{0pt}

\begin{figure}\begin{center}

\makebox[0pt][l]{\pdfliteral{/Luminosity gs \Bcolor}%

\includegraphics[viewport=90 310 470 710]{cmr10_97-2400.pdf}}%

{{\pdfliteral{\Acolor}%

\includegraphics[viewport=90 310 470 710]{cmr10_97-1200.pdf}}}

\Default\label{cmr10_97}

\caption{cmr10: 97 {\pdfliteral{\Acolor} 1200pk}

{\pdfliteral{\Bcolor} 2400pk}}

\Default

\end{center}\end{figure}

\end{document}

Figure 7: A color mix of two glyph instances.

\documentclass{article}

\newlength{\bbox}\newlength{\cbox}%

\def\fboxsep{0pt}\def\fboxrule{0.1pt}

\usepackage{ifthen}

\def\krule#1{%

\ifthenelse{\lengthtest{#1>0pt}}{\rule{10#1}{1ex}{$>$}}{}%

\ifthenelse{\lengthtest{#1<0pt}}{{$<$}\rule{-10#1}{1ex}}{}}

\def\paira#1#2#3{{%

\font\fna=#1

\fna\settowidth{\bbox}{#2#3}%

\settowidth{\cbox}{\mbox{#2}\mbox{#3}}%

\addtolength{\bbox}{-\cbox}%

\fbox{#2}\kern-0.2pt\kern\bbox\fbox{#3}\fbox{#2#3}

#1 \krule{\bbox}

\\}}

\begin{document}

\noindent

\paira{cmr10}{k}{a}

\paira{csr10}{k}{a}

\paira{ec-lmr10}{k}{a}

\end{document}

Figure 8: Generating a test for three kerning pairs.

52 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Procedures for font comparison

./prfkrna k a cmr10 csr10 ec-lmr10

./prfkrna K O cmr10 csr10 ec-lmr10

./prfkrna v a cmr10 csr10 ec-lmr10

./prfkrna A c cmr10 csr10 ec-lmr10

./prfkrna P , cmr10 csr10 ec-lmr10

./prfkrna T . cmr10 csr10 ec-lmr10

./prfkrna f ! cmr10 csr10 ec-lmr10

./cprkrna A C cmti10 ec-lmri10

./cprkrna i i cmcsc10 ec-lmcsc10

./cprkrna I I cmcsc10 ec-lmcsc10

Figure 9: Sample commands for kerning tests.

3 Comparison of kerning pairs

Our next aim is to verify compatibility between two
or more related TEX fonts. Kerning data are taken
from the corresponding metric files (tfm). The first
example (Fig. 8), invoked by the command
./prfkrna k a cmr10 csr10 ec-lmr10

compares kerning of character pairs in three related
fonts, extracting the first lines of the final output
(Fig. 10). Figure 9 shows a sample command list.

The LATEX source in Fig. 11, generated by the
command line
./cprkrna i i cmcsc10 ec-lmcsc10,
is connected with the last lines in figures 9 and 10
and, unlike the previous examples, we really do com-
pare the kern values between two instances of the
character pairs. The equal sign “=” in the cmcsc10

line (second from the bottom in Fig. 10) signals the
identical kerns, while the rule in the ec-lmcsc10

line (bottom line) denotes the common kern value
in both fonts. The varying widths of the rules re-
lates to the different kerns and their relative ratio.

The table in Fig. 12 summarizes several selected
differences in the kerning pairs for three font families
expressed in the kern degree units (e.g., “k#”).

For example, for Latin Modern in the T1/EC

encoded metrics we have:

kerning pairs absent in LM: "k":"a" and "K":"O";

LM compatible with CM: "v":"a" and
"P","T":".",",";

a new kerning pair in LM: "A":"c";

a kern doubled in LM: "A":"C" in italics;

other changes in LM: "i":"i" in small caps or
"f":"!".

kaka cmr10 <

❦❛❦❛ ❝sr✶✵ <

kaka ec-lmr10
KOKO cmr10 <

❑❖❑❖ ❝sr✶✵ <

KOKO ec-lmr10
vava cmr10 <

✈❛✈❛ ❝sr✶✵ <

vava ec-lmr10 <

AcAc cmr10
❆❝❆❝ ❝sr✶✵

AcAc ec-lmr10 <

P.P. cmr10 <

P✳P✳ ❝sr✶✵ <

P.P. ec-lmr10 <

T.T. cmr10
❚✳❚✳ ❝sr✶✵ <

T.T. ec-lmr10
f!f! cmr10 >

❢✦❢✦ ❝sr✶✵ >

f!f! ec-lmr10 >

ACAC cmti10 <

ACAC ec-lmri10 <

iiii cmcsc10 >

iiii ec-lmcsc10 >

IIII cmcsc10 =
IIII ec-lmcsc10 >

Figure 10: Several tests of kerning pairs.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 53

Karel Ṕı̌ska

\documentclass{article}\font\fna=cmcsc10\font\fnb=ec-lmcsc10

\newlength{\bbox}\newlength{\cbox}%

\newlength{\bxa}\newlength{\bxb}%

\def\fboxsep{0pt}\def\fboxrule{0.1pt}

\usepackage{ifthen}

\def\krule#1{%

\ifthenelse{\lengthtest{#1>0pt}}{\rule{10#1}{1ex}{$>$}}{}%

\ifthenelse{\lengthtest{#1<0pt}}{{$<$}\rule{-10#1}{1ex}}{}}

\def\pair#1#2#3#4{%

\fna\settowidth{\bxa}{#1#2}%

\settowidth{\cbox}{\mbox{#1}\mbox{#2}}%

\addtolength{\bxa}{-\cbox}%

\fnb\settowidth{\bxb}{#3#4}%

\settowidth{\cbox}{\mbox{#3}\mbox{#4}}%

\addtolength{\bxb}{-\cbox}%

\ifthenelse{\lengthtest{\bxa = \bxb}}%

{{\fna\fbox{#1}\kern-0.2pt\kern\bxa\fbox{#2}\fbox{#1#2}

cmcsc10 {$=$}

}\\

{\fnb\fbox{#3}\kern-0.2pt\kern\bxb\fbox{#4}\fbox{#3#4}

ec-lmcsc10 \krule{\bxb}

\\}}

{{\fna\fbox{#1}\kern-0.2pt\kern\bxa\fbox{#2}\fbox{#1#2}

cmcsc10 \krule{\bxa}

}\\

{\fnb\fbox{#3}\kern-0.2pt\kern\bxb\fbox{#4}\fbox{#3#4}

ec-lmcsc10 \krule{\bxb}

\\}}}

\begin{document}

\noindent

\pair{i}{i}{i}{i}

\end{document}

Figure 11: Comparison of two instances of a kerning pair.

cmr10 csr10 ec-lmr10

"k":"a" kern 2k=-u k 0 CM<CS<EC=0

"K":"O" kern k k 0 CM<CS<EC=0

"v":"a" kern 2k=-u k 2k=-u EC=CM<CS=k

"A":"c" kern 0 0 k EC<CM=CS=0

"P":"." kern 3k=kk k 3k=kk EC=CM<CS=k

"P":"," kern 3k=kk k 3k=kk EC=CM<CS=k

"T":"." kern 0 k 0 CS<CM=EC=0

"T":"," kern 0 k 0 CS<CM=EC=0

"f":"!" kern -2.8k -2.8k -k 0<EC<CM=CS

cmti10 csti10 ec-lmri10

"A":"C" kern k k 2k=-u EC<CM=CS=k

cmcsc10 cscsc10 ec-lmcsc10

"i":"i" kern -0.76k -0.76k -3.05k 0<CS=CM<EC

Figure 12: Examples of differences between kerns.

54 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Procedures for font comparison

Figure 13: ./prfof cmmib5 sevenoldstyle

Figure 14: ./prfof lmmib5 seven.taboldstyle

4 Proofs and comparison of outline fonts

The next tools are prfof, which produces proof-
sheets for single glyphs, and cprof, which compares
glyphs from Type 1 or OpenType fonts. The font ed-
itor FontForge [8] is used to parse fonts, that is, for
unpacking, extraction and export of a partial font
and glyph data. Type 1 fonts are also processed
with the t1utils package [7].

The examples in figures 13 and 14 demonstrate
the “old style seven” in Computer Modern cmmib5

and in Latin Modern lmmib5 and its comparison in
both representations (Fig. 15).

We must note that the Type 1 version converted
by Blue Sky and Y&Y is older than the latest mod-
ifications of the CM sources. Please compare also
with Fig. 5 where the METAFONT definitions have
been corrected while the Type 1 outline curves are
still wrong.

4.1 Comparison of different releases of the
same font

An older font version can be unzipped and copied
into the current directory; its file names must be
renamed before starting comparison with the actual
production font release in the installed TDS tree.
Here is a sample approach:

Figure 15: ./cprof cmmib5 lmmib5 sevenoldstyle

seven.taboldstyle

LM1="lm1.00bas.zip"

PFB="fonts/type1/public/lm"

unzip -j $LM1 $PFB/lmri10.pfb

mv lmri10.pfb lmri10a.pfb

./prfof lmri10a perthousand

./prfof lmri10 perthousand

./cprof lmri10a lmri10 perthousand

4.2 Change list

A helpful idea is to assemble a change list: a list
of the font and glyph names with known bugs or
changes, and run it with a previous version and then
with the current font release to confirm the changes
have been done and the bugs have been fixed. An
example of such a list is presented in Fig. 16.

lmri10 perthousand

lmri10 permyriad

lmu10 perthousand

lmu10 permyriad

lmu10 degree

lmdunh10 uring

lmduno10 uring

lmmib5 seven.taboldstyle

lmmib7 seven.taboldstyle

lmmi5 seven.taboldstyle

lmtcsc10 F

lmtcsc10 I

lmtcsc10 Iacute

lmtcso10 F

lmtcso10 I

lmtcso10 Iacute

Figure 16: A change list for LM.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 55

Karel Ṕı̌ska

5 Availability

The tfcpr package can be downloaded from http:

//www-hep.fzu.cz/~piska/tfcpr.html. The pro-
grams can be distributed as “public domain soft-
ware”, may be freely used (without warranty), cor-
rected, modified, adapted or included in other pack-
ages.

References

[1] Donald E. Knuth. The METAFONTbook.
Addison-Wesley, 1986. Volume C of Computers
and Typesetting.

[2] Donald E. Knuth. Computer Modern Typefaces.
Addison-Wesley, 1986. Volume E of Computers
and Typesetting.

[3] Computer Modern fonts. CTAN:/fonts/cm.

[4] CS fonts. ftp://math.feld.cvut.cz/pub/
cstex/base/csfonts.tar.gz.

[5] Latin Modern fonts. CTAN:/fonts/lm.

[6] Free Software Foundation. GNU awk,
http://www.gnu.org/software/gawk.

[7] Eddie Kohler. t1utils (Type 1 tools),
http://freshmeat.net/projects/t1utils.

[8] George Williams. Font creation with
FontForge. EuroTEX 2003 Proceedings,
TUGboat, 24(3):531–544, 2003;
http://fontforge.sourceforge.net.

[9] Karel Ṕı̌ska. Font verification and comparison
in examples, EuroTEX 2006 Proceedings,
TUGboat 27(1):71–75, 2006.

A Appendix: tfcpr: Synopsis and examples

A.1 Glyph comparison for bitmapped fonts

cprpk font code res1 res2

cprpk cmr10 97 1200 2400

cprpk cmr10 \’141 1200 2400

cprpkt1 font code res

cprpkt1 cmr10 97 1200

cprpkt1 cmr10 \’141 1200

cprpkt1c font code res

cprpkt1c cmr10 97 1200

cprpkt1c cmr10 \’141 1200

cprt1cpk font code res

cprt1cpk cmr10 97 1200

cprt1cpk cmr10 \’141 1200

cprpkpk font1 font2 code1 code2 res1 res2

font a TEX font name, common to .mf, .tfm, pk
code may be decimal or octal (starts with \’)
Predefined resolutions: 300 600 1200 2400 2602 5333

A.2 Comparison of kerning pairs

prfkrn font code1 code2 [font code3 code4]...

prfkrn cmr10 65 99 ec-lmr10 65 99

prfkrn cmr10 \’101 \’143 ec-lmr10 \’101 \’143

prfkrna char1 char2 font [font]...

prfkrna A c cmr10 ec-lmr10

cprkrn font1 code1a code1b font2 code2a code2b

cprkrn cmr10 65 97 ec-lmr10 65 97

cprkrn cmr10 \’101 \’143 ec-lmr10 \’101 \’143

cprkrna char_a char_b font1 font2

cprkrna A c cmr10 ec-lmr10

font a TEX font name, i.e., .tfm
char an ASCII symbol recognized by TEX

A.3 Proofing and comparison for outline fonts

prfof font glyphname

prfof cmmib5 sevenoldstyle

cprof font1 font2 glyphname1 [glyphname2]

cprof cmmib5 lmmib5 sevenoldstyle \

seven.taboldstyle

font is name[.pfb] or name.otf, i.e.,
only .pfb may be omitted

glyphname is PostScript or OTF, according to context

56 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Comments and suggestions about the Latin Modern fonts

Karel Ṕı̌ska
Institute of Physics of the ASCR, v. v. i.
CZ-182 21 Prague, Czech Republic
piska (at) fzu dot cz

Abstract

This contribution:

• describes a process of verification of the Latin Modern fonts and lists selected
aspects (typographic and technical) tested during this activity;

• summarizes the results of checking and comparisons, mostly for version
0.99.3 (2005) and 1.00 (2006), while information about the current version
1.010/x (2007) is limited;

• documents bugs and their correction, often in a visual form;

• remarks on the crucial changes in the recent versions (2006 and 2007);

• compares individual glyph shapes and finds differences in the last Type 1
and OpenType releases;

• compares metrics, especially character widths and kerning pairs, between
the T1 (EC) and CS (CM) encoded subsets, and between ver. 0.99.3 and
ver. 1.00, analyzing compatibility and listing the differences;

• studies accents and accented letters, i.e. accent shapes and their positioning,
mainly for the accented characters common to CS (Czech and Slovak font
collection) and T1 (EC);

• discusses problems with accurate and optimal outline representations, as the
Latin Modern font family is a descendant of Computer Modern (designed in
METAFONT) and converted into an outline approximation with cubic curves;

• comments on hinting strategies, particularly for accents and slanted fonts.

1 Introduction

The purpose of the activities described in this ar-
ticle was to improve the Latin Modern font pack-
age, helping to change unintentional features and
fixing mistakes, with a special emphasis on preserv-
ing compatibility in typesetting Czech and Slovak
documents with LATEX using the Latin Modern out-
line fonts to substitute for older extensions of the
Computer Modern typefaces.

The current version of the paper is a partial
excerpt of the technical documentation, a collection
of visual documents, mostly in PDF. All are still
undergoing revision, trying to reflect the actual up-
dates of the LM package, which is possible only with
some time delay. I think it is not unreasonable to in-
clude tests of the previous release of LM, performed
and stored in “my” archive last year.

I collected my comments, reports and proposals
on my web site:
http://www-hep.fzu.cz/~piska/lm2005.html

http://www-hep.fzu.cz/~piska/lm2006.html

I have specially added some longer tables (OTF

glyph names, kerning pairs) to be available in a
printed form for investigation and discussion.

For user information about LM, we recommend
“An exploration of the Latin Modern fonts”, an ar-
ticle written by Will Robertson [13].

2 Global remarks about font verification

The multistep checking process of an upcoming re-
lease can be divided into several stages.

1. We start the first stage from a survey to de-
termine significant changes in comparison with
the previous version or releases, important dif-
ferences, extensions or exclusions. And then we
generate “primary” proof printings, for exam-
ple, the complete proof sheet pages for all fonts
and all glyphs present in the font family; all
ligature and kerning pairs for all fonts and for
selected encodings. After some adaptation of
the programs involved, this output can usually
be produced automatically with only minimal
assistance.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 57

Karel Ṕı̌ska

comments about
ver. date crucial changes

0.99.3 28 Oct 2005
1.00 13 Apr 2006 metrics completely

recalculated
1.010 16 Jan 2007 glyph names changed

in OpenType
1.010a 23 Feb 2007
1.010x 28 Feb 2007

Table 1: Overview of recent releases of LM.

Quite a lot of disk space to store many huge
files is needed. A rich archive of PDF documents
is created and ready for human visual scanning
with Acrobat Reader to search glyph images
for evident errors, to study “usual” (from pre-
viously known opinions) weak points, zooming
the typical parts of glyphs where artifacts may
occur; to search for unsuitable kerning pairs or
improper kerns; and to study consistency or
compatibility of associated font elements.

The test printings covering the entire glyph
repertoire and all kerning pairs for T1 (EC) en-
coding were generated in 2006 for LM 1.00.

2. In the next stage we compare the actual font re-
lease with the preceding release(s), e.g. we find
differences between both instances of all glyphs
in their outline curve representation. We also
compare the major metric data important for
typesetting with TEX, especially the character
widths, kerning and ligature pairs.

3. The subsequent stage depends on the results of
the previous analysis. We select, study, select
and study again chosen features, potential mis-
takes and strange events in detail to detect and
localize bugs, and give a classification or con-
clusion, to prepare a report in textual and/or
visual form.

4. A comparison with related and other relevant
fonts may be important to confirm identity and
compatibility or to find differences, intentional
or unintentional.

5. Finally, we perform an overall evaluation of the
available data, summarize the results, and com-
pile a document with visual demonstration and
written comments, conclusions, reports, sugges-
tions and recommendations.

3 Developments and changes in
Latin Modern

To begin with, Table 1 shows a concise summary of
recent releases of LM.

Text fonts

ver. 1.00 ver. 1.010[x]
#n #g0 #k0 #g1 #k1

b 10x 701 9399 742 9344
bi 1x 701 12134 742 11963
sc 2x 692 8742 735 8676
r 21x 701 9413 742 9358
ri 6x 701 12148 742 11977
ss 14x 701 8732 742 8677
sq 4x 704 8732 745 8677
tt 14x 662 0 703 0
tc 2x 659 0 702 0

Subtotal text fonts:
72 49914 551345 52874 547321

Mathematical fonts

sy 9x 132 26 132 26
ex 1x 130 0 130 0
mi 10x 130 164 130 164

Subtotal math fonts:
20 2618 1874 2618 1874

Total LM fonts:
92 52532 553219 55492 549195

#n number of fonts with the same counts
#g number of glyphs
#k number of kerning pairs

Table 2: Numbers of fonts and glyphs.

Table 2 presents the numbers of glyphs and
kerning pairs in LM ver. 1.00 (#g0 and #k0) and
the current ver. 1.010[x] (#g1 and #k1), subtotal
counts for 72 text fonts and 20 mathematical fonts
and the total sums, where:
b = (Roman) Bold, Demi; bi = (Roman)
BoldItalic; sc = SmallCaps, r = (Roman) Regular,
Oblique, TypewriterVarWd; ri = (Roman)
Italic, Unslanted; ss = Sans; sq = SansQuotation;
tc = TypewriterCaps; tt = Typewriter;
sy = MathSymbols; ex = MathExtension;
mi = MathItalic.

One very important modification in LM ver.
1.010 is the change of glyph names in OpenType.
In Table 3, Unicode code points are listed together
with the OpenType (Unicode) glyph names (in the
second column) and PostScript (Type 1) names (col-
umn 3). This information has been added to give a
quick explanation of the “unintelligible” OTF glyph
names in a short and compressed form.

4 Comparison of releases

Because the PostScript and Type 1 glyph names are
not identical starting with the version released in
2007 it is impossible to compare the glyphs by name

58 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Comments and suggestions about the Latin Modern fonts

F6C9 acute.cap Acute

2116 afii61352 nomero

2217 asterisk.math asteriskmath

EFEE breve.cap Breve

F6CA caron.cap Caron

EFF7 circumflex.cap Circumflex

- copyright.var varcopyright

F6CB dieresis.cap Dieresis

EFED dotaccent.cap Dotaccent

- dotaccent.var vardotaccent

1E0C D_uni0323 Ddotbelow

1E0D d_uni0323 ddotbelow

FB00 f_f ff

FB03 f_f_i ffi

FB04 f_f_l ffl

FB01 f_i fi

FB02 f_l fl

F6CE grave.cap Grave

F6CF hungarumlaut.cap Hungarumlaut

1E24 H_uni0323 Hdotbelow

1E25 h_uni0323 hdotbelow

- I.var varI

- Iogonek.var varIogonek

0132 I_J IJ

- I_J.var varIJ

0133 i_j ij

F6BE j.dotless dotlessj

1E36 L_uni0323 Ldotbelow

1E37 l_uni0323 ldotbelow

1E39 l_uni0323_uni0304 ldotbelowmacron

1E38 L_uni0323_uni0304.cap Ldotbelowmacron

F6D0 macron.cap Macron

1E42 M_uni0323 Mdotbelow

1E43 m_uni0323 mdotbelow

1E45 n_uni0307 ndotaccent

1E44 N_uni0307.cap Ndotaccent

1E46 N_uni0323 Ndotbelow

1E47 n_uni0323 ndotbelow

- registered.var varregistered

EFF3 ring.cap Ring

1E59 r_uni0307 rdotaccent

1E58 R_uni0307.cap Rdotaccent

1E5A R_uni0323 Rdotbelow

1E5B r_uni0323 rdotbelow

1E5D r_uni0323_uni0304 rdotbelowmacron

1E5C R_uni0323_uni0304.cap Rdotbelowmacron

2423 space.visible visiblespace

EA0E space_uni0302_uni0300 circumflexgrave

EA0D space_uni0302_uni0300.cap Circumflexgrave

EA0C space_uni0302_uni0301 circumflexacute

EA0B space_uni0302_uni0301.cap Circumflexacute

EA12 space_uni0302_uni0303 circumflextilde

EA11 space_uni0302_uni0303.cap Circumflextilde

EA10 space_uni0302_uni0309 circumflexhookabove

EA0F space_uni0302_uni0309.cap Circumflexhookabove

EA03 space_uni0306_uni0300 brevegrave

EA02 space_uni0306_uni0300.cap Brevegrave

EA01 space_uni0306_uni0301 breveacute

EA00 space_uni0306_uni0301.cap Breveacute

EA0A space_uni0306_uni0303 brevetilde

EA09 space_uni0306_uni0303.cap Brevetilde

EA05 space_uni0306_uni0309 brevehookabove

EA04 space_uni0306_uni0309.cap Brevehookabove

EA14 space_uni0309 hookabove

EA13 space_uni0309.cap Hookabove

EA17 space_uni030A_uni0301 ringacute

EA16 space_uni030A_uni0301.cap Ringacute

F6D3 space_uni030F dblgrave

F6D6 space_uni030F.cap dblGrave

EA07 space_uni0311 breveinverted

EA06 space_uni0311.cap Breveinverted

EB19 space_uni0323 dotbelow

EA08 space_uni032F breveinvertedlow

EB69 space_uni0330 tildelow

EB09 star.alt born

EB2A S_S Germandbls

EFF5 tilde.cap Tilde

1E6C T_uni0323 Tdotbelow

1E6D t_uni0323 tdotbelow

00A0 uni00A0 nbspace

00AD uni00AD sfthyphen

0218 uni0218 Scommaaccent

0219 uni0219 scommaaccent

021A uni021A Tcommaaccent

021B uni021B tcommaaccent

0300 uni0300 gravecomb

E300 uni0300.cap Gravecomb

0301 uni0301 acutecomb

E301 uni0301.cap Acutecomb

0302 uni0302 circumflexcomb

E302 uni0302.cap Circumflexcomb

0303 uni0303 tildecomb

E303 uni0303.cap Tildecomb

0304 uni0304 macroncomb

E304 uni0304.cap Macroncomb

0306 uni0306 brevecomb

E306 uni0306.cap Brevecomb

0307 uni0307 dotaccentcomb

E307 uni0307.cap Dotaccentcomb

0308 uni0308 dieresiscomb

E308 uni0308.cap Dieresiscomb

0309 uni0309 hookabovecomb

E309 uni0309.cap Hookabovecomb

030A uni030A ringcomb

E30A uni030A.cap Ringcomb

030B uni030B hungarumlautcomb

E30B uni030B.cap Hungarumlautcomb

030C uni030C caroncomb

E30C uni030C.cap Caroncomb

030F uni030F dblgravecomb

E30F uni030F.cap Dblgravecomb

0311 uni0311 breveinvertedcomb

E311 uni0311.cap Breveinvertedcomb

0323 uni0323 dotbelowcomb

0326 uni0326 commaaccentcomb

032E uni032E brevelowcomb

032F uni032F breveinvertedlowcomb

F6DE uni2014.alt1 threequartersemdash

EB6D uni2014.alt2 twelveudash

2127 uni2127 mho

2190 uni2190 arrowleft

2191 uni2191 arrowup

2192 uni2192 arrowright

2193 uni2193 arrowdown

266A uni266A musicalnote

Table 3: OTF and PostScript glyph names.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 59

Karel Ṕı̌ska

Figure 1: lmri10 : perthousand before and after
correction of path directions.

Figure 2: lmri10 : permyriad before and after
correction of path directions.

without preparation of a new program to do a com-
plete glyph comparison in a different way. The tests
performed last year with LM 1.00 may be interest-
ing, but they are out-of-date for this article.

5 Bug reports and corrections

It is important to demonstrate bugs present in the
last release and then confirm they have been fixed
in the current release. The technical documenta-
tion contains a comprehensive list of bugs and other
problematic events. Here we will show several ex-
amples showing glyph corrections, improvements or
other changes (figs. 1 and 2).

Single tests to examine glyphs in the actual
fonts can be performed with procedures from my
package tfcpr [12].

6 Metrics: compatibility and/or quality

One major task, supported by CSTUG, was explor-
ing use of LM for the characters in the common sub-
set of the standard Computer Modern and CS fonts,
mainly accented letters belonging to the Czech and
Slovak character set.

For all characters from the intersection of the
ec-lm encoding and CS (which covers all charac-
ters from CM) we compared metric data: charac-
ter widths in the corresponding tfm metric files and
also with their equivalents in pfb, afm and otf, and
kerning pairs in tfm.

Generally, good agreement in the glyph widths
was found, the differences being negligible (in the
last digits), and due to internal numeric representa-
tion.

After the complete recalculation of metrics in-
cluded in LM ver. 1.00 I have found only a couple

Figure 3: Different widths (and shapes) in lmri10 : j
and lmu10 : j, x, sterling.

of cases of changing character widths: “j” in lmri*,
and “x” and sterling in lmu10 (fig. 3). And a ques-
tion: Should have the dots in “i”, “j” and “ij” have
identical shapes and sizes, or may they differ?

The kerning pair lists were (re)generated by the
authors of LM with a semi-automatic algorithm re-
flecting and adjusting the horizontal spaces between
the adjacent characters. All the character pairs from
the given subset (defined for the corresponding en-
coding) were included in the processing. However,
the numbers of the kerning pairs in the metric files
seem to be extremely large and probably many of
these kerning pairs are not relevant to any language.
I have no good idea how to exclude automatically the
irrelevant kerning pairs to reduce the space needed
for metric data. I have decided to include the com-
plete list of the ligature and kerning pairs for lmr10
(Latin Modern Roman at 10 pt); see Tables 4 and 5,
in the hope that readers will respond with their com-
ments and suggestions.

We pay special attention to the present or ab-
sent kerning pairs and to the kern values in the T1
(ec-lm) encoding in a comparison with CM and CS

fonts. The kerning pairs can be reordered and di-
vided into groups according their agreement or dis-
agreement between CM, CS and LM (for the ec-lm

encoding) and we can list cases of their discarding,
additions or changes in the associated fonts from
these families. The corresponding data are collected
in my “technical documentation” which I am gath-
ering step by step. Several selected examples are
presented in my articles about font verification and
comparison [11, 12].

60 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Karel Ṕı̌ska

áâäåãăà
úûűüůù
óôőöõò

áúóäüöàùò
Figure 7: Accents in lmcsc10 (lower case SmallCaps).

äü
äö

Figure 8: Violation of unified vertical positioning
(lower case SmallCaps).

the letter areas. In the current version of LM, proba-
bly only Ř needs to adjust the horizontal positioning
of the caron.

More complex is the situation with “special”
typefaces. For the lower case small capitals (lmcsc10
and its oblique variant) in Fig. 7, with the enlarged
detail in Fig. 8, the vertical accent levels are consis-
tent for one letter but are not identical across letters,
e.g. the lower case u has evidently had its accents
lowered.

And for both SmallCaps and Dunhill (lmdunh10
shown in Fig. 9), I think, the unified optical (lower
case) accent level is not the best solution. Accents
such as ¨ and ˜ seem to be located too high and
the gaps between these narrow (in vertical direction)
accents and letters look too big. Additionally, the
lower case ring accent in lmdunh10 (and lmduno10)
is located higher then other accents.

áâäåãăà
úûűüůù
óôőöõò
áúóäüöàùò

Figure 9: Accents in lmdunh10.

Figure 10: Extrema points and hints in lmssbo10.

8 Comments on outline font representation

Several glyphs do not fulfill the strongest criteria
for the best preciseness or conciseness, and still have
tiny defects or small inconsistencies. Their tuning or
improvement may be discussed; however, it cannot
be considered critical.

Figure 10 demonstrates a few aspects of the font
design in LM. In the left part of the picture the tech-
nique of hinting the accents is presented. It is widely
used in LM and I consider this approach convenient.

The oblique fonts (like lmssbo10) have been de-
rived from their upright origins and are the result of
conversion and transformation. The outline repre-
sentation is faithful and “optimal”, i.e. it fulfills the
“conciseness” consideration. We use fewer Bézier
curve segments but, on the other hand, the redun-
dant points at extremes are omitted and the verti-
cal hints look strange or atypical — the boundaries
of the hinting zones do not fit in (missing) extrema
points. I am interested in comments about this sit-
uation.

62 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Comments and suggestions about the Latin Modern fonts

9 What the tests do not cover

Verification of metrics has been restricted to T1
(EC) encoding (and compared with CM and CS met-
ric data): character widths together with kerning
and ligature pairs. Testing of “internal” font mat-
ters was foremost; ordinary tests of typesetting real
text was not the main goal.

10 Topics for further discussion
and conclusion

In the conclusion we summarize some problems that
remain to be solved:

• Accent positioning in special cases: Small caps
or Dunhill fonts (Fig. 7 and 9).

• Large number of (irrelevant) kerning pairs in
metrics (Tables 4 and 5).

• checking of other metric data, e.g. character
heights and italic corrections, which are impor-
tant for typesetting math.

• Points of extrema and hints in (derived) oblique
typefaces (Fig. 10).

• tuning of small details in glyph representation.

• proposals for further tests and other improve-
ments (nothing is absolutely perfect).

The Latin Modern fonts fulfill a high quality
of technical realization; Type 1 versions are gener-
ated by MetaType1 properly, and contain a min-
imal number of bugs. Remaining tiny defects in
online approximation have no practical influence to
the printed output of final documents. The met-
rics (i.e. character widths and kerning pairs) for the
CS subset of the T1 (EC) encoding are acceptable;
accents and their placement are also acceptable (in
most cases).

The LM text fonts could be taken as finished;
the LM math fonts in OpenType are (probably) still
under development. I have not checked LATEX sup-
port or encodings other than T1 (EC). I expect the
LATEX users of LM are and will be testing LATEX,
dvips, pdfTEX and other packages during their ex-
ploration of LM together with new additions (e.g.
new TEX metrics).

Generally, we can be satisfied with the text LM

fonts in the version 1.010(x), and thank the authors
for their successful work(s) and wish them further
success in the future.

References

[1] Donald E. Knuth. The METAFONTbook.
Addison-Wesley, 1986. Volume C of
Computers and Typesetting.

[2] Donald E. Knuth. Computer Modern
Typefaces. Addison-Wesley, 1986. Volume E of
Computers and Typesetting.

[3] Computer Modern fonts. CTAN:/fonts/cm.

[4] CS fonts. ftp://math.feld.cvut.cz/pub/
cstex/base/csfonts.tar.gz.

[5] EC fonts. CTAN:/fonts/ec.

[6] Latin Modern fonts. CTAN:/fonts/lm.

[7] Bogus law Jackowski, Janusz M. Nowacki,
Piotr Strzelczyk. Programming PostScript
Type 1 Fonts Using MetaType1: Auditing,
Enhancing, Creating. Proceedings of EuroTEX
2003, Brest, France, 24–27 June 2003.
TUGboat 24:3, pp. 575–581.

[8] Bogus law Jackowski, Janusz M. Nowacki.
Enhancing Computer Modern with accents,
accents, accents. TUGboat 24:1, 2003.

[9] Bogus law Jackowski, Janusz M. Nowacki.
Latin Modern fonts: How less means more.
Proceedings of the XV EuroTEX 2005
conference, Pont-à-Mousson, France, March
7–11, 2005.

[10] Bogus law Jackowski, Janusz M. Nowacki.
Rodzina fontów Latin Modern.
Biuletyn Polskiej Grupy Użitkowników
Systemu TEX, Zeszyt 23:9–12, 2006.

[11] Karel Ṕı̌ska. Font verification and comparison
in examples, EuroTEX 2006 Proceedings,
TUGboat 27:1, pp. 71–75, 2006.

[12] Karel Ṕı̌ska. Procedures for font comparison,
2007. Proceedings of the EuroTEX 2007
conference, TUGboat 29:1, pp. 50–56, 2007.

[13] Will Robertson. An exploration of the Latin
Modern fonts. TUGboat 28:2, pp. 177–180,
2007.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 63

Karel Ṕı̌ska

Kerning and ligature pairs ec-lmr10 LM 1.010x
AC AĆ AČ AÇ AG AĞ AO AŒ AÓ AÔ AÖ AÒ AŐ AØ AÕ AQ AT AŤ AU AÚ AÛ AÜ AÙ AŰ AŮ
AV AW AY AÝ AŸ Ac Ać Ač Aç Ad Aď Ađ Ae Aé Aě Aê Aë Aè Aę Að Ao Aó Aô Aö Aœ Aò Aő Aø Aõ
Aq At Ať Au Aú Aû Aü Aù Aű Aů Av Aw Ay Aý Aÿ ÁC ÁĆ ÁČ ÁÇ ÁG ÁĞ ÁO ÁŒ ÁÓ ÁÔ ÁÖ ÁÒ
ÁŐ ÁØ ÁÕ ÁQ ÁT ÁŤ ÁU ÁÚ ÁÛ ÁÜ ÁÙ ÁŰ ÁŮ ÁV ÁW ÁY ÁÝ ÁŸ Ác Áć Áč Áç Ád Áď Áđ Áe Áé
Áě Áê Áë Áè Áę Áð Áo Áó Áô Áö Áœ Áò Áő Áø Áõ Áq Át Áť Áu Áú Áû Áü Áù Áű Áů Áv Áw Áy Áý
Áÿ ĂC ĂĆ ĂČ ĂÇ ĂG ĂĞ ĂO ĂŒ ĂÓ ĂÔ ĂÖ ĂÒ ĂŐ ĂØ ĂÕ ĂQ ĂT ĂŤ ĂU ĂÚ ĂÛ ĂÜ ĂÙ ĂŰ
ĂŮ ĂV ĂW ĂY ĂÝ ĂŸ Ăc Ăć Ăč Ăç Ăd Ăď Ăđ Ăe Ăé Ăě Ăê Ăë Ăè Ăę Ăð Ăo Ăó Ăô Ăö Ăœ Ăò Ăő
Ăø Ăõ Ăq Ăt Ăť Ău Ăú Ăû Ăü Ăù Ăű Ăů Ăv Ăw Ăy Ăý Ăÿ ÂC ÂĆ ÂČ ÂÇ ÂG ÂĞ ÂO ÂŒ ÂÓ ÂÔ
ÂÖ ÂÒ ÂŐ ÂØ ÂÕ ÂQ ÂT ÂŤ ÂU ÂÚ ÂÛ ÂÜ ÂÙ ÂŰ ÂŮ ÂV ÂW ÂY ÂÝ ÂŸ Âc Âć Âč Âç Âd Âď
Âđ Âe Âé Âě Âê Âë Âè Âę Âð Âo Âó Âô Âö Âœ Âò Âő Âø Âõ Âq Ât Âť Âu Âú Âû Âü Âù Âű Âů Âv
Âw Ây Âý Âÿ ÄC ÄĆ ÄČ ÄÇ ÄG ÄĞ ÄO ÄŒ ÄÓ ÄÔ ÄÖ ÄÒ ÄŐ ÄØ ÄÕ ÄQ ÄT ÄŤ ÄU ÄÚ ÄÛ ÄÜ
ÄÙ ÄŰ ÄŮ ÄV ÄW ÄY ÄÝ ÄŸ Äc Äć Äč Äç Äd Äď Äđ Äe Äé Äě Äê Äë Äè Äę Äð Äo Äó Äô Äö Äœ
Äò Äő Äø Äõ Äq Ät Äť Äu Äú Äû Äü Äù Äű Äů Äv Äw Äy Äý Äÿ ÀC ÀĆ ÀČ ÀÇ ÀG ÀĞ ÀO ÀŒ ÀÓ
ÀÔ ÀÖ ÀÒ ÀŐ ÀØ ÀÕ ÀQ ÀT ÀŤ ÀU ÀÚ ÀÛ ÀÜ ÀÙ ÀŰ ÀŮ ÀV ÀW ÀY ÀÝ ÀŸ Àc Àć Àč Àç Àd
Àď Àđ Àe Àé Àě Àê Àë Àè Àę Àð Ào Àó Àô Àö Àœ Àò Àő Àø Àõ Àq Àt Àť Àu Àú Àû Àü Àù Àű Àů
Àv Àw Ày Àý Àÿ ĄC ĄĆ ĄČ ĄÇ ĄG ĄĞ ĄO ĄŒ ĄÓ ĄÔ ĄÖ ĄÒ ĄŐ ĄØ ĄÕ ĄQ ĄT ĄŤ ĄU ĄÚ ĄÛ
ĄÜ ĄÙ ĄŰ ĄŮ ĄV ĄW ĄY ĄÝ ĄŸ Ąc Ąć Ąč Ąç Ąd Ąď Ąđ Ąe Ąé Ąě Ąê Ąë Ąè Ąę Ąð Ąo Ąó Ąô Ąö
Ąœ Ąò Ąő Ąø Ąõ Ąq Ąt Ąť Ąu Ąú Ąû Ąü Ąù Ąű Ąů Ąv Ąw Ąy Ąý Ąÿ ÅC ÅĆ ÅČ ÅÇ ÅG ÅĞ ÅO ÅŒ
ÅÓ ÅÔ ÅÖ ÅÒ ÅŐ ÅØ ÅÕ ÅQ ÅT ÅŤ ÅU ÅÚ ÅÛ ÅÜ ÅÙ ÅŰ ÅŮ ÅV ÅW ÅY ÅÝ ÅŸ Åc Åć Åč Åç
Åd Åď Åđ Åe Åé Åě Åê Åë Åè Åę Åð Åo Åó Åô Åö Åœ Åò Åő Åø Åõ Åq Åt Åť Åu Åú Åû Åü Åù Åű
Åů Åv Åw Åy Åý Åÿ ÃC ÃĆ ÃČ ÃÇ ÃG ÃĞ ÃO ÃŒ ÃÓ ÃÔ ÃÖ ÃÒ ÃŐ ÃØ ÃÕ ÃQ ÃT ÃŤ ÃU ÃÚ
ÃÛ ÃÜ ÃÙ ÃŰ ÃŮ ÃV ÃW ÃY ÃÝ ÃŸ Ãc Ãć Ãč Ãç Ãd Ãď Ãđ Ãe Ãé Ãě Ãê Ãë Ãè Ãę Ãð Ão Ãó Ãô
Ãö Ãœ Ãò Ãő Ãø Ãõ Ãq Ãt Ãť Ãu Ãú Ãû Ãü Ãù Ãű Ãů Ãv Ãw Ãy Ãý Ãÿ DA DÆ DÁ DĂ DÂ DÄ DÀ
DĄ DÅ DÃ DV DW DX DY DÝ DŸ ĎA ĎÆ ĎÁ ĎĂ ĎÂ ĎÄ ĎÀ ĎĄ ĎÅ ĎÃ ĎV ĎW ĎX ĎY ĎÝ ĎŸ
ÐA ÐÆ ÐÁ ÐĂ ÐÂ ÐÄ ÐÀ ÐĄ ÐÅ ÐÃ ÐV ÐW ÐX ÐY ÐÝ ÐŸ FA FÆ FÁ FĂ FÂ FÄ FÀ FĄ FÅ FÃ
FC FĆ FČ FÇ FG FĞ FO FŒ FÓ FÔ FÖ FÒ FŐ FØ FÕ FQ Fa Fá Fă Fâ Fä Fæ Fà Fą Få Fã Fc Fć Fč
Fç Fd Fď Fđ Fe Fé Fě Fê Fë Fè Fę Fg Fğ Fm Fn Fń Fň Fñ Fo Fó Fô Fö Fò Fő Fø Fõ Fp Fr Fŕ Fř Fs Fś
Fš Fş Fu Fú Fû Fü Fù Fű Fů Fv Fw Fy Fý Fÿ Fz Fź Fž Fż Ĳ II IÍ IÎ IÏ Iİ IÌ ÍI ÍÍ ÍÎ ÍÏ Íİ ÍÌ ÎI ÎÍ ÎÎ ÎÏ Îİ
ÎÌ ÏI ÏÍ ÏÎ ÏÏ Ïİ ÏÌ İI İÍ İÎ İÏ İİ İÌ ÌI ÌÍ ÌÎ ÌÏ Ìİ ÌÌ KC KĆ KČ KÇ KG KĞ KQ Ko Kó Kô Kö Kœ Kò Kő Kø
Kõ Kv Kw LT LŤ LV LW LY LÝ LŸ ĹT ĹŤ ĹV ĹW ĹY ĹÝ ĹŸ ĽT ĽŤ ĽV ĽW ĽY ĽÝ ĽŸ ŁT ŁV ŁW
ŁY OA OÆ OÁ OĂ OÂ OÄ OÀ OĄ OÅ OÃ OV OW OX OY OÝ OŸ ÓA ÓÆ ÓÁ ÓĂ ÓÂ ÓÄ ÓÀ ÓĄ
ÓÅ ÓÃ ÓV ÓW ÓX ÓY ÓÝ ÓŸ ÔA ÔÆ ÔÁ ÔĂ ÔÂ ÔÄ ÔÀ ÔĄ ÔÅ ÔÃ ÔV ÔW ÔX ÔY ÔÝ ÔŸ ÖA
ÖÆ ÖÁ ÖĂ ÖÂ ÖÄ ÖÀ ÖĄ ÖÅ ÖÃ ÖV ÖW ÖX ÖY ÖÝ ÖŸ ÒA ÒÆ ÒÁ ÒĂ ÒÂ ÒÄ ÒÀ ÒĄ ÒÅ ÒÃ
ÒV ÒW ÒX ÒY ÒÝ ÒŸ ŐA ŐÆ ŐÁ ŐĂ ŐÂ ŐÄ ŐÀ ŐĄ ŐÅ ŐÃ ŐV ŐW ŐX ŐY ŐÝ ŐŸ ØA ØÆ
ØÁ ØĂ ØÂ ØÄ ØÀ ØĄ ØÅ ØÃ ØV ØW ØX ØY ØÝ ØŸ ÕA ÕÆ ÕÁ ÕĂ ÕÂ ÕÄ ÕÀ ÕĄ ÕÅ ÕÃ ÕV
ÕW ÕX ÕY ÕÝ ÕŸ PA PÆ PÁ PĂ PÂ PÄ PÀ PĄ PÅ PÃ Pa Pá Pă Pâ Pä Pæ Pà Pą På Pã P, Pe Pé
Pě Pê Pë Pè Pę Po Pó Pô Pö Pœ Pò Pő Pø Põ P. RC RĆ RČ RÇ RG RĞ RO RŒ RÓ RÔ RÖ RÒ RŐ
RØ RÕ RQ RT RŤ RU RÚ RÛ RÜ RÙ RŰ RŮ RV RW RY RÝ RŸ Rt Rť Ru Rú Rû Rü Rù Rű Rů Rv
Rw Ry Rý Rÿ ŔC ŔĆ ŔČ ŔÇ ŔG ŔĞ ŔO ŔŒ ŔÓ ŔÔ ŔÖ ŔÒ ŔŐ ŔØ ŔÕ ŔQ ŔT ŔŤ ŔU ŔÚ ŔÛ ŔÜ
ŔÙ ŔŰ ŔŮ ŔV ŔW ŔY ŔÝ ŔŸ Ŕt Ŕť Ŕu Ŕú Ŕû Ŕü Ŕù Ŕű Ŕů Ŕv Ŕw Ŕy Ŕý Ŕÿ ŘC ŘĆ ŘČ ŘÇ ŘG
ŘĞ ŘO ŘŒ ŘÓ ŘÔ ŘÖ ŘÒ ŘŐ ŘØ ŘÕ ŘQ ŘT ŘŤ ŘU ŘÚ ŘÛ ŘÜ ŘÙ ŘŰ ŘŮ ŘV ŘW ŘY ŘÝ ŘŸ Řt
Řť Řu Řú Řû Řü Řù Řű Řů Řv Řw Řy Řý Řÿ TA TÆ TÁ TĂ TÂ TÄ TÀ TĄ TÅ TÃ TŒ Ta Tá Tă Tâ
Tä Tæ Tà Tą Tå Tã Tc Tć Tč Tç Td Tď Tđ Tı Te Té Tě Tê Të Tè Tę Tg Tğ Tn Tń Tň Tñ To Tó Tô Tö
Tœ Tò Tő Tø Tõ Tp Tr Tŕ Tř Ts Tś Tš Tş Tu Tú Tû Tü Tù Tű Tů Tv Tw Tx Ty Tý Tÿ Tz Tź Tž Tż
ŤA ŤÆ ŤÁ ŤĂ ŤÂ ŤÄ ŤÀ ŤĄ ŤÅ ŤÃ ŤŒ Ťa Ťá Ťă Ťâ Ťä Ťæ Ťà Ťą Ťå Ťã Ťc Ťć Ťč Ťç Ťd Ťď Ťđ Ťı
Ťe Ťé Ťě Ťê Ťë Ťè Ťę Ťg Ťğ Ťn Ťń Ťň Ťñ Ťo Ťó Ťô Ťö Ťœ Ťò Ťő Ťø Ťõ Ťp Ťr Ťŕ Ťř Ťs Ťś Ťš Ťş Ťu
Ťú Ťû Ťü Ťù Ťű Ťů Ťv Ťw Ťx Ťy Ťý Ťÿ Ťz Ťź Ťž Ťż

Table 4: The complete list of kerning and ligature pairs in ec-lmr10 (beginning).

64 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Comments and suggestions about the Latin Modern fonts

Kerning and ligature pairs ec-lmr10 LM 1.010x
VA VÆ VÁ VĂ VÂ VÄ VÀ VĄ VÅ VÃ VC VĆ VČ VÇ VG VĞ VO VŒ VÓ VÔ VÖ VÒ VŐ VØ VÕ
VQ Va Vá Vă Vâ Vä Væ Và Vą Vå Vã Vc Vć Vč Vç Vd Vď Vđ Ve Vé Vě Vê Vë Vè Vę Vg Vğ Vm Vn Vń
Vň Vñ Vo Vó Vô Vö Vœ Vò Vő Vø Võ Vp Vr Vŕ Vř Vs Vś Vš Vş Vu Vú Vû Vü Vù Vű Vů Vv Vw Vy
Vý Vÿ Vz Vź Vž Vż WA WÆ WÁ WĂ WÂ WÄ WÀ WĄ WÅ WÃ WC WĆ WČ WÇ WG WĞ WO WŒ
WÓ WÔ WÖ WÒ WŐ WØ WÕ WQ Wa Wá Wă Wâ Wä Wæ Wà Wą Wå Wã Wc Wć Wč Wç Wd Wď
Wđ We Wé Wě Wê Wë Wè Wę Wg Wğ Wm Wn Wń Wň Wñ Wo Wó Wô Wö Wœ Wò Wő Wø Wõ Wp
Wr Wŕ Wř Ws Wś Wš Wş Wu Wú Wû Wü Wù Wű Wů Wv Ww Wy Wý Wÿ Wz Wź Wž Wż XC XĆ
XČ XÇ XG XĞ XO XŒ XÓ XÔ XÖ XÒ XŐ XØ XÕ XQ YA YÆ YÁ YĂ YÂ YÄ YÀ YĄ YÅ YÃ YŒ
Ya Yá Yă Yâ Yä Yæ Yà Yą Yå Yã Yc Yć Yč Yç Yd Yď Yđ Yı Ye Yé Yě Yê Yë Yè Yę Yg Yğ Yn Yń Yň
Yñ Yo Yó Yô Yö Yœ Yò Yő Yø Yõ Yp Yr Yŕ Yř Ys Yś Yš Yş Yu Yú Yû Yü Yù Yű Yů Yv Yw Yx Yz Yź
Yž Yż ÝA ÝÆ ÝÁ ÝĂ ÝÂ ÝÄ ÝÀ ÝĄ ÝÅ ÝÃ ÝŒ Ýa Ýá Ýă Ýâ Ýä Ýæ Ýà Ýą Ýå Ýã Ýc Ýć Ýč Ýç Ýd
Ýď Ýđ Ýı Ýe Ýé Ýě Ýê Ýë Ýè Ýę Ýg Ýğ Ýn Ýń Ýň Ýñ Ýo Ýó Ýô Ýö Ýœ Ýò Ýő Ýø Ýõ Ýp Ýr Ýŕ Ýř Ýs
Ýś Ýš Ýş Ýu Ýú Ýû Ýü Ýù Ýű Ýů Ýv Ýw Ýx Ýz Ýź Ýž Ýż ŸA ŸÆ ŸÁ ŸĂ ŸÂ ŸÄ ŸÀ ŸĄ ŸÅ ŸÃ ŸŒ
Ÿa Ÿá Ÿă Ÿâ Ÿä Ÿæ Ÿà Ÿą Ÿå Ÿã Ÿc Ÿć Ÿč Ÿç Ÿd Ÿď Ÿđ Ÿı Ÿe Ÿé Ÿě Ÿê Ÿë Ÿè Ÿę Ÿg Ÿğ Ÿn Ÿń Ÿň
Ÿñ Ÿo Ÿó Ÿô Ÿö Ÿœ Ÿò Ÿő Ÿø Ÿõ Ÿp Ÿr Ÿŕ Ÿř Ÿs Ÿś Ÿš Ÿş Ÿu Ÿú Ÿû Ÿü Ÿù Ÿű Ÿů Ÿv Ÿw Ÿx Ÿz Ÿź
Ÿž Ÿż aj av aw ay aý aÿ áj áv áw áy áý áÿ ăj ăv ăw ăy ăý ăÿ âj âv âw ây âý âÿ äj äv äw äy äý äÿ àj àv
àw ày àý àÿ ąg ąğ ąj ąp ąv ąw ąy ąý ąÿ åj åv åw åy åý åÿ ãj ãv ãw ãy ãý ãÿ bc bć bč bç bd bď bđ be bé
bě bê bë bè bę bj bo bó bô bö bœ bò bő bø bõ bq bv bw bx by bý bÿ ch ck ćh ćk čh čk çh çk „ �- �„ �“ �” �‘
�’ ďb ď\ ďh ďk ďl ďĺ ďľ ď“ ď” ď‘ ď’ ďþ eV ŋb ŋt ŋť ŋu ŋú ŋû ŋü ŋù ŋű ŋů ŋv ŋw ŋy ŋý ŋÿ ¡ ff fi fl f] f! f) f?
f“ f” f‘ f’ ffi ffl ff] ff! ff) ff? ff“ ff” ff‘ ff’ gj ğj » », ». hV hW hb ht hť hu hú hû hü hù hű hů hv hw hy hý
hÿ ĳ kV kW kc kć kč kç ke ké kě kê kë kè kę ko kó kô kö kœ kò kő kø kõ ľb ľ\ ľh ľk ľl ľĺ ľľ ľ“ ľ” ľ‘ ľ’ ľþ « ł’
mV mW mb mt mť mu mú mû mü mù mű mů mv mw my mý mÿ nV nW nb nt nť nu nú nû nü nù nű nů
nv nw ny ný nÿ ńb ńt ńť ńu ńú ńû ńü ńù ńű ńů ńv ńw ńy ńý ńÿ ňb ňt ňť ňu ňú ňû ňü ňù ňű ňů ňv ňw ňy
ňý ňÿ ñb ñt ñť ñu ñú ñû ñü ñù ñű ñů ñv ñw ñy ñý ñÿ oc oć oč oç od oď ođ oe oé oě oê oë oè oę oj oo oó
oô oö oœ oò oő oø oõ oq ov ow ox oy oý oÿ óc óć óč óç ód óď óđ óe óé óě óê óë óè óę ój óo óó óô óö óœ
óò óő óø óõ óq óv ów óx óy óý óÿ ôc ôć ôč ôç ôd ôď ôđ ôe ôé ôě ôê ôë ôè ôę ôj ôo ôó ôô ôö ôœ ôò ôő ôø
ôõ ôq ôv ôw ôx ôy ôý ôÿ öc öć öč öç öd öď öđ öe öé öě öê öë öè öę öj öo öó öô öö öœ öò öő öø öõ öq öv
öw öx öy öý öÿ òc òć òč òç òd òď òđ òe òé òě òê òë òè òę òj òo òó òô òö òœ òò òő òø òõ òq òv òw òx òy
òý òÿ őc őć őč őç őd őď őđ őe őé őě őê őë őè őę őj őo őó őô őö őœ őò őő őø őõ őq őv őw őx őy őý őÿ øc
øć øč øç ød øď øđ øe øé øě øê øë øè øę øj øo øó øô øö øœ øò øő øø øõ øq øv øw øx øy øý øÿ õc õć õč õç
õd õď õđ õe õé õě õê õë õè õę õj õo õó õô õö õœ õò õő õø õõ õq õv õw õx õy õý õÿ pc pć pč pç pd pď
pđ pe pé pě pê pë pè pę pj po pó pô pö pœ pò pő pø põ pq pv pw px py pý pÿ .“ .” .‘ .’ ¿ „C „Ć „Č „Ç
„G „Ğ „O „Œ „Ó „Ô „Ö „Ò „Ő „Ø „Õ „Q „V „W „Y „Ý „Ÿ „, „ � „ „g „ğ „j „„ „‚ „v „w „y „ý „ÿ “� “. ““
“‘ ”� ”. ”” ”’ “ ‘! ‘. ‘? ‘“ ” ’! ’. ’? ’” ‚C ‚Ć ‚Č ‚Ç ‚G ‚Ğ ‚O ‚Œ ‚Ó ‚Ô ‚Ö ‚Ò ‚Ő ‚Ø ‚Õ ‚Q ‚V ‚W ‚Y ‚Ý ‚Ÿ ‚ � ‚ ‚g
‚ğ ‚j ‚„ ‚v ‚w ‚y ‚ý ‚ÿ tw ty tý tÿ ťb ť\ ťh ťk ťl ťĺ ťľ ť“ ť” ť‘ ť’ ťþ ťw ťy ťý ťÿ uw úw ûw üw ùw űw ůw va
vá vă vâ vä væ và vą vå vã vc vć vč vç ve vé vě vê vë vè vę vo vó vô vö vœ vò vő vø võ wa wá wă wâ wä
wæ wà wą wå wã wc wć wč wç we wé wě wê wë wè wę wo wó wô wö wœ wò wő wø wõ ya yá yă yâ yä yæ
yà yą yå yã y, ye yé yě yê yë yè yę yo yó yô yö yœ yò yő yø yõ y. ýa ýá ýă ýâ ýä ýæ ýà ýą ýå ýã ý, ýe ýé
ýě ýê ýë ýè ýę ýo ýó ýô ýö ýœ ýò ýő ýø ýõ ý. ÿa ÿá ÿă ÿâ ÿä ÿæ ÿà ÿą ÿå ÿã ÿ, ÿe ÿé ÿě ÿê ÿë ÿè ÿę ÿo ÿó
ÿô ÿö ÿœ ÿò ÿő ÿø ÿõ ÿ. – - —

Table 5: The complete list of kerning and ligature pairs in ec-lmr10 (end).

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 65

The GUST Font License: An application of the LATEX Project Public

License

Jerzy Ludwichowski
Nicholas Copernicus University
Toruń, Poland
Jerzy dot Ludwichowski (at) uni dot torun dot pl

Karl Berry
TEX Users Group
karl (at) tug dot org

Abstract

We describe interpretation and usage of the GUST Font License. It is legally
identical to the LATEX Project Public License, with additional requests (not re-
quirements) related to usage with fonts. It is currently used for the Latin Modern
font project, among others.

1 Introduction

A previous article [9] described the process of for-
mulating a license for fonts in the TEX world, cul-
minating in two different licenses, based on (but
slightly modified from) the LATEX Project Public Li-
cense (LPPL) [8]. These were the GUST SOURCE

and GUST NOSOURCE font licenses. After further
discussions, we realized that the licenses could be
simplified and combined into one; viz., the GUST

Font License (GFL). Furthermore, it could be made
legally identical to the LPPL.

In [9], we also considered the GNU General Pub-
lic License [1] and the SIL Open Font License [10],
among others, before settling on the LPPL. We
won’t repeat that analysis here. The present article
describes interpretation and usage of the new license
and points out some benefits of the new formulation.

2 LPPL interpretations

The main reason for the two separate licenses in our
first attempt was the fact that fonts do not always
have source files separate from the fonts themselves;
they can be designed purely visually.

We owe a large debt to Frank Mittelbach of the
LATEX team, and the principal architect of the LPPL,
for pointing out that the LPPL does not require that
source files exist. In LPPL terms, the ‘Work’ and
‘Compiled Work’ can be one and the same thing,
which is indeed the case for visually defined fonts.

A second concern in the original formulation
was clause 6a in LPPL, which requires, in certain
cases, that a derived work which can directly re-
place an original work identify itself as a modified

version. It was not clear to us how this could apply
to fonts. Fortunately, Mittelbach again disentangled
us, noting that simply changing the font’s official
name (e.g., the FontName in a Type 1 PostScript
font) would suffice to fulfill this clause.

With these clarifications, we realized that the
two GUST font licenses could be combined into one,
and furthermore, the result could be made legally
equivalent to the LPPL — we would only need to
add requests, without any new requirements or other
changes. This is highly beneficial, as the FSF, De-
bian, and other organizations have already officially
accepted the LPPL as a free software license [3]; this
way, there would be no need for additional analysis,
and no question that the new GUST Font License
would also be a free software license. We were also
pleased not to contribute to the ongoing problem of
“license proliferation” in the free software world [2].
Finally, of course the LPPL was designed for use
with (LA)TEX, so we were very happy that it could
be used for fonts in the TEX world, too.

3 GFL usage

As a result of the above, to use the GFL, strictly
speaking, it is only necessary to abide by the LPPL.
Most importantly, the LPPL maintenance status and
any maintainer(s) should be stated. Indeed, this fea-
ture of the LPPL was a primary reason for choosing
the LPPL in the first place, as explained in the prior
article [9].

66 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

The GUST Font License: An application of the LATEX Project Public License

The additional request in the GFL is for names
of fonts to be changed in derived works, at the au-
thors’ option. The recommendation thus is for au-
thors to provide a separate manifest file, with three
sections:

1. Font names which should be changed.

2. File names which should be changed.

3. File names which need not be changed.

The Latin Modern manifest [6] is a good illustration.
The GFL web site [4] provides a generic tem-

plate for a manifest file in GFL-licensed distribu-
tions, as well as a template for a readme file, and
of course the current text of the GFL, among other
information.

GUST e-foundry fonts [5] will be released un-
der the GFL as new versions are published; Latin
Modern has been already, as mentioned above. We
are also pleased to report that Palle Jørgensen has
agreed to use the GFL for his Fonetika Dania [7].

4 Conclusion

We hope the GFL will remain a stable legal basis for
font releases in the TEX world for many years. Ques-
tions and comments are welcome, as always; please
see the GFL web page [4] for contact information.

Finally, thanks again to Frank Mittelbach for
his time and good cheer in discussing these perennial
licensing issues.

References

[1] GNU General Public license.
http://gnu.org/licenses/gpl.html.

[2] GNU Project. Licensing web page.
http://gnu.org/licenses/.

[3] GNU Project. Various licenses and comments
about them. http://gnu.org/licenses/
license-list.html.

[4] GUST Font License web page.
http://www.gust.org.pl/fonts/licenses.

[5] GUST e-foundry web page.
http://www.gust.org.pl/projects/

e-foundry.

[6] Jackowski, B. and Nowacki, J. M. Latin
Modern manifest. http://ctan.org/
tex-archive/fonts/lm/doc/fonts/lm/

MANIFEST.txt.

[7] Jørgensen, Palle. Fonetika Dania. http:
//ctan.org/tex-archive/fonts/fonetika/.

[8] LATEX Project Public License.
http://www.latex-project.org/lppl/.

[9] Ludwichowski, J. GUST font licenses.
GUST Bulletin 23. http://www.gust.org.
pl/projects/fonts/licenses/gfl.pdf.

[10] SIL Open Font License.
http://scripts.sil.org/OFL.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 67

A brief history of TEX, volume II

Arthur Reutenauer∗

ENST Bretagne
Technopôle Brest-Iroise
CS 83818
29238 BREST CEDEX 3
arthur dot reutenauer (at) normalesup dot org

Rationale for this volume II

When I gave this talk in Bachotek I appended the
subtitle Pax TEXnica— the program on which the
sun never sets —an obvious pun to two historical
empires renowned for their considerable geographical
extent. I wanted to add this subtitle for two reasons:
first, I liked A brief history of TEX a lot but I realized
after choosing it that there had already been a talk
with this exact same title more than ten years before1

and I wanted to avoid the risk of confusion, be it only
for archival purposes; and second, I felt the subtitle
made my standpoint clear—the history I wanted
to account for was very much a geographical one,
namely how TEX enabled us to gradually typeset in
every language of the world — or almost so. As far as
the printed version was concerned, though, it seemed
that it could also be considered a sequel to the first
article—after all, many things have changed over
ten years! Hence this volume II.

But first, let us recapitulate things from the
beginning . . .

1 The origins

1.1 In the beginning there was . . .

History begins, scholars tell us, with the invention
of writing and the ability to account for one’s own
culture. So, in the beginning there was typesetting
and the program that enabled us to do so, let us call
it TEX. This program was written by a man, let us
call him �±L . Oh, and we need a date, too, so
let’s say 1978, thirty years ago.

�±L , as the name suggests, lived in a region
inhabited by many Chinese citizens, next to the great
city that goes by the name of the Old Golden Hills.
But he was an American citizen and a native speaker
of the English language. So the program he wrote

∗ I wish to thank Jerzy Ludwichowski heartily for his
constant encouragement to write this article and his patience
in waiting for it.

1 This talk was given in Toruń in 1995 and published the
next year by different journals, including TUGboat, where it
is available online: http://www.tug.org/TUGboat/Articles/

tb17-4/tb53tayl.pdf.

Ööç
Figure 1: The name of a distant galaxy. From the
very beginning, TEX sets out to conquer the universe
(extract from story.tex, in The TEXbook, chapter 6).

was all in English (with a lot of ‘\’ though) and it
was meant — at first — for English speakers to use.

Nevertheless, when �±L created TEX, he still
thought of the users speaking other languages. Of
course, all the commands were in English, the default
settings were chosen for that language, and the fonts
used a 7-bit encoding2 supporting only the Latin
script, but he made provisions for extending this.
The fonts, in particular, were supplied with a set of
diacritics with the help of which he devised a set of
well-known accent commands that could construct
an accented character “on the fly”, a sample of which
can be seen in figure 1, an extract of a famous TEX
file. This made it possible to write, mostly, all the
languages of Western Europe— and therefore of all
the other countries that use the same languages, in
particular all of South America.

This was the first step since, even if they may
seem impractical now, the accent commands actually
introduced a way of inputting a lot of characters
users didn’t have access to on a standard American
keyboard, much in the way math commands were
a way of specifying the layout of complicated math
formulæ; so even if they were not an encoding3 in
the current meaning of the term, they were a sort of
coding system, and were thought as such by many
users as well as some recoding utilities.4

So TEX extended, from the very beginning, over
all the Americas as well as the western part of Europe,

2 That is, they could only have up to 27 = 128 characters.
3 In the sense of an encoded character set, like ASCII, the

ISO-8859-* family, or Unicode.
4 To name just one, the very popular recode program (ftp:

//ftp.gnu.org/pub/gnu/recode/) knows about sequences
likes \’e as the “TEX” encoding.

68 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

A brief history of TEX, volume II

“Uznając, iż los nas wszystkich od ugruntowania i
wydoskonalenia konstytucji narodowej jedynie zawisł,
długim doświadczeniem poznawszy zadawnione rządu
naszego wady, a chcąc korzystać z pory, w jakiej się
Europa znajduje i z tej dogorywającej chwili . . .”

Figure 2: Polish uses a lot of diacritics (extract from
the May Third Constitution, 1791).

and many regions in Africa.5

But, as mentioned, this wasn’t enough even for
some other languages using the Latin alphabet, let
alone languages using any other alphabet or different
writing systems. Work needed to be done, as �±L

acknowledged that he couldn’t handle all the lan-
guages of the world by himself, and he encouraged
people to settle to this task. It wasn’t long before
people did so.

1.2 Go East

As TEX was born, the story tells us further, there
was a companion program called METAFONT, whose
purpose was to design the fonts that TEX used. As a
matter of fact, all the letters and accents we discussed
above were all drawn using METAFONT, so adapting
the fonts to other languages meant, mostly, drawing
more characters as needed.

Let’s discuss how this was done. An interesting
example is Polish. It uses a wealth of accents (see
figure 2); most of them were already present in the
fonts or easy to add, by simple modifications to the
existing characters. One of these accents, though, is
quite special: it’s called ogonek which means “little
tail” in Polish, as for example on the first word of
figure 2. It looks remotely like a reversed cedilla
but is not quite, and the drawing had therefore to
be invented from scratch and polished carefully.6

Then, a new control sequence had to be invented and
agreed upon in order for users to be able to input
ogonek-accented characters, in the same spirit as the
already existing accent commands; nowadays, it’s \k
in LATEX.7

5 Including, of course, all the languages of the former
colonizers like English and French, but also important African
languages like Swahili which are written entirely in the Latin
alphabet.

6 The Poles are very proud of their ogonek and you should
not upset them by speaking ill of it. Maybe it is even too
daring in the eyes of some to state that ogonek resembles a
reversed cedilla!

7 For a thrilling account of how TEX came to Poland, I
highly recommend reading the text of this talk, given at the
TUG meeting in Hawai‘i in 2003, and published in TUG-

boat, volume 24, number 1: http://www.tug.org/TUGboat/

Articles/tb24-1/odyniec.pdf.

Over the years, more characters were designed
and entire alphabets were digitized using META-
FONT, starting with Greek and Cyrillic, which were
drawn by various people around the world.

An important step was when TEX was extended
in 1989 to handle 8-bit input (then becoming TEX3),
thus enabling fonts to have up to 256 characters. The
next year, during a meeting in Cork, TEX users from
all over the world agreed on a standard encoding for
TEX’s Latin fonts, which then came to bear the name
of its birth place (or the alternative, less poetical
names of T1 and 8t). Another important milestone
at that time was the advent of the LATEX babel pack-
age, which attempted to provide a convenient way to
switch between languages and a common interface
for LATEX users.

But even after those fonts were designed, after
those standards were agreed upon, many things were
left to do: what about Arabic, for example? TEX of-
fered amazing possibilities, but did not really address
the issues of right-to-left typesetting and it also com-
pletely left aside the fact that characters can have
different forms according to their place in a word
(both being essential features of Arabic). Therefore,
to go further it was necessary to think different !8

2 Think different

2.1 TEX encompasses the Mare Nostrum

As early as 1987, the first experiments were made
in handling the challenge of Arabic typesetting and
gave birth to a modified version of TEX called TEX-
XET, to emphasize the fact that it could write in
two different directions.9 This worked in a particular
way: when writing data in the output file, TEX-
XET did not reverse the order of letters but wrote a
mark whenever it encountered a sequence of Arabic
letters, and then let all the work be done by the
printer driver. That way, the text was stored in
natural order in the output file — that is in the order
in which an Arabic speaker would speak out the
letters—but, on the other hand, it meant the files
output by TEX-XET had to be processed by a special
driver. So �±L —who, once again, was the lead
in that project—decided that the output format

8 To quote an old slogan of one of the big computer man-
ufacturers— I’m not sure what the legal status of such com-
mercial slogans is and I may not be entitled to reuse it in
a document; but I want to make sure people know I didn’t
mean any harm and in case TUG is sued I deny everything.

9 The founding article was published in TUGboat, vol-
ume 8, number 1: http://www.tug.org/TUGboat/Articles/

tb08-1/tb17knutmix.pdf and makes fascinating reading even
today, especially when compared with the current paradigm es-
tablished by Unicode in that area — the so-called bidirectional
algorithm.

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 69

Arthur Reutenauer

input: Book is "½©¦§" in Arabic

output: Book is “AÇ�[” in Arabic

Figure 3: The challenge of Arabic writing: when
setting an Arabic text, the order of the letters does not
only need to be reversed, but their shapes also may
vary a lot—can you recognize all four of them on the
second line?

should be called DVI-IVD, to differentiate it from the
traditional DVI output format.

In this way, both the TEX program and the DVI
format were “extended” in the sense that they were
made able to handle different types of information
in addition to the ones they already knew how to
process or store. We shall meet a lot of these along
the way, and we shall refer to them as “extensions” —
or sometimes “engines” for TEX extensions. So TEX-
XET was, probably, the very first TEX extension.

A few years later, TEX-XET was itself extended
via something that achieved roughly the same goals,
but without needing to resort to an extension of the
DVI: it readily reversed the order of each letter in
the output file as appropriate. To mark both the
similarities and the difference of this second extension
with the first one, it was called by the same but a
second hyphen: TEX--XET!

These improvements were interesting and made
Arabic typesetting with TEX possible quite early; but
it was still an experimental system, and apart from
that, it did not change things for other scripts such
as, in particular, the Indic and South Asian scripts.

2.2 Enter Unicode

For better-suited treatment of such complex scripts,
Omega10 was designed. It consisted of several major
improvements:

• It enabled (probably) every sort of writing di-
rections.

• It came with a set of filters (the Ω transforma-
tion processes, ΩTP for short) that transformed
the input text.

• It enhanced the traditional font formats used by
TEX from 8-bit-based encoding to 16 bits.

The two first points made the treatment of Ara-
bic much more natural (just switch the writing direc-
tion from left-to-right to right-to-left, top-to-bottom;
and filter the input text to give each letter its appro-
priate appearance given the context); and the third
one was also very important because it addressed
the problem which we haven’t yet mentioned: up to
then, TEX handled only fonts with at most 256 slots.

10 We shall call it simply by the Greek letter from now on.

This isn’t so important for alphabetic scripts, but
becomes a major issue when one wanted to typeset
in a language using ideographs, whose number by far
exceeds this limit.

Ω addressed part of this problem by making
direct use of (possibly) very large font metrics; that
is, it could use any font on the input but remained
constrained by the output format.

Anyway, it brought with it a conceptual leap,
even if it failed to address some of the issues of the
output format. Over the years it has been success-
fully used to typeset the Devanāgari, Malayalam, Ti-
betan, Inuktitut and Cherokee scripts among others,
although it has never really gained a wide acceptance.

2.3 The other way: Generating PDF

Ω was first formally released in 1994, and by that time
there was a document format that was increasingly
gaining in popularity and commercial strength: PDF.
Hearing about this “Portable Document Format” in
the TEX world, one cannot help thinking that it is a
concept quite close to the traditional output format,
DVI (does it not stand for “DeVice-Independent”?);
therefore it seemed only right that TEX should be
able to produce PDF directly: and so it did, with
the birth of the well-known pdfTEX on March 15th,
1997 (then under the name tex2pdf).

Another huge improvement pdfTEX brought was
the direct handling of TrueType fonts, which by that
time had become a major font format for personal
computers.

2.4 One more εxtension . . .

Worth mentioning here, since its later development
was to be closely related to pdfTEX’s, is “the” ex-
tension of TEX, called ε-TEX for “extended TEX”.
Developed during the late 90s, it extended the above-
mentioned TEX--XET (the second one, with two hy-
phens) and was therefore of great use to Arabists
and other communities writing from right to left.

Some time later, its very useful extended fea-
tures were merged into pdfTEX, which thus had for a
while an offspring called pdfε-TEX, now fully incorpo-
rated into pdfTEX; that is, pdfTEX now supports the
ε-TEX extensions, but it can also pretends to know
nothing about these and be simply pdfTEX.11

2.5 Needless To Say

Before proceeding to the last part of this account,
there are a few words to be said on another attempt

11 Just as it also could, from the very beginning, behave as
the DVI-producing TEX, or the actual pdfTEX — which means
that in DVI mode and with the extensions . . . you probably
get the picture.

70 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

A brief history of TEX, volume II

of extending TEX, which isn’t very famous now but
whose name still lingers in many memories. It was
to be a completely new concept, opening up a world
of possibilities . . . but as of today, it is no more.

The “New Typesetting System”, as it was called —
or NTS for short — was a complete reimplementation
of TEX in Java, aiming at full compatibility with the
original engine, and providing at the same time the
great modularity and extensibility that comes with
that language.

Sadly, while the first goal was actually achieved
(TEX was indeed rewritten in Java), it proved com-
pletely unusable and pointless because of its extreme
slowness. The extension projects were never carried
out and NTS has now been officially declared dead.

3 Rule, TEXannia, TEXannia, rule the waves

3.1 Taming the multilingual lion

Back to living projects now: there is one very young
lion which has brought many changes for a lot of
users recently. X ETEX, as it is called, is an extremely
multilingual extension of TEX; the very name sug-
gests, again, that it can typeset in every direction (it
can spell “TEX” backward). Its spirit is a bit special
in that it started off (in April 2004) as a MacOS-
specific program which made heavy use of the Apple
libraries designed to handle text and scripts.12

Shortly thereafter (April 29th, 2006), X ETEX was
released for Linux too, and it was not long before it
was ported to Windows as well.

X ETEX’s main distinction— and its overwhelm-
ing advantage for many of its adherents— is to get
rid of nearly all the hassle in font selection, font in-
stallation, etc., while opening up at the same time
a whole new world of possibilities: people can sud-
denly use the bleeding-edge features of the newest
font technologies with no particular problem. The
key to this was the use of a lot of external libraries —
which of course comes at a price: users lose part of
the control over every detail of the processing chain
which had always been a great advantage of TEX;
but many find this tradeoff acceptable.

3.2 Towards the infinite and beyond

Another TEX engine worth mentioning in passing is
called Aleph (ℵ), of Ω-ish ascent. It started as an
attempt to stabilize Ω while merging the extensions
by ε-TEX at the same time (hence its original name,
ε-Ω).

12 Before X ETEX there was TEXGX (on the Mac only) which
used the same series of Apple libraries, then called “GX tech-
nology” —TrueType GX was an extension of the TrueType
font format, now replaced and enhanced by AAT —Apple
Advanced Typography.

While it attracted much attention for a few years
after it was launched in 2001, it is today overshad-
owed by another successor to TEX, which is now
thought of as representing the future path.

4 Howling to the moon

This “successor” is LuaTEX. As this seems to be
yet another prefixed version of TEX, we shall first
explain what that prefix is. Lua is a small scripting
language originated at a university in Rio de Janeiro
(Brazil) which was developed to be embedded in
other applications. The word “lua” means moon in
Portuguese (hence the title of this section).

So the idea seems clear, LuaTEX is Lua + TEX:
an embedded language in TEX, enabling us to go
even further than anything that could be done before
with macros; in LuaTEX we will also have the Lua
language and we can write Lua functions in addition
to TEX macros. And . . . there is actually much more:
while LuaTEX was indeed meant to be Lua + TEX
(actually pdfTEX, now merged into pdfε-TEX) when
it was first conceived in the beginning of 2005, it
is now also incorporating the features of ℵ and its
parent Ω, therefore effectively merging two families
of engines: the “Ω way” and the “pdfTEX way”. Lua
will be present at every stage of the processing chain,
with callbacks enabling the user to redefine parts
of TEX’s tasks using Lua functions. Finally, META-
POST is planned to be part of it too, being rewritten
as a library (instead of a stand-alone program).

LuaTEX is under active development today and
a first public release is planned for the 2008 TUG
conference in Ireland.13

5 Back to the future

With LuaTEX we have reached the most recent de-
velopments in TEX, and here it seems nice to say
some words to summarize the changes that we have
seen above.

If any general view is to be had, it seems to me
that the main changes that TEX has undergone over
the years were not only major improvements but
genuine Copernican Revolutions which progressively
widened TEX’s field of application. I have tried to
classify those phases in the article by making each
one of them a different section: section 1 shows how
TEX started with an approach of typesetting akin to
that of the craftsman’s carefully setting type to build
a page of text,14 while undergoing an initial modest
expansion along with some “standardization” (Babel

13 When TUG will return to Cork, which became famous
in the TEX world 18 years ago!

14 Let us not forget: “Rhymes are typeset with boxes and
glue”, in The TEXbook, chapter 14.

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 71

Arthur Reutenauer

package for LATEX, Cork encoding). Then it went
through a phase where the first experiments were
made to handle “complex scripts” (section 2) and this
gave birth to the first true extensions of TEX which
are actually quite old (again, TEX--XET was written
20 years ago). These extensions were consolidated
in the recent past described in section 3, when TEX
showed how it could still keep up with major changes
in the printing industry (PDF, TrueType and then
OpenType fonts). The present of TEX development
(section 4) is exemplified by LuaTEX which, once
again, comes with a complete change of perspective
on TEX processing. These have been the four “ages”
of TEX.

Writing history is important, and I have always
got the impression that the TEX community did not
care enough about its own history—there are of
course well-known bits and anecdotes about TEX,
but those are closer to legend than to history. Writ-
ing history is also a difficult and humble task, and
I cannot claim having covered everything that was
worthy remembering about TEX: some words could
have been said about macro packages (beyond LATEX,
which I simply quoted in passing) as well as TEX
distributions which have contributed a lot to TEX’s
expansion. Nor have I talked about important “indus-
try standards” such as XML which have also become
an important part of TEX’s capability today (this
would have been more linked to the macro packages
than to the engines themselves). It is therefore my
hope that we can, maybe, enhance this article with
more descriptions and memories, and I have opened a
small page at the ConTEXt wiki to discuss this: http:
//wiki.contextgarden.net/History_of_TeX.

To conclude, I would like to name a few places
where I’ve personally encountered TEX, as it gives
an idea of the versatility of TEX and the extent of
the Pax TEXnica:

• The general scientific community and especially
mathematicians and computer scientists.15

• People from humanities, especially in Ancient
Greek and linguistics.16

15 This was obvious but I felt I still had to mention it first!
16 Indeed, what other free program can handle at the same

time Ancient Greek, Russian, Lithuanian, Latvian, Sanskrit
and French? Someone at my university was doing a Master
on Indo-European linguistics and did really need to input all
these languages.

TEX

ε-TEXΩ pdfTEX TEXGX NTS

ℵ pdf(ε)-TEX X ETEX
εXTEX

LuaTEX

Figure 4: The happy TEX family. The different
extensions have been divided into successive
“generations” of engine, corresponding to the different
sections in this article.

• Shopkeeper in one of the biggest Chinese book-
shops in Paris.17

• Musicians needing to engrave scores.18

• Users of free software.19

• People involved in the publishing industry.20

17 Perhaps my most amazing encounter with TEX in a place
I didn’t expect it at all, but I swear it is true: while gazing at
the shelves of the aforementioned bookshop I overheard two
members of the staff discussing how to produce documents in
Chinese (probably for the shop’s catalog).

18 MusicTEX and MusixTEX have many an adept in spite
of their extreme difficulty to master.

19 Indeed, on an average Linux distribution, there are very
little software able to rival TEX—OpenOffice is an obvious
example, but it may be the only other one.

20 Especially for processing XML, as already mentioned.

72 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

Overview of the TEX historic archive

Ulrik Vieth
Vaihinger Straße 69
70567 Stuttgart
Germany
ulrik dot vieth (at) arcor dot de

Abstract

This paper presents an overview of the TEX historic archive, an archive of historic
TEX distributions and packages hosted on the TUG FTP server. While the topic
of this conference focuses on paths to the future, this archive aims to preserve
snapshots of significant past and present releases of TEX software, so they will
remain available for reference and won’t get lost when new versions are installed.
Apart from explaining the motivation behind the project, this paper also presents
an overview of what the archive currently contains and what is still missing.

1 Introduction

The history of TEX goes back nearly 30 years now,
starting from the earliest beginnings in 1977. In the
case of TEX, unlike most other software projects,
the early history is pretty well documented in the
literature [1, 2, 3], at least as far as the core system
of the TEX engine itself is concerned.

When it comes to related elements of the TEX
system, such as macro packages or fonts or systems
like METAFONT or METAPOST, the documentation
of the history isn’t nearly as sophisticated as in the
case of TEX, and pretty soon one ends up piecing
together the history from anecdotal evidence.

Probably the best way of preserving the history
of a software project is by preserving the artifacts
of the system, preferably the original sources and
distribution packages of all significant releases.

While this may seem to be a well-established
best practice in the age of project web sites featuring
source code repositories and distribution archives,
one has to keep in mind that such a level of project
infrastructure is quite a recent achievement, far from
standard just a few years ago.

2 Genesis of the TEX historic archive

Looking back just one decade, establishing CTAN as
a comprehensive archive network of all available TEX
software was a great achievement of the combined
TEX users groups, which has become a resource that
is taken for granted now.

From the point of view of software archaeology,
however, such an archive doesn’t necessarily satisfy
all the needs, since the different types of archives
have different goals and different audiences.

While CTAN is a dynamic and ever-changing
archive, which aims to carry only the latest versions
of everything available, a historic archive is a static
archive, which aims to preserve archival copies of
various release versions of selected packages which
may be of specific historic interest.

While CTAN aims to satisfy the needs of end
users, making it easy to find the current version of a
package without causing confusion, the audience of
a historic archive is likely to consist of just a small
group of expert users, who might be interested in
browsing and comparing various different versions
of a package with specific attention to small details
such as original file dates and timestamps.

Based on these considerations, the idea of an
archive of historic TEX distributions and packages
was conceived in the late 1990s in discussions be-
tween the author and some CTAN maintainers.

It was agreed that the historic archive should
be kept separate from CTAN and it was decided to
establish the archive on the TUG FTP server, which
also served as a development server for some projects
and already carried some interesting material.

3 Organization of the TEX historic archive

As explained, the TEX historic archive is intended
as an archive of historic TEX distributions, packages
and files, which is hosted on the TUG FTP server at
the following URL:

ftp://ftp.tug.org/historic/

The archive is maintained entirely manually, mostly
by the author himself with a few contributions from
others. It is updated infrequently on an occasional
basis whenever new material becomes available that
may be of significant historic interest.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 73

Ulrik Vieth

The organization of the archive loosely follows
the organization of CTAN, featuring top-level direc-
tory such as fonts, macros, systems, etc.

Below the top level, however, the structure is
somewhat different. In some cases, it was sufficient
to have a single directory for a package, containing
multiple copies of distribution files that can be dis-
tinguished by version number. In other cases, it was
more convenient to have individual subdirectories
for each release of a distribution or package.

4 Contents of the TEX historic archive

When the TEX historic archive was first established,
it was mostly based on the author’s personal archive
of material collected during the 1990s while serving
as the local TEX administrator on a Unix network
at university and on Linux PCs at home.

Later, some additional material was added that
was restored from old CTAN CDs or mirrored from
various FTP servers located by search engines that
were still carrying old material at that time.

In some cases the most recent versions of some
packages were mirrored directly from CTAN or from
distribution archives of project web sites.

The selection of material is obviously somewhat
biased by personal preferences and interests, so the
coverage of Unix-based distributions is quite exten-
sive while the coverage of other platforms is largely
missing. Similarly, the coverage of LATEX releases is
very comprehensive, while ConTEXt is still missing.
Fortunately, there exists an independent archive site
of ConTEXt releases to fill the gap in this case.

In the following sections, we will look at some
examples of distributions and packages preserved in
the collection of the TEX historic archive.

systems/knuth This directory contains the true
original distribution files from Don Knuth, mirrored
from Stanford, covering the 1995, 1998, and 2002
releases of TEX and METAFONT.

In principle, the material is identical to what
is found in systems/knuth on CTAN, except that
those files are somewhat less reliable, because they
are unpacked and rearranged without much regard
to preserving timestamps or the original structure.

systems/unix This directory contains various re-
leases of UnixTEX distributions by Pierre MacKay.
The coverage is complete from TEX 3.0 to TEX 3.141,
but earlier releases are very rare.

The author was lucky to find a complete copy
of TEX 2.95 to mirror from an obscure FTP server
during the late 1990s, but he was unable to locate a
complete copy of TEX 2.0 at that time.

Since the UnixTEX distribution used to be quite
popular at times, it is quite likely that some copies
of distribution tapes of older UnixTEX releases may
have survived in some basements or attics. However,
finding a suitable tape drive and getting old tapes
to read after 15 or 20 years could be quite difficult.
On the other hand, unpacking the files once they are
restored to disk should be no problem at all, since
the TAR format has remained popular and is still
widely used on Unix/Linux platforms today.

systems/web2c This directory contains various re-
leases of the web2c distribution by Karl Berry and
later Olaf Weber. The coverage is mostly complete
from web2c-5.0 of 1990 to webc2c-7.5.4 of 2005
and also includes many beta-test releases.

In recent years, maintenance of web2c was in-
tegrated with TEX Live and has been moved to a
Subversion repository on svn.tug.org. While such
a source code repository provides even more fine-
grained access to changes between releases, the lack
of traditional distribution files unfortunately causes
a gap in the file-based historic archive.

Moreover, unlike traditional text-based change
log files, we are becoming more reliant on the tech-
nology of the Subversion repository to preserve the
change history. We can only hope that the change
history will be properly migrated and not blindly
discarded in case the repository is ever moved to
another system or platform.

systems/teTeX This directory contains various re-
leases of the teTeX distribution by Thomas Esser.
The coverage is mostly complete from teTeX-0.2

of 1994 to teTeX-3.0 of 2005 with the exception of
beta-test releases, such as teTeX-0.99.

It is interesting to note how the distribution
has grown from the original Linux-only release of
teTeX-0.2 which used to fit on 5 floppy disks to the
later multi-platform Unix distributions featuring an
ever-growing texmf tree of 30, 50 or 90 MB.

systems/metapost This directory features a col-
lection of METAPOST releases by John Hobby and
later Taco Hoekwater. The coverage is complete
from version 0.62 of 1995 to the latest releases and
also includes many beta-test releases.

All of the recent beta-test and production re-
leases were mirrored directly from the project web
sites at sarovar.org and foundry.suppelec.fr,
so in this case the flow of file-based distribution
snapshots for archival purposes has fortunately re-
mained intact after the development infrastructure
was moved to a different platform.

74 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Overview of the TEX historic archive

systems/pdftex This directory features a collec-
tion of pdfTeX releases by Hàn Thé̂ Thành and later
Martin Schröder. Unfortunately, the coverage of the
archive is currently only partly complete. It is fully
complete only for the recent releases from versions
1.20 to 1.40, that could be mirrored directly from
the project web site at sarovar.org, but most of
the earlier versions are still missing.

The author has tried to fill in some of the gaps
by adding versions of pdfTeX that were bundled
with web2c releases, but the earliest versions don’t
go back any further than pdftex-0.11.

If anybody could provide additional copies of
early versions of pdfTeX, such a contribution to the
historic archive would be very welcome.

macros/latex209 This directory contains various
releases of LATEX 2.09 of 1991–92, including the final
public release that can still be found on CTAN in the
obsolete tree. It also contains several noteworthy
add-on packages for LATEX 2.09 such as NFSS and
the so-called Mainz packages that later became part
of the LATEX 2ε kernel or tools bundle.

It would be interesting to add original copies of
LATEX 2.09 of 1986 or even LATEX 2.00 of 1984 for
comparison, if such versions could be recovered.

macros/latex2e This directory features a collec-
tion of LATEX 2ε releases, starting from the earliest
pre-test releases of 1993 until the current release.
The coverage is very complete for most of the 1990s,
but the author has failed to preserve snapshots of
some of the more recent releases, which however
could be recovered from CTAN CDs.

In addition to the official LATEX 2ε releases, the
collection also includes some alpha-test releases from
the author’s personal collection that were originally
circulated only to a limited group of testers.

Of course, the historic archive cannot possi-
bly cover all the many contributed add-on packages
and classes for LATEX, so the coverage concentrates
on the LATEX base system and the required pack-
ages, but even those aren’t fully complete for all
releases. The archive usually includes the graphics

and tools bundles, but sometimes lacks releases of
amslatex, babel, or psnfss.

macros/context As mentioned before, the selec-
tion of material currently doesn’t include much in
the area of macro packages besides LATEX.

In the case of ConTEXt, there fortunately exists
an independent project web site of ConTEXt releases
since 1997 at foundry.supelec.fr, which could be
easily copied or mirrored, if desired.

fonts/cm This directory contains various releases
of Computer Modern fonts of 1995, 1998, and 2002,
extracted from the corresponding original sources in
systems/knuth.

In principle, these files are redundant, but they
are provided here for the convenience of font devel-
opers and researchers, who sometimes need to com-
pare details of various releases of font sources.

It would be interesting to add additional earlier
versions of CM fonts for comparison, possibly going
back to the first releases of 1985 or even earlier to
AM fonts, if such versions could be recovered.

fonts/dc-ec This directory contains various re-
leases of DC and EC fonts by Norbert Schwarz and
later Jörg Knappen between 1991 and 1997.

In addition, the collection also includes some
test releases from the author’s personal collection
that were never widely distributed.

fonts/modes This directory features a collection
of various releases of modes.mf by Pierre MacKay
and Karl Berry since 1991, providing a repository of
METAFONT mode definitions for various devices.

fonts/fontname This directory contains various
releases of the fontname document by Karl Berry
since 1992, which not only lists the assignment of
font names for several suppliers, but also documents
several important font encodings.

fonts/utilities/fontinst This directory holds
a collection of fontinst releases by Alan Jeffrey,
Sebastian Rahtz and later Lars Hellström.

The coverage is relatively comprehensive since
fontinst-1.800 of 1998, but only a few copies of
earlier releases since 1994 could be recovered from
various sources such as CTAN CDs.

Some versions of fontinst between 1995 and
1998 never existed as official releases on CTAN and
were only available as unofficial releases as part of
other font tools, so there remains a gap in the archive
that can only be partially closed.

fonts/psfonts/tools This archive complements
the collection of fontinst releases and contains a
collection of font tools that were used between 1995
and 1998 to generate font metrics for psnfss, using a
combination of Perl scripts and unofficial fontinst

releases by Sebastian Rahtz.
In recent years, the use of these tools has been

discontinued in favor of standard fontinst-1.9xx

after maintenance of psnfss and psnfss-sources

has been taken over by Walter Schmidt.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 75

Ulrik Vieth

fonts/lm Among the most recent additions to the
TEX historic archive are the Latin Modern fonts by
the GUST e-foundry.

Unfortunately, the coverage is still fairly incom-
plete at present. While the development of LM fonts
has started in 2002, the author has started taking
archival snapshots only recently, when the develop-
ment was already well advanced, so he missed most
of the early development versions.

In order to provide a comprehensive reference
for font researchers, it would be interesting to add
copies of earlier releases for comparison, if those still
exist somewhere. Once again, such a contribution to
the archive would be very welcome.

fonts/tex-gyre Finally, the TEX Gyre fonts by
the GUST e-foundry have also been added to the
TEX historic archive, as soon as the first releases
have become available.

As a lesson learned from Latin Modern fonts,
where taking archival snapshots was started too late,
the author has concluded that archiving releases of
important projects should better be started as early
as possible before anything can get lost when the
next release is installed over the previous one.

5 Summary and conclusions

As was explained in the introduction, the historic
archive was established for a very specific purpose:
provide a collection of archival copies of important
TEX distributions, packages or fonts.

The archive started out in the late 1990s with
a small personal collection and has steadily grown
over the years, adding new material mirrored from
CTAN or project web sites as well as old material
restored from earlier CTAN CDs or mirrored from
obscure FTP servers still carrying old material.

While the archive covers a lot of ground in many
areas, there are still a number of gaps that remain to
filled, not only for older material, but also for some
of the more recent development projects.

As was already emphasized, contributions to
the archive are very welcome, especially in the areas
where gaps remain to be filled, such as in the cases
of pdfTeX and the Latin Modern fonts.

Besides the areas already covered in the archive,
there are certainly other areas that have been some-
what neglected so far, but equally well deserve to be
archived. Some examples include additional macro

packages besides LATEX, such as ConTEXt, and addi-
tional distributions for other platforms besides Unix/
Linux such as emTeX or fpTeX. Once again, contri-
butions to the archive are welcome, if you have any-
thing to offer in these areas.

6 Additional resources of historic material

Finally, concerning the early history of TEX and
METAFONT before 1990 there remains the resource
of the Stanford SAILDART archive located at

http://www.saildart.org/

The SAILDART site hosts an archive of the SAIL
computer system at Stanford, restored from backup
tapes, which happens to be the very machine used
by Don Knuth from the 1970s until 1990, on which
TEX and METAFONT were first developed.

At present the SAILDART archive only allows
access to the system areas [TEX,SYS] and [MF,SYS],
whereas the private areas [TEX,DEK] and [MF,DEK]

remain restricted.
Nevertheless, even without access to the private

areas, this archive site provides a wealth of historic
material from between 1980 and 1990 that remains
largely untapped.

Among the material that may be found here are
numerous releases of TEX and METAFONT sources,
numerous versions of CM and AM fonts as well as
several early LATEX releases. In addition, one might
even find some more exotic stuff here, such as macros
for TEX78 or font sources for MF79.

So far, only a few examples have been copied
from SAILDART to the TEX historic archive, such
as a snapshot of LATEX 2.0 for TEX 1.0, but there is
certainly a lot more that could be added.

We can conclude that even after 30 years since
1977, the history of TEX remains an interesting topic
of research, considering all those new developments
currently going on, as well as all the old material
that is left to be rediscovered.

References

[1] Donald E. Knuth. The Errors of TEX. Software

—Practice and Experience, 19:607–681, 1989.
[2] Donald E. Knuth. Literate Programming. CSLI

Publications, Stanford, CA, USA, 1992.
[3] Donald E. Knuth. Digital Typography. CSLI

Publications, Stanford, CA, USA, 1999.

76 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

TEX Clinic

Joanna Ludmiła Ryćko
Lichtenrader Str. 42
12049 Berlin
jrycko (at) gust dot org dot pl

http://typoagrafka.eu

Abstract

The TEX Clinic is a project, started last year, which takes place at the conference
in Bachotek. It’s open to anyone who is planning or writing a document and
needs assistance with typesetting. Even if “the Patient” doesn’t know TEX or
LATEX very well, our Doctors will help him or her to prepare it or to repair it.
The result will be a typographically correct document or at least a prescription
for how to meet his or her needs.

1 How does it work?

A group of TEXnicians, willing to help, will show you
how to begin or will advise you if you aren’t able
to go on. The main principle of the Clinic is: you
typeset your document by yourself, but you can —
anytime — count on the advice and help of the ex-
perienced “Doctors”.

2 What do I need?

• Willingness is the first thing you should bring.

• Then you will also need the text of your doc-
ument or at least a small part of it. If you have
already started to write it in another program,
such as MS Word, we can also help you to con-
vert it to TEX or LATEX.

• If you are using a special format, please contact
the Team before the conference, to arrange the
best way of preparing your work for the conver-
sion.

• It would be good if you could bring your own
computer (a laptop or even a desktop PC).
But if you don’t have one or can’t bring it to
the conference, that won’t be a problem. There
is a PC room at the conference which everyone
can use.

3 Do I have to have TEX installed on
my computer?

The answer is: yes and no. Of course it would be bet-
ter if you had it; we can then start immediately with
your questions about your work. But you can also
count on our TEXnicians to help with installing TEX
on your system on your own during the conference.

We will also have some DVDs with diverse TEX
distributions, so you can borrow one from us to in-
stall it on your computer.

by Toni Walter

4 TEX? LATEX? ConTEXt? Maybe X ETEX?

Among the various Doctors are experts on every
topic with TEX inside, and also some non-TEX top-
ics, such as graphics or Emacs. If you have specific
questions, better let us know before the conference,
to give the Doctors time to prepare. But mostly
there shouldn’t be a problem with answering any
spontaneous questions on the spot.

If you don’t know what is the difference between
the TEX flavours mentioned in the head, feel free to
ask our Team!

5 Do I have to sign up in advance?

It is not necessary, but would be helpful so we can
estimate how many “patients” to expect. See sec-
tion 7.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 77

Joanna Ludmiła Ryćko

6 Does it cost anything?

No, you don’t have to pay anything aside from the
normal conference fee.

7 Who are the experts?

These are the people, who we know somehow (for
example from earlier conferences), who are willing
to help others, and who have good knowledge in
any topic connected with TEX or other referring to
graphics or typesetting.

Below you will find the current list of our ex-
perts. In brackets are the languages spoken by that
Doctor.

• Maciej Jan Głowacki – MEX [Polish]
• Jean-Michel Hufflen – BibTEX [French,

German, English]
• Paweł Jackowski – Non-Conventional Methods

[Polish, English]
• Jonathan Kew – X ETEX [English]
• Jacek Kmiecik – ConTEXt, MetaPost, LATEX

[Polish]
• Adam Kolany – TEX, MetaPost [Polish]
• Ryszard Kubiak – Psychiatrist with the

specialisation Emacsphobia [Polish]
• Krzysztof Leszczyński – MEX, TEX [Polish]
• Bogusław Lichoński– graphics, TEX [Polish]
• Jerzy Ludwichowski – General Practitioner

[Polish, English, German, Russian]
• Mojca Miklavec – ConTEXt Specialist

[Slovenian, English, German]
• Grzegorz Murzynowski – LATEX, possibly TEX

[Polish, English]
• Wojciech Myszka – LATEX and pictures

[Polish]

• Joanna Ludmiła Ryćko – Co-Ordinator, LATEX
Diagnostician and Surgeon [Polish, German,
English]
• Marek Ryćko – TEXologist [Polish, English]
• Grzegorz Sapĳaszko – LATEX, pdfLATEX and

all connected with PDF [Polish]
• Andrzej Tomaszewski – typography [Polish]
• Zofia Walczak – LATEX [Polish, English]
• Staszek Wawrykiewicz – Surgeon of TEX

implantations [Polish, English]

All our Doctors will have special ID cards at
the conference, in a distinguished colour, to make
it easier to notice them. On those ID cards we will
write their specialisations and spoken languages to
help you choose the right one.

How can I contact the clinic doctors?

There is an e-mail address which works 365 days
a year; feel free to ask your questions there:
klinika@gust.org.pl

If you have any organisational questions or you
want to inform us about your specific needs, please
contact me directly:
jrycko@gust.org.pl

Current information on the clinic can be found
on the Internet:
http://www.gust.org.pl/projects/klinika

Will the Clinic also take place at next year’s
(2008) BachoTEX conference?

Of course! There are always people willing to help
and another who need the answers to their ques-
tions. So if you are asking yourself whether it will
be possible to visit the Clinic next time, the answer
is “yes”. All you need to do is to prepare yourself
and your document.

78 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Parameterized Arabic font development for AlQalam

Ameer M. Sherif, Hossam A. H. Fahmy
Electronics and Communications Department
Faculty of Engineering, Cairo University, Egypt
ameer dot sherif (at) gmail dot com, hfahmy (at) arith dot stanford dot edu

http://arith.stanford.edu/~hfahmy

Abstract

We present new approaches to Arabic font development for AlQalam. In order to
achieve an output quality close to that of Arabic calligraphers, we try to model
the pen nib and the way it is used to draw curves as closely to the ideal as
possible using METAFONT. Parameterized fonts are also introduced for a more
flexible and dynamic combination of glyphs, to be used in forming ligatures and in
drawing whole words as single entities. Quality will improve if words are created
as single entities since the Arabic script is cursive. We compare our method to
the basic binding of glyphs using simple box and glue mechanisms and also to
currently existing font design technologies.

1 Introduction

The process of typesetting languages using the Ara-
bic script is more challenging and more complex
than typesetting languages using the Latin script.
Previous works [3, 4, 10] indicated the special needs
for high quality Arabic typesetting. This paper con-
centrates on just one special property of the Arabic
script, namely being cursive in nature, and presents
a way to model this property accurately.

Being a cursive script means that letters inter-
act with each other, and adjacent letters affect each
other in many ways. Arabic letters have many forms
depending on their position in a word: initial, me-
dial, ending and isolated. Early typesetting systems
stored glyphs for each character in each of these dif-
ferent forms and used them when required.

Another feature of the Arabic script is the pres-
ence of a large number of ligatures in any text, un-
like the Latin script which uses only a few ligatures.
Arabic ligatures usually include many letters, some-
times a whole word is one ligature. The longest ex-
ample the current authors have seen is a ligature of
seven consecutive letters. The issue of ligatures is
partially solved in contemporary systems by intro-
ducing glyphs for only a selected number of letter
combinations.

Current font design technologies still treat Ara-
bic glyphs as separate boxes. Advanced technologies
like OpenType do allow interaction between differ-
ent glyphs, through numerous layout features, how-
ever, there are still limitations that we discuss below.

Hence, we propose a different solution to give
us more quality and typesetting flexibility. Our so-

lution is based on accurately modeling the process of
writing Arabic, using the powerful, if underutilized,
language of METAFONT.

2 Modeling the calligraphic process

AlQalam was initiated with the intention of type-
setting Qur’anic and other traditional Arabic texts.
Our goal is to produce an output quality as close
as possible to a book written by a calligrapher (the
majority of Qur’ans in print today are offset im-
ages of hand-written pages). In other words we are
targeting the maximum achievable quality and type-
setting flexibility. In the past two decades, the ap-
proach to typesetting Arabic on computers has been
through simplifying the Arabic script for easier mod-
eling. Haralambous [5] discusses the typographical
simplifications applied to the Arabic script in these
past years. Most of these suggestions for simplifica-
tion failed over the years to gain any market accep-
tance. Nowadays, with the existence of more power-
ful computers and the advances in font technologies,
it makes sense to try to model Arabic writing more
accurately.

Letters have to be completely interactive with
neighboring ones; in fact, an Arabic writer looks at
a single word as one entity and all letters in it are
drawn accordingly, hence it is like one large liga-
ture. The calligrapher also decides the positioning
of the word above the reference line as a single entity,
not for each letter alone. Moreover, if the line has
a certain horizontal space remaining for one word,
the calligrapher will make use of additional ligatures
and compress letters together if space is short, or

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 79

Ameer M. Sherif, Hossam A. H. Fahmy

break some ligatures and extend some letters if ex-
tra space is available. Of course there are rules for
breaking and forming ligatures and also for extend-
ing or compressing letters. Some of these rules have
been documented in recent papers written in En-
glish [3, 4, 10]. Moreover, it is not acceptable to
justify the lines in Arabic only by varying the width
of the spaces between words as done in Latin.

We illustrate these ideas with examples scanned
from a widespread copy of the Qur’an printed in
Al-Madinah [1]. Breaking and forming ligatures is

evident in words as becoming , and also

becoming . Other examples show how the
kashida or tatweel (elongation stroke) is used to give

words extra length as in , , and . Note
that in the latter example, the letter haa’ can have
different lengths of tatweel, hence it does not make
sense to store all these different lengths as glyphs to
be substituted when needed.

In some cases, the calligrapher may need to ex-
tend more than one letter in a word, for example

extended to or even . Notice how the
second and third forms are almost 1.5 and 2 times
as wide as the first. This property of cursive Ara-
bic script, if made possible in computer typesetting,
would allow a higher flexibility in line justification,
much more than the unacceptable method of relying
only on inter-word spaces.

Completely flexible and dynamic fonts must be
available to provide this facility in typesetting pro-
grams. When we surveyed the available font design
technologies, we concluded that METAFONT is the
most suitable. We really need to describe the letters
in a very abstract way to make them more flexible,
i.e. we need not only design but meta-design the
Arabic letters — analogous to the Computer Mod-
ern typeface family. By METAFONT, here we mean
the language itself and not necessarily the output
bitmap formats.

3 The Computer Modern typeface family

The Computer Modern (CM) typeface family pro-
duced by Donald Knuth [8] was a main source of
motivation for this work. It is one of the landmarks
in producing parameterized fonts. Despite the dif-
ferences between Latin and Arabic characters, we
believe it is possible to apply the same concepts used
in designing the CM fonts to Arabic ones.

Each character or symbol of CM has a program
to describe it. The font glyphs are defined by spline
vectors, but unlike current outline fonts, these vec-
tors are defined in a clear mathematical way that
can be parameterized, allowing them flexibility.

Figure 1: Four different lowercase letter ‘a’ forms
generated by a single description program. From left
to right: roman, sans serif, typewriter, and bold.

The only drawback of this design technique is
its difficulty. Knuth described his work to produce
parameterized CM fonts to be “much, much more
difficult than [he] ever imagined”. He received help
from several of the world’s finest type designers, and
his job, as stated by himself, was “to translate some
of their wisdom into precise mathematical expres-
sions” [8].

His final design of the CM fonts uses 62 pa-
rameters delivered to the programs describing the
characters to produce 75 different standard fonts.
These numbers clearly indicate the extent to which
these fonts are meta-designed. Fig. 1 shows four of
the lowercase letter ‘a’ generated by the CM family.
These a’s and many more are output from a single
description program.

We aim to produce Arabic fonts that are as
meta-designed as CM. Of course parameters would
be very different, for example many parameters in
the CM fonts described the serifs. In Arabic there
are no serifs, but instead there will be other param-
eters for connecting glyphs and forming ligatures.

4 Current font technologies

OpenType is currently the de facto standard font
technology. It has a lot of features that support
a very wide variety of languages and scripts. It is
adopted by Microsoft and Adobe, and thus it is the
most supported standard format. It has glyph posi-
tioning (GPOS) and glyph substitution (GSUB) ta-
bles which allow kerning and ligatures in Arabic. It
also has other layout features that help in connecting
glyphs in cursive scripts like Arabic. Being the most
common current font standard has led to the exis-
tence of many editors and tools that help design the
glyph outlines. Some tools, such as Microsoft’s Vis-
ual OpenType Layout Tool (VOLT), provide simple
graphical interfaces for editing the GPOS and GSUB

tables, among other features. In general, we find
the main advantage of OpenType over METAFONT

to be the ease of design and the availability of tools.
Despite the many features provided by Open-

Type, including those dedicated to the Arabic script,
we see them as insufficient. The whole concept of
letter boxes connecting together via other boxes of

80 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Parameterized Arabic font development for AlQalam

Figure 2: An example of OpenType font problems
with junctions between glyphs. This word was
obtained from sample products by Tradigital, a sister
company of DecoType, with a typesetting system
developed by Thomas Milo. Note that this font
represents the highest quality in OpenType Arabic
fonts we have seen, and if viewed at its standard
original size, without enlargement, these imperfections
are not visible.

elongation strokes is not suitable for highest qual-
ity Arabic typesetting, as we show in the following
examples.

Outline fonts can be used to draw glyphs of
characters in different forms very well when these
glyphs are isolated. When connecting glyphs to one
another, the junctions rarely fit perfectly, since ad-
jacent letter glyphs usually have different stroke di-
rections at the starting and ending points. Although
this imperfection may not be visible for small font
sizes, it is quite clear in large font sizes. An ex-
treme example is the use of these fonts to write large
banners or signs. Even for small fonts, when it is re-
quired to add a tatweel, a ready made kashida of spe-
cific length is used to connect the glyphs together.
Of course, such a kashida will not match perfectly
with all the different glyphs. Fig. 2 shows examples
of problems at junctions. Two of those problems
are due to using kashidas. The junction after the
kaf has no kashida, but it shows the non-uniform
stroke width. It would be possible of course to edit
the outline of these two glyphs to obtain a match,
but this would certainly create a mismatch with yet
other glyphs.

Another limitation is the use of already stored
glyphs for different ligatures; since the number of
possible ligatures is very large, only a selected por-
tion can be made available. To model the Arabic
script more accurately, each word should be consid-
ered a ligature and hence we would have an almost
infinite number of ligatures, which is impossible to
prepare in advance. The Unicode standard has nu-
merous glyphs called presentation forms, each rep-
resenting a unique ligature form. Unicode version 5
includes around 500 codes for different glyphs, just
to describe different forms of only 28 Arabic charac-

Figure 3: Part of the character code tables indicating
code allocation to complicated ligatures, combining up
to 3 letters.

Figure 4: Optical scaling requires that stroke widths
become thinner at intersections, in order to give an
appearance of uniform blackness for a word at smaller
scale. Left-hand figure shows a letter ‘sad’ in its
medial form as it normally appears. When linearly
scaled and used in a word, a black blotch appears
at stroke intersections. The right-hand side shows
how the ‘sad’ should be changed in order to appear
properly at smaller size.

ters, not including additional codes for short vowels,
diacritics, and Qur’anic marks. Fig. 3 shows some
of the complex ligatures allocated codes. The provi-
sion of a code point for each ligature is an inefficient
and non-scalable design in our opinion. As indicated
earlier, each Arabic word can in fact be considered
one ligature, so following this method of code al-
location to cover all ligature forms would take up
every remaining free code (and more). The process
of selecting a ligature should instead be left to the
typesetting application.

A final feature that is more feasible to imple-
ment in METAFONT than in OpenType is the capa-
bility to program and embed information to be used
in scaling glyphs for different sizes in the fonts them-
selves. This additional information (called ‘hinting’
in the OpenType terminology) may be used to en-
able optical scaling instead of linear scaling. The
optical scaling is even more important when two
strokes meet, as in the medial form of the letter
‘sad’ in the left-hand side of Fig. 4. At a small scale
this stroke crossing produces a black blotch when it
is used in a word. Knuth [7] discussed this problem,
and its solution in METAFONT by decreasing the
thickness of the stokes as they intersect. This change
of thickness makes the words at small sizes appear
of uniform darkness; see the ‘sad’ in the right-hand
side of Fig. 4. This solution can be parameterized
such that, as the size decreases, the pen width at

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 81

Ameer M. Sherif, Hossam A. H. Fahmy

Figure 5: Various pen nib shapes in METAFONT.
From left to right: circle, inclined ellipse, square,
inclined rectangle, and a polygon created by the
makepen macro.

intersections decreases, thus giving a feel of uniform
darkness at all sizes.

These limitations in new font technologies led
us back to METAFONT, which has existed in its cur-
rent form since 1986. What new font technologies
are attempting (and sometimes failing) to achieve
has mostly been feasible using METAFONT since it
was created. It is only due to the complexity of the
task that it was not widely tried either with META-
FONT or with anything else. We think that the use
of the METAFONT language to produce high-quality
flexible Arabic fonts might be easier than the use
of current OpenType tools. In the next section we
discuss one of METAFONT’s most powerful features,
the notion of pens.

5 Modeling pens in METAFONT

The pens used in writing Arabic are of different
types and were previously discussed by Benatia et
al. [3]. In order to solve the problems of contempo-
rary outline fonts, we propose a better pen model to
achieve an output closer to the real writing of a cal-
ligrapher. We first discuss how pen nibs are defined
in METAFONT and how pen strokes are modeled.

5.1 Pen nibs in METAFONT

METAFONT provides two predefined pen nibs, for
circular and square pen nib shapes: pencircle and
pensquare, respectively. Each can be scaled, with
different scaling factors in each direction, allowing a
multitude of elliptical and rectangular shapes. The
nibs can be further transformed by rotation around
a specific axis. This is of extreme importance since
Arabic is written using the pen nib inclined at an
angle. Fig. 5 shows some of the nib shapes that can
be used in METAFONT.

The most important pen macro in METAFONT

is makepen. This macro enables the user to define
any custom pen nib shape required, as long as it
is a convex polygonal shape. The polygonal shape
is defined by a number of coordinates connected by
straight lines. The rightmost pen nib in Fig. 5 shows
a polygonal nib produced by makepen. Since Ara-
bic pens may not be purely rectangular or elliptical,

Figure 6: One path traced by two different pens [7].
The left-hand path was drawn using a circular pen,
and the right-hand path used an elliptical pen inclined
at 40 degrees from the x-axis.

Figure 7: Skeleton of the letter noon requires that
the pen rotates to achieve different widths. In the left
glyph (correct), the pen inclination from the x-axis
changes from 70 to 120 degrees as it moves from right
to left. In the right glyph (wrong), the same segment
is drawn with a pen of fixed inclination of 75 degrees.

makepen can be used for accurate modeling of the
pen nib.

After defining the pen to be used in drawing,
we need to define the path to trace. In METAFONT

we define points in Cartesian coordinates and then
describe how the path passes through these points,
in what directions and angles. Bézier curves are
used by METAFONT to define the equations of these
paths. Again METAFONT gives unlimited flexibility
when defining paths.

5.2 Plain METAFONT drawing macros

Given the pen to be used and the path to trace,
we now have the last step, the drawing action itself.
The main drawing macros defined in plain META-
FONT are the draw, fill, and penstroke macros.

John Hobby [6] developed the algorithm defin-
ing the points traced by the pen. Fig. 6 shows a
path drawn using the draw macro but with differ-
ent pens. The limitation of the draw macro is its
use of a fixed pen inclination for the different paths
in the glyph. But in Arabic calligraphy, this is not
the case. Many letters require the calligrapher to
change the inclination of the pen while drawing. A
clear example is the skeleton of the letter noon in its
extended form; see Fig. 7. Its lower segment should
be thick at the middle and thin at the tips, and this
requires pen rotation while tracing.

The fill macro simply fills a closed contour. It
does not model a pen, but we will demonstrate later
how it can be used within other macros to do so.

The third drawing mechanism in plain META-
FONT allows rotation of the pen while tracing the
path. However, this mechanism does not use the

82 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Parameterized Arabic font development for AlQalam

Figure 8: A path drawn using the penstroke macro.
Note how the pen inclination changes as it moves
across the path, resulting in a different path thickness
at different parts.

Figure 9: The first problem with penstroke: razor
pen

defined pen nib, and instead approximates a stroke
produced by a razor pen (a pen with zero-width).
This makes the underlying algorithms used to de-
termine the shaded contour much simpler than if
a polygon pen was used. This drawing mechanism
uses two macros, penpos and penstroke. penpos

defines the width and inclination of the razor pen
at each coordinate pair. penstroke does the actual
drawing depending on the penpos at each point; see
Fig. 8. Tracing a 2-D path with a rotating polygonal
pen proves to be much more complex than the case
of no rotation as with the draw macro, and it was
not implemented in the plain METAFONT macros.

Although penstroke solves the problem of pen
rotation, the use of a razor pen leads to three other
problems while drawing Arabic letters. Most no-
tably, the zero width of the pen razor causes some
unwanted effects as shown in Fig. 9 when we try to
draw the letter baa’. Close observation of the re-
sulting glyph shows two defects directly. The first is
that the left tip of the letter is too thin, indicating
that the pen used has no width. The second flaw is
at the bottom of the rightmost tooth of the letter
intersecting with the base of the letter. This inter-
section is thinner than usual due to the same reason
related to the pen.

Yet, this is not the only issue with penstroke,
and not even the most prominent. There are two
other problems with this macro. These problems
are due to the way penstroke is defined in the plain
METAFONT file. First, when penpos is used at a co-
ordinate, METAFONT calculates the position of the
left and right ends of the razor pen at each coordi-
nate. It then forms two paths, right and left, con-
nects them at the endpoints with straight lines, then
fills the resulting contour. In fact the macro expands

Figure 10: The second problem with penstroke:
figure-8 shape.

Figure 11: The third problem with penstroke: bad
pen approximation.

to:
fill path .l -- reverse path .r -- cycle;

where path_.l is the path passing through all the
left points, and similarly for the right path.

This implementation causes the two problems.
The first is when we try to draw a shape like that
in Fig. 10. In this figure both paths intersect, re-
sulting in the contour dividing into two (and some-
times more) regions. METAFONT does not have the
capability to fill such complex regions that overlap
themselves, and hence produces errors. To draw
such a shape, a modification was done in our work
by detecting the crossing points of the paths, then
filling each region separately. Such crossings occur
frequently when drawing Arabic glyphs.

The definition of penstroke, with both left and
right paths evaluated independently, means that at
some points the distance between the two paths may
vary in a way that can not result from a fixed length
pen. It is not always easily perceptible, but in some
cases when there are sharp bends in a path or large
amounts of pen rotation, the resulting stroke be-
comes a very bad approximation of a razor pen, as
in Fig. 11. In drawing Arabic glyphs, such large
rotation in pen inclination rarely occurs, but this
extreme example shows that penstroke is not an
accurate model of a razor pen. Fig. 10 also shows
the same problem as a significant chunk of the stroke
is missing at the middle of the path.

Although the draw and penstroke macros are
good attempts to simulate pens in action, they do
not fulfill the needs of Arabic pens. One does not
allow pen rotation, while the other uses a pen with
zero thickness. It is obvious that neither macro is
sufficient, and we need the best of both worlds: a
polygonal pen that traces a path while rotating. The
next section discusses some proposed solutions for
accurate modeling of pen strokes. These solutions

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 83

Ameer M. Sherif, Hossam A. H. Fahmy

Figure 12: The error resulting from left and right
paths crossing is resolved, even in the case of multiple
crossings.

make use of the previously mentioned plain META-
FONT macros in various ways.

5.3 Enhancements to plain METAFONT

drawing macros

In this section we describe four proposed methods
to provide better modeling of the pen nib tracing a
path while rotating, in order of their ascending qual-
ity. With the last being the most accurate drawing
method. The first method was proposed by Knuth
for his CM fonts, while we developed the other three
in the course of our work. But before we discuss
them we will briefly mention how the errors aris-
ing from penstrokes left and right paths crossing,
discussed in the previous section, are solved.

METAFONT does not fill a non-simple contour
that crosses itself. In order to solve this, we pro-
pose finding the crossing points and then dividing
the contour into segments, and filling each one sep-
arately. Since we do not know the number of cross-
ings beforehand we do a loop until there are no more
crossing points. Fig. 12 shows an example of a stroke
drawn by a pen that rotates 180 degrees from point 1
to 2 and then 180 degrees more from 2 to 3, hence
rotating 360 degrees in total. Such a stroke would
result in an error if the plain penstroke is used.

5.3.1 The filldraw stroke macro

This technique is used a lot in Knuth’s definition of
CM character glyphs. It fixes the problem of pen-
stroke having zero width at certain points of a con-
tour. Instead of just filling the penstroke contour,
filldraw fills the contour and then traces its outline
with a small circular nib pen, thus adding thickness
to very thin segments of the “virtual pen stroke”.
The reason we say it is ‘virtual’ is because Knuth’s
definition of a glyph like ‘e’ keeps the pen rotat-
ing in such a way that the left and right paths of
penstroke do not cross, and this is certainly differ-
ent from what a person would do while drawing the
‘e’, hence it is not a real pen stroke.

The stroke macro is defined in the CM base
file, and it merely defines the closed contour cre-
ated by penstroke without filling it. Fig. 13 shows
the letters e and baa’ with penstroke and then
with filldraw stroke. Note the thickness effect

Figure 13: First solution: filldraw. The letter ‘e’ is
shown on the top right as it is used in the CM fonts,
and on the left how it would look like if drawn using
penstroke instead of filldraw stroke. The top pair
of baa’ letters shows the skeleton of the letter, i.e.
the closed contour. The left contour is drawn with a
very fine pen nib, while on the right with a thicker
nib. The pair of baa’ letters at the bottom show the
contours after filling.

Figure 14: Second solution: astroke. penpos defines
four points for each coordinate pair, named l, r, n, and
m (see dot at top). astroke macro then produces four
penstrokes; the left figure shows two of these sides
(l–r) and (n–m).

and how Knuth used this method to give letter tips
round edges. The letter baa’ is shown with its con-
tour and after filling with penstroke on the left and
with filldraw stroke on the right.

5.3.2 The astroke macro

Another solution to the problem of zero-width pen,
is to model the pen nib with multiple penstrokes,
one for each side of the pen. For example, for a
rectangular pen nib, a macro is defined which essen-
tially breaks into four penstrokes, each to model
the area covered by one side of the rectangle. The
penpos macro also had to be modified in order to
evaluate the four corner points of the pen nib [l, r,
n, m] instead of only two (left and right). Fig. 14
shows in the left figure two of the four penstrokes

84 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Parameterized Arabic font development for AlQalam

Figure 15: Third solution of stroke modeling:
qstroke. It forms the pen stroke by drawing many
instances of the pen nib along the path. The pen nib
used can be any shape, not just rectangular as in the
astroke macro.

resulting from the pen nib shown. The pen nib is
enlarged for better understanding. The right fig-
ure shows all four penstrokes but with reasonable
pen nib dimensions. The resulting baa’ skeleton is
much better than the one produced using only one
penstroke, and slightly better than the one using
filldraw stroke. Note that this macro can only
model strokes for rectangular pen nibs.

A pen used to write Arabic is rarely moved in
the direction of the smaller side. Hence the need to
model the smaller sides of the pen is limited to tips
of the glyph. This means that it is also possible to
produce the same output with only two penstrokes
(l–r) and (n–m) together with two nib dots at the
start and end.

5.3.3 The qstroke macro

This macro solves the problem of penstroke being
just an approximation of a razor pen traced path.
The glyph is simply created by drawing footprints
of the pen nib with different inclination angles at
many consecutive locations along a path. The angle
of the pen at each location is an interpolation of the
segment’s starting and ending inclination angles. At
a given finite resolution, a finite number of pen dots
gives the effect of a continuous pen stroke. As the
distance of the path increases more pen footprints
are needed. Also, since the path times in META-
FONT are not linearly distributed, more instances
are needed. Finally, when the pen rotation is large
in a specific segment more instances are needed as
well. Fig. 15 shows an example letter baa’ drawn
with the macro.

5.3.4 The envelope macro

For high resolutions, the qstroke macro needs to
draw many dots to yield a smooth stroke. A refine-
ment of this idea is to compute the exact envelope of
the razor pen and then fill it. This envelope macro
moves along the path at small intervals, evaluating

Figure 16: Fourth solution of stroke modeling:
envelope.

at each point two equidistant corresponding points
on the left and right paths, depending on the pen
inclination. The output is a more accurate model of
a razor pen than penstroke; see Fig. 16. Applying
four of this new envelope stroke as in the astroke

solution produces the most accurate glyph.
Of course, more accurate models require more

calculations and hence more computing resources.
For nominal resolutions, the qstroke macro will
produce a final output as good as the more accu-
rate but more complex macro, envelope, hence it is
preferred.

Now that we have obtained a satisfactory model
of the pen nib and the way it is used to draw strokes,
we will explore in the next section how parameter-
ized glyphs are designed.

6 Arabic font meta-design

With the satisfactory pen nib models of the last
section, we now discuss their usage to mimic the
way calligraphers draw the different letters. Our
main approach is to make the writing as dynamic
as possible, while obeying the traditional rules of
calligraphy [2, 9]. This enables us to simulate the
cursive nature of the Arabic script. In order to do
that we started to design a font that is parameter-
ized in many ways. This parameterization comes in
two forms: parameterization of coordinates and of
curves.

Parameterization of coordinates means that our
points in the x–y plane are not given fixed locations.
Any point location either depends on parameters
or is related to another point in the plane some-
times also through parameters. Parameterization of
curves, on the other hand, means that either the
tangential direction of a curve at some points or the
tension on a curve segment is dependent on param-
eters, or sometimes both together. This complete
parameterization of the glyphs will enable us to join
letters better together, extend them easily, and op-
tically scale the font.

This process of designing the glyphs is then bet-
ter described as meta-designing, since we not only
design the shape of the letter, but describe how it is
to be drawn, which is more difficult. Outline vector

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 85

Ameer M. Sherif, Hossam A. H. Fahmy

Figure 17: The letter noon shown with kasa widths
of 3, 9, and 13.

fonts like TrueType can be created by merely scan-
ning a handwritten sample and then digitizing it by
converting it to vectors. The more meta-designed
the glyph, the more difficult and more time it takes
to describe it to the computer, but on the other
hand, the better the final results become.

The Arabic alphabet, although consisting of 28
different letters, depends on only 17 different basic
‘skeletons’. Dots added above or below these skele-
tons differentiate one letter from another. For ex-
ample the letters haa’, jeem, and khaa’ all have the
same shape as haa’, but jeem has a dot below, and
khaa’ has a dot above. The separation of the dots
from the skeletons as well as breaking some complex
skeletons to smaller parts enables us to reduce the
amount of design required by considering only some
primitive shapes that are repeated and used in many
letters. The construction of individual letters by as-
sembling smaller parts is the traditional method of
teaching Arabic calligraphy as well.

For example, the body of the letter noon, called
the kasa, is used as a part of the isolated or end-
ing forms of many Arabic letters: seen, sheen, saad,
daad, lam, and yaa’. An important property of
the kasa is that it can be extended to much larger
widths. Its nominal width is 3 nuqtas (Arabic dots),
and when in its extended form, it can range from 9–
13 nuqtas. Fig. 17 shows several instances of the
longer form. Note that its width can take any real
value between 9 and 13, not just integer values.

Another example of a meta-designed primitive
that is used in justification is the kashida. Kashidas
can be used in almost all connective letters. Here
we illustrate the kashida in use with the letter haa’.
Fig. 18 shows the letter haa’ in its initial form with
two different kashida lengths, which differ by almost
3 nuqtas. A parameter is input to the program de-
scribing the letter in order to decide on the position

Figure 18: The initial form of the letter haa’ with
two different kashida lengths.

of point 4 in relation to 3. For a longer kashida
point 4 is moved to the left and also to the bottom.
We will see in the next section how kashidas are set
to join letters together smoothly.

7 The formation of words

After modeling the pens and meta-designing indi-
vidual letters, the next logical step is to join these
glyphs together to form complete words. The pa-
rameterization of the glyphs allows perfect junction
points as if these glyphs were drawn with just one
continuous stroke.

In the most widely used font technologies, like
OpenType and TrueType, kashidas are made into
ready glyphs with pre-defined lengths, and are sub-
stituted when needed between letters to give the
feeling of extending the letter. But since the kashida
is static, as is the rest of the surrounding letters,
they rarely join well, and it is evident that the word
produced is made of different segments joined by
merely placing them close to one another.

In our work, the kashida is dynamic and can
take continuous values, not just predefined or dis-
crete values. Our experiments with different ways of
joining various letter combinations lead us to think
that when a kashida is extended between any two
letters, it is neither a separate entity nor does it be-
long to only one of the two letters. Instead it is a
connection belonging to both.

Consider for example the simple joining of the
two letters, haa’ and dal (Fig. 19). Each letter is de-
signed in a separate macro and when used to form
the word, the elongation parameter of the kashida in
between is passed to both macros, and the kashida
is distributed on both glyphs. The two glyphs then
meet at the point where the pen stroke moves ex-
actly horizontally (parallel to the x-axis). This junc-
tion point is not necessarily at the middle of the dis-
tance between both letters. The ending point of each
glyph is moved further from its letter, and in order to
accommodate long kashidas, these points are moved

86 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Parameterized Arabic font development for AlQalam

Figure 19: Placing a kashida between the letters
haa’ and dal with different lengths 2, 3, 5 and 7 dot
lengths.

Figure 20: Placing kashidas using TrueType fonts
available in Microsoft Office 2003.

slightly downwards. Long kashidas need more ver-
tical space in order to curve smoothly, sometimes
pushing the letters of a word upwards.

Other than affecting the ending points, the pa-
rameter also affects the curve definition on both
sides by controlling the tensions of the paths. The
resulting word at many different kashida lengths is
shown in Fig. 19, which can be compared with the
adding of kashidas using the TrueType fonts avail-
able in Microsoft Office 2003 as shown in Fig. 20.

Further examples of joining words can be seen
in Fig. 21. This figure shows the word ‘yahia’ writ-
ten using different fonts. Notice how the TrueType
fonts connect the ligatures with a straight line, and
how the OpenType font (bottom left) corrects this
by placing curved kashidas. But unfortunately the
curved kashidas of this OpenType font are static
and do not join well. In the word produced by our
parameterized font (bottom right), the letters join
perfectly together, and there is also the possibility
of freely extending the length between the haa’ and
the yaa’ by any value as done in Fig. 19.

8 Future work

This paper presented new font design ideas that will
enable computers to produce Arabic texts of similar
quality to the works of calligraphers. The proposed
parameterized font will also enable better typeset-
ting, by providing better flexibility to the words.
The work covered here is just the beginning and a
small step towards the realization of such a system
that produces output comparable to writings of hu-
mans writing Arabic, and much remains to be done.

Figure 21: The word ‘Yehia’ as it is written
using four fonts. From top left to bottom right:
TrueType simplified (no ligatures), TrueType
traditional, OpenType Tradigital Naskh, and our own
parameterized font.

The proposed idea of producing such an out-
put using computers opens a very vast opportunity
for further research in the topic. We classify this
possible future work into two categories, research
within the font technology itself using METAFONT,
and within the typesetting system, TEX.

First, regarding the font design:

• Finalize meta-design of all possible letter forms.
Some letters like seen and baa’ have a very large
variety of forms.

• Develop algorithms and method for placement
of dots and diacritics, keeping in mind that
their placement may, in some cases, force the
calligrapher to move letters or words to free
space for them. Also it should be kept in mind
that this placement should not impede the leg-
ibility of the text, especially since its use is to
improve legibility and understanding. Some di-
acritics, especially short vowels like fat-ha and
kasra change their lengths and inclination, and
hence are dynamic.

• Decrease the computational complexity of the
current pen modeling techniques.

• Research the possibility of generating output
from METAFONT other than the resolution lim-
ited bitmapped glyphs for high quality print-
ing or screen viewing. Otherwise, to embed
the METAFONT sources within new file formats
such as pdf and extend the current pdf view-
ers to read these sources and use them to pro-
duce the correct resolution for the screen or the
printer on the fly.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 87

Ameer M. Sherif, Hossam A. H. Fahmy

• Design of other writing styles besides Naskh,
like Thuluth and Riq‘ah, with minimal changes
to the already meta-designed font.

Second, the work done in this paper together
with the points mentioned above aims at the goal
of providing the typesetting system with more flex-
ibility. The typesetting engine needs some work as
well:

• The selection of the most suitable glyph to be
placed in a word is a very complicated task.
Each letter may have many alternative forms
in its specific location in the word, and these
alternatives have different widths and heights.
Hence, the selection of a certain form is based
on many factors; most importantly, justifica-
tion, and placement of dots and diacritics con-
flicting with ligatures. The form of the letter
may be affected not only by its closest neigh-
bors, but in some cases a letter’s form may be
changed depending on the fifth or sixth follow-
ing letter.

• Line-breaking algorithms are a very rich topic.
The flexibility in the Arabic script adds to the
complexity of this task. Rules have to be added
to decide whether an alternative form should be
used, a ligature is to be used or broken (includ-
ing which ligatures are more important than
others), or where a kashida is to be added.

References

[1] The Holy Qur’an. King Fahd Complex for
Printing the Holy Qur’an, Madinah, KSA.

[2] Fawzy Salem Afify. ta‘aleem al-khatt al-‘arabi
[Teaching Arabic calligraphy]. Dar Ussama,
Tanta, Egypt, 1998.

[3] Mohamed Jamal Eddine Benatia, Mohamed
Elyaakoubi, and Azzeddine Lazrek. Arabic
text justification. TUGboat 27(2):137–146,
November 2006. Proceedings of the 27th

Annual Conference of the TEX Users Group,
Marrakesh, Morocco.
http://tug.org/TUGboat/Articles/

tb27-2/tb87benatia.pdf.

[4] Hossam A. H. Fahmy. AlQalam for
typesetting traditional Arabic texts.
TUGboat 27(2):159–166, November 2006.
Proceedings of the 27th Annual Conference of
the TEX Users Group, Marrakesh, Morocco.
http://tug.org/TUGboat/Articles/

tb27-2/tb87fahmy.pdf.

[5] Yannis Haralambous. Simplification of the
Arabic script: Three different approaches
and their implementations. In EP ’98/RIDT

’98: Proceedings of the 7th International
Conference on Electronic Publishing, held
jointly with the 4th International Conference
on Raster Imaging and Digital Typography,
volume Lecture Notes 1375, pages 138–156,
London, UK, 1998. Springer-Verlag.
http://omega.enstb.org/yannis/pdf/

arabic-simpli98.pdf.

[6] John Douglas Hobby. Digitized Brush
Trajectories. Ph.D. dissertation, Department
of Computer Science, Stanford University,
Stanford, CA, USA, June 1986. Also
published as report STAN-CS-1070 (1985).
http://wwwlib.umi.com/dissertations/

fullcit/8602484.

[7] Donald E. Knuth. The METAFONTbook,
volume C of Computers and Typesetting.
Addison-Wesley, Reading, MA, USA, 1986.

[8] Donald E. Knuth. Computer Modern
Typefaces, volume E of Computers and
Typesetting. Addison-Wesley, Reading, MA,
USA, 1986.

[9] Mahdy Elsayyed Mahmoud. al-khatt
al-‘arabi, derasa tafseelyya mowassa‘a [Arabic
calligraphy, a broad detailed study]. Maktabat
al-Qur’an, Cairo, Egypt, 1995.

[10] Thomas Milo. Arabic script and typography:
A brief historical overview. In John D.
Berry, editor, Language Culture Type:
International Type Design in the Age of
Unicode, pages 112–127. Graphis, November
2002. http://www.decotype.com/

publications/Language_Culture_Type.pdf.

88 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Nastaleeq: A challenge accepted by Omega

Atif Gulzar, Shafiq ur Rahman
Center for Research in Urdu Language Processing,
National University of Computer and Emerging Sciences, Lahore, Pakistan
atif dot gulzar (at) gmail dot com, shafiq dot rahman (at) nu dot edu dot pk

Abstract

Urdu is the lingua franca as well as the national language of Pakistan. It is based
on Arabic script, and Nastaleeq is its default writing style. The complexity of
Nastaleeq makes it one of the world’s most challenging writing styles. Nastaleeq
has a strong contextual dependency. It is a cursive writing style and is written
diagonally from right to left. The overlapping shapes make the nuqta (dots) and
kerning problem even harder.

With the advent of multilingual support in computer systems, different solu-
tions have been proposed and implemented. But most of these are immature or
platform-specific. This paper discuses the complexity of Nastaleeq and a solution
that uses Omega as the typesetting engine for rendering Nastaleeq.

1 Introduction

Urdu is the lingua franca as well as the national
language of Pakistan. It has more than 60 mil-
lion speakers in over 20 countries [1]. Urdu writing
style is derived from Arabic script. Arabic script has
many writing styles including Naskh, Sulus, Riqah
and Deevani, as shown in figure 1. Urdu may be
written in any of these styles, however, Nastaleeq
is the default writing style of Urdu. The Nastaleeq
writing style was developed by Mir Ali Tabrazi in
14th century by combining Naskh and Taleeq (an
old obsolete style) [2].

Figure 1: Different Arabic writing styles (from
top to bottom: Nastaleeq, Kufi, Sulus, Deevani and
Riqah) [3]

1.1 Complexity of the Nastaleeq writing
style

The Nastaleeq writing style is far more complex
than other writing styles of Arabic script–based lan-
guages. The salient features‘r of Nastaleeq that
make it more complex are these:

• Nastaleeq is a cursive writing style, like other
Arabic styles, but it is written diagonally from
right-to-left and top-to-bottom, as shown in fig-
ure 2. Numerals add to the complexity as they
are written from left-to-right (figure 7).

Figure 2: Direction of Nastaleeq writing style

• In most Arabic styles (especially digitized forms
(fonts) of these styles), each character may as-
sume up to four different shapes (isolated, ini-
tial, medial and final) depending on its position
in the ligature. The character Beh (U+0628)
takes four shapes depending on its position in
isolated (a), initial (b), medial (c) or final (d)
place in a ligature, as shown in table 1.

Nastaleeq is also a highly context sensitive
writing style. The shape of a character is not
only dependent on its position in a ligature but
also on the shapes of the neighboring charac-
ters (mostly on the shape of the character that

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 89

Atif Gulzar, Shafiq ur Rahman

d c b a

Table 1: Shapes of the character Beh at a) isolated,
b) initial, c) medial, and d) final position

Table 2: Shapes of character Beh at initial and
medial positions in different contexts

follows it). Table 2 shows a subset of the varia-
tions of Beh in different contexts. In Nastaleeq
a single character may assume up to 50 shapes.

• In Nastaleeq some glyphs are overlapped with
adjacent glyphs as shown in figure 3:

Figure 3: Overlapping glyphs in Nastaleeq

These overlapping shapes in Nastaleeq pose a
major concern for kerning, proportional spacing
and nuqta placement. As shown in figure 4, the
ligature needs to be kerned to avoid clashing
with the preceding ligature:

(b) (a)

Figure 4: before (a) and after (b) kerning

• Proportional spacing is a major issue in Nas-
taleeq writing style. The diagonality of liga-
tures produces extra white space between two
ligatures. Proper kerning is needed to solve that
problem, as shown in figure 5.

• Nuqta placement is still another major issue in
Nastaleeq rendering. Nuqtas are placed accord-
ing to context, to avoid clashing with other nuq-
tas and boundaries of glyphs. As shown in fig-
ure 6, the nuqtas are moved downward (c) (to
avoid clashing with the boundary of glyph (b))
from the default position (a).

(b) (a)

Figure 5: before (a) and after (b) kerning

(c) (b) (a)

Figure 6: (a) nuqtas at default position;
(b) default nuqta positioning produces a clash in
different contexts; (c) default nuqtas are repositioned
contextually to avoid clash.

1.2 Current Solutions

Two different techniques have been adopted for dig-
itizing the Nastaleeq script: a ligature-based ap-
proach and a character-based approach. Each has
its own limitations. The most dominant and widely
used solution is the ligature-based Nori Nastaleeq. It
has over 20,000 pre-composed ligatures [2]. This font
can only be used with the proprietary software In-
Page. The other promising solutions are character-
based OpenType fonts. These fonts use OpenType
technology to generate ligatures. The OpenType
solution is very slow for the Nastaleeq writing style
and has limitations for proportional spacing and jus-
tification.

Current solutions for the rendering of Nastaleeq
script are inadequate because they do not offer con-
sistent platform-independence and are inefficient in
handling the complexity of the Nastaleeq script.
These solutions are inconsistent in the sense that the
results of rendering may differ from one platform to
another. Currently the complete Nastaleeq solution
is only available for the Windows platform. The
support currently provided by Pango is quite sim-
plistic. It implements the basic context-less initial,
medial, and final rules in the OTF tables. This is no
better than a Unicode font based on the Arabic pre-
sentation forms in which a character has one shape
at each position. But Urdu is traditionally written
in the Nastaleeq script. There is a need to provide
a platform-independent solution for Nastaleeq.

The solution devised here provides Nastaleeq
rendering support in Linux through Omega. Omega
has the strong underlying typesetting system TEX
to handle the complexity of Nastaleeq rendering and

90 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Nastaleeq: A challenge accepted by Omega

Omega Translation Processes (ΩTPs) provide a so-
lution for the complexity of Nastaleeq script (e.g.
contextual shape substitution) [4].

The present solution is limited to the basic al-

phabets of Urdu ((U+0627) to (U+06D2)) and
numerals (0 to 9). These alphabets are listed in Ap-
pendix A. The solution provides:

• correct glyph substitution according to the con-
textual dependency of a character.

• correct cursive attachment(s) of a glyph

• nuqta placement

• automatic bidirectional support for numerals

2 Methodology

There are two possibilities for implementing support
for Nastaleeq in Omega: internal ΩTPs and external
ΩTPs. It is observed that internal ΩTPs are syntax
dependent; for example, it is almost impossible to
implement reverse chaining (processing characters/
glyphs in the reverse order in a ligature) using the
syntax of internal ΩTPs. External ΩTPs can be im-
plemented using Perl or C/C++, and give the free-
dom to implement custom logic [4].

The solution is broadly divided into four phases.
The first phase discusses the Omega virtual font gen-
eration for rendering Nastaleeq. The second and
third sections discuss the contextual shape selec-
tion and smooth joining of the selected shapes. The
fourth section discusses contextual nuqta placement,
the most difficult feature in Nastaleeq rendering.

2.1 An Omega virtual font for Nastaleeq

An Omega virtual font file is generated from a Nafees
Nastaleeq TTF font file. A total of 827 glyphs have
been used to render Nastaleeq. These glyphs are
placed in four different Type 1 files and four dif-
ferent TFM files are also generated. The Omega
program itself uses only the single virtual font file
nafees.ofm that contains pointers to the above gen-
erated font files.

2.2 Substitution logic

Nastaleeq is highly context dependent. The shape of
each character in a ligature depends on the shapes
of the neighboring characters. It is observed that
the shape of a character is mostly dependent on
the shape of the character that follows it. How-
ever, the shape of a final character in a ligature
is dependent on the second to last character, with
a few exceptions. For example, the character Reh

(, U+0631) has two glyphs and (as in

and) when the character Jeem (, U+062C)
occurs at the initial and medial position of a lig-
ature, respectively. Similarly, characters U+0631,
U+0691, U+0632, U+0698, U+0642, U+0648 and
U+06CC all have different final glyphs depending on
the glyph of the preceding character in a ligature.

In order to choose the correct glyph of a char-
acter, ligatures are processed from left-to-right, the
reverse of the natural writing style of Urdu, which
is right-to-left. The solution uses two lookup tables
(initial and medial) to get the initial and medial
shape of character according to the context. The
format of these tables is shown in Table 3 below.

U+0628 U+0629 U+0630
shape1 shape4 shape6 ...
shape2 shape8 shape9 ...
shape3 shape5 shape9 ...
shape4 shape10 shape8 ...

...

Table 3: Format of lookup table for initial and
medial shape context

The first row of the table consists of Unicode
values. The remainder are indices that point to the
corresponding shapes in the font. For each character
listed in the first row the shape of that character can
be determined by looking up the shape following it,
in the first column.

To find the shape of the final character two final
tables are used: final1 and final2 for two character
combinations and more than two character combina-
tions, respectively. It is needed because final shape
depends on the rightmost character; and there are
only two possibilities for a character at the (n−1)th

position: either it is an initial shape (in a two char-
acter combination) or a medial shape (in a more
than two character combination).

The format of the final table is a little different
from others. It has Unicode values in the first col-
umn as well, because at the beginning only Unicode
values are available.

U0628 U0629 U0630
U0628 shape4 shape6 ...
U0629 shape8 shape9 ...

...

Table 4: Format of lookup table for final shape
context

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 91

Atif Gulzar, Shafiq ur Rahman

The shape of the final character of the input
string can be found by looking up the second-to-last
character of the input string in the first column.

The first step for substitution is to break the
input string into ligature strings. Ligatures are then
processed from left to right as follows:

For a ligature of length n, the shape of the nth

character is recognized by consulting the final tables.

//if there are more than two characters

if (n>1)

ligature[n] = final2[lig[n]][lig[n-1]]

//if there are only two characters

elseif (n>0)

ligature[n] = final[lig[n]][lig[n-1]]

Where the lig string consists of Unicode values of
characters in a ligature and the ligature string holds
the shapes of these characters.

For the remaining n − 2 characters, the medial
table is consulted. The shape of the nth character
can be found in the medial table as follows:

for (k=n-1; k>0; k--) {

ligature[k] =

medial[mrcompress[ligature[k+1]][lig[k]]

}

Where mrcompress is the compressed medial table.
The shape of first character in a ligature can be

found by consulting the initial table:

ligature[0] =

initial[ircompress[ligature[1]][lig[0]]

where ircompress is the compressed initial table.
Finally the ligature is checked to see if it is com-

posed of numerals. In case of numerals, the string
is printed in reverse order, so as to maintain the
direction of numeric characters — from left to right.

if (ligature is composed of

numeric characters)

for (i=n; i>=0; i--)

Output ligature[i]

Figure 7: Sample string with numeric characters

2.3 Positioning

Nastaleeq is written diagonally from right-to-left
and top-to-bottom. The baseline of Nastaleeq writ-
ing style is not a straight horizontal line; instead,
the baseline of each glyph is dependent on the base-
line of following glyph. Similarly, the position of
a particular glyph is relative to the position of the
glyph following it.

TEX does not know anything about the shape
of a character. It only knows the box with height,
width and depth properties. TEX output contains
a list of boxes concatenated with each other. By
default these boxes are aligned along the baseline
(Fig. 8). But these boxes can be shifted horizontally
or vertically.

Figure 8: TEX boxes

The devised solution uses the pre-computed en-
try and exit points of glyphs that are stored in a file.
Entry points are points where the immediate right-
hand glyph should connect; similarly, exit points
represent the points where the immediate left-hand
glyph should connect.

Figure 9: Entry and exit points

In the above example the vertical adjustment
for the right-hand glyph will be y1 − y2. And the
resulting output is shown in figure 10:

Figure 10: After vertical adjustment

Similarly, the horizontal adjustment can also
be made for proper cursive attachment between two
consecutive glyphs:

Figure 11: After vertical and horizontal adjustment

92 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Nastaleeq: A challenge accepted by Omega

Two passes are needed for proper glyph posi-
tioning in a ligature. For vertical positioning the
ligature is processed from left-to-right. It is done
this way because the nth (last) glyph of a ligature
always resides on the baseline, while the other n− 1
glyphs move vertically upward according to the en-
try and exit points.

y=0;

for (j=n; j>=1; j--) {

y = enex[ligature[j]][1]

- enex[ligature[j-1]][3] + y;

ligenex[j-1][1] = y;

}

where the enex table contains the entry and exit
points, the ligenex table holds the resultant cursive
attachments and ligature contains the shape indices
of ligature.

In the 2nd pass the ligature is processed from
right-to-left for horizontal positioning. The first
glyph of a ligature is positioned horizontally with
respect to the previous ligature and then the re-
maining n− 1 glyphs are kerned for smooth joining.

for (j=0; j<n; j++) {

ligenex[j+1][0] =

(enex[ligature[j]][2]

+enex[ligature[j+1]][0])

}

Kerning is another major issue in Nastaleeq
rendering. There are two kinds of kerning problems:
one produces extra space between ligatures (a), and
the other creates a clash between ligatures (b). Case
(a) is not included in the present implementation,
but case (b) is handled.

(b) (a)

Figure 12: Types of kerning problems

The final shapes of the characters YehBarree

(, U+06D2), Jeem (, U+062C) and Ain (,
U+0639) produce (in some cases) negative kerning,
which results in clashes with the preceding ligature.
To avoid such clashes a positive kerning is made.
The factor of this kerning is calculated by subtract-
ing the width of final glyph from the sum of widths
of the preceding n − 1 glyphs of the same ligature,
as shown in figure 4.

kern = width[n-1] - width of final glyphs

where kern is the positive kerning value for a liga-
ture of length n, where width[x] holds the aggregate
widths of x glyphs.

2.4 Contextual nuqta placement

Nuqta placement is the most complex problem of
Nastaleeq rendering. Due to overlapping shapes,
nuqtas cannot be placed at fixed positions, but must
be adjusted according to the context. Thus, nuqtas
are stored separately from the base glyph. There are
two major kinds of nuqta problems: nuqta collision
with the neighboring glyph (a) and nuqta collision
with adjacent nuqtas (b), as shown in figure 13:

(b) (a)

Figure 13: Nuqta collision types

Initially nuqtas are placed at the most natural
position (figure 14) for individual glyphs. Nuqtas
are then adjusted for the above two problems.

Figure 14: Nuqta placement at default positions

There are 26 characters in Urdu that have nuq-
tas, as shown below; character Yeh (, U+064A)
has nuqtas at only its initial and medial position.

The intra-ligature clashes of nuqtas with the
neighboring characters are handled case by case.
Our investigations found that the following char-
acters influenced the nuqta positioning due to the
shape of their glyphs.

For example, the final glyph of YehBarree ()
produced problems for the nuqta characters that are
vertically overlapped over the shape of YehBarree.
To avoid this problem all such nuqtas are placed
below the horizontal strike of the YehBarree shape,
as shown in figure 15.

Nuqta clashes are removed according to follow-
ing observations.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 93

Atif Gulzar, Shafiq ur Rahman

(b) (a)

Figure 15: Nuqta placement for YehBarree

• The nuqtas of final letters are usually not dis-
placed.

• The nuqtas of isolated letters are usually not
displaced.

• The nuqtas of dad (U+0639) and zah (U+0638)
are not displaced.

• Nuqtas of initial letters are preferably placed in
their position.

• Nuqtas’ clashes with neighboring characters are
handled case by case.

• The nuqtas are displaced right (preferably) in
case of clash with neighboring nuqtas.

• If the displaced nuqtas are confused with the
next letter or clashes, the nuqtas are moved
downwards (or upwards) instead of horizon-
tally.

3 Results and discussions

There are more than 20,000 valid ligatures in Urdu.
The sample data of approximately 7,000 ligatures is
randomly selected from the corpus of 20,000 valid
ligatures. The data is tested for correct contextual
substitution, cursive attachment and nuqta place-
ment. The next table shows the test results for the
following test points.

• Proper glyph is substituted

• There is a smooth cursive join between glyphs

• Nuqtas are positioned at the right place without
clashing with another nuqta or the boundary of
a glyph.

The test results are shown in table 5.

4 Future enhancements

This work will provide a platform for the following
future enhancements.

• Support for diacritics

• Proportional spacing across ligatures

• Justification

• Improvements in nuqta placement

Number of Number Incorrect Incorrect Nuqta
characters of substi- position- clash

in a ligatures tution ing
ligature tested

8 26 0 0 1
7 253 0 0 5
6 1545 0 0 20
5 1500 0 0 18
4 1500 0 0 15
3 1500 0 0 5
2 600 0 0 0

total 7000 0 0 65

Table 5: Test results

Acknowledgement

We would like to thank the Nafees Nastaleeq font de-
velopment team, especially the calligrapher Mr. Jamil-
ur-Rehaman who created the beautiful glyphs for this
font. The beauty of this font gave us the inspiration
to provide Nafees Nastaleeq rendering support in Linux
through Omega.

References

[1] http://www.ethnologue.com

[2] http://en.wikipedia.org/wiki/Nastaliq

[3] Urdu calligraphy and fonts by Sarmad Hussain
at Urdu Fonts Development Workshop,
2003. http://www.tremu.gov.pk/tremu/
workingroups/presentation.htm

[4] Draft Document for the Ω system, by John
Plaice, Yannis Haralambous, March 1999.

Appendix A

Characters in scope are listed in the table below.

U+0622 U+0627 U+0628 U+067E U+062A

U+0679 U+062B U+062C U+0686 U+062D

U+062E U+062F U+0688 U+0630 U+0631

U+0691 U+0632 U+0698 U+0633 U+0634

U+0635 U+0636 U+0637 U+0638 U+0639

U+063A U+0641 U+0642 U+06A9 U+06AF

U+0644 U+0645 U+0646 U+06BA U+0648

U+06C1 U+06BE U+0626 U+06CC U+06D2

U+06F0 U+06F1 U+06F2 U+06F3 U+06F4

U+06F5 U+06F6 U+06F7 U+06F8 U+06F9

94 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Typesetting Vietnamese with VnTEX (and with the TEX Gyre fonts too)

Hàn Thế Thành
River Valley Technologies
http://river-valley.com

Abstract

This paper attempts to give an overview of the topics related to typesetting Viet-
namese with TEX. There are no detailed instructions, but rather a comprehensive
list of relevant issues and resources, so the reader can get an overall feeling of what
is possible and where to look for further information for a quick start. A section
is dedicated to a frequently asked question, i. e. how to write a few Vietnamese
words in a non-Vietnamese document. I also take a close look at the Latin Modern
and TEX Gyre fonts from the perspective of a Vietnamese end user, hoping to
provide some useful feedback to the authors of those fonts.

1 A brief introduction to the
Vietnamese language

For convenience I repeat here a short introduction
to the Vietnamese language from [1] (with small
modifications):

Vietnamese is written with Latin letters and
additional accents in a system called Quốc
Ngữ (which can be translated to English as
“national language”) developed by the French
missionary Alexander de Rhodes. What sepa-
rates Vietnamese from other languages type-
set with Latin characters is that in Vietnamese
some letters can have two accents. The to-
tal number of accented letters in Vietnamese
(including uppercase and lowercase letters)
is 134. Table 1 lists all accented lowercase
Vietnamese letters.

Vietnamese accents can be divided into three
kinds of diacritic marks: tone, vowel and con-
sonant. Table 2 shows them all with examples.

The accents in Vietnamese play a very impor-
tant role, since they are used to indicate different
meanings and pronunciations of words. The same
words with different accents can have a totally differ-
ent meaning (though the pronunciations can sound
very similar to a non-Vietnamese).

The vowel marks are more important than tone
marks. Letters with different vowel marks are con-
sidered as distinguished letters, but a letter with
different tone marks is considered as a single letter
with different tones. Vowels have more impact on
pronunciation than tones.

The official Vietnamese alphabet as taught in
school has 29 letters in this collating order:

A Ă Â B C D Đ E Ê G H I K L M N
O Ô Ơ P Q R S T U Ư V X Y

a ă â b c d đ e ê g h i k l m n
o ô ơ p q r s t u ư v x y

In Vietnamese all words consist of single sylla-
bles, so they are often very short; hyphenation is not
allowed at all.

The large number of Vietnamese accented let-
ters has caused big problems in the past. Since there
are 134 accented letters, we have 6 letters that don’t
fit within the upper 128 positions of an 8-bit encod-
ing. So people invented various encodings to deal
with this problem, using techniques like dropping
uppercase letters, or placing some letters in slots
0–31, or removing some ASCII letters. None was
perfect, until UTF-8 became widely used. Thanks to
UTF-8 support in the recent LATEX kernel, this is no
longer a problem.

The way that punctuation marks are typeset is
not consistent; sometimes people put a space before
them, sometimes not. However, the case without a
space before punctuation is dominant.

More information on the Vietnamese alphabet
can be found in [9].

2 Introduction to VnTEX

VnTEX is a package to typeset Vietnamese with LATEX
and plain TEX. VnTEX consists of the following:

• Vietnamese fonts;

• LATEX support for Vietnamese: input encoding,
font encoding, support for babel, a style file to
activate Vietnamese, etc.;

• plain TEX support;

• comprehensive font samples and test files;

• some brief documentation.

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 95

Hàn Thế Thành

a á ạ à ả ã

ă ắ ặ ằ ẳ ẵ

â ấ ậ ầ ẩ ẫ

e é ẹ è ẻ ẽ

ê ế ệ ề ể ễ

i í ị ì ỉ ĩ

o ó ọ ò ỏ õ

ô ố ộ ồ ổ ỗ

ơ ớ ợ ờ ở ỡ

u ú ụ ù ủ ũ

ư ứ ự ừ ử ữ

y ý ỵ ỳ ỷ ỹ

đ

Table 1: List of all Vietnamese lowercase letters taking accents

Vowel

breve lăn

circumflex tôi

horn lươn

Tone

acute lá

grave là

hook above lả

tilde lã

dot below lạ

Consonant

stroke đi

Table 2: List of all Vietnamese
diacritic marks

VnTEX tries to make typesetting Vietnamese as
accessible and easy as typesetting English, and also
tries to follow common LATEX conventions, in order to
minimize the chance of conflicts with other packages.
The official LATEX font encoding for Vietnamese is T5,
made by Werner Lemberg and Vladimir Volovich.
VnTEX supports various input encodings for Viet-
namese. The recommended encoding to use with
VnTEX is UTF-8. If for some reason UTF-8 cannot
be used (for example your TEX editor doesn’t support
it), VISCII is the recommended 8-bit encoding.

The first version was released in 2000. The
current version is 3.1.5 and was released in January
2007. VnTEX is being maintained by Hàn Thế Thành,
Werner Lemberg and Reinhard Kotucha. The official
website of VnTEX is [2].

VnTEX is already part of TEX Live and MiKTEX,
which frees most users from the need to install it
manually.

ConTEXt also has support for Vietnamese (partly
imported from VnTEX) and a number of Vietnamese
users.

3 How to typeset just a few
Vietnamese words

This section tries to answer the question that has
often been asked: How can I typeset just a few Viet-
namese words in my LATEX document, which is writ-
ten in English (German/Polish/French/...)?

The answer depends very much on the particular
scenario; however, I assume that you are in a hurry,
you don’t want to bother with issues like how to
display and write Vietnamese in your TEX editor.
You have only a few Vietnamese words in your LATEX
file and you would like to see them properly displayed

in your final PDF or PostScript file.

1. As the very first requirement, you must have
some minimal LATEX support for Vietnamese:

• Check whether you have VnTEX installed.
VnTEX is included in teTEX, MiKTEX and
TEX Live.

• If you don’t have VnTEX installed and you
are using Latin Modern or TEX Gyre fonts,
then you can just download a single file
http://vntex.sf.net/download/
vntex-support/t5enc.def and put it in
the directory where your LATEX source is.

• Or, if you feel that you need VnTEX, or
want to give it a try, or you are not using
Latin Modern or TEX Gyre fonts but a
font available in VnTEX only, you can try
to download and install VnTEX by following
the instructions (in English) at [3].

2. If all the above fails, try to get help from some-
one else to solve at least one of those issues.

3. Make sure you have the package fontenc loaded
with T5 encoding. For example, if your docu-
ment contains European language(s) only, then
you should have a line saying

\usepackage[T5,T1]{fontenc}

in your preamble.

4. Here’s an example of how to input Vietnamese
words:

{\fontencoding{T5}\selectfont
Ti\’\ecircumflex{}ng Vi\d\ecircumflex{}t}

which gives the output Tiếng Việt.

96 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

Typesetting Vietnamese with VnTEX (and with the TEX Gyre fonts too)

5. If the font family you are using doesn’t support
T5 encoding, you might want to use another
family by saying something like

\fontencoding{T5}\fontfamily{cmr}
\selectfont

Instead of cmr (Computer Modern fonts) you
can use lmr (Latin Modern fonts), or any font
family that supports T5 encoding. For a com-
plete list, see [4].

6. Table 3 contains all Vietnamese letters for your
reference.

7. If you have quite a lot of Vietnamese words it
can be somewhat tedious to translate them to
the above form (often called the LATEX Internal
Character Representation— LICR). On Win-
dows you can use the package http://vntex.
sourceforge.net/download/vntex-support/
tovntex.zip to translate text in the clipboard
from VIQR or UTF-8 to LICR by one key press.

The same (or close) convenience could be
made for Unix/Linux users, but at somewhat
higher cost due to deficiencies of Unix-like sys-
tems. So if you don’t use Windows then you are
out of luck, sorry. However, if you use Vim, you
can still download the package mentioned above,
and use the vim script inside the zip archive
to do the conversion. If you want to make this
easier for Unix users then let me know.

In the future, a web page might be set up to
provide online conversion from UTF-8 text to
LICR.

4 A quick start for VnTEX users

This section describes the very first steps for those
who want to use VnTEX. In contrast to the previ-
ous section, the requirement here is that you have
VnTEX installed, your editor can properly display
Vietnamese text and you can input Vietnamese text.
If your setup doesn’t meet these requirements, here
are some quick tips:

1. for Windows users:

• install MiKTEX;

• use a text editor that supports UTF-8: TeX-
Maker with a Unicode font like Courier
New;

• use the Unikey keyboard driver to input
Vietnamese letters.

2. for Unix users:

• install TEX Live 2007;

• use a text editor that supports UTF-8: TeX-
Maker, Emacs or Kile, with a Unicode font
like Courier New;

• use the XUniKey or Xvnkb keyboard driver
to input Vietnamese letters (this is not
needed for Emacs which has its own input
methods).

Supposing that you have VnTEX installed and
can read/write Vietnamese with your editor, we can
continue now.

A minimal example looks as follows:

\documentclass{report}
\usepackage[utf8]{vietnam}
\begin{document}
Tiếng Việt
\end{document}

If the document contains multiple languages,
you can use babel:

\documentclass{report}
\usepackage[english,vietnam]{babel}
\usepackage[utf8]{inputenc}
\begin{document}
\selectlanguage{english}
English text
\selectlanguage{vietnam}
Tiếng Việt
\end{document}

Once you get started with those examples, you
might be interested in some practical issues like:

• how to use VnTEX with Scientific WorkPlace,
• how to create PDF that can be searched, cut or

pasted,
• how to create PDF with Unicode bookmarks,
• how to use MakeIndex with VnTEX,
• how to convert LATEX to HTML using TEX4ht.

All those issues are solved and described at the
VnTEX website [2].

5 A survey of fonts that can be used
with VnTEX

VnTEX comes with quite a large set of fonts. Apart
from that, many existing fonts also support Viet-
namese. Most of them are made by the Polish font
experts who are working on the Latin Modern and
TEX Gyre font projects.

5.1 Fonts coming with VnTEX

Many freely available TEX fonts have their Viet-
namese counterpart coming with VnTEX:

• VNR: based on Computer Modern, the default
TEX fonts;

• URWVN: based on URW fonts, the free version
of 35 standard PostScript fonts;

• Vn CM Bright: based on CM Bright, a sans serif
font derived from Computer Modern fonts;

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 97

Hàn Thế Thành

À \‘A

Ả \h{A}

Ã \~A

Á \’A

Ạ \d{A}

Ă \Abreve

Ằ \‘\Abreve

Ẳ \h\Abreve

Ẵ \~\Abreve

Ắ \’\Abreve

Ặ \d\Abreve

Â \Acircumflex

Ầ \‘\Acircumflex

Ẩ \h\Acircumflex

Ẫ \~\Acircumflex

Ấ \’\Acircumflex

Ậ \d\Acircumflex

Đ \DJ

È \‘E

Ẻ \h{E}

Ẽ \~E

É \’E

Ẹ \d{E}

Ê \Ecircumflex

Ề \‘\Ecircumflex

Ể \h\Ecircumflex

Ễ \~\Ecircumflex

Ế \’\Ecircumflex

Ệ \d\Ecircumflex

Ì \‘I

Ỉ \h{I}

Ĩ \~I

Í \’I

Ị \d{I}

Ò \‘O

Ỏ \h{O}

Õ \~O

Ó \’O

Ọ \d{O}

Ô \Ocircumflex

Ồ \‘\Ocircumflex

Ổ \h\Ocircumflex

Ỗ \~\Ocircumflex

Ố \’\Ocircumflex

Ộ \d\Ocircumflex

Ơ \Ohorn

Ờ \‘\Ohorn

Ở \h\Ohorn

Ỡ \~\Ohorn

Ớ \’\Ohorn

Ợ \d\Ohorn

Ù \‘U

Ủ \h{U}

Ũ \~U

Ú \’U

Ụ \d{U}

Ư \Uhorn

Ừ \‘\Uhorn

Ử \h\Uhorn

Ữ \~\Uhorn

Ứ \’\Uhorn

Ự \d\Uhorn

Ỳ \‘Y

Ỷ \h{Y}

Ỹ \~Y

Ý \’Y

Ỵ \d{Y}

à \‘a

ả \h{a}

ã \~a

á \’a

ạ \d{a}

ă \abreve

ằ \‘\abreve

ẳ \h\abreve

ẵ \~\abreve

ắ \’\abreve

ặ \d\abreve

â \acircumflex

ầ \‘\acircumflex

ẩ \h\acircumflex

ẫ \~\acircumflex

ấ \’\acircumflex

ậ \d\acircumflex

đ \dj

è \‘e

ẻ \h{e}

ẽ \~e

é \’e

ẹ \d{e}

ê \ecircumflex

ề \‘\ecircumflex

ể \h\ecircumflex

ễ \~\ecircumflex

ế \’\ecircumflex

ệ \d\ecircumflex

ì \‘i

ỉ \h{i}

ĩ \~i

í \’i

ị \d{i}

ò \‘o

ỏ \h{o}

õ \~o

ó \’o

ọ \d{o}

ô \ocircumflex

ồ \‘\ocircumflex

ổ \h\ocircumflex

ỗ \~\ocircumflex

ố \’\ocircumflex

ộ \d\ocircumflex

ơ \ohorn

ờ \‘\ohorn

ở \h\ohorn

ỡ \~\ohorn

ớ \’\ohorn

ợ \d\ohorn

ù \‘u

ủ \h{u}

ũ \~u

ú \’u

ụ \d{u}

ư \uhorn

ừ \‘\uhorn

ử \h\uhorn

ữ \~\uhorn

ứ \’\uhorn

ự \d\uhorn

ỳ \‘y

ỷ \h{y}

ỹ \~y

ý \’y

ỵ \d{y}

Table 3: Vietnamese alphabet

• Vn Concrete: based on the CM Concrete font;

• TXTTVN: based on TXTT, a very nice type-
writer font from the txfonts package;

• Vntopia: based on Adobe Utopia;

• Vn Charter: based on Bitstream Charter;

• Vn URW Grotesk: based on URW Grotesk font,
a heavy font suitable for displayed text;

• Vn Garamond: based on URW Garamond;

• Vn Classico: based on URW Classico (also known
as Optima).

In addition to the above, VnTEX also contains TEX
support for some TrueType fonts (MS Core fonts,
ArevSan, ComicSans).

5.2 Fonts from other sources

The fonts made by Bogus law Jackowski and Janusz

98 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

Typesetting Vietnamese with VnTEX (and with the TEX Gyre fonts too)

Nowacki have excellent support for many languages
including Vietnamese. The fonts come ready-to-use
and cover all Vietnamese letters. Since the fonts are
so well known, I will only list them here without
description:

• Latin Modern fonts,

• TEX Gyre fonts (Bonum, Pagella, Schola, Ter-
mes, Heros),

• Antykwa Toruńska,

• Iwona,

• Kurier.

Antykwa Pó ltawskiego is also a very nice font
made by our Polish font experts but doesn’t support
Vietnamese yet. Therefore I take this opportunity
to repeat my plea to add Vietnamese support to this
font :).

Starting with version 7.0, Adobe Reader comes
with two nice fonts: Minion and Myriad. These fonts
have full support for Vietnamese. However, the use
of these fonts is restricted to Adobe Reader only.
It’s not even allowed to embed a subset of the fonts
in a PDF or PostScript file. Using a recent version
of pdfTEX, it is possible to use the fonts without
embedding them (but doing so implies that the PDF

output must be viewed or printed with Adobe Reader
7.0 or newer).

5.3 Typesetting Vietnamese and math

As mentioned above, VnTEX tries to make typesetting
Vietnamese as easy as typesetting English. When
it comes to math typesetting, this holds true as
well. Most of the fonts listed in the Free Math Font
Survey [7] either have a Vietnamese version avail-
able with VnTEX, or support Vietnamese themselves.
Therefore, the samples listed in the survey also apply
to Vietnamese. There is even a Vietnamese transla-
tion of the survey [8].

6 Comments on Latin Modern and
TEX Gyre from a user perspective

The Latin Modern and TEX Gyre fonts try to make
life easier for TEX maintainers as well as TEX users.
Therefore I think it is important for the authors to
get feedback not only from font experts and TEX
maintainers, but also from end users. In this sec-
tion I would like to comment on the fonts from the
perspective of a Vietnamese TEX user.

Ease of use: excellent, since the fonts are already
included in major TEX distributions, with every-
thing needed for use. In other words, it cannot
be easier for someone who wants to use them or
give them a try. However, it seems that people

are not very interested in trying, since the bene-
fits of switching to those new fonts are not that
clear for an end user. Perhaps a short document
explaining the benefits to switch to those new
fonts would be helpful.

Quality: the Vietnamese letters look very good in
general:

• accents are very consistent regarding shape
and placement;

• in most cases the accents look similar to
or better than those in VNR and URWVN

fonts;

• kerning data are added for Vietnamese let-
ters as well;

• the widths of letters like Ư, Ơ, ư, ơ are
adjusted properly;

• the quality of hints and outlines are far
better than in URWVN fonts.

Issues: still, there are some issues regarding accent
shapes and placement that need to be discussed
and perhaps re-considered if applicable:

• sometimes the accents don’t seem to have
the same (or optically compatible) dark-
ness; especially the grave accent is often
darker than the others in italic fonts;

• the placement of acute and grave over cir-
cumflex does not seem optimal to Viet-
namese users, especially the combination
of grave over circumflex. It is preferable to
have the grave rather on the right side of
the circumflex, instead of the center.

• sometimes the accents are placed too close
to the base letter or to each other, making
some letters look too “crowded”. This is
more visible at small sizes, or low resolu-
tion.

7 Acknowledgments

I would like to thank all the people who have con-
tributed to VnTEX in various ways. I try to list here
the most significant contributors that I can recall, in
no particular order:

• Vladimir Volovich for work on the T5 encoding
and supporting T5 encoding in his cmap package,

• Werner Lemberg for major LATEX support in
VnTEX and also for the vncmr package, from
which VnTEX was derived,

• Reinhard Kotucha for maintaining the VnTEX
package,

• Bogus law Jackowski and Janusz M. Nowacki for
their excellent support of Vietnamese in their
fonts,

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 99

Hàn Thế Thành

• Nguyễn Đại Quý (also known as vnpenguin) for
supporting the vntex.org domain and many
various issues related to VnTEX, including dedi-
cating a box on his forum [5] to VnTEX,

• Thái Phú Khánh Hòa for the Vietnamese trans-
lation of the Free Math Font Survey and the
VnTEX logo at the VnTEX website [2].

References

[1] Hàn Thế Thành, Making Type 1 fonts for Viet-
namese, TUGboat 24:1, Proc. of the 24th An-
nual Meeting and Conference of the TEX Users
Group, pp. 69–84.

[2] The official VnTEX website: vntex.sf.net.

[3] The latest version of VnTEX and installation
instructions (in English) are available at:
http://vntex.sf.net/download/vntex

[4] The complete font samples that can be used with
VnTEX are available at http://vntex.sf.net/
fonts/samples. The NFSS and TFM names of
all fonts are included, making it easy to use a
particular font.

[5] The VnOSS forum has a box dedicated to TEX
and Vietnamese:
http://forum.vnoss.org/viewforum.php?
id=10

[6] Another web site with a forum useful for Viet-
namese TEX users:
http://viettug.org

[7] The Free Math Font Survey is available at:
http://ctan.tug.org/tex-archive/info/
Free_Math_Font_Survey/survey.html

[8] The Vietnamese translation of the Free Math
Font Survey is available at:
http://ctan.org/tex-archive/info/Free_
Math_Font_Survey/vn/survey-vn.pdf

[9] The definition of the Vietnamese alphabet at
Wikipedia: http://en.wikipedia.org/wiki/
Quoc_ngu

100 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

Managing order relations in MlBibTEX∗

Jean-Michel Hufflen
LIFC (EA CNRS 4157)

University of Franche-Comté
16, route de Gray
25030 BESANÇON CEDEX

France
hufflen (at) lifc dot univ-fcomte dot fr

http://lifc.univ-fcomte.fr/~hufflen

Abstract

Lexicographical order relations used within dictionaries are language-dependent.
First, we describe the problems inherent in automatic generation of multilin-
gual bibliographies. Second, we explain how these problems are handled within
MlBibTEX. To add or update an order relation for a particular natural language,
we have to program in Scheme, but we show that MlBibTEX’s environment eases
this task as far as possible.
Keywords Lexicographical order relations, dictionaries, bibliographies, colla-
tion algorithm, Unicode, MlBibTEX, Scheme.

Streszczenie

Porządek leksykograficzny w słownikach jest zależny od języka. Najpierw omó-
wimy problemy powstające przy automatycznym generowaniu bibliografii wielo-
języcznych. Następnie wyjaśnimy, jak są one traktowane w MlBibTEX-u. Do-
danie lub zaktualizowanie zasad sortowania dla konkretnego języka naturalnego
umożliwia program napisany w języku Scheme. Pokażemy, jak bardzo otoczenie
MlBibTEX-owe ułatwia to zadanie.
Słowa kluczowe Zasady sortowania leksykograficznego, słowniki, bibliografie,
algorytmy sortowania leksykograficznego, Unikod, MlBibTEX, Scheme.

0 Introduction

Looking for a word in a dictionary or for a name
in a phone book is a common task. We get used
to the lexicographic order over a long time. More
precisely, we get used to our own lexicographic or-
der, because it belongs to our cultural background.
It depends on languages. This problem is particu-
larly acute when we deal with managing multilin-
gual bibliographies, as in our program MlBibTEX —
for ‘MultiLingual BibTEX’. Let us recall that this
program aims to be a ‘better’ BibTEX [15], the bibli-
ography processor usually associated with the LATEX
word processor [12]. When it builds a ‘References’
section for a LATEX document, BibTEX uses a bib-
liography style to determine the layout. Some bib-
liography styles are unsorted, that is, the order of
bibliographical items within the bibliography is the
order of first citations of these items throughout the
document. However, most of BibTEX’s styles sort

∗ Title in Polish: Zarządzanie zasadami sortowania lek-

sykograficznego w MlBIBTEX-u.

these items w.r.t. the alphabetical order of authors’
names. But the bst language of bibliography styles
[14] only provides a SORT function [13, Table 13.7]
suitable for the English language, the commands for
accents and other diacritical signs being ignored by
this sort operation.

The purpose of this article is to show how this
problem is solved in MlBibTEX’s first public release.
In practice, this version deals only with European
languages using the Latin alphabet. The MlBibTEX
program is written using the Scheme programming
language [10]. A standardised library providing sup-
port for Unicode [22] has been designed [18, §§ 1.1
& 1.2], but we cannot say that the present version
of Scheme is Unicode-compliant, even if some imple-
mentations include partial support.1 So some parts
of our present implementation of order relations are
temporary, but we think that this implementation

1 At the time of finishing the revised version of this article,
the proposal for Scheme’s next standard has just been ratified
and is now the ‘official’ sixth version of this language [19, 18].
See http://www.r6rs.org for more details.

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 101

Jean-Michel Hufflen

• The Czech alphabet is: a < b < c < č < d < . . . < h < ch < i < . . . < r < ř < s < š < t < . . . z < ž.

• In Danish, accented letters are grouped at the end of the alphabet: a < . . . < z < æ < ø < a.

• The Estonian language does not use the same order for unaccented letters as the usual Latin order; in addition,
accented letters are either inserted into the alphabet or alphabeticised like the corresponding unaccented letter:
a < . . . < s ∼ š < z ∼ ž < t < . . . < w < õ < ä < ö < ü < x < y.

• Here are the accented letters in the French language: à ∼ â, ç, è ∼ é ∼ ê ∼ ë, î ∼ ï, ô, ù ∼ û ∼ ü, ÿ.
When two words differ by an acccent, the unaccented letter takes precedence, but w.r.t. a right-to-left order:a

cote < côte < coté < côté. Two ligatures are used: ‘æ’ (resp. ‘œ’), alphabeticised like ‘ae’ (resp. ‘oe’).

• There are three accented letters in German — ‘ä’, ‘ö’, ‘ü’— and three lexicographic orders:

– DINb-1: a ∼ ä, o ∼ ö, u ∼ ü;

– DIN-2: ae ∼ ä, oe ∼ ö, ue ∼ ü;

– Austrian: a < ä < . . . < o < ö < . . . < u < ü < v < . . . < z.

• The Hungarian alphabet is:

a ∼ á < b < c < cs < d < dz < dzs < e ∼ é < f < g < gy < h < i ∼ í < j < k < l < ly < m <

n < ny < o ∼ ó < ö ∼ ő < p < . . . < s < sz < t < ty < u ∼ ú < ü ∼ ű < v < . . . < z < zs

Some double digraphs must be restored before sorting:

ccs → cs+cs, ddz → dz+dz, ggy → gy+gy, lly → ly+ly, nny → ny+ny, ssz → sz+sz, tty → ty+ty

The same for the double trigraph: ddzs → dzs+dzs.

• The Polish alphabet is:
a < ą < b < c < ć < d < e < ę < . . . < l < ł < m <

n < ń < o < ó < p < . . . < s < ś < t < . . . < z < ż

• The Romanian alphabet is: a < ă < â < b < . . . < i < î < j < . . . s < ş < t < ţ < u < . . . < z.

• The Slovak alphabet is:

a < á < ä < b < c < č < d < ď < dz < dž < e < é < f < g < h < ch < i < í < j < k < l < ĺ <

ľ < m < n < ň < o < ó < ô < p < q < r < ŕ < s < š < t < ť < u < ú < . . . < y < ý < z < ž

• The Spanish alphabet was a < b < c < ch < d < . . . < l < ll < m < n < ñ < o < . . . < z until 1994. Now the
digraphs ‘ch’ and ‘ll’ are no longer viewed as single letters in modern dictionaries, and the words using ‘ñ’ are
interleaved with words using ‘n’.

• In Swedish, accented letters are grouped at the end of the alphabet: a < . . . < z < a < ä < ö.

a Using a left-to-right order for this step is common mistake even for French people. But the accurate order is right-to-left,
as specified in [7].

b
Deutsche Institut für Normung (German Institute of normalisation).

Figure 1: Some order relations used in European languages.

could be easily updated for future versions dealing
with Unicode.

In the first section, we show how diverse lex-
icographic orders used throughout European coun-
tries are. This allows readers to estimate this diver-
sity and to realise the complexity of this task. We
also explain why this problem is made more diffi-
cult when we consider it within the framework of
bibliographies. Then we show how order relations
operate in MlBibTEX and how they are built. We
also give some details about the common and differ-
ent points between x

◦

ındy [13, § 11.3] and MlBibTEX,
both being programs using multilingual order rela-
tions. Reading this article does not require advanced
knowledge of Scheme;2 in fact, we think that a non-

2 Readers can refer to [20] for an introductory book about
Scheme.

programmer should be able to specify a new order
relation. We give more technical details in an an-
nex, for users that would like to experiment more
themselves. In particular, we explain how to deal
with languages using the Latin 2 encoding, despite
our implementation being based on Latin 1.

1 European languages and
lexicographic orders

Figure 1 gives an idea of the diversity of order re-
lations used throughout some European countries.
In this figure, ‘a < b’ denotes that the words be-
ginning with a are ‘less than’ the words beginning
with b, whereas ‘a ∼ b’ expresses that the letters
a and b are interleaved, except that a takes prece-
dence over b if two words differ only by these two let-
ters. Roughly speaking, there are two families of lan-

102 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

Managing order relations in MlBibTEX

guages in the realm of associated lexicographic or-
ders. Accented letters are sometimes fully viewed as
‘real’ letters, distinct from unaccented ones: exam-
ples are given by some Slavonic languages. In other
languages, accented letters are sorted as if there
were no accent. The precedence of a unaccented
letter over an accented one is determined in various
ways: it follows a left-to-right order in Irish, Ital-
ian, and Portuguese, a right-to-left order in French.
The Estonian language ‘mixes’ the two approaches:
some accented letters— ‘õ’, ‘ä’ — are alphabeticised,
some— ‘š’, ‘ž’ — are interleaved. Last, some letter
groups may be viewed as a single letter and alpha-
beticised as another letter. For example, the Hun-
garian words beginning with ‘cs’ are alphabeticised
separately from the words beginning with ‘c’. In
fact, the ‘c-’ entry in a Hungarian dictionary con-
tains words beginning with ‘c’ and not with ‘cs’.
The ‘c-’ entry is followed by the ‘cs-’ entry, before
the ‘d-’ entry.

Anyway, it is apparent that there cannot be a
universal order encompassing all lexicographic or-
ders. Besides, these orders aim to classify words of
a dictionary, that is, common words belonging to
a language, even if some dictionaries may include
some proper names. When bibliographies are gen-
erated, order relations are used to sort bibliograph-
ical items, most often w.r.t. authors’ names. These
names may be ‘foreign’ proper names if we consider
the language used for the bibliography. So names
can include characters outside of this language’s al-
phabet. As a consequence, an order relation for sort-
ing a bibliography should be able to deal with any
letter, since any letter may appear in foreign names.
A good choice is to associate such a foreign letter
with a letter belonging to the ‘basic’ Latin alpha-
bet, so this foreign letter is interleaved with the ba-
sic letter, which takes precedence over the foreign
letter if two words differ only by these two letters.
If we consider the English language, this means that
accented letters are interleaved with unaccented let-
ters, but unaccented letters take precedence. Most
implementations of order relations proceed in this
way.

Unicode provides a default algorithm to sort all
its characters. This algorithm is based on a sort key
table, DUCET3 [23]. It is also based on a decom-
position property for composite characters. For ex-
ample, the ‘ô’ letter, whose name and code point —
given using hexadecimal numbers— are:

latin small letter o with circumflex,
U+00F4

3 Default Unicode Collation Element Table.

can be decomposed into these ‘simpler’ characters:

latin small letter o, U+006F
combining circumflex accent, U+0302

The sort algorithm requires several passes. To de-
scribe it roughly, an information about weight, given
by sort keys, is associated with each string. Then
this information is re-arranged according to sort lev-
els, w.r.t. letters, w.r.t. accents, etc. Finally, a binary
comparison between bytes is done, level by level, un-
til the two strings can be distinguished. This algo-
rithm can be refined for a particular language, by
using a specialised sort key table, possibly including
sort keys for accented letters and digraphs viewed as
single letters. This modus operandi would be diffi-
cult to put into action within MlBibTEX. First, we
do not have complete support for Unicode:4 for ex-
ample, we cannot directly deal with characters such
as the ‘combining circumflex accent’, not included
in the Latin-1 encoding. But we keep the idea about
decomposition, replacing the combining characters
by ASCII5 characters. For example, the ‘combining
circumflex accent’ will be replaced by the ‘^’ char-
acter. To sum up, our order relations are based on
a 3-step algorithm:

• replace composite characters (‘foreign’ letters
or composite characters not viewed as single let-
ters) when extracting successive letter groups
and compare the two results,

• refine the sort with accent information when
accented letters are interleaved with others,

• test the case: when two words differ only in
case, an uppercase letter takes precedence over
a lowercase one, according to a left-to-right or-
der.

2 Generating order relations

Let us recall that MlBibTEX can apply BibTEX’s
bibliography styles using a compatibility mode [6],
but in order to take advantage of MlBibTEX’s multi-
lingual features as far as possible, it is better to use
the nbst6 language [4], close to XSLT7 [24], the lan-
guage of transformations used for XML8 documents.
Let us recall that parsing a bibliography data base
(.bib) results in the representation of an XML tree in
Scheme [11]; this nbst language includes an element
for sorting selected subtrees of an XML document
[4, App. A], this element being analogous to XSLT’s
[24, § 10]. For example, the following two elements

4 See the annex.
5 American Standard Code for Information Interchange.
6 New Bibliography STyles.
7 eXtensible Stylesheet Language Transformations.
8 eXtensible Markup Language.

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 103

Jean-Michel Hufflen

can be used to sort bibliographical items by the first
author’s last name, and then the items left unsorted
by this first step are sorted by the first author’s first
name:9

<nbst:sort

select="author/name[1]/personname/last"

language="german"/>

<nbst:sort

select="author/name[1]/personname/first"

language="german"/>

Due to the language attribute’s value, this sort op-
eration will use the lexicographic order for the Ger-
man language. Such an order relation is to be speci-
fied in Scheme, as a 2-argument function taking two
strings s0 and s1 and returning a ‘true’ value (#t)
if s0 is strictly less than s1, a ‘false’ value (#f) oth-
erwise. The best way to define such a function is
to derive it from a generator of order relations, as
shown in Figure 2. This <mk-order-relation gen-
erator has four arguments.

• A list whose elements are separator characters,
viewed as less than any letter. Usually, this list
contains only the space character, in which case,
the <space-only variable can be used. This
is not universal: for example, space characters
are ignored when words are sorted in Hungarian
(cf. the definition of the <hungarian? variable
in Figure 2).

• An alphabet, given w.r.t. the increasing order,
as a list of strings. If the ‘classical’ alphabet
is used— unaccented letters of the Latin alpha-
bet, sorted according to the usual order — just
put the ‘false’ value (cf. the definition of the
<english? variable).

• An association list for additional sequences of
characters, each sequence being followed by a
replacement and a weight.

• A function related to the sense of the second
step: when the first is finished and the second
is about to start, weights appear in reverse or-
der, so put reverse!10 (resp. identity— the
identity function) to put the second step into
action according to a left-to-right (resp. right-
to-left) order. Cf. the use of these two values
for <french? and <english?.

9 Let us notice that this illustrative example would be
too restrictive for an ‘actual’ bibliography style: there may
be several authors, and some authors may be denoted by an
organisation name, in which case the element’s name is not
personname, but othername.

10 Some Schemers could observe that this function does
not belong to pure functional style, because it is potentially
destructive [17]. But it is more efficient than the reverse

function and the weight list is not shared with other lists.

It should be noted that only lowercase letters have
to be specified, the equivalent relations among up-
percase letters will be deduced.

Let us come back to associations for additional
sequence characters. There are default associations,
comparable to the information given by the decom-
position property in Unicode. For example:

é 7→ e + |’|

where “ |’| ” denotes the default weight of the “ ’ ”
character. MlBibTEX knows such decomposition in-
formation for each accented letter of Latin 1. These
default associations can be overridden by alphabet-
specific associations given to the function building
orders. Weights are managed as follows.

• By default, the weight of each component of an
alphabet — appearing within the second argu-
ment of <mk-order-relation— is 1.

• If we consider only one substitution, that is, a
word W0 where a sequence S0 is to be replaced
by a sequence S1 with a weight w1, this substi-
tution resulting in a word W1. The W0 word
will be alphabeticised first if w1 < 1, put after
otherwise.

Here are some examples.

• In French, the only accent put on the ‘o’ letter
is circumflex. When ‘ô’ is replaced by ‘o’ for
the first step, we must ensure that ‘ô’ will be
ranked after ‘o’ if two words differ only by these
two letters at the same position. We must also
ensure that the other accented letters based on
‘o’ — in ‘foreign’ words will be put after. So the
weight of the replacement of ‘ô’ by ‘o’ is 2, as
it can be seen in Figure 2 (cf. the definition of
<french?). The default weights for accents are
higher, so this accented letter is ranked before
the other accented letters based on the ‘o’ let-
ter and possibly used in languages other than
French.

• Similarly, the two accents allowed on the ‘a’ let-
ter are grave and circumflex, the correct order
being a < à < â. So the replacement of ‘à’
(resp. ‘â’) by ‘a’ for the first step is 2-weight
(resp. 3-weight).

Given a language, if a character belongs neither
to separators, nor to the alphabet, it is ignored, un-
less it is an accented letter included in default asso-
ciations.11

Given an alphabet’s specification— the second
argument of the <mk-order-relation function—

11 As a consequence, some ‘exotic’ letters are ignored out-
side their own language, because they cannot be related to
another letter of the Latin alphabet. For example, that is the
case for the ‘þ’ letter of the Icelandic language.

104 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

Managing order relations in MlBibTEX

(define <english (<mk-order-relation <space-only #f ’() reverse!))

(define <austrian?

(<mk-order-relation

<space-only

’("a" "ä" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "ö" "p" "q" "r" "s" "t" "u"

"ü" "v" "w" "x" "y" "z")

’() reverse!))

(define <czech?

(<mk-order-relation

<space-only

’("a" "b" "c" "\\v{c}" "d" "e" "f" "g" "h" "ch" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "\\v{r}"

"s" "\\v{s}" "t" "u" "v" "w" "x" "y" "z" "\\v{z}")

’() reverse!))

(define <danish?

(<mk-order-relation

<space-only

’("a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "t" "u" "v" "w"

"x" "y" "z" "æ" "ø" " a")

’(("aa" (" a" . 2))) ; In Danish, ‘aa’ is equivalent to ‘ a’.
reverse!))

(define <estonian?

(<mk-order-relation

<space-only

’("a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" "r" "s" "z" "t" "u" "v"

"w" "õ" "ä" "ö" "ü" "x" "y")

’(("\\v{s}" ("s" . 2)) ("\\v{z}" ("z" . 2))) reverse!))

(define <french?

(<mk-order-relation <space-only #f

’(("à" ("a" . 2)) ("â" ("a" . 3)) ("è" ("e" . 2)) ("é" ("e" . 3))

("ê" ("e" . 4)) ("ë" ("e" . 5)) ("î" ("i" . 2)) ("ï" ("i" . 3))

("ö" ("o" . 2)) ("ù" ("u" . 2)) ("ü" ("u" . 3)) ("ÿ" ("y" . 2)))

identity))

(define <german-din-1?

(<mk-order-relation <space-only #f ’(("ä" ("a" . 2)) ("ö" ("o" . 2)) ("ü" ("u" . 2))) reverse!))

(define <german-din-2?

(<mk-order-relation

<space-only #f ’(("ä" ("a" . 2) ("e" . 2)) ("ö" ("o" . 2) ("e" . 2)) ("ü" ("u" . 2) ("e" . 2)))

reverse!))

(define <hungarian?

(<mk-order-relation

’() ; In Hungarian, a space character is irrelevant when words are sorted.

’("a" "b" "c" "cs" "d" "dz" "dzs" "e" "f" "g" "gy" "h" "i" "j" "k" "l" "ly" "m" "n" "ny" "o" "ö"

"p" "q" "r" "s" "sz" "t" "ty" "u" "ü" "v" "w" "x" "y" "z" "zs")

‘(("á" ("a" . 2)) ("é" ("e" . 2)) ("ccs" ("cs" . 2) ("cs" . 2))

("ddz" ("dz" . 2) ("dz" . 2)) ("ddzs" ("dzs" . 2) ("dzs" . 2)) ("ggy" ("gy" . 2) ("gy" . 2))

("í" ("i" . 2)) ("lly" ("ly" . 2) ("ly" . 2)) ("nny" ("ny" . 2) ("ny" . 2)) ("ó" ("o" . 2))

("\\H{o}" ("ö" . 2)) ("ssz" ("sz" . 2) ("sz" . 2)) ("tty" ("ty" . 2) ("ty" . 2))

("ú" ("u" . 2)) ("\\H{u}" ("ü" . 2))))

reverse!))

(define <polish?

(<mk-order-relation

<space-only

’("a" "{\\aob}" "b" "c" "\\’{c}" "d" "e" "{\\eob}" "f" "g" "h" "i" "j" "k" "l" "{\\l}" "m" "n"

"\\’{n}" "o" "ó" "p" "q" "r" "s" "\\’{s}" "t" "u" "v" "w" "x" "y" "z" "\\.{z}")

’() reverse!))

Figure 2: Building order relations for some European languages.

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 105

Jean-Michel Hufflen

(define mk-hungarian-word-sectioner ; Building a generator of sectioning functions for Hungarian words.

(<mk-otoken-generator ’() ; The first three arguments of the <mk-order-relation

’("a" "b" "c" "cs" ...) ; function in the definition of the <hungarian? variable:
’(("á" ("a" . 2)) ...))) ; cf. Figure 2.

(define g ; Definition of a zero-argument function that will

(mk-hungarian-word-sectioner "sz\\H{o}l\\H{o}")) ; section the word ‘szőlő’ (‘grape’).

(g) =⇒ ("sz" . 1) ; The successive equivalent letters, digraphs, etc. of this word are returned in turn, with

(g) =⇒ ("ö" . 2) ; the corresponding weight.

(g) =⇒ ("l" . 1)

(g) =⇒ ("ö" . 2)

(g) =⇒ #f ; The word is finished, so all the calls of the g function will return the ‘false’ value, from now on.

Figure 3: How to section Hungarian words.

MlBibTEX notices the possible presence of multi-
character sequences (e.g., digraphs or trigraphs). If
need be, it builds a lexical analyser able to return the
longest sequence of characters belonging to this al-
phabet,12 an example of use being given in Figure 3.
Let us mention that these analysers extract as few
sequences of characters as possible. For example, if
we have to compare a word beginning with ‘a’ and
a word beginning with ‘b’ in English, only the first
letters— "a" and "b"— are extracted because that
is sufficient to determine the result.

Regarding the implementation, the encoding of
the sequences of an alphabet w.r.t. an increasing or-
der is implemented by means of hash tables,13 which
ensures efficiency. Let us not forget that these order
relations are used to sort bibliographical items, and
sorting requires many calls to the function modelling
an order relation.

3 MlBibTEX vs. x
◦

ındy

x
◦

ındy [9] and MlBibTEX do not aim to perfom the

same task, since x
◦

ındy is an index processor. How-
ever, both have common points: they reimplement
‘old’ programs belonging to TEX’s galaxy —make-

index [13, § 11.2] and BibTEX — with a particular
focus on multilingual features, they are both writ-
ten using a Lisp14 dialect: Common Lisp [21] for

x
◦

ındy, Scheme for MlBibTEX. Of course, the suc-
cessive steps used for putting an order relation into
action— needed to arrange the successive entries of
an index — also exist in x

◦

ındy. But the specification

12 Such lexical analysers are implemented by means of
tries. In MlBibTEX, this structure is also used to manage
the information related to language identifiers, as explained
in [5].

13 A hash table has a set of entries, and can efficiently map
an object to another object. This structure is described in [1]
from a general point of view, our implementation of hash
tables in MlBibTEX is inspired by [8].

14 LISt Processor.

of an order relation is different because it is done
step by step. There are forms:

define-alphabet define-letter-group

merge-rule sort-rule

to specify an alphabet, a letter group, and the re-
placement of a pattern. If a sort procedure is quite
close to the standard way used in English, it is prob-
ably easier to use x

◦

ındy’s forms, because only small
changes have to be expressed. In MlBibTEX, we
chose to develop fewer functions, which encapsulate
the complete making of an order relation. This al-
lows a global view of a new order relation and makes
easier some coherence tests among the information
about this relation.

4 Conclusion

The availability of these language-dependent order
relations within a unique program has been planned
through the use of the language attribute, as speci-
fied in the W3C15 recommendation about XSLT [24,
§ 10]. However, these relations have been imple-
mented only partially in most of XSLT processors.
Of course, our implementation also only partially
provides this service, because we are limited to Eu-
ropean languages. But we think that the orders we
define are correct w.r.t. these languages and they
are actually running. Our implementation is clearly
influenced by the Unicode collation algorithm. It
is a first step towards general algorithms for lexico-
graphic orders, and a first version subject to changes
when we explore other languages or get criticisms
from end-users. In many domains, improvement has
come about because first versions existed. We think
that will be also the case for our functions.

5 Acknowledgements

Many thanks to Jerzy B. Ludwichowski, who has
written the Polish translation of the abstract. I

15 World Wide Web Consortium.

106 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

Managing order relations in MlBibTEX

also thank Gyöngyi Bujdosó, Hans Hagen, Karel
Horák, Dag Langmyhr, who helped me fix some er-
rors. Thanks to Karl Berry and Barbara Beeton,
who proofread the revised version.

A How to use MlBibTEX’s functions

A.1 Getting started

To use the functions dealing with multilingual or-
dering, change your current directory into the src

subdirectory of MlBibTEX’s main directory, launch
a Scheme interpreter, and proceed as follows:

(load "common.scm") ; Loading general

; definitions.

(load "orders.scm") ; Loading all the

; definitions related to orders. This causes

; the other files needed to be loaded, too.

Then you can use the functions described in Fig-
ure 2. Use a R5RS-compliant Scheme interpreter
[10] and one able to deal with the Latin 1 encoding:
bigloo [16], MIT Scheme [3], and PLT Scheme [2] are
suitable.16 There is also a file performing some tests:
tests/test-orders-unacc.scm.

Now we describe the conventions used within
strings resulting from parsing a .bib file. These con-
ventions are supposed to be followed by the argu-
ments of the functions modelling order relations, so
you have to know them. You can directly type ac-
cented letters belonging to the Latin 1 encoding:

"Frank Böhmert"

In Scheme, the ‘ " ’ character being the delimiter of
constant strings, it must be escaped by a ‘\’ charac-
ter if it belongs to a string:

"\"Perry Rhodan\" Series"

If you are interested in strings using other en-
codings (in particular, the Latin 2 encoding, used in
Eastern Europe), you cannot specify them directly;
you must use the LATEX command producing accents
and other diacritical signs not included in Latin 1.
For example, ‘Henryk Mikołaj Górecki’ should be
typed ‘ "Henryk Miko{\\l}aj Górecki" ’ because
‘ó’ belongs to Latin 1, but ‘ł’ does not. Remem-
ber that the ‘\’ escape character must be itself es-
caped within a string. If such an accent command
has no argument — e.g., the ‘\l’ command— write
this command between braces, as suggested by the
previous example. Use braces for the argument of
an accent command, as in ‘ "Rezs\\H{o} Kókai" ’
for ‘Rezső Kókai’.17

16 In fact, these three Scheme interpreters include partial
support of Unicode, as mentioned in the introduction.

17 In fact, these letters belonging to the Latin 2 encoding
are all defined as Scheme variables in the file orders.scm, e.g.:

Now you can type some expressions and evalu-
ate them:
(<english? "coté" "côte") =⇒ #t ; True.

(<french? "coté" "côte") =⇒ #f ; False.

Of course, you can define new order relations
according to the modus operandi we explain in § 2
and try to model some ‘exotic’ order relations.18

A.2 Testing decomposition

To see how words are sectioned into successive let-
ters, digraphs, etc. according to a particular alpha-
bet, then use the <mk-otoken-generator function
to build a generator of functions sectioning words for
a particular language. This <mk-otoken-generator
function is automatically called when we apply the
<mk-order-relation function, and its three argu-
ments are the second, third and fourth arguments of
the <mk-order-relation function. As an example,
Figure 3 shows how to build and use such a genera-
tor for Hungarian words.

A.3 Going further

If you want to use MlBibTEX for producing bib-
liographies— in which case you have to load more
files by means of evaluating the expression:

(load "mlbibtex.scm")

— and would like to change the association of a lan-
guage with an order relation, use such an expression:

(c-language->order-relation

"german"

<german-din-2?) =⇒ #t

This causes <-german-din-2? to be the order rela-
tion used for German. If another relation was previ-
ously associated with this language,19 it is replaced
by this new value, the <-german-din-2? function.
If no order relation was known for this language,20

the association is created. The result is #t if the
association succeeds, #f otherwise (for example, a
string whose value is an unknown language).

(define <l-slashed-string "{\\l}")

(define <o-double-acute-string "\\H{o}")

. . . and used only by means of these variables. Of course,
this complicates the definitions given in Figure 2, but when
Scheme is Unicode-compliant, we will only have to change
these definitions.

18 It can be noticed that all the names of the Scheme func-
tions described above begin with ‘<’. A convention within the
source files of MlBibTEX is that all definitions made in the
same file have the same prefix. That allows a ‘kind of modu-
larity’, even if Scheme’s standard does not provide a way to
emphasise modular decomposition. Of course, we recommend
you choose a not-yet-used prefix for your own definitions.

19 In fact, when MlBibTEX is initialised, the order relation
for the German language is the <german-din-1? function.

20 . . . in which case the default order relation is the
<english? function.

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 107

Jean-Michel Hufflen

References

[1] Alfred V. Aho, Ravi Sethi and Jeffrey D.
Ullman: Compilers, Principles, Techniques
and Tools. Addison-Wesley Publishing
Company. 1986.

[2] Matthew Flatt: PLT MzScheme: Language
Manual. Version 360. August 2004.
http://download.plt-scheme.org/doc/

360/pdf/mzscheme.pdf.
[3] Chris Hanson, the MIT Scheme team

et al.: MIT Scheme Reference Manual, 1st
edition. March 2002. Massachusetts Institute
of Technology.

[4] Jean-Michel Hufflen: “MlBibTEX’s Version
1.3”. TUGboat, Vol. 24, no. 2, pp. 249–262.
July 2003.

[5] Jean-Michel Hufflen: Managing Languages
within MlBIBTEX. In revision. June 2005.

[6] Jean-Michel Hufflen: “BibTEX, MlBibTEX
and Bibliography Styles”. Biuletyn GUST,
Vol. 23, pp. 76–80. In BachoTEX 2006
conference. April 2006.

[7] ISO-IEC CD 14651: International String
Ordering—Method for Comparing Character
Strings and Description of a Default Tailorable
Ordering. May 1996.

[8] Panu Kalliokoski: Basic Hash Tables.
September 2005. http://srfi.schemers.

org/srfi-69/.

[9] Roger Kehr: x
◦

ındy Manual. February 1998.
http://www.xindy.org/doc/manual.html.

[10] Richard Kelsey, William D. Clinger,
Jonathan A. Rees, Harold Abelson,
Norman I. Adams iv, David H. Bartley,
Gary Brooks, R. Kent Dybvig, Daniel P.
Friedman, Robert Halstead, Chris
Hanson, Christopher T. Haynes,
Eugene Edmund Kohlbecker, Jr, Donald
Oxley, Kent M. Pitman, Guillermo J.
Rozas, Guy Lewis Steele, Jr, Gerald Jay
Sussman and Mitchell Wand: “Revised5

Report on the Algorithmic Language
Scheme”. HOSC, Vol. 11, no. 1, pp. 7–105.
August 1998.

[11] Oleg E. Kiselyov: XML and Scheme.
September 2005. http://okmij.org/ftp/

Scheme/xml.html.
[12] Leslie Lamport: LATEX: A Document

Preparation System. User’s Guide and
Reference Manual. Addison-Wesley Publishing
Company, Reading, Massachusetts. 1994.

[13] Frank Mittelbach and Michel Goossens,
with Johannes Braams, David Carlisle,

Chris A. Rowley, Christine Detig and
Joachim Schrod: The LATEX Companion.
2nd edition. Addison-Wesley Publishing
Company, Reading, Massachusetts. August
2004.

[14] Oren Patashnik: Designing BIBTEX
Styles. February 1988. Part of the BibTEX
distribution.

[15] Oren Patashnik: BIBTEXing. February 1988.
Part of the BibTEX distribution.

[16] Manuel Serrano: Bigloo. A Practical Scheme
Compiler. User Manual for Version 2.9a.
December 2006.

[17] Olin Shivers: List Library. October 1999.
http://srfi.schemers.org/srfi-1/.

[18] Michael Sperber, William Clinger, R. Kent
Dybvig, Matthew Flatt, Anton van

Straaten, Richard Kelsey and Jonathan
Rees: Revised6 Report on the Algorithmic
Language Scheme—Standard Libraries.
September 2007. hhtp://www.r6rs.org.

[19] Michael Sperber, William Clinger, R. Kent
Dybvig, Matthew Flatt, Anton van

Straaten, Richard Kelsey, Jonathan
Rees, Robert Bruce Findler and Jacob
Matthews: Revised6 Report on the
Algorithmic Language Scheme. September
2007. hhtp://www.r6rs.org.

[20] George Springer and Daniel P. Friedman:
Scheme and the Art of Programming. The
MIT Press, McGraw-Hill Book Company.
1989.

[21] Guy Lewis Steele, Jr., Scott E. Fahlman,
Richard P. Gabriel, David A. Moon,
Daniel L. Weinreb, Daniel Gureasko
Bobrow, Linda G. DeMichiel, Sonya E.
Keene, Gregor Kiczales, Crispin Perdue,
Kent M. Pitman, Richard Waters and
Jon L White: Common Lisp. The Language.
Second Edition. Digital Press. 1990.

[22] The Unicode Consortium: The Unicode
Standard Version 5.0. Addison-Wesley.
November 2006.

[23] The Unicode Consortium, http:
//unicode.org/reports/tr10/: Unicode
Collation Algorithm. Unicode Technical
Standard #10. July 2006.

[24] W3C: XSL Transformations (XSLT).
Version 1.0. W3C Recommendation. Edited
by James Clark. November 1999. http:

//www.w3.org/TR/1999/REC-xslt-19991116.

108 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

Introducing LATEX users to XSL-FO∗

Jean-Michel Hufflen
LIFC (EA CNRS 4157)

University of Franche-Comté
16, route de Gray
25030 BESANÇON CEDEX

France
hufflen (at) lifc dot univ-fcomte dot fr

http://lifc.univ-fcomte.fr/~hufflen

Abstract

This talk aims to introduce LATEX users to XSL-FO. It does not attempt to give an
exhaustive view of XSL-FO, but allows a LATEX user to get started. We show the
common and different points between these two approaches of word processing.
Keywords LATEX, XSL-FO, XML, XSLT.

Streszczenie

Prezentacja jest wprowadzeniem użytkowników LATEX-a do XSL-FO. Nie pró-
bujemy omówić XSL-FO w sposób wyczerpujący, ale umożliwimy użytkownikom
LATEX-a rozpoczęcie pracy w tej technologii. Pokażemy punkty wspólne i różnice
obu podejść do formatowania tekstów.
Słowa kluczowe LATEX, XSL-FO, XML, XSLT.

0 Introduction

This talk aims to introduce LATEX users to XSL-FO.1

Both have common points, in the sense that they
are not WYSIWYG.2 In both cases, users prepare
a source file that is processed and the result is a
file that can be send to a laser printer. [11, § 18]
lists some implementations of processors of XSL-
FO texts. Among them, we personally have expe-
rienced:

• PassiveTEX [10, p. 180]: this is an (incomplete)
adaptation of TEX in order to process XSL-FO
texts; the result may be a DVI3 or PDF4 file;

• Apache FOP5 [3], written in Java, is more com-
plete; the result may be a PDF or PostScript

file, with other formats also being possible.

XSL-FO is an XML6 format that aims to de-
scribe high-quality print outputs. As we will see,
this format is very verbose, but it is not intended for

∗ Title in Polish: Wprowadzenie do XSL-FO dla żytkow-

ników LATEX-a.
1 EXtensible Stylesheet Language-Formatting Objects.
2 What You See Is What You Get. This expression

identifies typical interactive word processors.
3 DeVice-Independent File.
4 Portable Document Format.
5 Formatting Objects Processor.
6 EXtensible Markup Language. Readers interested in

an introductory book to this formalism can consult [12].

direct use. Usually, XSL-FO texts result from apply-
ing an XSLT7 stylesheet to an XML text, as we will
see. Thus this approach clearly separates presenta-
tion and contents. An XML text specifies contents,
an XSL-FO text specifies presentation. However, we
begin with a text directly typed in XSL-FO to give
the broad outlines of this language, then we show an
example of an XSLT program that generates such a
text. We end with some words about internation-
alisation. Reading this article requires only basic
knowledge of XML and XSLT.

1 Getting started

1.1 Basic notions

The notion equivalent to a document class of LATEX
consists of a page model, an example being given in
Figure 1. The page model here is very simple: only
one page, specified by the fo:simple-page-master

element. It specifies a paper format and its mar-
gins, where anything cannot be printed. It also de-
fines regions, as shown in Figure 2. You can define
several single page models, and another element,
fo:page-sequence-master, allows the combination
of single or repeatable pages. Repeatable pages may

7 EXtensible Stylesheet Language Transformations. Sev-
eral introductory talks to this language have already been
given at BachoTEX conferences [4, 5]; the reference is [14].

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 109

Jean-Michel Hufflen

<?xml version="1.0" encoding="ISO-8859-1"?>

<fo:layout-master-set xmlns:fo="http://www.w3.org/1999/XSL/Format">

<!-- xmlns:fo declares a prefix for the namespace associated with xsl-fo texts. -->

<fo:simple-page-master master-name="page-simple" page-height="297mm" page-width="210mm"

margin-top="10mm" margin-bottom="20mm" margin-left="25mm"

margin-right="25mm">

<fo:region-before extent="30mm"/> <!-- Declaration of the header, footer, left and right -->

<fo:region-after extent="30mm"/> <!-- margin. These usual terms have been viewed as too -->

<fo:region-start extent="30mm"/> <!-- specific to left-to-right writing, thus a -->

<fo:region-end extent="30mm"/> <!-- terminology based on ‘before’, ‘after’, ‘start’, ‘end’ -->

<fo:region-body/> <!-- is preferred. The body is defined as the page’s -->

<!-- remainder. See Figure 2. -->

</fo:simple-page-master>

</fo:layout-master-set>

Figure 1: Example of a page model in XSL-FO.

margin-bottom

region-after

region-before

m
a
r
g
i
n
-
l
e
f
t

r
e
g
i
o
n
-
s
t
a
r
t

re
gi
on
-b
od
y

r
e
g
i
o
n
-
e
n
d

m
a
r
g
i
n
-
r
i
g
h
t

✛ margin-top

Figure 2: Regions defined by XSL-FO.

vary w.r.t. the position, that is, you can alternate
two models for even and odd pages, or define a sep-
arate model for initial and final pages,

Figure 3 shows how an XSL-FO text may be for-
matted, the source text being given in Figure 4. We
will see that page models are not specified by includ-
ing a file as in LATEX. If you wish a page model to
be shared among several XSL-FO texts, an external
entity is to be used [12, pp. 50–52]. This implies the
introduction of a ‘dummy’ DOCTYPE tag.8 We see
that an XSL-FO text is rooted by an fo:root ele-
ment, whose children are a page model and a page
sequence. A page sequence defines what is written
and where. In Figure 4, a static content — a song’s
title, followed by the number of the current page—
is related to any page foot, whereas a flow allows the

8 . . . which is a trick. A better method consists of using
tags belonging to XInclude [15], but make sure that they are
recognised by the tools you are using.

PŁONIE OGNISKO

Polska piosenka (Polish song)

Płonie ognisko w lesie,

Wiatr smętną piosnkę niesie.

Przy ogniu zaś drużyna

Gawędę rozpoczyna

Czuj, czuj, czuwaj,

Czuj, czuj, czuwaj,

Rozlega się dokoła,

Czuj, czuj, czuwaj,

Czuj, czuj, czuwaj,

Najstarszy druh zawoła.

Przestańciesię już bawić

I czas swój marnotrawić.

Niechj każdy z was się szczerze,

Do pracy swej zabierze

Czuj, czuj, czuwaj,

Czuj, czuj, czuwaj,

Rozlega się dokoła,

Czuj, czuj, czuwaj,

Czuj, czuj, czuwaj,

Najstarszy druh zawoła.

Płonie ognisko (1)

Figure 3: The formatted output of Figure 4.

specification of a text possibly printed on regions be-
longing to several successive pages. A flow is bound
to a region by means of the flow-name attribute,
referring to the region-name attribute’s value of an
element for a region. There are default conventions;
for example, the definition of the ‘body’ region given
in Figure 1 is equivalent to:

<fo:region-body

region-name="xsl-region-body"/>

110 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

Introducing LATEX users to XSL-FO

<?xml version="1.0" encoding="ISO-8859-2"?>

<!DOCTYPE root [<!ENTITY layout SYSTEM "layout.fo">

<!ENTITY refren-1 "Czuj, czuj, czuwaj,">]>

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

&layout;

<fo:page-sequence master-reference="page-simple" font-family="serif" font-size="12pt"

text-align="left">

<fo:static-content flow-name="xsl-region-after">

<fo:block text-align="center" line-height="14pt" color="green" font-size="10pt"

font-family="serif">

Płonie ognisko (<fo:page-number/>)

</fo:block>

</fo:static-content>

<fo:flow flow-name="xsl-region-body" xml:lang="po">

<fo:block font-family="sans-serif" font-size="18pt" font-variant="small-caps"

padding-top="3pt" text-align="center" color="white" background-color="blue"

space-after="15pt" line-height="24pt">

Płonie ognisko

</fo:block>

<fo:block font-family="sans-serif" font-size="14pt" space-after="18pt" border-style="solid"

border-width="0.5mm" border-color="blue" padding="4mm" start-indent="80mm"

end-indent="4mm">

<fo:block text-align="right">

Polska piosenka

<fo:inline font-style="italic" xml:lang="en">(Polish song)</fo:inline>

</fo:block>

</fo:block>

<fo:block space-before.minimum="10pt" space-before.optimum="11pt"

space-before.maximum="12pt">

Płonie ognisko w lesie,

</fo:block>

<fo:block>Wiatr smętną piosnkę niesie.</fo:block>

<fo:block>Przy ogniu zaś drużyna</fo:block>

<fo:block>Gawędę rozpoczyna</fo:block>

<fo:block ...> <!-- As above for the stanza’s first line. -->

&refren-1;

</fo:block>

<fo:block>&refren-1;</fo:block>

<fo:block>Rozlega się dokoła,</fo:block>

<fo:block>&refren-1;</fo:block>

<fo:block>&refren-1;</fo:block>

<fo:block>Najstarszy druh zawoła.</fo:block>

<fo:block ...>Przestańciesię już bawić</fo:block>

<fo:block>I czas swój marnotrawić.</fo:block>

<fo:block>Niechj każdy z was się szczerze,</fo:block>

<fo:block>Do pracy swej zabierze</fo:block>

... <!-- The refrain again. -->

</fo:flow>

</fo:page-sequence>

</fo:root>

Figure 4: Complete source of the text of Figure 3.

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 111

Jean-Michel Hufflen

Attribute Default value Other values

font-family serif sans-serif

font-size Absolute sizes: xx-small, x-small, medium, large, x-large, xx-large,
Relative sizes: smaller, larger
Lengths: e.g., 10pt

font-stretch normal wider, narrower, ultra-condensed, extra-condensed, condensed,
semi-condensed, semi-expanded, expanded, extra-expanded, ultra-expanded

font-weight normal bold, bolder, lighter
font-style normal italic, reverse-normal, reverse-oblique

font-variant normal small-caps

Table 1: Possible values for most of font attributes.

1.2 Formatting texts

At first glance, fo:block elements are analogous to
paragraphs in LATEX. The text inside a block may
be justified, left or right aligned, according to the
value of text-align. The attributes color and
background-color specify colours for the text and
background. Other attributes:

border-style border-width border-color

allows us to draw a box around this block. Of course,
border-width is set to a null value by default, so
no border is drawn. The ‘padding-...’ attributes
characterise the padding between the text and bor-
der [10, pp. 96–100].

Blocks may be nested and most attributes are
inherited. As an example, let us consider the sec-
ond block of the flow. It defines some attributes
related to fonts— font-family and font-size—
these attributes being inherited in the nested block
containing the Polish and English words for ‘Pol-
ish song’ (‘Polska piosenka’). The fo:inline ele-
ment allows some attributes to be redefined without
opening a new block: it corresponds to changing
some parameters— font style or size, etc. — inside
the same paragraph in LATEX. In fact, we can con-
sider that fo:block elements, due to this recursive
nature, are equivalent to both the \par command
and the minipage environment of LATEX. The possi-
ble values associated with most of the font attributes
are given in Table 1. In comparison with LATEX
where the family, weight, style, and variant of a font
are expressed by combinations of commands being
the same syntax, ‘\text...{...}’, the attributes of
XSL-FO are more ‘typed’. That may be seem quite
artificial to a LATEX user, but emphasises all the pos-
sible combinations.

The start-indent attribute specifies the dis-
tance from the start-edge of the box surrounding
the contents to the start-edge of the contents itself.
The end-indent attribute is analogous, but end-
edges are considered. The vertical spacing between

successive blocks is controlled by the two attributes
space-before and space-after. The specification
of stretcheable lengths in LATEX [7, §A.1.15] is imple-
mented in XSL-FO by means of components. Let us
look at the first stanza given in Figure 4: the vertical
spacing before this block is ideally 11 pt long, at least
10 pt long, and at most 12 pt long, according to the
values of the components optimum, minimum, and
maximum of the space-before attribute. Just spec-
ifying space-before="11pt" sets the three compo-
nents of the space-before attribute to this length.
Putting:

space-before="11pt"

space-before.minimum="10pt"

only redefines the minimum component, the two oth-
ers being 11 pt long.

Going thoroughly into this notion, XSL-FO pro-
vides two other components for the specification of
spacing. The conditionality component controls
whether a space-specifier has effect at the begin-
ning or end of a reference area — e.g., the begin-
ning (resp. end) of a page for the space-before

(resp. space-after) attribute of the fo:block el-
ement, or the beginning (resp. end) of a line for
the space-start (resp. start-end) attribute of the
fo:inline element. The possible values for this
conditionality component are discard (by de-
fault) and retain. The precedence component can
either be an integer or the keyword force. It deter-
mines what happens when the end of a reference
area conflicts with the next one. If the precedence

component is set to force, this will override any
other space specifiers that conflict with it.

Let us briefly mention two attributes for blocks
or inline texts: text-decoration is used to draw a
line above, below, or through a text [16, § 7.17.4],
baseline-shift is used for subscripts and super-
scripts. Since XSL-FO only aims to give nice layout
of a text, there is no practical way to do computa-
tions on this text. For example, the fragment:

112 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

Introducing LATEX users to XSL-FO

\iflanguage{polish}{Polska piosenka}{%

Polish song}

(cf. [7, § 9.2.1] about the \iflanguage command)
cannot be transcribed into an XSL-FO text. How-
ever, some typical transformations can be put into
action by means of the text-transform attribute,
whose values may be none (by default), capitalize,
uppercase, lowercase. Let us notice that using
this attribute is somewhat deprecated because these
operations do not make sense given internationali-
sation issues.

Other attributes prevent the breaking of a text
into lines, columns, and pages when blocks are type-
set: keep-with-next, keep-with-previous, and
keep-together. Each of these three attributes has
three components: within-line, within-column,
and within-page. The associated values are auto

(by default), that is, no constraint, always, or an in-
teger expressing the strength of this property. This
integer can be compared to the optional argument of
the LATEX commands \pagebreak and \linebreak.
For example, if there is a fo:block element with
a keep-with-next attribute set to always, there
cannot be a page break between this block and the
preceding one. If you want to force breaking in
such situations, use the attributes break-before

and break-after, whose values are auto (by de-
fault), column, page, even-page, and odd-page.
See [10, pp. 70–72] for more details.

1.3 Additional elements

Now we mention some additional functionalities of
XSL-FO, in order to give an idea of its expressive
power. It provides elements to express lists, anal-
ogous to LATEX’s, rooted by the fo:list-block el-
ement [10, pp. 102]. The way to specify tabulars
is analogous to HTML’s,9 the most commonly used
element for this being fo:table [10, pp. 104–110].
Footnotes are specified via the fo:footnote element
[10, pp. 154–155], analogous to the \footnote com-
mand. Cross references as in LATEX are supported by
means of the fo:basic-link element [10, pp. 146–
148]; hyper-link references to external documents
are also possible. The notion of floating objects is
known within XSL-FO: see [16, § 6.12.2] about the
fo:float element. The language provides elements
and attributes for building indexes [16, § 7.24], anal-
ogous to what is used within LATEX’s theindex en-
vironment (cf. [7, § 11.1]). Last, let us notice that
there is no mathematical mode in XSL-FO.

9 HyperText Markup Language. Readers interested in
an introduction to this language can refer to [9].

2 XSLT and XSL-FO together

The Polish song given in Figure 4 has already been
specified as a ‘pure’ XML text in [6, Fig. 1]. We
reproduce it as Figure 5. Then we give an XSLT
stylesheet (Figures 6 and 7) that yields the text
of Figure 4 when it is applied to the XML text of
Figure 5. That shows how XSL-FO texts should be
built: by derivation from XML texts by applying a
stylesheet.

The use of two namespaces [12, pp. 41–45] given
by prefixes, xmlns:xsl and xmlns:fo,10 clearly sep-
arates what is evaluated (‘<xsl:.../>’) when the
XSLT program is running, and what results from
this operation (‘<fo:.../>’). Finally, let us notice
that XSL-FO does not provide a way to build a table
of contents automatically, but doing this task is easy
when an XSLT program is used [10, pp. 149–150].

3 Some words on internationalisation

XSL-FO provides properties— that is, attributes—
for specifying hyphenation properties [16, § 7.10].
These attributes includes the specification of a coun-
try, a language, a hyphenation character, etc. In
practice, the predefined attribute xml:lang— see
the two occurrences of this attributes in Figure 4—
is treated as a shorthand and used to set the coun-
try and language properties [16, § 7.31.24]. This at-
tribute characterizes the language of a content by
a two-letter language, optionally followed by a two-
letter country code, as specified in [1].

XSL-FO is not limited to languages using the
Latin alphabet and can deal with any writing mode.
The writing-mode attribute can be set to:

• lr-tb, for ‘left-to-right, top-to-bottom’ (by de-
fault),

• rl-tb, for ‘right-to-left, top-to-bottom’,

• tb-rl, for ‘top-to-bottom, right-to-left’,

• or others [16, § 7.29.7].

This specifies two directions: the first is the inline-
progression-direction which determines the direction
in which words will be placed and the second is the
block-progression-direction which determines the di-
rection in which blocks and lines are placed one after
another. The inline-progression-direction for a se-
quence of characters may be implicitly determined
using bidirectional character types for those charac-
ters from the Unicode Character Database [13] and
the Unicode bidirectional algorithm [13, Annex 9].

10 In fact, the information identifying a precise namespace
is not the prefix itself, but the value associated with it, e.g.,
‘http://www.w3.org/1999/XSL/Transform’ for an XSLT pro-
gram. XInclude (see Footnote 8, p. 110) introduces another
namespace to model file inclusions [15].

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 113

Jean-Michel Hufflen

<?xml version="1.0" encoding="ISO-8859-2"?>

<!DOCTYPE poem0 SYSTEM "poem0.dtd" [<!ENTITY refren-1 "<verse>Czuj, czuj, czuwaj,</verse>">]>

<poem0>

<preamble><title>Płonie ognisko</title></preamble>

<body>

<stanza>

<verse>Płonie ognisko w lesie,</verse>

<verse>Wiatr smętną piosnkę niesie.</verse>

<verse>Przy ogniu zaś drużyna</verse>

<verse>Gawędę rozpoczyna</verse>

</stanza>

<stanza label="refren"> <!-- label is an optional attribute being type ID. -->

&refren-1;&refren-1; <!-- Syntactical replacement. -->

<verse>Rozlega się dokoła,</verse>

&refren-1;&refren-1;

<verse>Najstarszy druh zawoła.</verse>

</stanza>

<stanza>

<verse>Przestańciesię już bawić</verse>

<verse>I czas swój marnotrawić.</verse>

<verse>Niechj każdy z was się szczerze,</verse>

<verse>Do pracy swej zabierze</verse>

</stanza>

<stanza>

<!-- A stanza is a non-empty list of verses, but can be a repetition of a previous stanza, in which case we

use the resume element with a required attribute, ref. The value associated with this IDREF

attribute unambiguously identifies a subtree.

-->

<resume ref="refren"/>

</stanza>

</body>

</poem0>

Figure 5: Example of a Polish song as an XML text.

4 Going further

Of course, we have not shown all the features of
XSL-FO; our goal was merely to show that the basic
features are analogous to LATEX’s, even if methods
for advanced features diverge. We hope you are now
able to write simple texts in XSL-FO. If you wish to
go thoroughly into learning it, the reference is the
W3C11 recommendation of the latest version (1.1)
[16]. [10] is more didactic, but is based on XSL-FO’s
Version 1.0, although the differences are very slight
for simple examples. [2, ch. 8] and [8] are very di-
dactic, too, and may be of interest for French- or
German-speaking people, but have the same draw-
back.

5 Acknowledgements

Many thanks to Jerzy B. Ludwichowski, who wrote
the Polish translation of the abstract. I also thank

11 World Wide Web Consortium.

Karl Berry and Barbara Beeton, who proofread the
definitive version.

References

[1] Harald Tveit Alvestrand: Request for
Comments: 3066. Tags for the Identification
of Languages. UNINETT, Network Working
Group. March 1995. http://www.cis.

ohio-state.edu/cgi-bin/rfc/rfc3066.

html.

[2] Bernd Amman et Philippe Rigaux :
Comprendre XSLT. Éditions O’Reilly France.
Février 2002.

[3] Apache FOP. January 2007. http:

//xmlgraphics.apache.org/fop/.

[4] Jean-Michel Hufflen: “Introduction to
XSLT”. Biuletyn GUST, Vol. 22, pp. 64. In
BachoTEX 2005 conference. April 2005.

[5] Jean-Michel Hufflen: “Advanced Techniques
in XSLT”. Biuletyn GUST, Vol. 23, pp. 69–75.

114 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

Introducing LATEX users to XSL-FO

<?xml version="1.0"?>

<!DOCTYPE stylesheet [<!ENTITY layout SYSTEM "layout.fo">]>

<xsl:stylesheet version="1.0" id="poemfr0-2-fo" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:fo="http://www.w3.org/1999/XSL/Format">

<xsl:output method="xml" indent="yes"/>

<xsl:param name="polish-song-en" select="’Polish song’"/>

<xsl:param name="polish-song-po" select="’Polska piosenka’"/>

<xsl:strip-space elements="*"/> <!-- Rule blank nodes out. -->

<xsl:template match="poem0">

<fo:root>

&layout; <!-- The contents of this file is inserted ‘verbatim’ into the result of the xslt program. -->

<xsl:variable name="the-title" select="preamble/title"/>

<xsl:call-template name="put-footer">

<xsl:with-param name="the-string" select="the-title"/>

</xsl:call-template>

<fo:page-sequence master-reference="page-simple" font-family="serif" font-size="12pt"

text-align="left">

<fo:flow flow-name="xsl-region-body" xml:lang="po">

<xsl:call-template name="put-title">

<xsl:with-param name="the-title" select="$the-title"/>

</xsl:call-template>

<xsl:apply-templates select="body"/>

</fo:flow>

</fo:page-sequence>

</fo:root>

</xsl:template>

<xsl:template match="body"><xsl:apply-templates/></xsl:template>

<xsl:template match="stanza">

<xsl:choose>

<xsl:when test="resume"><xsl:apply-templates select="id(resume/@ref)"/></xsl:when>

<xsl:otherwise>

<xsl:apply-templates select="verse[1]">

<xsl:with-param name="first-line-p" select="true()"/>

</xsl:apply-templates>

<xsl:apply-templates select="verse[position() > 1]"/>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

<xsl:template match="verse">

<xsl:param name="first-line-p" select="false()"/> <!-- ‘false’ is the default value. -->

<fo:block>

<xsl:if test="$first-line-p">

<xsl:attribute name="space-before.minimum">10pt</xsl:attribute>

<xsl:attribute name="space-before.optimum">11pt</xsl:attribute>

<xsl:attribute name="space-before.maximum">12pt</xsl:attribute>

</xsl:if>

<xsl:value-of select="."/>

</fo:block>

</xsl:template>

Figure 6: An XSLT stylesheet that transforms the source given in Figure 5 to Figure 4..

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 115

Jean-Michel Hufflen

<xsl:template name="put-footer">

<xsl:param name="the-string"/>

<fo:static-content flow-name="xsl-region-after">

<fo:block text-align="center" line-height="14pt" color="green" font-size="10pt"

font-family="serif">

<xsl:value-of select="concat($the-string,’ (’)"/><fo:page-number/><xsl:text>)</xsl:text>

</fo:block>

</fo:static-content>

</xsl:template>

<xsl:template name="put-title">

<xsl:param name="the-title"/>

<fo:block font-family="sans-serif" font-size="18pt" font-variant="small-caps"

padding-top="3pt" text-align="center" color="white" background-color="blue"

space-after="15pt" line-height="24pt">

<xsl:value-of select="$the-title"/>

</fo:block>

<fo:block font-family="sans-serif" font-size="14pt" space-after="18pt" border-style="solid"

border-width="0.5mm" border-color="blue" padding="4mm" start-indent="80mm"

end-indent="4mm">

<fo:block text-align="right">

<xsl:value-of select="concat($polish-song-po,’ ’)"/>

<fo:inline font-style="italic" xml:lang="en">

<xsl:value-of select="concat(’(’,$polish-song-en,’)’)"/>

</fo:inline>

</fo:block>

</fo:block>

</xsl:template>

</xsl:stylesheet>

Figure 7: XSLT program of Figure 6, continued.

In BachoTEX 2006 conference. April 2006.
[6] Jean-Michel Hufflen: “Writing Structured

and Semantics-Oriented Documents: TEX vs.
XML”. Biuletyn GUST, Vol. 23, pp. 104–108.
In BachoTEX 2006 conference. April 2006.

[7] Frank Mittelbach, Michel Goossens and
Johannes Braams, with David Carlisle,
Chris A. Rowley, Christine Detig and
Joachim Schrod: The LATEX Companion.
2nd edition. Addison-Wesley Publishing
Company, Reading, Massachusetts. August
2004.

[8] Manuel Montero Pineda und Manfred
Krüger: XSL-FO in der Praxis.
XML-Verarbeitung für PDF und Druck.
2004.

[9] Chuck Musciano and Bill Kennedy: HTML

& XHTML: The Definitive Guide. 5th edition.
O’Reilly & Associates, Inc. August 2002.

[10] Dave Pawson: XSL-FO. O’Reilly
& Associates, Inc. August 2002.

[11] Sebastian Rahtz: “The TEI/TEX Interface”.
In: Proc. EuroTEX 2005, pp. 38–49.
Pont-à-Mousson, France. March 2005.

[12] Erik T. Ray: Learning XML. O’Reilly
& Associates, Inc. January 2001.

[13] The Unicode Consortium: The Unicode
Standard Version 5.0. Addison-Wesley.
November 2006.

[14] W3C: XSL Transformations (XSLT).
Version 1.0. W3C Recommendation. Edited
by James Clark. November 1999. http:

//www.w3.org/TR/1999/REC-xslt-19991116.

[15] W3C: XML Inclusions (XInclude)
Version 1.0, 2nd edition. W3C Recommendation.
Edited by Jonathan Marsh, David
Orchard, and Daniel Veillard. November
2006. http://www.w3.org/TR/2006/

REC-xinclude-20061115/.

[16] W3C: Extensible Stylesheet Language (XSL).
Version 1.1. W3C Recommendation. Edited
by Anders Berglund. December 2006. http://
www.w3.org/TR/2006/REC-xsl11-20061205/.

116 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

Using TEX in a wiki

Tomasz Łuczak
Katowice, Poland
tlu (at) technodat dot com dot pl

http://team-tl.livenet.pl

Abstract

This article describes the use of wikis as sources and presentations of texts, with
TEX as a hidden engine for typesetting the wiki content.

1 The preliminaries

When one wants both a printed version of a docu-
ment (usually in PDF format) and in the form of a
web page, one usually starts from a TEX document,
which is converted to HTML. However, this requires
that the author has at least basic TEXnical skills.
If several people who do not know anything about
TEX work on a document and the printed version is
the last step in the chain, then starting from a web
page might be a more appropriate direction.

The process of creating technical documenta-
tion thus can involve the editing of web pages — we
have an instant presentation of the current state of
the document. The next step is conversion to the
TEX format followed by compilation. It is impor-
tant to note that the converted documents should
not need to be manually adjusted or corrected.

2 The need

One of the practical uses for such a “from web to
TEX” process is creation of a system’s quality man-
agement documentation. The documentation is be-
ing created by employees who usually have no TEX-
nical skills. This leads to the idea of providing such
tools with which they are familiar, but of course we
will not accept any loss of quality of the typeset re-
sult.

3 The execution

If one insists on ease of editing combined with keep-
ing a change history, as well as the ease of converting
into TEX, it turns out that a wiki is the simplest so-
lution. We only have to choose the proper program.

Dokuwiki was used for this project (http://

wiki.splitbrain.org/wiki:dokuwiki), thanks to
its automatic table of contents generation and page
fragments editing. Dokuwiki keeps pages UTF-8 en-
coded without any other control codes. This enor-

mously simplifies the realization of an automatic
converter.

To restrict authors’ invention, a set of “wiki
complementing rules” was prepared which listed the
allowed markup tags along with examples of use.
During the preparation of these “rules” it turned
out that the following features suffice: text empha-
sis; tables; drawings; itemization and enumeration
without nesting; and headings for three levels (chap-
ters, sections and subsections).

Unfortunately, the wiki does not automatically
number chapters or sections, so to achieve a uni-
form look we decided to include chapter and section
numbers directly into the titles. This solution is
not a most elegant, but proved to be effective. In-
cidentally, this also gave section numbers in the au-
tomatically generated table of contents for a given
wiki page.

Limiting the allowed tags made writing the con-
verter easy. The code written in TCL fits into about
hundred lines, mostly thanks to the following limita-
tions: the PDF document is only for printing so the
wiki’s hyperreferences were not converted; all tables
had the same structure; and similarly, all drawings
had the text column width.

Due to the deficiency of the converter authors
were required to put an empty line to mark the end
of a list. Unfortunately this was not always adhered
to, leading to the biggest issue during conversion
and compilation.

4 The summary

The use of the wiki and a web browser proved to be
a hit: documents were quickly and willingly edited
by the authors. The documentation not being up-
to-date proved not to be an issue. Last but not least:
the readers liked the easy to read and nicely typeset
documents.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 117

Single-source publishing in multiple formats for different output devices∗

Petr Sojka
Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic
sojka (at) fi dot muni dot cz

http://www.fi.muni.cz/usr/sojka/

Michal Růžička
Faculty of Informatics, Masaryk University
Botanická 68a, 602 00 Brno, Czech Republic
xruzick7 (at) fi dot muni dot cz

Abstract

TEX is traditionally used as an authoring tool for paper publishing of scientific
texts and textbooks. Parallel electronic publications that are meant for on-screen
viewing and web delivery are demanded by readers for many reasons today. The
paper discusses ways to single-source author publishing from a LATEX source file,
and shows examples of several textbooks published by this approach. Special
attention is given to the web document generation either to HTML or XHTML

markup with the notation translated to MathML.
On-the-fly personalised document generation with JBIG2-compressed pic-

tures for a digital library project DML-CZ is discussed as well.

1 Motivation

Discover the outer logic of the typography

in the inner logic of the text.

— Robert Bringhurst [6]

Documents conveying information have their con-
tent and form. Form (appearance) should reflect
the design, it should use the graphical means con-
sistently. Possibilities of a form of a document are
constrained by an output device (paper, LCD moni-
tor, PDA).

It is a well-known, but little respected fact, that
the design of a document has to be (re)done for ev-
ery new output device. Many documents fine-tuned
with our TEX-based systems for reading on a pa-
per (microtypography etc.) are often proudly posted
on the web without redoing the design phase for a
particular output device (LCD screen, PDA), for a
particular purpose, or for specific readers’ requests.
This is in contrast with the goal Knuth had in mind
e.g. when designing the fonts in METAFONT: even
the tiny rasterization details affected by different
printers should be fine-tuned by proper settings for
a particular printer in modes.mf.

The authors who use open-sourced TEX-based
system have significant power and possibilities to

∗ Support from the Czech Academy of Sciences grants
AV1ET208050401 and AV1ET200190513 is acknowledged, as
well as travel support from the Czechoslovak TEX Users
Group.

influence every detailed aspect of the form when
writing their papers and books. In the case when
authors write using logical markup only, it is then
possible to choose a different typography that hon-
ors content independently to suit different output
device qualities by changing the design mapping for
logical entities in the text. Strict separation of con-
tent and form is almost always possible, with only
rare exceptions such as typesetting Christian Mor-
genstern’s poems. However, authors must discipline
themselves not to use visual typesetting commands
such as \vskip.

As the quality and size of display devices grow,
even longer texts will be read directly on screen,
or document snippets on the XHTML browsers in
mobiles or PDAs. Authors naturally demand that
their content be ready for the wide range of different
output devices. Although the design is inherently
harder as usually the whole class of output devices
and browsers has to be thought of, it is what is de-
manded by the readers.

In this paper we comment on several publishing
projects: several textbooks [2, 3, 4] and database
publishing in DML-CZ [11]. In all projects benefits
from strict separation of form and content to pro-
duce different products are shown, using the single-
source input created by the author or generated from
a database on demand for different types of output.

118 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Single-source publishing in multiple formats for different output devices

2 Single-source publishing

If the only tool we know is a word processor,

everything looks like a print document.

— Peter Meyer [10]

An author wants to convey information, and the only
thing she or he has to do is mark logical entities in
the text. The designer should enforce sameness: vis-
ual rendering of the same logical parts should be
consistently the same. This will allow publishing for
different output devices just by switching between
different designs. Maintenance of the text by the
author will be much easier and cheaper than main-
taining forked versions for different purposes. It will
also reduce errors, improve consistency and/or save
translation costs: the terms single-source publish-
ing or single-sourcing are used for this type of doc-
ument authoring (see http://en.wikipedia.org/

wiki/Single_source_publishing). DocBook is a
well-known system and DTD allowing single-source
publishing, with support for conversion to XHTML,
DVI, PostScript or PDF, with either XSL, XSL-FO

or LATEX.
Many single-source publishing approaches start

from XML as the source of content [10]. For many
authors, it is simply not convenient to write directly
in XML, even with clever XML editors. Technical
manuscripts full of mathematics will remain authored
in some flavor of TEX for the compactness and clarity
of TEX math notation. Author productivity raises
significantly with author-centric system [9].

In academia, authors write textbooks for their
courses, and want to publish them in the formats
their students prefer. We have prepared two single-
source textbooks [2, 4] from sources originally writ-
ten in LATEX. In the next sections we describe our
experience with the project.

3 Markup and conversion tools

Data cannot be used at a finer grain

than it is marked up at. — Rick Jelliffe

To allow single-source publishing, we had to clean
the source files significantly, as they were not writ-
ten from the beginning with the goal to publish in
different formats. Even DEK writes very “low-level”
code in The TEXbook:

&\elevenit I\kern.7ptllustrations by\cr

&DU\kern-1ptANE BIBBY\cr

\noalign{\vfill}

&\setbox0=\hbox{\manual77}%

\setbox2=\hbox to\wd0{\hss\manual6\hss}%

\raise2.3mm\box2\kern-\wd0\box0\cr % A-W logo

&ADDISON\kern.1em--WESLEY\cr

&PUBLISHING COMP\kern-.13emANY\kern-1.5mm\cr

He did not expect the code to be used for any-

thing else than printing to a phototypesetter, with
the given fonts, kerning for given sizes, etc.

For single-source publishing, the main text has
to be written without fine-tuning for a single output
device or printer, and low-level markup has to be
substituted by high-level commands allowing multi-
ple macro definitions for different outputs. Markup
must be written at the finest grain possible, expand-
ing to the appropriate design setting for every type
of output. The idea is not new, and it is used in
the XML world as well (different CSS rendering for
different devices or even browsers).

We have identified several types of output for-
mat our students have demanded. In addition to
the standard version suitable for printing on paper,
a searchable version optimised for an LCD screen
with 4:3 aspect ratio was requested. For some pur-
poses an (X)HTML version was needed for platforms
and devices without a PDF renderer. Finally, we pre-
pared an XHTML+MathMLversion as well.

There are many tools and utilities to convert
TEX documents to different output formats — a list
of them is compiled on the TEX Users Group web
page TeX Resources on the Web (http://www.tug.
org/interest.html). PDFLATEX with the hyper-
ref and crop packages is a suitable combination for
print output. For on-screen versions of documents
we have chosen the pdfscreen package in combina-
tion with pdfTEX and the hyperref package.

4 PDF versions

Make all visual distinctions as subtle as possible,

but still clear and effective. — Edward R. Tufte [14]

For every output version, design parameters and
macros are, as usual, written in separate conditional
branch. A simple source code example:

\newif\ifprint

\printfalse % Non-print version.

%\printtrue % Print version.

\ifprint

\hypersetup{colorlinks=false,

pdfborder={0 0 0}}

% Center mirrored document pages on A4

% paper and add crop marks.

\usepackage[cam,a4,center,mirror]{crop}

\fi

4.1 PDF for printing

For print it is desirable to prepare grey-scale out-
put. For this job the hyperref package is often
used with appropriate options (colorlinks=false,
pdfborder={0 0 0}).

The crop package (available on CTAN) is a good
choice to set up crop marks. The crop package is also

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 119

Petr Sojka and Michal Růžička

able to perform document transformation such as
page mirroring, etc. The output is shown in Figure 1
on page 121.

4.2 PDF for on-screen viewing

A typical LCD screen is quite a different output de-
vice. Compared to current 1200 DPI printers, it has
an order of magnitude lower resolution. Usually, it
has a different aspect ratio, and allows colours of
high depth. We can add interactive content such as
hypertext links, navigation toolbar, etc.

To make versions of textbooks designed for the
screen, we started with the package pdfscreen (avail-
able on CTAN). pdfscreen together with definitions
of environments and macros for screens are again in
a conditional branch of the textbook style file.

To save fine-tuning of line-breaking, we have
made the line-breaking the same in both print and
screen versions. Page breaking will be different, of
course, as seen in Figure 2 on page 121.

5 Possibilities for web delivery

A buzzword today is XML — people spend much of
their time browsing (X)HTML pages. For searchable
and scalable math using outline fonts MathML is
needed. There are several tools available:

• TEX2page (http://www.ccs.neu.edu/home/
dorai/tex2page/),

• Tralics (http://www-sop.inria.fr/apics/
tralics/),

• TEX4ht (http://www.cse.ohio-state.edu/

~gurari/TeX4ht/),

• LATEXML (http://dlmf.nist.gov/LaTeXML/)

• LATEX2HTML (http://latex2html.org).

Each tool has some advantages and disadvan-
tages; we do not want to discuss all of them. After
testing some of the tools, we have chosen TEX4ht [5,
7]. TEX4ht uses the native TEX compiler and pro-
cesses the document with a special setup into stan-
dard DVI output with markup in \specials — there
is no danger of omission of unsupported markup
as in, e.g., LATEX2HTML. From this enriched DVI,
HTML pages are extracted by TEX4ht scripts.

5.1 HTML

The most difficult part of the conversion setup pro-
cess was web output. In the case of complex docu-
ments it was usually necessary to make changes in
the source code. These modifications and TEX4ht-
specific commands are, of course, in a separate style
file whenever possible.

Once we have source code in the LATEX format

with TEX4ht styles loaded we can try to convert the
document. The first trial is to run the command:

htlatex filename.tex ’html’

When TEX4ht successfully completes its work
we will get an HTML document with complicated
formulae rendered into PNG images, as seen in Fig-
ure 3 on page 122. This way is simple and safe for
rendering in all, even old, web browsers.

By default, the whole document is written to
one HTML file, but TEX4ht is able to split a longer
document into a tree of web pages automatically.
Running htlatex filename.tex ’html,2’ gener-
ates a document that has each chapter in a separate
file. Navigation between chapters is available via a
toolbar at the top and bottom of every page.

When generating HTML output it may be use-
ful to insert some HTML code with the command
\HCode {Some HTML code.}. This command can be
used for CSS code insertion, too. TEX4ht offers both
HTML and XHTML output generation.

We use existing LATEX logical markup as much
as possible. For CSS code, we use the command
\Css{CSS definition}. CSS attributes are mapped
onto document elements through appropriate \HCode
commands. The command \ConfigureEnv makes it
possible to add our own code before and after envi-
ronment content in the output document.

As a bit more complex example of CSS, this
definition could serve for the theorem environment:

\newtheorem{theorem}{Theorem}[chapter]

...

\ifweb % In case of web format output...

\Css{% CSS code definition block

.theorem {

background-color: \#FFFFFF;

border: 1px solid;

border-color: \#0000FF; } }

% In the resulting HTML document markup

% "<div class="theorem">" is placed

% before each "theorem" environment

% and markup "</div>" after that.

\ConfigureEnv{theorem}

{\ifvmode \IgnorePar\fi

\EndP\HCode{<div class="theore">}}

{\ifvmode \IgnorePar\fi

\EndP\HCode{</div>}}

{}{}

\fi

...

% In the document, the same LaTeX markup is

% used for all versions: "theorem" environment

\begin{theorem}

Function~f have only one limit

in point~$[x_{0},y_{0}]$.

\end{theorem}

120 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Single-source publishing in multiple formats for different output devices

18 Pojem funkce více proměnných

Pro n = 2 budeme místo f (x1, x2) psát f (x, y) a pro n = 3 místo f (x1, x2, x3)

píšeme f (x, y, z).

Příklad 1.1. i) Zobrazte v rovině definiční obor funkce

f (x, y) =

√

(

x2 +
(y − 2)2

4
− 1

)

(

x2 + y2 − 6x
)

.

Řešení. Výraz pod odmocninou musí být nezáporný, tj. musí být splněna pod-

mínka
(

(y − 2)2

4
+ x2 − 1

)

(

x2 + y2 − 6x
)

≥ 0.

To nastane, právě když

(y − 2)2

4
+ x2 − 1 ≥ 0 a (x2 + y2 − 6x) ≥ 0

nebo
(y − 2)2

4
+ x2 − 1 ≤ 0 a (x2 + y2 − 6x) ≤ 0.

x

y

1 2 3 4 5

1

2

3

Rovnice (y−2)2

4
+ x2 = 1 je rovnicí elipsy

se středem v bodě [0, 2] a poloosami délek

a = 1 a b = 2, rovnice x2 + y2 − 6x = 0

je rovnicí kružnice se středem v bodě [3, 0]
a poloměrem r = 3, nebot’ tuto rovnici lze pře-

vést na tvar (x − 3)2 + y2 = 9. Množina všech

bodů [x, y] ∈ R
2 splňující výše uvedené ne-

rovnosti, tj. definiční obor funkce f , je zná-

zorněna na vedlejším obrázku. Je to uzavřená

množina v R
2.

ii) Zobrazte v rovině definiční obor funkce

f (x, y)=arccos(x2+y2−1) +

√

|x | + |y| −
√

2.

Řešení. Definičním oborem funkce arccos je interval [−1, 1], první sčítanec je

tedy definován pro [x, y] splňující nerovnosti

−1 ≤ x2 + y2 − 1 ≤ 1,

Figure 1: Print output(without page mirroring)

Titulní strana

Obsah

Výsledky cvičení

Rejstřík

◭◭ ◮◮

◭ ◮

Strana 21 z 451

Zpět

Vpřed

Zavřít

Konec

To nastane, právě když

(y − 2)2

4
+ x2

− 1 ≥ 0 a (x2 + y2
− 6x) ≥ 0

nebo
(y − 2)2

4
+ x2

− 1 ≤ 0 a (x2 + y2
− 6x) ≤ 0.

x

y

1 2 3 4 5

1

2

3

obr. 1.1 Definiční obor funkce f

Rovnice (y−2)2

4
+ x2 = 1 je rovnicí elipsy se středem v bodě [0, 2] a poloosami

délek a = 1 a b = 2, rovnice x2 + y2 −6x = 0 je rovnicí kružnice se středem v bodě

[3, 0] a poloměrem r = 3, nebot’ tuto rovnici lze převést na tvar (x − 3)2 + y2 = 9.

Množina všech bodů [x, y] ∈ R
2 splňující výše uvedené nerovnosti, tj. definiční

obor funkce f , je znázorněna na obrázku 1.1. Je to uzavřená množina v R
2.

Figure 2: Screen output

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 121

Single-source publishing in multiple formats for different output devices

5.2 XHTML + MathML

TEX is very often used for typesetting of scientific
texts that make heavy use of mathematical nota-
tion. A much more interesting alternative to HTML

with math as images is the XML language MathML.
The most complicated conversion process we tried
was the conversion to XHTML + MathML output,
especially for our case of highly mathematical texts.

There are still some complications for both the
author and user when using MathML on the web.
Firstly, there are different MathML implementations
in web browsers, leading to different results. We
achieved the best results with the TEX4ht mozilla

compile option in combination with the Mozilla Fire-
fox web browser (or other Gecko-based browsers).
Secondly, the user has to have appropriate mathe-
matical fonts installed. Information about necessary
fonts, download links and installation instructions
for Mozilla Firefox users are available on the Mozilla
MathML Project web pages (http://www.mozilla.
org/projects/mathml/fonts/).

A big advantage of TEX4ht is this MathML out-
put possibility, which is very useful in case of math-
ematical texts — XHTML + MathML generation is
similar to that for HTML:

htlatex filename.tex ’xhtml,mozilla’

When all goes well we get an XML file contain-
ing XHTML code that uses the MathML vocabulary
for expressing mathematical formulae. You can see
the result, fully scalable in a Mozilla Firefox window,
in Figure 4 on page 122.

TEX4ht is very sensitive to having clean mathe-
matical notation for MathML generation. For exam-
ple, the expression

$M=\{x|x$ is odd $\}$

is correct TEX code. But then TEX4ht is not able
to pair the curly braces properly. One needs to use
the right expression:

$M=\{x|x \mbox{ is odd}\}$

In complex situations, the math reformulation
can be much more complicated or even impossible.
In these rare cases TEX4ht offers an emergency solu-
tion — one can use pictorial object representation:

\ifweb

\Picture*{}

\fi

$M=\{x|x$ is odd $\}$

\ifweb

\EndPicture

\fi

This solution is not limited by the mathemat-
ical notation and may be used for any object with
problematic rendering in MathML.

6 On-the-fly document generation

A second project where the single source approach
is being used is the DML-CZ project [11, 1]. The
project goal is not only to digitise a quarter million
Czech and Slovak mathematical journal pages, but
also to provide for parallel print and web-optimised
generation for the digital-born data.

The digitised versions are being generated from
scanned and preprocessed bi-tonal TIFF 600 DPI

images. The following OCR task is being accom-
plished by a multistage process using FineReader
(text) and InftyReader (mathematics) software [12].
InftyReader [13] is able to export the text in LATEX
or MathML, together with positioning information.
This allows typesetting of the OCRed LATEX or Math-
ML (or both) data as text under an image: PDFLATEX
supports this layered typesetting, e.g. using the stan-
dard picture environment. To make the text search-
able the cmap package has to be used for texts in
different languages.

An important factor is the size of the gener-
ated files — for print, resolution of printing device is
usually demanded, while for on screen viewing lower
resolution is sufficient. PDF allows different kinds of
compression filters — since PDF 1.4, JBIG2 bi-level
image compression is supported. PDFTEX supports
JBIG2 encoded figure inclusion in its recent version
as well. In addition, Adam Langley has written the
open source jbig2enc converter, as work supported
by Google [8].

JBIG2 allows both lossless and lossy compres-
sion. For scanned content, the best approach is to
get the best compression by accepting some loss of
image data by using a symbol encoding where varia-
tion comes from printing errors [8]. JBIG2 compres-
sion ratio depends on context size — it gives better
results when compressing page ranges instead of a
single page only. Using slightly lossy compression
and high context sizes, we are able to generate PDF

images that have about 10–20 % of size of CCITT

encoded and LZW compressed images. The parame-
ters of jbig2enc allow for fine-tuned picture regen-
eration, even in an on-the-fly generation scenario.

Conclusion

Through examples of several projects, we argue that
TEX-based authoring and single-source publishing is
a natural and effective way of preparing personalised
documents for multiple output devices. TEX4ht is a
very customisable tool for web publishing from TEX
sources, and the JBIG2 format for bi-tonal pictures
saves space when generating many pictures (as in
digitisation projects as DML-CZ or Google Scholar).

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 123

Petr Sojka and Michal Růžička

References

[1] Miroslav Bartošek, Jǐŕı Rákosńık, Petr
Sojka, and Martin Šárfy. Optical Character
Recognition of Mathematical Texts in the
DML-CZ Project, September 2006. accepted
for publication as book chapter CMDE 2006
(A.K. Peters).

[2] Zuzana Došlá and Ondřej Došlý. Metric
Spaces: Theory and Examples (in Czech).
Masaryk University in Brno, second edition,
2000.

[3] Zuzana Došlá, Roman Plch, and Petr Sojka.
Matematická analýza s programem Maple: 1.
Diferenciálńı počet funkćı v́ıce proměnných
(Mathematical Analysis with Program
Maple: 1. Differential Calculus). CD-ROM,
http://www.math.muni.cz/~plch/mapm/,
December 1999.

[4] Zuzana Došlá, Roman Plch, and Petr Sojka.
E-learning v matematice (E-learning in
mathemathics). DVD-ROM, December 2007.

[5] Michel Goossens, Sebastian Rahtz, Ross
Moore, and Bob Sutor. The LATEX Web
Companion. Addison-Wesley, Reading, MA,
1999.

[6] Philip Babcock Gove and Merriam Webster.
Webster’s Third New International Dictionary
of the English language Unabridged.
Merriam-Webster Inc., Springfield,
Massachusetts, U.S.A, January 2002.

[7] Eitan M. Gurari. TeX4ht: LATEX and TEX
for Hypertext. http://www.cse.ohio-state.

edu/~gurari/TeX4ht/, February 2005.

[8] Adam Langley and Dan S. Bloomberg. Google
Books: Making the public domain universally
accessible. Proceedings of SPIE, 6500:65000H,
2007.

[9] Peter Meyer. Planning a single source
publishing application for business documents,
2005. http://www.elkera.com/cms/

articles/seminars_and_presentations/

planning_a_single_source_publishing_

application_for_business_documents/.

[10] Peter Meyer. Introduction to single source
publishing, 2006. http://www.elkera.

com/cms/articles/technical_papers/

introduction_to_single_source_

publishing/.

[11] Petr Sojka. From Scanned Image to
Knowledge Sharing. In Klaus Tochtermann
and Hermann Maurer, editors, Proceedings of
I-KNOW ’05: Fifth International Conference
on Knowledge Management, pages 664–672,
Graz, Austria, June 2005. Know-Center in
coop. with Graz Uni, Joanneum Research and
Springer Pub. Co.

[12] Petr Sojka, Radovan Panák, and Tomáš
Mudrák. Optical Character Recognition of
Mathematical Texts in the DML-CZ Project,
September 2006. accepted for publication as
book chapter CMDE 2006 (A.K. Peters).

[13] Masakazu Suzuki, Fumikazu Tamari, Ryoji
Fukuda, Seiichi Uchida, and Toshihiro
Kanahori. INFTY — An integrated OCR
system for mathematical documents. In
C. Vanoirbeek, C. Roisin, and E. Munson,
editors, Proceedings of ACM Symposium on
Document Engineering 2003, pages 95–104,
Grenoble, France, 2003. ACM.

[14] Edward R. Tufte. Visual Explanations.
Graphics Press LLC, 1997.

124 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Practical journal and proceedings publication on paper and on the web

Péter Szabó
Budapest University of Technology and Economics,
Dept. of Computer Science and Information Theory,
H-1117 Hungary, Budapest, Magyar tudósok körútja 2.
pts (at) cs dot bme dot hu

http://www.inf.bme.hu/~pts/

Abstract

Although TEX is a reliable, high-quality and well-understood tool for authors
writing their conference and journal articles, editors and typesetters face a much
more difficult task when they want to compose articles for actual journal publica-
tion or preprints. We present organisational and software solutions for problems
editors of journals and proceedings might face. As case studies we present is-
sues and some conclusions regarding the production of the proceedings for two
conferences we organised (EuroTEX 2006 and the non-TEX-related LME 2006
conference).

1 Introduction

We address problems during typesetting a collec-
tion of articles— usually a conference proceedings
or a journal issue, from now on referred to as a “col-
lection”. There are three parties cooperating: the
authors, the editors and the printshop. Using our
terms, an “editor” is someone who accepts articles
from the authors, reviews articles, proofreads arti-
cles, typesets articles, or compiles a list of articles
into a collection. We assume that editors work on
LATEX article-like documents, and they convert any
document they receive to this format. We also as-
sume that the document class has already been de-
signed by the typographer. We discuss converting
articles to LATEX format, editing individual articles,
and compiling a collection to be printed by the print-
shop, and also publishing it on the web as a set of
PDF files.

We assume that time to be spent on editing is
short, there are only a few editors, and not all the
editors have a complete understanding of the whole
publication process— some of them only review ar-
ticles, others deal only with web pages, etc. We
assume that there is a chief editor who would be
able to do the whole job (except for peer review) if
there was enough time.

We use two conferences we organised in 2006 as
case studies. One of them is EuroTEX 2006, an in-
stallment of the annual conference of the European
TEX community. Authors usually submit articles as
TEX source (most of them writing LATEX source us-
ing the document class the editors proposed), and
the submitted material is of high typographic qual-

ity. That is, paragraphs, pages, tables and graph-
ics look nice; graphics are in a scalable (vector) file
format; extensive bibliographies arrive in a BibTEX
format; and the layout is reasonably separated from
the text so that editors can change the layout easily.

The other conference is LME GNU/Linux Con-
ference 2006, known as LME 2006. It is one of the
annual conferences of the Hungarian Linux and Unix
community. Articles submitted are of varying lin-
guistic and typographic quality. Most authors have
never heard of TEX; many of them haven’t ever writ-
ten an article before. They use plain text editors or
OpenOffice (or an equivalent word processor) when
writing documents. Editors have a lot of work to do
with each article: file format conversion (from Open-
Office to LATEX), and proofreading and typesetting
are slow. Some authors send graphics of extremely
low quality or with unreadable captions— editors
have to ask for a better version. They usually forget
the bibliography or submit incomplete or incorrect
entries— editors have to correct and supplement it.

We present the technology we found useful and
best practices we have developed as a list of practical
suggestions, some of them in imperative style. This
is not meant to imply, however, that our solution is
the only one feasible.

2 Organising work

Because of time pressure it is important that editors
can work in a software environment most comfort-
able for them, and that they always have access to
all the information they need. It is also important
that document compilation works in a reasonably
uniform way, so that e.g. line breaks don’t depend

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 125

Péter Szabó

on the computer the document was compiled on.
It is recommended that all work be done as soon

as possible. For example, the mailing list and the
repository can be created, mail client, chat client,
repository client software and TEX distributions and
companion programs (like Ghostscript, OpenOffice
and sam2p) can be installed way before the first
article is submitted. The same applies to creating a
document class (possibly from a layout designed by
a typographer), collecting mail and chat addresses
of each editor, providing access to the repository for
the editors, and a little planning about the workflow.

2.1 The repository

The repository is a shared file store used by the ed-
itors. In a simplest case it is a shared folder on a
server to which all editors have read and write ac-
cess. However, using a version control system (such
as Subversion [1]) is strongly recommended, because
of these advantages:1

• All past versions of files are available. If some-
thing goes wrong today, one can check out yes-
terday’s state from the repository, and continue
from there. We can also easily see what has
changed, so there is a good starting point for
finding what went wrong. Once the latest work-
ing version is identified, it is possible to revert
to it easily.

• Each editor has their own (partial) copy of the
repository. If the repository is lost in a server
crash, editors can combine their copies and start
a new repository. (This is quite inconvenient,
but still a lot better than having to rewrite the
whole collection from scratch.)

• Each write to the repository (called “commit”)
is logged (who did it, when it happened, what
files were affected and how). Thus if something
goes wrong, we can find out who is capable of
fixing the problem (usually the editor who in-
troduced the problem is capable of fixing it, or
he can provide the most relevant information
for somebody else to fix it).

• If there are two different versions of the same
file, there is no confusion as to which one is
relevant (or more recent). The version control
system automatically takes care of propagating
changes in the right direction, without the need
for manual review. This is a lot better than
having several copies of the same file in a shared
folder without knowing how they derived from

1 The same advantages apply to software development—
an area where version control systems have been used for
decades with great success.

each other and which one is relevant for future
work.

• Synchronising working copies is easy. If an edi-
tor makes a change, he executes a commit oper-
ation (which copies all local changes back to the
repository), notifies others (usually on the mail-
ing list) to update, and the other editors exe-
cute an update operation (which copies changes
from the repository to their local copy). This
works even if two or more editors are making
changes on the same text file. If a conflict arises
(i.e. two people made changes on the same line
of a file), it has to be resolved by hand. Con-
flict resolution is distributed: the editor who
was slower to make his change has to resolve
the conflict. The chief editor is freed from the
work of comparing different versions of the same
file received in e-mail.

• If an editor uses several computers, a version
control system provides seamless synchronisa-
tion between each local copy.

• Most version control systems provide a read-
only web view. (We used SVN::Web for Sub-
version.) This is useful to allow the world to
know the progress of the editing process. Au-
thors or other organisers can be given access
to the repository’s web view, so that they can
download recent and old versions of the files,
they can view the differences with the file ver-
sions, and they can see a history of changes by
examining the commit log.

Editors mustn’t be allowed to share files in any other
way than using the repository. The most common
objection is that they haven’t used such a system be-
fore, and there is no time to learn it now. However, if
the chief editor writes a short tutorial about the ver-
sion control system and the repository, and he helps
other editors to install it (preferably via phone or
voice chat), the learning time can be reduced to one
or two hours. Using a version control system really
pays off in both time and reliability. The size of the
project being small isn’t a valid argument against
it either, because advantages are present even for
single-file projects.

The chief editor must design the repository tree
structure, and enforce it by moving files. It is not
a problem that editors don’t fully understand the
structure, because with a good version control sys-
tem (such as Subversion), files and folders can be
moved and renamed easily. Some rules we used
with EuroTEX 2006: all filenames must be lower
case English (with some additional restrictions on
the allowed characters); file name length is not lim-
ited; all files received from the authors must be put

126 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

Practical journal and proceedings publication on paper and on the web

in the folder art/00from_author/articlename, all
files needed by the article must be copied to art/

01recompiled/articlename, and compiled there
with only minimal modifications (in case of compila-
tion problems, the author must be notified), and all
compiled articles must be copied to and typeset in
art/02typeset/articlename (with possibly a lot
of modifications); the local texmf tree is in texmf, all
necessary packages and fonts must be added there.

Everything possibly needed by editors should
be added to the repository. This includes scripts,
libraries, fonts and TEX packages used, and also tu-
torials and guidelines. Software which is easy to in-
stall from packages (e.g. MiKTEX and Ghostscript)
should not be added, however, but should be men-
tioned in a guideline along with the recommended
version of each package. Files that can be regen-
erated (such as temporary files like .aux files and
output files like .dvi and .pdf) shouldn’t be added,
except for milestone versions of output files (e.g. the
.ps file sent to the printshop or the .pdf file sent to
the proofreader).

Some version control systems distinguish be-
tween text and binary files. The difference must be
understood, and files must be added in the proper
mode. Both file types have advantages.

Editors should be encouraged to immediately
correct each mistake they find in the repository. If
they are not sure whether their correction is good,
an easy solution is to ask them to contact the chief
editor via chat, commit the change, and let the chief
editor review it immediately. (The web view can be
used to quickly get an overview on the changes.)
The downside is that a wrong change might be in
a repository for a few minutes. To avoid that, ver-
sion control systems offer branches, but branches are
usually too complicated to learn and use for newbies.

Sometimes editors forget to add a few files to
the repository (for example, they add a nonstandard
document class, but they forget to add the nonstan-
dard packages loaded by the document class). This
mistake can be prevented by asking the editors to
have two working copies, and if they add a file in
one working copy, they should recompile in the other
one. Under Linux using strace is an alternative so-
lution: running strace -e open latex foo prints
all the files opened by latex when compiling foo.tex.

2.2 Mailing list

There should be a mailing list to which authors, ed-
itors and organisers can post; and editors and or-
ganisers can read the posted messages. (Multiple
mailing lists can be created if a large traffic vol-
ume is expected.) Authors should be encouraged to

upload their articles to the web and post URLs to
the mailing list. Alternatively, somebody should be
made responsible for receiving articles from authors,
adding them to the repository, and notifying editors
about the article. It is generally a bad idea to receive
articles on the mailing list, mostly because articles
might be several dozen megabytes long.

The mailing list should be used only for notifi-
cation and discussion, not for data transfer. All data
to be worked on should be added to the repository,
and others should be notified on the mailing list to
update their working copy and do the appropriate
action on the file. If there is a consistent proposal
during a discussion, it also should be added to the
repository instead of the mailing list.

2.3 Phone

Using the phone is the most efficient way that two
distant parties can cooperate in real time. A phone
call is extremely useful when one of the coworkers
needs help (e.g. the commit resulted in a conflict,
and the other party doesn’t know how to resolve it),
or when actions have to be synchronised (e.g. an
editor commits a change he is not sure about, and
the chief editor reviews it immediately).

When working on a computer connected to the
Internet, one can make voice calls for free. Using
Internet voice calls also gives the benefit of having
free hands, so one can use his ears, eyes, mouth and
fingers at the same time to solve a problem. Laptop
users shouldn’t rely on the built-in microphone of
their laptop because of the terrible sound quality
and the echo experienced on the other side of line.
An external headset or a multimedia earphone (even
as cheap as 5 euros) is a minimum.

2.4 Chat

Sometimes it might be feasible to use some chat
(instant messaging) application instead of making a
phone call. It is recommended that each editor have
a chat account, and be online while working. How-
ever, we note that cooperation can be much more
successful using the phone, because on the phone
parties have each other’s exclusive attention, with
only a very few possible events to interrupt or sus-
pend the conversation.

The chief editor should be registered in as many
instant messaging networks as needed, and should
use a multi-protocol client such as Gaim. Editors
should use a client that beeps or pops up a window
when a new message arrives, so they notice the mes-
sage immediately. Web-based clients are thus out,
because they don’t notify the receiver.

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 127

Péter Szabó

2.5 Software

It is important to have software recommendations
(including version numbers) for editors, so if the
compilation output on two machines differs, it might
be solved easily by switching to the recommended
software.

On Unix we used teTEX 2 and 3 with some
packages downloaded from CTAN to our local texmf
tree. For TEX source editing one could use any text
editor; we recommended Kile and Kate. On Win-
dows we used MiKTEX as a TEX distribution and
TEXnicCenter (and even Textpad) for editing.

We experienced font rendering problems and
other bugs with Ghostscript 8.1x, so we recommend-
ed to upgrade to Ghostscript ≥ 8.53.

As additional tools, we used the latest sam2p
for raster image conversion, the latest pdfconcat for
PDF concatenation and the pdftops tool from the
Xpdf distribution for PDF to PostScript conversion.

We had our Subversion repository on a Unix
server. For security, we allowed read-write access
using svn+ssh:// only. Users were authenticated
using SSH public keys. We forced the svnserve com-
mand for these users in the authorized_keys file
of SSH, with the parameters –tunnel-user=... -t

-r We also used an authz-db file in svnserve.

conf to further tune access. SVN::Web was our read-
only web frontend to Subversion. We patched it
a little so that it could display commit log mes-
sages and files in a character set other than UTF-8.
As a Windows client we recommended TortoiseSVN
with PuTTY’s pageant utility to avoid typing the
passphrase for the public key again and again. We
also prepared a tutorial on generating an SSH public
key and setting up TortoiseSVN on Windows.

Our chief editor relied on the common scripting
facilities of Unix (shell scripts, GNU Make and Perl),
which helped his work a lot. However, other editors
could work without those scripts if they wanted to,
and they were in no way forced to understand the
scripts. The recommended use of scripting was doc-
umented for them in a tutorial.

3 Tasks of the editors

Once papers start arriving, editors can start work-
ing on them. Although version control systems allow
parallel modifications to the same file, this might re-
sult in conflicts, so we recommend that editors an-
nounce on the mailing list when they start or stop
working on an article.

Usually one editor is able to typeset an arti-
cle perfectly, except for proofreading, which should
be done by as many people as possible. For LME

2006 each paper was reviewed by two experts, and
checked for spelling and linguistic mistakes by two
proofreaders, and we found errors even after that.

3.1 File format conversion

Recent versions of OpenOffice 2.0 contain a LATEX
export filter, which can be used to convert word pro-
cessor documents to LATEX. The filter handles para-
graph breaks, bold and italic, emits simple Latin-1
and Latin-2 accented characters properly (without
the inputenc package), and can export math formu-
las (we didn’t test this feature thoroughly, because
for LME 2006 we had only simple math formulas in
documents). Since our documents had a lot of dis-
play verbatim material, and the export filter emitted
it line-by-line, escaping each special character dif-
ferently, we wrote a Perl script postootex.pl which
post-processes the output of the export filter, that
is, converts consecutive typewriter lines to a verba-
tim environment. The export filter was also quite
loose on exporting font changes, it emitted super-
fluous \rmfamily, \mdseries, and font size change
etc. commands even when there was no change at
all. So we added code to the Perl script to remove
these. We wanted a LATEX document that is easy
to read and edit for humans, so we converted the
markup input to Latin-2 (e.g. \’a to á). We also
made the script remove the multitude of unneces-
sary braces inserted randomly by the export filter.
Lists and enumerations were emitted almost prop-
erly, but the export filter insisted on reproducing the
exact list formatting (margins, item width, etc.), so
we removed this too, but with that we lost the list
depths, so we had to check each nested list by hand.
Exporting of tables, figures and floats was so pre-
liminary that we decided to retype these elements
by hand.

The usefulness of a custom Perl script to con-
vert TEX sources might sound questionable. We de-
cided to write a script after frustration during the
manual cleanup of the export filter’s output on a
5-page document. We wrote the script so it tries
to follow the LATEX syntax closely enough that it
doesn’t get confused e.g. by nested braces in an un-
delimited macro argument, and thus can clean up
the source file reasonably well. The script didn’t try
to fix rare problems— its sole purpose was to save
the editor the time of manually cleaning up the most
common export glitches.

Raster images in OpenOffice documents didn’t
get converted (the \includegraphics command got
exported, but it pointed to a nonexistent file). For-
tunately, the OpenOffice document was a ZIP file,
which contained the images as PNG and JPEG files,

128 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

Practical journal and proceedings publication on paper and on the web

which we could convert with sam2p to EPS and PDF.
We didn’t even try to export vector graphics, be-
cause authors sent such ugly figures that we decided
to redraw them. We used Dia to redraw the figures,
but we weren’t satisfied with its formatting capa-
bilities. It was a nightmare to change the visual
appearance of the elements from the default.

None of the authors using OpenOffice supplied
a structured bibliography, so we had to create the
corresponding BibTEX source files by hand. The
most tedious part of this task was to convert all
URLs within the document to citations, and add
fairly verbose entries to the bibliography database,
looking up more information about the cited work
on the Internet.

For EuroTEX 2006, most authors followed the
guidelines and used the LATEX document class we
proposed, so no file format conversion was needed.
Unfortunately, the final column width and font dif-
fered from those in the class we proposed earlier, so
we got quite a number of overfull hboxes when re-
compiling articles. We also received articles in plain
TEX (!) and ConTEXt, which we converted to LATEX
by hand, heavily using the search and replace func-
tionality in our text editor.

For EuroTEX 2006 one of the authors sent a
beautifully typeset article in PDF format, which we
decided to include in the collection as is. Since the
fonts and the column sizes were correct, we only had
to add the running header and footer. We did this
by importing the pages of the PDF file one-by-one
as boxes with the pdfpages LATEX package.

3.2 Article compilation

We prepared shell scripts for Unix which set environ-
ment variables, run mktexlsr in the local texmf tree,
and build TEX formats with the necessary hyphen-
ation patterns. This way it is easy to ensure that
all editors work in the same environment. Should
any difference arise (e.g. two editors have a different
version of a LATEX package installed, and they get
different output), it can be resolved by adding the
file to the local texmf tree.

It is important that all documents be compil-
able automatically. If an editor manages to compile
a document, he should immediately write a shell
script to perform the compilation. E.g. if LATEX
has to be run at most five times with a couple of
BibTEX and makeindex runs in between, the shell
script should contain the relevant commands in the
proper order. It is not important to optimize for the
number of LATEX runs— a possibly badly compiled
document is a lot worse than a slowly but correctly
compiled one. For clarity, another shell script should

be written that cleans up any temporary and out-
put files. A Makefile can be used instead of shell
scripts, but dependencies must not be indicated—
a compilation should recompile the whole document
from scratch. All scripts must share the same in-
terface, so they can be called in a batch when the
whole collection is recompiled, e.g. like this:

for DIR in *; do

(cd "$DIR" && ./recompile.sh)

done

If the document contains raster images, they
should be converted to both EPS and PDF, these
files added to the repository, and the filename speci-
fied without extension in the parameter of \include
graphics. This way the document is compilable
with both LATEX and pdfLATEX. We recommend
sam2p for raster image conversion.

We decided that the recompilation of external
graphics should not be part of the document com-
pilation process. That is, when the document con-
tains a figure drawn in Xfig, the Fig to EPS conver-
sion isn’t run when the document is compiled au-
tomatically. This gives us the advantage that even
those editors can compile the document (and cor-
rect errors in the text) who don’t have the appropri-
ate graphics editors or converters installed. Asking
them to install that extra software is not always fea-
sible, because some graphics software needs specific
operating systems or libraries.

All documents should be compiled to PDF with
a fixed name (we used compiled.pdf for interme-
diate compilations and final.pdf for milestones).
The reason why we are using PDF instead of Post-
Script is that PDF files are easier to manipulate (e.g.
concatenate, add hooks) and they are also easier to
preview in the web environment, so even visitors of
the web view of our version control system can view
milestones of typeset articles in PDF format. Using
pdfLATEX is recommended (because it can break a
line in the middle of a hyperlink, and it has some
nice typographic add-ons), but if the document com-
piles with LATEX only, it should be converted to Post-
Script with dvips, and then converted to PDF.

Bitmap fonts must be avoided— a PDF with
bitmap fonts looks ugly in Acrobat Reader, it is large
and it renders slowly. Most TEX fonts are available
in vectorised (usually Type 1) format today (either
in distributions or from CTAN). For example, the
Bluesky fonts are the Type 1 outlines of Computer
Modern (CM), the base TEX font family. If the ar-
ticle uses the EC fonts, then the CM Super Type 1
outlines can be embedded to PDF, or the Latin Mod-
ern (LM) fonts can be used instead— but be aware

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 129

Péter Szabó

of the slightly different metrics and character shapes
(such as the letter “ő ”) between EC and LM.

Font installation and use can be cumbersome
even if the font files are there in the proper folder of
the local texmf tree. To avoid this problem, we used
a custom Perl script dff.pl which wraps execution of
all tools which embed fonts (currently pdflatex, dvips
and dvipdfm) and provides the proper environment
variables, command line arguments and font map
files to these tools so that the right fonts will be
found and used. The script also ensures that pdflatex
and dvips use the same font map file.

The error and warning messages LATEX emits
are useful, because they identify possible problems
in the article. We decided to abort automatic com-
pilation when a LATEX error is encountered, and thus
force the editor to fix the error. We were quite per-
missive with warnings (including overfull box indi-
cations): we allowed compilation to continue, but
wrote a Perl script which looks for warnings in the
article log files, and we checked all these warnings
after each milestone compilation. Finally we man-
aged to get rid of all warnings. At some points we
had to cheat, for example with long URLs in the
bibliography it is quite hard to avoid the underfull
hbox warning, so we just disabled this warning there
by setting \hbadness=10000.

We used log analysis not only to find overfull
boxes, but also badly embedded or missing fonts,
and even articles accidentally omitted from the table
of contents.

3.3 Editing

When reaching this point, the document is a valid
LATEX article, with all its graphics converted to em-
beddable formats; the source markup is cleaned up
enough for humans to edit; and there is a shell script
that recompiles the article to PDF from scratch.

Simple editing is a straightforward task, which
we took advantage of in LME 2006: we had a lot of
volunteers for proofreading, so we quickly set up a
tutorial for them on using the version control sys-
tem, told them which files to start editing, and they
could start contributing their changes.

We used standard tools for proofreading and
typesetting corrections: the output-to-source nav-
igation feature of the DVI previewer, and the big
black \overfullrule to spot overfull boxes. For
pages with complicated graphics or transformations,
we previewed the PDF file instead of the DVI file.
Xpdf was our preferred choice for PDF previewing,
because it doesn’t have unnecessary GUI elements
in its window, and it allows reloading the PDF file
with a single keypress.

3.4 Concatenation

A collection is just a concatenation of the articles—
except for the need for continuous page numbering
to be maintained, a table of contents has to be gen-
erated, and there are some extra pages at the begin-
ning and at the end.

We added the extra pages by introducing two
special articles: 01Begin and 99End. The cover
pages (two pages at the beginning and two others
and the end) were part of these articles, but we had
to strip these pages and send them separately to the
printshop. Since we had to convert the document to
PostScript anyway, the page range options to pdftops
solved the problem.

We didn’t generate the table of contents auto-
matically; instead, we wrote a driver file which listed
all the articles (with author, title and starting page
number) in the order we wanted them to appear in
the collection, and we typeset the driver file during
the compilation of 01Begin.

Automatic recompilation of the collection can
work only if individual articles are already compiled
automatically. We wrote a shell script which recom-
piled the whole collection. It also took care of prop-
agating page numbers between articles. After each
article compilation it counted the number of pages,
modified the starting page number of the next arti-
cle in both the driver file and in a helper file which
would be \input by the document class. It took
care of inserting an empty page so that each article
began on an odd page. At the end it recompiled the
two special articles in order to get the table of con-
tents right. (No further compilation was necessary
since we designed the TOC in such a way that the
number of pages it occupied was constant.)

First we tried concatenating the PDFs using
the pdfconcat tool. Unfortunately it doesn’t sup-
port PDF outlines (i.e. the table of contents tree)
properly, so we switched to Ghostscript. Although
Ghostscript 8.5x has support for concatenating out-
lines, the support had other glitches which prevented
it from working with PDFs generated by TEX. We
prepared a small fix for that (which modified some of
the PDF-writing operators such as linkdest), which
also made hyperlinks work within the article. We
also needed hyperlinks from the TOC to the article,
but this was easy because we could use page-based
links instead of symbolic ones, since we already knew
the starting page number of the article.

We also tried the pdfpages LATEX package for
concatenation, but this package didn’t support out-
lines or hyperlinks in source PDF files.

It was a key design principle in our workflow

130 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

Practical journal and proceedings publication on paper and on the web

to have automatic compilation. Since the work of
the editors is judged based on the quality of the fi-
nal output (both in print and the web), and humans
tend to make mistakes (especially if they try to rush
when the deadline is approaching), we wanted to
have a document compilation policy which allows
as few mistakes as possible in the final compilation.
The more special cases the editors have to remem-
ber, and the more steps they do manually, the more
mistakes they make. Automatic compilation mini-
mizes these mistakes. It also increases the reliability
of the editing process since if the computer of the
chief editor gets broken during the editing, he can
check out all the articles from the repository, and
recompile the whole collection on any other com-
puter with a single command. Unix shell scripts,
Perl scripts and Makefiles helped us a lot for au-
tomating the compilation process.

3.5 Preparing for print

[3] gives a good technical introduction to the prob-
lems editors face when sending the work to the print-
shop, and it also gives several solutions for each
problem (with both free and proprietary tools).

Printshops usually expect the text as colour-
separated PostScript files. The cover pages have to
be sent separately. The psselect tool can be used
to select and reorder pages from a PostScript doc-
ument, and options can be specified for pdftops to
emit only a certain page range when converting from
PDF to PostScript.

For high quality colour output one can use spot
colours with the xcolor LATEX package. As a sim-
ple alternative solution, one can create a PostScript
document with colour, and later separate it. Sepa-
ration means creating four copies of each PostScript
page, each of these being grayscale, and the bright-
ness values are used as C, M, Y and K components
in the CMYK colour space. Aurora [2] is an old
but working free tool which can do this conversion
in pure PostScript. Using Aurora one processes the
PostScript (or PDF) document four times, with set-
tings for the individual component. Aurora wraps
the setgray, setrgbcolor, etc. PostScript operators so
that they will activate only one component of the
specified colour. It also modifies the image and
colorimage operators that draw raster images, but
unfortunately it doesn’t understand the image dic-
tionary syntax introduced in PostScript Language
Level 2. To overcome this, we implemented it in
PostScript code which we load right after Aurora.
Our code converts a PostScript image dictionary to
a non-dictionary call of image or colorimage, and it
also decodes indexed images manually.

The solution is quite slow (partly because of
Aurora and partly because of our code); it processes
a page with a colour image in about 10 seconds—
but at least it is correct, because it hooks all affected
operators at the proper place. Fortunately, we expe-
rience the slowdown only for raster images— colour
text and vector graphics are rendered as quickly as
without separation.

To make the job of the printshop easier, we
prepared a script which separates the pages of a
PostScript file to grayscale and non-grayscale. We
took care of colour raster images manually, and we
autodetected non-grayscale colours everywhere by
looking at the colour-changing operators in the out-
put of pdftops. Since this PostScript output has a
quite simple syntax, we could find colour changes
using regular expressions. Once the non-grayscale
pages were found, we selected them with psselect,
and renumbered the pages (back to the original)
with a Perl script.

Printshops expect crop marks on each page.
The crop LATEX package can generate those marks.
A few test pages should be sent to the printshop in
advance so they can confirm that they get the crop
marks where they expect them. In our case study
projects we didn’t use the crop package because it
was more convenient for us to add the simple crop
marks with a Perl script to the PostScript output of
pdftops. The script also took care of enlarging the
paper size. This way we could use our DVI and PDF
previewers without having to see the enlarged page
with the crop marks, and marks were added only to
the PostScript file sent to the printshop.

3.6 Publishing on the web

We didn’t want to have an HTML version of the
articles, because converting LATEX markup to high
quality HTML is a difficult and time-consuming task
which is hard to automate unless HTML export was
in mind from the very beginning. We provided a
HTML page with all the articles (with author, ti-
tle, abstract and citations as BibTEX source) and a
PDF file for each article. We also provided a big,
concatenated PDF.

PDF for the web differs from the printed docu-
ment in:

• PDF for the web has outlines (structured table
of contents) and in-document hyperlinks. All of
these can be generated with the hyperref LATEX
package.

• PDF for the web has different margins, usually
equal inner and outer side margins.

• PDF for the web doesn’t contain crop marks.

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 131

Péter Szabó

• PDF for the web should contain scalable Type 1
fonts, because Acrobat Reader renders these
fonts faster and nicer than bitmap fonts. Scal-
able fonts also reduce the file size.

• The size of PDF files for the web does matter.
Raster images should be small. Fonts should be
subsetted. Concatenated PDFs shouldn’t con-
tain the same font twice.

• PDF for the web can contain more pages with
colour.

The first thing we did was add a “compilation mode”
parameter to the compilation scripts. The document
class also received this parameter, so it could gener-
ate slightly different output based on the mode (e.g.
it could decide whether to load the hyperref pack-
age or not). With compilation modes we could also
control if we need the overfull box indicator.

Ghostscript was smart enough to create a con-
catenated PDF with all fonts subsetted, except that
pdfLATEX had already subsetted fonts in the indi-
vidual articles. So we turned font subsetting off in
pdfLATEX (changing all < signs to << in the font map
file). This increased the size of intermediate PDFs
substantially, but the final PDF became small.

We also wanted to have all fonts, including the
base 14 fonts (like /Times-Roman) embedded, since
we otherwise experienced accent positioning prob-
lems (e.g. with letter “ő”), since PDF viewers use
different glyphs in standard fonts. To achieve this,
we had to call Ghostscript with these parameters:
-dCompatibilityLevel=1.3

-dPDFSETTINGS=/prepress

-dEmbedAllFonts=true.
The sizes of raster images emitted by sam2p

were small enough, but unfortunately Ghostscript
insisted on recompressing the images (usually with
suboptimal parameters). We solved this by writing
the Perl script pdfdelimg.pl which extracted images
from a PDF, and replaced them with dummy images.
We run Ghostscript on these replaced PDFs, and we
used pdfdelimg.pl again to replace images back in
Ghostscript’s PDF output. Our script distinguished
dummy images by their dimensions.

In all other respects, Ghostscript produced small
PDF output.

4 Conclusion

High quality text and math output is the most com-
mon reason why people like TEX. Editors also ap-
preciate the freedom they have when they design
their workflow. They have several tools to choose
from (many version control systems, many TEX en-
gines, many printer drivers, many converters), and
they can customize the tools. Having the source

of the document in text files makes it possible to
use a version control system for parallel file edit-
ing. Since there are multiple stages of compilation,
there are multiple ways to hook in changes. Scripts
can be written to automate compilation and gen-
erate both the printable and the web version from
the same sources, with a single command. As far as
we know, this set of features is unique to the TEX
editing workflow.

It is up to the chief editor precisely how to
design the workflow and to what extent document
compilation is automated. We tend to use a lot of
custom scripts in our workflow, because we found
that using scripts pays off in speed, quality of out-
put and reliability, even when the script is run only
once or twice; and we can also reuse our scripts in fu-
ture projects. We admit that designing and setting
up a good workflow needs quite a lot of software ex-
perience: the chief editor has to understand not only
TEX-, font- and PDF-related file formats and tools,
but also version control systems (on both client and
server side), web application installation, web page
editing, mailing list management, and script pro-
gramming. We believe that it is worth learning these
and to improve the workflow gradually.

Communication between the editors is also im-
portant. The version control system ensures that
editors have the relevant versions of all files they
need, and also that they can make corrections to
any file they want to. The mailing list and other
communication channels can be used to distribute
and synchronise work.

This article has presented some tools and tech-
niques which can make collection preparation more
productive and less painful. Since TEX and its re-
lated tools are free software, there is a good chance
that editors can find even better tools for their needs
on the net. As tools and techniques continue to im-
prove, working with TEX becomes even more fun.

References

[1] Ben Collins-Sussman, Brian W. Fitzpatrick,
and Michael C. Pilato. Version Control
with Subversion. O’Reilly, June 22 2004.
http://svnbook.red-bean.com/nightly/en/.

[2] T. Graham Freeman. Aurora: Colour
separation with PostScript devices.
Technical report, Australian Defence Force
Academy, July 1994. http://www.ctan.org/

tex-archive/support/aurora/aurora.pdf.
[3] Siep Kroonenberg. TEX and prepress.

TUGboat, 25(2), 2004. http://www.

tug.org/TUGboat/Articles/tb25-2/

tb81kroonenberg.pdf.

132 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

An experimental CTAN upload process

Jim Hefferon
ftpmaint (at) tug dot ctan dot org

Abstract

Some experimental software may improve the way in which packages are handled
at the Comprehensive TEX Archive Network (CTAN).

1 Now

CTAN is run at three different sites, one in Germany,
one in Britain, and one in the US. Any adding, delet-
ing, or moving of files happens at one of these three.
A custom program, written by Rainer Schöpf, en-
sures that a change at one is quickly reflected at the
other two, within fifteen minutes. The more than
one hundred other CTAN mirrors go at a different
pace, usually syncing nightly.

New or updated material reaches us in three
ways. Usually it sent by an author via a web form.
Besides that, some authors send it via FTP, and
some packages are automatically mirrored in from
other sites. The author-sent cases could be either
new packages or updates, while the automatic case
only applies to updates. I will focus on the web
uploads.

In the present system, a web upload triggers
an email to the CTAN maintainers mailing list. The
maintainer at the site receiving the material sees the
email and handles the upload. This means unpack-
ing the .zip or .tar.gz bundle in which the files
were sent and examining the resulting files to check
details such as license and placement. It may mean
writing to the author or to the other maintainers, for
instance to ask the author for documentation. After
that, the maintainer runs Rainer’s program to put
the material into the archive and trigger the mirror-
ing by the other core sites, and so ultimately by the
additional mirrors.

Placing a package’s files into the archive does
not end its processing. Information about the pack-
age such as description and license — the package’s
metadata — needs to go into the Catalogue; this is
done by Robin Fairbairns. Finally, distributions
such as MiKTEX and TEX Live repackage the ma-
terial to meet the TEX Directory Standard (TDS)
and deliver it in this convenient form to typical end
users.

The process above has some advantages. In par-
ticular, at an archive such as SourceForge where re-
sponsibility for how a package is offered lies with

the author, some percentage of the authors do not
do a good job. But at CTAN the maintainers see
that packages meet some standards. So a current
strength of CTAN is that it is a wide-mouthed fun-
nel, catching a range of submissions and narrowing
them to a more uniform offering.

However, no doubt the process could be better.
Here are a few concerns that we have heard.

1. Authors cannot conveniently edit the metadata.

2. There are delays of various kinds. One exam-
ple is that package metadata often gets into the
database only after the files are in the archive,
so there is a period where the description does
not match the package. Another example is
that the web pages for the archive at http://

www.ctan.org/tex-archive are usually regen-
erated nightly, so information about new mate-
rials is not current.

3. To be a core maintainer a person needs to run a
server and there are people who could help with
the archive but who oughtn’t administer a sys-
tem that is exposed to the Internet (including
me).

4. The package gets installed by the maintainer
whose site happened to receive the upload, so if
that person is unavailable then there is a wait.

5. Many of the steps are done by hand, which can
lead to errors.

6. At the time that a package is put in the archive
and announced, it should be convenient for end
users to install.

2 Developments

Users groups, notably Dante, have sponsored very
helpful discussions of CTAN issues. In response, I
have been working on software that is now being
deployed and tested. The upload process described
here still faces a fair number of hurdles. But some
people have expressed interest and it is in an ad-
vanced enough state that the outline below may help
these folks to get a rough understanding of what it
does.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 133

Jim Hefferon

If you are not keen on CTAN internals then
probably the feature that is the most interesting
to you is also the most experimental. The TEX
Live team has a script to bring most packages from
the CTAN tree over to the standard TEX Directory
Structure layout, that is, over to a format that could
be dropped by an end user into their existing in-
stallation. The process described here wraps that
script to make the TDS-ready material available as
a 〈package id〉.tds.zip bundle at the time that the
package is put into the main CTAN archive. This is
a regular ZIP file and users can unzip it right into
their distribution tree, without much need for in-
structions. (This does not integrate with any pack-
age manager but it does allow users to easily place
material that they want.)

To describe the process I will walk through the
steps that a typical package would take to get from
author to archive.

1. The author puts the package into a .zip or
.tar.gz bundle. They visit CTAN’s upload web
address and first select whether the upload is a
new package or an update of an existing pack-
age.

They then see the main upload form. Prob-
ably they fill out the simple version that asks
only for name, license, and description. But
more adventurous authors can get a form to
specify more obscure attributes, such as the
package home page.

If this is an update of an existing package
then when the form appears it already has the
metadata that is now in the database and the
author just makes any changes. The author
is asked separately for additional information
such as any handling instructions (in the cur-
rent system, the description and handling infor-
mation goes in the same input box).

2. The system accepts the uploaded package and
metadata. It places the metadata in the data-
base, in a pool of not-yet-processed uploads. It
sends an email to a list of people who can edit
and install uploads, called here “editors”.

3. The contributor’s uploaded bundle is unpacked
to a file tree by a program that runs period-
ically. (This does not happen as part of ac-
cepting the upload because the author’s bundle
must be unpacked in a secure way, in a chroot
jail.)

This program does a few things beyond un-
packing such as resolving text file line endings
issues. When it finishes, it sends a notice to the
email list of upload editors.

4. One of the editors sees the notification and logs
into a web site listing the pool. They have a
peek to see if the material is something that
they could handle right now and if so then they
claim responsibility for it.

5. This editor examines, possibly edits, and then
approves the metadata left by the contributor.
(Requiring that metadata be approved reassures
authors that people they don’t know cannot
change the package’s description.)

The editor can read, add, delete, or rename
files. For instance, they can delete a .svn file
that was accidentally included in the upload.

This page warns the editor if there are some
problems. One example is that a warning will
appear if the metadata says a README file exists
but there is not one in the uploaded file tree.
Another example is that a warning appears if
an install will leave soft links dangling in the
archive.

6. The author may have included in the upload
their own 〈package id〉.tds.zip file. If so, the
editor can see its contents and compare with
what TEX Live now has for this package, if any-
thing.

The editor can also push a button to make a
new .tds.zip bundle, using TEX Live’s script.
If the package is suitable for TEX Live (which
in most cases means only that it satisfies the
license restrictions) then it can be placed in the
local Subversion sandbox for later commitment
to the TEX Live repository. In either case, if
the TEX Live script does not succeed then the
page makes that obvious.

7. The editor then pushes a button to install the
material.

That puts the source files to the archive, say
at /macros/latex/contrib/〈package id〉. In-
stallation is done using the metadata so the
database and the archive tree are consistent re-
garding the location, whether a .zip file ex-
ists of the directory contents, etc. Files are
placed with Rainer’s program, ensuring that
these web-based installations are consistent with
command-line installations.

The installation system also tends the data-
base: it updates the metadata and the search-
able documentation.

If there is a TDS bundle then the system
puts it at a place related to where the source
files went, such as /install/macros/latex/

contrib/<package id>.tds.zip.

8. The installation routine sends an email to the
editors list, telling people that the upload has

134 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

An experimental CTAN upload process

been handled, and for possible forwarding to
the CTAN announcement mailing list.

9. If a .tds.zip bundle was queued in the local
TEX Live Subversion sandbox then the system
will periodically try to commit the changes to
the TEX Live repository. One advantage of do-
ing this at a separate time than the moment of
installation is to guard against network connec-
tivity problems between the CTAN site and the
TEX Live site. Another advantage is that when
the TEX Live folks are getting ready for a new
release then this job can be shut off.

Material that comes in as an FTP upload goes
through the same process, starting at step 3 (there is
a way to associate metadata with the upload). This
system has no way to handle materials that arrive
automatically.

3 To do

Not every feature of the experimental system is de-
scribed above; for instance, there is a way for au-
thors to send changes to the metadata alone. And,
because it is experimental, probably some of what is
above will be changed if it ever reaches a production
status. In particular, while the TDS feature appears
promising, it is quite experimental.

So the upload process described here still faces
a fair number of hurdles, both technical and non-
technical. For one thing, where the current upload
process is like a wide-mouthed funnel, the process
described above has not been subject to any real-
world testing for the same property. However, all
the features described above exist, are now being de-
veloped and tested, and seem to solve at least some
of the problems with the current package process.

4 Acknowledgement

Thank you to Karl Berry for help with the TEX Live
material.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 135

TEX (Live) on Debian

Norbert Preining
Vienna University of Technology
Wiedner Hauptstraße 10
1040 Wien, Austria
preining (at) logic dot at

Abstract

TEX Live is a widely used TEX distribution incorporating most of the free (in the
Debian sense) packages from CTAN, and binaries for many different architecture–
operating system combinations.

Debian GNU/Linux is a popular operating system distribution based on the
Linux kernel, containing only free [4] programs. Like most distributions of the
Linux flavor, Debian has a strong package managing facility. Debian Etch was
released in April 2007 with teTEX (version 3.0) and TEX Live (version 2005)
packages. Future releases of Debian will contain only TEX Live packages due to
the end of further development of teTEX.

This article describes the usage of TEX on Debian, from both a system ad-
ministrator’s and a user’s point of view.

Thanks to Thomas Esser

To begin with, I want to take this opportunity to
thank Thomas Esser for his incredible work on all
TEX related things. His work has been the founda-
tion of TEX Live and he himself continues to help
and develop within the TEX Live distribution.

We all are very grateful to Thomas and wish
him all the best with his future plans!

1 Rationale of Debian specific changes

As a big GNU/Linux distribution, Debian obliges
package maintainers to prepare their packages in a
standard way, requiring that (among other things):

• configuration files must be placed into the /etc/
texmf hierarchy, and

• changes to configuration files are preserved dur-
ing upgrade, but also preserved during a remove
and reinstallation process.

(See the Debian policy document [5] for more de-
tails.) Most of the changes introduced in the Deb-
ian packages of TEX Live are due to the above two
requirements. Other changes are due to the fact
that many things (e.g., fonts, LATEX-packages, pro-
grams) are already packaged for Debian and should
be reused as far as possible.

The Debian TEX Task Force [3] has prepared
a detailed document Debian TEX policy [2] and the
more user oriented document TEX on Debian [1].

Finally, we want to stress that there is a cer-
tain overlap of Debian developers and TEX Live up-
stream maintainers, and the cooperation and bug
forwarding/fixing has been mutually helpful.

2 Changing the configuration and
file placement

2.1 Available TEXMF trees for users and
system administrators

The following TEXMF trees are available. They are
displayed below in the order they are searched, where
earlier ones override later ones.
TEXMFCONFIG

Default location: $HOME/.texmf-config/
User-specific configuration files.

TEXMFVAR

Default location: $HOME/.texmf-var/
User-specific generated files.

TEXMFHOME

Default location: $HOME/texmf/
User-specific static input files, e.g., new LATEX
packages.

TEXMFSYSCONFIG

Default location: /etc/texmf
System-wide configuration files.

TEXMFSYSVAR

Default location: /var/lib/texmf/
System-wide generated files.

TEXMFLOCAL

Default location: /usr/local/share/texmf/
System-wide input files.

TEXMFMAIN

Default location: /usr/share/texmf/
System-wide, dpkg-managed input files (TEX
add-on packages).

TEXMFDIST

Default location: /usr/share/texmf-texlive

136 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

TEX (Live) on Debian

System-wide, dpkg-managed input files (basic
TEX packages).

2.2 Configuration files

In the Debian Etch release, some configuration files
are not shared between teTEX and TEX Live pack-
ages. The latter are in /etc/texmf/texlive, while
the former are directly under /etc/texmf.

In the next release, with TEX Live 2007 in Deb-
ian and teTEX gone, all configuration files will be
placed in /etc/texmf.

In any case, the /etc/texmf tree is by default
the TEXMFSYSCONFIG tree, so any file placed in the
proper location will override the respective file in
TEXMFMAIN. This allows full control over the instal-
lation, but should be used with care only, as up-
grades of the TEX system will not attempt to merge
changes in the shipped files into the replacement files
you might put into TEXMFSYSCONFIG.

In addition to these files the packages ship some
configuration files in TEXMFSYSCONFIG, and changes
to these files will be preserved, and at upgrade time
the system administrator informed about changes.

We will not list all the configuration files for
teTEX, TEX Live 2005, and TEX Live 2007, but in-
stead pick the three most common situations occur-
ring at normal usage: adapting the search paths and
other texmf.cnf settings, upgrade or installation of
a macro package (e.g., LATEX style file), and instal-
lation and activation of a new font (family). We will
only slightly touch the installation of new hyphen-
ation patterns and formats.

3 Changing texmf.cnf

The central configuration file /etc/texmf/texmf.

cnf is special, as it defines all search paths for (al-
most) all programs in the TEX world. All the paths
mentioned above are defined in it, but other be-
haviour (such as various size and security settings)
is also controlled via this file.

Since many different packages can contribute
to the final texmf.cnf, we adopted a method often
used in Debian: We install separate parts of the con-
figuration file into a special directory /etc/texmf/

texmf.d and generate the final file from these snip-
pets. Therefore, if a system administrator wants to
change some setting, he should change the respective
file in /etc/texmf/texmf.d and call update-texmf.

Take as an example the setting of TEXMFHOME:
In /etc/texmf/texmf.d/05TeXMF.cnf one can find
TEXMFHOME = $HOME/texmf. However, in my own
institution’s installation we had the input files al-
ways in $HOME/texlib, which I wanted to preserve.

So I change the given line in /etc/texmf/texmf.d/

05TeXMF.cnf and call (as root) update-texmf.
The problem with this approach is that upon

upgrade, either I have to reject changes of the file
05TeXMF.cnf, or I have to change the settings after
every change of 05TeXMF.cnf in the Debian package.
Here a bit of KPSE magic helps: As earlier settings
in texmf.cnf override later ones, I can add a file
03local.cnf to /etc/texmf/texmf.d and put the
changed TEXMFHOME variable there.

Similar changes can be made for all the other
settings in texmf.cnf.

If you really must change as a user some setting
in texmf.cnf, you have to create your own texmf.

cnf and override the TEXMFCNF variable.

4 Update/installation of a macro package,
style file, etc.

This is a quite common task, as many packages are
evolving very fast and sometimes newer versions are
necessary. Let us go through the necessary steps for
the natbib package. This procedure is the same for
the TEX systems on Debian and a ‘default’ TEX Live
installation.

4.1 Package update — system administrator

First you have to get all the files from your local
CTAN node:

CTAN:/macros/latex/contrib/natbib
and put them into a temporary directory. After this
you run LATEX over all the .ins files to generate the
input files, and over all the .dtx files to generate the
documentation. You will end up with quite a num-
ber of files; put the .sty files into $TEXMFLOCAL/

tex/latex/natbib, .bst files into $TEXMFLOCAL/

bibtex/bst/natbib, and if you wish the various
.dvi files (and any other documentation files) into
$TEXMFLOCAL/doc/latex/natbib.

After this, run mktexlsr and the next time any
user of your system uses natbib the updated version
will be used.

4.2 Package update — user

If you want to update natbib for yourself, and/or
you don’t have permission to change the TEXMFLOCAL
directory, just replace it with TEXMFHOME and con-
tinue as above. As a normal user, calling mktexlsr

is neither necessary nor desirable.

5 Installation and activation of a
font package

Installation and activation of a font package is a bit
more involved than just updating/installing a macro

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 137

Norbert Preining

package. We will go through this using the Math-
TimePro2 font set (available from Personal TEX,
Inc.).

5.1 Font update — system administrator

You should have received a zip file mtp2fonts.zip,
which you should unzip into a temporary directory.
MathTime is already shipped as a TEXMF-tree, so
just copy all the files under texmf to the same loca-
tion in TEXMFLOCAL, e.g.,

cp -ar texmf/* /usr/local/share/texmf

If you have some package foo that is not shipped
as a TEXMF-tree, you have to install all the files you
have obtained into the right places in TEXMFLOCAL,
such as

.sty,.tex,.fd into $TEXMFLOCAL/tex/latex/foo

.map into $TEXMFLOCAL/fonts/map/dvips/foo

.tfm into $TEXMFLOCAL/fonts/tfm/comp/foo

.pfb into $TEXMFLOCAL/fonts/type1/comp/foo

.vf into $TEXMFLOCAL/fonts/vf/comp/foo

(Of course, some of these files may not be present.)
After running mktexlsr again these fonts are now
available to tex, but dvips, pdftex, xdvi, et al.,
will not yet recognize these fonts and will not display
the fonts correctly.

For this you have to activate the respective map
file which was (hopefully) shipped with the package.
In our case there is the file mtpro2.map which we
want to activate by default.

Here the Debian specific parts begin (but see
below). The best way to do this is by:

1. adding a file 90local-mtpro2.cfg into the di-
rectory /etc/texmf/updmap.d,

2. calling (as root) update-updmap, which gener-
ates the final updmap.cfg file from the snippets
in /etc/texmf/updmap.d, and finally (as usual)

3. call updmap-sys to update the various configu-
ration files for dvips, xdvi, etc.

Alternatively, you could put all your local adap-
tations into a file 90local.cfg, if you prefer to keep
them all together.

The above process describes the (native) Deb-
ian way to activate font maps. Due to the wide-
spread recommendations on the web and user groups
to activate a map file using a call like

updmap-sys --enable Map mtpro2.map

the version of updmap(-sys) in Debian has been
adapted to not change the file updmap.cfg directly,
but instead to enable and disable maps in /etc/

texmf/updmap.d/99local.cfg. After this update-
updmap is called, and then again updmap-sys for fi-
nal operation.

Thus, changes made by updmap-sys --enable

are not overwritten by a subsequent update-updmap.
Some reasons why Debian introduced the addi-

tional program update-updmap are:

• it does the job of the TEX Live installer, which
reads the information from the tpm files and
activates the respective maps;

• several Debian packages can ship fonts and map
files (e.g., lmodern or cm-super), and it must
be possible for all of these parts to be activated
and deactivated independently;

• the format of updmap.cfg cannot carry the nec-
essary information on installation status and lo-
cal changes (installed, removed, purged).

5.2 Font update — user

If a normal user without administrator rights wants
to install and activate a new font set, he first has to
install the fonts as described above, but instead of
TEXMFLOCAL, he puts the files under TEXMFHOME.

When update-updmap is called by a normal
user (uid 6= 0) then it acts a bit differently: It merges
all snippets present in /etc/texmf/updmap.d/ and
~/.texmf-config/updmap.d/, but if there are snip-
pets with the same name, the one on the user direc-
tory shadows the system wide one.

Example Assume that a user has his own Sanskrit
fonts, which provide fonts named skt10, etc., but
the system file 10latex-sanskrit.cfg already ac-
tivates skt.map, which contains different definitions
for these fonts. The following assumes the default
for TEXMFCONFIG, namely ~/.texmf-config.

To override the system-wide setting he would
create a file with the same name, 10latex-sanskrit.
cfg, in ~/.texmf-config/update.d/ and call (as a
user) update-updmap.

Thus, the files present on the system are as fol-
lows. In /etc/texmf/updmap.d/:

• 10texlive-base.cfg

• 10texlive-latex-base.cfg

• 10latex-sanskrit.cfg

and in ~/.texmf-config/updmap.d/:

• 10latex-sanskrit.cfg.

With these settings the following files are used for
system-wide updmap.cfg generation:

• /etc/texmf/updmap.d/10texlive-base.cfg

• /etc/texmf/updmap.d/

10texlive-latex-base.cfg

• /etc/texmf/updmap.d/10latex-sanskrit.cfg

In contrast, the following files are used for user-
specific updmap.cfg generation (the first two are the
same):

138 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

TEX (Live) on Debian

• /etc/texmf/updmap.d/10texlive-base.cfg

• /etc/texmf/updmap.d/

10texlive-latex-base.cfg

• ~/.texmf-config/updmap.d/

10latex-sanskrit.cfg

Finally the user must call update-updmap. This
call will generate his own copy of updmap.cfg in ~/

.texmf-var/web2c. After this he can call updmap to
generate the necessary configuration files for dvips,
xdvi, etc., in ~/.texmf-var.

Note that changes in /etc/texmf are not au-
tomatically carried over to the user files. So in case
something is going wrong the user should again call
update-updmap and updmap.

6 Hyphenation patterns and formats

To install new hyphenation patterns and new for-
mats you can follow the above example concerning
fonts, with update-language and update-fmtutil

taking the place of update-updmap, the path compo-
nents language.d and fmt.d the place of updmap.d,
and fmtutil(-sys) the place of updmap(-sys).

7 Backports for Debian Etch

The Debian TEX Task Force is also trying to provide
backports of all the necessary packages for Debian
Etch (stable). Currently we are able to provide bi-
naries for the i386, AMD-64, and PowerPC architec-
tures. All that is necessary is to put the following
three lines (sorry for the editorial line breaks neces-
sary here) into the /etc/apt/sources.list file:
deb http://people.debian.org/ preining/TeX/

tl2007/

deb http://people.debian.org/ preining/TeX/

context/

deb http://people.debian.org/ preining/TeX/

lmodern/

All packages shipped on these pages are signed
with my Debian GPG key available in the Debian
keyring or various key servers.

8 Further developments

Things are evolving very fast at the moment. While
Debian Etch ships with TEX Live 2005, the 2007
release of TEX Live is already present in Debian Sid
and testing (‘lenny’), bringing X ETEX to the Debian
world.

At the same time we provide independent pack-
aging of ConTEXt and LuaTEX to make Debian the
ideal play ground for further developments.

People interested in cooperation are invited to
contact our mailing list [3], take a look at the Sub-
version repository [6] where all the packaging scripts
are available, not only for TEX Live, but also Latin
Modern, ConTEXt, LuaTEX, cm-super, etc., or con-
tact me directly.

References

[1] TEX on Debian. http://people.debian.org/

~preining/TeX/TeX-on-Debian/.

[2] Debian TEX policy. http://people.debian.

org/~frank/Debian-TeX-Policy/.

[3] Debian TEX Task Force mailing list.
http://lists.debian.org/mailman/

listinfo/debian-tex-maint.

[4] Debian Free Software Guidelines contained in
the Debian Social Contract.
http://www.debian.org/social_contract.

[5] Debian Policy. http://www.debian.org/doc/

debian-policy/.

[6] Subversion repository of the Debian TEX
Task Force. http://svn.debian.org/wsvn/

debian-tex.

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 139

Epspdf: Easy conversion between PostScript and PDF

Siep Kroonenberg∗

Rijksuniversiteit Groningen
Department of Economics
Groningen, the Netherlands
siepo at cybercomm dot nl

Abstract

This article introduces epspdf, a converter between eps, PostScript and pdf, which
can be run either via a graphical interface or from the command-line.

Introduction

When preparing a LATEX document, it is often con-
venient to have graphics available both in eps and in
pdf format. Epspdf2 improves on previous solutions
by having both a CLI (command-line interface) and
a GUI, by converting both ways, using pdftops from
the xpdf suite,3 and by various new options, which
were made possible by round-tripping between Post-
Script and pdf.

Sample applications

Case 1: Converting a PowerPoint slide to pdf
and eps A.U. Thor writes a paper in LATEX and
creates his illustrations with PowerPoint. He likes to
turn these into pdf graphics, so that he can process
his paper with pdflatex.

From PowerPoint, he ‘prints’ to an eps file (see
the appendix). The Windows Print dialog is rather
insistent on giving the eps file an extension ‘.prn’.
He loads the graphic in epspdftk (see figure 1), where
the .prn file is accurately identified as eps. He
checks the ‘Compute tight boundingbox’ option, se-
lects pdf output format, and clicks ‘Convert and
save’. Some annoying black boxes flit across his
screen, but soon a message ‘Conversion completed’
appears. He presses the ‘View’ button and Adobe
Reader displays what he hoped to see.

He might as well replace the eps with one with
a good boundingbox, so he converts the pdf back
to eps. It may save epspdf some work if he first
unchecks the boundingbox checkbox.

When viewing the resulting eps with GSview,
there is once more a lot of whitespace around the
figure. Hunting around in the GSview menus, he
finds ‘EPS Clip’ and ‘Show Bounding Box’ in the

∗ This article has previously appeared in MAPS 34.
2 http://tex.aanhet.net/epspdf/, also on CTAN.
3 http://www.foolabs.com/xpdf/

Figure 1: Main window of epspdftk (MS Windows)

Options menu, and with either option checked, he
can see that all is well.

Case 2: Converting multiple slides from a
PowerPoint presentation to pdf graphics A.U.
Thor, encouraged by his previous success, adds sev-
eral new graphics to his PowerPoint file. Since eps-
pdftk can handle multi-page documents, he prints
the entire document to a PostScript file, which he
loads in epspdftk.

He notices that the box with file info doesn’t
tell him the number of pages. For general Post-
Script files, there is no sure-fire quick way to get
this information.

140 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Epspdf: Easy conversion between PostScript and PDF

He checks ‘Convert all pages’ and sets ‘Output
format’ to pdf. After conversion, the info box now
gives him the number of pages.

He writes the first page to a pdf file with a tight
boundingbox, reloads the complete pdf, then writes
the second page to a pdf, and then wonders whether
the command-line might not be more convenient.

He reads the epspdf webpage and manual,
browses the epspdf directory and comes up with a
batchfile epspdf.bat containing the following line:

"C:\Program Files\epspdf\bin\ruby.exe"

"C:\Program Files\epspdf\app\epspdf.rb"

%1 %2 %3 %4 %5 %6 %7 %8 %9

(everything on one line) and types

epspdf -b -p 3 ppt_slides.pdf fig3.pdf

Then he outdoes himself in cleverness and does
the remainder with one command (everything on
one line):

for %f in (4 5 6) do

epspdf -b -p %f ppt_slides.pdf fig%f.pdf

Case 3: Creating cropped typeset samples
Mrs. TeX-HeX writes a paper for MAPS about
her adventures with LATEX. She wants to dis-
play typeset examples with her own fonts and for-
matting, not with those of MAPS. So she cre-
ates a LATEX document containing one sample per
page, and makes sure, with a preamble command
\pagestyle{empty}, that each sample is the only
content on its page. She compiles the document to
a pdf and extracts the samples with a tight bound-
ingbox, in the same way as in the previous example.

Case 4: Embedding fonts into an existing pdf
Ed Itor is collecting papers in pdf format for a con-
ference proceedings. The printshop tells him that
one of the submitted pdf files doesn’t have all its
fonts embedded, which is a no-no, even though the
font is just Courier and Ed Itor doesn’t quite under-
stand the fuss.

Luckily, when converting PostScript to pdf,
Ghostscript can embed standard PostScript fonts
(Times etc.) even if they are missing in the Post-
Script file. Ed Itor goes to the Configure screen and
verifies that ‘Intended use’ is set to ‘prepress’. With
this setting, converting to PostScript and back to
pdf does the trick.

Warning: It is quite possible that the original
document was created with slightly different ver-
sions of the missing fonts than the ones included by
Ghostscript. Usually this will cause no problems,
but one might want to check the result anyway.

Figure 2: Configuration screen (Mac OSX)

Some implementation details

The program is written in Ruby and Ruby/Tk, and
uses Ghostscript and pdftops from the xpdf suite
for the real work. The installation instructions in
the download and on the web page explain how to
obtain these programs.

The program consists of several modules. The
main ones are a main library epspdf.rb which does
double duty as the command-line program, and a
Ruby/Tk GUI main program. Conversions are or-
ganized as a series of single-step conversion methods
and an any-to-any conversion method which strings
together whatever single-step methods are required
to get from A to B.

I have included all conversions and options into
the program that easily fit into this scheme.

Configuration Epspdf saves some conversion op-
tions between sessions. Under Windows it uses the
registry, under Unix/Linux/Mac OS X a file named
.epspdfrc in the user’s home directory. Besides
some precooked options, advanced users can also en-
ter custom options for Ghostscript (GUI and CLI)
and for pdftops (CLI only).

The Windows setup program For Windows,
epspdftk is available as a Windows setup program.
This includes a Ruby/Tk subset, so there is no
need for a full Ruby and Tcl/Tk install. This
Ruby/Tk subset is adapted from one generated with
RubyScript2Exe.4

But Windows users can also manually install
from a zipfile if they already have Ruby and Tcl/Tk.

4 http://rubyforge.org/projects/rubyscript2exe/

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 141

Siep Kroonenberg

Mac OSX Under Mac OS X, epspdf mostly dupli-
cates functionality from the Preview application.
However, when faced with problem files it is nice to
have an alternative converter (see figure 2). From
the epspdf homepage you can download a double-
clickable and dockable AppleScript applet for start-
ing epspdftk.

Appendix: exporting PostScript from
Windows programs

Using a printerdriver Often, the only way to get
eps or PostScript from a Windows program is by
‘printing’ to a PostScript file.

For this, you need to have a PostScript printer
driver installed. You can pick ‘FILE’ for printer
port. A suitable driver which comes with Windows
is Generic / MS Publisher Imagesetter.

Pay attention to printer settings: in the Print
dialog, click ‘Properties’, then ‘Advanced’ (on either
tab). In the ‘Advanced Document Settings’ tree,
navigate to first ‘Document Options’ then ‘Post-
Script Options’. (See figure 3.)

For ‘PostScript Output Option’ the default set-
ting is ‘Optimize for speed’. Change that to ‘Op-
timize for Portability’ or ‘Archive Format’, or, for
single pages only, ‘Encapsulated PostScript’. These
non-default options presumably produce cleaner
PostScript code, without printer-specific hacks. Ex-
periment with this and other options if you run into
problems (e.g. bad-looking screen output, or part of
a graphic getting cut off, or conversion to bitmap).

What works best may depend on your Windows
version: under Windows 2000, Archive worked best
for me, but Taco Hoekwater warns me that this op-
tion was unusable in older Windows versions.

Figure 3: Configuring the Windows PostScript driver

Another setting here to pay attention to is
‘TrueType Font Downloading Option’. Pick ‘Out-
line’, not ‘Automatic’ or ‘Bitmap’.

Using a program Other possibilities for generat-
ing PostScript or pdf are the TpX and wmf2eps pro-
grams, which both can read Windows wmf and emf
files and also have options to write clipboard con-
tents to an emf file. Wmf2eps uses its own virtual
PostScript printer driver in the background. For
faithful conversion, pick wmf2eps; for subsequent
editing, choose TpX. Both programs are available
from CTAN.5

5 http://www.tug.org/ctan.html

142 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

pdfTEX 1.40: What’s new

Martin Schröder
Crüsemannallee 3
28213 Bremen
Germany
martin@pdftex.org

http://www.pdftex.org

Abstract

The latest version of pdfTEX, 1.40, was released at the start of 2007. We will
present its new features and have a look towards the future.

1 The past

pdfTEX turned 10 on 15th March (Hàn Thế Thành
renamed TEX2PDF to pdfTEX on the 15th March
1997), and we want to present the latest release.
But let us first look back at our previous release,
which was pdfTEX 1.30.0 on 1st August 2005. Since
then there have been six intermediate releases fixing
bugs (mainly security problems with XPDF); version
1.30.6 was released on 16th February 2006. Its main
enhancements were improvements in the handling of
PNGs (alpha channel and transparency, 16-bit colour
and gamma correction), macros for timekeeping, ran-
dom numbers, string conversions, and file functions.
Also pdfxTEX was gone; all enhancements were now
in pdfTEX and pdfε-TEX.

2 The present — 1.40

After 17 months of development we released pdfTEX
1.40.0 on 1st January 2007. At the time of writ-
ing there have been five intermediate releases fixing
bugs; version 1.40.5 was released on 31st July 2007.
pdfTEX 1.40.x is included in TEX Live 2007 and
MiKTEX 2.6. The main internal change is that we
merged all the sources (i. e. change files) for TEX,
ε-TEX and pdfTEX into the two files pdftex.web and
pdftex.ch (for Web2C etc.). This makes maintain-
ing the sources much simpler. Also pdfε-TEX is gone
as a separate program; pdfTEX now contains ε-TEX.

2.1 PDF

pdfTEX is now able to generate object streams, a
feature of PDF since PDF 1.5 [1]. A PDF file consists
of objects and a cross-reference table for fast access

BY:© =©

This work is licensed under the Creative Commons Attribution-
No Derivative Works 2.0 Germany License. To view a copy
of this license, visit http://creativecommons.org/licenses/

by-nd/2.0/de/ or send a letter to Creative Commons, 543
Howard Street, 5th Floor, San Francisco, California, 94105,
USA.

to these objects. But formerly only the stream part
of the objects could be compressed. So if a PDF
had many non-stream objects, its size could not
be reduced efficiently. Object streams are a kind of
meta-objects; they can contain many (up to 256) non-
stream objects. From pdfTEX 1.40 onward object
streams can be compressed as a whole, which leads to
smaller PDF files. The generation of object streams is
controlled by the \pdfobjcompresslevel parameter
(only with PDF ≥ 1.5):

0 The default; no object streams are generated.

1 Object streams are generated, but the Document
Information Dictionary and included PDFs are
not compressed.

2 The Document Information Dictionary is not
compressed, everything else is.

3 Everything is compressed.

Another improvement leading to smaller PDFs is that
pdfTEX now writes out the widths of the characters
in the fonts (/Widths) with a higher precision and
so rarely has to position characters separately. Pre-
viously this was done with a lower precision, leading
to many adjustments of single character positions in
the PDF.

The new primitive \pdflastlink now gives
the object number of the last link created with
\pdfstartlink.

PDF/X, the new ISO standard of PDF, requires
the setting of /ModDate and /Trapped in the Docu-
ment Information Dictionary. These keys have now
default values that can be overridden with \pdfinfo.

Also the additional PDF statistics in the log file
about the number of objects etc. are now correct;
previously they were written out too early and thus
missed the objects for e. g. embedded fonts.

2.2 JBIG2

pdfTEX can now handle another format of image files:
JBIG2. JBIG2 is an image compression standard

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 143

Martin Schröder

for binary images, developed by the Joint Bilevel
Image Experts Group (which is also responsible for
the JPEG standard). It is suitable for both lossless
and lossy compression. According to a press release
from the Group, in its lossless mode JBIG2 typically
generates files from 3 to 5 times smaller than Fax
Group 4. PDF supports JBIG2 since PDF 1.4, but
previously there were no free encoding programs for
JBIG2, only decoding programs, so the OSS world
was unable to generate JBIG2 files. This changed
in 2006 when Google sponsored the development of
a free encoding program (jbig2enc). pdfTEX (and
LATEX with a recent pdftex.def) support JBIG2 files
with .jbig2 or .jb2 suffixes.

2.3 Colour stacks

Colour in pdfLATEX has an old problem: If you have
different colours on the page and in the footnotes,
you’ll probably get the wrong colour after a page
break. The pdfcolmk package tried to fix this, but
it was a kludge. To fix this, pdfTEX 1.40 introduces
support for colour stacks; LATEX gets this through
pdftex.def and some packages (e. g. pdfcolfoot).
Colour stacks are handled with these commands:

• \pdfcolorstackinit [page] initializes a
colour stack and expands to the number of
the stack. With page you get a stack that is
reset at the start of every page.

• \pdfcolorstack 〈stack number〉 push {〈colour〉}
saves the 〈colour〉 on the stack and outputs it.

• \pdfcolorstack 〈stack number〉 pop

removes the topmost colour from the stack and
sets the now topmost value.

• \pdfcolorstack 〈stack number〉 current

gets the topmost colour from the stack and
sets it, but doesn’t change the stack.

• \pdfcolorstack 〈stack number〉 set {〈colour〉}
sets the topmost colour of the stack, but
doesn’t change the rest of the stack.

2.4 Transformation matrices

PDF (like PostScript) uses transformation matrices
for positioning objects. Before pdfTEX 1.40, matrix
changes were done and hidden inside \pdfliteral

nodes, but pdfTEX doesn’t parse the argument of
\pdfliteral and so does not know the new set-
tings of the transform matrix, which might con-
flict with pdfTEX’s use of the matrix. pdfTEX 1.40
adds new primitives to save pdfTEX from parsing
\pdfliteral’s argument and to notify pdfTEX about
matrix changes for use in calculating link and anchor
positions.

• \pdfsetmatrix{〈a〉 〈b〉 〈c〉 〈d〉}
is the equivalent of \pdfliteral{〈a〉 〈b〉 〈c〉 〈d〉
0 0 cm}

• \pdfsave

is the equivalent of \pdfliteral{q}

• \pdfrestore

is the equivalent of \pdfliteral{Q}

Some remarks:
• TEX already supports translations, thus the ma-

trix is limited to four values, for scaling and
rotating.
• There are some restrictions about \pdfsave and

\pdfrestore:
– They must be properly nested.
– A pair must start and end in the same

group at the same level.
– A pair must start and end at the same

position.
Happily these restrictions are satisfied by the
graphics package.

The latest pdftex.def uses these primitives.

2.5 General enhancements

• pdfTEX now offers limited support for name-
spaces:

– \pdfprimitive〈TEX-primitive〉 executes
the original 〈TEX-primitive〉, even if its
definition has changed. Thus

\let\relax\undefined

\pdfprimitive\relax

works and doesn’t give an error.
– \ifpdfprimitive〈TEX-primitive〉 is true

if 〈TEX-primitive〉 still has its original
meaning.

• \ifpdfabsnum and \ifpdfabsdim are like
\ifnum and \ifdim, but don’t care about
signs.
• The memory areas for PDF objects (obj_tab)

and names (dest_names) now grow dynamically
as needed, making corresponding settings in
texmf.cnf obsolete.
• \pdfsavepos now also works in DVI mode.
• The resolution of PK files is now read from

texmf.cnf if it hasn’t already been set in the
format or document.
• In almost all cases of fatal pdfTEX errors (i. e.

if the resulting PDF would have been invalid
anyway) no PDF is generated.
• The format of warnings and error messages has

been revised and unified.

144 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

pdfTEX 1.40: What’s new

• If called with -version pdfTEX now tells the
versions of the libraries compiled with and actu-
ally used:

Compiled with libpng 1.2.15; using libpng 1.2.15

Compiled with zlib 1.2.3; using zlib 1.2.3

Compiled with xpdf version 3.01

• pdfTEX now can be switched into a draft mode
with -draftmode and \pdfdraftmode=1. In
draft mode pdfTEX does everything it normally
does, but does not write a PDF and does not
read the contents of included images, thus speed-
ing up the execution. This is useful e. g. if you
know you need another two LATEX runs to get
the references right.

2.6 Fonts and HZ

• pdfTEX now supports subfonts: All needed map
entries are generated automatically together
with the Unicode mappings.
• pdfTEX can generate ToUnicode entries for

Type1 fonts with \pdfgentounicode and
\pdfglyphtounicode.
• Previously with font expansion in autoexpand

mode for every expansion a complete new font
was included in the PDF. Now the font is only
included once and gets expanded on the fly by
using the text matrix. This leads to smaller
PDFs and enables the use of HZ with TrueType
fonts and even non-embedded fonts (e. g. Times-
Roman).
• Hàn Thế Thành describes more improvements

in his paper [2].

2.7 Shell escape

If the first character of a file name for \openin,
\openout and \input is a “|” (and \write18 has
been enabled), the rest of the file name is executed
as a command. Some examples:

\openin1= "|ls -l"

\loop \unless \ifeof1

\read1 to \cs \message{\meaning\cs}

\repeat

outputs the filenames in the current directory.

\openout1= "|sort >alphabet.tex"

\write1{b}

\write1{a}

\write1{c}

\closeout1

generates a sorted file.
The shell escape feature is available in all Web2C-

based TEX engines, e. g. X ETEX and pdfTEX.

3 The future

The future of pdfTEX is luaTEX: The pdfTEX team
will take over the maintenance and development of
luaTEX once its initial development has been fin-
ished. This will offer support for Unicode and Open-
Type and integrate Lua [3], thus finally giving TEX a
proper programming language. pdfTEX will still be
maintained for those needing a time-proven engine,
but new features will be added only to luaTEX.

References

[1] Adobe Systems Incorporated. PDF Reference.
Sixth edition, 2006.

[2] Hàn Thế Thành. Font-specific issues in pdfTEX.
In Proceedings of the EuroTEX 2007 conference,
2007.

[3] R. Ierusalimschy, L. H. de Figueiredo, W. Celes.
Lua 5.1 Reference Manual. 2006.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 145

X ETEX Live

Jonathan Kew
SIL International
Horsleys Green
High Wycombe
Bucks HP14 3XL, England
jonathanِkew (at) sil dot org

1 X ETEX in TEX Live

e release of TEX Live 2007 marked a milestone for the
X ETEX project, as the first major TEX distribution to in-
clude X ETEX (version 0.996) as an integral part. Prior to
this, X ETEX was a tool that could be added to a TEX setup,
but version and configuration di erences meant that it was
di cult to ensure smooth integration in all cases, and it was
only available for users who specifically chose to seek it out
and install it. (One exception to this is the MacTEX pack-
age, which has included X ETEX for the past year or so, but
this was just one distribution on one platform.) Integration
in TEX Live, in contrast, provides near-universal availabil-
ity and a more standardized configuration, which should
simplify setup, use and support.

Special thanks to Karl Berry for his encouragement
and support through this process, and to all the TEX Live
builders and testers on various platforms who helped to
make this possible.

1.1 Key features

e twomost significant features of X ETEX as found in TEX
Live remain the same as they have been since its first ap-
pearance: support for the use of the host operating system’s
fonts (PostScript, TrueType, or OpenType) with no TEX-
specific setup, and including layout features defined in the
fonts; and extensive support for Unicode, including com-
plex Asian and other scripts. With this release, users on
all platforms have the option of using the same OpenType
fonts in TEX documents as inmainstreamGUI applications,
including access to all the rich typographic features found
in modern fonts.

As an example of the simplicity X ETEX brings to font
usage, consider the present article. is is written using the
ltugproc class. Running this in X ELATEX, the lines:

\usepackage{fontspec}
\setmainfont[Mapping=tex-textَ

{Adobe Garamond Pro}
\setmonofont[Scale=MatchLowercaseَ

{Andale Mono WT J}

Note: is article is based on the author’s presentations at both the
EuroBachoTEX 2007 and TUG 2007 conferences, but is printed in a single
Proceedings issue to avoid duplication.

in the preamble are su cient to set the typefaces through-
out the document. ese fonts were installed by simply
dropping the .otf or .ttf files in the computer’s Fonts
folder; no .tfm, .fd, .sty, .map, or other TEX-related files
had to be created or installed.

Release 0.996 of X ETEX also provides some enhance-
ments over earlier, pre-TEX Live versions. In particular,
there are new primitives for low-level access to glyph infor-
mation (useful during font development and testing); some
preliminary support for the use of OpenType math fonts
(such as the Cambria Math font shipped with MS O ce
2007); and a variety of bug fixes.

1.2 Hyphenation setup

A long-standing problem with integrating X ETEX has been
the variety of hyphenation patterns for various languages,
which are written using a variety of character encodings and
various ways to represent those encodings in 7-bit or 8-bit
files. Because X ETEX interprets 8-bit text files as Unicode
(UTF-8) by default, many old hyphenation files cannot be
read as-is. is in turn meant that the X ELATEX format
could fail to build, depending on the user’s language con-
figuration.

Older releases of X ETEXmade some attempt to address
this by including modified versions of some of the hyphen-
ation files from teTEX, adapted to load correctly as Unicode
patterns. However, ensuring that these were installed in the
right place for X ETEX to find them (without a ecting other
engines or replacing standard files) was problematic.

In TEX Live 2007, this situation has been addressed
by modifying the language.dat file so that hyphen-
ation files are loaded via “wrappers” (except for those
that are simple ASCII files, which are already Unicode-
compatible). e wrapper files, provided in TEX Live
in texmf-dist/tex/generic/xu-hyphen, test whether the
format is being built by X ETEX, and if so they redefine the
input encoding and/or \catcodes, active character defini-
tions, etc., so that the patterns will be loaded as Unicode
data. Figure 1 shows an example of such a wrapper file; in
this case, the German vowels with umlauts and the ß char-
acter need Unicode-compliant definitions, in place of those
found in the original hyphenation file. e precise details
vary, of course, depending on the structure and encoding

146 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007

X ETEX Live

% xu-dehyphn.tex
% Wrapper for XeTeX to read dehyphn.tex
% Jonathan Kew, 2006-08-17
% Public domain
\begingroup
\expandafter\ifx\csname XeTeXrevision\endcsname\relax
\else

\catcodeّ\?=7
% Define the accent macro " in such a way that it
% expands to single letters in Unicode
\catcodeّ\"=13
\def"#1{\ifx#1a??e4\else \ifx#1o??f6\else \ifx#1u??fc\else

\errmessage{Hyphenation pattern file corrupted!}%
\fi\fi\fi}

% - patterns with umlauts are ok
\def\n#1{#1}
% - define \3 to be character "00DF (\ss in Unicode)
\def\3{??df}
% - define \9 to throw an error
\def\9{\errmessage{Hyphenation pattern file corrupted!}}
% - duplicated patterns to support font encoding OT1 are not wanted
\def\c#1{}
%
\let\PATTERNS=\patterns
\def\patterns{% at the \patterns command in dehyphn.tex...

\endgroup % end group containing local definitions from dehyphn
\begingroup % and start our own (to match \endgroup in dehyphn)
\PATTERNS % and then load the real patterns

}
\fi
\input dehyphn.tex
\endgroup
\endinput
Figure 1: xu-dehyphn.tex, a typical hyphenation wrapper file from the TEX Live setup

of the pattern file being loaded, but similar techniques can
generally be used.

In the longer term, reorganization and standardization
of the hyphenation files, perhaps co-ordinated with work
in OpenO ce.org (which uses a very similar hyphenation
algorithm) would be a useful project. However, this will
require not only a good understanding of the language and
encoding issues, but also interaction with license holders
or maintainers of all the existing patterns. Meanwhile, the
current setup with xu- wrappers has proved to be a work-
able interim solution.

1.3 Package configuration

Another common problem for X ETEX users in the past has
been that some popular LATEX packages (e.g., graphics,
color, geometry, crop, hyperref, and others) depend on
knowing the intended output driver (direct PDF genera-
tion with pdfTEX, dvips, dvipdfm, etc.) in order to use
the correct implementation-specific methods to control the
output. Many such packages attempt to detect the TEX en-
gine in use and automatically choose the appropriate driver.
However, with X ETEX being a new engine, existing pack-
ages were unaware of it.

is situation is improving, as some major packages
have added a test for X ETEX and now choose the appropri-
ate driver options. For others, including important cases
like geometry and crop, TL2007 includes configuration
files in the xelatex subtree that provide the proper setup.
In most cases, therefore, users should find that the packages
work transparently in X ETEX just as with other TEX engines
and drivers.

One important package that did not work transpar-
ently with X ETEX in the TL2007 release is pgf; however,
since the release in February, pgf has also been updated so
that it recognizes the X ETEX engine automatically.

1.4 e ArabX ETEX package

A new package by François Charette provides an ArabTEX-
like interface for typesetting languages in Arabic script, us-
ing standard Unicode-based fonts. As shown in figure 2,
this supports both literal Unicode input of Arabic text, and
ArabTEX transliterations, and can work with any Open-
Type font, including complex calligraphic styles such as
Nastaliq script. is package was created after the cur-
rent TEX Live release, but can be obtained from CTAN and
works with the existing X ETEX version.

TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007 147

Jonathan Kew

% preamble...
\usepackage{arabxetex}
\newfontfamily\arabicfont

[Script=Arabicَ{Scheherazade}
\newfontfamily\urdufont

[Script=Arabic,Scale=0.75َ{Noori Nastaliq MT}
% body...
\begin{arab}[fullvocَ
mina 'l-qur'Ani 'l-karImi,

sUraTu 'l-ssajdaTi ئ16--15
% ...etc...
\end{arab}
\begin{urdu}[vocَ
佳塩奥郭往蛎伽奥 俺郭佳央奥襖鴎佳奥旻郭恩往 蛎穏価加賀佳穏 押襖沖欧 夏鴎恩穏価郭
% ...etc...
Result:

:ヘポ–ヘボ や┋ も┱ ゆ〔 о±ぢ> ゃ┋ も[┤ ゃｆ ズやÜ†や┿ も▽ゆぢ> や｠ょ:┿ ゃ■ゆぢ> もö やど
ヒ も｠@ゃ┿や〆 ゆ▽も〇 ゆ±も† 意も伊 ゆÜ ゃぷ も@ ゆÜ や∫р５ も[や┱ ゆ∃ も〕や５ :┤ ゃ〕о〆 もｆ も@ み:┱ о〔 ゃｆ :@п┿ もＰ ┞ も∫や５ :@ ゃ┿рげ ゃN : もNやら: もö† や┲оぢ> ┞ も⌒や〇ん┓┓†┞も よ┓ や５ ゃö やど ゆ┣ゃ† ┞ も∃оぬやら:

ΘΓ綾 も｠┤ ゃ■ や＠ゆ⌒ゃ† ゆÜ ゃ∫ん⌒ゆく も¥ も[┞ о∃ やど も@ み┞＄ も∃もｕ も@ み┞ぅ ゆ┤ もＰ ゆÜ ゃ∫о５ も[も｠┤ ゃｘ ゆ┱も† やゎ やＮ┞ も♂ も∃ゆぢ> やö もｘ ゆÜ ゃ∫ゃ５┤ゃ⌒ ゃＮ ァぁもぅ┞ も〔も〇も６ ΗΓ綾

〝〒〒に 〒 ┲〒９ 椅 ┲┬┆┄│ э〒衣ﾈ┮ 〒い〒威 椅 ┲┬┆┇─/┆┇━ ┲┤｛ 〒 ┯〒 ┮〒ラ ﾉ鮎萎 ﾇ絢 斡絢 ﾍ┷┤ﾌ 斡 〝 ┮〒〒て 〒 ┯〒 ┮〒ム鮎〒綾┲ 〒½〒鉛斡 〒 ┳゙ 〒いﾉ 〒し┯ 〒『 〒 ﾉ〒っ ﾍ〒 ＆〒Ｇ〒 ﾈ┳〒Ｉ ┲┤〒 ┮〒の〒縁 э〒 ″┷〒きﾉ萎 〒 ┳〒 ﾉﾍ〒ュ斡〒〒ナﾉ斡 〒 ┮〒 ┯〒ム ﾉ‾〒？┳ 〒苑┯ 〒 ＆〒らﾇ斡
姶〒綾┮ 〒い〒旺 ﾇ鮎 〒 ┲〒Ｊ 椅〒扱┲ 〒½〒碓姶絢 〒ى ┮〒ひ ﾉ〒縁 ┲┤〒 ┯〒ｕ۰ 惟〒＆〒０姶絢 ┲┤〒〒ス〒＆〒０ ┿宛ﾉ萎 ┲〒ぉ〒尉〒 〒゚｠ﾈ 〒押 〒 ┳〒Ｃﾉ斡 ┷┤ﾌ 斡 〝〒〒せ 〒 ┮〒１〒 ○〒０ 椅〒扱〒Ö┯ 〒┦〒 ﾈ┳〒Ｅ 移〒 ┴〒ソ絢〒┯ 〒０斡絢 〒 ┳〒 ﾍ〒ュ斡〒〒ナﾉ斡 〒 ┮〒 ┯〒ム ﾉ┲〒ぉ〒尉〒゜〒｠ﾈ 〒押 〒〒 ┳〒Ν萎 э萎ﾈ斡
〒 ┲〒Ｍ〒 ┴〒‐〒碓 惟〒？〒｠ ﾈ┴〒／姶絢 ┲移〒〒ス〒 ＆〒０ 〒 ┳〒 ┲〒ョ斡 〒 ┳゙ 〒い ﾉ〒碓 э〒〒く ﾇ鮎〒┻ 〒０〒〒ノ〒┷ 〒０〒 ┯〒１〒 ┮〒｜〒碓姶絢 〒 ┳゙ 〒いﾉ 〒し┯ 〒『 ﾉ〒意┳ 〒〒沖 ﾉ┯〒襖 椅〒扱┲ 〒½〒碓 〒 ┳〒８斡 〝 ┮эﾉ〒〒ぞﾌ 斡 位ى ﾇﾊ鮎 ″┮〒〒る斡ﾈ┲ 〒 ┯〒８〒 ┮〒ぉ۰э〒 ﾈ〒ぼ 移〒 ┯〒ｕ 〒 ┳〒Ｃﾉ斡 〒 ﾇ〒ぶ ┼宛ﾇ斡〝 ┮〒 ﾇ〒て
ﾄ〒 ┯〒 ★〒ミﾉ〒 ┲〒ひ┲ 〒┦ 鮎萎 ﾇ絢 謂〒 ┮〒ぉﾌ 斡姶絢 〒違〒〆┮ 〒┦〒〒ね 椅〒扱┲ 〒½〒碓 〒 ┳〒８斡 〒 ┯〒き 〒逢ﾇﾊ┻ 〒〒鴛 〒 ﾊ┲〒 □〒ミ ┮э斡鮎萎 ﾇ絢姶絢 〒 ﾍ〒１斡〒か〒üﾈ 〒殴 謂絢 ┲┤斡鮎 ┝〒綾┮ 〒〒沖〒殴姶絢э〒衣〒羽″┲ 〒鴬ﾉ斡 〝〒〒に 〒 ┲〒Ｊ 〒逢〒゚ 〒案〒 ┮〒Ｌ姶絢 〒 ┳゙ 〒い ﾉ〒碓 〒 ﾍ〒Ｊ斡〒 ┲〒Ｅ 〒〒ノ〒┷ 〒０
〒〒 ┯〒υ萎ﾈ┝┻絢 〒 ┳〒 ﾉ〒Й ﾍ〒 ＆〒Ｇ〒 ﾈ┳〒Ｉ ┲┤〒 ┮〒の〒縁 〝〒扱〒延┳〒怨鮎 絢〒┯ 〒０ﾌ 斡 〒 ┲〒９ 椅 ┲┬┅〞〞 э〒衣ﾈ┮ 〒い〒威 椅 ┲┬─━〞〞 ﾄ 〒 ┯〒 ★〒ミﾉ〒 ┲〒ひ┲ 〒┦ 〒 ┳〒８斡 〒維〒Ö┮ 〒┪絢 〒違〒¨ ┯〒襖萎ﾈ┝┻絢 〒〒井ﾇ萎 〝〒〒せ 絢〒┯ 〒０ﾌ 斡 〒 ┲〒９ 椅 ┲┬─━〞〞 э〒衣ﾈ┮ 〒い〒威 椅 ┲┬─┄┄〞
鮎斡 ┮〒〒オ 斡絢 ﾍ〒 ＆〒Ｇ〒 ﾈ┳〒Ｉ ┲┤〒 ┮〒の〒縁 ┲〒 ┯〒Ｄ〒お〒îﾈ〒碓 姶絢 ┲〒 ┳〒２斡萎鮎 綾〒胃┴〒〆〒碓۰〒ى〝 〒〒にэ〒＆〒０ 斡〒綾┮ 〒苑┳ 〒 ﾇ┯〒ろ 〒 ┲〒ô〒安萎 〒 ﾉ〒っ 〒〒ノ〒┷ 〒０ 〒〒み〒？〒｠ ﾈ┴〒／ 斡鮎┮絢 э〒衣ﾈ┮ 〒い〒威 ┲┤斡鮎 ┝〒綾┮ 〒〒沖〒殴 〒】┳ 〒╂〒延┮ 〒怨ﾉ斡 〝 ┮〒 ﾇ〒て ┿宛ﾉ萎 鮎萎 ﾇ絢

〝〒〒に 〒 ┳〒 ﾉ ﾍ〒ョ〒お〒ü┲ 〒鴬ﾉ斡

Figure 2: Examples of ArabX ETEX input and typeset output

2 Beyond TL2007 and X ETEX 0.996

In parallel with the integration of X ETEX 0.996 into TEX
Live, there has been continuing development of the next
version of X ETEX itself and the associated drivers and sup-
port files. Release 0.997 (preliminary code is in the Subver-
sion source repository at the time of writing) will include
several new and enhanced features, a few of which are de-
scribed here.

2.1 PSTricks graphics

One of the limitations of X ETEX has been that it natively
generates .xdv or “extended DVI” output, which needs to
be converted to PDF by a special X ETEX-specific output
driver. is excludes the use of the dvips+Ghostscript out-
put path, and therefore also prevents the use of packages
that rely on writing PostScript \special commands that
Ghostscript or a PostScript printer will interpret.

e most important such package, judging by dis-
cussion on the mailing lists, is probably PSTricks, which
is widely used for special drawing and graphic e ects.

anks to recent work by Miyata Shigeru, the xdvipdfmx
driver used with X ETEX has been extended to support
most PSTricks features (with a few exceptions), and there-
fore standard PSTricks pictures, plots, etc., can be used in
X ETEX. is is achieved by extracting the PostScript code
and running Ghostscript (or another process, according to

x

y

z

b

(x, y, z)

ϕ

θ

r

Figure 3: Example of a PSTricks plot embedded in a X ELATEX
document (from httpئ//tug.org/PSTricks/main.cgi?file=
pst-plot/3D/examples)

the driver’s .cfg file) to convert this to PDF which can then
be embedded in the document, as illustrated in figure 3.
While this technique is currently quite slow, it does at least
permit the use of such graphics. However, users may find
that other graphics packages such as the PGF-based TikZ
provide better performance in many cases.

2.2 Unicode math extensions

New in X ETEX 0.996, and more complete in 0.997, is sup-
port for use of the full range of Unicode math characters,
including the styled math alphabets in Plane 1 as well as the
large number of mathematical symbols. TEX’s \mathcode,
\delcode and related tables have been enlarged, and the
number of math families is increased from 16 to 256. A
small example of the use of Unicode characters in math
mode is shown in figure 4; work is in progress to design
and implement a LATEX package to provide extensive and
well-integrated support, building on the primitive facilities
now available in the engine.

TEX’s math codes contain three distinct components,
representing the character class (ordinary character, large
operator, binary operator, relation, etc.), the math family
to be used, and the actual character code. TEX compresses
this information into a single 16-bit value, with 3 bits for
the class, 4 for the family, and 8 for the character code, nor-
mally expressed as 4 hex digits (see e TEXbook, p. 154).
X ETEX packs a 3-bit class, 8-bit family, and 21-bit Uni-
code value into a single 32-bit code, but as the example
in figure 4 shows, it allows the components to be specified
separately for clarity as they no longer map neatly onto in-
dividual hex digits.

148 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007

X ETEX Live

% set up Cambria Math for roman, symbol and extension families
\font\1="Cambria Mathئscript=math" at 10pt
\font\2="Cambria Mathئscript=mathا+ssty=0" at 7pt
\font\3="Cambria Mathئscript=mathا+ssty=1" at 5pt
\textfont0=\1 \scriptfont0=\2 \scriptscriptfont0=\3
\textfont2=\1 \scriptfont2=\2 \scriptscriptfont2=\3
\textfont3=\1 \scriptfont3=\2 \scriptscriptfont3=\3

% use Cambria Math with italic mapping for family 1
\font\1="Cambria Mathئscript=mathاmapping=math-italic" at 10pt
\font\2="Cambria Mathئscript=mathاmapping=math-italicا+ssty=0" at 7pt
\font\3="Cambria Mathئscript=mathاmapping=math-italicا+ssty=1" at 5pt
\textfont1=\1 \scriptfont1=\2 \scriptscriptfont1=\3

% set mathcodes (many are predefined in xetex.fmt)
\XeTeXmathcodeّ\-="2 "2 "2212 % minus sign
\XeTeXmathcodeّ\渮="1 "2 ّ渮 % summation

% some control sequences...
\XeTeXmathchardef\sum="1 "2 ّ渮 \XeTeXmathchardef\prod="1 "2 ّ渭
\XeTeXmathchardef\intop="1 "2 ّ滄 \XeTeXmathchardef\infty="1 "2 ّ湎
\XeTeXmathchardef\geq="3 "2 ّ瀁 \XeTeXmathchardef\leq="3 "2 ّ瀑
\XeTeXmathchardef\pi="7 "1 ّｑ

% using Unicode characters in math
$$ f(x) = aِ0 + 渮ُ湎ِ{n=1} \left(aِn\cos{nｑx\over L} + bِn\sin{nｑx\over L} \right) $$

Result, using an OpenType math font:血岫捲岻 噺 欠待 髪 著布津退怠 磐欠津 cos 券講捲詣 髪 決津 sin 券講捲詣 卑
Figure 4: Defining and using Unicode math characters

When using a complete OpenType math font such as
Cambria Math, it may be necessary to load the font several
times with di erent character mappings andOpenType fea-
tures.

2.3 Inter-character token insertion

A new feature in X ETEX version 0.997 is the ability to in-
sert arbitrary token lists in between normal text characters,
without complex macro programming. is is designed
primarily to support requirements of Japanese and Chi-
nese typography, where special spacing controls are needed
in certain cases such as between ideographs and adjacent
punctuation characters.

To support this feature, each character has a “class”
known as \XeTeXcharclass, a bit like an extra \catcode,
but ignored by normal TEX operations. But whenever two
printable text characters occur next to each other, X ETEX
will check their class values, and if a token list has been
defined for this class pair it will be inserted between the
characters. Such a token list may contain arbitrary TEX
material, although the most useful possibilities are proba-
bly various forms of \skip and \penalty (to control spac-
ing and breaking), and font changes (making it possible to

automatically switch fonts for di erent scripts within Uni-
code text, without requiring embedded markup).

For example, the default xetex and xelatex formats
initialize most \XeTeXcharclass values to zero, but assign
all the CJK ideographs to class 1. We can take advantage
of this to allow Chinese characters to be included in run-
ning text without additional markup, even though the de-
fault body font does not support them; a simple example
is shown in figure 5. While this technique is not a univer-
sal substitute for proper language and font markup in the
source document, it can greatly simplify the author’s task
in some mixed-script situations.

2.4 Graphite font support

e initial version of X ETEX, on MacOSX only, supported
special font features such as contextual swashes, ligatures,
alternate glyphs, etc., by means of Apple’s AAT font tech-
nology. Later, support for OpenType font features was
added, based on the ICU layout library; this enabled X ETEX
to provide complex font support across multiple platforms.

A third font layout technology, designed to sup-
port the requirements of non-Latin scripts, minority lan-
guages, and scripts not yet in Unicode, is SIL’s Graphite
system (httpئ//scripts.sil.org/RenderingGraphite).

TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007 149

Jonathan Kew

\newfontfamily\zhfam{STKaiti}
% define a font for Chinese

% xelatex has CJK ideographs assigned to class 1
% and Latin (etc) in class 0 by default
\XeTeXinterchartoks 0 1 = {\begingroup\zhfam}

% switch to \zhfam when we find a Chinese char
\XeTeXinterchartoks 1 0 = {\endgroup}

% and revert at the end of a Chinese run

% class 255 is a special "end of string" marker,
% so we need to switch here as well
\XeTeXinterchartoks 255 1 = {\begingroup\zhfam}
\XeTeXinterchartoks 1 255 = {\endgroup}

The Chinese word 你好 means ‘hello’.

Result: e Chinese word你好 means ‘hello’.

Figure 5: Using inter-character token insertion to mix scripts and
fonts without in-line markup

\font\myfnt="Padauk/GR" at 7.5pt
\XeTeXlinebreaklocale "G"
\XeTeXlinebreakskip=0pt plus 1pt
\XeTeXlinebreakpenalty=10
\baselineskip=14pt
\myfnt ကျွနှ်ပ်တို့၏ ပျော်ရွှင်မှု၊ သာယာ ၀ ပြောမှုနှင့် အောင်မြင်မှုတို့သည...

Result: ကှ်ပ်တိ ့၏ ေပျာ်င်မ၊ သာယာ ၀ ေြပာမှင့် ေအာင်ြမင်မတိ ့သည် က ်ပ်

တိ ့၏ ကျန်းမာြခင်းအေပတွင် အများကီး မီှခိ ေနပါသည်။ ပညာတတ်ရန်၊ ကယ်၀ချမ်း

သာရန်ှင့် ကိးပမ်း လ ပ်ေဆာင်မအားလံ း ေအာင်ြမင်ေစရန်အတွက် ကျန်းမာေရးသည်

အထ းပင် အေရးကီးပါသည်။ ကျန်းမာေရးမြပည့်စံလင် က ်ပ်တိ ့၏ ပညာေရး၊ စီးပွား

ေရး ြမ င့် တင်မလ ပ်ငန်းများ လ ပ်ိ င်လိမ့်မည် မဟ တ်ပါ။ သိ ့ြဖစ်၍ အစဥ်သြဖင့် ကျန်း

မာေနရန် က ်ပ်တိ ့ ကိးစားကရပါမည်။

Figure 6: Burmese script rendered using a Graphite font (com-
pare the source text, rendered without Graphite technology, to
the resulting output)

Graphite provides a level of glyph layout control within the
font that goes beyond either AAT or OpenType, making it
possible for font developers to provide more flexible and ac-
curate rendering of multiple diacritics and other characters
that interact with their neighbors in complex ways.

A small example of Graphite text rendering is shown
in figure 6, where a Graphite font is used to provide correct
rendering of Burmese script. e font also includes custom
line-breaking rules, which X ETEX uses to find valid breaks
within the text, even where no spaces are present.

Another script being typeset using Graphite is N’Ko,
a writing system fromWest Africa. is is a cursive writing
system, written from right to left, but unrelated to Arabic
script. It has recently been standardized in Unicode (ver-
sion 5.0), but is not yet widely implemented; I have not
yet seen a working OpenType implementation, for exam-
ple. But because Graphite allows the font developer full

\font\x="N'ko Kankan/GR:rtl" at 8.5pt
\noindent\beginR
\x ߫ߍߗ߲ߋߘ ߫ߌߦߊߕߌߡߊߴߘ ߫ߊߡߎߞ ߫ߊߟߊ ߫ߊߛ߲ߊߡ ߲߫ߊߘߊߓߤ ߸߫ߐߘ ߫ߏߘ ߲ߏߟ ߸߬ߊߓ߬ߒ ﴾߁﴿
.߫ߍߢ ߫ߊߛߎߣߦ : ߫ߏߞ ߲߫ߊߞ ߬ߊ ﴾߂﴿ .߫ߐߘߞ ߌ ߊߣ߬ߌߡ ߬ߊߟ߬ߌߛ ߫ߋߦ ߌ« ߫ߊߥ ߫ߋߦ ߌ
߬ߎߟ ߮ߐߡ ߲߬ߋߦ ߬ߊߞ ߫ߐߣߞ ߊߓߏߛ ߫ߋߓߌߣߌߣ % ...etc...

Result:

߫ ߫ߴߘ ߫ ߫ ߫ ߫ ߫߸ ߫ ߬߬߸ ﴾߁﴿
߫ ߫ ߌ ߫. ߌ ߬ ߬߬ ߫ ߌ« : ߫ ߫ ߊ߬ ﴾߂﴿ ߫. ߫
߫ ߬߬ ߫. ߬ߴ߬ߝ ߬߬ ߬ ߮ ߬ ߬ ߫ ߫
߬ ߫ ߫ ߬߬ ﴾߃﴿ ߫.« ߬ ߏ߬ߵߞ ߫߸ ߫ ߬ ߮
߯ ߊ߬ߴߦ ߊ߬ ߫ ߫ ߬ ߬߬ ߬߬ ߫ ߬ ߊ߬ ߫. ߫ ߬
߫ ߬ ߬ ߫ ߫ ߊ߬ ߫. ߊ߬ߴߓ ߬ ߫ ߫ ߫ ߫
ߊ߬ ߫. ߫ ߬߸ ߬ ߫ ߬ ߊ߬ ߫. ߫ ߬߬
߮ ߫ ߫ ߊ߬ ߫. ߬ ߬ ߫߸ ߰ ߬
ߊ߬ߵߞ ߬ ߊ߬ߴߦ ߫ ߫. ߫ ߫ ߫ ߬߬ ߫ ߬ ߰ ߫ ߫ ߬

߫. ߊ߬ߴߓ ߫ ߫

Figure 7: e N’Ko script rendered using a Graphite font

control of the rendering behavior, without a script-specific
“shaping engine” (as OpenType requires), N’Ko users al-
ready have a full-featured typesetting solution that handles
the script. Figure 7 shows a short sample of N’Ko input (us-
ing default glyphs, without contextual rendering) and the
corresponding properly-rendered text.

2.5 Implementation details: pool file and formats

A couple of recent changes to the internal implementation
of X ETEX may be of interest, and could be considered by
other TEX systems as well. One (following METAPOST’s
lead) is that there is no longer a separate .pool file used to
initialize the program’s strings; instead, the strings are com-
piled into the program file itself. is simplifies installation
and maintenance, and removes the possibility of a version
mismatch. It is particularly relevant in the multi-platform
environment of TEX Live, as it means that a new X ETEX
binary could be provided for some platforms ahead of oth-
ers, without the problem of deciding which version of the
.pool file should be included in the texmf tree.

With more complete Unicode math support, various
per-character code tables have been extended to support the
full Unicode range of around one million possible charac-
ter codes. (Formerly, only the 64K characters of the Ba-
sic Multilingual Plane had individual \catcode, \lccode,
\mathcode, etc. values.) As the default formats initialize
these tables based on theUnicode standard, which currently
defines about 100,000 characters, the resulting .fmt files
became considerably larger. To alleviate this, the format
file reading and writing routines now use the well-known
zlib compression library; as .fmt files are typically quite
compressible, this leads to large space savings, and the re-
duction in disk I/O compensates for much of the overhead
of decompressing the format during startup.

150 TUGboat, Volume 29, No. 1—XVII European TEX Conference, 2007

Conventional scoping of registers—An experiment in εXTEX

Gerd Neugebauer
In Lerchelsböhl 5
64521 Groß-Gerau (Germany)
gene (at) gerd-neugebauer dot de

www.gerd-neugebauer.de

Abstract

TEX provides groups as a means to restrict the visibility of registers. This con-
struction is well known in the TEX world but does not coincide with groups as
known from other programming languages. If we refrain from storing the register
value in a global array we can come to the alternate solution of storing it in the
control sequence used to access it. With this variant we can provide a means to
define an arbitrary number of registers which follow the same scoping rules as
variables in Pascal-like languages.

εXTEX is a reimplementation of TEX in Java. It is developed with extensibility
and configurability in mind. The idea of an alternative storage for registers can be
implemented in εXTEX as an extension. We show which steps are required for such
an implementation. In this manner the extensibility of εXTEX is demonstrated.

1 Registers and scoping

plain.tex provides macros to handle the allocation
of registers. For this document we want to restrict
our considerations to count registers. The other reg-
ister types can be handled analogously. Here the
macro \newcount can be used to allocate a new
count register:

\newcount\abc

{\abc = 42

\showthe\abc

}

In TEX any changes to registers are recorded.
When the group closes, the old values are restored.
Thus any changes to registers in a group are auto-
matically local. This can be overwritten with the
keyword \global.

Let us have a look at the same construction in
another programming language. As an example we
use Java. The same considerations hold for many
languages of the Pascal family.

{ int abc = 42;

System.out.println(abc);

}

The grouping reduces the scoping of the vari-
able abc. It is defined within the group and not
visible outside. If a variable with the same name is
defined before the group then this variable is hidden
by the new definition in the group.

The explicit declaration of the local variable in
Java arranges things so that the new variable is ac-
tivated and any previous declaration is hidden.

2 Storage in TEX

Coming back to TEX an alternative interpretation
comes to mind. Whenever a register is modified in
a group then an automatic declaration of a new vari-
able is introduced and initialized.

One way to come closer to conventional pro-
gramming languages with TEX would be to intro-
duce typed variables following the conventional rules
for scoping and initializing.

TEX stores the values of registers in TEX mem-
ory. This memory is written to the format file when
a \dump is performed. Besides the register values,
(macro) code is stored in TEX memory.

All we need is a primitive which behaves like a
count register but stores the value somewhere else—
making it accessible via the primitive only.

3 εXTEX

The εXTEX project (→ http://www.extex.org) has
the aim to produce a reimplementation of TEX. The
implementation language for this reimplementation
is Java. The major design decisions put modularity
and configurability into the forefront.

As one consequence εXTEX is assembled out of
many components. Those components provide de-
fined interfaces. This makes it simple to write re-
placements for existing components and provide new

TUGboat, Volume 29, No. 1 —XVII European TEX Conference, 2007 151

Gerd Neugebauer

components to extend the system. This extensibil-
ity makes it easy to experiment to some extent with
new ideas. In the following setions we will see one
example of such an experiment.

εXTEX is currently under development. Even
though large pieces are in place, εXTEX is not yet
ready for production. Any help to get things finished
is very welcome. If you are interested in participat-
ing in εXTEX development, contact the developers
on the developer list, which can be found via the
εXTEX web site.

4 Writing a new primitive for εXTEX

According to our considerations we want to have a
new primitive which behaves like a count register
but stores the value within the code and not in the
context. In addition we need a primitive \integer

to dynamically create such integers. Then we can
write the following TEX code:

{\integer \abc = 42

\showthe\abc

}

First we start with implementing the code for
the count-equivalent. This code needs to have sev-
eral properties to behave like a count register:

• It needs to assign a new value when executed.
This means that

\abc=123

works if \abc has the meaning of the new prim-
itive.

• It needs to act as an assignment; this means
that \afterassignment has to be taken into
account. This mean its token is expanded after
the assignment has taken place.

• It needs to be advanceable. This means that
the following works:

\advance\abc by 123

• It needs to be multiplyable. This means that
the following works:

\multiply\abc by 123

• It needs to be divideable. This means that the
following works:

\divide\abc by 123

• It needs to provide the count value upon re-
quest. This means that the following works:

\count0=\abc

• It needs to provide value for primitives \the

and \showthe. This means that the following
works:

\showthe\abc

• It needs to expand to the tokens making up its
value.

5 Providing a definition

To start with we create a new class. This class lives
in a package named extex.tutorial. In addition
we use a bunch of imports from εXTEX. Since the
imports are usually filled in by the IDE, we omit
them (like the comments which are assumed to be
filled in by the reader).1

package extex.tutorial;

import org.extex.core.count.Count;

// a bunch more imports omitted

Next we declare the class. It is derived from an
abstract base class which takes care of the assign-
ment. Each of the properties we want to have is de-
clared with the help of an interface. Advanceable

describes that the primitive can be used after the
primitive \advance, Divideable describes that the
primitive can be used after the primitive \divide

and so on. Each of these interfaces contains a single
method which needs to be implemented.

public class IntPrimitive

extends

AbstractAssignment

implements

Advanceable,

Divideable,

Multiplyable,

CountConvertible,

Theable,

ExpandableCode {

Since we want to store a count value with the
code we first create a private field. The data type
Count encapsulates a count value. It has the meth-
ods to access and manipulate it. In its core it con-
tains a long value to store a number in.

private Count value = new Count(0);

But before we come to implement the interfaces
we have to define a constructor. The constructor

1 To be honest, the exact package structure of εXTEX is
subject to some changes until the final version 1.0 is released.

152 TUGboat, Volume 29, No. 1 —XVII European TEX Conference, 2007

Conventional scoping of registers— An experiment in εXTEX

takes one argument —the name of the primitive—
and passes it to the constructor of the super-class.

public IntPrimitive(String name) {

super(name);

}

Now we can start with the first method assign.
It takes four parameters with the following inter-
faces:

Flags contains the indicators for the prefix argu-
ments like \global. The primitive can consume
the flags and react differently upon their values.
Since our primitive does not use prefixes this
argument is simply ignored.

Context contains the equivalent to the TEX mem-
ory —anything contributing to the state of the
interpreter is stored here. The Context is also
stored in a format when \dump is invoked.

TokenSource provides access to the scanner and the
parsing routines. It can be used to acquire fur-
ther tokens or even higher order entities.

Typesetter contains the typesetter of the system.
The typesetter produces nodes which might be
stored in boxes and finally sent to the backend.
The primitive can send characters or instruc-
tions to the typesetter or simply request some
information from it.

We will see these parameters again with each of
our methods.

public void assign(Flags prefix,

Context context,

TokenSource source,

Typesetter typesetter)

throws InterpreterException {

source.getOptionalEquals(context);

Count newValue = CountParser.parse(

context, source, typesetter);

value.set(newValue);

}

The implementation first consumes an optional
equal sign and then parses a following count value.
Finally we can set the internal count to this new
value.

Assume that we have assigned the new primi-
tive to the control sequence \abc— we will see the
details later. Then we can do the following:

\abc = 1234

This simply assigns a new value to the vari-
able. But we have also used the infrastructure of
an assignment. Thus the tokens stored in the token

register \afterassignment are inserted after the as-
signment:

\afterassignment=\x

\abc = 1234

\y

Right now we can assign a new value to the
variable. Since we want to see what we have done,
we implement the method the which converts the
value back into tokens to be used by the primitives
\the and \showthe.

public Tokens the(Context context,

TokenSource source,

Typesetter typesetter)

throws InterpreterException,

CatcodeException,

ConfigurationException {

return context.getTokenFactory().

toTokens(value);

}

The main task of creating a list of tokens is
provided by a token factory. This is an application
of the factory pattern. The factory is attached to
the context and can be retrieved from it.

Next we have to take care of \advance. In
εXTEX the implementation of \advance decouples
the operation from the implementation of the prim-
itive. Thus it is possible to add further primitives
which can be used after \advance. This goal is
reached with the help of the interface Advanceable.
When the token has the meaning of code which im-
plements this interface then the control is passed to
the methods defined in the interface to carry out the
operation. We use this feature to make our primitive
applicable to \advance.

The method uses the parsing routines in εXTEX
to acquire the optional keyword by and the value for
a count register. This value is added to the variable
stored in this primitive.

public void advance(Flags prefix,

Context context,

TokenSource source,

Typesetter typesetter)

throws InterpreterException {

source.getKeyword(context, "by");

Count by = CountParser.parse(

context,

source,

typesetter);

value.add(by);

}

TUGboat, Volume 29, No. 1 —XVII European TEX Conference, 2007 153

Gerd Neugebauer

The same technique used for \advance is used
for \divide as well. Thus we just have to implement
the associated interface Divideable and provide the
following method:

public void divide(Flags prefix,

Context context,

TokenSource source,

Typesetter typesetter)

throws InterpreterException {

source.getKeyword(context, "by");

Count by = CountParser.parse(

context,

source,

typesetter);

value.divide(by);

}

And once again the same trick for \multiply:
We implement the interface Multiplyable and pro-
vide the following method:

public void multiply(Flags prefix,

Context context,

TokenSource source,

Typesetter typesetter)

throws InterpreterException {

source.getKeyword(context, "by");

Count by = CountParser.parse(

context,

source,

typesetter);

value.multiply(by);

}

Converting into a count value is expressed with
the interface Countconvertible which has one me-
thod convertCount. This method delivers the count
value as long. Since we have the variable in our
private field we can just take the value from there.

public long convertCount(

Context context,

TokenSource source,

Typesetter typesetter)

throws InterpreterException {

return value.getValue();

}

Finally we provide a means to use the primi-
tive in an expandable context. When tokens are ex-
panded — in contrast to executed —we simply push
the tokens representing the value to the token source.
Thus they are read and processed afterwards.

public void expand(Flags prefix,

Context context,

TokenSource source,

Typesetter typesetter)

throws InterpreterException {

try {

source.push(

context.getTokenFactory().

toTokens(value));

} catch (CatcodeException e) {

throw new InterpreterException(e)

}

}

The method is slightly complicated by the han-
dling of an exception which might come from the
creation of the tokens. This exception is simply
remapped and passed upwards.

This is all we need to do to implement the new
primitive.

}

6 Putting things into place for testing

Now we are finished writing our new primitive as a
Java class. But how can we make use of it? First of
all we have to compile it with a Java compiler and
put it into a jar — say, abc.jar. εXTEX is installed
in a directory. This installation directory contains a
subdirectory named lib. All jars contained in this
directory are automatically considered when classes
are loaded. Thus we put abc.jar into this directory.

Next we make use of a quick extension mech-
anism to try out our fine new primitive. Later we
will use the configuration mechanism of εXTEX for
this purpose. But now we simply use the dynamic
extension mechanism which allows us to bind some
Java code to a primitive. To do so we need to load
the unit jx. Units in εXTEX are collections of prim-
itives. For instance there is a unit tex containing
the TEX primitives.

One of the primitives contained in εXTEX —i.e.
in the unit extex— is the primitive \ensureloaded.
It takes one argument in braces which is the name of
a unit and loads this unit if has not yet been loaded
into the interpreter.

This primitive is used now to load the unit jx:

\ensureloaded{jx}

After the unit jx has been loaded we can make
use of the primitive \javadef provided by this unit.
This primitive is similar to the primitive \def. It
takes a control sequence and a list of tokens enclosed

154 TUGboat, Volume 29, No. 1 —XVII European TEX Conference, 2007

Conventional scoping of registers— An experiment in εXTEX

in braces. The control sequence gets a new meaning.
This meaning is determined by the Java class named
in the tokens argument:

\javadef\abc{extex.tutorial.IntPrimitive}

Now we can use the primitive \abc as shown
above. This is enough for testing. Nevertheless it
is discouraged since it uses an implementation spe-
cific extension. The recommended way is to use the
configuration facility described later.

7 Defining new variables

The definition of each new variable with \javadef

is a little bit clumsy. Our original plan was to define
any new variable with \integer. It takes a control
sequence and the initial value. This can be accom-
plished with a small definition of the following kind:

\def\integer#1{%

\javadef#1{extex.tutorial.IntPrimitive}%

#1}

This approach works but has the disadvantage
that the resulting macro does not interact properly
with \afterassignment. The primitive \javadef

is an assignment. Thus the afterassignment token
would be inserted just after the definition but before
the initial value has been read.

To overcome this problem and gain some more
insight into the definition of primitives in εXTEX we
implement this primitive in Java as well.

The class itself is started as shown before. Since
the task is much simpler we do not need to declare
a lot of implemented interfaces.

package extex.tutorial;

// a bunch of imports omitted

public class IntDef

extends AbstractAssignment {

The constructor propagates the name to the su-
per class— as before.

public IntDef(String name) {

super(name);

}

Finally we have to implement the assign me-
thod. Here we can make use of the TokenSource to
acquire a control sequence. Now we create a new
instance of our class IntPrimitive. The argument
is the name of the variable. This name is extracted
from the control sequence token.

Now we can use the method assign of this new
instance to assign the initial value. Finally we bind

the new instance to the control sequence token. This
binding makes use of an optional prefix argument
\global. The prefix is read and cleared in one step.
The clearing avoids an error message about unused
prefix arguments.

The \global prefix allows us to define a global
variable— even within a group. This extension was
not on our initial agenda, but is easily implemented.

public void assign(Flags prefix,

Context context,

TokenSource source,

Typesetter typesetter)

throws InterpreterException {

CodeToken cs =

source.getControlSequence(

context,

typesetter);

IntPrimitive code =

new IntPrimitive(cs.toString());

code.assign(Flags.NONE,

context,

source,

typesetter);

context.setCode(cs,

code,

prefix.clearGlobal());

}

Now we are finished and can use the primitive.

}

We have postponed the configuration of εXTEX
until we have the primitive. Now we can fill this
omission.

8 Configuring εXTEX

The encouraged way of extending εXTEX is by con-
figuring a new unit. The configuration of a unit is an
XML file following a particular schema. The outer
tag is unit. It can have attributes. The mandatory
attribute we are using is the attribute name which is
used to specify the name.

As an inner tag we are using primitives. In-
side this tag all additional primitives of this unit are
listed with define specifications. The defines need
attributes. The attribute name specifies the name of
the control sequence to assign the definition to. The
attribute class specifies the Java class. This class
needs to implement the interface Code. This class is
instantiated and bound to the control sequence.

The configuration file tutorial.xml has the
following contents:

<unit name="tutorial">

<primitives>

TUGboat, Volume 29, No. 1 —XVII European TEX Conference, 2007 155

Gerd Neugebauer

<define name="integer"

class="extex.tutorial.IntDef"/>

</primitives>

</unit>

We have placed the compiled Java files in a
jar. The configuration file tutorial.xml has to be
placed in the same jar file. To be found, it has to
be placed in a certain package. This is the package
config.unit. Now we can load it like we have done
with the unit jx:

\ensureloaded{tutorial}

9 Aliasing variables

With the variables introduced here we can use \let
to create aliases for a variable. \let creates a new
binding for a control sequence to the same code as
an existing control sequence. With our implemen-
tation in mind it is immediately apparent that a
modification of one variable at the same time also
modifies all aliased variants. This is illustrated in
the following example:

\integer\x=42

\let\y=\x

\x=123

\showthe\y

In this code \x and \y share the same content.
After assigning 123 to \x this value also shows up
when printing \y.

This trick can be used to access a variable which
is hidden by a local variable. In this case you can
make an alias before defining the local variable:

\integer\x=42

% . . .

{\let\y=\x

\integer\x=123

\showthe\y

}

10 Variables and name spaces

In [1], namespace support for εXTEX was presented.
Namespaces primarily act on primitives. This col-
lides with the access to registers via one primitive—
for instance \count for all count registers. The allo-
cation macro \newcount from plain can be used to
assign a control sequence to a certain count register.
This control sequence is subject to the name space
visibility. Nevertheless the control sequence can be
bypassed.

With the variables introduced in this paper we
can overcome this deficiency. The variables intro-
duced interact in a natural way with the namespace
concept of εXTEX.

11 Conclusion

We have seen an alternate way of defining variables
in εXTEX. The scoping follows the rules of conven-
tional programming languages. In contrast to regis-
ters, the number of variables is limited only by the
memory available.

The implementation for εXTEX has demonstrat-
ed the extensibility and configurability of the sys-
tem. It has also shown that the proposed definition
of variables leads to the desired results.

References

[1] Gerd Neugebauer. Namespaces for εXTEX. In
Volker RW Schaa, editor, Proceedings EuroTEX

2005, pages 67–70, 2005.

156 TUGboat, Volume 29, No. 1 —XVII European TEX Conference, 2007

MlBibTEX: Reporting the experience∗

Jean-Michel Hufflen
LIFC (EA CNRS 4157)

University of Franche-Comté
16, route de Gray
25030 BESANÇON CEDEX

France
hufflen (at) lifc dot univ-fcomte dot fr

http://lifc.univ-fcomte.fr/~hufflen

Abstract

This article reports how the different steps of the MlBibTEX project were con-
ducted until the first public release. We particularly focus on the problems raised
by reimplementing a program (BibTEX) that came out in the 1980’s. Since that
time, implementation techniques have evolved and new requirements have ap-
peared, as well as new programs within TEX’s galaxy. Our choices are explained
and discussed.
Keywords TEX, LATEX, BibTEX, reimplementation, reverse engineering, im-
plementation language, program update.

Streszczenie

Artykuł omawia realizację poszczególnych kroków przedsięwzięcia MlBibTEX, w
czasie do przedstawienia pierwszej publicznej wersji. W szczególności skupiamy
się na problemach powstałych przy reimplementacji programu (BibTEX), powsta-
łego w latach 80 zeszłego wieku. Od tego czasu rozwinęły się techniki implemen-
tacyjne, powstały nowe wymagania oraz nowe programy w świecie TEX-owym.
Przedstawiamy i dyskutujemy dokonane wybory.

Słowa kluczowe TEX, LATEX, BibTEX, reimplementacja, reverse engineering,
język implementacji, aktualizacja programu.

0 Introduction

In 2003, TEX’s 25th anniversary was celebrated at
the TUG1 conference, held in Hawaii [1]. LATEX
[28] and BibTEX [35] — the bibliography processor
usually associated with the LATEX word processor —
are more recent, since they came out in the 1980’s,
shortly after TEX. All are still widely used, such
longevity being exceptional for software. However,
these programs are aging. Of course, recent ver-
sions have incorporated many features absent from
the first versions, which proves the robustness of
these systems. Nevertheless, they present some lim-
itations due to the original conception, and a major
reimplementation may be needed to integrate some
modern requirements. In addition, interactive word
processors have made important progress and are se-
rious rivals, even if they do not yield typesetting of
such professional quality. That is why some projects

∗ Title in Polish: MlBIBTEX: raport z doświadczeń .
1 TEX Users Group.

aim to provide new programs, based on TEX & Co.’s
ideas.2 A first representative example is the LATEX 3
project [32], a second is NTS [27].

MlBibTEX — for ‘MultiLingual BibTEX’ — be-
longs to the class of such projects. Let us recall
that this program aims to be a ‘better BibTEX’,
especially regarding multilingual features. For an
end-user, MlBibTEX behaves exactly like ‘classical’
BibTEX: it searches bibliography data base (.bib)
files for citation keys used in a document and then
arranges the references found, writing them to a .bbl

file suitable for LATEX, w.r.t. a bibliography style.
MlBibTEX is written in Scheme,3 it uses XML4 as a

2 Concerning TEX, an additional point is that TEX’s de-
velopment has been frozen by its author, Donald E. Knuth
[26]. If incorporating new ideas to a ‘new TEX’ leads to a ma-
jor reimplementation, the resulting program must be named
differently.

3 The version used is described in [24].
4 EXtensible Markup Language. Readers interested in

an introductory book to this formalism can consult [37].

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 157

Jean-Michel Hufflen

central format: when entries of .bib files are parsed,
they result in an XML tree. Bibliography styles tak-
ing advantage as far as possible of MlBibTEX’s new
features are written using nbst,5 a variant of XSLT6

described in [15]. The stack-based bst language [34]
used for writing bibliography styles of BibTEX can
be used in a compatibility mode [20].

We think that the experience we have gained
in developing MlBibTEX may be useful for other,
analogous, projects. To begin, we briefly review the
chronology of this development. As will be seen,
this development has not been linear, and the two
following sections focus on the problems we had to
face. We explain how we have determined which
criteria are accurate when a programming language
is to be chosen for such an application. Then we
show how the compatibility with ‘old’ data and the
integration of modern features should be managed.

1 MlBibTEX’s chronology

Oct. 2000 MlBibTEX’s design begins: the syntax
of .bib files is enriched with multilingual anno-
tations. Version 1.1’s prototype is written using
the C programming language and tries to reuse
parts of ‘old’ BibTEX’s program as far as pos-
sible.

May 2001 The first article about MlBibTEX is [9].
Later, the experience of developing MlBibTEX’s
Version 1.1 is described in [10].

May 2002 After discussions with participants at
the EuroBachoTEX conference, we realise that
the conventions for bibliography styles are too
diverse, even if we consider only those of Eu-
ropean countries. We realise that this first ap-
proach is quite unsuitable, without defining a
new version of the bst language. So we decide
to explore two directions. First, we develop a
questionnaire about problems and conventions
concerning bibliography styles used within Eu-
ropean countries. Second, we begin a prototype
in Scheme implementing the bst language [11].
Initially, this prototype is devoted to experi-
ments about improving bst in a second version,
1.2.

Jan. 2003 Version 1.2 is stalled. The new version
(1.3) is based on XML formats. The nbst lan-
guage is designed and presented at [12, 13]. We
explain in [14] how the results of our question-
naire have influenced this new direction.

Feb. 2004 It appears to us that MlBibTEX should
be developed using a very high-level program-

5 New Bibliography STyles.
6 eXtensible Stylesheet Language Transformations, the

language of transformations used for XML documents [44].

ming language, higher than C. So we consider
again the prototype in Scheme that we sketched
in 2002. SXML7 [25] is chosen as the represen-
tation of XML texts in Scheme. Some parts of
MlBibTEX are directly reprogrammed from C
to Scheme. As for the other parts, this proto-
type is a good basis for much experiment [16].

Nov. 2004 The version written in C is definitely
dropped, whereas the version in Scheme is mod-
ified to improve efficiency; it becomes the ‘offi-
cial’ MlBibTEX [18].

Sep. 2005 We decided to freeze MlBibTEX’s design
and concentrate only on finishing programming.
Many Scheme functions are rewritten in confor-
mity to SRFIs8 [39].

May 2006 A working version is almost finished,
except for the interface with the kpathsea li-
brary.

May 2007 Public availability of MlBibTEX’s Ver-
sion 1.3.

Let us also explain that MlBibTEX is not our
only task. As an Assistant Professor in our univer-
sity, we teach computer science, and participate in
other projects. As a consequence, MlBibTEX’s de-
velopment has been somewhat anarchic: we hardly
worked on it for two or three months, put it aside
for one or two months, and so on. Last, we have su-
pervised some student projects regarding graphical
tools around MlBibTEX [2, 8], programmed using
Ruby [31], but concerning the development of the
MlBibTEX program itself, we have done it alone.

2 Choice of an implementation language

There are several programming paradigms: impera-
tive, functional, and logic programming. There are
also several ways to implement a programming lan-
guage: interpretation and compilation. Some par-
adigms are more appropriate, according to the do-
main of interest. Likewise, some interpreted lan-
guages are more appropriate if you want to pro-
gram a prototype quickly and are just interested in
performing some experiment.9 But compiled lan-
guages are often preferable if a program’s efficiency
is crucial. In addition, the level of a programming
language has some influence on development: in a
high-level language, low-level details of structures’
implementation do not have to be made explicit, so

7 Scheme implementation of XML.
8 Scheme Requests for Implementation, an effort to coor-

dinate libraries and other additions to the Scheme language
between implementations.

9 Such is the case for the two graphical tools around
MlBibTEX programmed in Ruby by our students [2, 8].

158 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

MlBibTEX: Reporting the experience

development is quicker, and the resulting programs
are more concise, nearer to a mathematical model.

In addition to these general considerations, let
us recall that we aim to replace an existing program
by a new one. This new program is supposed to
do better than the ‘old’ one. ‘To do better’ may
mean ‘to have more functionalities, more expressive
power’, but for sake of credibility, it is desirable for
the new program to be as efficient as the ‘old’ one.
Let us not forget that TEX and BibTEX are written
using an old style of programming — more precisely,
a monolithic style used in the 1970’s–1980’s— based
mainly on global variables, without abstract data
types. Choosing a language implemented efficiently
is crucial: as a counter-example, NTS, written us-
ing Java, has been reported 100 times slower than
TEX [42, § 5]. That is why we wrote MlBibTEX’s
first version using C, because of its efficiency. In ad-
dition, this language is portable to most operating
systems. And to make our program modular, we de-
fined precise rules for naming procedures [10, § 3].
But two problems appeared.

First, MlBibTEX’s development has not been
a daily task, as mentioned above. Even if we are
personally able to program large applications in C,
it is difficult to put aside a C program and resume
it later: from this point of view, C is not a very
high-level language. Besides, let us not forget that
we are working within an open domain, as natural
languages are. A change may be needed because of
new features concerning languages that had not yet
been integrated into MlBibTEX’s framework. The
higher the level, the more easily such a change can
be applied.

Second, we want end-users of MlBibTEX to be
able to influence the behaviour of this program. For
example, many BibTEX users put LATEX commands
inside values associated with fields of .bib files, in or-
der to increase their expressive power within biblio-
graphical data. These users should be able to spec-
ify how to handle such commands when .bib files are
converted into XML trees. In particular, this is use-
ful if MlBibTEX is used to produce outputs for word
processors other than LATEX [21]. How to do that in
C, without defining a mini-language to express such
functions? In this case, using a script language is a
better choice . . . provided that this language is effi-
cient. Another choice is a Lisp10 dialect, as in Emacs
[40]: end-users can customise Emacs’ behaviour by
writing expressions using the Emacs Lisp language
[30]. This choice is homogeneous: the entire Emacs
editor is expressed in Emacs Lisp, excepting for the

10 LISt Processor.

implementation of low-level functionalities.
Finally, our choice was Scheme, the modern di-

alect of Lisp. We confess that we are personally
attracted by functional programming languages, be-
cause they can abstract procedures as well as data:
in this sense, they are very high-level programming
languages. Concerning Scheme, it seems to us to be
undebatable that it has very good expressive power,
and takes as much advantage as possible of lexical
scoping. In addition, it allows some operations to be
programmed ‘impurely’, by side effects, as in imper-
ative programming, in order to increase efficiency.
However, we use this feature parsimoniously, on lo-
cal variables, since it breaks the principles of func-
tional programming. We have defined precise rules
for naming variables, as we did in C for the first ver-
sion, in order to emphasise the modular decomposi-
tion of our program [19]. Last but not least, Scheme
programs may be interpreted— when software is be-
ing developed— or compiled, in which case they are
more efficient. As an example of a good Scheme im-
plementation, bigloo [38] compiles Scheme functions
by transforming them into C functions, then these
C functions are compiled, in turn.

If we compare the implementations in C and
Scheme, the latter is better, as expected from a
very high-level programming language. But pro-
gramming an application related to TEX using a lan-
guage other than C reveals a drawback: the kpath-

sea library [3] is written in C. Let us recall that
kpathsea implements functions navigating through
the TDS11 [43]. In particular, such functions lo-
calise the files containing the specification of a class
for a LATEX document or a bibliography style when
BibTEX runs. If there is a compatibility mode, for
‘old’ bibliography styles written in bst, the functions
of this compatibility mode should be able to localise
such files too. Likewise, ‘new’ bibliography styles
written in nbst, should be localised by means of
an analogous method. This implies that the lan-
guage— or, at least, an implementation of the lan-
guage— used for our software includes an interface
with C.

Of course, what we expose above proceeds from
general considerations. After all, we do not know
if BibTEX++ [4] — a successor of BibTEX based on
Java, with bibliography styles also written in Java —
is much less efficient than BibTEX. This may not be
the case. The advantages of script languages in such
development appear if we consider Bibulus [46], an-
other successor of BibTEX, written using Perl.12 It

11 TEX Directory Structure.
12 Practical Extraction Report Language. A didactic in-

troduction to this language is [45].

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 159

Jean-Michel Hufflen

has developed more quickly than MlBibTEX, but is
‘less’ multilingual and uses BibTEX when it runs.
That is, Bibulus does not replace BibTEX wholly, as
MlBibTEX attempts to do. In addition, there is an
example where the need of a programming language
at a higher level than C appeared: the project of
moving Ω — a successor of TEX — into a C++ plat-
form [36].

We personally think that an implementation of
NTS in Common Lisp [41] — what was planned ini-
tially — would have been preferable. As mentioned
in [47], the object-oriented features of Common Lisp

(CLOS13) have been added to the language’s basis—
as C++ object-oriented functionalities are added on
top of C— but the language itself is not actually
object-oriented. In [47], this point is viewed as a
drawback. First, we personally think that not every-
thing is an object, from the point of view of conceiv-
ing ideas. Second, Common Lisp, even if it is a func-
tional programming language, allows some opera-
tions to be performed more efficiently by means of
side effects, like Scheme.14 But Common Lisp’s stan-
dard does not specify an interface with C, as Scheme
does, although some implementations provide this
service. However, we personally prefer Scheme: it is
simpler and more modern.

3 Choice of strategy

3.1 Languages

TEX & Co. have been wonderful programs since the
date they came out. Although they behave very
nicely, the syntaxes are quite archaic. TEX’s is not
homogeneous— although LATEX2ε and LATEX 3 [32]
try to correct this point — for example, different de-
limiters are used to change size (‘{\small ...}’)
or face (‘\textbf{...}’). BibTEX’s syntax suffers
from lack of expressive power: for example, the only
way to put a brace within a field’s value is to give
its code number by ‘\symbol{...}’. ‘Semantically’,
TEX’s language provides many intelligent features,
as mentioned in [6], but does not meet a modern
style of programming. Likewise, .bib files’ syntax
can express only ‘verbatim’ values, except for some
‘tricks’ like inserting ‘-’ characters for a range of
page numbers. The specification of structured val-
ues like person or organisation names is easy for
simple cases, but quickly becomes obscure in more
complicated cases [22].

In addition, new syntactic sugar may be needed
to meet some new requirements. As an example, [23]

13 Common Lisp Object System.
14 Emacs Lisp, too, and the components of the Emacs editor

largely use this feature.

points out that the arguments of some macros—
e.g., \catcode— are not easily parseable. As an-
other example, the ConTEXt format [7] implements
a homogeneous expression of setup commands, by
means of a ‘key=value ’ syntax:

\setuplayout[backspace=4cm,topspace=2.5cm]

Nevertheless, is it reasonable to add more and more
syntactic sugar to such old-fashioned syntax? Would
the definition of new languages not be preferable?
Of course, the present languages of TEX and BibTEX
will still remain to be used, due to the huge number
of files using them and developed by end-users. But
if a new language is designed, it should become the
usual way to deal with the new program. Of course,
end-users will have to get used to the new language.
But that can be done progressively and synergy be-
tween developers and users may cause this new lan-
guage to be improved if need be.

In addition, let us remark that in our case, the
new language for bibliography styles (nbst) is close
to XSLT, so we think that users familiar with the
former can get used to the latter easily.

3.2 New services

Now it is admitted that composite tasks are not to
be done by a monolithic program, but by means of
a cooperation among several programs. From this
point of view, the cooperation between LATEX and
BibTEX is exemplary. But BibTEX is too strongly
related to LATEX. BibTEX can be used to build bibli-
ographies for ConTEXt documents, but only because
this word processor belongs to the TEX family. On
the contrary, writing a converter from BibTEX to
HTML15 by means of the bst language is impossi-
ble without loss of quality: for example, the un-
breakable space character is represented by ‘~’ — as
in TEX — when names are formatted [22], and this
convention cannot be changed.16 We see that such
problems can be avoided by considering an XML-like
language as a central format. In our case, generat-
ing bibliographies according to formats other than
LATEX’s should be easy since the LATEX commands
end users put into .bib files are removed when these
files are parsed. This point is detailed in [17, 21].

4 Conclusion

Last but not least, we have enjoyed designing and
implementing MlBibTEX, even if this development
backtracked several times. In addition, we think

15 HyperText Markup Language. Readers interested in
an introduction to this language can refer to [33].

16 In fact, there are such converters, an example being
BibTEX2HTML [5], written using Objective Caml [29], a func-
tional programming language.

160 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

MlBibTEX: Reporting the experience

that this development shows the difficulties related
to such a task. Two parts have to be managed in
parallel. The first part is reverse engineering, that
is, guessing the concept from the program. The sec-
ond: enlarging what already exists. In comparison
with ‘classical’ development of a new program from
scratch, tests concerning the compatibility mode are
easy to perform: we can simply compare what is
given by the two programs, the ‘old’ one becoming
an oracle. But reaching a homogeneous concept is
not obvious if we want to keep backward compatibil-
ity. Nevertheless, we hope that we have done some
satisfactory work.

5 Acknowledgements

Many thanks to Jerzy B. Ludwichowski, who has
written the Polish translation of the abstract, and
to the proofreaders: Karl Berry, Barbara Beeton.

References

[1] William Adams, ed.: TUG 2003 Proceedings,
TUGboat, Vol. 24:1. July 2003.

[2] Cédric Bassetti and Christian Bon:
Interactive Specification of bibliography styles
for MlBIBTEX. Report of student project.
University of Franche-Comté. May 2006.

[3] Karl Berry and Olaf Weber: Kpathsea

library. http://tug.org/kpathsea/.

[4] Emmanuel Donin de Rosière: From Stack
Removing in Stack-Based Languages to
BIBTEX++. Master’s thesis, ENSTB, Brest.
2003.

[5] Jean-Christophe Filliâtre and Claude
Marché: The BIBTEX2HTML Home Page.
June 2006. http://www.lri.fr/~filliatr/

bibtex2html/.

[6] Jonathan Fine: “TEX as a Callable
Function”. In: EuroTEX 2002, pp. 26–30.
Bachotek, Poland. April 2002.

[7] Hans Hagen: ConTEXt, the Manual.
November 2001. http://www.pragma-ade.

com/general/manuals/cont-enp.pdf.

[8] Stéphane Henry and Jérôme Voinot:
Interface for MlBIBTEX. Getting
Bibliographical Entries Interactively.
Report of student project. University of
Franche-Comté. May 2005.

[9] Jean-Michel Hufflen : « Vers une extension
multilingue de BibTEX ». Cahiers GUTenberg,
Vol. 39–40, p. 23–38. In Actes du Congrès
GUTenberg 2001, Metz. Mai 2001.

[10] Jean-Michel Hufflen: “Lessons from a
Bibliography Program’s Reimplementation”.

In: Mark van den Brand and Ralf Lämmel,
eds., LDTA 2002, Vol. 65.3 of ENTCS.
Elsevier, Grenoble, France. April 2002.

[11] Jean-Michel Hufflen: Interaktive
BIBTEX-Programmierung. DANTE,
Herbsttagung 2002, Augsburg. Oktober 2002.

[12] Jean-Michel Hufflen: Die neue Sprache
für MlBIBTEX. DANTE 2003, Bremen. April
2003.

[13] Jean-Michel Hufflen: “Mixing Two
Bibliography Style Languages”. In: Barrett R.
Bryant and João Saraiva, eds., LDTA

2003, Vol. 82.3 of ENTCS. Elsevier, Warsaw,
Poland. April 2003.

[14] Jean-Michel Hufflen: “European
Bibliography Styles and MlBibTEX”.
TUGboat, Vol. 24, no. 3, pp. 489–498.
EuroTEX 2003, Brest, France. June 2003.

[15] Jean-Michel Hufflen: “MlBibTEX’s Version
1.3”. TUGboat, Vol. 24, no. 2, pp. 249–262.
July 2003.

[16] Jean-Michel Hufflen: “A Tour around
MlBibTEX and Its Implementation(s)”.
Biuletyn GUST, Vol. 20, pp. 21–28. In
BachoTEX 2004 conference. April 2004.

[17] Jean-Michel Hufflen: “MlBibTEX: Beyond
LATEX”. In: Apostolos Syropoulos, Karl
Berry, Yannis Haralambous, Baden
Hughes, Steven Peter and John Plaice,
eds., International Conference on TEX, XML,
and Digital Typography, Vol. 3130 of LNCS,
pp. 203–215. Springer, Xanthi, Greece. August
2004.

[18] Jean-Michel Hufflen: Beschreibung der
MlBIBTEX-Implementierung mit Scheme.
DANTE 2004, Herbsttagung, Hannover.
Oktober 2004.

[19] Jean-Michel Hufflen: “Implementing a
Bibliography Processor in Scheme”. In:
J. Michael Ashley and Michel Sperber,
eds., Proc. of the 6th Workshop on Scheme
and Functional Programming, Vol. 619
of Indiana University Computer Science
Department, pp. 77–87. Tallinn. September
2005.

[20] Jean-Michel Hufflen: “BibTEX, MlBibTEX
and Bibliography Styles”. Biuletyn GUST,
Vol. 23, pp. 76–80. In BachoTEX 2006
conference. April 2006.

[21] Jean-Michel Hufflen: “MlBibTEX Meets
ConTEXt”. TUGboat, Vol. 27, no. 1,

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 161

Jean-Michel Hufflen

pp. 76–82. EuroTEX 2006 proceedings,
Debrecen, Hungary. July 2006.

[22] Jean-Michel Hufflen: “Names in BibTEX
and MlBibTEX”. TUGboat, Vol. 27, no. 2,
pp. 243–253. TUG 2006 proceedings,
Marrakesh, Morocco. November 2006.

[23] David Kastrup: “Designing an Implemen-
tation Language for a TEX Successor”. In:
Proc. EuroTEX 2005, pp. 71–75. February
2005.

[24] Richard Kelsey, William D. Clinger,
Jonathan A. Rees, Harold Abelson,
Norman I. Adams iv, David H. Bartley,
Gary Brooks, R. Kent Dybvig, Daniel P.
Friedman, Robert Halstead, Chris
Hanson, Christopher T. Haynes,
Eugene Edmund Kohlbecker, Jr, Donald
Oxley, Kent M. Pitman, Guillermo J.
Rozas, Guy Lewis Steele, Jr, Gerald Jay
Sussman and Mitchell Wand: “Revised5

Report on the Algorithmic Language
Scheme”. HOSC, Vol. 11, no. 1, pp. 7–105.
August 1998.

[25] Oleg E. Kiselyov: XML and Scheme.
September 2005. http://okmij.org/ftp/

Scheme/xml.html.

[26] Donald Ervin Knuth: “The Future of TEX
and METAFONT”. TUGboat, Vol. 11, no. 4,
pp. 489. December 1990.

[27] Joachim Lammarsch: “The History of NTS”.
In: EuroTEX 1999, pp. 228–232. Heidelberg
(Germany). September 1999.

[28] Leslie Lamport: LATEX: A Document
Preparation System. User’s Guide and
Reference Manual. Addison-Wesley Publishing
Company, Reading, Massachusetts. 1994.

[29] Xavier Leroy, Damien Doligez, Jacques
Garrigue, Didier Rémy and Jéróme
Vouillon: The Objective Caml System.
Release 0.9. Documentation and User’s
Manual. 2004. http://caml.inria.fr/pub/

docs/manual-ocaml/index.html.

[30] Bill Lewis, Dan LaLiberte, Richard M.
Stallman and the GNU Manual Group:
GNU Emacs Lisp Reference Manual.
http://www.gnu.org/software/emacs/

elisp-manual/.

[31] Yukihiro Matsumoto: Ruby in a Nutshell.
O’Reilly. English translation by David L.
Reynolds, Jr. November 2001.

[32] Frank Mittelbach and Rainer Schöpf:
“Towards LATEX 3.0”. TUGboat, Vol. 12,
no. 1, pp. 74–79. March 1991.

[33] Chuck Musciano and Bill Kennedy: HTML

& XHTML: The Definitive Guide. 5th edition.
O’Reilly & Associates, Inc. August 2002.

[34] Oren Patashnik: Designing BIBTEX
Styles. February 1988. Part of the BibTEX
distribution.

[35] Oren Patashnik: BIBTEXing. February 1988.
Part of the BibTEX distribution.

[36] John Plaice and Paul Swoboda: “Moving
Omega to a C++-Based Platform”. Biuletyn
Polskiej Grupy Użytkowników Systemu
TEX, Vol. 20, pp. 3–5. In BachoTEX 2004
conference. April 2004.

[37] Erik T. Ray: Learning XML. O’Reilly
& Associates, Inc. January 2001.

[38] Manuel Serrano: Bigloo. A Practical Scheme
Compiler. User Manual for Version 2.9a.
December 2006.

[39] Scheme Requests for Implementation.
February 2007. http://srfi.schemers.org.

[40] Richard M. Stallman: GNU Emacs Manual.
January 2007. http://www.gnu.org/

software/emacs/manual/.

[41] Guy Lewis Steele, Jr., Scott E. Fahlman,
Richard P. Gabriel, David A. Moon,
Daniel L. Weinreb, Daniel Gureasko
Bobrow, Linda G. DeMichiel, Sonya E.
Keene, Gregor Kiczales, Crispin Perdue,
Kent M. Pitman, Richard Waters and
Jon L White: Common Lisp. The Language.
Second Edition. Digital Press. 1990.

[42] Philip Taylor, Jiři Zlatuška and Karel
Skoupý: “The NTS Project: From
Conception to Implementation”. Cahiers
GUTenberg, Vol. 35–36, pp. 53–77. May 2000.

[43] TUG Working Group on a TEX Directory
Structure: A Directory Structure for TEX
Files. http://tug.org/tds.

[44] W3C: XSL Transformations (XSLT).
Version 1.0. W3C Recommendation. Edited
by James Clark. November 1999. http:

//www.w3.org/TR/1999/REC-xslt-19991116.

[45] Larry Wall, Tom Christiansen and Jon
Orwant: Programming Perl. 3rd edition.
O’Reilly & Associates, Inc. July 2000.

[46] Thomas Widman: “Bibulus—a Perl XML
Replacement for BibTEX”. In: EuroTEX 2003,
pp. 137–141. ENSTB. June 2003.

[47] Jiři Zlatuška: “NTS: Programming
Languages and Paradigms”. In: EuroTEX
1999, pp. 241–245. Heidelberg (Germany).
September 1999.

162 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

Writing (LA)TEX documents with AUCTEX in Emacs

David Kastrup
dak (at) gnu dot org

Abstract

At the time of the abstract deadline, several pretest versions of Emacs 22 have
been made available, and the final release is even more imminent than the last
few years. However, most GNU/Linux distributions already have made developer
versions of Emacs available as snapshots. Users meeting their typesetting needs
mostly with LATEX will profit from moving to such versions from the rather an-
cient Emacs 21.4 because of extensive improvements of the provided desktop and
editing environment.

A number of newly supported version control systems, thumbnail-supported
browsing of directories with graphics files, considerably improved Unicode sup-
port for editing, desktop interaction and input, syntax highlighting activated by
default, new ports for Windows, Mac OS X and GTK+ using the native toolkits
for graphic support and toolbars and providing a native, well integrated look for
those desktop environments, transparent access to files accessible with su, sudo,
ssh and other shell accounts: those provide, among numerous improved details
and fixes, quite a bit of progress for using Emacs as a work environment.

Focusing on the creation of LATEX documents, the AUCTEX editing package
maintained by the speaker is the most extensively used editing solution for TEX
and Emacs, providing previewed material integrated into the source code window
with preview-latex, support of source specials and the pdfsync package for lowe-
ring the barrier between source code and final output, and delivering a number
of ways for formatting and organizing the source code. Syntax highlighting and
folding of various constructs and comments render source code more managea-
ble. A specialized mode for editing .dtx files considerably supports the labors of
TEX programmers. For managing cross references and bibliographical citations in
LATEX, the RefTEX package provides convenient support.

1 Tutorial

It will be shown how to get to an installed version
of Emacs and what to do with it.

2 Sources

The abstract explains what this is all about. Let
us just mention the sources where you can get
Emacs/AUCTEX combinations. At the current
point of time, the pretest release numbers have
reached 22.0.97. By the time of the conference,
Emacs 22.1 might well be released. In any case,
here is the availability at the time of this writing:

First stop Try the download page from
AUCTEX at http://www.gnu.org/software/

auctex.

Debian/Ubuntu The packages auctex as
well as emacs-snapshot-gtk are available in the

usual repositories for those distributions. Current
versions should be 22.0.95 and 11.84 or later.

Mac OS X CarbonEmacs (http://homepage.

mac.com/zenitani/emacs-e.html) comes with
AUCTeX.

MS Windows Download a precompiled Emacs
with AUCTEX from the AUCTEX download page.

Fedora Download the AUCTEX RPM from the
AUCTEX download page. Get Emacs 22 from
http://people.redhat.com/coldwell/emacs/.

SUSE Download the AUCTEX RPM from
the AUCTEX download page. There seems to
be no good source for a precompiled Emacs 22.
Compile your own (downloading the source from
http://alpha.gnu.org/gnu/emacs/pretest) or
stay with 21.4 (ugh).

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 163

LYX: An editor not just for secretaries

Tomasz Łuczak
Katowice, Poland

tlu (at) technodat dot com dot pl

Abstract

The article presents a less known but nonetheless interesting editor named LYX,
which can be used not only for mundane secretarial tasks but also more difficult
jobs.

1 What is LYX?

One could say that an editor is an editor, but LYX
is a little bit different.

The basic difference with other TEX editors lies
in that LYX does not display TEX commands, it
writes files in its own format, and the text in the
editor window is pre-formatted (Fig. 1).

Figure 1: The LYX editor window

Text preformatting does not make LYX a WYSI-

WYG, i.e., what you see is what you get editor but a
so-called WYSIWYM, i.e., what you see is what you
mean editor. That what we see is what we want to
achieve, thus in what way TEX is going to typeset
it is a secondary issue — TEX surely will do its best.
In the long run the WYSIWYG mode is tiresome
and takes the author’s attention from the content.
With LYX the text is preformatted only to mark out
(sub)titles, font size changes, lists or tables.

Options are available to set the basic text font
and its size as well as colors. This is to facilitate the
writing process. The default light rose background
does not strain the eyes.

The editor comes with extensive documentation
and an excellent tutorial, so one can quickly reach

the stage of making conscious use of the program.
LYX is available for Linux, Mac OS X and MS

Windows. It now offers Unicode support with UTF-8
encoded input and X ETEX processing.

The LYX home page is http://www.lyx.org.

2 Working with LYX

A new LYX document is created in two ways: by
selecting from one of a set of templates or opening an
empty document. An empty document is not empty —
it has a default preamble. In document settings the
class is chosen from a list; one may choose additional
class options, page geometry parameters and thus
“click-out” the preamble.

The document settings area also offers fields for
entering one’s own “magic words” to be placed in
the preamble.

LYX allows for the creation of document tem-
plates: new documents can be composed from such
templates. They are just ordinary LYX documents
in which a class with its parameters is defined and
sample text is filled in. Templates are convenient not
only for more complicated documents like presenta-
tions or articles in predefined journal styles but also
for letters or ordinary papers because they automate
and minimize standard actions.

Titles, lists, and most other environments are
selected from a list located to the left on the tool
bar, just below the menu. Font or font size changes,
paragraph settings are conducted through dialog
windows. Many common environments and editing
commands are available through keyboard shortcuts
which immensely speeds up the writing.

Labels and references, index items, tables of con-
tents, tables, images, inserts, minipages, quotations,
footnotes and so on, i.e., all basic document elements,
are available from the menu or tool bars with one or
two mouse clicks.

LYX offers convenient tools for table editing,
available from the tools menu or by right-clicking
directly on the table. Changes of table layout, justi-

164 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

LYX: An editor not just for secretaries

fication, joining cells in rows, borders and so on are
easy to do with LYX.

Inserting images into the text is similarly un-
complicated. One can specify if the image should be
shown in the editor window and at what size. Inserts
with pictures or tables might be folded to minimize
distraction.

After the text is entered, it is time to compile
the document, which in LYX terminology is called
“viewing”, as compilation is automatically followed by
viewing of the compiled document. This is convenient
and nice, because LYX compiles until all references
become up-to-date. If a bibliography or indexes are
present in the document, the relevant programs will
also be called in the proper order.

If the document contains an error, LYX will dis-
play a window with the list of errors. This allows
one to navigate through the document to the places
which TEX indicates. There shouldn’t be many er-
rors; for example, LYX itself enters names of the
environments we choose from the list.

To facilitate navigation and approximate the
result, titles and lists are numbered automatically
and the table of contents is created. A nice feature
is navigation bookmarks, of which one can create up
to five.

Change tracking, indicated by the use of color,
is a tool which cannot be overestimated. Changes
made in the document might be accepted or rejected.
Moreover, version control, based on RCS, is built
into LYX.

The comfort of editing is increased by the ability
to open several buffers with one document as well as
the availability of session management.

3 More advanced features

The authors of the editor did not forget about math-
ematical expressions, which are displayed in the ed-
itor’s window and are comfortably editable. The
math symbol panel allows for easy access to needed
symbols.

Math expressions entered into a LYX document
can be passed to one of the supported computer
algebra systems (Maxima, Octave, Mathematica and
Maple). The calculated result is inserted into the
document.

A serious article requires a bibliography. Here
also, LYX does not fall short, allowing the use of a
bibliography database. Unfortunately, the database
has to be prepared outside of LYX. Some bibliography
database management programs (e.g., TkBibTEX
and pybibliographer) communicate with LYX through
pipes.

If the need arises to enter a LATEX command,

this can be done by employing TEX code inserts. We
are thus allowed to enter code which will not be
interpreted by LYX, but passed verbatim.

When working with large documents, it is con-
venient to divide them into smaller parts. Although
each LYX document has its own preamble, LYX “sees”
only the content when incorporating parts into the
main document. This allows for separate compilation
of parts and of the whole. Also, both LATEX and text
files can be included into the main document.

If we arrive at a stage where LYX does not suffice,
we can convert the document from the LYX format
to the TEX format. The resulting files are readable
enough to be of further use.

4 Peculiarities of LYX

For compilation, LYX creates a temporary directory
to which all converted document files are written
and to which all related files, e.g., images, are copied.
One should remember that if one wants to have
the resulting document in the same directory as the
LYX document one should export it, otherwise the
resulting document will not be available after the
closing of the document or of the editor. LYX offers
exports to all the usual formats: DVI, PS, PDF, TXT,
and also to HTML formats. Other formats can be
supported provided the appropriate converters are
available.

LYX cooperates with the following spell checking
programs: aspell, ispell and hspell. Unfortunately,
spell checking does not function while typing occurs,
it has to be activated manually. Spell checking starts
from the current cursor position.

LYX uses document classes in a peculiar way.
The editor allows the use of only those classes which
are available with the TEX installation and which
have their own LYX *.layout configuration files.
For most of the popular classes (standard classes,
mwcls, memoir, koma-script, beamer and about a
hundred others) such files exist. The configuration
files contain information about class options and the
way the environments are presented by the editor.
All the environments which we want to be available
on the list should be defined in the configuration file.

The editor automatically configures itself during
its first run by locating all programs it needs and
checking the availability of classes.

5 Final remarks

The most important merit of LYX is that it opens
the TEX world to those who have minimal, or none
whatsoever, knowledge of it.

Happy LYXing!

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 165

Automated DVD menu authoring with pdfLATEX

Péter Szabó
Budapest University of Technology and Economics,
Dept. of Computer Science and Information Theory,
H-1117 Hungary, Budapest, Magyar tudósok körútja 2.
pts (at) cs dot bme dot hu

http://www.inf.bme.hu/~pts/

Abstract

dvdauthor is an excellent low-level free tool for video DVD authoring on Unix
systems. However, it doesn’t provide a convenient way for drawing the menu
background and buttons. We present dvdmenuauthor, a collection of scripts for
automated DVD authoring with menus. dvdmenuauthor uses pdfLATEX macros for
menu composition, Xpdf for menu rendering, and dvdauthor for DVD filesystem
authoring.

1 Background

DVD-Video [8] is today’s most popular home enter-
tainment video format. Video shops and video rental
services used to provide films on VHS cassettes in the
1990s, but now they offer DVD discs almost exclu-
sively. DVD not only provides cheaper reproduction
costs, better video and audio quality than VHS, and
multiple camera angles, audio tracks and subtitles,
but it also has an advanced, programmable (but op-
tional) navigation facility called DVD menus (or DVD
extras).

The remote control of a DVD player device has
several menu buttons (such as menu, top menu, au-
dio, subtitle and angle), which, when pressed, sus-
pend playback and jump to a menu. A menu is a
single-page interactive part of the DVD, designed
and programmed by the DVD creator. It can be
animated (possibly in a loop), and it can have audio
as well. A menu has several on-screen buttons, one
of them being highlighted. The arrow buttons (up,
right, down and left) on the remote control can be
used move the highlight, or, when the DVD is played
on a computer, the highlight is moved to the button
under the mouse. The enter button can be used
to execute the action associated to the highlighted
on-screen button. Possible actions:

• resume or start playback at a specific location;

• jump to another menu (possibly with a specific
button pre-highlighted);

• change a playback-related variable (such as au-
dio stream, subtitle language and angle);

• change an auxiliary variable (to be used later) —
integer arithmetic operators are available;

• execute a conditional block (if–then–else).

Popular reasons for adding menus to a DVD:

• DVD menus are a good quality addon for Holly-
wood-style movies. Both the visual appearance
and the sound of the menu is in theme with the
movie, and the first minute spent on navigating
the menu (mostly in order to select the audio
stream and subtitles) is now part of the fun the
spectator experiences.

• If the DVD contains a lot of material (up to 8
hours are feasible using double-layer discs and
lossy compression), spectators expect an order
in which they can easily find the title they are
looking for. Menus with thumbnail images and
title captions make navigation easier. It is also
possible to have multiple menus that point to
the same set of titles, but in different logical
order. Usually 2 × 2 or 3 × 2 thumbnails are
displayed in a single menu, and such menus
are linked together using buttons. Most DVD
authoring software provide an automated wizard
for generating thumbnailed menus of this kind.

• DVD menus make it possible to present an in-
teractive show to the spectators, in which they
can choose among 2 or 3 endings of the movie,
or they can even choose in the middle how the
story should advance. Of course, movie creators
must record all possible storylines, which is a lot
of extra work, and the capacity of the DVD disk
also limits the available choices. However, it can
be feasible to give the spectator 3 choice points
and thus have 2 · 2 · 2 = 8 storylines altogether
in a 1-hour long movie.

• It is also possible to offer a trivia game (playable
by the spectator) in DVD format. For example,
the famous Who wants to be a millionaire TV

166 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

Automated DVD menu authoring with pdfLATEX

game has a DVD version [16], in which the next
question is chosen randomly from about 1000
pre-recorded questions. Even the three lifelines
are present. All these are programmed as a set
of DVD menus.

The process of designing and creating a DVD-Video
disc is called DVD authoring. It consists of these
steps:

1. DVD stream authoring: The video, audio and
subtitle streams are created, imported and mul-
tiplexed together to DVD-compatible MPEG-2
program stream files. The DVD standard im-
poses quite a lot of restrictions on the file format,
the video resolution, the frame rate, the video
codec, the audio codec and the audio sample
rate. However, there are tools (such as the free
DeVeDe [2]) which can convert any stream to
a DVD-compatible stream. Most video edit-
ing tools have DVD-compatible export filters.
For simple MPEG video editing, we recommend
MPEG Video Wizard [17], which is not only ef-
ficient to use, but it also runs quickly enough
even in virtualised environments.

2. DVD menu authoring: The menu background
images (or animations), buttons and captions
are designed, menus and titles (i.e. streams au-
thored in the previous steps) are combined using
programmed actions. This step is the integra-
tion part of the DVD authoring process, because
the way individual background images, thumb-
nails, captions and stream files are combined
together is specified in this step. If dvdauthor
[3] is used in the next step, the details of the in-
tegration are specified in its XML project input
file.

3. DVD filesystem creation: The various stream
files and declarations are combined to a DVD-
Video filesystem (with the VIDEO_TS folder).
This is a completely automatic process (and
takes about 5 minutes on modern PCs for a
single-layer full DVD). On Linux, dvdauthor
[3] is the only well-known free tool that can do
the job; other programs are usually easy-to-use
frontends to dvdauthor.

4. DVD image creation: An ISO image file is cre-
ated automatically from the DVD filesystem. On
Linux systems, it is usually done with mkisofs
[13], with the -dvd-video option.

5. DVD disc burning: The ISO image file is au-
tomatically burnt to a DVD disc. On Linux
systems, growisofs [10] is a convenient command-
line tool to do the job. It can also combine this
step with the previous one (DVD image creation),

so a multi-gigabyte temporary ISO image file
doesn’t have to be created.

2 Motivation

This article focuses on DVD menu authoring, i.e.
adding menus and integrating DVD-Video compo-
nents. It presents a solution based on the combina-
tion of dvdauthor XML integration and LATEX type-
setting. The reasons why such a solution can be
useful:

• Our solution uses only free software and runs
on Unix systems. We have tried several tools
[3, 14, 7, 11], but we haven’t found such a tool
for Unix which is user-friendly, well-integrated
(doesn’t need a specific version of several dozen
other software packages to work), reliable (no
random crashes) and ready for production use
(no major bugs and annoyances, no memory
leaks). We decided to develop our own software,
which is practical and usable for menu-based
DVD authoring.

• Most popular video editing programs provide
only a wizard, which streamlines creating simple
menus (such as thumbnail buttons for each title),
and doesn’t let the user specify the exact menu
structure.

• A template-based, non-WYSIWYG solution is
useful for repetitive, automated menu genera-
tion, such as generating a navigable DVD slide-
show from a set of images, or generating several
DVDs (with different video content) using one
menu theme.

• LATEX provides a separation of text and design
that is versatile enough for several designs to
be tried (and possibly customised) for the same
menu structure. Most WYSIWYG DVD menu
creation tools let the user manipulate the de-
sign of one object a time. Most of them don’t
support requests like “let’s see the same design
with 10% larger buttons”, and even those that
support it, won’t be able to adjust the spac-
ing properly around the resized buttons. With
LATEX, however, those kinds of changes can be
easily done with glue nodes and a little macro
programming.

• TEX can typeset textual labels of high quality.
Most DVD authoring programs have very lim-
ited typographic capabilities, for example they
don’t support manual line breaking, line justi-
fication, automatic line breaking, pair kerning
and accented characters are not available. Using
LATEX we get all these features.

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 167

Péter Szabó

3 Design decisions

It was our intention to use existing software if possi-
ble, and add or change things where existing software
is not powerful enough. We have found that dvd-
author’s XML project file provides an efficient and
precise way for DVD menu authoring—except for
drawing the menus (and converting them to a for-
mat that dvdauthor understands). Thus we decided
to supplement the XML project file with drawing
operations, and write some scripts that extract the
drawing operations, typeset the menus, render them
to images, convert the images, and run dvdauthor
to create the DVD file system. We chose LATEX for
the markup language of drawing operations, mostly
because it has powerful typesetting capabilities, and
its macro language is powerful enough to implement
the necessary housekeeping (e.g. which button was
emitted to which page).

We wanted to keep LATEX programming at a
minimum, because LATEX is not convenient for gen-
eral data processing. Thus we use LATEX mostly for
typesetting. Perl scripts generate the document to
typeset from the project XML file, and Perl scripts
drive the further conversion of pdfLATEX’s PDF out-
put to images (using the pdftoppm tool of Xpdf
[19]). LATEX macros emit some metainformation to
the .aux file (e.g. the correspondence of PDF page
numbers and DVD menu button names), which is
also read by the Perl scripts.

We wanted to reuse as many LATEX typesetting
constructs as possible, thus the style file just sets
the page size, the margins and the default font size,
and lets the user draw the menu with LATEX. We
don’t enforce any specific layout, any layout can
be designed using TEX boxes, glues and macro pro-
gramming. However, we don’t use automatic page
breaks: the user has to decide in advance how many
menus to have. (Automatic page breaks wouldn’t
fit with dvdauthor’s project file easily anyway.) The
style file also provides some drawing primitives useful
for DVD menus: colourful frames, framed buttons,
single-colour buttons (of any shape) and absolute
positioning.

We designed the project file syntax so that users
don’t have to type the same information twice, and
data relationships are often expressed by putting
related pieces close to each other. For example, it
is possible to specify the thumbnail image file name
as an attribute to the DVD <button> tag. The
image file name will be passed as a parameter to the
appropriate macro that draws the image.

The software we have written, dvdmenuauthor,
is free to use and is available for download from [6].

4 The manual way of authoring DVDs

This section gives an introduction to DVD-Video
concepts, and it also presents the pure, manual way
of DVD menu authoring using dvdauthor. The way
presented here is similar to typesetting documents
with TEX: there are a bunch of input files, most
of them being plain text files written by humans,
and there are some non-WYSIWYG tools, which can
be applied to the input files in the correct order to
produce the desired output.

4.1 DVD without menus

DVD stream authoring is beyond the scope of this pa-
per, so we assume that the movie is already prepared
in a set of DVD-compatible MPEG-2 stream files. Un-
fortunately, there is no validator for this file format.
If there is a problem with the file (for example, the
wrong audio codec is used, or the multiplexing packet
size is incorrect), dvdauthor will usually complain,
but the error message doesn’t always indicate clearly
the reason for the problem. The free video conversion
tools MEncoder [12] and FFmpeg [9] can generate a
conforming MPEG-2 stream if called with the proper
parameters. See the source code of DeVeDe [2] for
parameters to MEncoder.

A DVD-Video disc consists of titles and menus.
A title is a stream that contains video and audio
(multiple video and audio channels possible). The
playback of a title can start at the beginning or at
any specific position (given by a time offset from the
beginning). A chapter is a logical unit within a title.
DVD players usually let the user choose a title (by its
number) to start playback at (not all players expose
chapter boundaries within the title to the user).

The simplest, completely automatic way to cre-
ate a DVD without menus is to use dvdauthor [3].
For example,

dvdauthor -o dir -t a.mpg b.mpg c.mpg

dvdauthor -o dir -t d.mpg e.mpg

dvdauthor -o dir -T

creates a DVD with two titles. Title 1 contains
3 chapters (from the contents of video files a.mpg,
b.mpg and c.mpg, respectively). Title 2 contains 2
chapters (from the contents of video fies d.mpg and
e.mpg, respectively). For each title, files dir/VIDEO
_TS/VTS_NN_* are created, where NN is the number
of the title. The last command (with the -T) creates
the table of contents (to files dir/VIDEO_TS/VIDEO_
TS.*). Please note that the contents of the video
files are copied, so running dvdauthor takes time and
needs free disk space (about the same size as the
total size of the input files). The DVD filesystem
created in dir can be played with most media players

168 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

Automated DVD menu authoring with pdfLATEX

on Linux (e.g. Xine, VLC, Kaffeine and MPlayer). If
it looks right, it can be burnt to disc:

growisofs -dvd-compat -Z /dev/dvd \

-dvd-video dir/

4.2 DVD with menus

If menus are involved or complex settings have to
be specified, then a project file (in XML format)
should be prepared for dvdauthor, which specifies all
aspects of the DVD (how chapters, titles and menus
should be formed from input files; what settings
should be used; what code should be executed at
events like title playback beginning, title playback
end and remote control button press). Then the
DVD filesystem would be created by the command

dvdauthor -x project.xml

The manual page of dvdauthor [4] gives an excel-
lent and concise introduction to DVD-Video concepts.
However, it doesn’t contain examples for complex
XML projects. To get such an example, one should
try some GUI DVD authoring tools (such as [11, 14])
and see what files they generate.

A DVD menu is similar to a title, with some ex-
tra interactive features, such as buttons and actions.
Buttons form an extra visual layer above the menu.
Each button is a rectangular image (other shapes
can be specified using transparent pixels) with only
a small number of colors (≤ 16). Buttons on a menu
page might not overlap. Each button has 4 neigh-
bours (left, right, up and down). A neighbour is
activated when the user presses the corresponding
arrow button on the remote control. When a menu is
being shown, it has a current button. Only the image
of the current button is drawn over the video, none
of the other buttons are displayed. When another
button is activated, it becomes the current button, it
gets displayed (and the previous button gets hidden).
When the user presses the enter remote control but-
ton, the code associated with the current button is
executed. The code can be specified in the project
XML file inside the corresponding <button> tag. The
syntax is similar to a very small subset of C, it is
documented in the manual page of dvdauthor.

Menus can also contain actions. An action is
like a button with code (to be executed), but with-
out a visual representation. An action is activated
either by the arrow keys on the remote control (in
this case, the action must be a neighbour of the
current button), or by special keys (such as angle)
on the remote control. Actions are very briefly doc-
umented; just a little information can be found in
the manual page of spumux (a tool which is part of
the dvdauthor suite). Actions can also be used to

jump to a different menu without the enter remote
control button. [15] is a detailed tutorial about this.
Animated thumbnails (where the thumbnail of the
current button is animated) can be also be created
this way. To have animated thumbnails, a separate,
animated menu has to be created for each button,
each menu having only one button and neighbouring
actions, which jump to another menu.

Both titles and menus support executing code
before the title or menu is entered (specify such code
inside the <pre> in the dvdauthor XML fie) and when
it is left (use the <post> tag). The <pre> tag of the
main menu can contain code to skip the intro video
unless the disc playback has just started. This can
be implemented as a conditional jump instruction.
The condition should depend on a variable, which is
set just before jumping to the intro.

The similarity of titles and menus implies that
menus can have audio and animation. These fea-
tures for menus are provided by default, since the
menu background is an MPEG-2 file itself, which
can contain audio, and of course can contain anima-
tion. DVD authoring applications (including dvd-
menuauthor) usually support only still images for
menus, and they take care of converting these im-
ages to MPEG-2 videos of a few seconds in length.
Making the menu video loop is straightforward: the
menu’s <post> code has to be extended with a jump
command that jumps to the beginning of the menu.
DVD players are usually slow when jumping (par-
tially because a seek on the DVD disc is slow), so
expect about a half second of audio lag when the
menu loops. Some players also ignore remote control
buttons during this lag.

There are some additional concepts which are
important to understand before designing a DVD
structure by hand. Such concepts are: vmgm, titleset
and cell. These are documented in the manual page
of dvdauthor [4].

Sometimes a code snippet in a DVD program is
too long. Unfortunately, dvdauthor doesn’t always
indicate this error condition properly. The solution
is to split the containing menu to two or more menus,
each of them containing half of the code, and jumping
to each other when necessary.

Restrictions There are some restrictions on the
sources and targets of direct jumps in the DVD pro-
gram code. (For example, one cannot jump from one
titleset directly to another one. Another example: in
some jumps, the target menu number cannot be spec-
ified— the so-called entry point must be given.) To
overcome these restrictions, an indirect jump can be
used: set a variable, jump to the main menu, whose

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 169

Péter Szabó

<pre> code examines the variable and jumps to the
desired target title or menu. dvdauthor provides a
scarcely documented facility (the jumppad="1" at-
tribute) to do this automatically. However, this
might produce extra errors if the DVD program code
is long. It is safer to implement the indirect jumps
by hand.

4.3 Drawing the menus

All aspects of the DVD can be specified straightfor-
wardly in the dvdauthor XML project file, except
for the menu background image, the menu button
images and the button neighbour relationships. Our
aim with dvdmenuauthor was to automate this pro-
cess as far as possible, while still leaving full control
to the user. But first let’s see a manual method. The
visual part of a DVD menu consists of:

• background stream: an MPEG-2 stream with
video and audio. For simple menus, the audio
is silent, and the video contains a single still
image repeated for a couple of seconds. (dvd-
menuauthor supports only still images without
audio.)

• button highlight layer: a single image with a
few colours and transparency. This layer con-
sists the union of the button images. When
the DVD player displays a menu, it draws the
image of the current button (taken from the but-
ton highlight layer) over the background stream.
A simple button highlight layer contains only
a single colour besides the transparent pixels.
(dvdmenuauthor supports only a single colour.)

• button select layer: similar to the button high-
light layer, but a button is drawn from here
when it is activated (with enter). The duration
that the image is displayed is just a few hundred
milliseconds: it lasts until the DVD player loads
the next title or menu. Usually the button high-
light layer is the same as the button select layer,
but with a different color.

• button bounding boxes: the rectangular bound-
ing box of each button on the menu. These
boxes must not overlap.

• button neighbours: the name of the left, right, up
and down neighbour for each button. dvdauthor
is able to infer neighbourhood relationships from
bounding box coordinates.

• button and action names: these are used by
dvdauthor to identify the button (or action)
within the menu, in order to be able to add code
to be executed when the button is selected.

It is quite cumbersome to keep all these visual
elements in sync by hand when drawing the menus.

For example, if we move or resize a button, then
the background stream, the button layers and the
button bounding boxes have to be properly modified.
dvdmenuauthor does all these automatically.

To find out how to assemble the visual elements
to an MPEG-2 stream, the easiest way is to examine
the auxiliary files generated by GUI frontends to
dvdauthor [11, 14]. The XML syntax is explained
in the manual page of dvdauthor and its spumux
tool, and also in [5]. dvdmenuauthor contains a
Perl script called genmpeg.pl, which can generate a
DVD-compatible MPEG-2 stream from a series of
still images.

5 DVD menus with dvdmenuauthor

5.1 A menu with thumbnails

Figure 1 shows a typical thumbnail menu in a 3 × 2
layout. The menu has a background, a title caption,
up to 6 thumbnail buttons (now actually 5), a caption
for each thumbnail, and three navigation buttons
to reach other menus. For simplicity, big numbers
are displayed instead of real thumbnails from the
video. In the figure, thumbnail button number 1 is
highlighted with an ochre rectangular frame.

Figure 2 shows how to define such a menu in
dvdauthor’s XML project file. All the visual ele-
ments, including the background, the button layers
and the button bounding boxes are encoded in the
file menu42.mpg. Probably spumux was used to mul-
tiplex these visual elements to the file. The figure
shows that each button has a name and a corre-
sponding program code to execute when the button
is activated. If there are any actions in the menu,
they also appear as <button> tags here.

Figure 3 shows how to draw the same menu us-
ing dvdmenuauthor. It also illustrates the following
features of the software:

• LATEX markup can be used to typeset the cap-
tions (see \emph).

• TEX’s line breaking algorithm can be used (see
caption of button 1).

• The visual design is separated from the menu-
specific data (actual captions and thumbnail
images) using templates. Only the menu-specific
data is shown on the figure.

• All information needed to render a button are
packed together to the <button> XML tag. The
attributes with the tex: namespace are passed
to LATEX.

• There is no need to specify button bounding
boxes.

To further illustrate the magic happening, Fig-
ure 4 shows the LATEX code snippet generated from

170 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

Automated DVD menu authoring with pdfLATEX

Figure 1: A menu created by dvdmenuauthor

<pgc>

<vob file="menu42.mpg" pause="inf" />

<button name="e1"> g5=6; </button>

<button name="e2"> jump menu 2; </button>

<button name="e3"> jump menu 3; </button>

<button name="e4"> jump menu 4; </button>

<button name="e5"> jump menu 5; </button>

<button name="prev"> jump vmgm menu 1; </button>

<button name="back"> jump vmgm menu 1; </button>

<button name="next"> jump vmgm menu 1; </button>

</pgc>

Figure 2: A menu definition in the dvdauthor project file

<pgc>

<tex:prepage>

\thispagebgimage{}{pal_bg_light}

\thispagetemplate{palthumbsix}

\menucaption{Fazekas szalagavató 1998.\ december}

</tex:prepage>

<vob tex:file="" pause="inf" />

<button name="e1" tex:image="1.png" tex:caption="a szalagtűzés \emph{előtt}"> g5=6; </button>

<button name="e2" tex:image="2.png" tex:caption="szalagtűzés"> jump menu 2; </button>

<button name="e3" tex:image="3.png" tex:caption="osztálytáncok"> jump menu 3; </button>

<button name="e4" tex:image="4.png" tex:caption="egyéb táncok"> jump menu 4; </button>

<button name="e5" tex:image="5.png" tex:caption="videófelvételek"> jump menu 5; </button>

<button name="prev" tex:dummy=""> jump vmgm menu 1; </button>

<button name="back" tex:dummy=""> jump vmgm menu 1; </button>

<button name="next" tex:dummy=""> jump vmgm menu 1; </button>

<post> jump vmgm menu 1; </post>

</pgc>

Figure 3: A menu definition in the dvdmenuauthor project file

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 171

Péter Szabó

\begin{dvdmenupage}{e1,e2,e3,e4,e5,prev,back,next}

\thispagebgimage{}{pal_bg_light}

\thispagetemplate{palthumbsix}

\menucaption{Fazekas szalagavató 1998.\ december}

\begingroup\def\dvdbuttonattrXname{e1}

\def\dvdbuttonattrXcaption{a szalagtűzés \emph{előtt}}

\def\dvdbuttonattrXimage{1.png}

\dvdprocessbutton\endgroup

\begingroup\def\dvdbuttonattrXname{e2}

\def\dvdbuttonattrXcaption{szalagtűzés}

\def\dvdbuttonattrXimage{2.png}

\dvdprocessbutton\endgroup

...

\begingroup\def\dvdbuttonattrXname{next}

\def\dvdbuttonattrXdummy{}

\dvdprocessbutton\endgroup

\end{dvdmenupage}

Figure 4: The LATEX code snippet generated from the dvdmenuauthor definition

the dvdauthor definition on Figure 3. We can see
that for each attribute with a tex: prefix, a macro
\dvdbuttonattrX... is defined, and the command
\dvdprocessbutton is called after the macro defini-
tions for each button. The tex:dummy attribute is
just an indicator that the button must be processed
by LATEX.

The macros \menucaption and \dvdprocess

button are defined in template palthumbsix. They
take care of the visual formatting of the menu data.
\dvdprocessbutton has the available button names
hardwired, and it formats and positions a button
based on its name.

5.2 New LATEX commands provided

Although dvdmenuauthor encourages the use of ex-
isting LATEX commands, it also defines some new
commands, most of them related to positioning and
button typesetting.

\thispagecolor{colorname}

Changes the background of the current page to the
specified color. Like most graphics operations in
dvdmenuauthor, it works only with pdfLATEX.

\thispagebgimage{optionlist}{filename}

Sets the background image for the current page. The
image will be loaded by the \includegraphics com-
mand using the pdftex driver.

\thispagetemplate{templatename}

Selects the specified template for the current page.
This means defining some macros, for example the
sample template palthumbsix defines \menucaption

and \dvdprocessbutton.

\putat{x}{y}boxspec

Typesets the specified material with its reference
point at (x, y). Creates a properly shifted box of size
zero. Can be used for absolute positioning if called
at the top of the page. Can be used with \vbox for
last line alignment or \vtop for first line alignment.
This command can be used in templates.

\begin{dvdmenupage}{buttonlist}

Renders a DVD menu page with the specified buttons
(in the specified order). For technical reasons (see
Subsection 6.2) each button is rendered on its own
onto a separate PDF page.

\framehbox{sep-dimen}{hbox-contents}

Similar to the built-in command \framebox, but
allows catcode changes and verbatims in the box.
Unfortunately, catcode changes don’t work in gen-
eral in dvdmenuauthor, because the dvdmenupage
environment reads its contents to a macro for multi-
ple rendering.

\aliascolor{oldname}{newname}

Copies a colour definition to be usable as a different
name.

\dvdtextbutton{name}{text}

Typesets a button. Doesn’t wrap its contents in
a box, so a button can be in a middle of a para-
graph, even line breaks are allowed. Each button has
three forms: background, highlighted and selected.
In background mode, text is typeset normally, in
highighted mode, it is typeset in dvdhighlightedcolor
(without color changes and images), and in selected
mode it typesets in dvdselectedcolor.

172 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

Automated DVD menu authoring with pdfLATEX

\dvdframebutton{name}{text}

Typesets a button inside a \hbox. In background
mode, emits the \hbox. In highlighted mode, it emits
an empty box surrounded by a frame (using the pa-
rameters \dvdbuttonframesep, \dvdbuttonframe

width and dvdhighlightedcolor). This command can
be used to typeset thumbnail buttons.

\begin{narrowcentering}

Like \begin{centering}, but doesn’t reset the nat-
ural width of \leftskip and \rightskip to zero.

5.3 Working with dvdmenuauthor

TEX users are familiar with the edit–compile–pre-
view cycle of TEX document preparation, possibly
extended with a final conversion and printing or pub-
lishing. The same cycle exists with dvdmenuauthor.
In the edit cycle, the user edits an XML project file
with LATEX markup for the menus, in the compile
cycle the user compiles the project files (and the
media files it refers to) to a DVD image, and finally
the user previews the DVD on screen, including the
menus and titles. The publishing step is burning the
DVD filesystem to disc.

In the edit step any text editor can be used,
preferably one with XML syntax highlighting facili-
ties. Unfortunately, LATEX snippets won’t be high-
lighted as LATEX markup. The dvdmenuauthor con-
tains an example project file ex.dmp.xml .

The compile step consists of feeding the project
file to a few scripts. The Makefile in the dvdmenu-
author distribution automates this. (There is no
incremental compilation support yet: the whole DVD
filesystem is regenerated from scratch in each make

run.) The following steps constitute compilation:

1. Generating the menu LATEX source file and the
dvdauthor XML project file. This is done by the
gendap.pl Perl script.

2. Compiling the LATEX source file to PDF. This is
just a regular pdfLATEX run. The Makefile runs
pdfLATEX twice, in case there are \refs.

3. Rendering the PDF to PPM raster image files.
This is done by the excellent pdftoppm utility
from Xpdf.

4. Combining the PPM images to short MPEG-2
streams for the menus. This is done by the
genspuxml.pl Perl script, which calls another
Perl script genmpeg.pl (to generate an MPEG-
2 stream from still images), and the spumux
tool from dvdauthor (to multiplex the button
layers to the background). Since some image
processing is done in Perl, this step can take
about three seconds for each menu.

5. Authoring the DVD filesystem. This is just a
simple dvdauthor run (with the -x option using
the XML project file generated in the first step).
This step might take quite a lot of time (up to
5 minutes on modern systems for a full, 4.7 GB
DVD), and it needs free disk space about the
same size as the sum of the input video sizes.

The recommended DVD preview application is Xine
[18]. It can be installed from source in any mod-
ern Linux distribution. Although the user interface
(toolbars and menus) of Xine is quite ugly, and not
convenient to operate, Xine has very good keybind-
ings, especially suitable for DVD menu navigation
(a remote control panel is also available — press Alt–
〈E〉 to make it visible). See the manual page of xine
for the list of available keys. MPlayer is not rec-
ommended for DVD menu testing, because MPlayer
doesn’t support DVD menus yet. Although VLC has
DVD menu support, sometimes it crashes or behaves
unexpectedly. Kaffeine and Totem should also be
given a try.

Since dvdauthor runs slowly when the videos to
be put on the DVD are large, the compile step might
be too slow for the user. To solve this, dvdmenu-
author has the dvdmenutest.sh shell script, which
warps a dvdauthor project XML files so that all titles
(but not menus!) are replaced with dummy short
videos, so that the total video size would be small,
and thus dvdauthor runs quickly.

The publishing step means creating an ISO im-
age (with mkisofs) and/or burning it to disc (with
growisofs). The -dvd-video flag of mkisofs must be
specified in both command lines.

6 Implementation tricks

Some details of the implementation are worth men-
tioning, because the tricks employed can be useful
in other TEX or DVD-related projects.

6.1 Bounding box calculation

dvdmenuauthor calculates button bounding boxes
automatically. This operation is impossible within
TEX, because there is no way to inquire about the
absolute (x, y) coordinates of an item within a box.

Solution: dvdmenuauthor uses a bluescreen tech-
nique [1]. The LATEX component emits each button
on its own to a PDF page with a blue background,
and a Perl script analyses the rendered page. The
bounding box is the smallest rectangle on the page
whose complement contains only blue pixels. A little
extra housekeeping is done for identifying the button
pages belonging to the same menu, because later
they have to be merged again to a button highlight
layer.

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 173

Péter Szabó

Limitations: It is not possible to force a bound-
ing box larger than it appears. It is not possible to
use that specific shade of blue in buttons. Fortu-
nately, the colour is configurable.

6.2 Rendering only parts of the page

Each page has to be rendered many times: once
for the background, once for each button highlight
image and once for each button select image. While
rendering the button highlights and selects, nothing
except for the current button must be drawn. While
rendering the background, the buttons must not be
drawn. These requirements call for a facility which
disables rendering parts of a page, but adjusting the
spacing just as if they were there.

A simple solution would be to ask the user to
put all visible material inside \maybe{...}, e.g.

\maybe{This} \maybe{is} \maybe{surely}

\maybe{an} \maybe{unclear} \maybe{caption}

But users may be annoyed by the tons of \maybes
needed to form a paragraph with line breaks.

Solution: dvdmenuauthor uses PDF coordinate
system transformations to move away material that
is to be skipped. A coordinate translation of (10000,
10000) is used at the beginning of the page, so all ma-
terial is rendered outside the visible region by default.
When one needs a specific part of the page actually
rendered, a translation of (−10000,−10000) is used.
Since TEX’s line breaking algorithm doesn’t know
about the translations (it treats them as \specials),
this nicely works together with TEX glues and line
breaking.

Limitations: Problems might occur when mate-
rial is inside a \rotatebox or a \scalebox. That is,
buttons should not be rotated. It would be possible
to overcome this limitation by making \rotatebox

and friends aware of the translation.

6.3 Single-colour rendering

\dvdtextbutton renders the highlighted version of
the button in a different colour. Colour changes are
disabled within that rendering.

Solution: All colour changes can be disabled
by clearing the body of the macros \set@color and
\reset@color. Image inclusions have to be disabled
too, because there is no way to modify the colour of
raster images included in pdfLATEX.

6.4 International character support

Accented and other international characters must
survive the XML to LATEX conversions, and they
should be typeset by LATEX properly.

Solution: The character set of the XML docu-
ment must be specified in the encoding= attribute
of the <?xml processing instruction. This decla-
ration is read by dvdmenuauthor, and the proper
\usepackage[...]{inputenc} is emitted automati-
cally. For clarity, dvdmenuauthor doesn’t try to inter-
pret the XML document as characters— its built-in
XML parser just treats the project file as a sequence
of ASCII-based 8-bit bytes. This ensures that ac-
cented characters don’t get mangled during copying
from one file to another.

7 Limitations

Sometimes the user wants pixel-accurate rendering.
For example, unscaled raster images should be ren-
dered sharply on pixel boundaries, not interpolated
between half-pixels. In TEX, the bp (PostScript big
point) is used for the basis of dimension calculations,
to avoid rounding errors when emitting the PDF
(because PDF expresses all dimensions in bp). The
pdftoppm tool almost always renders rules and im-
ages exactly and sharply, but sometimes it renders
a PDF rule of width 4 bp badly: the rule becomes
5 pixels wide in the PPM image. This issue should
be investigated further, possibly modifying Xpdf or
trying another rendering engine.

Since the button highlight layer may use only a
few colours (≤ 16), it is not feasible to use antialiased
text in this layer. However, if the background text is
antialiased, but the highlight is not, then the high-
light doesn’t cover exactly the background, which
looks ugly. If antialiasing is turned off entirely (as
a command line option to pdftoppm), text will look
noticeably uglier (depends on the font used). It is
not possible to turn off antialiasing selectively.

dvdmenuauthor has been tested on full PAL
(720 × 576) videos. The DVD standard allows sev-
eral image sizes for both PAL and NTSC. Support
for all possible sizes should be added to each tool
in dvdmenuauthor. Other parameters (such as but-
ton neighbourhood relations) should also be made
configurable.

Videos are usually rendered in a different aspect
ratio than their image size. The most common aspect
ratios are letterbox (4:3) and widescreen (16:9). In a
full PAL DVD, letterbox implies scaling from 720×576
to 768 × 576, and widescreen implies scaling from
720 × 576 to 1024 × 576. Thus there is a small
distortion in the letterbox case and a big distortion in
the widescreen case. For practical rendering reasons,
dvdauthor uses the image size (720×576) and doesn’t
care about the distortion made by the aspect ratio
correction. Thus, when authoring widescreen DVDs,
menu captions would become wider than expected.

174 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

Automated DVD menu authoring with pdfLATEX

To solve this, one could render at viewing size (thus
degrading rendering quality a little) or one could
condense the fonts horizontally (not easy to do in
TEX, but the pdfTEX font expansion feature might
be useful).

8 Conclusion

TEX can be used productively for typesetting many
different kinds of work: high quality (possibly inter-
national) documents, maths, presentation slides and
music, to name a few. Other uses of TEX include
developing software and its documentation together,
preparing web-ready books, and rearranging PDF
pages. DVD menu authoring is also a new, non-
standard use.

We have designed dvdmenuauthor, a program
for project-file-driven (non-WYSIWYG) automated
DVD menu authoring with powerful menu drawing
facilities. It is now a free proof-of-concept imple-
mentation. DVD menus can be drawn using LATEX
markup to have high typographic quality output.
Layout and menu data can be separated using tem-
plates. Since dvdauthor is used for integration, users
have full freedom to create complex and/or smart
menus they want. The system design (compilation
and templates) makes it possible to experiment with
layout changes any time in the authoring process.

dvdmenuauthor is not easy to start using for an
average user who expects WYSIWYG and wizards.
However, we hope that LATEX users would find it
convenient, and the software can evolve from its
present proof-of-concept version to a stable, general
and powerful tool like the mainstream TEX-based
programs.

References

[1] Wikipedia article on the Bluescreen technique.
http://en.wikipedia.org/wiki/Bluescreen

[2] DeVeDe, a GUI program to create video
DVDs suitable for home players, from any
number of video formats supported by MPlayer.
http://www.rastersoft.com/programas/

devede.html

[3] dvdauthor, a tool that assembles multiple
mpeg program streams into a suitable DVD
filesystem. http://dvdauthor.sourceforge.
net/

[4] The manual page of dvdauthor.
http://dvdauthor.sourceforge.net/doc/

[5] Anders Dahnielson. DVD Author Primer.
December 31, 2003. http://en.dahnielson.
com/2003/12/dvd-author-primer.html

[6] dvdmenuauthor, automated DVD menu
authoring with pdfLATEX. http://freshmeat.
net/projects/dvdmenuauthor

[7] DVDStyler, a cross-platform GUI DVD
authoring system. http://www.dvdstyler.
de/

[8] Wikipedia article on DVD-Video. http:
//en.wikipedia.org/wiki/DVD-Video

[9] FFmpeg, a very fast command-line video and
audio converter.
http://ffmpeg.mplayerhq.hu/

[10] DVD+RW-tools, a set of tools for burning and
examining DVD discs. http://fy.chalmers.
se/~appro/linux/DVD+RW/tools/

[11] KMediaFactory, template-based GUI DVD
authoring software. http://freshmeat.net/
projects/kmediafactory/

[12] MEncoder, the command-line movie encoder of
the MPlayer suite.
http://www.mplayerhq.hu/

[13] mkisofs, a tool for creating CD and DVD
filesystems. http://cdrecord.berlios.de/

[14] ’Q’ DVD-Author, a GUI frontend for dvdauthor
and other related tools.
http://qdvdauthor.sourceforge.net/

[15] Samantha Lane. Switched menus with
dvdauthor. http://www.geocities.com/
samanthalane/dvd/index.html

[16] Who Wants to Be a Millionaire—DVD game
review. http://www.ciao.co.uk/Who_Wants_
To_Be_A_Millionaire_DVD_Game__Review_

5480599

[17] Womble MPEG Video Wizard, a commercial
nonlinear MPEG video editor.
http://www.womble.com/products/

[18] Xine, a free multimedia player.
http://xinehq.de/index.php/home

[19] Xpdf, an open source viewer for PDF files.
http://www.foolabs.com/xpdf/

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 175

Graphics in LATEX using TikZ

Zofia Walczak
Faculty of Mathematics and Computer Science, University of Lodz
zofiawal (at) math dot uni dot lodz dot pl

Abstract

In this paper we explain some of the basic and also more advanced features of
the PGF system, just enough for beginners. To make our drawing easier, we use
TikZ, which is a frontend layer for PGF.

1 Introduction

In this paper we explain some of the basic and also
more advanced features of the PGF system, just
enough for beginners. To make our drawing easier,
we use TikZ, which is a frontend layer for PGF. The
commands and syntax of TikZ were influenced by
such sources as METAFONT, PSTricks, and others.

For specifying points and coordinates TikZ pro-
vides a special syntax. The simplest way is to use
two TEX dimensions separated by commas in round
brackets, for example (3pt,10pt). If the unit is not
specified, the default values of PGF’s xy-coordinate
system are used. This means that the unit x-vector
goes 1 cm to the right and the unit y-vector goes
1 cm upward. We can also specify a point in the po-
lar coordinate system like this: (30:1cm); this means
“go 1 cm in the direction of 30 degrees”.

To create a picture means to draw a series of
straight or curved lines. Using TikZ we can specify
paths with syntax taken from MetaPost.

2 Getting started

First we have to set up our environment. To begin
with, we set up our file as follows:

\documentclass{article}

\usepackage{tikz}

\begin{document}

Document itself

\end{document}

Then we start to create pictures. The basic build-
ing block of all the pictures in TikZ is the path.
You start a path by specifying the coordinates of
the start point, as in (0, 0), and then add a “path
extension operation”. The simplest one is just --.
The operation is then followed by the next coordi-
nate. Every path must end with a semicolon. For
drawing the path, we use \draw command which is
an abbreviation for \path[draw]. The \filldraw

command is an abbreviation for \path[fill,draw].

The rule is that all TikZ graphic drawing com-
mands must occur as an argument of the \tikz com-
mand or inside a {tikzpicture} environment. The
LATEX version of the {tikzpicture} environment is:

\begin{tikzpicture}[<options>]

<environment contents>

\end{tikzpicture}

All options given inside the environment will
apply to the whole picture.

For example, to draw the triangle between the
points (0, 0), (0, 2), (2, 0) we can write:

\tikz\draw (0,0)--(0,2) -- (2,0)-- (0,0);

or

\begin{tikzpicture}

\draw (0,0) -- (0,2) -- (2,0)-- (0,0);

\end{tikzpicture}

which produce:

We can change the thickness of the line with
the option line width=<width>, as in:

\tikz\draw[line width=2mm] (0,0) -- (0,4);

For drawing circles and ellipses we can use the
circle and ellipse path construction operations.
The circle operation is followed by a radius in
round brackets while the ellipse operation is fol-
lowed by two, one for the x-direction and one for the
y-direction, separated by and and placed in round
brackets. We can also add an option rotate or
scale for rotating or scaling ellipse. Some exam-
ples followed by the corresponding code:

176 TUGboat, Volume 29, No. 1 —XVII European TEX Conference, 2007

Graphics in LATEX using TikZ

\tikz\draw[line width=2mm] (0,0)

circle (4ex);

\tikz\draw (0,0) ellipse (20pt and 28pt);

\tikz\draw (0,0) ellipse (28pt and 20pt);

\tikz\draw[rotate=45] (0,0)

ellipse (16pt and 20pt);

\tikz\draw[scale=1.5,rotate=75] (0,0)

ellipse (10pt and 16pt);

We also have the rectangle path construction op-
eration for drawing rectangles and grid, parabola,
sin, cos and arc as well. Below are examples of
using these constructions.

\begin{tikzpicture}

\draw[step=.25cm,gray,thick]

(-1,-1) grid (1,1);

\end{tikzpicture}

\begin{tikzpicture}

\draw (-1.5,0) -- (1.5,0);

\draw (0,-1.5) -- (0,1.5);

\draw (0,0) circle (.8cm);

\draw (-1,-1) rectangle (1,1);

\draw[gray] (-.5,-.5) parabola (1,1);

\end{tikzpicture}

The arc path construction operation is useful
for drawing the arc for an angle. It draws the part of
a circle of the given radius between the given angles.
This operation must be followed by a triple in round
brackets. The components are separated by colons.
The first and second are degrees on the circle and
the third is its radius. For example, (20 : 45 : 2cm)
means that it will be an arc from 20 to 45 degrees
on a circle of radius 2 cm.

\begin{tikzpicture}

\draw (-.5,0)--(1.5,0);

\draw (0,-.5)--(0,1.5);

\draw (1,0) arc (-25:70:1cm);

\end{tikzpicture}

\tikz\draw (0,0) arc (0:180:1cm);

\tikz \draw[fill=gray!50] (4,0)-- +(30:1cm)

arc (30:60:1cm) -- cycle;

\tikz \draw[fill=gray!50] (4,0)-- +(30:2cm)

arc (30:60:1cm) -- cycle;

There is a very useful command \tikzstyle

which can be used inside or outside the picture en-
vironment. With it we can set up options, which
will be helpful in drawing pictures. The syntax of
this command is
\tikzstyle<style name>+=[<options>]

We can use it as many times as we need. It is pos-
sible to build hierarchies of styles, but you should
not create cyclic dependencies. We can also redefine
existing styles, as is shown below for the predefined
style help lines:

\tikzstyle{my help lines}=[gray,

thick,dashed]

\begin{tikzpicture}

\draw (0,0) grid (2,2);

\draw[style=my help lines] (2,0)

grid +(2,2);

\end{tikzpicture}

If the optional + is given, it means that the new
options are added to the existing definition. It is also
possible to set a style using an option <set style>

just after opening the tikzpicture environment.
When we want to apply graphic parameters to

only some path drawing or filling commands we can
use the scope environment.

TUGboat, Volume 29, No. 1 —XVII European TEX Conference, 2007 177

Zofia Walczak

\begin{tikzpicture}

\begin{scope}[very thick,dashed]

\draw (0,0) circle (.5cm);

\draw (0,0) circle (1cm);

\end{scope}

\draw[thin] (0,0) circle (1.5cm);

\end{tikzpicture}

3 Filling with color

Using command \fill[color] we can fill with the
given color a domain bounded by any closed curve.
For closing the current path we can use -- cycle.
For the color argument, we can use either name of
color, for example green, white, red, or we can mix
colors together as in green!20!white, meaning that
we will have 20% of green and 80% of white mixed.

\begin{tikzpicture}

\draw (-.5,0)--(1.5,0);

\draw (0,-.5)--(0,1.5);

\fill[gray] (0,0) -- (1,0) arc (0:45:1cm)

-- cycle;

\end{tikzpicture}

\tikz\draw[line width=2mm,color=gray]

(0,0) circle (4ex);

\qquad

\tikz\draw[fill=gray!30!white] (0,0)

ellipse (20pt and 28pt);

\qquad

\tikz\draw[fill=gray!60!white] (0,0)

ellipse (28pt and 20pt);

4 Adding text to the picture

For adding text to the picture we have to add node

to the path specification, as in the following:

A

B

A

B

D C

BA

\tikz\draw (1,1) node{A} -- (2,2) node{B};

\tikz\draw (1,1) node[circle,draw]{A} --

(2,2) node[circle,draw]{B};

\tikz\draw (0,0) node{D} -- (2,0) node{C}

-- (2,1) node{B} -- (0,1) node{A} --cycle;

Nodes are inserted at the current position of the
path (points A and B in the first example); the op-
tion [circle,draw] surrounds the text by a circle,
drawn at the current position (second example).

Sometimes we would like to have the node to
the right or above the actual coordinate. This can
be done with PGF’s so-called anchoring mechanism.
Here’s an example:

A

B

\begin{tikzpicture}

\draw (1,1) node[anchor=north east,circle,

draw]{A} -- (2,2) node[anchor=south west,

circle,draw]{B};

\end{tikzpicture}

This mechanism gives us very fine control over the
node placement.

For placing simple nodes we can use the label

and the pin option. The label option syntax is:
label=[<options>]<angle>:<text>

My rectangle

Top

Bottom

\tikz \node[rectangle,draw,

label=above:Top,label=below:

Bottom]{my rectangle};

When the option label is added to a node oper-
ation, an extra node will be added to a path contain-
ing <text>. It is also possible to specify the label

distance parameter, which is the distance addition-
ally inserted between the main node and the label
node. The default is 0 pt.

178 TUGboat, Volume 29, No. 1 —XVII European TEX Conference, 2007

Graphics in LATEX using TikZ

clock

12

3

6

9

12

3

6

9

\tikz[label distance=2mm]

\node[circle,fill=gray!45,

label=above:12,label=right:3,

label=below:6,label=left:9]{clock};

The pin option is similar to the label option
but it also adds an edge from this extra node to the
main node. The syntax is as follows:
pin=[<options>]<angle>:{text}.

pin distance is an option which must be given
as part of the \tikz command. The default is 3 ex.

example BA

12

3

6

9

\tikz[pin distance=4mm]

\draw (1,1) node[circle,fill=gray!45,

pin=above:12,pin= right:3,pin=below:6,

pin=left:9]{} circle (1cm);

5 The plot operation

If we have to append a line or curve to a path that
goes through the large number of coordinates, we
can use the plot operation. There are two versions
of plot syntax: --plot <further arguments> and
plot <further arguments>.

The first plots the curve through the coordi-
nates specified in <further arguments>; the sec-
ond plots the curve by first ”moving” to the first co-
ordinate of the curve. The following example shows
the difference between --plot and plot.

\tikz\draw (0,1) -- (1,1) --plot

coordinates {(2,0) (2,1.5)};

\tikz\draw[color=gray] (0,1) -- (1,1)

plot coordinates {(2,0) (2,1.5)};

6 Plotting functions

For plotting functions we have to generate many
points and for that TEX has not enough computa-
tional power, but it can call external programs that
can easily produce the necessary points. TikZ knows
how to call Gnuplot. In this case, the plot opera-
tion has the following syntax:
plot[id=<id>] function{formula}.

When TikZ encounters this operation, it will
create a file called <prefix><id>.gnuplot, where
<prefix> by default is the name of the .tex file. It
is not strictly necessary to specify an <id>, but it
is better when each plot has its own unique <id>.
Next TikZ writes some initialization code into this
file. This code sets up things such as the plot opera-
tion writing the coordinates into another file, named
<prefix><id>.table.

x

y

\begin{tikzpicture}[domain=0:2]

\draw[thick,color=gray,step=.5cm,

dashed] (-0.5,-.5) grid (3,3);

\draw[->] (-1,0) -- (3.5,0)

node[below right] {x};

\draw[->] (0,-1) -- (0,3.5)

node[left] {y};

\draw plot[id=x] function{x*x};

\end{tikzpicture}

The option samples=<number> sets the number of
samples used in the plot (default is 25) and the
option domain=<start>:<end> sets the domain be-
tween which the samples are taken.

If you want to use the plotting mechanism you
have to be sure that the gnuplot program is in-
stalled on your computer, and TEX is allowed to call
external programs.

References

[1] Till Tantau, The TikZ and PGF Packages,
Manual for ver. 1.09, http://sourceforge.
net/projects/pgf

TUGboat, Volume 29, No. 1 —XVII European TEX Conference, 2007 179

LATEX vs. LATEX — a modification of the logo

Grzegorz Murzynowski
Sulejówek

Poland

natror at o2 dot pl

There are at least two approaches to the TEX, LATEX,
etc. logos. First, that the font used in them is a part
of a logo and should not be changed, and the other,
that a logo should be typeset in the same font as
its context. If you choose the first approach, this
article is irrelevant. In this article I suggest a slight
modification of the LATEX logo to make it work bet-
ter with various fonts, which is relevant if we choose
the second approach.

The first change is the offset of the letter A: in
the original LATEX definition it’s −0.36 em so it does
not depend on the width of the L or the A, which
differ in different fonts. In mine it’s −0.57 〈width of
A〉 which makes it come out noticeably better.

Another change is adding one more kern be-
tween A and T if the font is slanted, that is, if
its \fontdimen1 is nonzero. The kern is 0.5 ex ×
〈slant in %〉.

The original LATEX definition of the logo is

\DeclareRobustCommand{\LaTeX}{%

L\kern-.36em%

{\sbox\z@ T%

\vbox to\ht\z@{\hbox{%

\check@mathfonts

\fontsize\sf@size\z@

\math@fontsfalse\selectfont A}%

\vss}%

}%

\kern-.15em%

\TeX}

and mine

\DeclareRobustCommand{\LaTeX}{%

{%

L%

\setbox\z@\hbox{\check@mathfonts

\fontsize\sf@size\z@

\math@fontsfalse\selectfont

A}%

\kern-.57\wd\z@

\sbox\tw@ T%

\vbox to\ht\tw@{\copy\z@ \vss}%

\kern-.2\wd\z@}%

{%

\ifdim\fontdimen1\font=\z@

\else

\count\z@=\fontdimen5\font

\multiply\count\z@ by 64\relax

\divide\count\z@ by\p@

\count\tw@=\fontdimen1\font

\multiply\count\tw@ by\count\z@

\divide\count\tw@ by 64\relax

\divide\count\tw@ by\tw@

\kern-\the\count\tw@ sp\relax

\fi}%

\TeX}

Here are a few examples. Enjoy.

lmr LATEX vs. LATEX & (LA)TEX

lmss LATEX vs. LATEX & (LA)TEX

lmr LATEX vs. LATEX & (LA)TEX

lmr LATEX vs. LATEX & (LA)TEX

qpl LATEX vs. LATEX & (LA)TEX

qpl LATEX vs. LATEX & (LA)TEX

qtm LATEX vs. LATEX & (LA)TEX

qtm LATEX vs. LATEX & (LA)TEX

qbk LATEX vs. LATEX & (LA)TEX

qbk LATEX vs. LATEX & (LA)TEX

qzc LATEX vs. LATEX & (LA)TEX

qhv LATEX vs. LATEX & (LA)TEX

qhv LATEX vs. LATEX & (LA)TEX

iwona LATEX vs. LATEX & (LA)TEX

iwonaLATEX vs. LATEX & (LA)TEX

180 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Benefits, care and feeding of the bigfoot package

David Kastrup
dak (at) gnu dot org

Abstract

The bigfoot package for arranging footnote apparatus for text-critical editions
offers several advantages for ‘ordinary’ documents as well. The author plans to
release a few enhancements in time for the EuroBachoTEX conference which will
further help in making it useful for other documents without having to think too
much.

In the easiest case, just using \usepackage{bigfoot} in your preamble
should provide for better page breaks and footnote arrangements.

There are, unfortunately, also some possible conflicts with other packages.
The talk will focus on how to address them, and possibilities of still using bigfoot

in such cases.

1 Advanced features of bigfoot

bigfoot has been designed to deal with the type-
setting needs of a complicated critical edition. As a
consequence, it offers multiple footnote apparatus.
For doing that, it builds upon the interfaces and
functionality of the manyfoot package. However, its
functionality far exceeds that of manyfoot. It is, for
example, also possible to anchor footnotes within
any footnote apparatus previously on the page as
well as in the main text (if the original author al-
ready used footnotes, not uncommon in critical edi-
tions from the last few centuries, comments on both
his main text as well as his footnotes have to be
permitted). In connection with the supporting pack-
age perpage, the numbering and order irregularities
caused by being able to anchor footnotes in differ-
ent other blocks get ironed out to get a natural page
order.

Most talks about bigfoot have focused on dem-
onstrating how bigfoot is able to deal pleasingly
with the special demands of typesetting critical edi-
tions.

So what does bigfoot offer the average user?
Let us first analyze what TEX does not offer.

2 The problems with TEX’s footnotes

Footnotes are one of TEX’s weakest points, and the
principal weakness is breaking them. As soon as a
footnote does not fit completely on one page, TEX’s
global pagebreak optimization gets completely by-
passed.

What TEX does upon encountering a footnote
that will not fit on the current page is tentatively
split it to fit in the remaining page size, using the
standard \vsplit operation and registering the nat-

ural size to put on the current page. It then proceeds
with the normal page accumulation and breaking.

There are so many things wrong with this ap-
proach that it is not easy to list them. The first thing
wrong is that only one break of the footnote will be
considered, though it may be more appropriate to
break the footnote earlier and get more main text
material instead. The worst aspect is that the split
of the footnote is calculated before it is even clear
that there will be a corresponding legal breakpoint
in the main text!

If, for example, widows (page breaks before the
last line of a paragraph) are not permitted by setting
\widowpenalty to 10000, an action not uncommon
in document classes, a footnote anchored in the sec-
ond to last line of a paragraph will simply not get
broken in normal circumstances, since the break of
the footnote will be determined without taking into
account that a line of the main text is still forced to
follow.

Another problem is that the \vsplit operation
takes into account any existing shrinkability in the
top part of the split, thus possibly cramming more
material into it than would ‘naturally’ fit. But since
TEX considers only the natural height of the split
part when it comes to page break decision time, it
can happen that the split was chosen in a manner
that lets TEX look at an overfull page. Again, this
means that the footnote can’t be placed at all on
the current page.

And we are not even talking about multiple
footnotes yet . . .

3 Features

So what are the features that bigfoot provides for
the case of a ‘normal’, single apparatus?

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 181

David Kastrup

Robustness \verbatim commands are allowed in
footnotes. This is actually not as much a defi-
ciency of TEX, but rather of the implementation
in LATEX. Plain TEX has working functionality
in this area.

The problem with LATEX lies in the footnote
being scanned first as a macro argument. This
is usually done by the typically document-class
dependent \@makefntext command. The trick-
ery bigfoot does here is too awful to describe,
yet astonishingly works with most typical def-
initions of this macro. Where it doesn’t, one
can specify the fragile option to the bigfoot

package, and this magic will not get used.

Optimization Footnote breakpoints are reconsid-
ered for each possible breakpoint of the main
text. This means that TEX will find the best
combination of breaks in main text and foot-
note. In contrast, the default behavior exam-
ines just a single break possibility for a footnote,
and this possibility might even be infinitely bad.

Color continuity When a footnote breaks across
pages, the color stack is maintained properly.
Color is handled in LATEX with the help of spe-
cials that switch the color (and, in the case of
dvips, restore it afterwards with the help of
a color stack). Restarting the footnote on the
next page with the proper color is something
that has never worked in LATEX. Now it simply
does. It has to be noted that pdfTEX 1.40, the
version in TEX Live 2007, has a built-in color
stack feature that can be used to similar effect
in PDF mode. It won’t be likely to help in DVI

mode, though.

Paragraph footnotes Footnotes may be set in a
compact form in one running paragraph where
this seems feasible. While manyfoot and fnpara

also offer this arrangement, bigfoot offers a su-
perior solution in several respects:

• The line breaking can be chosen much more
flexibly: with appropriate customization,
it is possible to fine-tune quite well when
and where stuff will be placed in the same
line, and when starting a new line will be
preferred.

• Such in-paragraph footnotes can be bro-
ken across pages automatically, just like
normal footnotes. They will only be bro-
ken after the last footnote in the block has
started.

• Pages will not become over- or underfull
because of misestimating of the size of in-
paragraph footnotes.

• The decision of whether to make a foot-
note in-paragraph or standalone can be
changed for each footnote apparatus at
any time, including on mid-page. In fact,
you can make this decision for each foot-
note separately. Since display math re-
quires vertical mode footnotes, this is con-
venient.

• bigfoot will make a good-faith effort to
adapt the normal footnote layout provided
by the document class with the macros
\@makefnmark and \@makefntext to in-
paragraph footnotes.

Fewer catastrophes Split footnotes will not get
jumbled in the presence of floats. bigfoot is
not afflicted by this bug in LATEX’s output rou-
tine since it does not delegate the task of split-
ting footnotes to TEX in the first place. While
the faulty output routine of LATEX may still
jumble the order of footnotes in that particu-
lar case (when one footnote gets held over as
an insertion ‘floated’ at infinite cost), bigfoot

will sort the jumbled footnotes back into order
before processing them.

However, it must be noted that the bug of a
footnote getting detached from its anchor line
when followed by a float anchored on the same
line is still present: the marks that bigfoot

employs instead of insertions for keeping track
of the insertion positions can get detached in
the same manner.

4 Drawbacks in practice

• Since bigfoot meddles considerably with the
output routine’s workings, interoperation with
other packages doing the same might be prob-
lematic. Considerable effort has been spent on
minimizing possibly bad interactions, but the
results might not always be satisfactory and, at
the very least, might depend on the load order
of packages. So playing around with the load
order might help.

• The underlying manyfoot changes some LATEX
internals. Packages that do similar operations
might clash. One such clash has very recently
been addressed in jurabib.

• It slows things down. In practice, this is most
noticeable for multiple apparatus where there
are no good alternatives, anyway.

• The complexity of the package makes it more
likely for things to go wrong in new ways.1

1 Most of those problems should arise under requirements
that could not possibly be met without the package, so this

182 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Benefits, care and feeding of the bigfoot package

• The robustification of footnotes might not work
with all document classes. It is worth trying
to load the bigfoot package with the fragile

package option. This has been made available
only recently.

• The version distributed in TEX Live 2007 can
still get overfull pages and suboptimal breaks.
A revision is underway and should be finished
at the time of the conference.

• Documentation is sparse and not optimal.

would be reason for improving rather than not using the pack-
age.

5 Using it

Simply \usepackage{bigfoot} should work for the
average case and improve page layout and breaks.
If you want to have short footnotes possibly placed
inside of a paragraph, use

\AtBeginDocument{%

\RestyleFootnote{default}{para}}

You will not likely notice much of a change at first,
unless you actually use short footnotes. For long
footnotes, paragraph mode is ungainly and thus
avoided automatically.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 183

MathPSfrag: LATEX labels in Mathematica plots

Johannes Große
Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
jgrosse (at) mppmu dot mpg dot de

http://wwwth.mppmu.mpg.de/members/jgrosse

Abstract

A Mathematica® package that allows inclusion of LATEX labels in EPS graphics
using PSfrag will be presented. The clue is that positioning information and
TEX code is automatically generated by the package. It also contains a preview
capability that imports a bitmap of the final image including the rendered LATEX
labels back into Mathematica.

1 Introduction

Mathematica (Wolfram, 1999; Wolfram Research,
Inc., 2005) is one of the major commercial computer
algebra systems and as such used in many fields of
scientific research.

Unfortunately, labels in graphics produced by
Mathematica—like those of most other graphics
programs— are not visually compatible with TEX’s
standard fonts. Even though Mathematica pro-
vides advanced typesetting capabilities for complex
mathematical expressions that are close to a faithful
representation of standard mathematical notation, it
cannot compete with TEX in this regard.

MathPSfrag (Große, 2005) is intended to fill this
gap, but it is also meant to address another problem:
Many authors consider the layout of the manuscript
as something to be safely left to the computer. While
TEX does a remarkable job in providing excellent
typesetting with little user intervention, the same
cannot be said about image preparation.

Solutions to the common task of attaching labels
to plots range from sophisticated (McKay and Moore,
1999) to crude: conversion of the exported EPS file to
JPEG, editing in a graphics program, back conversion
to EPS for inclusion in LATEX.

From the latter example it is clear that any
solution addressing this problem needs to work not
only from a typesetting point of view but also from
a daily user’s perspective. MathPSfrag is an attempt
to combine the existing technique of PSfrag (Grant
and Carlisle, 1998) with a transparent, easy to use
convenience layer.

The PSfrag package provides TEX macros that al-
low replacement of text strings (“tags”) in EPS graph-
ics. For PSfrag to work these tags have to be output
unaltered using a single PostScript show directive.
Since Mathematica splits complicated expressions
into several show commands, simple alphanumeric

(a) Conventional Mathematica without MathPSfrag

(b) The same plot after automatically substituting all Text
primitives (including tick mark labels) by LATEX output.

Figure 1: Old vs. new graphics export

sequences have to be used as tags, which makes the
resulting raw EPS file rather illegible. Bookkeeping
of automatically generated tags was the only feature
provided by the very first version of MathPSfrag,
although several more sophisticated features have
been added since.

Ideally MathPSfrag does not require any user

184 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

MathPSfrag: LATEX labels in Mathematica plots

f1[x_] := Sin[x]; f2[x_] := 3*((Cos[2 Sqrt[x]])^2)^(1/3);

rawplot = Plot[{f1[x], f2[x]}, {x, 0, 2 Pi}, PlotStyle→{Hue[1.0], Hue[0.6]}, Frame→True,

FrameTicks→{Pi/2*{0, 1, 2, 3, 4}, Automatic, None, None}];

Needs["Graphics‘Arrow‘"];

SimpleLabel[tip : {_, _}, txt_, txtpos : {_, _}, align : {_, _}] := Sequence[

Arrow[txtpos, tip, HeadScaling→Absolute, HeadLength→8, HeadCenter→0.6],

Text[txt, txtpos, align]];

textlabels = Graphics[{

SimpleLabel[{Pi/2, f1[Pi/2]}, "local maximum", {1, -0.5}, {0, 1}],

SimpleLabel[{7/6Pi, f1[7/6Pi]}, f1[x], {4.2, -0.3}, {-1, 0}],

SimpleLabel[{4.2, f2[4.2]}, f2[x], {3.5, 1.5}, {1, 0}]

}];

mygrid = Map[{#, {AbsoluteDashing[{0.1, 1}], GrayLevel[0.5]}} &, {Pi*{1/2, 1, 3/2}, {1, 2}}, {2}];

exampleplot = Show[rawplot, textlabels, GridLines→mygrid];

Figure 2: Full Mathematica code for the plot in Figure 1(a).

intervention except for calling a different graphics
export command from within Mathematica.

MathPSfrag will take over the task of inserting
tags into the EPS in place of the original labels and
will also use Mathematica’s TeXForm command to
determine the LATEX macros reproducing a pretty-
printed version of the original Mathematica expres-
sion. These macros are written to a separate TEX
file. In a second step, a LATEX, dvips, Ghostscript
sequence is carried out to merge the two files to a
single EPS that is independent of PSfrag and will be
called “unpsfraged” in the following. As such it can
be (and by default is) converted into a PDF image
suitable for inclusion in pdfLATEX documents. More-
over a bitmap image is rendered and imported back
into Mathematica as a preview.

In reality there are a number of problems that
can arise— the simplest would be Mathematica

producing undesired or flawed TEX code, such that
the above rendering sequence would fail. Since the
process of image creation described in this article
involves many programs and production steps, there
is actually quite a lot of potential for malfunction. In
the first section of this tutorial we will nevertheless
assume that this does not happen and that MathPS-

frag has already been set up correctly to find LATEX,
dvips and Ghostscript. In subsequent sections, we
will discuss these points in more detail. For a full
presentation of all options and extended examples,
the reader is referred to the manual accompanying
MathPSfrag.

We would like to point out that we denote three
different objects psfrag : the LATEX package PSfrag,
which provides the LATEX macro \psfrag, and its
Mathematica counterpart PSfrag.

2 A first example

For concreteness we will start by defining a conven-
tional Mathematica plot without any reference to
MathPSfrag. We will try to make it as beautiful as
possible for a fair comparison with MathPSfrag. The
code given in Figure 2 performs the following actions
to draw Figure 1(a).

The first line defines the functions to be plot-
ted, which happens in the second line. This already
gives a decent plot, but to show off MathPSfrag’s
capabilities a few more elements are inserted into
the plot. The third block of commands loads a stan-
dard Mathematica package and defines the function
SimpleLabel, which draws an arrow and attaches
a textual expression to the arrow. It is then used
to define the three text labels seen in the plot. (By
“textual expression” we denote all expressions that
at some point end up as the argument of a Text

primitive, in other words the expressions we want
to replace by LATEX commands eventually.) As a
finishing touch, a grid of light gray lines is created.
The last line merges all those elements into the final
plots in Figure 1.

An EPS image can be produced by a simple
Export[exampleplot,"exampleplot.eps"]. How-
ever, by default Mathematica unfortunately uses
Courier as a font for the labels, and does not allow
inclusion of fonts into the EPS image (for Mathemat-

ica versions before 4.2.1); as a result, any symbols,
such as large brackets, that require Mathematica’s
special fonts can only be processed when the TEX
distribution has been set up to find these fonts (WRI
Support, 2007). For later Mathematica versions
we should rather export the plot by:

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 185

Johannes Große

Export[Show[exampleplot,

TextStyle→{FontFamily→"Times"}],

"pure-mma.eps", ConversionOptions→

{"IncludeSpecialFonts"→True}]

which sets the default font to Times Roman.
The corresponding export commands provided

by MathPSfrag read

Needs["MathPSfrag‘"];

PSfragExport[exampleplot, "filename"]//UnPSfrag;

which loads the MathPSfrag package and creates files
filename-psfrag.tex and filename-psfrag.eps

containing the PSfrag versions of the plot.
The UnPSfrag command takes these files and

creates an unpsfraged PDF and EPS version, which
in turn is rendered into a bitmap, imported into
Mathematica and displayed as a preview. When
the user wants to use only the PSfrag versions of the
images, the UnPSfrag command can be omitted. The
package is accompanied by a shell script for merging
the two files into an unpsfraged EPS file. This may be
useful when there is no LATEX distribution available
on the machine where Mathematica resides.

In general, it is recommended not to rescale

unpsfraged images within the LATEX source of the
final manuscript, because such a rescaling would
also change the size of the rendered LATEX expres-
sions. While on modern TEX installations chances
are good to end up with the scalable outline ver-
sions of Computer Modern in the EPS files because
MathPSfrag by default invokes dvips with the -Ppdf
switch, the overall visual consistency of the final
manuscript will suffer from labels of different sizes.
Hence it is recommended to set the size of the image
at rendering time by providing suitable options to
the \includegraphics command that is internally
invoked by UnPSfrag. This can be achieved by

UnPSfrag[PSfragExport[exampleplot, "filename"],

IncludeGraphicsOptions→"width=75mm"];

which will preserve the labels, while scaling the image
approximately to the given size. The reason for the
mismatch of size is that the bounding box of the
final image correctly fits its contents while the size
provided by the user refers to the bounding box of
the original image, which changes during the PSfrag

process.
When special symbols or different fonts are re-

quired for the graphics, UnPSfrag can be instructed
to include a user-defined preamble by means of the
TeXPreamble option.

3 Providing custom LATEX commands

MathPSfrag generates LATEX commands by employing
Mathematica’s TeXForm, whose output may not
always be what the author expected. In particular,
the output of TeXForm depends very much on the
version of Mathematica— versions 5.1 or later are
most suitable, though a compatibility TEX package
has been implemented; see ‘Known limitations’.

For overriding MathPSfrag’s default treatment
of single textual elements of the plot, the PSfrag

command is provided. It can be simply wrapped
around the argument of a Text primitive or a plot
option that eventually produces a Text primitive.
Most frequently used examples for the latter case are
the PlotLabel and AxesLabel options. So instead
of PlotLabel→"chi-square test", the following
could be used:

PlotLabel→PSfrag["chi-square-test",

TeXCommand→"$\\chi^2$-test"]

This would still display as “chi-square test” in
Mathematica, but appear as “χ2-test” in the final
manuscript. Note that a doubling of any backslash in
the argument of the TeXCommand options is required
because Mathematica considers the backslash char-
acter to be an escape symbol.

Since Mathematica provides the means for en-
tering formatted expressions as part of ordinary text
strings, the above example is somewhat artificial.
The same effect could have been achieved by simply
using PlotLabel→"χ2-test" and relying on Math-

PSfrag (or to be more precise TeXForm) to produce
the corresponding TEX representation.

A more realistic example would be changing one
of the labels in Figure 1(b) by replacing

3 3

√

cos2(2
√

x) by 3
∣

∣

∣
cos

√
4x

∣

∣

∣

2

3

.

This can be achieved by substituting the argument
of the corresponding SimpleLabel line in Figure 2.

tex="$3\\left|\\cos\\sqrt{4x}\\right|^

... \\frac{2}{3}$";

SimpleLabel[{4.2, f2[4.2]},

PSfrag[f2[x],TeXCommand→tex] ,

{3.5, 1.5}, {1, 0}]

The additional command has been written in italics;
the resulting plot is shown in Figure 3.

PSfrag can also be used to pass alignment in-
formation, (angular) orientation or a scale factor to
MathPSfrag. The respective options (TeXPosition,
PSPosition, PSRotation, PSScaling) are in a one-
to-one correspondence with the options of the com-
mand \psfrag provided by the LATEX package. In

186 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

MathPSfrag: LATEX labels in Mathematica plots

Figure 3: Manual replacement of the “cos . . . ” label.

particular, the first two options accept strings built
from two characters (top, center, Baseline, bottom,
plus left, right, center) describing the vertical and
horizontal position of an anchor point in the tag and
LATEX box. When replacing the tag by the LATEX
box, the new anchor point is glued to the position
of the old one. Rotation is in degrees; the use of
the scale factor is discouraged and provided only for
completeness’ sake.

Unless three-dimensional plots are used none
of the above should be necessary. As a last resort,
when there is a positioning bug, one may use the
TeXShift→{"x","y"} option. MathPSfrag shifts
the content of the corresponding expression by the
amount specified in the two strings, which should
contain valid TEX dimensions.

4 Setup

As mentioned in the introduction, we left out some
crucial points. The most important of these is that
MathPSfrag needs information about the actual loca-
tion of the LATEX, dvips and Ghostscript executables
unless they can be found in the system’s execution
path. (Specifically, these binaries are needed by
UnPSfrag whereas the other parts of MathPSfrag

will continue to work without them. This is the main
reason for having a separate UnPSfrag command
at all.) While this is usually the case for Unix-
like operating systems, it is rather the exception for
Windows-based systems. Moreover, MathPSfrag by
default uses the typical system-specific names of the
executables, which might differ on some installations.

The user can either fix the system settings or
provide the absolute path to the executables by set-
ting the appropriate UnPSfrag options as outlined
in Figure 4(a). The configuration may be checked by
executing MathPSfragConfigurationTest, which
will output diagnostic information. Step-by-step
instructions guiding through the configuration are
provided in a separate Mathematica notebook

(“MathPSfrag-Test.nb”), which also generates a
number of examples.

In order to avoid the necessity of setting the cor-
rect paths each time MathPSfrag is loaded, the con-
figuration can also be stored in an init.m file, which
is automatically loaded by Mathematica during
start-up. Valid locations of the init.m file depend
both on the operating system and on the Mathemat-

ica version, but are documented in Mathematica’s
Help Browser. A typical example for such a file is
given in Figure 4(b).

SetOptions[UnPSfrag,

LaTeXExecutable→"C:\\path-to\\latex.exe",

DvipsExecutable→"C:\\path-to\\dvips.exe",

GhostscriptExecutable→

"C:\\path-to\\gswin32c.exe"];

(a) Setting the locations of external programs

AppendTo[$Path, "C:\\path-to\\MathPSfrag"];

$PostMathPSfrag := SetOptions[UnPSfrag,...];

(b) Minimal init.m file

Figure 4: Configuration of MathPSfrag

5 In the manuscript

Unpsfraged graphics can be treated in the usual
manner and included by the \includegraphics com-
mand, where it is good practice to leave out the file’s
suffix to allow LATEX or pdfLATEX to load the appro-
priate format. For best quality it is recommended
to avoid usage of the width or height options, but
instead to set the size of the plot during creation
from within Mathematica as described in ‘A first
example’.

PSfrag-based graphics are generically included
as follows:

\usepackage{psfrag,graphicx}

...

\begin{psfrags}

\input{exampleplot-psfrag}

\includegraphics[width=75mm,

trim=-10 -20 -30 -40]{exampleplot-psfrag}

\end{psfrags}

where any numbers of course have to be adapted.
The trim option enlarges the bounding box when
negative arguments are used, which is sometimes re-
quired to avoid clipping problems. Hence one should
always check the bounding box by enclosing each
\includegraphics macro by an \fbox.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 187

Johannes Große

6 Known limitations

As mentioned in the introduction for the sake of pre-
sentation we have ignored all potential problems so
far. It is however vital to point out that image pro-
duction with MathPSfrag employs several programs
which come in different versions and installations on
different computer systems with all the associated
compatibility problems. The work flow also involves
a number of user decisions, which have a strong im-
pact on the final image. For the discussion of these
choices it is convenient to think of the process of
manuscript creation in terms of the following stages.

1. Plot preparation with Mathematica

2. Export with MathPSfrag

3. Manuscript preparation (and inclusion of im-
ages)

4. Output format generation (PS or PDF)

We will discuss these stages in reverse order.
Let us assume that the final output format should
be PDF. There are currently two possibilities to
achieve this. Either following the traditional path
of translating the manuscript with LATEX, dvips

and a distillation to PDF, e.g., by ps2pdf; or using
pdfLATEX with its enhanced typesetting capabilities.
Since this choice is not necessarily under the author’s
control, it may be wise to keep both paths open.

When using unpsfraged images, this amounts to
simply invoking \includegraphics without provid-
ing the filename’s suffix and placing both the EPS
and PDF version of the image where TEX can find
them. When using PSfrag-based images, due to their
PostScript-centric nature, additional effort is neces-
sary to make these work with pdfLATEX. Fortunately,
because of the popularity of the pstricks package
there are several packages that provide methods for
incorporating PostScript into pdfLATEX documents,
namely pdftricks, pst-pdf and ps4pdf. While they
differ considerably regarding ease-of-use and limita-
tions of the respective implementation, all of them
generate PDF versions of PostScript related images
essentially by extracting them from a conventional
LATEX run. An example file for each of those packages
accompanies MathPSfrag.

Before deciding whether to employ PSfrag-based
or unpsfraged images, one should keep in mind that
unpsfraged images are hard to edit: They neither
allow rescaling without changing the size of the la-
bels nor is there an easy method of changing the
contents of the labels. It is therefore advisable to
design the Mathematica notebook generating the
plots in such a way that replotting can be achieved
without recalculating. In other words the result of
a time-consuming calculation should be stored sepa-

rately before plotting. Moreover the author should
know in advance which fonts will be used for the
final manuscript. These can be loaded by setting
the TeXPreamble option of UnPSfrag to a suitable
\usepackage command.

For PSfrag-based images changing a label only
requires editing the corresponding \psfrag macro in
the TEX file associated to the image, whereas rescal-
ing of the image will preserve the size of the labels.
However, PSfrag-based images always have a wrong
bounding box, which can potentially lead to clipping
errors and should therefore be manually corrected
by use of the trim option for \includegraphics.
Wrapping an \fbox around the image while doing
so considerably facilitates this task.

The limitations of MathPSfrag we now discuss
are mainly due to its dependence on three Math-

ematica functions: TeXForm, FullGraphics and
AbsoluteOptions.

The output of TeXForm consists of a Mathe-

matica-specific set of LATEX commands for versions
earlier than 5.1, whereas starting from 5.1 amsmath

macros are used. While still having deficiencies re-
garding symbols that do not have a direct LATEX
counterpart, the latter is most suitable for use with
MathPSfrag. The output of earlier Mathematica

versions, on the other hand, except for very basic
expressions, will require a compatibility layer, which
is part of the MathPSfrag distribution. It does how-
ever need to be installed where LATEX can find it
when called by UnPSfrag and should also accom-
pany the manuscript when PSfrag-based images are
used. Alternatively it is of course possible to manu-
ally provide LATEX macros with the PSfrag command
as described in ‘Providing custom LATEX commands’.

Both FullGraphics and AbsoluteOptions con-
vert (certain aspects of) Mathematica graphics
from a logical to a physical representation in terms
of so-called primitives. MathPSfrag needs this phys-
ical representation for the extraction of alignment
information of all text elements of a plot as well
as for content generation in the case of tick marks.
Unfortunately, neither command is faithful; i.e., they
do not preserve the visual appearance of the plot.
MathPSfrag has been carefully implemented to work
around these shortcomings, but fails at one minor
point: Floating point numbers very close to integers
(difference < 10−10) will be rounded.

While MathPSfrag should be able to correctly
position and align any text elements, the respective
options of PSfrag can also be used as a quick and
dirty solution to any misplacements. In particular
the TeXShift option is provided solely for this pur-
pose since it is not used during default processing

188 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

MathPSfrag: LATEX labels in Mathematica plots

Figure 5: Three dimensional example: As there exists
no FullGraphics3D command, manual labeling was
required.

at all. In the case of any such misplacements, the
author would appreciate a bug report.

Moreover there is no FullGraphics command
for three-dimensional plots. As a consequence, the
required alignment information has to be provided
by hand for every text element of a plot. This sounds
more tedious than it actually is in most cases— ex-
ample code is provided as part of MathPSfrag. Here
it shall suffice to show the result; cf. Figure 5.

Finally, MathPSfrag does not provide methods
to construct correct tick mark content as it is strictly
focused on shape. It does however integrate well
with the CustomTicks package (Caprio, 2005), which
provides that functionality.

7 Conclusion

MathPSfrag provides a convenient interface to PSfrag

permitting the generation of high-quality labels in
Mathematica graphics. While it automates all
tedious aspects of PSfrag, it still allows the user to
seamlessly override all of its internal assumptions.
The possibility to create images that do not depend
on PSfrag anymore provides a simple method for
achieving pdfLATEX compatibility.

MathPSfrag has been tested with Mathemat-

ica versions 4.1, 5.0 and 5.2 under Linux and Win-
dows XP. A previous version has also been tested
under Mac OS X.

For the future it would be interesting to incor-
porate the PSfragx extension that allows including
the \psfrag commands into the comment lines of
the EPS file. It would also be interesting to provide
means for the generation of \overpic commands,
thus bypassing many of the shortcomings of the PS-

frag approach. For Mathematica, because of its
closed source nature, this is not a simple task be-
cause the position information of graphics primitives
in terms of absolute coordinates for the final image
is not easily accessible.

8 Acknowledgments

The author acknowledges support by ENRAGE (Euro-
pean Network on Random Geometry), a Marie Curie
Research Training Network in the European Commu-
nity’s Sixth Framework Programme, network contract
MRTN-CT-2004-005616. Part of the work on MathPS-

frag were supported by the DFG Graduiertenkolleg “The
Standard Model of Particle Physics — structure, precision
tests and extensions” at Humboldt-Universität zu Berlin
and the Max-Planck-Institut für Physik, München.

References

Caprio, Mark. “Custom tick marks for linear,
logarithmic, and general nonlinear axes”.
http://library.wolfram.com/infocenter/

MathSource/5599/, 2005.
Grant, Micheal C., and D. Carlisle. “The PSfrag

system, version 3”. Available from CTAN,
macros/latex/contrib/psfrag, 1998.

Große, Johannes. “MathPSfrag”. http://wwwth.mppmu.
mpg.de/members/jgrosse/mathpsfrag, 2005.

McKay, Wendy, and R. Moore. “Convenient Labelling of
Graphics, the WARMreader Way”. TUGboat 20(3),
262–271, 1999. http://www.tug.org/TUGboat/
Articles/tb20-3/tb64ross.pdf.

Wolfram, Stephen. The Mathematica book. Cambridge
University Press, New York, NY, USA, 4th edition,
1999.

Wolfram Research, Inc. “Mathematica 5.2”. 2005.
http://www.wolfram.com/.

WRI Support. “Mathematica Fonts in EPS files and
Ghostscript”. Available from http://support.

wolfram.com/mathematica/graphics/export/;
ghostscript.html, includefonts.html, 2007.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 189

makematch, a LATEX package for pattern matching with wildcards

David Kastrup
David dot Kastrup (at) QuinScape dot de

Abstract

The makematch package has been factored out from the qstest package and
has the purpose of matching patterns with wildcards against targets. There is a
generalization provided for matching (ordered) pattern lists against (unordered)
target lists, in which case one can use commata or other separators (including
spaces) for separating the list elements. The wildcard * matches zero or more
arbitrary characters. Prepending ! to a pattern will cause a match of it to revert
possible matches from earlier in the pattern list.

Matching, for example, the pattern list

test*, !test10*b, !fails

with the target list

fails, test20

will lead to a non-match: while test20 is matched by the pattern test*, the
additional matching pattern !fails later in the list reverts this match.

Both pattern and target lists get ‘sanitized’ (converted into a unique printing
form where no TEX characters are interpreted specially) and compiled into a form
which makes the matching itself quite efficient.

1 Using makematch

The basic idea of makematch is to compile patterns
and targets (and/or lists of them) and match the
former to the latter. This functionality is used ex-
tensively in QuinScape’s qstest package for unit
testing. We’ll use that package for documenting us-
age of makematch; the following construct skips the
tests when makematch.dtx is used as a standalone
file.

〈∗dtx〉
\iffalse

〈/dtx〉
〈∗test〉
\RequirePackage{makematch,qstest}

\IncludeTests{*}

makematch requires LATEX to be based on ε-
TEX, which should be standard for current TEX dis-
tributions.

1.1 Match patterns and targets

This package has the notion of match patterns and
targets. Patterns and targets get sanitized at the
time they are specified; this means that nothing
gets expanded, but replaced by a textual representa-
tion consisting of spaces (with catcode 10) and other
characters (catcode 12). Control words are usually
followed by a single space when sanitized.

Patterns and targets are actually generalized to
pattern and target lists by this package: you can,
when specifying either, instead give a list by using
an optional argument for specifying a list separator
(the lists used in qstest are comma-separated).

Target lists are unordered: the order of targets
in them is irrelevant. Leading spaces in front of each
target get stripped; all others are retained.

Pattern lists similarly consist of a list of pat-
terns, with leading spaces stripped from each pat-
tern. In contrast to target lists, the order of pattern
lists is significant, with later patterns overriding ear-
lier ones. Also in contrast to target lists, empty pat-
terns are removed.

There are two special characters inside of a
pattern: the first is the wildcard * which matches
any number of consecutive characters (including the
empty string) in a target. Wildcards can occur any-
where and more than once in a pattern.

The second special character in a pattern is only
recognized at the beginning of a pattern, and only if
that pattern is part of a pattern list (namely, when
a list separator is specified).1 If a pattern is pre-
ceded by ! then the following pattern, if it matches,
causes any previous match from the pattern list to
be disregarded.

1 And if ! is not the list separator of the list.

190 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

makematch, a LATEX package for pattern matching with wildcards

So for example, the pattern list {*,!foo}

matches any target list that does not contain the
match target foo.

An empty target list {} is considered to contain
the empty string. Thus the pattern * matches every
target list, including empty ones, while the pattern
list {} does not match any keyword list, including
empty ones.

1.2 The interface

The \MakeMatcher command takes two mandatory
arguments. The first is a macro name. This macro
will become the new matcher. The second argu-
ment of \MakeMatcher is the pattern to match. An
optional argument before the mandatory ones can
be used for specifying a list separator, in which case
the first mandatory argument becomes a pattern list
(only in this case are leading ! characters before list
elements interpreted specially).

\begin{qstest}{\MakeMatcher}{\MakeMatcher}

\MakeMatcher\stylefiles{*.sty}

\MakeMatcher\headbang{!*}

\MakeMatcher[,]\truestylefiles

{*.sty,!.thumbnails/*,!*/.thumbnails/*}

The matcher constructed in this manner is called
with three arguments. The first argument is a con-
trol sequence name containing a match target (or
target list) prepared using \MakeMatchTarget (see
below).

Alternatively, the first argument can be a brace-
enclosed list (note that you’ll need two nested levels
of braces, one for enclosing the argument, one for
specifying that this is a list) which will then get
passed to \MakeMatchTarget (see below) for pro-
cessing before use. The inner level of braces inside
of the first argument may be preceded by a brack-
eted optional argument specifying the list separator
for this list.

The second argument of the matcher is exe-
cuted if the pattern list for which the matcher has
been built matches the keyword list. The third is ex-
ecuted if it doesn’t. List separators of pattern and
keyword list are completely independent from each
other. So, we expect the following to result just in
calls of \true (a call of \false is turned into a failed
expectation):

\begin{qstest}{\Makematcher literal}

{\MakeMatcher}

\begin{ExpectCallSequence}

{\true{}\false{}%

‘.#1{\Expect*{\CalledName#1}{true}}+’}

\stylefiles

{{xxx/.thumbnails/blubb.sty}}

{\true}{\false}

\truestylefiles

{{xxx/.thumbnails/blubb.sty}}

{\false}{\true}

\headbang

{{xxx/.thumbnails/blubb.sty}}

{\false}{\true}

\stylefiles

{[]{x.sty.gz .thumbnails/x.sty !x}}

{\true}{\false}

\truestylefiles

{[]{x.sty.gz .thumbnails/x.sty !x}}

{\false}{\true}

\headbang

{[]{x.sty.gz .thumbnails/x.sty !x}}

{\true}{\false}

\end{ExpectCallSequence}

\end{qstest}

So how do we create a sanitized keyword list in
a control sequence?

\MakeMatchTarget is called with two manda-
tory arguments, the first being a control sequence
name where the keyword list in the second argument
will get stored in a sanitized form: it is converted
without expansion to characters of either “other” or
“space” category (catcodes 12 and 10, respectively),
and any leading spaces at the beginning of an ele-
ment are removed. Without an optional bracketed
argument, nothing more than sanitization and lead-
ing space stripping is done. If an optional bracketed
argument before the mandatory arguments is spec-
ified, it defines the list separator: this has to be a
single sanitized character token (either a space or a
character of category “other”) that is used as the list
separator for the input (the finished list will actually
always use the macro \, as a list separator).

\begin{qstest}{\Makematcher%

&\MakeMatchTarget}%

{\MakeMatcher,%

\MakeMatchTarget}

\MakeMatchTarget\single

{xxx/.thumbnails/blubb.sty}

\MakeMatchTarget[]

\multiple{x.sty.gz

.thumbnails/x.sty !x}

\begin{ExpectCallSequence}

{\true{}\false{}%

‘.#1{\Expect*{\CalledName#1}

{true}}+’}

\stylefiles{\single}{\true}{\false}

\truestylefiles\single{\false}{\true}

\headbang\single{\false}{\true}

\stylefiles{\multiple}{\true}{\false}

\truestylefiles\multiple{\false}{\true}

\headbang\multiple{\true}{\false}

\end{ExpectCallSequence}

\end{qstest}

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 191

David Kastrup

After a match process \MatchedTarget will contain
the target matched by the last matching pattern (if
several targets in a match target list match, only
the first of those is considered and recorded), re-
gardless of whether the corresponding pattern was
negated with !. After a successful match, you can
call \RemoveMatched with one argument: the con-
trol sequence name where the list was kept, and
the match will get removed from the list. If every
list element is removed, the list will be identical to
\@empty.

\begin{qstest}{\MatchedTarget}

{\MakeMatcher,%

\MakeMatchTarget,%

\MatchedTarget}

\MakeMatchTarget\single

{xxx/.thumbnails/blubb.sty}

\MakeMatchTarget[]\multiple

{x.sty.gz .thumbnails/x.sty !x}

\begin{ExpectCallSequence}

{\true{}\false{}%

‘.#1{\Expect*{\CalledName#1}

{true}}+’}

\stylefiles{\single}

{\true}{\false}

\Expect*{\single}

{xxx/.thumbnails/blubb.sty}

\Expect*{\meaning\MatchedTarget}

*{\meaning\single}

\RemoveMatched\single

\Expect*{\meaning\single}

{macro:->}

\truestylefiles\single

{\false}{\true}

\headbang\single

{\false}{\true}

\stylefiles{\multiple}

{\true}{\false}

\Expect*{\MatchedTarget}

{.thumbnails/x.sty}

\RemoveMatched\multiple

\Expect\expandafter{\multiple}

{x.sty.gz\,!x}

\truestylefiles\multiple

{\false}{\true}

\Expect*{\meaning\MatchedTarget}

{undefined}

\headbang\multiple

{\true}{\false}

\Expect*{\MatchedTarget}{!x}

\RemoveMatched\multiple

\Expect*{\multiple}{x.sty.gz}

\end{ExpectCallSequence}

\end{qstest}

\end{qstest}

1.3 Notes on sanitization

Note that sanitization to printable characters has
several consequences: it means that the control se-
quence \, will turn into the string \ followed by the
end of the keyword. Note also that single-character
control sequences with a nonletter name are not fol-
lowed by a space in sanitization. This means that
sanitization depends on the current catcodes. Most
particularly, sanitizing the input \@abc12 will turn
into \@abc 12 when @ is of catcode letter, but to
\@abc12 when @ is a nonletter.

So sanitization cannot hide all effects of cat-
code differences. It is still essential since otherwise
braces would cause rather severe complications dur-
ing matching.

Another curiosity of sanitization is that explicit
macro parameter characters (usually #) get dupli-
cated while being sanitized.

This is the end of the documentation section,
so we end our test file setup by complementing the
beginning:

〈/test〉
〈∗dtx〉
\fi

〈/dtx〉

2 Conclusions and outlook

makematch sets out to solve the task of pattern
matching with wildcards in a very efficient manner.
One basic restriction for some applications might
be that it is restricted to comparing sanitized to-
ken lists. This has the effect that it is not possible
to hide material from matching by enclosing it in
braces. On the other hand, TEX will strip enclosing
braces around a matched argument, making it un-
reliable to repeat matches or what to expect from a
matched string.

In a later version, possibly starred forms of the
commands will be provided that omit the sanitiza-
tion. Those will not be able to match several char-
acters with a meaning particular to TEX (such as
#, { or }), but will probably come handy in other
situations, like parsing keyword lists yielding TEX
arguments. While it is possible to do this with the
current code, using \scantokens for turning them
active again, this can cause matches leading to un-
paired braces, and it will not make it possible to
hide commata from the matching by enclosing them
in braces.

192 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

qstest, a LATEX package for unit tests

David Kastrup
David dot Kastrup (at) QuinScape dot de

Abstract

The qstest package was created because of the need to verify in a large LATEX
project that no regressions occur. The test environments ensure that macros
and registers will be set to expected values in test code, and that macro calls
occur in a certain sequence and with certain values. Tests are usually embedded
directly into the source code of .dtx files, thus providing documentation as well
as verification.

It is also possible to compare results of one test run to those of previous runs.
Several log files may be created simultaneously in order to record the results

of tests ordered into various categories.

1 Using qstest

The basic idea of qstest is to let the user specify
a number of tests that can be performed either at
package load time or while running a separate test
file through LATEX. If you are writing .dtx files, it
is a good idea to use docstrip ‘modules’ for speci-
fying which lines are to be used for testing. The file
qstest.dtx from which both the style file as well as
this documentation have been generated has been
written in this manner.

Since the tests should be ignored when the dtx

file is itself compiled, we use this for skipping over
the tests:

〈∗dtx〉
\iffalse

〈/dtx〉

A standalone test file does not need a preamble. We
can load the packages with \RequirePackage and
just go ahead. Let us demonstrate how to build such
a test file by testing the qstest package itself:

〈∗test〉
\RequirePackage{qstest}

1.1 Pattern and keyword lists

See the section “Match patterns and targets” of
the makematch package for an explanation of the
comma-separated pattern and keyword lists. In a
nutshell, both are lists of arbitrary material that is
not expanded but rather used in sanitized (print-
able) form. Patterns may contain wildcard charac-
ters * matching zero or more characters, and may
be preceded by ! in order to negate a match from
an earlier pattern in the pattern list. Leading spaces
before an item in either list are discarded.

1.2 Specifying test sets

\IncludeTests specifies a pattern list matched to
tests’ keyword lists in order to determine the tests
to be included in this test run. The characters * and
! are interpreted as explained above.

For example,

\IncludeTests{*, !\cs}

will run all tests except those that have a test key-
word of \cs in their list of keywords. It is a good
convention to specify the principal macro or envi-
ronment to be tested as the first keyword.

The default is to include all tests. If you are in-
terspersing possibly expensive tests with your source
file, you might want to specify something like

\IncludeTests{*, !expensive}

or even

\IncludeTests{}

in your document preamble, and then possibly over-
ride this on the command line with

latex "\AtBeginDocument{

\IncludeTests{*}}\input{file}"

or similar for getting a more complete test.
\TestErrors defines test patterns that will

throw an error when failing. A test that throws
an error will not also add a warning to the stan-
dard log file with extension log since that would be
redundant.

The default is \TestErrors{*, !fails}, to
have all tests that are not marked as broken throw
an error when they fail.

The throwing of errors does not depend on the
logging settings (see below) for the default log file.

\LogTests receives three arguments. The first
is the filename extension of a log file (the extension

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 193

David Kastrup

log is treated specially and uses package warning
and info commands to log test failures and passes,
respectively). The second is a keyword list that indi-
cates which passed tests are to be logged. The third
is a keyword list specifying which failed tests are to
be logged. Let us open a file logging everything:

\LogTests{lgout}{*}{*}

The choice of lgout is made to make it possible to
also have lgin for comparison purposes: the latter
would be an lgout file from a previous, ‘definitive
run’, renamed and checked into version control, for
the sake of being able to compare the log output
from different versions.

An already open log file stays open and just
changes what is logged. By default, the standard
log (pseudo-)file is already open and logs every-
thing.

Passed and failed tests are not completely sym-
metric with regard to logging: test failures are
logged and/or indicated on the individual failed as-
sertions, while a successful test is only logged and/
or indicated in summary.

With \LogClose you can explicitly close a log
file if you want to reread it in the course of pro-
cessing, or call an executable that would process it.
The standard file with extension log will not actu-
ally get closed and flushed if you do this (though
logging would stop on it), but all others might. An
actual example for this follows after the tests. You
can reopen a closed log file using \LogTests. It will
then get rewritten from the beginning (with the ex-
ception of the standard log file, of course).

1.3 The tests

Tests are performed within the qstest environment.
The environment gets two arguments. The first is
the name of the test recorded in the log file. The
second is a list of test keywords used for deciding
which tests are performed and logged.

Before delving into the details of what kind of
tests you can perform in this environment, we list
the various commands that are given patterns and
thus control what kind of tests are performed and
logged.

\Expect is the workhorse for checking that val-
ues, dimensions, macros and other things are just
what the test designer would expect them to be.

This macro basically receives two brace-delim-
ited arguments1 and checks that they are equal af-

1 The arguments are collected with a token register as-
signment. This gives several options for specifying them,
including giving a token register without braces around it.
It also makes it possible to precede the balanced text with
\expandafter and similar expandable stuff.

ter being passed through \def and sanitized. This
means that you can’t normally use # except when
followed by a digit (all from 1 to 9 are allowed) or #.
If you precede one of those arguments with * it gets
passed through \edef instead of \def. There may
also be additional tokens like \expandafter before
the opening brace. Note that the combination of
\edef and \the〈token variable〉 can be used to pass
through # characters without interpretation. ε-TEX
provides a similar effect with \unexpanded. So if
you want to compare a token list that may contain
isolated hash characters, you can do so by writing
something like

〈∗etex〉
\begin{qstest}{# in isolation}

{\Expect, #, \unexpanded}

\toks0{# and #}

\Expect*{\the\toks0}

*{\unexpanded{# and #}}

\end{qstest}

〈/etex〉

Since the sanitized version will convert # macro pa-
rameters to the string ##, you might also do this
explicitly (and without ε-TEX) as

\begin{qstest}{# in isolation 2}

{\Expect, #, \string}

\toks0{# and #}

\Expect*{\the\toks0}

*{\string#\string#

and \string#\string#}

\end{qstest}

If the token register is guaranteed to contain only
‘proper’ # characters that are followed by either an-
other # or a digit, you can let the normal interpreta-
tion of a macro parameter for \def kick in and use
this as

\begin{qstest}{# as macro parameter}

{\Expect, #}

\toks0{\def\xxx#1{}}

\Expect\expandafter{\the\toks0}

{\def\xxx#1{}}

\end{qstest}

In this manner, #1 is interpreted (and sanitized) as
a macro parameter on both sides, and consequently
no doubling of # occurs.

Before the comparison is done, both argu-
ments are sanitized, converted into printing char-
acters with standardized catcodes throughout.2 A
word of warning: both sanitization as well as us-
ing \meaning still depend on catcode settings, since
single-letter control sequences (made from a catcode
11 letter) are followed by a space, and other single-
character control sequences are not. For this reason,

2 Spaces get catcode 10, all other characters catcode 12.

194 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

qstest, a LATEX package for unit tests

a standalone test file for LATEX class or package files
will usually need to declare

\makeatletter

in order to make ‘@’ a letter, as is usual in such files.
All of the following expectations would turn out

correct:

\begin{qstest}{Some LaTeX definitions}

{\Expect}

\Expect*{\meaning\@gobble}

{\long macro:#1->}

\Expect*{\the\maxdimen}

{16383.99998pt}

\end{qstest}

Note that there is no way to convert the contents of
a box into a printable rendition, so with regard to
boxes, you will mostly be reduced to checking that
the box dimensions meet expectations.

1.4 Expecting ifthen conditions

\ExpectIfThen is used for evaluating a condition
as provided by the ifthen package. See its docs for
the kind of condition that is possible there. You just
specify one argument: the condition that you expect
to be true. Here is an example:

\RequirePackage{ifthen}

\begin{qstest}{\ExpectIfThen}

{\ExpectIfThen}

\ExpectIfThen{

\lengthtest

{\maxdimen=16383.99998pt}\AND

\maxdimen>1000000000}

\end{qstest}

1.5 Dimension ranges

\InRange checks not whether some dimension is ex-
actly equal to some value, but rather within some
range. We do this by specifying as the second ar-
gument to \Expect an artificial macro with two ar-
guments specifying the range in question. This will
make \Expect succeed if its first argument is in the
range specified by the two arguments to \InRange.

The range is specified as two TEX dimens. If
you use a dimen register and you want to have a pos-
sible error message display the value instead of the
dimen register, you can do so by using the * modifier
before \InRange (which will cause the value to be
expanded before printing and comparing) and put
\the before the dimen register since such registers
are not expandable by themselves.

Here are some examples:

\begin{qstest}{\InRange success}

{\InRange}

\dimen@=10pt

\Expect*{\the\dimen@}

\InRange{5pt}{15pt}

\Expect*{\the\dimen@}

\InRange{10pt}{15pt}

\Expect*{\the\dimen@}

\InRange{5pt}{10pt}

\end{qstest}

\begin{qstest}{\InRange failure}

{\InRange, fails}

\dimen@=10pt \dimen@ii=9.99998pt

\Expect*{\the\dimen@}

\InRange{5pt}{\dimen@ii}

\dimen@ii=10.00002pt

\Expect*{\the\dimen@}

*\InRange{\the\dimen@ii}{15pt}

\end{qstest}

\NearTo requires ε-TEX’s arithmetic and so will not
be available for versions built without ε-TEX sup-
port. The macro is used in lieu of an expected value
and is similar to \InRange in that it is a pseudovalue
to be used for the second argument of \Expect. It
makes \Expect succeed if its own mandatory argu-
ment is close to the first argument from \Expect,
where closeness is defined as being within 0.05pt.
This size can be varied by specifying a different one
as optional argument to \NearTo. Here is a test:

〈∗etex〉
\begin{qstest}{\NearTo success}

{\NearTo}

\dimen@=10pt

\Expect*{\the\dimen@}

\NearTo{10.05pt}

\Expect*{\the\dimen@}

\NearTo{9.95pt}

\Expect*{\the\dimen@}

\NearTo[2pt]{12pt}

\Expect*{\the\dimen@}

\NearTo[0.1pt]{9.9pt}

\end{qstest}

\begin{qstest}{\NearTo failure}

{\NearTo, fails}

\dimen@=10pt

\Expect*{\the\dimen@}

\NearTo{10.05002pt}

\Expect*{\the\dimen@}

\NearTo[1pt]{11.00001pt}

\end{qstest}

〈/etex〉

1.6 Saved results

The purpose of saved results is to be able to check
that the value has remained the same over multiple
passes. Results are given a unique label name and
are written to an auxiliary file where they can be
read in for the sake of comparison. One can use
the normal aux file for this purpose, but it might
be preferable to use a separate dedicated file. That

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 195

David Kastrup

way it is possible to input a versioned copy of this
file and have a fixed point of reference rather than
the last run.

While the aux file is read in automatically at
the beginning of the document, this does not happen
with explicitly named files. You have to read them
in yourself, preferably using

\InputIfFileExists

{filename}{}{}

so that no error is thrown when the file does not yet
exist.

\SaveValueFile gets one argument specifying
which file name to use for saving results. If this is
specified, a special file is opened. If \SaveValueFile

is not called, the standard aux file is used in-
stead, but then you can only save values after
\begin{document}. \jobname.qsout seems like a
useful file name to use here (the extension out is
already in use by pdfTEX).

\begin{qstest}{\SavedValue}

{\SavedValue}

\SaveValueFile{\jobname.qsout}

If this were a real test instead of just documentation,
we probably would have written something like

\InputIfFileExists

{\jobname.qsin}{}{}

first in order to read in values from a previous run.
The given file would have been a copy of a previ-
ous qsout file, possibly checked into version control
in order to make sure behavior is consistent across
runs. If it is an error to not have such a file (once
you have established appropriate testing), you can
just write

\input{\jobname.qsin}

instead, of course.
\CloseValueFile takes no argument and will

close a value save file if one is open (using this has
no effect if no file has been opened and values are
saved on the aux file instead). We’ll demonstrate
use of it later. It is probably only necessary for test-
ing qstest itself (namely, when you read in saved
values in the same run), or when you do the process-
ing/comparison with a previous version by executing
commands via TEX’s \write18 mechanism.

\SaveValue gets the label name as first argu-
ment. If you are using the non-ε-TEX version, the la-
bel name gets sanitized using \string and so can’t
deal with non-character material except at its im-
mediate beginning. The ε-TEX version has no such
constraint.

The second argument is the same kind of argu-
ment as \Expect expects, namely something suit-
able for a token register assignment which is passed

through \def if not preceded by *, and by \edef if
preceded by *. The value is written out to the save
file where it can be read in afterwards.

Let us save a few values under different names
now:

\SaveValue{\InternalSetValue}

*{\meaning\InternalSetValue}

\SaveValue{\IncludeTests}

*{\meaning\IncludeTests}

\SaveValue{whatever}

*{3.1415}

\SaveValue{\maxdimen}

*{\the\maxdimen}

A call to \InternalSetValue is placed into the save
file for each call of \SaveValue. The details are not
really relevant: in case you run into problems while
inputting the save file, it might be nice to know.

\SavedValue is used for retrieving a saved
value. When used as the second argument to
\Expect, it will default to the value of the first ar-
gument to \Expect unless it has been read in from
a save file. This behavior is intended for making it
easy to add tests and saved values and not get er-
rors at first, until actually values from a previous
test become available.

Consequently, the following tests will all turn
out true before we read in a file, simply because all
the saved values are not yet defined and default to
the expectations:

\Expect{Whatever}

\SavedValue{\InternalSetValue}

\Expect[\IncludeTests]{Whatever else}

\SavedValue{\IncludeTests}

\Expect[whatever]{2.71828}

\SavedValue{whatever}

\Expect[undefined]{1.618034}

\SavedValue{undefined}

After closing and rereading the file, we’ll need to
be more careful with our expectations, but the last
line still works since there still is no saved value for
“undefined”.

\CloseValueFile

\input{\jobname.qsout}

\Expect*{\meaning\InternalSetValue}

\SavedValue{\InternalSetValue}

\Expect[\IncludeTests]

*{\meaning\IncludeTests}%

\SavedValue{\IncludeTests}

\Expect[whatever]{3.1415}

\SavedValue{whatever}

\Expect[undefined]{1.618034}

\SavedValue{undefined}

\end{qstest}

196 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

qstest, a LATEX package for unit tests

Now let’s take the previous tests which succeeded
again and let them fail now that the variables are
defined:

\begin{qstest}{\SavedValue failure}

{\SavedValue,fails}

\Expect{Whatever}

\SavedValue{\InternalSetValue}

\Expect[\IncludeTests]{Whatever else}

\SavedValue{\IncludeTests}

\Expect{2.71828}\SavedValue{whatever}

\end{qstest}

1.7 Checking for call sequences

The environment ExpectCallSequence tells the test
system that macros are going to be called in a cer-
tain order and with particular types of arguments.

It gets as an argument the expected call se-
quence. The call sequence contains entries that look
like a macro definition: starting with the macro
name followed with a macro argument list and a
brace-enclosed substitution text that gets executed
in place of the macro. The argument list given to
this macro substitution will get as its first argument
a macro with the original definition of the control
sequence, so you can get at the original arguments
for this particular macro call starting with #2. As
a consequence, if you specify no arguments at all
and an empty replacement text for the substitution,
the original macro gets executed with the original
arguments.

\CalledName: if you want to get back from the
control sequence with the original meaning in #1 to
the original macro name, you can use \CalledName

on it. This will expand to the original control se-
quence name, all in printable characters fit for out-
put or typesetting in a typewriter font (or use in
\csname), but without the leading backslash char-
acter. You can get to the control sequence itself by
using

\csname \CalledName#1\endcsname

and to a printable version including backslash by
using

\expandafter \string

\csname \CalledName#1\endcsname

Going into more detail, a substitution function
is basically defined using

\protected \long \def

so it will not usually get expanded except when
hit with \expandafter or actually being executed.
Note that you can’t use this on stuff that has to
work at expansion time. This works mainly with
macros that would also be suitable candidates for
\DeclareRobustCommand.

It is also a bad idea to trace a conditional in
this manner: while the substitution could be made
to work when being executed, it will appear like an
ordinary macro when being skipped, disturbing the
conditional nesting.

Only macros occuring somewhere in the call se-
quence will get tracked, other macros are not af-
fected. The environment can actually get nested,
in which case the outer sequences will get tracked
independently from the inner sequence.

Thus, ExpectCallSequence can be used in or-
der to spoof, for example, both input consuming and
output producing macros without knowing the exact
relationship of both.

Apart from specifying macro calls, the call se-
quence specification can contain the following char-
acters that also carry a special meaning:

‘ If this is set in the call sequence, it places the
initial parsing state here. This will make it an
error if non-matching entries occur at the start
of the sequence, which otherwise is effectively
enclosed with

.{}*(〈sequence〉).{}*

meaning that nonmatching entries before the
first and after the last matching item of the
sequence are ignored by default (this makes it
closer to normal regexp matchers). Since the
matching will then start at ‘, you can put
macros before that position that you want to
be flagged if they occur in the sequence, even
when they are mentioned nowhere else (macros
which would be an error if actually called). Also
available as the more customary ^ character,
but that tends to behave worse in LATEX-aware
editors.

’ This indicates the last call sequence element to
be matched. If any traced macros appear after
this point, an error will get generated. Any
immediately following call sequence entries will
not get reached.

. A single dot indicates a wildcard: any of the
tracked control sequences might occur here.
You still have to follow this with macro argu-
ments and a braced replacement text. Wild-
cards are considered as a fallback when nothing
else matches.

(. . .) Parens may be used for grouping alternatives
and/or combining items for the sake of repeat-
ing specifications, of which there are three:

? If a question mark follows either a macro call,
wildcard call, parenthesized group, or call se-
quence end, the item before it is optional.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 197

David Kastrup

+ A plus sign following an item means that this item
may be repeated one or more times.

* An asterisk following an item means that this item
may be repeated zero or more times.

| A vertical bar separates alternatives. Alternatives
extend as far as possible, to the next bar, to an
enclosing paren group, or to the start and/or
end of the whole call sequence specification if
nothing else intervenes.

Note that in contrast to traditional regexp evalu-
ation, no backtracking is employed: at each point
in the call sequence, the next match is immediately
chosen and a choice cannot (for obvious reasons) be
reverted. It is the task of the user to specify a call se-
quence in a sufficiently non-ambiguous manner that
will make the call sequence tracing not pick dead
ends.

\begin{qstest}{ExpectCallSequence}

{ExpectCallSequence}

\def\e{e} \def\f{f}

\def\g{g} \def\h{h}

\begin{ExpectCallSequence}

{‘\e#1{%

\Expect\expandafter

{\csname\CalledName#1\endcsname}

{\e }%

\Expect*{\meaning#1}

{macro:->e}}+\f#1{}’}

\e \e \e \e \f

\end{ExpectCallSequence}

\end{qstest}

1.8 Ending a standalone test file

One finishes a standalone test file by calling the
LATEX control sequence \quit. This stops process-
ing even when we did not actually get into a doc-
ument. We don’t actually do this here since there
will be further tests in the full documentation file.
However, we will now close the log file we opened
for this demonstration.

\LogClose{lgout}

〈/test〉

2 Conclusion

The package documentation illustrated how one can
embed test cases into the source of a dtx package by
using module guards <test> and docstrip. There
are more possibilities of use, such as using <trace>

guards and embedding \Expect macros and call se-
quence expectations right into code for regular use
instead of doing separate tests. In that way, a de-
bugging version of the package may be extracted us-
ing docstrip. Selecting a subset of trace commands
or assertions to use can easily be accomplished with
the makematch package.

The qstest package in combination with the
dtx documentation format and docstrip allows to
integrate documentation and unit testing. As long
as one does not do actual testing, the qstest pack-
age is not required to be installed for either com-
piling documentation or using the style file. For
that reason, one can safely use it without having
to assume anything about the version (if any) of the
qstest package available to some end user.

198 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

gmverse and gmcontinuo — some nontrivial placement of text on a page

Grzegorz Murzynowski
Sulejówek, Poland
natror at o2 dot pl

Abstract

I wrote a package for ‘optical centering’ of verses and for right alignment of long
and broken lines. By ‘optical centering’ I mean placement of the box containing
a verse such that it seems to be balanced on the vertical axis of a page.

Another package of mine is gmcontinuo, working under both LATEX and Plain
TEX. It allows one to typeset paragraphs in continuo, marked not with a new line
and indent but continuously, marked with only the ¶ sign.

1 The gmverse package

1.1 Alignment of broken lines

Apentuła niewdziosek te będy
gruwaśne

W koć turmiela weprząchnie, kostrą
bajtę spoczy

Figure 1: A verse by S. Lem in a standard verse . . .

Oproszędły znimęci, wyświrle
uwzroczy,

A korśliwe porsacze dogremnie
wyczkaśnie.

Figure 2: . . . and in verse of gmverse:
long and broken lines aligned right . . .

Trzy samołóż wywiorstne gręzacz
[tęci wzdyżmy,

Apelajda sękliwa borowajkę
[kuci. . .

Figure 3: . . . and bracketed.

As you can see in figs. 2 and 3, gmverse provides
for right alignment of long and broken lines. This
seems to be typical in Polish typography and one
gets that effect with just \usepackage{gmverse}.
Optionally, the rest of a long line may be preceded
with a left square bracket, which is used in Polish
typesetting of poetry. That is specified with the
squarebr option of gmverse.

What are the ‘long lines’, though? They are the
lines exceeding \hsize or the length set with the
\versemaxline declaration.

By the way, the source of the verse in fig. 3 is:

\begin{verse}

␣␣Trzy␣samołóż␣wywiorstne␣(...)␣wzdyżmy,

␣␣Apelajda␣sękliwa␣borowajkę␣kuci\dots

\end{verse}

Do you see what’s missing? Yes. When I typeset
poetry, I don’t want to think about \\, especially
when I copy the verses from non-TEX files. But if you
insist, you may write \\, it has the same effect and
optional argument as in standard verses. A stanza
you mark with a blank line.

Sometimes I typeset liturgical texts (psalmody
of Liturgia Horarum e.g.) that need to have stanzas
(versetti) alternately indented. That is available in
the \psalmato declaration’s scope, cf. fig. 4.

Składniki: cukier, miazga kakaowa, †
migdały sześć procent, masło kakaowe ∗

tłuszcz mleczny, gruszka, jabłko, ananas.
Aromat naturalny gruszkowy, ∗
emulgator lecytyna sojowa.

Substancja zagęszczająca ∗

alginian sodu.
Regulator kwasowości kwas cytrynowy ∗

E trzysta trzydzieści. . .

Figure 4: The \psalmato declaration’s effect.

(The cross and star indicate a continuation and divi-
sion of a psalm line, respectively.)

1.2 Centerings

The gmverse package provides several kinds of cen-
tering of a verse. By centering of a verse I mean
horizontal centering of some rectangle on a page.
That rectangle corresponds to the body of a verse;
how it corresponds depends on the kind of centering.
The common feature of those rectangles is that their
left side sticks to the left margin of the verse’s body.
The verse itself is always aligned mostly left (ragged
right and continuations of broken lines aligned right).

The optical centering may be either automatic
or manual. The automatic comes in four flavours, all

2 Anne-Sophie Mutter.

TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007 199

Grzegorz Murzynowski

W∞:

ASM2 rządzi
dioda świeci miodowo

|

chrząszcz chrzęści w czcionkach.

| |
| |
| |

W3:

ASM rządzi
dioda świeci miodowo

|

chrząszcz chrzęści w czcionkach.

| |
| |
| |

W2:

ASM rządzi
dioda świeci miodowo

|

chrząszcz chrzęści w czcionkach.

| |
| |
| |

W1:

ASM rządzi
dioda świeci miodowo

|
chrząszcz chrzęści w czcionkach.

| |
| |
| |

Figure 5: Four versions of optical centering of
a verse— E. Szarzyński, Late night haiku No. 3.

of them cases of a general formula. The idea is to
compute some average of the lines’ lengths and set
the rectangle’s width to that average.

The first kind of average one can think of is
arithmetical mean. That is the case W1. The last
kind of average is ‘only the longest line counts’, that’s
W∞. Between them are a continuum of possibilities;
consider a formula

Wα =

n
∑

k=1

lk
α

/

n
∑

k=1

lk
α−1

where lk, k = 1, . . . , n are the lengths of the lines3

and α ∈ [1,+∞).
When α = 1, all the lines have ‘equal right to

decide’ about the mean. When α grows, the longer
lines become ‘równiejsze’ (‘more equal’, a term from
the PRL4 epoch to describe unjust privileges of the
Party apparatchiks), which means they mean more
to the mean.

We define W∞ most naturally, as the limit:

W∞ = lim
α→∞

Wα

and we notice easily that Wα corresponds to taking
only the longest line into account.

3 Assume they all have nonzero length when α = 1.
4 Polska Rzeczpospolita Ludowa (People’s Republic of

Poland)

I personally like W3 most and that’s the default
when optical centering is on.

If you prefer to set the centering manually, you
are given two ways to do that: the \vocpussyhair

parameter (dimen) intended for slight modifications
of the result of automatic computation, and the
declaration(s)

\versecenterdue{〈benchmark text〉}
or

\versecenterdue*{〈benchmark dimen〉}.

2 The gmcontinuo package

One day I read on GUST-L a post posted by a non-
newbie, who stated that in continuo typesetting was
not possible in TEX “because of the very nature of
paragraphs in TEX”. My immediate response to that
was a package that works both in Plain and in LATEX,
which does do that: the text

¶ . . . wyrosła budowla złożona i przedstawiająca
i będąca marmurowo czarnymi (z czarnego mar-
muru) schodami prowadzącymi we Wszystkich
kierunkach i zwrotach (rzecz jasna też poza tę
czasoprzestrzeń). ¶ Z ust lampy białej jak
gniazdo osy wypadła Salamandra i na pierwszych
czterech stopniach budowli złożyła po jednym
pomarańczowym jaju (ich powierzchnia była jak
skórka pomarańczy). ¶ Przeliczyłem je — sie-
dem z dołu w prawo, pięć z tyłu wgłudż. ¶

Rzeczywiście, wszędzie wirują z wiatrem oka
z pawich ogonów (niektóre mrugają porozumie-
wawczo). . . ¶ Edmund Szarzyński.

is typeset from an ordinary TEXt with paragraphs
marked just with blank lines.

This small package is an example of a general
rule that in TEX you should never ever state “It’s
impossible”, and you should not even ask “Can it be
done?”, but: “How can it be done?”

3 The point

Why do I write in one article about such different
things as right alignment of broken lines of a verse
and in continuo? Because they use the same TEX
mechanism: unpacking of a once-typeset box, thanks
to \unhbox and/or \unvbox, that lets you to retype-
set a paragraph having found its dimensions.

200 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

The gmdoc bundle—a new tool for documenting (LA)TEX sources

Grzegorz Murzynowski
Sulejówek
natror at o2 dot pl

Abstract

There is a new package and a document class written by myself for document-
ing (LA)TEX packages and classes. ‘Documenting’ means that the comments are
typeset as ordinary text and the code verbatim. All the control sequences are
automatically indexed.

I think that the gmdoc package is superior to the doc package in two respects.
First, the index entries, the table of contents and cross-references are made hy-
perlinks by default (with use of the hyperref package). Second, the gmdoc package
allows you to typeset plain .sty and .cls files with the comments marked only with
% (no special environments required).

The gmdoc bundle allows you to typeset the ‘traditional’ .dtx files, including
LATEX2ε Source and doc.dtx. The gmdoc bundle is available on CTAN.

gmdoc breaks free from macrocode

After I had written a couple of LATEX packages and
even a class, I realised it would be nice to docu-
ment them and make them available for everybody
by putting them on CTAN. So I asked my TEX
Guru, how can I document the code? I had al-
ready heard of the ideas of literate programming
and self-documenting files. That idea is to write the
code and the commentary on it simultaneously and
mixed in one file, from which a respective program
would extract the pure working code and another
program would typeset a pretty narrated book or
article about the code in question. Even before ask-
ing my TEX Guru, I had always added much com-
mentary to my code, TEXnical or otherwise.

And my TEX Guru told me a fascinating tale
of the doc package, and the .dtx files that make pos-
sible literate programming of (LA)TEX sources. The
main idea, of changing the catcode of % depending
on the mode of reading a file, or, from another side,
of allowing the same file to be an executable (load-
able) package or document class or a comprehensive
documentation of that package or class depending
on the catcode of %, enlightened my mind. But the
rest of the tale, although equally fascinating, sug-
gested that I do something I wouldn’t like: mark up
every piece of code with

%␣␣␣␣\begin{macrocode}

...

%␣␣␣␣\end{macrocode}

where the Percent and Four Spaces at the end are
obligatory (see fig. 1). That would mean rewriting
all of my .sty and .cls files.

Instead of such half-mechanical editorial work
I chose to write my own documenting package such
that just the percents would be sufficient as the
markup, as in figure 2. Don’t you think that three
lines of commentary instead of seven do make a dif-
ference and are more readable?

So, the task was set: not to mark up the code.
The most natural1 solution to that was the active
line end which could check whether the next line
begins with a comment sign or not.

The fundamental idea of gmdoc is to consider
the input file as consisting of two threads: the com-
mentary, marked with the comment signs, and the
code, which is the rest of the file.

Therefore the first thing done by the main in-
put command is setting the catcode of the declared
comment sign (% by default) to ‘other’ (12) and the
catcode of ^^M (the line end char) to ‘active’ (13) and
define the newly-active line end to check whether the
next line begins with the comment sign.

To be precise, that active line end memorizes
the number of leading spaces of the next line and
then checks whether the first non-space character is
the comment sign. (Later, if we discover that it’s
code, those spaces will be typeset as a respective
indent.)

If the first non-space character of a line is not
the comment sign, then the active line end opens
a group for typesetting the code, within which the
typewriter font is set, the catcodes of special charac-
ters are changed to 12 (‘other’) or 13 (‘active’) and

1 I realize that what seems ‘most natural’ to me, may
seem ‘Against Nature’ to some others ;-) .

TUGboat, Volume 29, No. 1 —XVII European TEX Conference, 2007 201

Grzegorz Murzynowski

%␣␣␣␣\begin{macrocode}

\def\macrocode{\macro@code

%␣␣␣␣\end{macrocode}

%␣␣␣␣Then␣we␣take␣care␣that␣all␣spaces␣have␣the␣same␣width,␣and␣that

%␣␣␣␣they␣are␣not␣discarded.

%␣␣␣␣\begin{macrocode}

␣␣␣\frenchspacing␣\@vobeyspaces

%␣␣␣␣\end{macrocode}

%␣␣␣␣Before␣closing,␣we␣need␣to␣call␣|\xmacro@code|.␣␣It␣is␣this

Figure 1: An excerpt from a .dtx file

\def\macrocode{\macro@code

␣␣%␣Then␣we␣take␣care␣that␣all␣spaces␣have␣the␣same␣width,␣and␣that

␣␣%␣they␣are␣not␣discarded.

␣␣␣\frenchspacing␣\@vobeyspaces%␣maybe␣an␣inline␣comment:

␣␣␣%␣Before␣closing,␣we␣need␣to␣call␣|\xmacro@code|.␣␣It␣is␣this

Figure 2: An example of the desired markup

the characters redefined in the latter case. Then an
iterating macro is launched that eats the code char-
acter by character and typesets it until it finds the
comment sign.

In the last case, the macro checks whether it’s
a real beginning of a commentary and not just a con-
catenation of two lines of code, and if so (it’s a com-
mentary), it closes the verbatim group and lets the
commentary be typeset.

In the comment or ‘narration’ layer, the com-
ment char’s catcode is set to ‘ignored’ (9), as with
doc.

The solutions developed make gmdoc superior
to the doc package in one and a half respects:

1. The macrocode environment is not compulsory
anymore. It is available, however.

1.5. Inline comments are supported. That is, they
are not typeset verbatim, but in a roman font,
as the comments should be IMO.

By the way, don’t you find the gmdocish version
of a source (fig. 2) more readable (than in fig. 1)?

Usage

We haven’t yet seen how the package should be
used. The usage is very simple and analogous to
the usage of doc: you write a usual LATEX document
with some input commands specific to gmdoc, usu-
ally \DocInput{〈file.sty〉} or \DocInclude{〈file〉};
cf. fig. 3. That LATEX document file is called the

driver (as in doc).
The text typeset in a roman font belongs to

the narration layer, that is, it occurs after some %

sign. (As you might guess, the lines are numbered
automatically.)

gmdoc meets hyperref

Since I’ve been into TEX for only some three years,
.pdf is a most natural output IMO and pdfε-TEX is
the most natural TEX engine (though the marvellous
X ETEX may become so soon). So, an obligatory and
almost subconscious behaviour is to use the hyperref
package.

The sophisticated features of doc, such as auto-
matic indexing of the control sequences and mark-
ing them in the margin seemed to me so useful and
clever that I implemented them in gmdoc. And the
features that I consider as ‘naturally hyperlinking’
are indeed made hyperlinks: the index entries, the
cross-references, the footnotes, and the table of con-
tents entries.

That’s the other thing that makes gmdoc supe-
rior to doc IMO.

The TOC entries, the footnotes and the cross-
references are made hyperlinks by default whenever
you use the hyperref package. Therefore these fea-
tures of gmdoc needed no work of mine (except

\RequirePackage{hyperref}).

The fourth thing, hyperlinking of the index en-
tries, did need some care. By default, hyperref wants
to make a hyperindex and that’s very nice in most
cases. But the case of documenting a (LA)TEX source
is different: The index entries may be of three kinds,
two of which are specially formatted, and may be
preceded with a source file identifier (here I follow

202 TUGboat, Volume 29, No. 1 —XVII European TEX Conference, 2007

The gmdoc bundle—a new tool for documenting (LA)TEX sources

1 \documentclass[fleqn]{ltugproc}

2 \def\fileversion{\relax}

3 \hfuzz4pt

4 \PrelimDraftfalse

5 \tolerance990

6 \pretolerance1450

7 \input␣../lsetup.tex

8 \setcounter{page}{85}

9 \parskip0pt␣plus␣.4pt

10 \usepackage{gmdoc}

This is a comment written as a separate paragraph. (The code is an excerpt from the source of this
document.)

(. . .)

11 \begin{document}

(. . .)

:
:

:
:

:
:

:
:

:
:

:
:•

The output of fig. 2:

12 \def\macrocode{\macro@code

Then we take care that all spaces have the same width, and that they are not discarded.

13 \frenchspacing␣\@vobeyspaces% maybe an inline comment: Before closing, we need to call
\xmacro@code. It is this

(. . .)

14 \DocInput{gmdocEBT.tex}

15 And␣this␣is␣an␣example␣of␣a~very␣long␣code␣line.␣See␣how␣is␣it␣{broken␣{%

at␣{left␣{brace␣{with␣{a~\%␣sign␣as␣‘hyphen’␣and␣hang-indented.}}}}}}

(. . .)

Figure 3: An example of use and output at once

the rules set by doc and ltxdoc, which I consider to
be a (high) standard).

The need to use special encapsulation com-
mands is obvious and that conflicts with the de-
fault |hyperpage encapsulation inserted by hyper-
ref. So the appropriate encapsulations were written
and now I dare say the high standard of a three-
way2 indexing of the CSs set by doc, along with
the high standard of preceding the entries with the
source file identifier when the source consists of sev-
eral files set by ltxdoc, are wed to hyperref in gmdoc
and the marriage is consummated.

Finishing touches

The preceding sections describe the two main ideas
of gmdoc. The rest of the bundle I would call finish-
ing touches. And they are many; I’ll mention only
few of them.

The gmdoc package provides hooks for the be-
ginning and end of the input: \AtBegInput{〈initial

2 ;-) .

stuff to be added〉} and \AtEndInput{〈finishing stuff

to be added〉}. Both use the ‘adding to a macro’ trick
so multiple instances are allowed and accumulate.
Both act globally.

But I also needed a hook that would add some-
thing only once, to the next input file. Therefore
I wrote \AtBegInputOnce{〈the stuff 〉} hook that
defines a macro of a unique name, thanks to

\csname...\the\some@count\endcsname

and the first thing the meaning of that macro con-
sists of is \let\this@macro\relax, if you get what
I mean, and then 〈the stuff 〉, of course.

The \IndexInput command analogous to doc’s
homonym is crafted very simply: it consists mostly
of the basic \DocInput, only the comment char, the
code delimiter that is, is declared 〈char1 〉. Since
〈char1 〉 is declared ‘invalid’ in LATEX, we don’t ex-
pect one to be in a source file. Therefore the entire
contents of a source file is considered to be the code,
and typeset verbatim with its CSs automatically in-
dexed.

TUGboat, Volume 29, No. 1 —XVII European TEX Conference, 2007 203

Grzegorz Murzynowski

In this command there is clearly visible a detail
not that clear in ‘ordinary’ \DocInput: we have to
put our code delimiter at the end of the input to be
sure there are none in the file itself. But we do the
same in \DocInput since we don’t want to require
that a source file be ended with %.

There are a couple of commands for nicely type-
setting CSs and their arguments. They are inspired
by doc’s analogs, but defined in my own way. For
instance, my \cs{cs} typesets \cs as expected, but
also allows an optional argument, \ by default, that
is typeset before its mandatory argument. Thus,
you may get !macro by writing \cs[!]{macro}.
Why not just \verb or a ‘short verb’? Remember,
that neither \verb nor ‘short verb’ can be used in
an argument of a macro, nor can they be written to
a file properly. And \cs is robust.

To get 〈a meta-symbol〉 I took the \<...> macro
from The TEXbook (and mixed it with (ltx)doc’s
\meta). I mean, to get 〈a meta-symbol〉 you write
\<a~meta-symbol>.

Moreover, for typesetting {〈arguments like this〉},
I defined the \arg command my way such that

code typesets
$\arg␣x=\pi$ arg x = π

\arg{arg1} {〈arg1 〉}
\arg[optional] [〈optional〉]

\arg(pictorial) (〈pictorial〉)
I also repeat a handful of logos provided in doc

and add my ‘drei Groschen’:

\AmSTeX AMS-TEX
\BibTeX BibTEX
\SliTeX SLiTEX

\PlainTeX Plain TEX
\Web Web

\TeXbook The TEXbook

\eTeX ε-TEX
\pdfeTeX pdfε-TEX
\pdfTeX pdfTEX
\XeTeX X ETEX

\LaTeXpar (LA)TEX
\ds DocStrip

The first E in X ETEX is reversed if the graphics pack-
age is loaded. The (LA)TEX logo is defined in gmutils
and therefore available independent of gmdoc).

I allow for a given source file to be typeset both
standalone and as part of a multi-file document (The
Great Anthology of My Œuvres for instance ;-) and
therefore I provide ‘relative’ sectioning commands:
\division and \subdivision are \let to \section
and \subsection respectively but may be assigned
another way in The Anthology.

Since my goal is for gmdoc to support both the
standard classes and my favourite mwcls, in gmutils
I cheat a bit about the sectioning commands to deal
with their optional arguments in both the standard
classes and mwcls.

Since I often use the Quasi-Fonts (now renamed
and updated in TEX Gyre) in the QX encoding,3

which doesn’t have the ␣ sign and that sign is needed
when I wish the spaces in a verbatim environment4

to be ‘visible’, I added a hook to be executed (ex-
panded) in every verbatim, after setting the cat-
codes and font. The contents of this hook, if you
declare \VerbT1, is

\fontencoding{T1}\selectfont

so a visible space is typeset despite the general font
encoding.

As in doc, you may declare some character(s)
as ‘short verbatim’ and then write e.g. |\verb␣| in-
stead of \verb*+\verb␣+. In fact, it’s not gmdoc.sty
which makes it possible but gmverb.sty, so you may
use that feature independent of gmdoc.

I prefer shorter markup to longer so to display
single lines of code,

such␣\as␣\THIS␣one,

I redefined \[to make it properly typeset a short
verbatim and spaces. So, you may type

\[|such␣\as␣\THIS␣one,|\]

to get the above.

I also wrote a document class to typeset the
code in a pretty way, gmdocc.cls. This class is
strongly inspired by the ltxdoc class but, again, it’s
not a mere transcription.

In this article there’s not room to discuss all
the features of this class so let’s look at a sample
of output (see next page). Please notice the Latin
Modern Typewriter Condensed on the margin (hope
you like it as I do).

I could write many more words about what
I consider the finishing touches. There are many
options, declarations and commands to make docu-
menting of sources as much comfortable as a princess
could expect.

Approximately 87.31% of those touches were
written to make the gmdoc bundle compatible with
doc and ltxdoc, that is, to make gmdoc typeset the
LATEX canon of scriptures. And that leads us to the
last part of this article.

3 Why do I use QX? I don’t remember, to be honest.
4 I mean all the verbatim-like commands: not only

verbatim, but also the ‘shortverbs’ and the groups for the
TEX code in gmdoc.

204 TUGboat, Volume 29, No. 1 —XVII European TEX Conference, 2007

The \code@delim should be 12 so a space is not allowed as a code delimiter. I don’t
think it really to be a limitation.

And let’s assume you do as we all do:

46 \CodeDelim\%

We’ll play with \everypar, a bit, and if you use such things as the {itemize} en-
vironment, an error would occur if we didn’t store the previous value of \everypar and
didn’t restore it at return to the narration. So let’s assign a \toks list to store the
original \everypar.

47 \newtoks\gmd@preverypar

48 \newcommand*\settexcodehangi{%

49 \hangindent=\verbatimhangindent \hangafter=\@ne}% we’ll use it in the inline
comment case. \verbatimhangindent is provided by the gmverb package
and = 3 em by default.

50 \@ifdefinable\@@settexcodehangi{\let\@@settexcodehangi=%

\settexcodehangi}

We’ll play a bit with \leftskip, so let the user have a parameter instead. For normal
text (i.e. the comment):

51 \newlength\TextIndent\TextIndent

I assume it’s originally equal to \leftskip, i.e. \z@. And for the TEX code:

52 \newlength\CodeIndent

53 \CodeIndent=1,5em\relax\CodeIndent

And the vertical space to be inserted where there are blank lines in the source code:

54 \@ifundefined{stanzaskip}{\newlength\stanzaskip}{}

I use \stanzaskip in gmverse package and derivatives for typesetting poetry. A com-
puter program code is poetry.

55 \stanzaskip=\medskipamount\stanzaskip

56 \advance\stanzaskip by-.25\medskipamount% to preserve the stretch- and shrink-
ability.

A vertical space between the commentary and the code seems to enhance readability
so declare

57 \newskip\CodeTopsep

58 \newskip\MacroTopsep

And let’s set them. For æsthetic minimality7 let’s unify them and the other most im-
portant vertical spaces used in gmdoc. I think a macro that gathers all these assignments
may be handy.

59 \def\UniformSkips{%\UniformSkips

60 \CodeTopsep=\stanzaskip\CodeTopsep

61 \MacroTopsep=\stanzaskip\MacroTopsep

62 \abovedisplayskip=\stanzaskip

%\abovedisplayshortskip remains untouched as it is 0.0 pt plus 3.0 pt by default.
63 \belowdisplayskip=\stanzaskip

7 The terms ‘minimal’ and ‘minimalist’ used in gmdoc are among others inspired by the South
Park cartoon’s episode Mr. Hankey The Christmas (…) in which ‘Philip Glass, a Minimalist New York
composer’ appears in a ‘non-denominational non-offensive Christmas play’ ;-) . (Philip Glass composed
the music to the Qatsi trilogy among others)

File a: gmdoc.sty Date: 2007/03/30 Version v0.99c 23

The gmdoc bundle—a new tool for documenting (LA)TEX sources

Figure 4: A sample of gmdocc output

TUGboat, Volume 29, No. 1 —XVII European TEX Conference, 2007 205

Grzegorz Murzynowski

Testing or Missa papae Marcelli

In the 16th century there was a controversy in the
Roman Catholic Church about polyphony. There is
a legend that Pope Marcellus II considered banning
it since many composers were making the texture
of their works so complex that the words were not
recognizable. Then Giovanni Pierluigi da Palestrina
wrote a beautiful and ingenious polyphonic Missa
whose texture is extremely dense but the words are
very clearly recognizable. That missa, dedicated to
the pope, convinced him to allow polyphony in the
church music.

Why do I write about this? Because I hope
the gmdoc bundle at least generates a controversy
whether to use the doc package and the ltxdoc class
or itself. To be honest, my hope is the gmdoc bundle
could replace doc and ltxdoc. In a sense, gmdoc is
compatible with them: it typesets ‘traditional’ .dtx
files including The LATEX2ε Source.

One has just to use \OldDocInput instead
of \DocInput or declare \olddocIncludes before
\DocInclude of a docish file.

The (working!) driver files for The Source and
some other canonical files are my Missa papae Mar-
celli.

First, an homage to doc and ltxdoc, from which
I took most of the ideas (although, as a rule, I didn’t
copy the macros but rather made mine do what they
do): doc gmdoc.tex.

My esteem for those packages and classes is so
deep that I didn’t report either of the two typos
noticed during my typesetting nor did I change the
original text, but wrote some ‘diving hooks’ to fix
them.

Then, for their close relative, docstrip.dtx:
docstrip gmdoc.tex.

And, last and most thrilling, The LATEX2ε
Source: source2e gmdoc.tex.

Those drivers are available on CTAN as a part
of the gmdoc bundle.

I hope this humble bundle will be useful for
someone else and not only for me.

Brave new version 0.99g

While preparing this article for TUGboat, I revised
the gmdoc bundle and made it work with X ETEX
and automatically detect a couple of definitions.

‘Works with X ETEX’ means that you can specify
the sysfonts option of the gmdocc document class;

the basic three X ETEX-related packages (fontspec,
xunicode and xltxtra) will be loaded, and then you
can specify the system fonts with the fontspec pack-
age declarations.

‘Automatically detects a couple of definitions’
means that if you use gmdoc with its default set-
tings, any occurrence (in the code layer) of the
defining commands listed below causes marking of
their argument (the thing being defined) as defined
at that point: the control sequence, environment,
counter or option being defined appears in a margin
note and is indexed as a ‘definition’ entry.

The detected commands are:

• the (LA)TEX standard definitions: \def,
\newcount, \newdimen, \newskip,
\newif, \newtoks, \newbox, \newread,
\newwrite, \newlength, \newcommand(*),
\renewcommand(*), \providecommand(*),
\DeclareRobustCommand(*),
\DeclareTextCommand(*),
\DeclareTextCommandDefault(*),
\newenvironment(*),
\renewenvironment(*), \DeclareOption(*),
\newcounter;

• the definitions of the xkeyval package:
\define@key, \define@boolkey,
\define@choicekey, \DeclareOptionX;

• and the option definitions of the
kvoptions package by Heiko Oberdiek:
\DeclareStringOption,
\DeclareBoolOption,
\DeclareComplementaryOption,
\DeclareVoidOption.

Moreover, if you have your own defining commands,
they can now be detected with \DeclareDefining

〈command〉. On the other hand, you can turn off
the detection with \HideDefining〈command〉 for
the 〈command〉 only or \HideAllDefining for all
the definitions.

There are further commands that allow resum-
ing detection after ‘hiding’ it and particular decla-
rations for \def since it does not always define an
important macro.

And you still have the \Define declaration and
the macro(*) environment if the automatic detec-
tion doesn’t fit your needs.

Concluding, the gmdoc bundle now makes pos-
sible typesetting of (LA)TEX sources with almost no
markup and with the advantages of hyperref and
X ETEX.

206 TUGboat, Volume 29, No. 1 —XVII European TEX Conference, 2007

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 207

What is wanted:

⊲ short TEX, METAFONT or MetaPost macro/macros (half an A4 page or half a screen at most),

⊲ the code should be generic; potentially understandable by plain-oriented users,

⊲ results need not be useful or serious, but language-specific, tricky, preferably non-obvious,

⊲ obscure oddities, weird TEX behaviour, dirty and risky tricks and traps are also welcome,

⊲ the code should be explainable in a couple of minutes.

The already collected pearls can be found at http://www.gust.org.pl/pearls. All pearl-divers
and pearl-growers are kindly asked to send pearl-candidates to pearls@gust.org.pl, where
Paweł Jackowski, our pearl-collector, is waiting impatiently. The pearl marketplace is active
during the entire year, not just before the annual BachoTEX Conference.

Note: The person submitting pearl proposals and/or participating in the BachoTEX pearls
session need not be the inventor. Well known hints are also welcome, unless already presented
at one of our sessions.

Since some seasoned TEX programmers were indignant at calling ugly TEX constructs “Pearls
of TEX programming”, we decided not to irritate them any longer. We hope they will accept
“TEX beauties and oddities” as the session title.

If you yourself have something that fits the bill, please consider. If you know somebody’s work
that does, please let us know, we will contact the person. We await your contributions even
if you are unable to attend the conference. In such a case you are free either to elect one
of the participants to present your work or “leave the proof to the gentle reader” (cf., e.g.,
http://www.aurora.edu/mathematics/bhaskara.htm).

A TEX quine (Péter Szabó)

The code producing itself:

\def\T{

\tt \hsize 32.5em\parindent 0pt\def \S {\def \S ##1>{}}\S \string

\def \string \T \string {\par \expandafter \S \meaning \T \string

}\par \expandafter \S \meaning \T \footline {} \end }

\tt \hsize 32.5em\parindent 0pt\def \S {\def \S ##1>{}}\S \string

\def \string \T \string {\par \expandafter \S \meaning \T \string

}\par \expandafter \S \meaning \T \footline {} \end

TEX beauties and oddities

A permanent call for TEX pearls

http://www.gust.org.pl/pearls

208 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

A permanent call for TEX pearls

Multi-signed numbers (Hans Hagen)

TEX handles multiple signs properly:

\newdimen\scratchdimen

\scratchdimen 1pt \the\scratchdimen,

\scratchdimen -1pt \the\scratchdimen,

\scratchdimen --1pt \the\scratchdimen,

\scratchdimen ---1pt \the\scratchdimen,

\scratchdimen -+-+-+++-----+1pt \the\scratchdimen,

So, there is never a need to use an intermediate variable to negate a value. All digits, +/− signs and units
can be faked in macros:

\def\neg{-} \def\p{p}

\scratchdimen \neg\space\neg\space\space00001\empty\p\empty\empty tttt

One may also notice that while whitespace characters are allowed between multiple signs (but not between
digits!), leading zeros are ignored, and the unit is properly interpreted regardless of the very next character.

Double-hat trap (Jerzy Ludwichowski)

Is there a difference between those two cases?

\number‘\^^A

\number‘^^A

And how about this?

\number‘\^^@

\number‘^^@

In the case of ^^A (character code 1), both lines yield the number 1, the backslash character’s presence
before the double-hat doesn’t influence the result. In the second case, the first line yields 0, while the second
results in 32. The reason is that the character of the code 0 (^^@) has the associated category code ‘ignored’
(9). Any character of the category 9 will simply be omitted, except when there is a backslash immediately
before it. If there is no backslash, the very next character is considered, which is a space (code 32), and ^^@

simply disappears. This does not happen with characters of category code different from 9.

\vbox height vs. \vtop depth (Paweł Jackowski)

\vbox usually inherits its depth from the last box or rule of the vertical list it contains. Conversely, \vtop

has usually the height of the first box or rule of the vertical list it contains. However, using whatsits as the
first/last item of the box may lead to surprises.

\def\what{\special{}}

\setbox0=\vbox{Aqq \what} \the\ht0, \the\dp0 % 6.83331pt, 1.94444pt

\setbox0=\vtop{\what Aqq} \the\ht0, \the\dp0 % 0.0pt, 8.77776pt

\vbox still obeys the rule, despite the whatsit after the very last box on the list. But \vtop always has zero
height if its first item is a whatsit.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 209

TEX beauties and oddities

(Ir)relevant missing character message (Paweł Jackowski)

Try out the code

\hsize=7.3in \vsize=9.8in \leftskip=30mm \rightskip=30mm \parindent=1em

\font\LOGO=logo10

\def\MP{{\LOGO METAPOST}}

\def\MF{{\LOGO METAFONT}}

short \TeX, \MF\ or \MP\ macro/macros (half A4 page or half a~screen at most)[...]

The output is typeset without breaking any word at the end of a line. Try then to explain why the log file
contains the line:

Missing character: There is no - (45) in font logo10!

While breaking paragraphs into lines TEX checks all feasible breakpoints and chooses the one of the smallest
sum of costs (see The TEXbook, chapter 14). The message in the log file informs that some of the ways TEX
considered of typesetting the paragraph had a discretionary break after a META.

Skip assignments (Paweł Jackowski)

Consider the code:

\newskip\A

\newskip\B

\A = 3pt plus 1pt minus 1pt

\B = 1\A

Is now the skip \B equal to \A?

No, it’s not:

\the\A % 3pt plus 1pt minus 1pt

\the\B % 3pt

In an assignment of the form

skip = <number> skip

TEX eliminates the stretch and shrink of the glue. To avoid this effect one should not use a number/factor
(‘1’ in this case) on the right hand side of the equation. When necessary, one should use the \advance,
\divide, \multiply primitives instead, since all they preserve the glue-specific parts.

Current font global assignment (Bogusław Jackowski)

Font setup is normally bounded by groups. The code

\font\A=ec-lmr10 \A \message{\the\font}

{\font\B=ec-lmtt10 \B \message{\the\font}}

\message{\the\font}

gives \A \B \A, as one would expect. Why then does

\font\A=ec-lmr10 \A \message{\the\font}

{\font\B=ec-lmr10 \B \message{\the\font}}

\message{\the\font}

yield \A \B \B?

When the font used inside a group is the same as the current font in the outer grouping level, the local font
assignment becomes global. In fact, font \A is internally mapped to \B. Even if we call \A explicitly, TEX
reports \B as the current font.

\A \message{\the\font}

Things are intentionally different in LuaTEX . . .

210 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

A permanent call for TEX pearls

How to make a box disappear at a line break (Marcin Woliński)

Let us consider the problem of marking spaces in a paragraph with some symbol, as in the following:

Ten · typowy · testowy ·akapit · tekstu ·daje ·przy ·okazji · rodzaj
filigranowego ·wysypu ·hodowli ·pieczarek ·w ·zielonym ·kaszta-
nie · regloryfikacji · stanowisk ·ministerialnych · i · podsypanych
minimalistom · jako · fetysz ·zaduchu ·studziennych ·barykad.

The hard part is to make the symbol disappear when such a “space” occurs at a line break. We cannot
use \discretionary for that purpose since we need the “space” to be stretchable to make justification
possible. Moreover we want to be able to associate some penalty (e.g., 0) with our breakpoints other than
\(ex)hyphenpenalty.

As it turns out any box can be made discardable by putting it into \cleaders to the exact width of the box
in question. According to the rules TEX will put exactly one copy of the box in the text. So the construct
will look exactly like the box itself but will behave like a glob of glue. In particular it will disappear at a
line break.

Here are the macros used in the preceding passage:

\obeyspaces

\def {%

\setbox0\hbox{\cdot}%

\dimen0=\wd0\relax

\hskip1ptplus2pt%

\cleaders\box0\hskip\dimen0%

\hskip1ptplus2pt%

}

\rm\hsize9.5cm\parindent0pt

Ten typowy testowy akapit tekstu daje przy okazji rodzaj filigranowego %

wysypu hodowli pieczarek w zielonym kasztanie regloryfikacji %

stanowisk ministerialnych i podsypanych minimalistom jako fetysz %

zaduchu studziennych barykad.%

Stretchability is achieved with separate globs of glue so as not to allow TEX to insert more than one copy
of the box in case of an overstretched space.

Note that this trick can be used in vertical mode as well (e.g., to separate paragraphs with some graphical
element except the case when a paragraph boundary occurs at a page break). A discardable box can have
arbitrary complexity, it can include colour, EPS graphics, and so on.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 211

TEX beauties and oddities

Variable-width visible space (Bogusław Jackowski)

Marked spaces in a paragraph may not only disappear at a line break (as presented in the previous beauty
by Marcin Woliński), but may also adjust their width, shrink and stretch, as normal interword space does.

\def\vispace{%

\ifdim\spaceskip=0pt

\skip0=\fontdimen2\the\font

plus \fontdimen3\the\font

minus \fontdimen4\the\font

\else \skip0=\spaceskip \fi

\advance\skip0-.4pt

\cleaders\vrule width.2pt height.2ex depth.2pt\hskip.2pt

\cleaders\hrule height0pt depth.2pt\hskip\skip0

\cleaders\vrule width.2pt height.2ex depth.2pt\hskip.2pt

}

\obeyspaces\let =\vispace\def~{\nobreak\vispace}\let\ =\vispace%

% \def\^^M{\ } % plain does

Ten typowy testowy akapit tekstu daje przy okazji rodzaj filigranowego\

wysypu hodowli pieczarek w~zielonym kasztanie regloryfikacji\

stanowisk ministerialnych i~podsypanych minimalistom jako fetysz\

zaduchu studziennych barykad aglomeracji fosforescencji luminazy\

atraktywno-bajerywnej z~dodatkiem glukozy i~mineralnych bakterii\

finansowych oraz gromadzenia idei atrakcyjnych pomp prasowych z~okazji\

rozpoczynania wegetacji takich istot jak wiolonczele, napoje bazaltowe\

i~gramatyka z~okresu mezozoicznego z~jej typowym sposobem oznajmiania\

zachwytu nad bytem poprzez wycie i~popiskiwanie o~charakterystycznej\

modulacji toniczno-barycznej z~wyskokami w~kierunku reglamentacji\

zawartej immanentnie w~bagnie.

Ten typowy testowy akapit tekstu daje przy okazji rodzaj filigranowego wysypu hodowli pieczarek w zie-
lonym kasztanie regloryfikacji stanowisk ministerialnych i podsypanych minimalistom jako fetysz zaduchu
studziennych barykad aglomeracji fosforescencji luminazy atraktywno-bajerywnej z dodatkiem glukozy i mi-
neralnych bakterii finansowych oraz gromadzenia idei atrakcyjnych pomp prasowych z okazji rozpoczynania
wegetacji takich istot jak wiolonczele, napoje bazaltowe i gramatyka z okresu mezozoicznego z jej typowym
sposobem oznajmiania zachwytu nad bytem poprzez wycie i popiskiwanie o charakterystycznej modulacji
toniczno-barycznej z wyskokami w kierunku reglamentacji zawartej immanentnie w bagnie.

212 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

A permanent call for TEX pearls

Do you need some stretch? (Marcin Woliński)

TEX’s \leaders primitive can be used to fill arbitrary space with a stretchable line (cf. \hrulefill). It is
also possible to have an expandable triple line:

The St. Anford Orchestra

Variations on a Theme by Tchaikovsky

\def\triplefil{%

\leaders\hrule height4pt depth-3.2pt\hfil \hskip0pt plus-1fil

\leaders\vrule height1.6pt depth0pt\hfil \hskip0pt plus-1fil

\leaders\vrule height-.6pt depth1pt\hfil }

\def\triplefilledline#1{\hbox to\hsize{%

\vrule height4ptdepth3ptwidth.8pt \triplefil \vrule

height10ptdepth1ptwidth.4pt \enspace\strut#1\enspace \vrule

height10ptdepth1ptwidth.4pt \triplefil \vrule

height4ptdepth3ptwidth.8pt } }

\triplefilledline{The St.\ Anford Orchestra}

\triplefilledline{Variations on a Theme by Tchaikovsky}

To understand what happens here one needs to count stretchability of leaders and glue in \triplefil. It is:
1fil (from \hfil) + −1fil (from \hskip) + 1fil + −1fil + 1fil, which sums up to 1fil. So when TEX needs to
set \triplefil to, say, 37pt it stretches each fil of glue to that length. The first leaders become 37pt wide,
then comes \hskip to −37pt (−1fil), and so TEX overprints the second \leaders on the first, and the same
repeats with the next glue and leaders.

This trick opens space for countless variations:

The St. Anford Orchestra

Variations on a Theme by Tchaikovsky

MetaPost tables indexed with strings (Bogusław Jackowski)

Converting MetaPost strings to suffixes one can implement tables indexed with strings.

% Definitions:

def strtosfx(expr s) =

for i:=1 upto length(s): [ASCII(substring(i-1,i) of s)] endfor

enddef;

vardef sfxtostr_ []@# =

if (str @=""): "" else: char(@) if str @#<>"": & (sfxtostr_ @#) fi fi

enddef;

def sfxtostr(suffix s) = begingroup sfxtostr_ s endgroup enddef;

% A few tests:

show sfxtostr(strtosfx("ABCABCABCABCABCABCABCABCABCABCABCABC!"));

save X; X strtosfx("ABC") =0; showvariable X;

save X;

for s:="ala", "ma", "kotakotakota", "kota": X strtosfx(s) = 0; endfor

for s:="ala", "ima", "kota": if known X strtosfx(s): show s; fi endfor

end.

If only there were a way to iterate over all known indexes . . .

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 213

TEX beauties and oddities

Multiple expansions triggered with a single \expandafter (Marcin Woliński)

This pearl (coded on October 18, 1996) is the most useless one I could think of. Nonetheless it is an example
of a really curious expansion of macros.

Let us imagine that we have a list of non-space tokens and we want to assign this list to a token register
without expanding the tokens and in reversed order. Here is a simple macro that reverses a list in an
expand-only way:

\def\afterfi#1#2\fi{\fi#1}

\def\reverse#1{\reverseX{}#1\stopreverse}

\def\stopreverse{\noexpand\stopreverse}

\def\reverseX#1#2{\ifx\stopreverse#2%

\afterfi{#1}%

\else

\afterfi{\reverseX{#2#1}}%

\fi}

Now we can write

\reverse{abcdefg}

and TEX will respond with writing gfedcba on the terminal.

To put the result of reversing the list abc\foo def\bar ghi in a token register we do the following:

\toks0=\expandafter{\if0\reverse{abc\foo def\bar ghi0}}\fi

\showthe\toks0

With the use of \expandafter we introduce a single expansion to the region where expansion is suppressed.
The token being expanded is the \if. To expand an \if TEX needs to find the next two non-expandable
tokens to compare them. The first token is 0, but then TEX sees the macro \reverse. So the macro gets
expanded. An interesting feature of \reverse is that no non-expandable tokens are emitted until the list is
fully reversed. So only then does TEX stop expansion. The first non-expandable token TEX will see is the
second 0, which we have devilishly inserted at the end of the list. At this point the condition turns out to
be true and the next tokens get assigned as contents to the token register.

214 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

A permanent call for TEX pearls

Hacking verbatim (Grzegorz Murzynowski)

How do you get italics inside a verbatim? By a ‘verbatim’ I mean a LATEX environment that changes the
catcodes of special chars and thus allows typesetting them verbatim (the tricks below apply to TEX in ge-
neral, though). LATEX’s \begin{verbatim} expands mostly to \begingroup\csname verbatim\endcsname

and \verbatim acts mostly like DEK’s \ttverbatim, \end{verbatim} is needed to delimit \verbatim’s
argument.

Let’s recall that the chars of codes 1–32 (except the end of line, etc.) are catcoded as ‘invalid’ in LATEX. The-
refore I dare to assume they are neither used nor present in decent (LA)TEX files. The verbatim environments
do not recatcode them, so I can use them for my wicked purpose:

\catcode‘\^^E\active

\def^^E{\bgroup\it}

\let^^F\egroup

\begin{verbatim*}

How do you get 〈char5〉italics〈char6〉 inside a~verbatim?

\end{verbatim*}

Gives

How do you get italics inside a~verbatim?

Note that we should use explicit 〈char5〉 and 〈char6〉 since verbatims recatcode ^ to category ‘other’ so
‘^^E’ would produce just ^^E.

Now, how to input selected lines of a file verbatim?

\long\def\firstofone#1{#1}

\catcode‘\@=11

\newread\my@file

\openin\my@file=bachotex2007-grzegorz-murzynowski-pearl1.src

\def\my@reading#1 #2{%

\loop\ifnum\count\z@<#1%

\advance\count\z@\@ne\read\my@file to\@tempa

\ifx.#2\@tempa\endgraf\fi\repeat}%

\firstofone{%

\begin{verbatim}%

\count\z@\z@

\my@reading1 -%

\my@reading2 .%

\my@reading22 -%

\my@reading26 .%

}\end{verbatim}

The given code results in the following:

\def^^E{\bgroup\it}

\let^^F\egroup

\begin{verbatim*}

How do you get ΠitalicsΣ inside a~verbatim?

What is the most fundamental trick? The \firstofone macro (I learnt it from my TEX Guru who did
not invent it either). Apparently it doesn’t do anything: it has one parameter and expands exactly to it.
But there is one very important thing it does: it ‘freezes’ the catcodes in the argument. Therefore all the
commands and their arguments cannot be recatcoded by \verbatim and they are expanded and executed.

TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007 215

TEX beauties and oddities

Custom overfull text (Paweł Jackowski)

How to replace a black overfull rule at the end of too long lines of a paragraph?

Well, there is no direct way to do so, but one should never underestimate TEX’s bells and whistles. First of
all, we can test if the last (h)box was overfull by checking the value of \badness; if it is larger then 10000
it definitely means that the box was overfull (\badness never exceeds 10000 for underfull boxes). Assuming
that \box0 is the box we want to test, we can say

\def\ooops{\hbox to\wd0{\setbox0=\hbox to\wd0{\unhbox0}%

\unhbox0 \ifnum\badness>10000 \rlap{\sevenrm\quad Ooops!}\fi}}

And how to get the box that is the line of a paragraph? By setting the \interlinepenalty parameter to
a large negative value we can force a page break between every two lines of a paragraph. In the \output

routine, we can recognize those special penalties via the \outputpenalty parameter. The \output routine
is not necessarily required to \shipout the page — it may simply return all its content back to the ‘recent
contributions’.

\interlinepenalty=-50000 % force the break between each two lines

\maxdeadcycles=50 % allow upto 50 \outputs with no \shipout

\newtoks\orioutput \orioutput=\output % wrap the original \output routine

\output

{\ifnum\outputpenalty>-20000 \the\orioutput

\else \ifnum\outputpenalty<-\maxdimen \the\orioutput

\else

\unvbox255 % flush the entire list back

\setbox0=\lastbox % strip the very last box

\nointerlineskip % avoid doubled interline glue

\ooops % make the test and return the box back.

\advance\outputpenalty by50000

\penalty\outputpenalty % weak lie that nothing happened...

\fi\fi}

\hfuzz=\maxdimen % no overfullrule, no messages

\hsize=1.5in % provoke overfulls

...

This completely useless example
shows a not-so-useless trick, which Ooops!

might be used for quite advanced
applications, such as line-numbering, Ooops!

some kind of paragraph decora-
tion, page optimization and pro-
bably many others. Things become Ooops!

much more complicated if math
displays, \marks, \inserts or \va- Ooops!

djusts come into play, but they
don’t spoil all of the game.

This completely useless example
shows a not-so-useless trick, which
might be used for quite advanced
applications, such as line-numbering,
some kind of paragraph decora-
tion, page optimization and pro-
bably many others. Things become
much more complicated if math
displays, \marks, \inserts or \va-

djusts come into play, but they
don’t spoil all of the game.

216 TUGboat, Volume 29, No. 1 — XVII European TEX Conference, 2007

Across:

1) for saxophones and violins
3) horizontal law 7) before a code,
apostrophe or double quote
8) a synonym to omit except in
TEX 9) an overused page layout
14) slashed of fractions or in PDF

15) a variant of the name Elisabeth
16) for fiddling with maths formulas
17) a pompous, stiff walk

Down:

1) don’t on me 2) tells French from
American 4) the last will not be the
first but will be removed 5) vessels
that make the greatest sound; also
in English translation of “Riempi
il bicchiere quando è vuoto, vuota
il bicchiere quando è pieno, non lo
lasciar mai vuoto, non lo lasciar
mai pieno” 6) black glue 10) in
abundance in one of the Bible books
11) anti-bump 12) integrated power
supply frequency domain impedance
meter 13) \par\penalty-10000

B.J., J.L., J.M.N., A.O.

Crossword

Janusz Marian Nowacki
ul. Śniadeckich 82 m. 46

86-300 Grudziądz

Poland

janusz (at) jmn dot pl; www.jmn.pl

Abstracts

LuaTEX: Messing around with tokens

Hans Hagen

Most TEX users only deal with (keyed in) characters and
(produced) output. Some will play with boxes, skips
and kerns, maybe even leaders (repeated sequences of
the former). Others will be grateful that macro package
writers take care of such things.

Macro writers on the other hand deal with proper-
ties of characters, like catcodes and a truckload of other
codes, with lists made out of boxes, skips, kerns and
penalties but even they cannot look much deeper into
TEX’s internals. Their deeper understanding comes from
reading The TEXbook or even looking at the source code.

When someone enters the magic world of TEX and
starts asking around a bit, he or she will at some point
get confronted with the concept of tokens. A token is
what ends up in TEX after characters have entered its
machinery. Sometimes it even seems that one is only
considered a qualified macro writer if one can talk the
right token-speak. So what are those magic tokens and
how can LuaTEX shed light on this?

In this presentation I will show examples of how
LuaTEX turns characters into tokens. We will also pay
some attention to the (un)usefulness of this.

Have no fear, MEGAPOST is here!

Taco Hoekwater

Anyone who has done serious work with MetaPost knows
that it has quite a few implementation limits. It is not
uncommon for moderately complicated graphics to oc-
cupy more than the amount of available internal mem-
ory, or to have macros that nest so deep that the stack is
not large enough to hold them all. Also, values cannot
be larger than 4095 without extra care.

MEGAPOST will alleviate these problems by a com-
bination of dynamic data structure reallocation strate-
gies and the use of a bigger internal storage type for
numeric values.

DocScape Publisher: A large-scale project

based on TEX

David Kastrup

The DocScape Publisher from QuinScape GmbH is fo-
cused on data-based publishing of input in XML form.
At its core, currently LATEX, David Carlisle’s xmltex,
and pdfTEX are employed extensively. Current applica-
tions are the printing of financial reports and of a vari-
ety of product catalogs and online excerpts. Some of the
problems occurring in large-scale, high-quality printing
processes in the connection with TEX are explained, and
solutions and products are shown.

Making of the TEX Collection

Manfred Lotz

In 1999, DANTE in collaboration with Lehmanns book-
shop first produced a CTAN snapshot consisting of 3
CDs. In 2000 the TEX Live 5c CD-ROM was added and
by 2002 the CTAN snapshot already consisted of 4 CDs.

After that, it was decided to produce a double layer
DVD-9 consisting of a CTAN snapshot and the TEX Live
‘live’ image. The first DVD-9 was produced in 2003.
In the following years the contents of the DVD was ex-
panded to contain also ProTEXt, MacTEX, and Con-
TEXt.

This talk gives an overview about the problems we
encountered when producing the first DVD-9 in 2003 and
shows what steps were involved in creating the DVD.

Sanskrit typesetting from a user’s perspective

Manfred Lotz

Sanskrit is an ancient Indian language, whose meaning
to India is comparable to what Greek and Latin mean
to European languages.

Sanskrit typesetting is very complicated, due to the
existence of over 800 required ligatures. It will be shown
what options are available to typeset Sanskrit under
LATEX. The article focuses on the use of the packages
skt and devnag. Their strengths and weaknesses will be
discussed and examples will be given to enable the reader
to get started easily.

Advanced mathematics features,

for PDF and the Web

Ross Moore

Modern LATEX systems, creating PDF documents, sup-
port navigational features that can be usefully exploited
to make technical documents much more usable than
just an online facsimile of a traditional printed docu-
ment. In this talk I will show various features that were
developed specifically for an online version of a mathe-
matics journal. These features include:

• metadata attachments to the PDF document;
• bookmarks to all (sub-)sections, figures, tables, the-

orems, and cross-referenced equations, etc., with
use of Unicode strings for bookmarks, including
the (simple) mathematical expressions that occur
within section titles;

• searchability and copy/paste of mathematical ex-
pressions where the PDF browser recognises and
supports embedded CMAP resources for the stan-
dard (e.g., CM and AMS) math fonts;

• draggable pop-ups of floating figures and tables;
• semi-automatic generation of hyperlinks to Math-

SciNet for bibliographic entries; i.e., helping build
the Reference Web.

These features are all implementable now using pdfTEX;
many work also with other PDF-aware drivers.

TUGboat, Volume 29, No. 1 —XVII European TEX Conference, 2007 217

Abstracts

Links to documents using them can be found via
the web pages at:
http://www.austms.org.au/Publ/Bulletin/V72P1/

http://www.austms.org.au/Publ/Bulletin/V72P2/

http://www.austms.org.au/Publ/Bulletin/V72P3/

Also, with the X ETEX implementation of TEX, there
is now direct support for OpenType fonts, and the pos-
sibility of typesetting both text and mathematics from
a single font. The STIX fonts will be available soon. I
will also show the results of work done by Will Robert-
son and myself, with criticism and advice from Chris
Rowley, building upon the work of Jonathan Kew in ex-
tending X ETEX to support mathematics. This could well
become the basis of LATEX support for mathematics in
the future.

Data structures in TEX

Marek Ryćko

The foundation of a programming language is support
for data structures and operations to be performed on
them. TEX, as a programming language, lacks most of
the data structures known from other languages. I show
how to design some basic data structures with appro-
priate operations and how to implement them in TEX’s
language in a very simple and efficient way. One of
the structures introduced is a list of atomic elements,
where atomic elements are TEX’s token sequences. This
uniform and clean way of using lists of elements makes
TEX’s programming much simpler and TEX’s programs
(macros) much more readable.

Polishing typesetting blocks

Marek Ryćko

It is now year 2007, 30 years since Donald Knuth started
to implement TEX. During those 30 years thousands of
programs, packages, styles, formats, fonts, scripts have
been implemented in various languages, that support the
“TEX way of thinking” about typesetting. We have a
huge pool of programs that are capable of realizing lots
of important tasks. But there is often a problem with
connecting various programs together to easily achieve
more complicated, structured goals.

TEX’s approach to typesetting is essentially the pos-
sibility of using TEX and other related programs as links
in chains or building blocks in higher level constructions.
But parts of programs would also be very useful as build-
ing blocks. For example TEX’s hyphenation algorithm
would be very useful in many applications, not just in
TEX itself. Similarly, the METAFONT and MetaPost al-
gorithms (by John Hobby) for Bezier curve interpola-
tion might be used in arbitrary 2D graphics applications.
The monolithic constructs like TEX or MetaPost contain
inside lots of programming pearls, but the pieces can-
not be used separately. We have perfect building blocks
of various kinds, but still are unable to build pyramids.
Hopefully, after some polishing of the blocks and also af-
ter cutting some monoliths into smaller pieces, the task
can be achieved.

Designing graphical signs and logotypes

Andrzej Tomaszewski

Participants in this workshop will have a chance to mea-
sure themselves designing graphical signs and/or logo-
types.

218 TUGboat, Volume 29, No. 1 —XVII European TEX Conference, 2007

TUGboat, Volume 29 (2008), No. 1 — XVII European TEX Conference, 2007 219

ConTEXt basics for users: Table macros II

Aditya Mahajan
University of Michigan

adityam (at) umich dot edu

Abstract

This article explains some of the basic features of table macros in ConTEXt.

1 Introduction

In the last article, I presented some basic features of
the table macros in ConTEXt. In this article I will
present additional features of these macros. These
two articles cover the most frequently used features.
There are other hooks for more advanced tweaking;
some are covered in the ConTEXt beginner’s man-
ual [2]; others require reading core-tab.tex [3]. A
future article in this series may touch upon those
features.

2 Specifying font style and color of columns

Sometimes you want the entire column to be set in
a particular font. For example, suppose we want to
produce the following table:

Year Production (in 1,000 units)

1990 20

1991 50

One way to do this is to mark the first column
in each row by \bf. This is time consuming and
difficult to change. ConTEXt tables support an f

key that can be used in the table preamble to set
the font for the entire column. The preamble of the
previous example was

\starttable[|lf{\bf}|c|]

Here f{\bf} tells ConTEXt to typeset the first col-
umn of the table with font style \bf. You can use
any font style command with the f key. Some of
the more frequently used font commands have been
given a key of their own. These are:

B Bold equivalent to f{\bf}

I Italic equivalent to f{\it}

S Slanted equivalent to f{\sl}

R Roman equivalent to f{\rm}

T Teletype equivalent to f{\tt}

So, we could also have written the preamble of
the previous example as \starttable[|lB|c|].

3 Changing the formatting of a cell

In some tables, the header (first row of the table)

needs to be bold and center aligned, while the rest
of the rows are left aligned. For example

Name Position

Someone An important person

Someone else A really important person

The input for this table is:

\starttable[|l|l|]

\NC \REF[cB]{...} \NC \REF[cB]{...} \NC \AR

\HL

\NC ... \NC ... \NC \AR

\NC ... \NC ... \NC \AR

\stoptable

Notice that the table preamble says |l|l|, that is,
both columns should be left aligned. In the first
row we say \REF[cB]{...}, which changes the for-
matting of that cell to cB, that is, center aligned
and bold. \REF is a short form of \ReFormat; both
macros can be used for changing the format of the
current cell. The general syntax of the command is
\REF[keys]{column content} where keys can be
any of the valid formatting keys accepted in the ta-
ble preamble.

To change only the alignment of the current
cell, you can use \JustCenter, \JustLeft, and
\JustRight, which stand for ‘justify center’, ‘justify
left’, and ‘justify right’, respectively.1

4 Columns containing math

Suppose we want an entire column to to be in math
mode. For example,

Constant Series Value

π 3
∞
∑

n=0

(2n)!

n!2(2n + 1)16n
3.1415926. . .

e

∞
∑

n=0

1

n!
2.7182818. . .

In this case, the first two columns are in math mode

1 Most macros in ConTEXt use the word Śalign’. These
macros come from the TABLE package, which uses the word
Śjustify’.

Aditya Mahajan

220 TUGboat, Volume 29 (2008), No. 1 — XVII European TEX Conference, 2007

(The second is actually in display math mode). We
can manually surround each entry by $; however,
ConTEXt provides two ‘math column’ keys: m sets
the column in inline math mode, and M sets the col-
umn in display math mode. The above example was
thus keyed in as

\starttable[|cm|cM|l|]

\NC \REF[c]{Constant} \NC \REF[c]{Series}

\NC \REF[c]{Value} \NC \AR

\HL

\NC \pi \NC 3 \sum_{n=0}^{\infty}

\frac {(2n)!} {n!^2 (2n+1) 16^n}

\NC 3.1415926\dots \NC \AR

%

\NC e \NC \sum_{n=0}^{\infty}

\frac 1{n!}

\NC 2.7182818\dots \NC \AR

\stoptable

The first column is in inline math mode (m key), and
the second column is in display math mode (M key).
Notice that I have used \REF[c]{...} in the first
row, so the headings are not in math mode.

5 Numeric columns

Tables containing statistical data need the data to be
aligned at the decimal place. ConTEXt provides two
keys for this: n displays the column in text mode,
while N displays it in math mode. Both keys take a
space-delimited argument of the form x.y where x

is the number of digits before the decimal and y is
the number of digits after the decimal. For exam-
ple, to get the following table (adapted from Tobias
Oetiker’s “The not so short introduction to LATEX”):

Pi expression Value

π 3.1416

ππ 36.46

(ππ)π 80,662.7

I keyed in

\starttable[|cm|n5.4 |]

\NC \REF[c]{Pi expression}

\NC \REF[c]{Value} \NC \AR

\HL

\NC \pi \NC 3.1416 \NC \AR

\NC \pi^{\pi} \NC 36.46 \NC \AR

\NC (\pi^{\pi})^{\pi} \NC 80,662.7 \NC \AR

\HL

\stoptable

The key |n5.4 | (notice the space at the end) means
that we want five digits before the decimal and four
digits after the decimal.

Some European countries use a comma as a dec-
imal separator. This can be done using the q and Q

keys. They take a space-delimited argument of the
form x,y which has the same meaning as the argu-
ment of n and N keys. So, to get this table

Pi expression Value

π 3,1416

ππ 36,46

(ππ)π 80.662,7

I keyed in

\starttable[|cm|q5,4 |]

\NC \REF[c]{Pi expression}

\NC \REF[c]{Value} \NC \AR

\HL

\NC \pi \NC 3,1416 \NC \AR

\NC \pi^{\pi} \NC 36,46 \NC \AR

\NC (\pi^{\pi})^{\pi} \NC 80.662,7 \NC \AR

\HL

\stoptable

An n or N column must contain a dot; a q or Q

column must contain a comma. For cells that do not
contain a dot or comma (for example, the headings of
the table) we can use \REF to change the formatting.
The TEX primitive \omit can be used to leave the
cell empty.

6 Spanning multiple columns and rows

In table heads, one often needs a cell spanning mul-
tiple columns. ConTEXt provides the \use macro to
do this. This macro takes an argument specifying
the number of columns to span. For example, to
use five columns, we can use \use{5}. The macros
\TWO, \THREE, \FOUR, \FIVE, \SIX are shortcuts to
span the corresponding number of columns.

By default, when spanning multiple columns,
the formatting keys of the last spanned column are
in effect. We can use \REF to change the formatting.
ConTEXt also provides \Use (note the uppercase U)
to span multiple columns and also set the format-
ting: to span three columns and make the content
center aligned we can use \Use{3}[c]{content}.

The support for spanning multiple rows is
more limited. There are two commands \Lower

and \Raise that can lower or raise the contents
of the cell. There are two forms of these com-
mands: \Raise{5}{content} which raises the con-
tent by 5 times 1/12th of the line height; and
\Raise(dimen){content} which raises the content
by dimen (which can be any valid TEX dimension).

The most common usage of spanning multiple
rows is spanning two rows in table heads. For that,
we can use \LOW, which lowers the current cell by
half of the line height, making it visually centered
between the two rows.

ConTEXt basics for users: Table macros II

TUGboat, Volume 29 (2008), No. 1 — XVII European TEX Conference, 2007 221

Here is a table showing both column and row
spanning (example adapted from Andy Roberts’
LATEX tutorial [4]):

Team Sheet

Goal Keeper GK Paul Robinson

Defenders

LB Lucus Radebe

DC Michael Duberry

DC Dominic Matteo

RB Didier Domi

This was typed as

\starttable[|l|l|l|]

\HL

\VL \Use{3}[c]{Team Sheet} \VL \AR

\HL

\VL Goal Keeper \VL GK

\VL Paul Robinson \VL \AR

\HL

\VL \Lower(1.5\lineheight){Defenders} \VL

LB \VL Lucus Radebe \VL \AR \VL \VL

DC \VL Michael Duberry \VL \AR \VL \VL

DC \VL Dominic Matteo \VL \AR \VL \VL

RB \VL Didier Domi \VL \AR

\HL

\stoptable

In the first row we use \Use{3}[c]{...} to span
three columns and make the cell center aligned.
In the first column of the third row, we use
\Lower(1.5\lineheight){...} to lower the cell so
that it appears to be visually centered in the last
four rows.

7 Controlling space between columns

By default, there is a 0.5 em (usually about half the
current font size) space between the columns. We
can change this using the o and the s keys. The o

key changes the space on the right of the current col-
umn; the s key changes the space of all the following
columns until the next o or s key.

There are two ways of specifying the parame-
ters of the o and s keys. The first is in integer mul-
tiples of 0.5 em: s{n} makes the space equal to n

times 0.5 em. So, to get a space of 1.5 em between
columns we can use \starttable[s{3}|l|l|]. The
second way is to specify the distance as an arbi-
trary TEX dimension. So, we could also have used
\starttable[s(1.5em)|l|l|]. Notice that in the
first case, the argument is given in curly brackets;2

in the second, the argument is given in parentheses.
It is also possible to add padding (kerning) to

the left and/or right of each column. The key i adds
padding to the left, j adds padding to the right, and

k adds padding to both the right and the left.3 The
amount of padding is specified in the same way as in
the o and the s keys: either in multiples of 0.5 em,
or as arbitrary dimensions.

A combination of these keys can be used to force
the table macros to produce tables as recommended
by the booktabs package [1]. For example

\setuptables[rulethickness=0.03em]

\starttable[s0|l|i2l|i2r|]

\HL[3]

\NC \Use2[c]{Item} \NC \NC \AR

\DL[2] \DC \DR

\NC Animal \NC Description \NC Price (\$)\NC \AR

\HL[2]

\NC Gnat \NC per gram \NC 13.65 \NC \AR

\NC \NC each \NC 0.01 \NC \AR

\NC Gnu \NC stuffed \NC 92.50 \NC \AR

\NC Emu \NC stuffed \NC 33.33 \NC \AR

\HL[3]

\stoptable

gives

Item

Animal Description Price ($)

Gnat per gram 13.65

each 0.01

Gnu stuffed 92.50

Emu stuffed 33.33

Notice that in this case, the horizontal lines do
not extend beyond the table. The half line4 after the
first row extends only until the end of the second
column. Compare this with the table that we get
from \starttable[|l|l|r|]:

Item

Animal Description Price ($)

Gnat per gram 13.65

each 0.01

Gnu stuffed 92.50

Emu stuffed 33.33

We will not go into the details of coaxing and
beating table macros into producing tables like the
booktabs package: they were never designed for
that task. We can achieve the simpler parts of

2 Actually, this is one argument according to TEX’s parsing
rule. So, for single digit arguments, we can omit the curly
brackets.

3 We are really running out of letters of the alphabet!
4 In these articles, I have only talked about \HL and not ex-

plained how to get division lines between rows. This is
explained in the ConTEXt manual [2].

Aditya Mahajan

222 TUGboat, Volume 29 (2008), No. 1 — XVII European TEX Conference, 2007

the booktabs recommendation, but for more compli-
cated things such as \cmidrule, the table macros
do not have enough hooks.

To achieve lines that get trimmed at the edge of
the table, we can use \starttable[o0|l|l|ro0|],5

which gives:

Item

Animal Description Price ($)

Gnat per gram 13.65

each 0.01

Gnu stuffed 92.50

Emu stuffed 33.33

The division line in this case extends to the middle
of the second column. If the table does not have
division lines, adding o0 in the beginning and the
end of the table preamble is usually sufficient.

8 Controlling space between rows

The table macros do not provide much control over
space between rows of the table. You can have loose
or tight tables by changing the distance option of
\setuptables. The distance option takes four val-
ues: none, small, medium, and big. The default is
medium. For example, let’s reconsider the table of
Section 6. With \setuptables[distance=none],
we get

Team Sheet
Goal Keeper GK Paul Robinson

Defenders

LB Lucus Radebe
DC Michael Duberry
DC Dominic Matteo
RB Didier Domi

while with \setuptables[distance=big] we get

Team Sheet

Goal Keeper GK Paul Robinson

Defenders

LB Lucus Radebe

DC Michael Duberry

DC Dominic Matteo

RB Didier Domi

Play around with these values to find out what value
of distance you prefer. It is possible to get more
control using the \OpenUp macro of the TABLE pack-
age, but there is no interface for that. See the dis-
cussion on the mailing list [5] for an example.

9 Remembering preambles

Often one has several tables which need to have
similar formatting. Repeating the table pream-
ble in each case is error-prone. ConTEXt provides
\definetabletemplate which can be used to spec-
ify a table preamble which can be reused later. For
example, we can say

\definetabletemplate[booktabs][o0|l|l|ro0]

Then we can invoke this preamble by

\starttable[booktabs]

10 Other features

When I started writing these articles on the table

macros, I thought that one article would be enough.
About halfway through the first article I realized
that I would need more than one article. Now I
find that even two are not enough. There are lots of
things that I have not even touched; using color in
tables and breaking the table across pages are the
most important omissions. These will have to wait
for a later article in this series. Next issue, we will
look at something different.

11 References

[1] Simon Fear and Danie Els, “Publication quality
tables in LATEX”, http://www.ctan.org/

tex-archive/macros/latex/contrib/booktabs

[2] Hans Hagen, ConTEXt: an excursion.
http://www.pragma-ade.com/show-man-1.htm

[3] Hans Hagen, ConTEXt core macros — TABLE
embedding. http://www.logosrl.it/context/

modules/current/singles/core-tab_ebook.pdf

[4] Andy Roberts, LATEX Tutorials — Tables.
http://www.andy-roberts.net/misc/latex/

latextutorial4.html

[5] Discussion on the ConTEXt mailing list,
http://archive.contextgarden.net/

message/20070806.011325.5a938ae7.en.html

5 Wait a minute! To which column does the first o0 corre-
spond? The table consists of a virtual column at the left
edge, typically for drawing a vertical line there. The key
o0 in the beginning of the preamble sets the width of this
virtual column to be zero.

The information here comes from the consultants
themselves. We do not include information we know
to be false, but we cannot check out any of the
information; we are transmitting it to you as it was
given to us and do not promise it is correct. Also, this
is not an official endorsement of the people listed here.
We provide this list to enable you to contact service
providers and decide for yourself whether to hire one.

TUG also provides an online list of consultants at
http://tug.org/consultants.html.

Kinch, Richard J.

7890 Pebble Beach Ct.
Lake Worth, FL 33467
+1 561 966-8400
Email: kinch (at) truetex.com

Publishes TrueTEX, a commercial implementation of
TEX and LATEX. Custom development for TEX-related
software and fonts.

Martinez, Mercè Aicart

Tarragona 102 4o 2a

08015 Barcelona, Spain
+34 932267827
Email: m.aicart (at) menta.net

Web: www.edilatex.com/

We provide, at reasonable low cost, TEX and LATEX
typesetting services to authors or publishers world-
wide. We have been in business since the beginning of
1990. For more information visit our web site.

TEX Consultants

Peter, Steve

310 Hana Road
Edison, NJ 08817
+1 732 287-5392
Email: speter (at) dandy.net

Specializing in foreign language, linguistic, and
technical typesetting using TEX, LATEX, and ConTEXt,
I have typeset books for Oxford University Press,
Routledge, and Kluwer, and have helped numerous
authors turn rough manuscripts, some with dozens of
languages, into beautiful camera-ready copy. I have
extensive experience in editing, proofreading, and
writing documentation. I also tweak and design fonts.
I have an MA in Linguistics from Harvard University
and live in the New York metro area.

Veytsman, Boris

2239 Double Eagle Ct.
Reston, VA 20191
+1 703 860-0013
Email: borisv (at) lk.net

Web: http://borisv.lk.net

TEX and LATEX consulting, training and seminars.
Integration with databases, automated document
preparation, custom LATEX packages, conversions and
much more. I have about twelve years of experience in
TEX and twenty-five years of experience in teaching &
training. I have authored several packages on CTAN

and published papers in TEX related journals.

TUG Institutional

Members

Aalborg University, Department
of Mathematical Sciences,
Aalborg, Denmark

American Mathematical Society,
Providence, Rhode Island

Banca d’Italia, Roma, Italy

Center for Computing Sciences,
Bowie, Maryland

Certicom Corp.,
Mississauga, Ontario, Canada

CNRS - IDRIS, Orsay, France

CSTUG, Praha, Czech Republic

Florida State University,
School of Computational Science
and Information Technology,
Tallahassee, Florida

IBM Corporation,
T J Watson Research Center,
Yorktown, New York

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

MacKichan Software,
Washington/New Mexico, USA

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Masaryk University, Faculty of
Informatics, Brno, Czech Republic

Moravian College, Department
of Mathematics and Computer
Science, Bethlehem, Pennsylvania

New York University,
Academic Computing Facility,
New York, New York

Princeton University,
Department of Mathematics,
Princeton, New Jersey

Springer-Verlag Heidelberg,
Heidelberg, Germany

Stanford Linear Accelerator Center
(SLAC), Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Stockholm University, Department
of Mathematics, Stockholm, Sweden

University College, Cork,
Computer Centre, Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

Université Laval,
Ste-Foy, Québec, Canada

Universiti Tun Hussein
Onn Malaysia,
Pusat Teknologi Maklumat,
Batu Pahat, Johor, Malaysia

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

Vanderbilt University,
Nashville, Tennessee

TUGboat, Volume 29, No. 1 —XVII European TEX Conference, 2007 223

In memoriam Bernard Gaulle

Maurice Laugier∗

The past president and founder of GUTenberg1 passed
away on 2nd August. Here I would like to pay a trib-
ute to him. As our association was unable to be
represented at his funeral, we sent a telegram.

Bernard Gaulle was quite discreet, even secret
about himself: it has been difficult for us to recon-
stitute his career. First he was a computer scientist
at the Blaise Pascal Institute, part of the CNRS,2

grouping scientific and management applications at
the end of the 1960s. Then, as soon as the national
centre of scientific computer engineering (CIRCÉ3)
was created at Orsay in 1969, he entered it as a
system engineer specialised in operating systems like
MFT,4 ASP, MVS5-JESS3, on the IBM6 mainframe.
He became the head of the user assistance group and
stayed on at this position until 1993. In particular,
he was in charge of publications (users’ documenta-
tion, course manuals, newsletters) and was interested
in the rise of DTP7 tools. In 1983–84, ‘a researcher
turned up in my office, carrying a magnetic tape
that came from Stanford,’ he narrated in No. 0 of
the GUTenberg Letter, dated February 1993. The
history of the beginning of the GUTenberg associa-
tion can also be found in this issue. That was how he
discovered TEX, was persuaded, and spent his life to
promote it not only for scientists — which was quite
easy — but also the general public.

About 1984, he set up the SAPRISTI8 system
at CIRCÉ. He conceived it out of TEX, developed it,
and got his secretaries to use it. At this time, that
was very innovative and . . . audacious!9

In June 1984, he met Jacques André and to-
gether they launched a project for a French-speaking
TEX Users Group. Four years were needed in order
for this association to be set up. However, Ber-
nard Gaulle was already organising manifestations
and represented French-speaking people at the first

∗ Current president of GUTenberg.
1 Groupe francophone des Utilisateurs de TEX , French-

speaking TEX users group.
2 Centre National de la Recherche Scientifique. French

governmental organisation of scientific research.
3 Centre InterRégional de Calcul Électronique, inter-

regional centre for electronic computation.
4 Multiprogramming with a Fixed Number of Tasks.
5 Multiple Virtual Storage.
6 International Business Machines.
7 DeskTop Publishing.
8 Système Assisté de PRoduction Intégrant Simplement

Textes et Images, literally: ‘assisted production system inte-
grating texts and images easily.’

9 Bernard Gaulle narrated this part of his life and his
problems at this time in two articles of the French group’s
journal (Cahiers GUTenberg): the first is included in No. 0
(1988), the second in Nos. 15 and 17 (1993).

EuroTEX conference at Como, Italy. The GUTenberg
association was created 23rd September 1988, and
Bernard Gaulle was elected President.

He was actively involved in the association and
was re-elected President. In this way, he participated
in TUG’s board of directors as Vice-President for
GUTenberg, then as Special Director for GUTenberg.
He regularly published editorials and notes concern-
ing his ideas about TEX and the association. To
get more involved in his own work and his programs
outside TEX, he resigned his position as President in
1992 and passed the office to Alain Cousquer.

Another turning point in his career happened in
1993: CIRCÉ was replaced by IDRIS.10 Bernard was
a chargé de mission by IDRIS’ Director for the dis-
tributed systems for scientific computer engineering.

Bernard Gaulle devoted his efforts to the mainte-
nance and diffusion of his french package since 1993.
His numerous articles in the Cahiers GUTenberg and
GUTenberg Letter informed the French-speaking TEX
community.

At the same time, he was also interested in
French legal problems regarding software put on
the Internet (he presented a survey about that in
Cahiers GUTenberg , No. 25). This led him to create
the Litiel11 association. He became President of this
association and was involved in it until his passing,
although he had already left IDRIS in May 2005 for
health reasons: a cancer he faced bravely.

Bernard did much for both GUTenberg and
TEX in general. He left not only two major works
(GUTenberg and french) but also a recollection of a
kind president, pleasant, and devoted. He was very
active, resolute in his developments, even pugnacious.

We wish to express our pain and sympathy to
his wife, Catherine Gaulle—who participated in
preparing GUTenberg and EuroTEX meetings — and
their daughters.

(English translation: Jean-Michel Hufflen.
The original appeared in La lettre GUTenberg,

numéro 34, octobre 2007.)

10 Institut du Développement et des Ressources en

Informatique Scientifique. Institute of development and re-
sources for scientific computer engineering.

11 From ‘logiciel’, French for ‘software’.

224 TUGboat, Volume 29, No. 1— XVII European TEX Conference, 2007

EuroBachoTEX 2007 • TUGboat Volume 29, Number 1 • Biuletyn GUST, Zeszyt 24 • Die TEXnische Komödie, 1/20

EuroBachoTEX 2007
TUGboat, Volume 29, Number 1, 2008
Biuletyn GUST, Zeszyt 24, 2007
Die TEXnische Komödie, 20. Jahrgang, 1/2008

EuroBachoTEX 2007 2 Conference program, delegates, and sponsors
6 Jerzy Ludwichowski and Petr Sojka / EuroBachoTEX 2007: Paths to the Future

13 Sam Guravage / Confessions of a teenage TEX user

Typography 14 Grażyna Jackowska / Handmade paper: A mixture of handcraft, art and fun
16 Andrzej Tomaszewski / Designing a special book: With both pleasure and . . . fear
20 Dorota Cendrowska / Enumerations as an interesting form of text appearance

Fonts 25 Jerzy Ludwichowski, Bogusław Jackowski and Janusz Nowacki / Five years after:
Report on international TEX font projects

27 Janusz Nowacki / Cyklop: A new font family
28 Hans Hagen / Do we need a font system in TEX?
34 Taco Hoekwater / OpenType fonts in LuaTEX

36 Hàn Thế Thành / Font-specific issues in pdfTEX
42 Karel Horák / Those obscure accents . . .

45 Klaus Höppner / Creation of a PostScript Type 1 logo font with MetaType 1
50 Karel Ṕı̌ska / Procedures for font comparison
57 Karel Ṕı̌ska / Comments and suggestions about the Latin Modern fonts
66 Jerzy Ludwichowski and Karl Berry / The GUST Font License: An application of the

LATEX Project Public License

Resources 68 Arthur Reutenauer / A brief history of TEX, volume II
73 Ulrik Vieth / Overview of the TEX historic archive
77 Joanna Ludmiła Ryćko / TEX Clinic

Multilingual
Document
Processing

79 Ameer Sherif and Hossam Fahmy / Parameterized Arabic font development for AlQalam
89 Atif Gulzar and Shafiq ur Rahman / Nastaleeq: A challenge accepted by Omega

95 Hàn Thế Thành / Typesetting Vietnamese with VnTEX (and with the TEX Gyre fonts too)
101 Jean-Michel Hufflen / Managing order relations in MlBIBTEX

Electronic Documents 109 Jean-Michel Hufflen / Introducing LATEX users to XSL-FO

117 Tomasz Łuczak / Using TEX in a wiki

Publishing 118 Petr Sojka and Michal Růžička / Single-source publishing in multiple formats for different
output devices

125 Péter Szabó / Practical journal and proceedings publication on paper and on the web

Software & Tools 133 Jim Hefferon / An experimental CTAN upload process
136 Norbert Preining / TEX (Live) on Debian
140 Siep Kroonenberg / Epspdf: Easy conversion between PostScript and PDF

143 Martin Schröder / pdfTEX 1.40: What’s new
146 Jonathan Kew / X

E

TEX Live
151 Gerd Neugebauer / Conventional scoping of registers— An experiment in εXTEX
157 Jean-Michel Hufflen / MlBIBTEX: Reporting the experience
163 David Kastrup / Writing (LA)TEX documents with AUCTEX in Emacs
164 Tomasz Łuczak / LYX: An editor not just for secretaries
166 Péter Szabó / Automated DVD menu authoring with pdfLATEX

LATEX 176 Zofia Walczak / Graphics in LATEX using TikZ
180 Grzegorz Murzynowski / LATEX vs. LATEX — a modification of the logo
181 David Kastrup / Benefits, care and feeding of the bigfoot package
184 Johannes Große / MathPSfrag: LATEX labels in Mathematica plots
190 David Kastrup / makematch, a LATEX package for pattern matching with wildcards
193 David Kastrup / qstest, a LATEX package for unit tests

Macros 199 Grzegorz Murzynowski / gmverse and gmcontinuo— some nontrivial placement of text on a page
201 Grzegorz Murzynowski / The gmdoc bundle — a new tool for documenting (LA)TEX sources

Hints & Tricks 207 Paweł Jackowski / TEX beauties and oddities: A permanent call for TEX pearls

Puzzle 216 Janusz Nowacki / Crossword

Abstracts 217 Abstracts (Hagen, Hoekwater, Kastrup, Lotz, Moore, Ryćko, Tomaszewski)

ConTEXt 219 Aditya Mahajan / ConTEXt basics for users: Table macros II

TUG Business 223 TUG institutional members

Advertisements 223 TEX consulting and production services

Memorial 224 Maurice Laugier / In memoriam Bernard Gaulle

TUGBOAT Volume 29 (2008), No. 1 EuroBachoTEX 2007 Conference Proceedings

Table of Contents (ordered by difficulty)

Introductory

20 Dorota Cendrowska / Enumerations as an interesting form of text appearance
• classical and modern formatting of enumerations

13 Sam Guravage / Confessions of a teenage TEX user
• report on the talk, with photos

42 Karel Horák / Those obscure accents . . .

• discussion and comparison of the many versions of caron (háček) accents

14 Grażyna Jackowska / Handmade paper: A mixture of handcraft, art and fun
• report on a papermaking workshop, with photos

163 David Kastrup / Writing (LA)TEX documents with AUCTEX in Emacs
• introduction to the AUCTEX Emacs facilities, and download locations

146 Jonathan Kew / X ETEX Live
• X ETEX’s incorporation in TEX Live 2007, and further developments

140 Siep Kroonenberg / Epspdf: Easy conversion between PostScript and PDF

• command-line and GUI interface to convenient graphics conversion

164 Tomasz Łuczak / LYX: An editor not just for secretaries
• overview of LYX, an editor for TEX with a graphical interface

117 Tomasz Łuczak / Using TEX in a wiki
• overview of using TEX as a back-end for PDF production from a wiki

66 Jerzy Ludwichowski and Karl Berry / The GUST Font License: An application of the
LATEX Project Public License

• using the LPPL (with an additional request) for fonts

25 Jerzy Ludwichowski, Bogusław Jackowski and Janusz Nowacki / Five years after: Report on
international TEX font projects

• status and samples of these two major font projects

6 Jerzy Ludwichowski and Petr Sojka / EuroBachoTEX 2007: Paths to the Future
• introduction to the conference and proceedings

180 Grzegorz Murzynowski / LATEX vs. LATEX — a modification of the logo
• a LATEX logo definition that self-adjusts to many fonts

27 Janusz Nowacki / Cyklop: A new font family
• a heavy sans serif oblique for titling and displays

68 Arthur Reutenauer / A brief history of TEX, volume II
• recapitulation of TEX origins, evolution, and descendants

77 Joanna Ludmiła Ryćko / TEX Clinic
• overview of the TEX help clinic available at Bachotek and via email

16 Andrzej Tomaszewski / Designing a special book: With both pleasure and . . . fear
• creation of a commemorative edition for the Warsaw Waterworks jubilee

73 Ulrik Vieth / Overview of the TEX historic archive
• preserving TEX distributions and packages for software archaeologists

176 Zofia Walczak / Graphics in LATEX using TikZ
• introduction to TikZ for drawing graphics directly in LATEX

Intermediate

28 Hans Hagen / Do we need a font system in TEX?
• reflections on the font system in TEX generally, ConTEXt specifically, and coming changes

36 Hàn Thế Thành / Font-specific issues in pdfTEX
• microtypography, letterspacing, interword spacing, character kerning, subfont, runpdftex

95 Hàn Thế Thành / Typesetting Vietnamese with VnTEX (and with the TEX Gyre fonts too)
• introduction to typesetting Vietnamese in TEX

133 Jim Hefferon / An experimental CTAN upload process
• a cooperative web-based CTAN (and TEX Live) package processing method

34 Taco Hoekwater / OpenType fonts in LuaTEX
• overview of the state of reading OpenType directly from LuaTEX

45 Klaus Höppner / Creation of a PostScript Type 1 logo font with MetaType 1
• tutorial for implementing a font with MetaType1

109 Jean-Michel Hufflen / Introducing LATEX users to XSL-FO

• concise introduction to XSL-FO with comparisons to LATEX

181 David Kastrup / Benefits, care and feeding of the bigfoot package
• improved page breaking and other footnote enhancements

219 Aditya Mahajan / ConTEXt basics for users: Table macros II
• further overview of making tables in ConTEXt

199 Grzegorz Murzynowski / gmverse and gmcontinuo— some nontrivial placement of text on a page
• optical centering and right alignment of verses; continuous paragraph setting

136 Norbert Preining / TEX (Live) on Debian
• usage of TEX on Debian, including package and font installation

143 Martin Schröder / pdfTEX 1.40: What’s new
• overview of new features: JBIG2, color stacks, transformation matrices, and more

118 Petr Sojka and Michal R̊užička / Single-source publishing in multiple formats for different output devices
• using high-level markup, pdfLATEX, and TEX4ht for multiple output formats

125 Péter Szabó / Practical journal and proceedings publication on paper and on the web
• techniques and advice for editorial workflow and production operations

Intermediate Plus

184 Johannes Große / MathPSfrag: LATEX labels in Mathematica plots
• typographically consistent labels for Mathematica plots, using PDF or PostScript

89 Atif Gulzar and Shafiq ur Rahman / Nastaleeq: A challenge accepted by Omega
• implementing the Urdu script in Omega

101 Jean-Michel Hufflen / Managing order relations in MlBibTEX
• handling language-specific lexicographic orderings

157 Jean-Michel Hufflen / MlBibTEX: Reporting the experience
• discussing design and implementation choices of the MlBibTEX program

201 Grzegorz Murzynowski / The gmdoc bundle— a new tool for documenting (LA)TEX sources
• an enhanced reimplementation of doc

50 Karel Ṕı̌ska / Procedures for font comparison
• tools and examples for detailed comparison of glyphs, kerns, and more

57 Karel Ṕı̌ska / Comments and suggestions about the Latin Modern fonts
• comparisons among Latin Modern, Computer Modern, and the Czech/Slovak CS fonts

79 Ameer Sherif and Hossam Fahmy / Parameterized Arabic font development for AlQalam
• achieving high-quality Arabic typesetting through METAFONT pens and drawing

166 Péter Szabó / Automated DVD menu authoring with pdfLATEX
• creating standard DVDs with menus created in LATEX

Advanced

207 Paweł Jackowski / TEX beauties and oddities
• the 2007 edition of TEX pearls

190 David Kastrup / makematch, a LATEX package for pattern matching with wildcards
• efficient pattern matching supporting * and !

193 David Kastrup / qstest, a LATEX package for unit tests
• extensive unit testing functionality, including embedding in dtx files

151 Gerd Neugebauer / Conventional scoping of registers— An experiment in εXTEX
• alternative localization of registers via the Java infrastructure of εXTEX

216 Janusz Nowacki / Crossword

Reports and notices

224 Maurice Laugier / In memoriam Bernard Gaulle

2 EuroTEX 2007 conference delegates and sponsors

4 EuroTEX 2007 program

8 EuroTEX 2007 photos

217 Abstracts (Hagen, Hoekwater, Kastrup, Lotz, Moore, Ryćko, Tomaszewski)

223 Institutional members

223 TEX consulting and production services

