
Typesetting tables with LATEX

Klaus Höppner
Haardtring 230 a
64295 Darmstadt
Germany
klaus.hoeppner (at) gmx dot de

Abstract

From a LATEXoligist’s point of view, LATEX is a perfect tool to typeset nearly
everything in a beautiful manner. Without any doubt, LATEX can typeset tables,
but it is easy to produce bad tables with ugly lines and text touching the lines.
This talk is intended to introduce how to typeset tables with LATEX on a beginners’
level, mentioning some typographic aspects, showing some packages that help the
author in formatting tables and concluding with how to typeset tables with page
breaks.

1 Basic tables

LATEX already has built-in support to typeset tables.
For beginners it may be a bit confusing, since LATEX
provides two environments: tabular and table. To
typeset material in rows and columns, tabular is
needed, while the table environment is a container
for floating material similar to figure, into which a
tabular environment may be included.

So, let’s have a look how to typeset a simple
table:
\begin{tabular}{lcr}

a & b & c\\

aa & ab & ac\\

aaa & aab & aac

\end{tabular}

will result in

a b c
aa ab ac
aaa aab aac

The rows of the table are divided by LATEX’s
usual \\ command (in some cases, it may be needed
to use \tabularnewline instead, as we will see later
in this article). Columns are separated by &, the
ampersand character.

The required argument of \begin{tabular} de-
fines the basic layout of the table, especially the
alignment of the columns:

l left aligned column

c centered column

r right aligned column

p{〈width〉} paragraph-like column of a predefined
width (with the baseline of the paragraph’s first
line aligned relative to the other cells in the
table row)

The normal space between columns, which is
also added before the first and after the last col-
umn, may be overridden by @{〈sep〉}, where 〈sep〉
is any LATEX code, inserted as the separator. For
illustration, let’s typeset some flight data:

flight no. route
LH 402 Frankfurt–Newark
KL 3171 Amsterdam–Cork
US 1152 San Diego–Philadelphia

Here, the @ command is used twice: The space
that normally would have been inserted left of the
first column is replaced by nothing, thus the table
is left aligned with the surrounding text (compare it
with the first tabular example in this article, you will
see the difference). Additionally, the inter-column
space between the points of departure and destina-
tion is replaced by a dash. So the code used to pro-
duce this table looks as follows (silently introducing
\multicolumn to combine cells):
\begin{tabular}{@{}lr@{--}l}

flight no. & \multicolumn{2}{c}{route}\\

LH\,402 & Frankfurt & Newark\\

KL\,3171 & Amsterdam & Cork\\

US\,1152 & San Diego & Philadelphia

\end{tabular}

2 Extra packages for typesetting tables

Beyond LATEX’s built-in ability to typeset tables,
several extra packages exist. Some of them add new
effects in typography and layout, others simplify the
task of writing the document’s source code. The
packages that I will introduce in this article (and
more that I won’t) are covered in detail in the LATEX
Companion [8].

Here are some important packages for authors
who want to typeset tables:

350 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Typesetting tables with LATEX

array adds paragraph-like columns m{〈width〉} and
b{〈width〉} similar to the p-column, but verti-
cally aligned to the center or bottom. Addition-
ally, the package allows defining command se-
quences to be executed before or after the con-
tents of a column.

tabularx typesets a table with fixed widths, intro-
ducing the column type X that works like a p-
column with automatically calculated width.

booktabs provides fancy commands for horizontal
lines with appropriate spacing above and below.

ctable we won’t discuss this one, but have a look on
CTAN, it’s a modern table package with many
nice features.

2.1 Using array

From my point of view, the most important feature
of array [7] is the new possibility of defining com-
mands that are added automatically before or after
a column’s cell. It saves a lot of typing, making the
source code more concise and more flexible. array
is one of the required LATEX packages, so it must be
part of any LATEX installation.

For a simple example, have a look at the fol-
lowing table:

Command Symbol
\alpha α
\beta β
\gamma γ

The left column displays LATEX commands, be-
ginning with a backslash and using a typewriter font,
while the right columns displays the corresponding
math symbol. Using the array package, the source
code is pretty straightforward:
\begin{tabular}%

{>{\ttfamily\char‘\\}c>{$}c<{$}}

\multicolumn{1}{c}{Command} &

\multicolumn{1}{c}{Symbol}\\

\hline

alpha & \alpha\\

beta & \beta\\

gamma & \gamma

\end{tabular}

As shown in this code, we can now define a
command sequence inside the >{...} preceding the
column type definition. These commands are ex-
ecuted before each cell of that column. Similarly,
using <{...} after the column type defines which
commands to be executed after typesetting the col-
umn’s cells.

In the example above, the first row is different
from the others, since it contains the column titles
that obviously should not be typeset in typewriter

font or math mode. This is handled by ‘abusing’ the
\multicolumn command, which prevents the > and
< command hooks from being applied for these cells.

Another use of these command hooks is typeset-
ting paragraphs in narrow columns. LATEX typesets
these paragraphs left and right justified by default,
but in narrow columns it is often more appropriate
to typeset them using \raggedright. So we might
think of trying the following code:
\begin{tabular}{l>{\raggedright}p{3in}}

Unfortunately this fails when ending the table
rows with the \\ command, with rather weird error
messages about misplaced aligns. The problem is
that \raggedright redefines \\, so it can’t be rec-
ognized as the end of table rows. There are three
solutions for this problem:

1. Use \tabularnewline instead of \\. In fact, it
does no harm to always use this, even when you
don’t have problems with \raggedright.

2. Restore the original definition of \\ by using
the command \arraybackslash, as follows:

\begin{tabular}%

{l>{\raggedright\arraybackslash}p{3in}}

3. Use the ragged2e [9] package. It redefines the
command \raggedright to prevent it from re-
defining \\, so the problem disappears without
any further change to the original code. Addi-
tionally, ragged2e provides the new command
\RaggedRight that typesets the paragraph left
aligned, but doesn’t disable hyphenation.

2.2 Using tabularx

Besides the normal tabular environment, a rarely
used environment tabular* exists. In addition to
the column definition, it takes a table width as ar-
gument. The resulting table is typeset to this width,
but often — surprisingly — it expands the space be-
tween columns.

A more convenient implementation is done by
the tabularx [5] package (another required LATEX
package present in every LATEX installation). This
introduces a column type X for paragraph-like col-
umns whose width is automatically calculated in or-
der to achieve a table of a desired total width. For
example, let’s look at the following:
\begin{tabularx}{\linewidth}{lX}

Label & Text\\

\hline

One & This is some text without meaning,

just using up some space. It is not

intended for reading.\\

...

\end{tabularx}

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 351

Klaus Höppner

This produces a table across the full line width,
where the right column just uses the space remaining
after typesetting the left column:

Label Text
One This is some text without meaning, just

using up some space. It is not intended
for reading.

Two This is another text without meaning,
just using up some space. It’s not in-
tended for reading either.

Three This is yet another text without mean-
ing. Guess what? It’s not intended for
reading. It is just there.

Four How often did I mention that you should
not read this text?

It is possible to use more than one X-column.
By default, all of them are typeset to the same
width, but it is possible to manually adjust how the
available space is divided. Here’s our next example:

Label Text More text
One This is

some text
without
meaning.

This is another text
without meaning, just
using up some space. It
is not meant for reading
either.

This table was produced with the following code:
\begin{tabularx}{\linewidth}%

{l>{\setlength\hsize{0.6\hsize}\raggedright}X%

>{\setlength\hsize{1.4\hsize}\raggedright}X}

Label & Text & More text\tabularnewline

\hline

...

\end{tabularx}

When balancing the column widths manually,
it is important that the \hsize fractions add up to
the number of X-columns, as in the example above,
where 0.6+1.4 = 2. To achieve automatic balancing
of columns, take a look at the tabulary package.

Be aware that the way tabularx parses the con-
tents of a table limits the possibility of defining new
environments based on the tabularx. If you con-
sider doing this, first look at the documentation.

3 Using lines in tables

LATEX provides the possibility of using lines in ta-
bles: vertical lines are added by placing a | at the
appropriate position in the definition of the column
layout, and horizontal lines are added by using the
command \hline.

While using lines in tables can help the reader
in understanding the contents of a table, it is quite
easy to produce really ugly tables like the following:

Label Text More text

One This is
some text
without
meaning.

This is another
text without meaning,
just using up some
space.

Though nobody would typeset this particular
table in real life, it illustrates a general and common
problem — the column titles and the word “another”
in the rightmost column touch the horizontal lines
above them.

As a first step to improve the spacing between
the table rows and the horizontal lines in such cases,
set \extrarowheight to a non-zero length, e. g. to
4 pt. If this isn’t enough, additional adjustment may
be done by adding invisible rules. Here is revised
source code for the above example illustrating both
these points:
\setlength{\extrarowheight}{4pt}

\begin{tabularx}{\linewidth}%

{|l|>{\setlength\hsize{0.67\hsize}}X%

|>{\setlength\hsize{1.33\hsize}}X|}

\hline

\Large Label & \Large Text

& \Large More text\tabularnewline

\hline

\hline

One & This is some text without meaning.

& \rule{0pt}{18pt}%

This is {\huge another} text without meaning,

just using up some space.\\

\hline

\end{tabularx}

we get a somewhat better result:

Label Text More text

One This is
some text
without
meaning.

This is another
text without meaning,
just using up some
space.

Please notice that the \rule used as an addi-
tional spacer was typeset with a horizontal width of
0.4 pt instead of 0 pt (as shown in the code) in order
to make its effect and location visible.

Even after this, the layout of the table still looks
quite poor, e. g. the broken vertical lines between the
double horizonal line. This might be solved with the
package hhline [2], but for typesetting tables with
pretty lines, have a look at the booktabs [6] pack-
age. It starts by giving users a basic piece of advice,
namely to avoid vertical lines, and introduces com-
mands to typeset horizontal lines with appropriate
thickness and spacing. Using booktabs, the source
code for our weird example now looks as follows:

352 TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting

Typesetting tables with LATEX

\begin{tabularx}{\linewidth}%

{l>{\setlength\hsize{0.67\hsize}}X%

>{\setlength\hsize{1.33\hsize}}X}

\toprule

\Large Label & \Large Text

& \Large More text\tabularnewline

\midrule

One & This is some text without meaning.

& This is {\huge another} text without meaning,

just using up some space.\\

\bottomrule

\end{tabularx}

Using this, the result becomes:

Label Text More text

One This is
some text
without
meaning.

This is another
text without meaning,
just using up some
space.

At last, we’ve improved the layout of the table
quite a bit. The content with arbitrary changes of
font size still looks weird, but that’s something for
which the author and not LATEX must be blamed.

For a more realistic example of using rules, here
I present an example from the booktabs manual:

Item

Animal Description Price ($)

Gnat per gram 13.65
each 0.01

Gnu stuffed 92.50
Emu stuffed 33.33
Armadillo frozen 8.99

4 Typesetting tables across multiple pages

The usual tabular(x) environment is restricted to
single-page tables, i. e. no page breaks are allowed
within tables.

However, two extension packages provide sup-
port for typesetting tables across multiple pages,
namely longtable [3] and supertabular [1]. The
main difference between them is that longtable
keeps the column widths the same throughout the
entire table, while supertabular recalculates the
column widths on each page. According to the docu-
mentation, longtable doesn’t work in two- or multi-
column mode, and I didn’t try supertabular on this
case. The syntax of the two packages is different, so
one has to decide which one to use.

Let’s have a look at the general structure of a
longtable:

\begin{longtable}{ll}

Label (cont.) & Text (cont.)\\

\endhead

\multicolumn{2}{l}{This is the first head}\\

Label & Text\\

\endfirsthead

\multicolumn{2}{l}{to be cont’d on next page}

\endfoot

\multicolumn{2}{l}{this is the end (finally!)}

\endlastfoot

One & Some content\\

Two & Another content\\

Three & Yet another content\\

[...]

\end{longtable}

As shown in this source code, the longtable
environment may contain definitions for headers and
footers before the normal content of the table:
\endfirsthead defines what to typeset at the very

first head of the table,
\endhead defines a table head that is used on con-

tinuation pages,
\endfoot defines what to typeset on the foot of the

table if a continuation page follows, and
\endlastfoot defines the foot at the very end of

the table.
I personally prefer longtable simply because

there exists yet another package ltxtable [4], which
combines longtable and tabularx. It provides the
command \LTXtable{〈width〉}{〈file〉}, which reads
a given file containing a longtable environment us-
ing X-columns and typesets it to the requested width.

References

[1] Johannes Braams and Theo Jurriens. The
supertabular package. CTAN:macros/latex/
contrib/supertabular/.

[2] David Carlisle. The hhline package.
[3] David Carlisle. The longtable package.
[4] David Carlisle. The ltxtable package.

CTAN:macros/latex/contrib/carlisle/.
[5] David Carlisle. The tabularx package.
[6] Simon Fear and Danie Els. The booktabs pack-

age. CTAN:macros/latex/contrib/booktabs/.
[7] Frank Mittelbach and David Carlisle. The array

package.
[8] Frank Mittelbach, Michel Goossens, et al. The

LATEX Companion. Addison-Wesley, 2nd edition,
2004.

[9] Martin Schröder. The ragged2e package. CTAN:
macros/latex/contrib/ms/.

Packages [2, 3, 5] are part of the required LATEX tools, avail-
able from CTAN:macros/latex/required/tools.

TUGboat, Volume 28 (2007), No. 3 — Proceedings of the 2007 Annual Meeting 353

