
Formatting Font Formats

Luc Devroye
McGill University, Montréal, Canada H3A 2K6
luc@cs.mcgill.ca

Abstract

Font formats are a tug of war between artists (designers and drawers), programmers (computer
scientists), the business world, and users. Each of these four groups has had an influence on the
path that font formats have followed. We review the successes and failures, and present a wish list
of properties that a good font format should have.

Résumé

Les formats de fontes ont depuis toujours été un tir à la corde entre les artistes (graphistes et des-
sinateurs de fontes), les programmeurs (informaticiens), le monde des affaires et les utilisateurs.
Chacun parmi ces groupes a influencé l’itinéraire historique que les formats de fonte ont suivi ces
vingt dernières années.

Nous allons, dans cette présentation, revoir les succès et les échecs des formats de fonte, et nous
allons présenter une liste de vœux des propriétés que nous considérons qu’un bon format de fonte
devrait avoir.

Introduction

Let us try to imagine what format fonts will be living in
several decades from today. That question is very rel-
evant in 2003, as the type world is ready for yet an-
other overhaul. In this paper, we briefly comment on
the present situation, in which the TrueType and Post-
Script font formats are dominant, and the OpenType for-
mat, which was proposed about eight years ago, is being
promoted. We then take a broader and more long-term
view and touch upon various issues related to the design
of electronic font formats.

Before we embark on the more technical aspects of
electronic font formats, it helps to identify the forces that
are helping to shape these formats.

First and foremost, the users would like to see sim-
ple, useful formats, that are easy to manipulate and edit.
They want to have access to the art created by great type
artists and the technical refinement provided by digital
font experts. In addition, professional users may demand
a certain degree of flexibility in a font, in order to incor-
porate personal choices.

The artists and typographers had a lot of influence
in pre-electronic font formats. The early typographers
were nearly all craftsmen. In the twentieth century, var-
ious technological advances were made at companies like
Linotype and Monotype, that were driven by the de-
mands of the type designers, and we witnessed a shorten-
ing of the time between design on paper and actual glyph
production. In the electronic era, the artists and typog-
raphers have been largely left out of the decisions on font
formats, and this has led to an unfortunate split in the

family of typographers: on the one hand, there are those
who never adapted to the mouse and the screen, and con-
tinued designing typefaces using pen and ink. Perhaps
the medium or perhaps the all too mathematical font for-
mats and font editors acted as deterrents for them. On
the other hand, we have seen the emergence of digi-
tal artists who design glyphs directly on the screen, and
do so with extreme efficiency. In this category, we can
place prolific artists such as Lucas DeGroot, Jean-Frano̧is
Porchez and David Berlow. A few evenmastered the bit-
map format, and became the ultimate digital technicians.
Matthew Carter’s Verdana, an outline font designed and
tweaked for optimal screen output, is a prime example
of the output of a master digital technician. For more on
the designer’s perspective, read Hermann Zapf’s 1991
book [52]. For both groups of designers, however, the
font format came first, and they had to adapt to the tech-
nology. Perhaps, in the future, we should ask them for
some input, and create a medium in which their freedom
is undiminished.

The engineers have a say in the matter as they report
about the limitations of certain media. Screen render-
ers, printer specifications and other physical facts limit
the format in which fonts are presented in those media.
There is a movable boundary defined by the partition of
the responsibilities between computer and peripheral de-
vice. For example, a “lazy” computer may send a raw
font to a printer, and the printer must do all the process-
ing internally to put ink on a page [this is the strategy used
in native PostScript printers, for example]. Other media
expect a device-specific font format, often a bitmap or

588 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003



Formatting Font Formats

pixel font, adapted to the resolution and device specifi-
cations. The onus here is on the computer, not the de-
vice. In these cases, font formats are sometimes designed
by engineers, who have very little typographic training.

Computer scientists and programmers (software artists)
are increasingly important players. The creators of Post-
Script, Geschke andWarnock, who developed PostScript
based on the page description language PDL by John
Gaffneyin 1976 [1], and the Type 1 and Type 3 font
formats [2, 3], were computer scientists with a graphical
vision. PostScript succeeded thanks to its simplicity and
flexibility. The influence of Adobe today is in fact largely
due to the invention of PostScript. In font software and
format design, the computer scientists are largely preoc-
cupied with logical organizations of files and with issues
like standardization. This endeavour often carries them
away, so, just as with the engineers, this group of people
should remain dedicated to the users and the font design-
ers, not the other way around.

Going up the ladder, we find the vendors, foundries
and companies, whose interests are often commercial, and
who by definition are concerned with company reputa-
tion, sales volume, market share, proprietary formats,
and software strategies. Fonts are often developed as part
of larger software packages or in conjunction with cer-
tain operating systems. This world also revolves around
patents, trademarks and copyrights, the various ways in
which software and typefaces may be protected. The ac-
tual font format itself that is supported by this group is
often the result of various market decisions, the prime
example being the story of PostScript, TrueType and
OpenType that will be recounted a bit further on.

The final force at work in the creation of a font for-
mat is inertia, driven by tradition and historical models.
An electronic font format is often the result of a mod-
ification of a previous format or technology. Backward
compatibility is often cited as a requirement for a new
format, but this been contradicted by the historic record,
with dramatic incompatible quantum jumps in the tech-
nology.

The typeface repertoire is rich, with many type-
faces existing in only one of several possible formats.
Many historic faces only exist in print (in specimen books
or old manuscripts), while hundreds if not thousands are
only available in metal or wood. In the phototypesetting
era— the 1950s to 1980s— , typefaces were stored in
photographic format. And finally, in the 1980s, elec-
tronic font formats were introduced. Among these, the
earliest are the bitmap formats such as “fon”, “bdf”, and
“fnt”. In 1982, Jim Warnock and Charles Geschke in-
troduced PostScript [1], and suggested storing glyphs by
describing their outlines as Bezier curves. This led to
the Type 3 and Type 1 font formats. Knuth also used
Bezier curves for outlines, but had the idea of describ-

ing glyphs by programs in his METAFONT [30], which
was introduced and perfected in the period from 1977–
1985. In 1987–1989, Apple’s Sampo Kaasila developed
the TrueType format, which was an economic decision
to counteract the stranglehold Adobe had on the type
technology market at the time with its proprietary Post-
Script. Finally, Microsoft and Adobe joined forces in
the 1990s to create OpenType in the hope of reconcil-
ing TrueType and PostScript. The discussion below will
show that this is only a minor technological step. When
we look into the future, we must take this varied histor-
ical record into account. The electronic era is the first
one in which font formats were proprietary— they were
designed and “belonged” to one or more companies. In
taking the next step in formats, we should steer clear of
this trap, and agree on a route that is open to everyone.

It is very likely that the present computer data
model, in which the bits are the atoms, and in which bit
storage is somehow achieved at the microscopic physical
level, will survive for at least a few decades, so we will use
words like files and bits in this paper, with the caveat that
a future reader may find this vocabulary old-fashioned.
Taking a long-term view, we will describe the hub model
for font storage and manipulation. The details will be de-
scribed in subsequent sections.

The hub model

A font is an implementation of a typeface: ideally, it con-
tains the full description of that typeface. It is like a com-
plete book— anyone can read it, nothing is missing, the
author is clearly identified, and so on. Similarly, a font
should thus be implemented in a human-readable “open
book” format. None of the previous formats had this. In
the metal days, valuable information about the creative
process was missing, and only foundries actually owned
metal type. TrueType, Type 1 and OpenType fonts are
only computer-readable. METAFONT and Type 3 can
only be interpreted by programmers and computer sci-
entists. In fact, because of the proliferation of formats,
we have TrueType, Type 1 and OpenType versions for
hundreds of typefaces, and each version is slightly differ-
ent from the other one because of technical incompati-
bilities. In other words, at present, one typeface “lives
on” in many fonts, and this is a chaotic situation.

The human-readable mother font for a typeface
should exist once, and ideally be frozen forever, just as
with a “version” of a piece of software. Additions and
modifications of it then yield new fonts. One can swim
downstream from the mother font to popular implemen-
tations (TrueType, Type 1, et cetera) by filters, but hor-
izontal swimming between OpenType and Type 1, for
example, is not recommended, and upstream conversions
are to be avoided at all costs.

Font editors at present include Fontographer (owned

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 589



Luc Devroye

by Macromedia, described by Moye [39], FontLab (by
Yuri Yarmola), Font Studio (by Letraset), Ikarus (by Pe-
ter Karow at URW), FontForge (by George Williams),
FontCreator (by Erwin Denissen), Softy (by Dave Em-
mett), Manutius (by A. Gebert) and Noah (by Yeah
Noah). Each operates on one or more formats on one or
more computer platforms. New editors should be de-
signed to create or manipulate that mother font, thus
leading to a more logical situation. Artists too should
be able to directly access that mother font. Printers,
screens, applications, and handheld devices can oper-
ate on compact electronic formats obtained downstream
from the mother font. It should be noted that most seri-
ous editors store fonts in an internal human-readable for-
mat, and have in fact created models for mother fonts.
Most of these do not go beyond a one-to-one translation
of the corresponding binary format, however. For sur-
veys on font technology, we refer to the books by André
[6], Karow [26, 27] and Knuth [33] and the articles by
Gonczarowski [17, 18] and André and Hersch [7].

Each of the sections below treats one of the aspects
of the mother font in more detail.

Outline and pre-outline

One of the main contributions to computational geom-
etry and computer-aided geometric design was the de-
velopment of the Bézier curve by James Ferguson, an
airplane designer, Pierre Bézier, an engineer with Re-
nault, and de Casteljau, an engineer at the competing
French automobile company, Citroën. Two and three-
dimensional objects could be described and approxi-
mated rather simply by concatenating sections of curves.
This is, in fact, a way of transforming a physical object
into a number of bits, and thus, a way of compaction.
One can take a 1MB high-detail photograph or scan of a
letter, which after compaction by standard methods such
as “zip” (which uses a mix of Huffman and Lempel-Ziv
coding) may be reduced to 200 kilobytes or so. Yet, by
just storing the collection of Bézier curves, the same let-
ter can be locked in memory using under a kilobyte, as
the formula for an n-th order Bézier curve requires just
the knowledge of n + 1 control points x0, x1, . . . , xn in
the plane:

x(t) =

n
∑

i=0

(

n

i

)

ti(1 − t)n−i · xi , 0 ≤ t ≤ 1.

Here x(t) is a parametric curve, a continuous convex
combination of the control points (hence, the Bézier
curve stays within the polygon formed by the control
points), starting at x0 and ending at xn. The mathemat-
ical properties of Bézier curves and splines in general are
described by Farin [15] and Su and Liu [45].

It was only natural that PostScript and METAFONT

adopted the Bézier curve: their creators settled on the

cubic Bézier curve (n = 3). TrueType uses quadratic
Bézier curves (n = 2), which was an unfortunate de-
cision, as a quadratic Bézier curve can without loss be
transformed into a cubic one (given x0, x1, x2, set y0 =
x0, y1 = (2x1 + x0)/3, y2 = (2x1 + x2)/3, y3 = x2,
to obtain the cubic control points yi), but not vice versa.
So, Type 1 is downstream from TrueType, yet, cubic ap-
proximations are usually heralded as being more compact
than quadratic approximations. Artists report that cubic
curves have a richer palette than quadratic curves.

Bézier curves cannot represent circles without er-
ror, no matter how large n is [for the mathematically in-
clined, this is an excellent exercise]. For example, a 90-
degree circle arc is best approximated by a cubic Bézier
if we take the control points (0, 1), (a, 1), (1, a), (1, 0),
and a = (4/3)(

√
2 − 1) = 0.5522847498 . . .. This

omission could have been rectified if Bézier had allowed
parametric descriptions involving either a square root or
a trigonometric function.

Type designers who work with type on screen are in
fact Bézier point placement artists. Their instrument is
the mouse. This is very hard, as many control points are
not on the curves, and continuity of derivatives between
adjacent Bézier sections is difficult to achive by the naked
eye. Some designers still use pen and paper, and rely on
scanners for computer input. Yet others, used to software
for artists, are good at placing points that are related to
Bézier curves indirectly, such as demonstrated by Böhm
splines [10], where smooth continuous derivative Bézier
sections are implied.

Hobby [23] and Knuth [30] developed an algo-
rithm for constructing a sequence of Bézier curves that
is forced to visit the designer’s set of points. This algo-
rithm is built in METAFONT [30, p. 131], and can be a
great on-line tool for some. We call such ways of describ-
ing outlines “pre-outlines”.

To summarize, the mother font should be flexible
and permit choices between any of a number of outline
and pre-outline formats, as long as each format defines
a mathematical curve in a unique manner. Concatena-
tions of Bézier curves of any degree (with n being a pa-
rameter) should be allowed, as well as several pre-outline
formats to accommodate the typographers at large. At
least one spline model should be included that stores cir-
cle arcs without any error, so that we can finally have ex-
act approximations of those fantastic geometric ruler and
compass creations of masters like PhilippeGrandjean, the
designer of the Romain du roi (1693–1745).

Ink models

The two main formats, TrueType and Type 1, and their
derivative, OpenType, are all based on a primitive ink
model, based on the principle that a character is defined

590 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003



Formatting Font Formats

by a number of closed outlines, which are then filled with
ink according to the non-zero winding number rule. This
means that if a point or pixel is in a given region, then its
color, black or white, can be determined by drawing a ray
from that point to infinity (in any direction!) and keep-
ing a weighted count of the outlines crossed. A weight
of one is given to a clockwise turning contour and mi-
nus one to a counter-clockwise contour at each crossing
point. But this is clearly not how we place ink on pa-
per at home, where overwriting and erasing are two pri-
mary operations. Also, one should be able to work with
many black/white images, perhaps levels of images, and
define a final image as a logical operation on component
images, using operators like “or”, “and”, “exclusive or”,
and “not”. One should be able to mark a region black or
white by pointing to it— in other words, the region con-
taining “x” should always be black.

Stroke fonts are distinguished from outline fonts by
their ink model: a stroke is defined, perhaps by a collec-
tion of splines of Bézier curves, and ink is placed by fol-
lowing the stroke with a brush or nibbed pen, perhaps
tilted at an angle or suitably shaped. Japanese and Chi-
nese seem like prime territory for such fonts. But closer
to home, we should not forget about the characters that
are created by the interaction between a pen and a tablet,
as on palm-held devices, or signatures made with a mag-
netic pen, or input from a computer tablet. A person’s
handwriting is often better captured by letting the per-
son write on a tablet (so that we obtain the stroke points
in chronological order, with dynamic information), as op-
posed to scanning the individual’s handwriting. Tablet
input is naturally translated into strokes.

The recommendation to allow many ink models
sounds like an extension of the PostScript graphical
model, but it can be organized by rasterizers and printers
without too much trouble as all can be internally reduced
to outlines (out of sight of the font designer!) and to the
classical non-zero winding number rule. The extension
is suggested, once again, to make type design easier, more
universal, more current and more accessible.

Path complexities

Outlines and curve data are not unrestricted in our
present electronic formats. For example, paths in Post-
Script and thus Type 1 are limited to about 750 control
points. Such limitations make it impossible to store cer-
tain complex characters as are found in ornaments, dec-
orative initial caps, and outlines based on high resolution
scans. TrueType has higher limits, but the mother font
should in principle have no limit. Limits could be in-
troduced by various formats downstream, and by various
viewing media even further downstream, but it should
not be introduced at the mother font level.

Accuracy

Outlines in any form require mathematical input. As
points need to be represented in a unique manner across
all platforms, it is imperative that all mathematical de-
scriptions be in terms of integers. For example, a point
can simply be (x, y), where x and y are integers, but it
can also be (x/x′, y/y′) where x, x′, y, y′ are integers,
so that we can attain all rational numbers. At present, as-
suming that a character occupies the square [0, 1]2, points
in that square can be addressed as (x/1000, y/1000)
with x, y integer, as is common in Type 1. Type 1 per-
mits higher values than 1000, but not all interpreters of
Type 1 fonts are happy with such. In TrueType, the
1000×1000 box is replaced by 2048×2048. The dif-
ferent box sizes shows that there is no lossless horizontal
conversion between TrueType and Type 1, as x/1000 =
y/2048 implies that x must be a multiple of 125 and y a
multiple of 256, and any other values imply a loss in ac-
curacy. OpenType inherits the Type 1 restriction for its
CFF style implementation, and the TrueType restriction
otherwise.

It is incomprehensible that no one has even at-
tempted to increase these limits of accuracy. Picture a
complex character consisting of 50 rows and 50 columns
of circles that touch other. In a 1000×1000 integer box,
this would force the radius of each circle to be 5. In a cu-
bic Bézier implementation of a quarter circle, we need to
place the control points at (0, 5), (a, 5), (5, a), (5, 0), and
must select the values 1, 2, 3 or 4 for a, recalling that the
ideal value is about 2.75 (see above). By picking a = 3,
the circles will be far from perfect!

There is an even more compelling reason why the
accuracy must be increased: the historical record. As we
scan historical designs, in our quest to store everything
in some electronic format for the future, we must en-
sure that as little as possible is lost in the process. Just as
the noise in old LPs was due to mechanical limitations, so
is the noise introduced by storing valuable designs using
less-than-ideal accuracy. Reconstruction and de-noising
will be difficult once the damage is done.

In a 1000×1000 box, storing a point (x, y) requires
about 20 bits. In a 1 million by 1 million box, the stor-
age increases to about 40 bits, and for an unimaginable 1
billion by 1 billion box, the storage increases to about 60
bits. Thus, by doubling the storage requirements, we can
in fact increase the number of point positions by a factor
of one million! By tripling, that multiplication factor be-
comes one trillion. In other words, this is a change that
comes relatively cheaply. Furthermore, since the mother
font is upstream of everything else, one can always drop
down to lower accuracies when moving downstream. For
storing points, perhaps the best method is to work with
(x, y, n), where n is the accuracy, and x and y are inte-

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 591



Luc Devroye

gers in or near the range [0 . . . n]. The triple then rep-
resents (x/n, y/n). The value of n should not a priori
be restricted. Accuracy should be a variable parameter,
perhaps different from font to font.

It must be mentioned that accuracy is not an issue in
a pure PostScript type format such as Type 3, and that
theoretically, in a Type 1 font, it can be controlled by
the FontMatrix, although, in practice, many applications
expect a 1000×1000 matrix.

Programming and fonts

The current crop of electronic font formats are just ta-
bles. Just as with their metal counterparts, they are dead
objects that require manipulation by an external mas-
ter or computer program. Even though some companies
claim that their fonts are programs, this is false, with
the exception of METAFONT and Type 3, which were
both major steps forward in font technology. In addi-
tion, someTrueType fonts have some bits of code in their
hinting sections, but it is debatable whether this should
be considered as a program or a table.

The Type 3 format allows the use of the full Post-
Script language: there are parameters, variables, condi-
tional instructions and loops. It is possible to make ran-
domized fonts, e.g., for the simulation of handwriting,
and to create connected context-sensitive glyphs. Char-
acters can be programmed in terms of tunable parame-
ters. Perhaps the simplest tunable fonts are the multiple
master fonts that Adobe proposed in the 1990s, in which
one can vary one or more parameters to interpolate be-
tween extremal fonts. Of course, this can be emulated in
Type 3 fonts. METAFONT has similar capabilities, and,
in fact, Knuth demonstrated with his Computer Modern
family [32] that one program per glyph suffices to cre-
ate a family of 72 component fonts, ranging from type-
writer type to serif and sans serif (see also [19]). Other
attempts at parametrization, such as Infinifont (McQueen
and Beausoleil, [38]) and LiveType (Shamir and Rap-
poport, [42, 43]) were short-lived.

The disadvantage of such programmable fonts is
the necessity to have at one’s fingertips, in printers, and
in applications, powerful interpreters or on-the-fly con-
verters to other formats. Furthermore, the danger of a
virus lurks in every piece of code— indeed, executing a
Type 3 “font” can have as side effect the creation or dele-
tion of one or more files. Finally, interpreters for power-
ful languages are often legally protected and can only be
licensed at enormous fees. With language features wisely
restricted to purely mathematical and graphical opera-
tions, one should be able to flag mother fonts that contain
active code, analogous to the present flagging of multiple
master fonts.

Reviving the idea of programmable fonts will have
enormous benefits for mathematical typesetting. Knuth’s

model (METAFONT + TEX, [31]) is now over 20 years
old, and has a few shortcomings that require an update.
There should be a continuum of optically adjusted sym-
bols like brackets and parentheses, with line thickness and
size adapted to the surrounding text. At present, the
symbols are selected from a finite set, which often leads
to aesthetic mismatches. Improvements should be made
in optical size matching of subscripts and superscripts.

Of course, optically and continuously adjusted sym-
bols are only part of my mathematical typesetting wish-
list. There should ideally be a symbiosis of figures, for-
mulas and text, all playing and interacting on the page, a
bit as with blackboard mathematics in the hands of a mas-
ter mathematician. This requires a paradigm that tran-
scends TEX.

In the area of randomized fonts for the simulation of
handwriting, we refer to Devroye and McDougall [13]
for a theoretical development and some crude exam-
ples, to Desruisseaux [12] for a thoroughly researched
font called MetamorFont, and to André and Borghi [5],
Dooijes [14] and van Blokland and van Rossum [50] for
earlier attempts in this direction. All these develop-
ments used the programming power of Type 3 to cre-
ate random-looking characters that are either based on
a sample of one’s handwriting (as in the first reference
above) or that are constructed artificially by program-
ming the randomness in the outlines (as in Metamor-
Font). It would be a shame not to include a random num-
ber generator in the specification of the mother font. Of
course, one should make sure that the random sequence
generated can be “replayed” for debugging purposes.

Ligatures and context sensitivity

Ligatures are combinations of two or more characters.
Context sensitive characters are single characters that
change shape as a function of their context or neighbor-
hood. The activation of a context sensitive change should
always be the responsibility of the application— the font
should only contain the various shapes without getting in-
volved in questions related to context.

This separation of form and application should also
apply to ligatures. Fonts provide the shapes only. This
division has been rigorously supported in the META-
FONT + TEX model, with TEX taking care of the ac-
tual activation of ligatures. In OpenType, a GSUB table
was introduced that in combination with software such as
InDesign will activate ligatures. However, which letters
react in what manner is stored in the GSUB table, so that
the separation is less clear, forcing the font designers to
worry about non-artistic issues, and thus making the de-
sign process too hard. Artists can hardly be expected to
design GSUB tables!

Arabic requires a large number of ligatures for
proper typesetting (see, e.g., Smitshuijzen AbiFarès,

592 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003



Formatting Font Formats

[44]). However, a large number may also be required for
Latin handwriting. The author has experimented with
ligatures in an interesting way, creating glyphs in Type 3
with a tablet for about 1600 ligatures. These consisted
of the most popular pairs of letters, with a distinction
between starting pairs in words, ending pairs, and mid-
word pairs. In addition, triples were added, again by
popularity as measured in a large body of text. Finally,
single letters came in three forms, starting letters, sen-
tinels, and mid-word letters. Combinations of capitals
with one or two trailing lower case characters were also
thrown into the collection. Given a text, a small program
decided on the optimal composition of a word using these
ligatures thanks to a formula based on rewards and penal-
ties. Others can improve the typesetting by changing that
parsing program, without touching the font file, keeping
the activation of the ligatures away from the fonts.

Bitmaps and images

The preservation and restoration of old typefaces if done
in outline format requires an increased accuracy. Nev-
ertheless, at some point, a crucial transformation from
bitmap or image to outline is necessary. This process
is often called tracing or auto-tracing. Algorithms for
this abound (see Avrahami and Pratt [9], Plass and Stone
[40], Itoh and Ohno [24], Gonczarowski [16], Schnei-
der [41], Lejun, Hao andWah [34], orMazzucato [37]).
However, the perfectionists may wish to keep the origi-
nal image, rather than the possibly polluted outline. The
storage may be prohibitive, but one might want to com-
press the images by clever lossless (or reversible) com-
pression methods that are designed to look for straight
edges and smooth outlines. Such dedicated or “smart”
compression methods may yield high compression ratios.
The mother font should allow for the storage of bitmaps
of extremely fine grain.

It is not far-fetched to project that one day, all fonts
will be stored in a compressed bitmap format, with stor-
age capabilities expanding at an enormous pace, and with
smart compression an active area of research in informa-
tion theory. The benefit of such a format is that the de-
sign of a font editor will be much easier, while the editing
process itself will feel more natural to the typographers.
In fact, paper and electronic format will converge again.

Standardization and coding

The effort to standardize the naming of symbols and the
positioning (or: coding) of symbols by attaching perma-
nent numbers to each of them, should continue. Unicode
has changed the typographic scene in this respect, but it
is unrealistic to expect each font to be “complete”, us-
ing whatever definition of “complete” one wants. For one
thing, new symbols are invented daily, so that the stan-

dardizers will never be able to keep up. Furthermore,
special unique and innovative glyphs add to the value of
a typeface, especially if no other typeface offers them.
It is in the human nature to create and invent, and thus,
the mother font should not be tied to one particular cod-
ing scheme. It could be flagged as Unicode-compliant or
Unicode-subset-compliant, but in the matter of encod-
ing and naming, we cannot the predict the future—who
could have predicted the Euro symbol in 1970— , and
therefore have to recommend that mother fonts be unre-
stricted.

The number of glyphs in one font should not a pri-
ori be limited. Each glyph should have a name and an
integer-valued position, but the maximal value among
those integers should have no obvious bound, not even the
seemingly large bound that comes with Unicode.

Font information

One of the key components of the mother font relates to
the information and history of the typeface and the font.
Each font or typeface has a genealogical history. There is
an ancestral tree or dag (directed acyclic graph) that ex-
plains the present. The tree should be shown, and each
node and link in it explained and if possible, dated. It
is a pipedream to think that one can have a permanent
font information depository somewhere. The best we
can hope for is to make the font information an essential
part of the mother font. In many cases, the ancestors can
and should be traced back to the days of metal type.

Font names should be unique, perhaps by introduc-
ing foundry letters and short version numbers in the font
name. In no case should information about the font be
separated into a “readme” file, another invention of the
eager computer scientists. The font information should
explain the absolute and earliest origins of the typeface.
It should then report on the changes, revivals, additions,
and extensions that have transformed the original type-
face into this font. Clearly, this information can be erased
and fraudulently altered, but no practical system will pre-
vent this. At present, many foundries such as Adobe and
Linotype do not mention the typographer who created
the typeface anywhere in or near the font. They offer
biographies of their designers on web pages that may one
day disappear while their information-starved fonts sur-
vive. Thus, the information field should be used to pay
a permanent tribute to the creators, typographers and
artistic forefathers.

Human-readable format

The mother font has to exist in a simple human-readable
form. For TrueType and OpenType, the TTX tool by
van Blokland and van Rossum [51] permits a one-to-one
transformation between the binary font file and a human-

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 593



Luc Devroye

readableXML file. Other examples of such mapping pro-
grams exist for other formats. Non-commercial formats
such as METAFONT essentially exist only in text format.

Motivated by the simple requirement that anyone,
even a person without appropriate software, or without
software attached to a certain decade, can read and inter-
pret the instructions, all font information and all outlines
must be readily accessible. Adding an accent or dieresis
to a character should be a trivial operation. And impor-
tantly, even moderately capable programmers should be
able to write simple code to act upon the mother font to
achieve a certain effect. For all these reasons, a binary
model should be excluded. Those who argue that the
storage may be prohibitive should be reminded that fonts
can be compressed on the fly when sent over a network
or to a device.

Automated operations

In any typeface, metric and kerning information is essen-
tial. Kindersley [28] has provided nice ideas on how let-
ters should be spaced. At URW in [47, 48, 49], an at-
tempt was made at automating character spacing through
internal programs cryptically called hz and Kq. The
choice of spacing around each character requires a cer-
tain amount of expertise, and a well-kerned font is out
of reach of most typographers. Therefore, the mother
font should have flags that indicate the automation of the
process of determining the sidebearings of the charac-
ters and the kerning between all pairs of glyphs. And if
set, another parameter could be used to select an algo-
rithm from a collection of possible algorithms, with fur-
ther parameters left to the user’s choice. The kerning al-
gorithms should be unambiguously defined, but not in a
programming language. In this manner, automation and
hand-kerning can coexist, and one can override the other.

Hinting is uniquely tied to electronic fonts, as ear-
lier formats were not concerned with discretized media.
It too can be dealt with in the way suggested above for
kerning, via the setting of a parameter which selects one
of the built-in hand-kerned data sets, or one of the auto-
mated algorithms. Examples of the latter are described
by Karow [25], Andler [4], Hersch and Bitrisey [21] and
Herz and Hersch [22]. An argument could be made to
exclude hinting altogether from a font, and insist that it
is the responsibility of the printing or screening device.

Addendum

Since the paper was first written in 2003, we have be-
come aware of some independent attempts at text-based
mother formats for font sources. These include the UFO
(unified font object) file format introduced in October
2004 at the ATypI meeting in Prague by the Letterror
people, Erik van Blokland and Just van Rossum. Further-

more, George Williams’s internal SFD (spline font data-
base font format) for his FontForge font editor also con-
stitutes an attempt in this direction.

References

[1] Adobe Systems, PostScript Language Reference
Manual, Addison-Wesley, Reading, MA, 1990a.

[2] Adobe Systems, Adobe Type 1 Font Format,
Addison-Wesley, Reading, MA, 1990b.

[3] Adobe Systems, Adobe Font Metric Files Specifica-
tion Version 3.0, Adobe, 1990c.

[4] S. F. Andler, “Automatic generation of grid-
fitting hints for rasterization of outline fonts”,
in: Proceedings of the International Conference on
Electronic Publishing, Document Manipulation &
Typography, Gaithersburg, Maryland, September
1990 (edited by R. Furuta), pp. 221–234, New
York, 1990.

[5] J. André and B. Borghi, “Dynamic fonts”, in:
Raster Imaging and Digital Typography (edited by
J. André and R. D. Hersch), pp. 198–204, Cam-
bridge University Press, Cambridge, 1989.

[6] J. André, “Création de fontes et typographie
numérique”, IRISA, Campus de Beaulieu,
Rennes, 1993.

[7] J. André, “An introduction to digital type”, in:
Visual and Technical Aspects of Types (edited by
R. D. Hersch), pp. 56–63, Cambridge University
Press, Cambridge, UK, 1993.

[8] J. André, “Ligatures & informatique”, Cahiers
GUTenberg, vol. 22, pp. 61–86, 1995.

[9] G. Avrahami and V. Pratt, “Sub-pixel edge detec-
tion in character digitization”, in: Raster Imaging
and Digital Typography II (edited by R. A. Mor-
ris and J. André), pp. 54–64, Cambridge Univer-
sity Press, Cambridge, 1991.

[10] W. Böhm, “Cubic B-Spline curves and surfaces
in computer-aided geometric design”,Computing,
vol. 19, pp. 29–34, 1977.

[11] W. Böhm, G. Farin, and J. Kahmann, “A survey of
curve and surface methods in CAGD”, Computer-
Aided Geometric Design, vol. 1, pp. 1–60, 1984.

[12] B. Desruisseaux, “Random dynamic fonts”,
M.Sc. thesis, School of Computer Science,
McGill University, Montreal, Canada, October
1996.

[13] L. Devroye and M. McDougall, “Random fonts
for the simulation of handwriting”, Electronic
Publishing (EP—ODD), vol. 8, pp. 281–294,
1995.

[14] E. H. Dooijes, “Rendition of quasi-calligraphic
script defined by pen trajectory”, Raster Imag-
ing and Digital Typography, in: Raster Imaging

594 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003



Formatting Font Formats

and Digital Typography: Proceedings of the Inter-
national Conferences, Ecole Polytechnique Fédérale,
Lausanne, Switzerland, October 1989 (edited by
J. André and R. D. Hersch), pp. 251–260, Cam-
bridge University Press, Cambridge, 1989.

[15] G. Farin, Curves and Surfaces for CAGD, A Prac-
tical Guide, Academic Press, New York, 1993.

[16] J. Gonczarowski, “A fast approach to auto-tracing
(with parametric cubics)”, in: Raster Imaging and
Digital Typography (edited by R. A. Morris and
J. André), vol. 2, pp. 1–15, Cambridge Univer-
sity Press, Cambridge, 1991.

[17] J. Gonczarowski, “Industry standard outline font
formats”, in: Visual and Technical Aspects of Types
(edited by R. D. Hersch), pp. 110–125, Cam-
bridge University Press, Cambridge, UK, 1993.

[18] J. Gonczarowski, “Curve techniques by autotrac-
ing”, in: Visual and Technical Aspects of Types
(edited by R. D. Hersch), pp. 126–147, Cam-
bridge University Press, Cambridge, UK, 1993.

[19] Y. Haralambous, “Parametrization of PostScript
fonts through METAFONT—an alternative to
Adobe multiple master fonts”, Electronic Publish-
ing (EP—ODD), vol. 6, pp. 145–157, 1993.

[20] Y. Haralambous, “Tour du monde des ligatures”,
Cahiers GUTenberg, vol. 22, pp. 87–100, 1995.

[21] R. D. Hersch and C. Bitrisey, “Model-based
matching and hinting of fonts”, ACM Computer
Graphics, vol. 25, pp. 71–80, 1991.

[22] J. Herz and R. D. Hersch, “Towards a universal
auto-hinting system for typographic shapes”,
Electronic Publishing (EP—ODD), vol. 7,
pp. 251–260, Special issue on Typography, John
Wiley, 1994.

[23] J. D. Hobby, “Smooth, easy to compute interpo-
lating splines”, Discrete Computational Geometry,
vol. 1, pp. 123–140, 1986.

[24] K. Itoh and Y. Ohno, “A curve fitting algorithm
for character fonts”, Electronic Publishing (EP—
ODD), vol. 6, pp. 195–205, 1993.

[25] P. Karow, “Automatic hinting for intelligent font
scaling”, in: Raster Imaging and Digital Typogra-
phy: Proceedings of the International Conferences,
Ecole Polytechnique Fédérale, Lausanne, Switzer-
land, October 1989 (edited by J. André and
R. D. Hersch), pp. 232–241, New York, 1989.

[26] P. Karow, Digital Typefaces, Springer-Verlag,
Berlin, 1994a.

[27] P. Karow, Font Technology, Springer-Verlag,
Berlin, 1994b.

[28] D. Kindersley, Optical Letter Spacing for New
Printing Systems, Wynkyn de Worde Society, dis-

tributed by Lund Humphries Publishers Ltd., 26
Litchfield St. London WC2, 1976.

[29] D. Kindersley and N. Wiseman, “Computer-
Aided Letter Design”, Printing World, pp. 12–
17, 1979.

[30] D. E. Knuth, The METAFONT book, Addison-
Wesley, Reading, MA, 1986a.

[31] D. E. Knuth, The TEXbook, Addison-Wesley,
Reading, Mass, 1986b.

[32] D. E. Knuth, Computer Modern Typefaces,
Addison-Wesley, Reading, Mass, 1986c.

[33] D. E. Knuth, Digital Typography, Cambridge
University Press, 1999.

[34] S. Lejun, Z. Hao, and C. K. Wah, “FontScript—
A Chinese font generation system”, in: Pro-
ceedings of the International Conference on Chinese
Computing (ICC94), pp. 1–9, 1994.

[35] C. W. Liao and J. S. Huang, “Font generation
by beta-spline curve”, Computers and Graphics,
vol. 15, pp. 527–534, 1991.

[36] J. R. Manning, “Continuity conditions for spline
curves”, The Computer Journal, vol. 17, pp. 181–
186, 1974.

[37] S. Mazzucato, “Optimization of Bézier outlines
and automatic font generation”, M.Sc. thesis,
School of Computer Science, McGill University,
Montreal, Canada, 1994.

[38] C. D. McQueen III and R. G. Beausoleil, “Infini-
font: a parametric font generation system”, Elec-
tronic Publishing (EP—ODD), vol. 6, pp. 117–
132, 1993.

[39] S. Moye, Fontographer: Type by Design, MIS

Press, 1995.

[40] M. Plass and M. Stone, “Curve-fitting with
piecewise parametric cubics”, Computer Graphics,
vol. 17, pp. 229–239, 1983.

[41] P. J. Schneider, “An algorithm for automati-
cally fitting digitized curves”, in: Graphics Gems
(edited by A. S. Glassner), pp. 612–626, Aca-
demic Press, San Diego, CA, 1990.

[42] A. Shamir and A. Rappoport, “Extraction of ty-
pographic elements from outline representations
of fonts”, Computer Graphics Forum, vol. 15(3),
pp. 259–268, 1996.

[43] A. Shamir and A. Rappoport, “LiveType: a Para-
metric Font Model Based on Features and Con-
straints”, Technical Report TR-97-11, Institute
of Computer Science, The Hebrew University,
1997.

[44] H. Smitshuijzen AbiFarès, Arabic Typography,
Saqi Books, London, 2001.

TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX2003 595



Luc Devroye

[45] B.-Q. Su and D.-Y. Liu, Computational Geometry–
Curve and Surface Modeling, Academic Press,
Boston, 1989.

[46] Unicode Consortium, “Unicode”, http://www.
unicode.org, 2003.

[47] URW, “Kerning on the Fly”, Technical Report,
URW, 1991.

[48] URW, “Phototypesetting with the URW hz-
program”, Technical Report, URW, 1991.

[49] URW, “Phototypesetting with the URW Kq-
program”, Technical Report, URW, 1991.

[50] E. van Blokland and J. van Rossum, “Different ap-
proaches to lively outlines”, in: Raster Imaging
and Digital Typography II (edited by R. A. Mor-
ris and J. André), pp. 28–33, Cambridge Univer-
sity Press, Cambridge, 1991.

[51] E. van Blokland and J. van Rossum, “TTX”,
http://www.letterror.com/code/ttx,
2002.

[52] H. Zapf, Classical Typography in the Computer
Age, Oak Knoll Books, 1991.

596 TUGboat, Volume 24 (2003), No. 3—Proceedings of EuroTEX 2003


