
TUGBOAT

Volume 22, Number 1/2 / March/June 2001

3 Addresses

General Delivery 5 From the President / Mimi Jett

6 Editorial comments / Barbara Beeton

We’re late . . . ; CTAN and “The treasure chest”; TEX Mexico User Group;

Goodbye to Father Larguier; Some places to learn more about books

and printing; 5000 years of the written word; The Gutenberg Bible online;

Xy-pic home moved to TUG; Legibility study online

8 Why TEX? / Jim Hefferon

15 Question & Answer session with Donald Knuth, U.K.TUG, Oxford, Sunday,

12 September 1999

20 How (LA)TEX changed the face of mathematics: An E-interview with

Leslie Lamport, the author of LATEX

Typography 23 Typographers’ inn / Peter Flynn

Font Forum 24 Laudatio for Professor Hermann Zapf / Frank Mittelbach

26 My collaboration with Don Knuth and my font design work / Hermann Zapf

Software & Tools 31 Hyphenation exception log / Barbara Beeton

32 LYX — An Open Source document processor / Laura Elizabeth Jackson

and Herbert Voß

42 DVII: A TEX dvi file information utility / Adam H. Lewenberg

Graphics Applications 46 Drawing graphs with MetaPost / John D. Hobby

Reports 58 The status quo of the NT S project / Hans Hagen

Hints & Tricks 67 The treasure chest / William Adams

Tutorials 74 Publishing legacy documents on the Web / George Grätzer

78 Anatomy of a macro / Denis Roegel

Macros 83 The bag of tricks / Victor Eijkhout

LATEX 93 The trace package / Frank Mittelbach

Abstracts 100 Les Cahiers GUTenberg, Contents of issues 35/36 (May 2000)

and 37/38 (December 2000)

News &

Announcements

103 Calendar

105 TUG ’2001 Announcement

Cartoon 4 Typohol Anon / Roy Preston

TUG Business 106 Minutes of TEX Users Group Annual General Meeting, 15 August 2000,

Oxford, England / Susan DeMeritt

107 Financial statement, 2000 / Don DeLand

108 TUG Election Notice / Arthur Ogawa

109 Institutional members

110 TUG membership application

Advertisements 111 TEX consulting and production services

112 Just Published: TEX Reference Manual by David Bausum

cover 3 Blue Sky Research

TEX Users Group

Memberships and Subscriptions

TUGboat (ISSN 0896-3207) is published quarterly
by the TEX Users Group, 1466 NW Naito Parkway,
Suite 3141, Portland, OR 97209-2820, U.S.A.

2001 dues for individual members are as follows:
Ordinary members: $75.
Students: $45.

Membership in the TEX Users Group is for the
calendar year, and includes all issues of TUGboat

for the year in which membership begins or is
renewed. Individual membership is open only to
named individuals, and carries with it such rights
and responsibilities as voting in TUG elections. For
membership information, visit the TUG web site:
http://www.tug.org.

TUGboat subscriptions are available to organi-
zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: $85 a year, including air mail delivery.

Periodical-class postage paid at Portland, OR,
and additional mailing offices. Postmaster: Send
address changes to TUGboat, TEX Users Group,
1466 NW Naito Parkway, Suite 3141, Portland, OR
97209-2820, U.S.A.

Institutional Membership

Institutional Membership is a means of showing
continuing interest in and support for both TEX
and the TEX Users Group. For further information,
contact the TUG office (office@tug.org).

TUGboat c© Copyright 2001, TEX Users Group

Permission is granted to make and distribute verbatim

copies of this publication or of individual items from this

publication provided the copyright notice and this permission

notice are preserved on all copies.

Permission is granted to copy and distribute modified

versions of this publication or of individual items from

this publication under the conditions for verbatim copying,

provided that the entire resulting derived work is distributed

under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute transla-

tions of this publication or of individual items from this

publication into another language, under the above condi-

tions for modified versions, except that this permission notice

may be included in translations approved by the TEX Users

Group instead of in the original English.

Copyright to individual articles is retained by the

authors.

Printed in U.S.A.

Board of Directors

Donald Knuth, Grand Wizard of TEX-arcana†

Mimi Jett, President∗+

Kristoffer Rose∗+, Vice President

Don DeLand∗+, Treasurer

Arthur Ogawa∗+, Secretary

Barbara Beeton
Karl Berry
Kaja Christiansen
Susan DeMeritt
Stephanie Hogue
Judy Johnson+

Ross Moore
Patricia Monohon
Cheryl Ponchin
Petr Sojka
Philip Taylor
Raymond Goucher, Founding Executive Director †

Hermann Zapf, Wizard of Fonts†

∗member of executive committee
+member of business committee
†honorary

Addresses

General correspondence,
payments, etc.

TEX Users Group
P.O. Box 2311
Portland, OR 97208-2311
U.S.A.

Delivery services,
parcels, visitors

TEX Users Group
1466 NW Naito Parkway
Suite 3141
Portland, OR 97209-2820
U.S.A.

Telephone

+1 503 223-9994

Fax

+1 503 223-3960

Electronic Mail

(Internet)

General correspondence,
membership, subscriptions:
office@tug.org

Submissions to TUGboat,
letters to the Editor:
TUGboat@tug.org

Technical support for
TEX users:
support@tug.org

To contact the
Board of Directors:
board@tug.org

World Wide Web

http://www.tug.org/

http://www.tug.org/TUGboat/

Problems not resolved?

The TUG Board wants to hear from you:
Please email to board@tug.org

TEX is a trademark of the American Mathematical
Society.

[T]hose who know only what words are for can hardly
know what words are. I cannot find it within me to see
them only as manipulable counters, though they are that;
they seem, quite often, a parade of gorgeous animals
muttering by, a caravan slouching off to Gutenberg or
some equally imaginary place.

Paul West
The Secret Lives of Words (2000)

COMMUNICATIONS OF THE TEX USERS GROUP

EDITOR BARBARA BEETON

VOLUME 22, NUMBER 1/2 • MARCH/JUNE 2000

PORTLAND • OREGON • U.S.A.

TUGboat

For the remainder of the 2001 volume year, two
issues will appear. The September 2001 issue
(Vol. 22, No. 3) will contain the Proceedings of
the 2001 TUG Annual Meeting. During 2002, the
communications of the TEX Users Group will be
published as one double issue (1/2) and two regular
issues. The September issue (Vol. 23, No. 3) is
expected to contain the Proceedings of the 2002
TUG Annual Meeting.

We are unfortunately not able to set a definitive
schedule for the appearance of the next few issues.
but are making every effort to be back on a
reasonably normal schedule by the end of 2002.

TUGboat is distributed as a benefit of mem-
bership to all members.

Submissions to TUGboat are reviewed by vol-
unteers and checked by the Editor before publica-
tion. However, the authors are still assumed to be
the experts. Questions regarding content or accu-
racy should therefore be directed to the authors,
with an information copy to the Editor.

Submitting Items for Publication

Owing to the lateness of the present issue, and
the scarcity of material submitted for future is-
sues, suggestions will be accepted and processed as
received.

Manuscripts should be submitted to a member
of the TUGboat Editorial Board. Articles of general
interest, those not covered by any of the editorial
departments listed, and all items submitted on
magnetic media or as camera-ready copy should be
addressed to the Editor-in-Chief, Barbara Beeton,
to the Managing Editor, Robin Laakso, or to the
Production Manager, Mimi Burbank (see addresses
on p. 3).

The TUGboat “style files”, for use with either
plain TEX or LATEX, are available from CTAN.
For authors who have no network access (browser
or FTP), they will be sent on request; please
specify which is preferred. Send e-mail to TUGboat@
tug.org, or write or call the TUG office.

This is also the preferred address for submitting
contributions via electronic mail.

Reviewers

Additional reviewers are needed, to assist in check-
ing new articles for completeness, accuracy, and
presentation. Volunteers are invited to submit
their names and interests for consideration; write to
TUGboat@tug.org or to the Editor, Barbara Beeton
(see address on p. 3).

TUGboat Editorial Board

Barbara Beeton, Editor-in-Chief

Robin Laakso, Managing Editor

Mimi Burbank, Production Manager

Victor Eijkhout, Associate Editor, Macros

Jeremy Gibbons, Associate Editor,

“Hey— it works!”

Alan Hoenig, Associate Editor, Fonts

Christina Thiele, Associate Editor,

Topics in the Humanities

Production Team:

Barbara Beeton, Mimi Burbank (Manager), Robin
Fairbairns, Michael Sofka, Christina Thiele

See page 3 for addresses.

Other TUG Publications

TUG is interested in considering additional man-
uscripts for publication. These might include
manuals, instructional materials, documentation, or
works on any other topic that might be useful to
the TEX community in general. Provision can be
made for including macro packages or software in
computer-readable form. If you have any such items
or know of any that you would like considered for
publication, send the information to the attention
of the Publications Committee at tug-pub@tug.org
or in care of the TUG office.

TUGboat Advertising and Mailing Lists

For information about advertising rates, publication
schedules or the purchase of TUG mailing lists,
write or call the TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
a name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following
list of trademarks which appear in this issue may
not be complete.
METAFONT is a trademark of Addison-Wesley Inc.
PostScript is a trademark of Adobe Systems, Inc.
TEX and AMS-TEX are trademarks of the American

Mathematical Society.
Unix is a registered trademark of X/Open Co. Ltd.

Addresses

TEX Users Group Office
Robin Laakso

1466 NW Naito Parkway, Suite 3141
Portland, OR 97209-2820 U.S.A.
+1 503 223-9994
Fax: +1 503-223-3960
office@tug.org

William Adams
75 Utley Drive, Ste. 110
Mechanicsburg, PA 17055
U.S.A.

willadams@aol.com

Barbara Beeton
American Mathematical Society
P. O. Box 6248
Providence, RI 02940 U.S.A.
+1 401 455-4014
bnb@ams.org, tugboat@tug.org

Karl Berry
685 Larry Ave. N
Keizer, OR 97303 U.S.A.
karl@tug.org

Victor Bos
Software Construction Laboratory
Turku Centre for Computer Science
Lemminkäisenkatu 14 A
FIN-20520, Turku
Finland
v.bos@abo.fi

Mimi R. Burbank
CSIT, 408 Dirac Science Library
Florida State University
Tallahassee, FL 32306-4130 U.S.A.
+1 850 644-2440
mimi@csit.fsu.edu

Kaja Christiansen
Dept. of Computer Science
Arhus Univ., Ny Munkegade
Bldg 540
DK-8000 Aarhus C, Denmark
kaja@daimi.aau.dk

Donald DeLand
Integre Technical Publishing Co.
4015 Carlisle NE, Suite A
Albuquerque, NM 87107 U.S.A.
don.deland@tug.org

Susan DeMeritt
IDA/CCR La Jolla
4320 Westerra Court
San Diego, CA 92121 U.S.A.
+1 619 622-5455
sue@ccrwest.org

Victor Eijkhout
Computer Science Department
111 Ayres Hall
University of Tennessee
Knoxville, TN 37996-1301 U.S.A.
victor@eijkhout.net

Robin Fairbairns
32 Lilac Court
Cherryhinton Rd.
Cambridge, CB1 4AY, U.K.

Robin.Fairbairns@cl.cam.ac.uk

Peter Flynn
Computer Centre
University College
Cork, Ireland
+353 21 902609
pf@ucc.ie

George Grätzer
Department of Mathematics
University of Manitoba
Winnipeg MN, R3T 2N2
Canada
gratzer@cc.umanitoba.ca

Hans Hagen
Pragma ADE
Ridderstraat 27
8061 GH Hasselt, The Netherlands
pragma@wxs.nl

http://www.pragma-ade.nl

Jim Hefferon
Department of Mathematics
Saint Michael’s College
Colchester, VT 05439, U.S.A.
tex@joshua.smcvt.edu

http://joshua.smcvt.edu/hefferon.html

Lars Hellström
Matematiska institutionen
Ume̊a universitet
S-901 87 Ume̊a
Sweden
Lars.Hellstrom@math.umu.se

John D. Hobby
Bell Laboratories
Room 2C-458
700 Mountain Ave.
Murray Hill, NJ 07974-0636
hobby@research.bell-labs.com

Alan Hoenig
17 Bay Avenue
Huntington, NY 11743 U.S.A.
+1 516 385-0736
ajhjj@cunyvm.cuny.edu

ahoenig@suffolk.lib.ny.us

TUGboat, Volume 22 (2001), No. 1/2 3

Stephanie Hogue
AlphaSimplex Group
One Cambridge Center
9th Floor
Cambridge, MA 01242 U.S.A.
shogue@typewright.com

Laura Elizabeth Jackson
Raleigh, North Carolina U.S.A.
lejacks2@unity.ncsu.edu

http://www.educat.hu-berlin.de/~voss/

Mimi Jett
Institute for Advanced Learning
IBM Research
(use TUG Office address)
+1 503 578-2366
jett@us.ibm.com

Judy Johnson
jannejohnson@yahoo.com

Donald E. Knuth
Department of Computer Science
Stanford University
Stanford, CA 94305 U.S.A.

Adam H/ Lewenberg
211 Paddock Drive East
Savoy, Illinois 61874
U.S.A.
adam@macrotex.net

Sjouke Mauw
Computing Science Department
Eindhoven University of Technology

P.O. Box 513
NL-5600 MB, Eindhoven
The Netherlands
sjouke@win.tue.nl

Wendy McKay
Control and Dynamical Systems
107-81
California Institute of Technology
Pasadena, CA 91125, U.S.A.
wgm@cds.caltech.edu

Frank Mittelbach
LATEX3 Project Team
latex-l@relay.urz.uni-heidelberg.de

Patricia Monohon
University of California San Francisco
Dill Research Lab
3333 California Street, #415
San Francisco, CA 94118 U.S.A.
+1 415 502-2839
pmonohon@zimm.ucsf.edu

Ross Moore
Macquarie University
NSW 2109, Australia
ross@maths.mq.edu.au

Arthur Ogawa
40453 Cherokee Oaks Drive
Three Rivers, CA 93271 U.S.A.
+1 209 561-4585; Fax: +1 209 561-4584
ogawa@teleport.com

Cheryl Ponchin
Center for Communications Research
Institute for Defense Analyses
29 Thanet Road
Princeton NJ 08540-3699

cheryl@ccr-p.ida.org

Roy Preston
4 Avon Wharf
Bridge Street
Christchurch
Dorset BH23 1DY
England UK
preston@lds.co.uk

http://www.lds.co.uk/preston/

Denis Roegel
LORIA
Campus scientifique
BP 239
54506 Vandœuvre-lès-Nancy cedex
France
roegel@loria.fr

http://www.loria.fr/~roegel/

Kristoffer Høgsbro Rose
IBM

T. J. Watson Research Center
30 Saw Mill River Road
Hawthorne, NY 10532 U.S.A.
krisrose@us.ibm.com

Michael Sofka
C&CT, VCC 309
Rensselaer Polytechnic Institute
110 8th Street
Troy, NY 12180-3590 U.S.A.
sofkam@rpi.edu

4 TUGboat, Volume 22 (2001), No. 1/2

Philip Taylor
The Computer Centre,
Royal Holloway and Bedford
New College,
University of London,
Egham Hill
Egham, Surrey TW20 0EX, U.K.
P.Taylor@vax.rhbnc.ac.uk

Christina Thiele
15 Wiltshire Circle

Nepean K2J 4K9, Ontario Canada
cthiele@ccs.carleton.ca

Herbert Voß
Berlin, Germany
voss@lyx.org

Hermann Zapf
Seitersweg 35
D-64287 Darmstadt, Germany

Cartoon

by Roy Preston

TUGboat, Volume 22 (2001), No. 1/2 5

General Delivery

From the President

Mimi Jett

Greetings TUG Members,
This issue represents some major improvements

in the way we create and produce TUGboat. Start-
ing with the organization of the TUG Editorial Board,
formed at the Annual Meeting in Newark, Delaware,
last August, and creating the position of Managing
Editor, we are anticipating a higher level of partici-
pation from a greater pool of volunteers.

For many years, the entire set of tasks needed
to create and produce one issue of the journal has
been handled by a small set of dedicated members:
Barbara Beeton, Mimi Burbank, Christina Thiele,
Sebastian Rahtz and Robin Fairbairns. I know many
others have helped, but these five people have really
given life to TUGboat. Thank you all, for many
years of service and devotion to the community.

Our objective in creating the Editorial Board
and Managing Editor position was to copy the model
of most professional scholarly publishers: a manag-
ing editor is responsible to recruit content and de-
liver content to the Editor-in-Chief (EIC) for vetting
and to the production manager for formatting, and
printing/mailing. The managing editor also keeps
the production schedule and coordinates the activ-
ities of the editorial board. TUG is lucky to have
Robin Laakso, our excellent Office Manager, also
skilled in the organizational and communication re-
quirements of a Managing Editor. Robin has em-
braced the challenge. We are very pleased to report
that this double issue is the result of our new strat-
egy. The goal is to continue to involve more people,
maintain a high quality publication and get TUG-

boat back on schedule. We plan at least one other
double issue in 2002.

Involving more people with TUGboat takes not
only organizational tools, but also you, new and re-
newing members — people who have an ongoing in-
terest in TEX and TEX-related research and prod-
ucts. You may be interested to know that the total
number of TUG members has remained steady at
approximately 2000 for the last 4-5 years. Member
categories represented include individual, student,
senior, subscriber, institutional and joint member-
ships worldwide. TUG members are located in 54,
58, 66, 65, and 59 (and counting) countries respec-
tively, from 1998 to 2002. Each year new user groups
are linked to the TUG website allowing people in all
corners of the world to access TEX users locally, or
in nearby countries.

The relative stability of membership numbers
is a welcome trend; however, we think we can do
better. Another forward-moving decision made at
the 2001 Annual Meeting in Delaware was to re-
apply for the 501(C)(3) non-profit status. For those
of you unfamiliar with US tax codes or if you were
not a member of TUG 15 years ago when we first
applied for the 501(C)(3) non-profit status, let me
explain. After TUG, the association, ceased to oper-
ate under the umbrella of the American Mathemat-
ical Society in 1987, the organization incorporated.
With the corporate filing came a set of by-laws and
decisions to be made about taxation. Hence TUG

applied for the 501(C)(3) non-profit status. Unfor-
tunately, after a great legal effort, TUG was denied
the request and given a 501(C)(6) “trade associa-
tion” non-profit status instead. Fifteen years ago
we were living in a world much different than today.
Indeed, the concept of “open source” used in the
production of “computerized typesetting software”
was very difficult to understand let alone compare to
other not-for-profit organizations operating at that
time.

The importance of the 501(C)(3) status can-
not be underestimated. The (C)(3) status offers US

members a tax deduction for their membership (mi-
nus the cost of materials) and contributions. For
US members this means dues and contributions are
fully tax-deductible to the amount allowed by law.
It also means a potential increase in membership as
many institutions require the (C)(3) status to join a
not-for-profit membership-based organization. The
(C)(3) status would make TUG eligible for a low
cost non-profit mailing permit. Currently, under the
(C)(6) status, TUG is not eligible for the lowest bulk
mailing rates. The TUG Board of Directors believes
that TUG qualifies for the (C)(3) status; that is why
we recently hired an attorney to file a new appli-
cation. If awarded (the IRS review can take 6–12
months), TEX User Groups worldwide will poten-
tially benefit from grant monies, equipment dona-
tions, and the lowest shipping costs available from
the US.

The TUG Board of Directors would like to know
about TEX-related projects that you or someone you
know is working on— and encourage you to submit
an article about those projects to TUGboat. We
cannot, after all, recognize the efforts of those in
our community if we are unaware of your work!

As always, we welcome your comments and thank
you for your support.

⋄ Mimi Jett

IBM Research

Institute for Advanced Learning

jett@us.ibm.com

6 TUGboat, Volume 22 (2001), No. 1/2

Editorial Comments

Barbara Beeton

We’re late . . .

This issue, nominally dated March/June 2001, is a
year late. There are many causes, but one of the
principal reasons is the difficulty of obtaining mate-
rial and bringing it together to make up the issue.

There has for a long time been a decrease in
the number of articles submitted for publication.
Requests for new material, as for volunteers, have
gone for the most part unanswered. It is hard not
to reach the conclusion that most people using TEX
in their daily work feel that what they are doing isn’t
“news”, or that their experience wouldn’t really be
of interest to other TEXies.

Another factor in our delay is the increase of the
duties associated with the “real jobs” of the mem-
bers of the production team, to the point where they
find it difficult to find time to beat the bushes for
new material, or even to review the publications of
other TEX groups for material they think would be
interesting to the wider TUG audience.

The decision to designate this as a double issue
was a difficult one, especially without the quantity
of material that designation would ordinarily imply.
The overriding consideration was our desire to try
to get the publication back on schedule.

We’ve been considering some alternatives to the
present format, to adjust to a smaller amount of ma-
terial. One possibility is a smaller trim size, perhaps
6× 9 or 7× 10 inches, both common sizes for schol-
arly journals. However, this could preclude publica-
tion of items such as Hàn Thé̂ Thành’s dissertation
(21:4) or the proposed new LATEX algorithm for han-
dling floats (21:3, pages 278-290); these require the
large page size. It would also be very difficult to pre-
pare articles based on the LATEX doc format, which
depends on a wide left margin to display macro and
environment names. Another possibility is to reduce
the number of issues from four to three per year;
however, this would result in the loss of our period-
ical mailing permit, which requires four issues per
year. The jury is still out; your opinions are wel-
come —send them to us at TUGboat@tug.org.

As mentioned by Mimi Jett in her president’s
message, a new position has been created, that of
Managing Editor. This function has been added to
the duties of TUG’s office manager, Robin Laakso.
Robin has been diligent in trying to create a schedule
we can meet, and in her nagging of the editor and
production team, and she is eager to receive new
material from prospective authors that she can add
to the production queue.

We hope that you will be understanding of our
predicament, and that you will make suggestions —
and submit articles — to help bring TUGboat back
to its former standing.

CTAN and “The Treasure Chest”

In 1998, Christina Thiele was inspired to create
“The Treasure Chest”, a regular column summariz-
ing the activity on CTAN — new postings, updates
to existing material, and sometimes the adoption of
an orphaned package by another maintainer.

This issue marks the transition of “The Trea-
sure Chest” from Christina’s tender care to the
hands of William Adams, a longtime TEX user.

I would like to take this opportunity to thank
Christina, who has worn so many hats on TUG’s be-
half, not only for her work on this and other TUG-

boat efforts, but also for her friendship and good will
over many years. We haven’t heard the last from
Christina (she remains on the TUGboat production
team).

To prepare for the switchover, I compiled a col-
lection of CTAN announcements for William. Look-
ing back on these messages, it struck me how many
people have dedicated themselves to the care and
feeding of this fine archive over the years. This seems
a fine time to express thanks to them as well: Rainer
Schöpf and Reinhard Zierke in Germany, Robin Fair-
bairns in the U.K., and Jim Hefferon in the U.S. are
the current maintenance crew. Great job, guys, well
done!

ctan-ann, the mailing list for CTAN announce-
ments, has moved to the Dante server; if you want
to subscribe, send a message to

majordomo@dante.de

containing one line:
subscribe ctan-ann

TEX Mexico User Group

A new TEX group was announced near the end of
2000: TEX México — El Grupo de Usuarios TEX
México.

The TEX México User Group is committed to
promote the use of the digital typesetting system
TEX and METAFONT created by Donald Knuth,
adapt the TEX family to the development and en-
hancement of new tools to help writing and typeset-
ting antique texts of New Spain, and the use of the
system for glyph creation of ancient mesoamerican
languages for their use, study and preservation in
the digital era.

Visit the web site at http://ciencia.dcc.

umich.mx/tex/.

TUGboat, Volume 22 (2001), No. 1/2 7

Goodbye to Father Larguier

Father Everett Larguier, s.j., possibly the oldest
member of TUG, died peacefully on September 22,
2000, in Mobile, Alabama. According to a brief arti-
cle in TUGboat 20:2 (pages 89–90), he was born in
1910, and started using LATEX in the mid-1980s as
a way “to keep old man Alzheimer from my door”,
and to work on a book on topology. He was still us-
ing LATEX on a Linux box up to August 2000, writing
books.

Mimi Burbank corresponded with Fr. Larguier
for several years, and provided his TEX support. She
reports that she will miss his gentle and cheerful
exchanges.

Some places to learn more about books and

printing

Rare Book School at the University of Virginia is
an independent institute supporting the study of
the history of books and printing and related sub-
jects. Week-long courses are offered throughout the
year, as are public lectures. The Book Arts Press is
the publishing arm of Rare Book School. The cat-
alog contains a number of publications about book
and manuscript history, bookselling, and bibliogra-
phy, including many issues of the last six years of
Fine Print. Of special interest are several video-
tapes about type and books. The prices are quite
reasonable; many of these items, if available else-
where, are priced much higher.

Curiously, the Rare Book School mascot, like
that of TEX, is a lion. He is seen throughout the
RBS web site engaged in various activities. Visit
the site if only to make his acquaintance:
http://www.virginia.edu/oldbooks

The San Francisco Center for the Book is dedi-
cated to exploring the arts of the book and the vis-
ible word. A busy schedule of letterpress and other
classes is posted on their web site; you don’t even
have to live in the San Francisco area — some classes
last for just one day or a weekend. The web site
also lists their ongoing exhibition program. Visit
http://www.sfcb.org/ to see what’s available.

5000 years of the written word

An item from the BBC News announced an interna-
tional conference hosted by Iraq “to mark the 5000th

anniversary of the written word.” According to the
organizers, writing was born in the ancient city of
Uruk, now in southern Iraq, in the third millennium
bc.

Although a precise date and location are diffi-
cult to pin down at this distance, there is abundant

archaeological evidence for believing that the culture
of the Tigris-Euphrates delta “formed the basis for
what is almost certainly the world’s oldest literary
culture.”

The article can be viewed in its entirety at
http://news.bbc.co.uk/hi/english/world/

middle_east/newsid_1230000/1230835.stm.

The Gutenberg Bible online

Scanned images of several different copies of the
Gutenberg Bible have been posted online. The
availability of different copies makes it possible to
compare both the printed text and the decora-
tions, which were added later. Two copies, one
printed on vellum and the other on paper, are
in the collection of the British Library (http://
portico.bl.uk/), and one copy, the original on
vellum, is from the Göttingen State and Univer-
sity Library (http://www.gutenbergdigital.de/
gudi/eframes/). Both sites contain other items of
interest as well.

An article describing the British Library
project can be found at http://news.bbc.co.uk/

hi/english/uk/newsid_1035000/1035014.stm.

Xy-pic home moved to TUG

The home site for the Xy-pic package (by Kristoffer
Rose and Ross Moore) has moved to the TUG web
site. It can be found from a link on the page http:

//tug.org/applications/.
The page also points to TUG home pages for a

growing number of other major packages.

Legibility study online

It’s not always easy to find documented studies con-
cerning the legibility or readability of fonts, so every
online reference is useful.

An addition to this corpus is “Legibility and
Readability of Small Print: Effects of Font, Observer
Age and Spatial Vision” by G. Kevin Connolly. This
paper is a thesis submitted in 1998 toward an M.S.
degree from the Department of Psychology of the
University of Calgary, Alberta, Canada: http://

www.psych.ucalgary.ca/PACE/VA-Lab/gkconnol/

Thesis.html

In addition to statistical analysis of the study
results, the paper contains an extensive bibliogra-
phy; unfortunately, none of the references have on-
line links.

⋄ Barbara Beeton

American Mathematical Society

P. O. Box 6248

Providence, RI 02940 USA

bnb@ams.org

8 TUGboat, Volume 22 (2001), No. 1/2

Why TEX?

Jim Hefferon
St Michael’s College
http://joshua.smcvt.edu/hefferon.html

From time to time someone may ask you for a list
of TEX’s strengths. They may want to explain to
an administrator why to install it, they may have
been advised to use it, or they may simply have
found it on their system and want to know what it
does. Starting on the next page is a list that you
can give to them (it starts on a fresh page to make
neater copies). It is understandable to anyone with
experience in computing systems or programming.

This article grew out of a Usenet discussion1

started by Fabrice Popineau. I’d like to thank the
contributers to that discussion, who are too numer-
ous to name singly. I would like also to thank Lynne
Hefferon and Peter Flynn for their help.

1 Thread: 10 best reasons to use TeX ? on comp.text.

tex, Nov 2001.

TUGboat, Volume 22 (2001), No. 1/2 9

Why TEX?

TEX is a system for computer typesetting — for plac-
ing text on a page. It is well known in the area of
typesetting mathematics and other technical mate-
rial.

But ‘well known’ is a relative term. Most com-
puter users who are not scientists do not know TEX.
This document is for you if you have heard a little
and want an overview of its strengths.

1 Introduction

You no doubt already use other tools so we can start
by comparing TEX to the two most common ways of
placing text on a computer.

1.1 Compared to word processors

Most people arrange material on a page with a word
processor.

Word processors are easy to begin with. To get
a blank line between two paragraphs you enter it in.
To make a reference to the bibliography you type
it into the text in the style that you need. Seems
simple. You know what you want and you just do
it.

But as the document gets to be a bigger and
tougher job, laying it out yourself becomes a prob-
lem. Seeing that there is the same amount of vertical
space between all of the paragraphs in a twenty-page
article is error-prone work. So is making sure that
all of the bibliographic entries follow the require-
ments. And, very few authors have the knowledge
and aesthetic eye to correctly place and size symbols
in an equation.

In contrast, TEX authors find it easy to have
systematic formatting, even when they have com-
plicating elements such as mathematics or tables.

So TEX is like a word processor in that both
put text on a page. But it is different in many ways,
one of which is that it automates much of the job.

1.2 Compared to HTML

In HTML you might emphasize a point with italics
by typing ‘it’s <i>hot</i> here’ and only later,
as the material is run through a browser, is it ac-
tually formatted. TEX works in the same way: you
might type ‘it’s \emph{hot} here’ and later run
that file through the program to do the typesetting.

Thus TEX is like HTML in that the step of typ-
ing the material is separate from the step of setting
the material. Unlike HTML, however, TEX can be
used as a programming language. You can branch
with ‘if’ constructs, use variables, etc. So, while
becoming a TEX expert takes longer than becoming

an HTML expert, the gain is that TEX gives you the
power to do more.

This power has allowed people in the TEX com-
munity to accomplish great things with it and, even
if you never become a wizard yourself, you can use
their wizardry in your work. Browse around the
Comprehensive TEX Archive Network2 and you will
see that there are solutions available, usually freely
available, for a very wide range of needs.

1.3 TEXing

An installation of TEX has many components. But
for a first impression, the figure on the next page
gives the core flow of information. The material
that you have entered in filename.tex is processed
(technically, ‘expanded by the macro package’) into
a form that is understandable to the main TEX en-
gine, which performs the typesetting. Then you con-
vert the result to the output format that you want.
We’ll discuss parts of this flow in the next section.

2 Ten Reasons

These are the reasons most often cited for using
TEX, grouped into four areas: Output Quality, Su-
perior Engineering, Freedom, and Popularity.

Output Quality

You write documents to be read and understood.
Your first concern should be: how good is the out-
put? Is it as readable and as useful as possible? Is
it, even, beautiful?

(i) TEX has the best output What you end
with, the symbols on the page, is as usable —and
beautiful— as a non-professional can produce.

This especially holds for complex documents,
such as ones with mathematics; see Appendix A.
It also holds for documents that are complex in
other ways: with many tables, or many cross ref-
erences or hyper-links, or just with many pages.

The usual way of working with a word proces-
sor, clicking the material in, is not suited to com-
plex documents so we cannot fairly compare such
output with TEX. However, even on simple doc-
uments TEX has advantages. Compare the two
samples in Appendix B. These are short and the
typographic differences are subtle but even a non-
expert may see that the TEX page looks “more
right”. The word processor’s page has some lines
with wide gaps between words and some lines with
too many words stuffed in (contrast the second
paragraph’s second line with its third). TEX’s out-
put is more readable.

2 try http://www.ctan.org/tex-archive/macros/latex/

contrib/supported

10 TUGboat, Volume 22 (2001), No. 1/2

input

file

output

file

macro

package
tex

output

driver

Figure 1: The basic information flow of TEX

(ii) TEX knows typesetting Expertise is coded
into TEX.

Appendix B is an example. TEX’s more even
lines are a consequence of its more sophisticated
algorithms for making paragraphs and for hyphen-
ating.

Another way that this expertise gives better
output comes in setting technical material. TEX
moves the task, as much as possible, into the soft-
ware. For instance, it automatically classifies each
mathematical symbol as a variable, or a relation,
etc., and sets them with appropriate amounts of
surrounding space. It also sizes superscripts, and
many other things. The result is that, because
your document follows the conventions of profes-
sional typesetting, your readers will know exactly
what you mean. You almost never have to fret
with the formulas. They just come out right.

The quality of output that you get is the single best
reason to use TEX.

Superior Engineering

Everyone has been frustrated with software that is
slow, fat, buggy, or that undergoes frequent incom-
patible version changes. TEX will not give you those
troubles; from a Computer Science standpoint, TEX
is very impressive.

(iii) TEX is fast TEX was written by D Knuth,
one of the world’s leading experts in the design of
algorithms. It ran quickly when it was developed
in 1978 and so on today’s machines it is very fast.
It is easy on your computer’s memory and disk
space, too.

(iv) TEX is stable TEX is in wide use, with a
long history. It has been tested by millions of
users on demanding input. It will never eat your
document. Never.

But there is more here than just that the pro-
gram is reliable. TEX’s designer has frozen the
central engine, the actual tex program. Docu-
ments that run today will still run in ten years,
or fifty. So ‘stable’ means more than that it actu-
ally works; it means that it will continue to work,
forever.

(v) Stable but not rigid A system locked into
1978’s technology would today have gaps. That’s
why TEX is extendable, so that innovations can be
added on — layered over the underlying engine.

An example is the LATEX macro package, which
is the most popular way to use TEX today. It is
a front end to the engine, affecting the way au-
thors input their work. It adds conveniences such
as automatic cross references, indexing, a table of
contents, automatic numbering of chapters, sec-
tions, theorems, etc., in a variety of styles, and a
straightforward but powerful way to make tables.

LATEX also adds a philosophy of encouraging
authors to structure their document by meaning
rather than by appearance. For instance, the way
that most word processor users make a section
heading is by typing the title, highlighting it with
the mouse, clicking in a menu to select boldface,
clicking in another menu for the point size, and
then adding the white space above and below.
LATEX authors type \section{title}. This has
two advantages. First, since it is a computer lan-
guage command, it makes the type style, size, and
vertical spacing uniform throughout your docu-
ment. (True, working with a computer language
makes changing the default trickier. But on the
other hand, if you have put in two dozen or more
section headings by hand then chances are that
you’ve erred in at least one.) The second advan-
tage of LATEX’s approach is that it is self docu-
menting. You can, for instance, automate pro-
ducing a list of sections. (Some word processors
can do logical structuring, although few authors
use it.)

And, LATEX itself is extendable. There are thou-
sands of “style files,” which do everything from
adapting the basics to the needs of the Ameri-
can Math Society,3 to making cross-references into
hyper-references,4 all the way to allowing you to

3 ftp://ftp.ams.org/pub/tex/doc/amsmath/

short-math-guide.pdf
4 http://www.ctan.org/tex-archive/macros/latex/

contrib/supported/hyperref/doc/manual.pdf

TUGboat, Volume 22 (2001), No. 1/2 11

add epigraphs,5 the short quotations that some-
times decorate the start or end of a chapter.

Just because LATEX is the most popular macro
package doesn’t mean that it is the best one for
you. Many others are available; see the the TEX
Users Group’s interest page.6

So TEX has been, and is being, developed and
extended in many ways.

(vi) The input is plain text TEX’s source files
are portable to any computing platform. They are
also easy to produce automatically, for example
when you want to write a report from material
in a database. They are compact (all of the files
for my 450-page textbook7 and 125-page answer
supplement fit easily on one floppy). And, they
integrate with other tools such as search utilities.

Use of this type of input file stems from an over-
all mindset. TEX arose in the world of science and
engineering where there is a tradition of cooper-
ating closely with fellow workers. A binary input
format, especially a proprietary one, is bad for co-
operation: probably you have had to go through
the trouble of upgrading because coworkers up-
graded and you could no longer read their files.
With TEX systems that experience is quite rare
(the last time that there was a LATEX release that
lost some backward compatibility was in 1995).

There are even ways to run TEX directly from
XML input, which many people think is the stan-
dard input format of the future. So, with the
TEX formatting engine in the middle, the input
front end may be adjusted to meet your needs,
and changing times.

(vii) The output can be anything As with in-
putting, TEX’s outputting step is separate from its
typesetting. The TEX engine’s results can be con-
verted to a printer language such as PostScript,
or to a web language such as PDF or HTML, or,
probably, to whatever will appear in the future.
And, the typesetting (line breaks, etc.) will be the
same no matter where your output appears.

See also the example section below.

Freedom

Most computer users have heard about Free and
Open Sourced software and know that, as with the
GNU programs, Linux, Apache, Perl, etc., this style
of development can yield software that is first class.
TEX, along with associated materials such as index
makers or style files, falls into this category.

5 http://www.ctan.org/tex-archive/macros/latex/

contrib/supported/epigraph
6 http://www.tug.org/interest.html
7 http://joshua.smcvt.edu/linalg.html

(viii) TEX is free The source of the main tex

engine is open. (In large part because of this it is
thoroughly debugged. Knuth offers a reward for
finding errors and no significant ones have been
found in a very long time, despite many smart
folks looking for them). All of the other main
components are open, also.

(ix) TEX runs anywhere Whatever meets your
needs — Windows, Macintosh, a variety of Unix,
or almost any other system — you can get TEX,
either freely distributed or in a commercial im-
plementation.8

So although the core of TEX was written some time
ago, it fits well with today’s trends.

Popularity

Using the same system as many other people has
advantages. You can get answers to your questions.
Your problems might well have already been solved.
And, because of this large user base, your system is
sure to be around for years.

(x) TEX is the standard Most scientists, espe-
cially academic scientists, know TEX. As a result,
many publishers of technical material are set up
to work with it. In particular, TEX is the system
preferred by the American Math Society.9

Because it is the standard, TEX’s support by
other technical software is the best. For example,
there are editing modes to make input convenient,
such as AUCTEX for Emacs. Another example
is that most computer algebra systems, such as
Maple and Mathematica, will give output in TEX.
And no doubt technical software developed in the
future will support TEX, also.

In addition, TEX is used by many people outside
of the sciences, for all of the reasons given in this
document. For instance, there is a way to produce
beautiful critical edition texts.10

You wouldn’t want to use a bad system simply be-
cause it is popular. TEX has earned its user base for
sound reasons, some of them given above. Nonethe-
less, the existence of such a base is itself one reason
to adopt a software package.

In summary, TEX was designed by one of the
world’s foremost computer scientists. That design
makes it especially shine in areas where the system
familiar to most computer users, word processors,
falls short. Briefly, that is, it was designed well.

8 http://www.tug.org/interest.html
9 http://www.ams.org/tex

10 http://www.ctan.org/tex-archive/macros/plain/

contrib/edmac

12 TUGboat, Volume 22 (2001), No. 1/2

3 An Example

Anyone can see from the two appendices (and this
document) that TEX’s output quality is first-rate.
However, some of the other points above might be
less familiar. This section may help to make them
more concrete. Someone asked on the discussion
group comp.text.tex11 whether TEX would be suit-
able for a large job where the text is generated from
a database. Here is my reply.

> I’m contemplating using tex (or latex)

> to perform a mail merge. .. anywhere

> from 1,800 to 25,000 documents at a

> time .. What performance issues .. ?

I doubt TeX would slow you down. I just

wrote this Perl script

..

#!/usr/bin/perl

$file_text="\\documentclass{letter}

\\begin{document}

\\begin{letter}{Addressee \\\\ Address}

\\opening{Dear Sir} Hi. \\closing{Thanks}

\\end{letter}

\\end{document}";

for ($i=0; $i<100; $i++) {

$fn="test".$i;

open(OUTFILE,">$fn.tex");

print OUTFILE $file_text;

close OUTFILE;

system("latex $fn");

system("dvips -Pwww -o$fn.ps $fn");

system("rm $fn.aux");

system("rm $fn.log");

}

..

which writes 100 LaTeX letters, then

LaTeX’s them, then converts to PostScript

for printing (and deletes a couple of

log files). On my laptop (P3; I don’t

know the MHz) execution took 22 secs.

So I think your bottleneck is more likely

to be your printing device.

This illustrates many of the points above. First,
TEX’s input is plain text, so I was able to generate
it easily in a program. Second, TEX is fast, so I got
the one hundred letters in no time. Third, I didn’t
have to ask the person what platform they were us-
ing because TEX runs anywhere. For that matter —
fourth— I didn’t have to ask what software vendor
they had licenses with, because TEX is free.

That is, it illustrates that TEX is a practical
professional tool. TEX helps solve problems.

11 http://groups.google.com/groups?q=comp.text.tex

4 When Not to Use TEX

Despite my enthusiasm for TEX, my children write
their school reports with a word processor. That’s
because TEX has a steeper learning curve and for
their material the word processor is just fine.

A word processor suits your needs if your doc-
uments are brief, structurally simple, and entered
by hand. If you will only ever write straightfor-
ward text, in short to medium-sized documents, and
where good-enough typography is good enough, then
stick with a word processor.

The opposite extreme, a document such as a
brochure or an advertisement that is dominated by
graphics, font changes, and color, is best tackled in
a layout tool like Quark or Framemaker.

5 For More Information

The TEX Users Group12 has much more information
and many links, including more of an introduction13

and a list of available distributions.14 A good way
to get started if you already have TEX installed is
The (Not So) Short Introduction to LATEX2ε.15

A A Sample of Mathematics

The first of the two following pages is an excerpt
from Theory of Recursive Functions and Effective
Computability by Rogers.

B A Sample of Plain Text

The other page has the first two paragraphs of Zen
in the Art of Archery by Herrigel, on the left done
in Microsoft’s Word and on the right done in LATEX.

For each, I just selected the 12 point Times Ro-
man font that came with my system and in other
areas used the defaults, except that I made the line
width be 3.5 inches. This is the layout of the edition
of the book that sits on my shelf, and also lets you
compare outputs here side by side.

Jim Hefferon
St Michael’s College
2002-Mar-04

12 http://www.tug.org
13 http://www.tug.org/whatis.html
14 http://www.tug.org/interest.html
15 http://www.ctan.org/tex-archive/info/lshort

TUGboat, Volume 22 (2001), No. 1/2 13

Recursive definitions are familiar in mathematics. For instance, the func-
tion f defined by

f(0) = 1,

f(1) = 1,

f(x + 2) = f(x + 1) + f(x),

gives the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, (The study of dif-

ference equations concerns the problem of going from recursive definitions
to algebraic definitions. The Fibonacci sequence is give by the algebraic
definition

f(x) =

√
5

5

(1 +
√

5

2

)x+1 −
√

5

5

(1 −
√

5

2

)x+1
.)

The primitive recursive functions are an example of a broad and interest-
ing class of functions that cam be obtained by such a formal characterization.

Definition The class of primitive recursive functions is the smallest class
C (i.e., intersection of all classes C) of functions such that

i. All constant functions, λx1x2 · · ·xk[m] are in C, 1 ≤ k, 0 ≤ m;

ii. The successor function, λx[x + 1], is in C;

iii. All identity functions, λx1 · · ·xk[xi] are in C, 1 ≤ i ≤ k;

iv. If f is a function of k variables in C, and g1, g2, . . . , gk are (each) func-
tions of m variables in C, then the function λx1 · · ·xm[f(g1(x1, . . . , xm),
. . . , gk(x1, . . . , xm))] is in C, 1 ≤ k, m;

v. If h is a function of k + 1 variables in C, and g is a function of k − 1
variables in C, then the unique function f of k variables satisfying

f(0, x2, . . . , xk) = g(x2, . . . , xk),

f(y + 1, x2, . . . , xk) = h(y, f(y, x2, . . . , xk), x2, . . . , xk)

is in C, 1 ≤ k. (For (v), “function of zero variables in C” is taken to
mean a fixed integer.)

14 TUGboat, Volume 22 (2001), No. 1/2

At first sight it must seem intolerably

degrading for Zen — however the reader may

understand this word — to be associated with

anything so mundane as archery. Even if he were

willing to make a big concession, and to find

archery distinguished as an “art,” he would scarcely

feel inclined to look behind this art for anything

more than a decidedly sporting form of prowess.

He therefore expects to be told something about the

amazing feats of Japanese trick-artists who have the

advantage of being able to rely on a time-honored

and unbroken tradition in the use of bow and arrow.

For in the Far East it is only a few generations since

the old means of combat were replaced by modern

weapons, and familiarity in the handling of them by

no means fell into disuse, but went on propagating

itself, and has since been cultivated in ever

widening circles. Might one not expect, therefore, a

description of the special ways in which archery is

pursued today as a national sport in Japan?

Nothing could be more mistaken than this

expectation. By archery in the traditional sense,

which he esteems as an art and honors as a national

heritage, the Japanese does not understand a sport

but, strange as this may sound at first, a religious

ritual. And consequently, by the “art” of archery he

does not mean the ability of the sportsman, which

can be controlled, more or less, by bodily exercises,

but an ability whose origin is to be sought in

spiritual exercises and whose aim consists in hitting

a spiritual goal, so that fundamentally the marksman

aims at himself and may even succeed in hitting

himself.

At first sight it must seem intolerably degrading

for Zen — however the reader may understand this

word — to be associated with anything so mundane

as archery. Even if he were willing to make the big

concession, and to find archery distinguished as an

“art,” he would scarcely feel inclined to look behind

this art for anything more than a decidedly sporting

form of prowess. He therefore expects to be told

something about the amazing feats of Japanese trick-

artists who have the advantage of being able to rely

on a time-honored and unbroken tradition in the use

of bow and arrow. For in the Far East it is only a

few generations since the old means of combat were

replaced by modern methods, and familiarity in the

handling of them by no means fell into disuse, but

went on propagating itself, and has since been culti-

vated in ever widening circles. Might one not expect,

therefore, a description of the special ways in which

archery is pursued today as a national sport in Japan?

Nothing could be more mistaken than this expec-

tation. By archery in the traditional sense, which

he esteems as an art and honors as a national her-

itage, the Japanese does not understand a sport but,

strange as this may sound at first, a religious ritual.

And consequently, by the “art” of archery he does not

mean the ability of the sportsman, which can be con-

trolled, more or less, by bodily exercises, but an abil-

ity whose origin is to be sought in spiritual exercises

and whose aim consists in hitting a spiritual goal, so

that fundamentally the marksman aims at himself and

may even succeed in hitting himself.

TUGboat, Volume 22 (2001), No. 1/2 15

U.K. TUG, Oxford,
Sunday, 12 September 1999
Question & Answer Session with
Donald Knuth

Philip Taylor: I’m sure everybody here by now
knows Don Knuth. Don has very kindly agreed to
do a question and answer session this evening. In
order to record both the questions and the answers,
we have two microphones. One for Don’s use and a
radio microphone so we can capture your question
on the tape, as well as the answer. Many thanks.
Thanks Don.

Donald Knuth (DEK): O.K., I hope you can hear
me.

Audience: Use the microphone.

DEK: No, I can’t use the microphone, it doesn’t
work for me. It’s only for the tape, but I will try
to project. Since I have been retired for a few years
and my voice isn’t what it used to be, I’ll do my
best.

A part of the rules are that when you ask me a
question, you give your name first. Another rule is
that I get to ask questions too. Occasionally.

I did prepare one small thing, because, as com-
ing to Oxford I re-read one of my favourite novels,
a Dorothy L. Sayers mystery called Gaudy Night,
which is all about Oxford. I wanted to read you just
part of it, which has to do with typesetting. [Laugh-

ter] In Chapter 3 it mentions a Miss Lydgate, who
had prepared her magnum opus, about — I don’t
know how to pronounce it— prosody, the study of
meters in poetry. It said her handwriting was diffi-
cult to read, her experience in dealings with printers
was limited but she had invented a novel and com-
plicated system of notation that involved the use of
twelve different varieties of type; and then she had
all kinds of sheets in page proofs and so on. And she
said ‘Don’t prick your fingers on that bit of manu-
script that’s pinned on, I’m afraid it’s rather full
of marginal balloons and interlineations, but I sud-
denly realised I could work out a big improvement
in my notation, so I’ve had to alter it all the way
through.’ Then Harriet said comfortingly, ‘Well, the
Oxford University Press is no doubt accustomed to
deciphering the manuscripts of scholars.’ [Laugh-

ter] Now this work of Miss Lydgate appears to play
a kind of minor role in the entire book and I have

Thanks are due to the following:
Philip Taylor, for tape recording the Q&A session;
Jonathan Fine, for managing the transcription;
Pam George, transcribing from tape and making corrections;
Don Knuth, for diligently and promptly correcting proofs.

a question for you here, because it said her system
of scansion required five alphabets with a series of
pothooks for its expression, and this is a term I don’t
know. What are pothooks? If any of you can tell
me . . .

Audience: Spell it out.

DEK: It’s spelt like pot hooks, P-O-T-H-O-O-K-S.

Audience: Pothooks are hooks for hanging pots.

Male Voice: Yeah, but in typography it’s an ‘S’
like an ‘S’.

DEK: Is it some kind of special symbol? O.K. So
she had these twelve fonts plus pothooks, which she
used to typeset. So anyway you have some idea.
Does this mike actually magnify? Can you hear me
a little better? O.K. Well hello. I was reading from
one of my favourite books. . . , but that’s enough.
I have one more thing prepared then I will go for
questions. This was for Phil, I wanted to show you.

Laughter & Clapping: (Don shows he’s wearing
a T-shirt under his shirt that celebrates the Aston
UK TEX Archive, ‘oldest and best’)

DEK: I always try to wear the appropriate T-shirt
for the day. O.K., your turn now.

Dave Pawson: My name is Dave Pawson and I
have an answer to your question. I was brought up
in the 1940s and 50s in the north of England and
one of the houses that I moved into was built in the
mid 18th century, and around the coal burning stove
and above it and beneath the mantelpiece there were
a number of hooks and they were the ‘pothooks’
for hanging the pots on. [The OED discusses this

usage.] Does that answer your question?

DEK: O.K. So this must be a similar shape that
you would use for the symbols. I think that someone
said that shorthand uses pothooks — some systems
of shorthand. Thank you.

Dave Pawson: I think it’s what you get when you
type a left angle bracket into TEX and you are ex-
pecting a straight translation, and one of your as-
sumptions in the big blue book comes unstuck, be-
cause it comes out like a pothook. [Laughter] Is
that true?

DEK: Might be. The other thing I wanted to say
is thank you very much to Phil Taylor for arranging
that we could have the 10th anniversary celebration
during the brief window of time that I could be in
the U.K. I don’t get to travel very often, and so
now I get to remember not only the 10th anniver-
sary celebration of TEX Users Group in America but
also the one from here. At the 10th celebration in
America we had the president of TUG dressed as

16 TUGboat, Volume 22 (2001), No. 1/2

META the Lion— that was Bart Childs — and now
here we have Mrs. TEX as well so now my delight is
complete.

Sebastian Rahtz: On your recommendation last
year I bought a copy of Life: A User’s Manual by
Georges Perec, which I am still trying to read. I
wonder while I’m still trying to read it whether you
would like to recommend a film or a piece of music
which has equal meaning to you as Georges Perec’s
book.

DEK: I guess when I made my home pages, a few
years ago, one of the pages listed books that I was
recommending to read. There’s this incredibly dif-
ferent book by Georges Perec called Life: A User’s

Manual, which is a combination of many different
kinds of artistry. It has a mathematical basis, but
still becomes, I think, a great work of fiction. He de-
veloped this book with 99 chapters. (There should
really be 100 chapters, but each chapter was based
on a lot of mathematical constraints and one of his
rules was that you had to break one of the rules,
so naturally it has only 99 chapters instead.) It is
the story of the people who live in an apartment
block in Paris. There are 10 floors and 10 apart-
ments on each floor, and you go through the apart-
ments — actually some of the apartments have sev-
eral rooms —but you go through the apartments in
the order of a knight’s tour. Eventually you find
out about the lives of all these people, and there
are many other very interesting constraints that he
put into the book. Each chapter is a little short
story, kind of independent of the others. Now you
are asking if there’s something else analogous, in the
domain of music or . . .

Sebastian Rahtz: Film.

DEK: . . . or film. O.K. The closest thing in film is
this new movie Run Lola Run, from Germany. If you
were to do it the way Perec did it you would have
many more chapters, but Run Lola Run gives you a
story three times. The first time ends in disaster and
so Lola says ‘No take me back. Let’s do it again.’
So we start over and she does something slightly
different in the first scene and then we go through
the whole story again, but everything happens five
seconds later, so certain accidents don’t occur in the
streets and the whole plot changes. At the end of
the second telling of the story it’s another disaster,
not for her, but for her boyfriend, and that’s too
terrible to accept. The third version of the story
leads to a happier fate.

In music I suppose I think of a theme that had
been proposed to Bach, I think by one of the noble-
men of his time. He supposedly improvised a theme

on that melody spontaneously, but then he was fas-
cinated by it afterwards. During the last year of
his life he prepared a manuscript that he left unfin-
ished at his death, called the Art of the Fugue. That
work is analogous to Perec’s, because the idea is to
make a thing of beauty while working within tight
constraints.

Sebastian Rahtz: Good, thank you. [Pause]

DEK: Well, if there are no more questions . . .
[Laughter]

Elizabeth Gilliart: What are you going to write
next?

DEK: Yes, I tend to be writing about a page a day
and so there’s nobody alive that has read everything
I’ve written, except perhaps me. But I’m just finish-
ing now a book that is incredibly specialised. It will
be in the Springer Lecture Series, Lecture Notes on
Computer Science, and it’s called MMIXware. It’s a
set of computer programs to simulate the new RISC

computer that I designed this year. MMIX is a com-
puter for the new millennium. The first ‘M’ is for
millennium and it replaces a computer called MIX

that I used in my books on computer programming.
I had the privilege of working with the designer of
the DEC Alpha chip, Dick Sites, who is one of my
students; John Hennessy, the designer of the MIPS

chip, also was a participant in this design, and a
few other people in Silicon Valley. We came up with
something I think would be a fairly good machine
to build in about ten years. It tries to be the clean-
est computer design, and easy to learn, fairly nice
to look at, and to make theories about; there is a
group of people that are helping me use this new
computer to rewrite the algorithms that I had writ-
ten for the old computer. MMIXware is a set of soft-
ware programs that make MMIX live even though it
hasn’t been built yet. The exciting thing to me is
the pipeline simulator, which is a meta simulator—
which means that it can simulate millions and mil-
lions of different kinds of possible implementations,
or even implementations that nobody knows how to
build. You can say for instance how much mem-
ory it has, what kind of caches it has, what kind of
strategies the caches use to remember the recent in-
formation; a pipelined computer has different func-
tional units, you can say how many multipliers you
have and you can define a functional unit to handle
any subset of the 256 operation codes; you can have
any number of functional units, you can issue any
number of instructions simultaneously, you can look
ahead different ways and control all kinds of things.
And then you can find out how fast your programs
run. Now if we had that machine we could put TEX

TUGboat, Volume 22 (2001), No. 1/2 17

onto MMIX and see how fast it works with different
kinds of caches. This program for the meta simula-
tor is probably the most difficult computer program
I ever wrote.

To me it was most interesting because it de-
pends on the idea of literate programming that I
used when I worked on TEX; for me perhaps the
greatest spin-off of TEX was this idea of literate pro-
gramming, which has helped me write computer pro-
grams of all kinds. I don’t think I could ever have
written the MMIX meta simulator without literate
programming; it would have been too mind bog-
gling. I would not have been able to get the whole
thing together and debug it; it would have been too
much of a mental strain, overburdening my head. In
the past, literate programming has often helped me
write better programs, but here for the first time
it was crucial, or I couldn’t have written the pro-
gram at all. I don’t think MMIXware would have
been possible without a good documentation lan-
guage to help me understand what I was doing as
I went along. So this will be a book about 400–
500 pages, but it’s mostly just the typeset version
of these literate programs for that new computer.

Then also I’ll be finishing a sort of sequel to
Digital Typography. Digital Typography is volume
three of a set of collected papers; all the scientific
papers that I’ve written are being divided into eight
categories. The first book contained the things I
wrote about Literate Programming. The second
book was called Selected Papers on Computer Sci-

ence; those were the papers I wrote for audiences
that weren’t primarily computer scientists; it col-
lects the general works. And then the third volume
was Digital Typography, and I told Phil I’d come
here tonight because I’ll do anything to sell copies of
that book. The fourth volume will be called Selected

Papers on Analysis of Algorithms, and those are my
mathematical papers for what I think is my main
unique life’s work— the study of computer meth-
ods in a quantitative way: How good are particular
computer methods, from a definite exact mathemat-
ical point of view? That book is estimated to be
about 750 pages, and it will contain, I think 37, 38
papers on that subject. The material has all been
scanned and put into TEX form. But I have to spend
a few months in spare moments going through dot-
ting the i’s and crossing the t’s and making the in-
dex, putting the bibliographies in a consistent for-
mat, finding out people’s middle names for the in-
dex, things like that. And I also go through every
paper and put it into the form in which I would like
it to be remembered. So if a paper was written in
the 70s and I used sexist pronouns, I change that;

I try to rework it so that instead of saying ‘he did
it’, I’ll say ‘they did it’ or something. Also I change
‘which’ to ‘that’ a lot. It’s an American thing.

Male Voice: Why?

DEK: It’s actually because of an Englishman named
Fowler who wrote The King’s English and gave rules
for ‘which’ versus ‘that’. The people in America be-
lieved him and they started teaching English classes,
and it was taken over then by the New Yorker and
other well-edited journals until finally the copy edi-
tors who used Fowler’s rules — Fowler’s book came
out in the 20s I think1 — the copy editors who used
Fowler’s . . .

Audience: Roberts’ rules!

DEK: Whose rules?

Audience: Just after Roberts’ rules!

DEK: I never heard of Roberts’ rules of English,
only Roberts’ Rules of Order2 — and I think your
comment is out of order. Anyway, Fowler essentially
gave an algorithm that pretty much boils down to
this: Look at what comes before the word ‘which’. If
it’s a preposition or a comma, then it’s fine; ‘which’
can also be a pronoun. But otherwise you change it
to ‘that’. Well, it got to the point where almost all of
the magazines in America and most of the newspa-
pers by the end of the 70s were using ‘which’ versus
‘that’ in Fowler’s recommended style. This was be-
cause the copy editors had risen through the ranks
and won the battle. I had written the first draft of
The TEXbook in the old way; but Guy Steele who
was visiting Stanford from MIT, marked it all up, ev-
erywhere I had a wicked ‘which’. Simultaneously my
copy editor from Addison-Wesley was revising vol-
ume 2 of The Art of Computer Programing, which I
had in TEX form before the 2nd edition came out. I
was doing the typesetting in 1979 and 80, and that
copy editor was also a member of this new gener-
ation. So that’s when I learned the algorithm for
wicked ‘whiches’; I could do a search with a text ed-
itor, checking to see if it’s following a preposition or
a comma.

Soon I became very sensitive to this, as were a
lot of Americans. I started to be irritated when peo-
ple would quote a sentence from my earlier papers
where I used a wicked ‘which’. It was even hard for
me to read the New English Bible because I would
silently have to translate ‘which’ to ‘that’. I go into

1 H. W. Fowler The King’s English (Oxford 1907). H. W.
Fowler A Dictionary of Modern English Usage (Oxford 1924)

2 Somebody named Paul Roberts wrote Understanding

Grammar in 1954, but I don’t think it was terrifically influ-
ential.

18 TUGboat, Volume 22 (2001), No. 1/2

more detail in my book Mathematical Writing, pub-
lished by the Math Association of America. The
British perspective I understand is different still, but
in America it’s very much a stylistic lapse that calls
attention to itself if you don’t follow the convention.
You can go through now say 100% of the magazines
in the last 10 or 15 years and you very rarely see a
wicked ‘which’.

James Foster: You said that the MMIXware book
was for Springer; did they ask you to use their LATEX
2.09 style files? [Laughter]

DEK: I take it that LATEX 2.09 style files are a joke
because that’s an old version of LATEX?

James Foster: We had to use them recently.

DEK: I was given a free hand here. But I’m supply-
ing camera copy so we’ll which is a special version
of CWEAVE that makes little indexes on the right-
hand page. One of the chapters in Digital Typogra-

phy talks about this: ‘Mini-Indexes for Literate Pro-
grams’ is the title of that chapter. Basically when
you are reading a computer program every name of
a variable on the page that you are reading is either
defined on that page or you can find it in the mini-
index. And the mini-index will tell you that the
variable is, say, defined in section 5, and it is a pro-
cedure name or a constant and so on. It gives you
a quick reference. It’s an idea that I picked up from
some textbooks on languages, where people would
be learning French or Russian. Given a short story
in some other language, every word in the vocabu-
lary that you might have to look up in a dictionary
appears in an index on that page. With CTWILL

I have a bunch of macros that check the uses and
definitions of everything on a page. The macros au-
tomatically prepare mini-indexes; there is a separate
pass to sort the words, but the first pass does the
layout. Some of the more difficult —probably the
most difficult —TEX macros that I ever wrote are
involved in that. I call this program TWILL because
it’s sort of a double WEAVE. Anyway the CTWILL

program gives me the output that I have to send to
Springer.

So no, I won’t be using their style files. I did one
other book in their series but that was some years
ago, before they had learnt to insist on those things
I suppose. For some purposes of course these extra
format restrictions are not only for your creativity
but also for electronic archiving. It’s not the kind
of restrictions that Perec would have added, but I
imagine the publisher sees that it’s to their advan-
tage to have as many things in that style as possible.
It depends on what you are doing, because that can
also stifle what you want to say. One of the things

uppermost in my mind from the beginning of TEX
was that I would have the freedom to introduce a
new notation if it was the right thing for the sub-
ject I was writing about. If I wanted to make up
a new notation I wouldn’t have to go through any
middlemen who wouldn’t understand the notation.
I would be able to typeset it and I would know that
it was getting through in the way I wanted it.

Philip Taylor: I have some bad news: They really
do want us out of here by half past ten, so there’s
time for just a couple more questions.

Jonathan Fine: I hope it’s not too late to ask this
question. Why did you introduce category codes?

DEK: Well, if you look at this book Digital Ty-

pography it shows the original draft of TEX that I
made the first night when I stayed up late typing a
proposed design. The feature was even more awful
in those days, it handled not only category codes
but all kinds of penalty amounts and other param-
eters; anything that I didn’t know how to fix as a
constant in TEX I just left for later, so that I could
change it. But you know originally I didn’t think of
having many users; TEX was a system for me and
my secretary, so I wasn’t thinking of things in much
generality. So the same mechanism that I had origi-
nally for category codes was also used for things like
how many characters before breaking for a hyphen,
what was the penalty for widows, et cetera, all done
with the same mechanism ‘chpar’. C-H-P-A-R it was
called: Change Parameter. I had no idea of gener-
ality in the first place.

Then later on, as I saw the applications Math
Reviews were making, I realized that I’d better have
some way to allow more flexibility. . . Jonathan,
you’d be interested to know that the very first imple-
mentation of proto TEX was done without recogniz-
ing control sequences as words; each character was
read in as a character by itself and then the ‘hash
table’ lookup would go on afterwards. The first im-
plementation, which was done by my students in the
summer of 77 while I was in China, was very much
like Active TEX in that sense. We found out that we
could make the program run a lot faster in its inner
loop if we distinguished control sequences from ordi-
nary text, but originally every character was active
in the very first draft. In this book Digital Typogra-

phy I resurrected the computer files that I had used
when first getting my thoughts in order.

Dominik Wujastyk: Don, you made a change in
TEX when you made it able to read an eight-bit char-
acter, and that was very important for European
users and others. I completely respect and like the
idea that TEX is fixed, that you’ve finished with it as

TUGboat, Volume 22 (2001), No. 1/2 19

it were for the moment, and that it is a fixed point
and it’s not going to change anymore. However it
does look as if TEX will have to go Unicode. There
is of course Omega already; I’ve never used Omega,
I haven’t had the courage to take it on yet, but I
think it’s there in my future, and of course other
people are using it. I just wonder about whether
it’s going to just always be Omega or something like
it and TEX, and they’re just going to become sepa-
rate things and go their own ways; or could you give
a Unicode version of TEX some imprimatur or some
special blessing, so that it becomes the one that ev-
eryone uses. I wonder whether all the development
efforts can somehow be brought together again.

DEK: Yeah! It seems so difficult. I’m a great fan of
Unicode, but I also know enough about it to know
that it’s incredibly complicated, and that I would
never have a system based on Unicode that I would
be able to say has no bugs in it because of the extra
complexity. Well, I like TEX, I like having a pro-
gram that is, if not 100% reliable, it’s 99.9999 — it’s
as reliable as anything. So solid that we can build on
it. This means however that I’m not supporting all
of the important languages that Unicode supports.
Still the job of doing all of those in one system is
so incredibly hard that I don’t know where the ex-
pertise is going to come from to get it to such a
well debugged level. For me to put my imprimatur
on something would require so much work, I would
have to check that the thing had been done right,
and there is so much involved in getting it done
right. As you know, Unicode 3.0 which will be com-
ing out early next year, really covers almost all the
languages of everyone alive today; they have filled in
the last gaps, they’ve got Burmese and the Maldive
Islands, Sri Lanka, the places where the political
difficulties were; they have several thousand extra
Vietnamese and Chinese characters and so on. And
Yi, and Mongolian, and native American— various
Inuit and Algonquian languages — are all there now.

But each of these languages has special difficul-
ties involved in the typesetting. It’s not just a mat-
ter of getting the symbols; all kinds of ligatures and
things must go in, and rewriting of characters. Many
of the languages have no spaces between words, and
special hyphenation conventions, and a total user
community of a few thousand. Moreover, all the

people who do use some of these languages are ed-
ucated enough that writing in English gives them
more job security; thus the more they do to make it
possible for everybody else in their group to use the
system, the less chance they have of being uniquely
able to do anything. So it’s going to be hard to
support this commercially; it’s surely going to be a
volunteer effort. The effort is not only an order of
magnitude more difficult than what I had to do, but
it also has to be done pretty much as a labour of
love, as I did it. So it looks to be a while before it
could converge like that —not that it’s impossible,
but I myself wouldn’t be in a position to bless it. All
I can do is provide an example of one of the world’s
nearly bug-free programs so that other people can
try to emulate the good points and correct the bad
points.

Well, thank you very much. [Applause]

Philip Taylor: Don, I’d like to thank you very
much indeed, on behalf, not only of the Commit-
tee of the U.K. TEX Users Group, but of every one
of the members here who, I’m sure, are absolutely
delighted that you have spoken to them. Thank
you very much indeed for your time, for joining us.
Jill, thank you very much indeed as well for coming
along. It’s been a great pleasure to have you both
in our midst. We wish you a very safe and happy
stay in the U.K. for the rest of your trip. Thank you
very much indeed.

−− ∗ −−

Editor’s note: Earlier interviews and Q&A sessions
with Don can be found in these issues of TUGboat:

• 7 No. 2 (1986): The “coming out party” for
Computers & Typesetting, May 1986

• 13 No. 4 (1992): Q&A with the Nordic group
and conversation with Roswitha Graham,
November 1991

• 17 No. 1 (1996): TUG ’95 Q&A

• 17 No. 4 (1996): Q&A Amsterdam (NTG) and
Prague (CSTUG), March 1996

• 21 No. 2 (2000): Interview by “Advogato”,
January 2000

Several of these sessions are already posted on the
TUG web pages, and the rest will be posted when
time permits.

20 TUGboat, Volume 22 (2001), No. 1/2

How (LA)TEX changed the face
of Mathematics: An E-interview with
Leslie Lamport, the author of LATEX∗

A great deal of mathematics, including this journal,
is typeset with TEX or LATEX; this has made a last-
ing change on the face of (published) mathematics,
and has also permanently revolutionized mathemat-
ics publishing. Many mathematicians typeset their
own mathematics with these systems, and this has
also changed mathematical thinking, so that in a ca-
sual conversation one might write \sqrt{2} instead
of

√
2 on the tablecloth . . . We take “ca. 20 years

of TEX” as the occasion to ask Leslie Lamport, the
author of LATEX, some questions. (GMZ)

−− ∗ −−

GMZ: How were your own first papers produced? Did
you start out on a typewriter? On roff/troff/nroff?

LL: Typically, when writing a paper, I would write
a first draft in pen, then go to typewritten drafts. I
would edit each typed draft with pencil or pen until
it became unreadable, and would then type the next
draft. I think I usually had two typewritten drafts.
I would then have a secretary produce a nicely typed
“final” version, which would usually be subject only
to minor changes. I went on-line around 1977, using
TVedit and a primitive text-formatting system that
I believe was called Pub. I switched to Scribe when
it became available (maybe 1978?) and switched to
TEX perhaps a year later. I first used Unix when I
moved to DEC in 1985, so I was never a *roff user.

GMZ: Could you tell us about the pre-history: Don
Knuth wrote TEX in the seventies. It was working
but hard to use. People tried, some wrote macros,
. . . What was the situation when you “got started”?

LL: When Don was creating TEX80(?), the second
version of TEX, the popular macro package at the
time was one written by Max Diaz — I’ve forgotten
its name.1 I was in the process of starting to write
a book, and I found Diaz’s macros inadequate. So,
I needed to write a set of macros for the book. I
figured that, with a little extra effort, I could make
a macro package that could be used by other people
as well. That was the origin of LATEX.

GMZ: Was this always meant to be “free software”?
Did you ever try to “get rich” with it? Do you regret
that you didn’t?

This interview was originally published in the Mitteilungen

der Deutschen Mathematiker-Vereinigung 1/2000, pages 49–
51. Reprinted with permission.

The interview was conducted by Günter M. Ziegler
1 Editor’s note: Fácil TEX

LL: At the time, it never really occurred to me that
people would pay money for software. I certainly
didn’t think that people would pay money for a
book about software. Fortunately, Peter Gordon
at Addison-Wesley convinced me to turn the LATEX
manual into a book. In retrospect, I think I made
more money by giving the software away and selling
the book than I would have by trying to sell the
software. I don’t think TEX and LATEX would have
become popular had they not been free. Indeed,
I think most users would have been happier with
Scribe. Had Scribe been free and had it continued
to be supported, I suspect it would have won out
over TEX. On the other hand, I think it would have
been supplanted more quickly by Word than TEX
has been.

GMZ: Tell us about your “comic/tragic experiences
trying to get computer scientists and computer sci-
ence journals to enter the computer age”.

LL: People will go to great lengths to avoid having
to change what they do. In the early days of LATEX,
my colleagues at SRI would always tell me that they
would write their next paper in LATEX. A few years
ago I got fed up with the fact that computer science
journals were still sending around paper manuscripts
for review. I circulated a message saying that com-
puter scientists should refuse to review paper man-
uscripts — except in unusual circumstances, such as
submissions from third-world countries. One editor
complained that she was handling so many papers
that the cost of disk storage for all of them would
have been prohibitive. A simple calculation showed
that, with disk prices at the time, the storage would
have cost about $250— less than the cost of the fil-
ing cabinet she was then using. (Now, of course, it
would be about $2.50.)

In the late 80’s, I proposed to the ACM that
they should create standard document styles or
macro packages for what were then the three major

TUGboat, Volume 22 (2001), No. 1/2 21

formatting programs, TEX/LATEX, troff, and Scribe.
While their journals would accept paper submissions
as usual, authors who submitted papers electroni-
cally in one of those styles would have the benefit
of electronic transmission speeds. An editor at ACM

dismissed the idea because it was unfair to force peo-
ple who didn’t have access to computers to submit
their papers electronically. (I can assure you that
I’m not making this up; my imagination isn’t that
fertile.)

People will switch to something new only if
they’re forced to by circumstances. People started
using TEX because pencil and paper became un-
tenable as a way to produce mathematical docu-
ments. Journals started accepting electronic sub-
missions when it became impossible to ignore the
Internet any longer.

GMZ: Is LATEX hard to use?

LL: It’s easy to use — if you’re one of the 2 % of the
population who thinks logically and can read an in-
struction manual. The other 98 % of the population
would find it very hard or impossible to use.

GMZ: Why is there no high/same-quality WYSIWYG

system available?

LL: The entrance barrier is too high. To have
any chance of success, a system would have to do
everything that TEX does. That makes it too much
work for any individual. A company like Microsoft
could do it; I presume they don’t because the market
is too small. I occasionally think of going over to the
Dark Side and proposing to Microsoft that they hire
me and put me in charge of a group to develop such
a system. Fortunately, I have other things to do that
keep me out of trouble.

The speed of modern computers has removed
some of the allure of WYSIWYG. TEX can process
a 10-page paper in a couple of seconds. I have a
simple Emacs macro that, with a single keystroke,
processes and redisplays the paper I’m working on.
So, when I’m writing a paper, I just have to type
TEX source, I don’t have to read it.

GMZ: It’s nearly frightening to what extent LATEX
has now “solved all the problems” and seems to be
without any (?) competitors?

LL: It doesn’t have any competitors in the techni-
cal sense of competition— that is, there’s no other
system that can do what it does. In the Darwinian
sense, its competition is much too strong for it to
survive. Kids these days use Word. As I already
said, people are extremely reluctant to learn some-
thing new. When those kids grow up, they’re not
going to want to learn a new, arcane system. So, I
expect the use of TEX and LATEX to die out. How-

ever, a mathematician just assured me that there is
no alternative for math and physics, and he expects
TEX to survive the 100 years that Don predicted.
We’ll see.

GMZ: You say that people/kids won’t “want to learn
a new, arcane system.” Couldn’t it be fun (!) to
learn that certain things don’t work, exactly because
one had made a logical error? LATEX as a computer
game?

LL: It’s naive to expect something like LATEX, that’s
at best going to be used only by professional mathe-
maticians and scientists, to filter down to the grade-
school level. Even if there were some point to teach-
ing kids such an esoteric system, it couldn’t be done
for the same reason that it’s been impossible to raise
the level of math and science education in this coun-
try— namely, kids can’t learn from teachers who
don’t know the subject well, and people who are
good in math and science don’t become grade-school
teachers.

GMZ: Here is a recent email dialogue I had with a
colleague in Toronto:

>

> "Guenter M. Ziegler" wrote:

>

> >

> > Charming: people [CS professors!!]

> > still use troff! Weren’t they forced by

> > law at some point to adopt TeX?

>

> Can’t help it, I prefer to type, .NH 3 than

> /subsubsection etc.

> But then I love unix’s two letter commands also!

>

> By the way I can type , eg., .NH 6, does latex

> use /subsubsubsubsubsection ?

>

Please comment.

LL: The use of \subsubsection instead of \sss

was a deliberate choice — inspired by Scribe —to
make command names understandable instead of
short. I think that was a good choice. The user
who hates to type can always define \sss to mean
\subsubsection. However, a technical writer typ-
ically spends many hours per page writing a doc-
ument, and the time spent actually typing text is
a negligible part of the work. That’s probably why
neither I nor anyone I know bothers defining shorter
synonyms for commands.

One can argue that the use of \subsubsection
etc. instead of \section{3} was a mistake. How-
ever, rather than \section{3}, a more logical ap-
proach would be a \heading command that creates
a section heading at the current level, and com-
mands to increase and decrease the current heading

22 TUGboat, Volume 22 (2001), No. 1/2

level. My feeling now is that the intuitive simplic-
ity of the current system outweighs the advantages
of the logical approach; but others might certainly
disagree.

One thing along those lines that definitely was a
mistake was the use of \small, \large, etc. instead
of a \size{n} command along with commands to
increase or decrease the size. I’m afraid I just copied
the size-changing commands from Scribe without
thinking.

GMZ: Any regrets about things you should have done
better when you “did it”? Lessons to be learned from
that? (Knuth has published parts of his log books
. . .)

LL: There are lots of mistakes that I made —such
as the size-changing commands. But those are in-
evitable. You can find many of them by looking
at the differences between LATEX2.09 and LATEX2ε.
But the biggest mistake I made was not in how I
designed LATEX, but in how I didn’t design TEX.
When Don was writing TEX80, he announced that
it would be a reimplementation of TEX78, but he
was not going to add new features. I took him seri-
ously and asked for almost no changes to TEX itself.
The only change I can remember strongly urging in-
volved page breaking. People who used TEX78 will
remember that, when TEX couldn’t find a good page
break, it would very often produce a horrible one —
a page containing two or three lines. I felt that this
would be a real show-stopper— much worse than
words extending to the right of the margin —so I
lobbied hard for the change. However, there were
many other improvements that I could have sug-
gested but didn’t. In the end, Don wound up mak-
ing very big changes to TEX78. But they were all
incremental, and there was never a point where he
admitted that he was willing to make major changes.
Had I known at the beginning how many changes
he would be making, I would have tried to partic-
ipate in the redesign. Don had a small group of
helpers — mostly students — with whom he met reg-
ularly. I could have joined that group and perhaps
have had some influence on the design. Who knows,
maybe I could have persuaded him to replace TEX’s
macro-expansion language with something better.
A macro-expansion language is good for a quick-
and-dirty solution, so it was appropriate for TEX78.
But it’s not good for serious programming because
you always have to fight to get things expanded at
the right time.

GMZ: Three LATEX mistakes that people should stop
making?

LL: 1. Worrying too much about formatting and
not enough about content. 2. Worrying too much
about formatting and not enough about content.
3. Worrying too much about formatting and not
enough about content.

GMZ: What’s your view on mathematical typesetting
in the future? Quantum leaps ahead?

LL: I’m pessimistic about software in general. When
computers were the province of the technically so-
phisticated, people wrote software for technically
sophisticated users. Now, technically sophisticated
users are an insignificant niche market. Standards
are being driven by the marketplace, which cares
only about the masses. So, mathematicians have no
place in the brave new world of computing. They
will have to make do with the same flashy but tech-
nically impoverished tools that the little old lady in
Peoria uses. So, you can display video animations
on the web, but there’s still no good way to display
a mathematical equation.

The future of technical communication is the
World Wide Web and the CD-ROM. There may
soon be a window of opportunity for two products:
one for “typesetting” math for the Web, and the
other for creating CD-ROM textbooks. The pro-
posed standard for adding math features to html
will, if adopted, make it possible to produce poorly
formatted but readable math html documents.

Computers make possible all sorts of new forms
of communication. For example, one can have a sort
of permanent workshop which consists of a set of
technical presentations combined with a chat room.
Based on the chat-room discussions, participants
can continually refine the technical presentations. It
could be something like a “living Bourbaki” for a
subject.

However, mathematicians, like all people, are
extremely conservative. For example, they still write
proofs essentially the same way they’ve been doing
it for centuries. I believe I’ve demonstrated in

AUTHOR = "Leslie Lamport",

TITLE = "How to Write a Proof",

JOURNAL = "American Mathematical Monthly",

VOLUME = 102,

NUMBER = 7,

YEAR = 1995,

Month = "August-September",

Pages = "600--608"

that there’s a better way. But they are just as
reluctant to try it as they are to try anything new.
Their excuses make no more sense than the ones
I heard 15 years ago to explain why they weren’t
switching to (LA)TEX.

TUGboat, Volume 22 (2001), No. 1/2 23

Typography

Typographers’ Inn

Peter Flynn

1 CAPital iZaTiOn

The first time I used BibTEX I was horrified to find
it had capitalized —by itself— all the titles which I
had so carefully typed with a single initial capital
and subsequent continuous lowercase. Fortunately
it didn’t take much reading of the fine manual and
the FAQ1 to discover that enclosing the title in an
additional pair of curly braces would stop this until
such time as I could identify a suitable bibliographic
style that didn’t use capitalization (or learn how to
hack BibTEX styles myself).

Recently there have been discussions on Usenet
about this topic (in alt.usage.english as well as
comp.text.tex and elsewhere) which led Markus
Kuhn to ask if there were any good standards or
rational preferences.

Standards there certainly are: the FAQ men-
tioned above refers to the Chicago Manual of Style

as BibTEX’s source for the behavior of its default
styles, and Markus himself referred to the various
ISO standards which recommend a different ap-
proach.

But it’s hard to be rational about preferences
in style which are essentially æsthetic. While there
may be a separate rationality in the approach each
standard takes, the choice between them is largely
a matter of convention and history. As in other
areas of typography, there seems to be a clear
Atlantic Divide between the Pros on the North
American side preferring the capitalization of each
word except pronouns, prepositions, articles, and
conjunctions; and the Antis on the European side
going for capitalization only of the first word and
any proper nouns.

The first method is perhaps more formal than
the second, but tends to look slightly dated nowa-
days (it always reminds me of the chapter summaries
in books of an earlier period, In which the Author

Betakes himself to London to Procure a Sufficiency

of Cutlery against Dining with Friends), but it has
the advantage that it stands out as a title without
the need for bold or sans-serif type: just a larger
size is enough. Where the title is in a sans or
a contrasting face, the second method looks less
strained.

1 The present UKTUG FAQ has a good answer at http:

//www.tex.ac.uk/cgi-bin/texfaq2html?label=capbibtex.

The overriding problem for BibTEX users, how-
ever, is not the style itself, but the automation of
capitalization. When all the titles of a bibliography
are in common English, without technical phrases,
foreign words, scientific terms, or quoted titles, au-
tomated capitalization works very well most of the
time. But technical, research, and academic bib-
liographies typically use many words in a special
sense, or draw them from a specialist vocabulary,
making automation less reliable. This, and not
any inherent dislike of capitalization itself, seems
to be what triggers the user to declare, “I don’t
like|want|need capitalized titles.”

Perhaps less well documented (and certainly
mentioned only rarely in training) is that if the
user is writing for a publisher, using the publisher’s
styles, it’s not the user’s choice whether or not the
titles are capitalized: it’s dictated by the class or
package.

2 Compliments

At TUG’2001 in Delaware I showed a draft brochure
I had put together to publicise LATEX in my area.2

This document includes the font sampler I men-
tioned last time, albeit as an illustration at a much
reduced size. Regrettably, the PDF version used in
the PDF leaflet has been badly blurred by Acrobat in
conversion from the original PostScript as it contains
several bitmap fonts, but there is also a .ps.gz

version at the location given, which is much clearer.
It appears that if an EPS file is converted to PDF by
Acrobat, and it contains at least one bitmap font,
all the fonts in the EPS get blurred.

The comments I made in my presentation at the
time are in the Proceedings issue (TUGboat 22.3),
but I ended with an appeal which I repeat here:

If you know or encounter users who are
pleased and happy with LATEX, especially
about what it can do typographically, get
them to write a sentence or a paragraph
saying why, and send it to me (email
address at end) for use in publicity.3

We don’t blow LATEX’s trumpet often enough, and
we need quotable quotes from people with demon-
strable experience.

⋄ Peter Flynn

Computer Centre, University College,

Cork, Ireland

pf@ucc.ie

2 The document is still available online at http://www.

silmaril.ie/documents/latex-brochure/leaflet.pdf. US

users should note this version is formatted to print on A3

paper.
3 But please make sure they agree to being quoted in

public!

24 TUGboat, Volume 22 (2001), No. 1/2

Font Forum

Laudatio for Professor Hermann Zapf

Frank Mittelbach

Honored Professor Zapf,
Ladies and Gentlemen.

A Laudatio, according to the dictionary1, is
a “celebratory speech within the framework of a
ceremony in which someone’s accomplishments and
services are honored.” The dictionary further in-
forms me, as someone who has never learned Latin,
that there is a relationship to laudare (which means
praise) and to laudes (which means the singing of
praises).

Now, I doubt that my singing would be appre-
ciated, so I will restrict myself to praise. It gives
pleasure to praise as it also gives pleasure to be
rightly praised, and this right Professor Zapf has
earned in all areas in which he has worked.

Now, many proverbs advise that one should
avoid too much praising and in view of the fact that
in a concert hall one is not allowed to cough, and
during a eulogy one is not allowed to yawn, I am
well advised not to bore anyone here with too many
details.

Speaking of praise, I should perhaps begin with
DANTE, the German TEX users organization, or
more exactly with its members, or even more exactly
with the great majority of TEX users in the entire
world. Their affinity and love for typography is the
reason that brings us together here today. It is their
wish to honor Professor Zapf for his considerable
contribution to twentieth century typography, and
particularly for his influence on digital typography.

The species “TEXie” is a strange beast. In
the age of Microsoft Word and Co, its members
steadfastly refuse to deal with the computer as they
should, cobbling together text with mouse-clicks and
pull-down menus. Rather they garnish their text
with strange, useless signs like the backslash, fancy
brackets, and incomprehensible commands. And all
that to avoid widows, orphans2 and other obscure
things.

This is a translation of the article “Laudatio auf Professor
Hermann Zapf”, which appeared in Die TEXnische Komödie,
1/2000, pages 31–36. Reprinted with permission.

1 Duden, Deutsches Universalwörterbuch, Mannheim
1989

2 Editor’s note: The German terms, Schusterjungen
(cobbler boys) and Hurenkinder (children of whores), are
much more colorful than the English.

These ladies and gentlemen speak of badly
kerned fonts, of high-quality composition, throwing
around words such as quad, leaving the rest of the
world bewildered: “What do these people want?
With my word processor, everything is much faster
and simpler, and I can see right away what it looks
like!”

“Yes,” answers the devoted TEXie, “that’s ex-
actly why it looks like that.”

Fanatics? Crackpots? People that time has
passed by?— After all, TEX was created more than
twenty years ago. Can such a dinosaur of the com-
puter age still have any relevance? Can one still take
its champions seriously in the age of WYSIWYG3

and multimedia?
One can and one should. The rules of typogra-

phy also hold true for text that has not been set in
lead. Promoting these rules is even more important
nowadays than in the past, because with ‘desktop
publishing for all’, the knowledge of both the com-
positor and the typographer is under threat unless
software takes over some portion of these tasks.

Even though TEX is now middle-aged, its roots
are firmly anchored in the foundations of typo-
graphic quality. Many may be astounded — but
even after such a long time there is hardly any
other computer program whose typesetting quality
approaches that of TEX, let alone surpasses it.

There are many reasons for this. The most
important is probably that Professor Knuth was
able to build on the friendship, the knowledge and
the help of such notables as Hermann Zapf, Charles
Bigelow and Richard Southall. Their capacity for
passing on their deep typographic knowledge, and
ideas for its realization in the computer, have had a
decisive influence on TEX as we know it today. Their
cooperation helped to place TEXnow, after twenty
years, among the best typesetting programs.

Donald Knuth started the TEX project with the
goal of developing, in approximately half a year,
a computer program with whose help his secretary
would be able to typeset his books (in particular, of
course, The Art of Computer Programming). This
was his reaction to, in his opinion, the terrible
deterioration of quality of his and other people’s
books through the increased use of computers in
publishing.

As we know, that half-year became about ten
years. As Don had to learn, typography can’t
be compressed into a computer program in half a
year— actually, not even in ten years! But during
this time, with knowledgeable help, a framework

3 What you see is what you get

TUGboat, Volume 22 (2001), No. 1/2 25

could be built that still nourishes us today. During
these years, Don changed from a computer specialist
into an apprentice of the black arts, and I think we
can justifiably thank his masters during that time,
that he learned so well.

But I promised at the beginning to keep this
speech short, so I should not digress any further
from my Laudatio, but finally devote myself to the
theme.

−− ∗ −−

There are many biographies about Hermann Zapf
and I dare say that there is no contemporary book on
the topic of typography of our time — at least none
that one can take seriously— in which his name is
not mentioned. That is not really surprising: With
more than 170 different fonts to his credit, including
Palatino, Saphir and Optima, he is not without
reason considered the most important font designer
of our century.

I therefore want to limit myself here to a few
bibliographical highlights and then turn to some
areas usually not mentioned in short biographies of
Hermann Zapf.

Hermann Zapf was born in 1918 in Nürnberg
(Nuremberg). According to his own autobiogra-
phy4, from early youth he was interested in technol-
ogy and planned to become an electrical engineer,
a career he could not take up because of political
conditions.

Instead, he began his typographic career in
1934 as an apprentice to a photographic retoucher.
His autodidactic study of typography led in 1938,
after he finished his apprenticeship, to his first
Fraktur font, “Gilgenart”, which was designed for
Stempel AG. After the turmoil of war, from 1948
to 1950 he worked as an assistant professor at the
Werkskunstschule5 in Offenbach, and from 1947 to
1956 as an artistic leader for Stempel AG, after that
from 1956 to 1974 as a consultant to the Mergan-
thaler Linotype Company. During this time some of
Hermann Zapf’s best known fonts were created, for
instance Palatino (1948) or Optima (1952).

In 1974 he was awarded the Gutenberg Prize of
the City of Mainz. The Laudator, Giovanni Marder-
steig, placed Hermann Zapf’s accomplishments into
the contemporary process of transition from lead
type to electronic setting and film setting.

Right back in the early sixties, Hermann Zapf
began to develop ideas for using the computer prof-
itably in typography. But until the eighties these

4 Select http://www.fontexplorer.com/FontStore and
follow link to “Font Designers” and then select the “official
homepages of Hermann Zapf”.

5 Art school

ideas fell on deaf ears, at least in Germany; even
at the Technical University of Darmstadt, where he
taught typography between 1972 and 1981, he could
not interest anybody in research in this direction.

Research institutions in America were more
open-minded. In 1976, Hermann Zapf was ap-
pointed Professor for Computer Typography at the
Rochester Institute of Technology, where he taught
until 1987.

In 1980, Hermann Zapf began his collaboration
with Don Knuth on the Euler project at Stanford.
The results of this project, a collection of beautiful
scripts for mathematical typesetting, were made
publicly available in 1985. Unfortunately, at least
in my eyes, these beautiful fonts have not yet been
distributed as widely as they deserve to be. But even
if the direct success of that project seems small, the
work still had wide-ranging implications, not least
on the development of METAFONT84, which was
created during that time.

Hermann Zapf made use of his experiences and
results from the years of teaching in the United
States, in his collaboration with URW in Hamburg,
in the development of a suite of programs which
collectively have became known under the name “hz-
Program”.6 These programs expanded on the ideas
that had been developed by Don Knuth and Michael
Plass for the production of high-quality line break-
ing, adding new dimensions such as microtypograph-
ical changes to individual letters for evening out the
spacing in a line or by using “Kerning on the Fly”.
As far as I know, these algorithms are now licensed
for the program InDesign, which is perhaps, from
the point of view of the TEX world, the first time
a competitor for high-quality (automatic) computer
typesetting needs to be taken seriously.

But the development of TEX is not terminated
either. Work such as that of Professor Zapf stim-
ulates others around the world to experiment with
extensions of TEX, all with the aim of improving the
quality of documents typeset by computer. I hope
that this development will continue into the future
in a positive manner; certainly the enthusiasm of
those involved is a necessary prerequisite, but it
also requires knowledge about the inherent values
of typography and of people like Professor Zapf who
have passed such knowledge on to us.

−− ∗ −−

6 Peter Karow: hz-Programm, Mikrotypographie für den
anspruchsvollen Satz [Microtypography for fastidious type-
setting], Gutenberg-Jahrbuch 1993, Mainz.

26 TUGboat, Volume 22 (2001), No. 1/2

As the last task in The TEXbook, Don Knuth sent
us TEXies on our way with the following: “Final ex-
hortation: Go Forth now and create masterpieces

of the publishing art! ”
For many of us this goal remains far in the

future, but we have all learned to recognize and
love good typography. And so, with an honorary
membership in DANTE, we want to express our
thanks to Professor Zapf for his priceless services to
the art which to us is both precious and cherished.

⋄ Frank Mittelbach

Mainz, Germany

26 TUGboat, Volume 22 (2001), No. 1/2

My collaboration with Don Knuth and

my font design work

Hermann Zapf

I shall report on my collaboration with Don Knuth
and finish with some thoughts on typography. Since
1977 I have been teaching typographic computer
programs at Rochester Institute of Technology. That
was about the time when Steve Jobs and Stephen
Wozniak were tinkering with their first Apple com-
puter.

RIT was the first university to investigate ty-
pographic programming. The idea was to build a
logical structure of typographic rules into repetitive
functions of a program structure.

My collaboration with Don Knuth started in
1979, when he was working on his Computer Modern
design. An extended correspondence preceded our
first meeting. In 1980, I was invited to Stanford
University, to work within the Computer Modern
project.

Knuth was one of the first scientists to think
about the appearance of mathematical text pages.
The motive was one of his mathematical books

This is a translation of the article “Meine Zusammenarbeit
mit Don Knuth und meine Schriftentwürfe”, which appeared
in Die TEXnische Komödie, 1/2000, pages 37–44. Reprinted
with permission. The translation was prepared by Dieter
Glötzel. Footnotes and figures added in the translation.

which had been produced in England, with whose
quality Knuth was not at all pleased.

That was the beginning of METAFONT,1 a type
font for scientific typesetting, on which he had been
working since 1978. In a lecture on “Mathematical
Typefaces” in 1979 he had reported on his ideas.
This was published in the “Bulletin of the American
Mathematical Society”.2

Knuth’s original intention was to base a new
type shape on imitating electronically the strokes
of a broad-nibbed pen. He even tried to simulate
the effect of pressure on the nib in the resulting
calligraphic shape. But our alphabet is not struc-
tured systematically; with N, M and Z, for example,
the normal pen stroke breaks down at an angle of
about 30 degrees. In 1980, with Stanford Univer-
sity students—among them David Siegel, whom I
will mention again later—we employed METAFONT

to develop Knuth’s conception of Computer Mod-
ern. I stayed at Stanford for two weeks. It was
extraordinary how fast Don Knuth grasped rather
complicated details, as if he had previously worked
on the design of letterforms.

In “Der Spiegel”3 of 23 June 1980, there ap-
peared an article about our research work with the
obscure headline “Lieber Butter”.4 It is still a mys-
tery to me how these people learned of the project
and how they acquired the nice photograph of the
two of us from the Stanford photographer. This
article, with such a silly headline, has certainly never
been read by any scientist; perhaps some farmers
were interested. But one is simply amazed by the
information sources and connections of this maga-
zine. The headline “Lieber Butter” had been chosen
according to “Der Spiegel” because Don Knuth had
once said that he refused to eat margarine instead
of butter.

About TEX, “Der Spiegel” wrote that it is a
fundamental computer program to transform texts
of arbitrary content or in any language into an
optimal form—type size, a combination of different
fonts, line spacing, appropriate hyphenation and dis-
tribution of words over complete paragraphs could
all be controlled. End of citation.

Digital word processing originated with Dr.
Rudolf Hell in Kiel.5 He is regarded as the father
of digital word processing. He started already in

1 Editor’s note: more likely Computer Modern, al-
though work started on both at about the same time.

2 Donald E. Knuth, “Mathematical Typography”, Bull.

Amer. Math. Soc. (New Series) 1 (1979), 337–372.
3 a political weekly magazine in Germany
4 this means “Butter preferred”
5 a German town on the Baltic Sea

TUGboat, Volume 22 (2001), No. 1/2 27

1925 with his so-called “Hellschreiber”.6 The letters
were reduced to a set of small dots in order to
transmit them. In 1964 he invented the “Digiset”,
the first electronic photocomposition machine, and
thus began the era of digital resolution of type. In
recognition of his pioneering work he was awarded
the Gutenberg Prize of the International Gutenberg
Society in Mainz in 1977. I designed the first digital
alphabets for the Hell Digiset machine. These were
“Marconi” in 1976 and “Edison” in 1978. Initially
the resolution of the characters was relatively coarse,
but after a just few years, the staircase-like struc-
tures along oblique lines had disappeared.

As a book designer one continues to try to find
new ways to make production more rational and less
costly. This led me to consider the idea of processing
typographic information with computer programs.

At the TH Darmstadt,7 where I have taught
typography since 1973, nobody was keen on such
ideas, and also the industry was not interested in
typographical problems and tried instead to achieve
higher typesetting speeds with their machines. So I
talked about my intentions in the United States.

In 1964 I was invited to lecture on programmed
typography at the Carpenter Center of Harvard
University. A few years later I received a generous
offer from the University of Texas. I was ready to
move to Austin, but my wife would not, although
everything looked rather attractive. During my stay
in Austin I was appointed an “Honorary Citizen of
the State of Texas” with all privileges. Presumably I
would have been exempted from paying state taxes.
But the dream was over.

In 1976 the Rochester Institute of Technology
offered me the chance to be the successor to Pro-
fessor Alexander Lawson, who had been teaching
typography there since 1947. I would teach typo-
graphic computer programs for the first time. This
was before MIT in Cambridge or Stanford in Califor-
nia started similar activities. We devised the most
beautiful solutions, but in the end the realization
failed at IBM and Xerox because of the huge amount
of memory we would have needed for our programs.

In 1977, with some friends, I founded a com-
pany in New York which was to develop practical
solutions with a menu-based user interface. We
planned to develop programs with a simple structure
in order to penetrate the American office market.

Back to Computer Modern. I regarded this
type as a little too thin for a text font, but we

6 “Hell-writer”; Editor’s note: “hell” means bright, as
light—a particularly apt name for a machine that does its
work with a beam of light.

7 Technical University of Darmstadt, Germany

could easily produce a stronger version from the
METAFONT data later on. In particular, I foresaw
problems with greatly reduced documents. As soon
as we had digitized a structure of the type every-
thing went rapidly.

The next extensive project together with Don
Knuth was the type family “Euler” for the Ameri-
can Mathematical Society (AMS) which started in
1979. It was the critical test for the first version of
METAFONT. Knuth wanted to have alphabets fully
adapted to mathematical typesetting which would
fit nicely into a text. Several visits to Stanford
and an extended exchange of letters accompanied
the Euler project, which should have been finalized
for the 200th anniversary of Euler’s death. You will
surely know Leonhard Euler. He was born in Basel8

in 1707 and died in St. Petersburg9 in 1783. But it
took us until 1985 to finish the type family named
after him. Based on the experience with the repre-
sentation of type characters, Don Knuth developed
an improved version of METAFONT which included
also an outline method for producing complicated
type shapes.

David Siegel together with other students of
Knuth worked with us again on the digitization of
the Euler type. In 1985 he wrote the report “The
Euler Project at Stanford” for the Department of
Computer Science of Stanford University.

A further documentation on the complete Euler
type family, which included in addition to the Latin
alphabet also a Greek, a Fraktur and an italic, was
edited by Don Knuth and myself in 1989. It was
published in Canada under the title “AMS-Euler.
A New Typeface for Mathematics”.10

A quite unusual task was the Bible project
“3:16”, which I worked on with Don Knuth starting
in 1989. It was an unusual effort finding all Bible
verses starting with 3:16 and then interpreting these
anew. He had been working on this project since
1977. We had a lot of fun, and it ended with
publication of the book “Donald E. Knuth. 3:16—
Bible Texts Illuminated”. When the book appeared,
a series of exhibitions was organized, which showed
the work of calligraphers from all over the world who
had shaped calligraphically the Bible texts selected
by Don Knuth.

It remains inexplicable how this man always
finds enough time, besides his teaching profession
and publishing comprehensive books on the “Art
of Computer Programming”—one volume has been
dedicated to me. Then to study the whole Bible

8 Switzerland
9 Russia

10 Scholarly Publishing 20 (1989), No. 3, 131–157.

28 TUGboat, Volume 22 (2001), No. 1/2

and on top of that his frequent travels. At home he
has an organ on which he loves to play to relax— if
he finds time and is not busy working on a difficult
problem. When he visited Germany we had always
to find a beautiful organ for him to play. And in
spite of all that he is always available for technical
discussions.

You all know my work as a type designer.
Some of my alphabets, such as Optima Antiqua and
Palatino, are today part of the standard equipment
of your PC or printer.

Maybe you’ve been annoyed with my Palatino
Roman on your PC or Macintosh, because it does
not provide enough special characters and accents.
But be consoled, Microsoft will deliver an extended
Palatino and then you will get 1200 characters for
each of the Roman, Italic, Demibold and Demibold-
Italic variants—a total of 4800 characters. Bill
Gates was crazy enough to want all glyphs one could
imagine including special variants of Latin letters as
well as Greek and Cyrillic alphabets.

On a digital basis, today this is no longer a
problem, because technically you can develop letters
relatively fast on the computer screen. This also
has a dark side. Unfortunately there are only a
few authentic versions of Palatino. Many have been
forged unscrupulously, and moreover, forged poorly.
Palatino has the sad reputation to be the most often
copied Roman font world wide. But that is a topic
I don’t want to discuss.

A few words on my new font, which has its own
story. It is not intended for scholarly typesetting,
but there are other areas for using type. It got
the name Zapfino from an American who thought of
the original idea. The history of this type started,
as before, in Stanford with David Siegel. After he
had finished his studies with Don Knuth, he wanted
to start a business as a type designer based on his
experience with METAFONT and Euler, and I should
help him with his plans.

The project started in 1993. First he wanted to
use some of my calligraphic work from 1944 to de-
velop a novel script font. David Siegel developed for
this purpose a kind of chaos program which he called
Derrick. This was supposed to mix the different
variants of letters within a word automatically. He
wasn’t able to find enough different instances of the
individual letters to realize his idea. Theoretically
everything worked fine, but how should an ordinary
PC user manage such a technique, how should he
select critical ligatures and insert these at the right
position?

The complicated system soon became incom-
prehensible and, unfortunately, David Siegel sud-

1,5

3

21

Figure 1: The classical proportions of the
margins in a book: 1 - 1.5 - 2 - 3

denly lost all interest in our project when his girl
friend ran away.

The type then stayed for quite some time in
my drawer until one day I showed it to Linotype
Library GmbH in Bad Homburg.11 We dared to
continue to work on this unfinished program code.
First we had to reduce the storage for characters to
a reasonable size. We ended up with four alphabets
with ligatures and extra large calligraphic flourishes,
as well as 100 ornaments and special characters. By
1998 the work was finished, and it is now available
on CD-ROM together with a movie about my work
in calligraphy.

Typesetting with Zapfino is not so easy and
needs a good feeling for the calligraphic features
of the type. On the screen you have to check
continually for overlapping characters because with
the huge ascenders and descenders you easily get
intersections of letters.

I was asked to present some thoughts on typog-
raphy. There are enough typographic textbooks for
sale from which to learn the basics. I will now talk
about what you cannot learn from these books and
give you some hints.

Do not invent a new type area—this has been
developed with the experience of hundreds of years.

11 a town close to Frankfurt

TUGboat, Volume 22 (2001), No. 1/2 29

1,2

1,8

1,51

Figure 2: Proposal of the type area for a
magazine: 1 - 1.2 - 1.5 - 1.8

If you are a mathematician, you may be tempted to
position it in the geometric center. But you need
functional margins of different widths. As a rule
of thumb a progression of 1 – 2 – 3 and 4 is a good
starting point. [See Figure 1 for the classical propor-
tions of the margins in a book; Figure 2 proposes an
adaptation for a magazine.] The inner margin for
binding depends on the method of binding, whether
you have a thread, wire or glue binding. With
glue binding a wider inner margin is advantageous
because you often need a flush cut. The outer
margins also have a function. A wider outer margin
is quite useful not only to be able to hold the book
comfortably, but also to be able to make notes or
annotations, and not just for controversial texts. In
a scientific book at the Herzog-August-Bibliothek in
Wolfenbüttel12 I found marginal annotations with
rather drastic terms, such as Unfug and Quatsch.13

From the old historic shape of the letter Q one could
determine that these were old annotations and had
not been written by today’s students.

Another point. When you have accumulated a
thousand or more alphabets, you should not arro-
gantly try to display as many alphabets as possible

12 a scientific library in Wolfenbüttel, Lower Saxony, Ger-
many

13 “nonsense, rubbish”

in one document. Always seek the simplest and most
significant form. A book is above all meant to be
read and should not be a sandbox for typographic
experiments.

An important typographic issue is the title on
the spine of a book. You have to fit it onto the most
narrow volume. How will you find your TEX period-
ical “Die TEXnische Komödie” on your bookshelf?
[Figure 3 suggests an approach for narrow booklets.

Figure 4 extends this to coping with loose
sheets.] Whether the title on the spine runs from
bottom to top, or from top to bottom is not that
important, but whether a title is present on the
spine at all, is. If you like, you can take part in the
endless quarrel in Germany whether the title should
run from the bottom up or the reverse.

But I ask you: Do you lay your book face down
on your bedside table, when you put it away? This
will answer any discussion whether the title should
run up or down.

For “Die TEXnische Komödie” perhaps you
could send out adhesive-back labels with the next
issue; this would solve the problem.14

There remain many other things to be done in
the digital world. Look closely at the characters on
your computer screen. Most letters are corroded,
without the fine details one needs to be able to
recognize correctly the desired font. Here is an
important job that remains to be done, although
some technical prerequisites are needed to accom-
plish it. But when one can represent millions of
colours, one should also in the future pay somewhat
more attention to the presentation of the forms of
alphabets.

If you want to learn more about the work
of a font designer and what I have done in all
these years, I recommend that you visit my perma-
nent exhibition in the Herzog-August-Bibliothek in
Wolfenbüttel. This proves that you do not have to
die before you are awarded a permanent exhibition
in a library.

⋄ Hermann Zapf

Seitersweg 35

D-64287 Darmstadt

Germany

14 Since 2001 DANTE has published “Die TEXnische
Komödie” with a nicely printed title on the spine.

30 TUGboat, Volume 22 (2001), No. 1/2

Figure 3: If no space for a title is on the spine of a booklet, paste
a title on both sides of the fold. Put it onto the shelf of your

library so that it stands out a quarter of an inch for easy finding.

Figure 4: To keep loose sheets of cutouts from magazines,
etc., put them in a folder of stiff colored paper and fold
a pocket at the bottom. Paste titles as described above.

Software & Tools

Hyphenation Exception Log

Barbara Beeton

This is the periodic update of the list of words
that TEX fails to hyphenate properly. The list last
appeared in full in TUGboat 16, no. 1, starting on
page 12, with an update in TUGboat 21, no. 2,
pages 132–133. The present list contains only new
items reported since then.

A copy of this article with the complete list
can be found on the TUG Web pages, via a link in
the on-line Table of Contents.

Owing to the length of the complete list, it has
been subdivided into two parts: English words, and
names and non-English words that occur in English
texts. This update follows that division.

This list is specific to the hyphenation patterns
that appear in the original hyphen.tex, that is, the
patterns for U.S. English.

In the list below, the first column gives results
from TEX’s \showhyphens{...}; entries in the
second column are suitable for inclusion in a
\hyphenation{...} list.

In most instances, inflected forms are not shown
for nouns and verbs; note that all forms must be
specified in a \hyphenation{...} list if they occur
in your document.

Thanks to all who have submitted entries to
the list. Since some suggestions demonstrated
a lack of familiarity with the rules of the
hyphenation algorithm, here is a short reminder
of the relevant idiosyncrasies. Hyphens will not be
inserted before the number of letters specified by
\lefthyphenmin, nor after the number of letters
specified by \righthyphenmin. For U.S. English,
\lefthyphenmin=2 and \righthyphenmin=3; thus
no word shorter than five letters will be hyphenated.
(For the details, see The TEXbook, page 454. For
a digression on other views of hyphenation rules,
see below under “English hyphenation”.) This
particular rule is violated in some of the words
listed; however, if a word is hyphenated correctly by
TEX except for “missing” hyphens at the beginning
or end, it has not been included here.

Some other permissible hyphens have been
omitted for reasons of style or clarity. While this is
at least partly a matter of personal taste, an author
should think of the reader when deciding whether
or not to permit just one more break-point in some
obscure or confusing word. There really are times
when a bit of rewriting is preferable.

TUGboat, Volume 22 (2001), No. 1/2 31

One other warning: Some words can be more
than one part of speech, depending on context, and
have different hyphenations; for example, ‘analyses’
can be either a verb or a plural noun. No such
ambiguous words appear in the present list.

The reference used to check these hyphenations
is Webster’s Third New International Dictionary,
Unabridged.

English hyphenation

It has been pointed out to me that the hyphenation
rules of British English are based on the etymology
of the words being hyphenated as opposed to the
“syllabic” principles used in the U.S. Furthermore,
in the U.K., it is considered bad style to hyphenate
a word after only two letters. In order to make TEX
defer hyphenation until after three initial letters,
set \lefthyphenmin=3.

Of course, British hyphenation patterns should
be used as well. A set of patterns for UK English
has been created by Dominik Wujastyk and Graham
Toal, using Frank Liang’s PATGEN and based on a
file of 114925 British-hyphenated words generously
made available to Dominik by Oxford University
Press. (This list of words and the hyphenation
break points in the words are copyright to the
OUP and may not be redistributed.) The file of
hyphenation patterns may be freely distributed; it
is posted on CTAN in the file
tex-archive/language/hyphenation/ukhyph.tex

and can be retrieved by anonymous FTP or using a
Web browser.

Hyphenation for languages

other than English

Patterns now exist for many languages other
than English, including languages using accented
alphabets. CTAN holds an extensive collection of
patterns in tex-archive/language/hyphenation

and its subdirectories.

The List —English words

All entries in the list below have been reported since
a supplement to the list was last published in 2000.
acry-lamide acryl-amide
acry-lalde-hyde acryl-alde-hyde
al-ge-braically al-ge-bra-i-cal-ly
anisotropy an-isot-ropy
anisotropism an-isot-ro-pism
anisotropic an-iso-trop-ic
anisotrop-i-cally an-iso-trop-i-cal-ly
archimedean ar-chi-me-dean
bolome-ter bo-lom-e-ter
catenoid cat-e-noid
chemother-apy chemo-ther-apy

cok-er-nel co-ker-nel
collineation col-lin-ea-tion
com-po-nen-t-wise com-po-nent-wise
dacty-lo-gram(aph) dactyl-o-gram(aph)
di-alec-tic dia-lec-tic
di-alec-ti-cian dia-lec-ti-cian
dyslec-tic dys-lec-tic
eigen-class(es) ei-gen-class(es)
eigen-value(s) ei-gen-val-ue(s)
finitely fi-nite-ly
home-o-mor-phic(ism) ho-meo-mor-phic(ism)
in-du-bitable in-du-bi-ta-ble
isotropy isot-ropy
isotropic iso-trop-ic
leafhop-per leaf-hop-per
mi-croor-gan-ism micro-organ-ism
newest new-est
nonar-ith-metic non-ar-ith-met-ic
nu-cleotide nu-cleo-tide
phenyala-nine phenyl-ala-nine
pipeline(s) pipe-line(s)
plan-thop-per plant-hop-per
plu-gin(s) plug-in(s)
portable por-ta-ble
posthu-mous post-hu-mous
pseu-do-g-ra-pher pseu-dog-ra-pher
pseu-dogroup pseu-do-group
redi-rect(ion) re-di-rect(-ion)
repo-si-tion re-po-si-tion
rewire re-wire
rewrite re-write
rewrit-ten re-written
scrutiny scru-ti-ny
stere-o-graphic stereo-graph-ic
warmest warm-est
workaround work-around

Names and non-English words

used in English text

Kr-ishna Krishna
Kr-ish-naism Krish-na-ism
Kr-ish-nan Krish-nan
Mark-to-ber-dorf Markt-ober-dorf
Petro-vskiı̆ Pe-trov-skĭı
vi-i-ith viiith
vi-ith viith
wis-senschaftlich wis-sen-schaft-licht
xvi-i-ith xviiith
xvi-ith xviith
xxi-i-ird xxiiird
xxi-ind xxiind

⋄ Barbara Beeton
American Mathematical Society
bnb@ams.org

32 TUGboat, Volume 22 (2001), No. 1/2

32 TUGboat, Volume 22 (2001), No. 1/2

LYX — An Open Source

Document Processor

Laura Elizabeth Jackson and Herbert Voß

Abstract

LYX — the so-called front-end to LATEX, which is
itself a front-end to TEX — tries to optimize some-
thing that LATEX doesn’t attempt: to make a high
quality layout system like (LA)TEX accessible to users
who are relatively uninterested in serious typograph-
ical questions. LYX is not a word processor, but a
document processor, because it takes care of many
of the formatting details itself, details that the user
need not be bothered with. All LYX features de-
scribed here apply to the current official version LYX
1.1.6fix4. The significantly expanded version 1.2 is
expected this summer.

1 History

Drawing on the principles of the traditional printed
word, Donald Knuth1 developed a system that en-
abled users to prepare professional technical publi-
cations. Knuth called the first version of this system
τǫχ, which has since come to be written TEX and
pronounced “tech”.

A graphical user interface is in principle not
essential for LATEX; however, in today’s “all-things-
bright-and-beautiful” world, the absence of a GUI

makes LATEX less accessible to the masses. This
lack of a GUI was recognized in 1994/95 as the
opportunity to create one; it began as a master’s
thesis and was first called Lyrik, then LyriX, and
finally LYX. From the beginning, the main goal
so that the user would be freed from having to
delve into the details of (LA)TEX usage. It remains
to be seen whether (LA)TEX can be left completely
out of the discussion, because all other program
environments sit on top of TEX. To understand the
LYX philosophy, however, understanding (LA)TEX is
unimportant, especially for the user who specifically
chose LYX for the distance it places between itself
and (LA)TEX. In addition to LYX there are other
GUIs, such as ε:doc2 or TEXMacs.3

2 WYSIWYG versus WYSIWYM

A buzzword of the 1990s in software development
was WYSIWYG (What You See is What You Get),
which enabled the user to exert quick control over
a document. On the one hand this requirement
presented considerable problems for the software

1 http://www-cs-faculty.stanford.edu/~knuth/
2 http://members.magnet.at/hfbuch/edoc/
3 http://www.texmacs.org/

TUGboat, Volume 22 (2001), No. 1/2 33

Figure 1: The LYX Main-GUI

developers. On the other hand, it was becoming
clear that a substantial part of the layout of scientific
and technical publications is concerned with for
example german DIN-norms or publisher’s defaults,
and the author must be able to conform to these
requirements. Therefore, in the development of
LYX it was decided to use the WYSIWYM principle
(What You See is What You Mean); that is, what
the user sees in the graphical interface bears only
a global resemblance to the final output. The
degree of resemblance depends on the complexity
of the text, lying anywhere between 30% . . . 95%,
as demonstrated in figure 1. In order to avoid
misunderstanding, we reiterate that WYSIWYM is
a compromise; it does not promise to achieve the
perfect combination of TEX and WYSIWYG.

3 Why LYX and not ???

There can be no convincing answer to this ques-
tion without paying special attention to the typo-
graphical layout. For example, the formula mode in
WinWord simply cannot be compared to the one in
LATEX, as figures 2 and 3 demonstrate.

It is inserted as the PostScript-output of Win-
Word’s math editor with the use of the default font.
The essential difference lies in these fonts that are
used; one must dedicate a much greater amount of
attention to font selection under LATEX than un-

A = lim
n→∞

∆x
(

a2 +
(

a2 + 2a∆x + (∆x)
2
)

+
(

a2 + 2 · 2a∆x + 22 (∆x)
2
)

+
(

a2 + 2 · 3a∆x + 32 (∆x)
2
)

+ . . .

+
(

a2 + 2 · (n − 1)a∆x + (n − 1)2 (∆x)
2
))

=
1

3

(

b3
− a3

)

Figure 2: LYX formula mode

Figure 3: WinWord formula mode

der Windows, with its well-known TrueType-Fonts.
SUN’s software package StarOffice4 is frequently rec-
ommended for use with Linux, since it is both free
of charge and professionally built. In contrast to
LATEX, StarOffice can serve as a true office package
with word processing, spreadsheet, and database ca-
pabilities. LATEX, on the other hand, can do only one
thing: document preparation. But it accomplishes
this task better than any other software package.

Every word processor has its more or less
known strengths and weaknesses, which we refrain
from discussing here. The strengths of LATEX lie
without a doubt in the realm of technical and
scientific literature. Nowadays there are practically
no barriers to the use of LATEX, thanks to the
multitude of freely available software packages. The
capability of a completely installed (LA)TEX-LYX
package is in no way inferior to an installation of
an office package, and furthermore, using LATEX-LYX
results in great gains in speed when formatting large
documents.

4 http://www.sun.com/products/staroffice/

34 TUGboat, Volume 22 (2001), No. 1/2

4 The LYX-Layout

Frequently, the largest problem for LYX beginners is
the realization that the layout shown in the LYX
window will not be identical to the final layout
produced by LATEX. In following the philosophy,
LYX endeavors to achieve as many similarities to
the final layout as possible. Each of the LYX layout
commands translates into one or more LATEX layout
commands, but what appears in the LYX window is
merely a rough approximation of the final product.
For example, for the paragraph layout option called
Title, the associated LYX commands are as follows:

LyX Title-Layout

Style Title

Margin Static

LatexType Command

InTitle 1

LatexName title

ParSkip 0.4

ItemSep 0

TopSep 0

BottomSep 1

ParSep 1

Align Center

AlignPossible Center

LabelType No_Label

standard font definition

Font

Family Sans

Series Bold

Size Largest

EndFont

End #title

The LATEX Name title produces the direct
connection with LATEX, in that it determines what
should happen with the text that is shown in the
LYX window. It is also possible for the user to
design a completely new layout; for example, the
following LATEX code is generated from a user-
defined paragraph layout with a gray background.
Internally, the LYX layout command will be named
myStandardColor, and it will correspond to the
user-defined LATEX layout command cminipage.

Standard color-style definition

Style myStandardColor

Margin Static

LatexType Environment

LatexName cminipage

ParIndent MM

ParSkip 0.4

Align Block

AlignPossible Block, Left, Right, Center

LabelType No_Label

standard font definition

Font

color blue

family typewriter

EndFont

Preamble

Figure 4: The LYX-Layout Menu

\usepackage{color,calc}

\definecolor{myColor}{rgb}{0.9,0.9,0.9}% rgb

\newenvironment{cminipage}{%

[....]

\end{lrbox}%

\fcolorbox{myColor}{myColor}%

{\usebox{\@tempboxa}}%

}%

EndPreamble

End # myStandardColor

5 The Start

By today’s standards, the LYX graphical interface
appears somewhat spartan, but it contains all the
essential elements that are for the most part present
in all text processors. The buttons of the main LYX
window can be modified to reflect the individual
preferences of the user. Some additional icons
are already provided in the standard system, and
further ones may be created by the user and then
made available to the LYX community.

LYX has no formatting properties of its own,
since it is built entirely on top of LATEX. LYX can
therefore only begin its work after a LATEX document
class has been chosen. The number of these classes
is limited because they define only the most basic

TUGboat, Volume 22 (2001), No. 1/2 35

formatting properties. Some of the document classes
supported from LYX are as follows:

• article

– standard, amsart,5 cv, docbook (SGML),
dtk,6 egs,7 ejour2,8 elsart,9 exam,
Hebrew, IEEEtran, llncs,10 Komascript,
revtex, siamltex, ltugboat

• book

– standard, amsart, docbook (SGML),
Komascript

• report

– standard, Broadway,11 Komascript

• letter

– standard, (g-Brief) english/french/
german, Komascript

• seminar

• slide

• APA style (American Psychological
Association)

• CD-Box Cover

The default document class in LYX is article. The
user is also free to design completely new LYX-
Layouts, taking advantage of the fact that LYX is
an open system. Many universities have created
their own classes for theses and dissertations.12 In
order to make a new LATEX document class available
for LYX, a corresponding LYX layout must first be
created.

6 Text parameters

As with every document preparation system, there
are also some globally effective parameters in LATEX
applications. These can be set in the document GUI

(figure 5), which holds a lot of different parameters.

7 The Formula Generator

We have already mentioned the outstanding capabil-
ity of TEX to produce mathematical formulas. LYX
supports this capability in a graphical mode which
almost achieves WYSIWYG quality, as seen in fig-
ure 6, which is the screenshot of the following equa-

5 American Mathematical Society
6 The journal of the German TEX Users Group
7 European Geophysical Society
8 Journal of Geodesy
9 Elsevier Journal

10 Lecture Notes in Computer Science (Springer)
11 Special class for writers
12 Especially in the United States

Figure 5: The Document GUI

Figure 6: LYX in Mathmode

tion:

a = arg(z) =

0 (a < 0 ∧ b = 0)
π (a < 0 ∧ b = 0)

arctan Im(z)
Re(z) (a ∈ ℜ ∧ b > 0)

arctan Im(z)
Re(z) (a ∈ ℜ ∧ b < 0)

In contrast to the relatively easy-to-use math
editor in WinWord, there exists in LATEX consider-
ably more possibilities for vertical and horizontal po-
sitioning. The WinWord math editor, though, has
more menu choices than the LYX math panel, shown
in figure 7.

Figure 7: LYX Math-Panel

36 TUGboat, Volume 22 (2001), No. 1/2

Figure 8: Figure-Float in a collapsed state

The American Mathematical Society’s ams-

math-package offers extensive functions within the
context of mathematical formulas, which the up-
coming version of LYX will support.13

8 Floats

Figures and tables can be integrated into so-called
floating objects, or floats, that TEX can logically
arrange on the page. In addition to the standard
types of floats such as figures and tables, there is
also a predefined type of float for an algorithm. In
the LYX-Layout they appear in an open or collapsed
layout (figure 8).

Of course, the user is not restricted to the
existing types of floats but may instead create new
ones. For all types of floats there are corresponding
Listof commands (figure 9), each of which will
produce a list of all floats of that type, at whatever
location in the document the command is issued.

Figure 9: Inserting List of Figures and List of
Tables

9 Figures and Tables

Normally figures and tables are contained within
floating objects, since their positioning is essential
to the layout of the document. However, it is
also possible to insert them directly into the text.
All graphical objects must be in either PostScript
(.ps) or encapsulated PostScript (.eps) format. LYX

13 See also http://www.perce.de/lyx/Equations.pdf

Figure 10: Menu to insert References

supports some graphic conversion via an external
program like convert from the imagemagic package.
Version 1.2 will have much better support for the
graphics import.

10 Cross-References

LATEX provides several ways to include cross-refer-
ences to a different location in a document, but since
these methods are similar to those found in other
document preparation packages, we mention them
only briefly. The LATEX package hyperref supports
creating cross-references as a link into a pdf-file.
This type of cross-reference must be placed in the
LATEX preamble (see section 17), since the current
version of LYX only supports the prettyref package.
A cross-reference using the prettyref package is cre-
ated by selecting the type of reference from a menu
of available references, as shown in figure 10. The
upcoming LYX version 1.2 should contain a complete
integration of the hyperref package.

A cross-reference must refer to a label that has
been entered at some point in the document. The
user can insert a label at any point in the document
and choose any text for the name of the label. In a
long document, the number of labels could easily
exceed 100 or more; in this case, LYX provides
a nice feature: it automatically adds the type of
the cross-reference (for example, “sec” for section
like sec:minipages) before the cross-reference in the
text. LYX can display the labels in order of their
appearance in the text or in alphabetical order.

11 Minipages

Within LATEX, minipages are essential for handling
difficult layout issues and are therefore also sup-
ported directly within LYX.

TUGboat, Volume 22 (2001), No. 1/2 37

Figure 11: Paragraph layout for Minipages

Figure 12: Minipages in the upcoming version 1.2

A minipage is set up using the menu found
in Layout ⊲ Paragraph format ⊲ Extras, which is
being changed for LYX version 1.2 to make certain
options for minipages more straightforward and give
LYX more support (figure 12). Figure 11 shows this
menu as it appears in the current version of LYX.

12 Multi-Part Documents

When writing a book, there is a danger of losing the
overview of the work, especially when more than a
hundred pages must be organized. For this situation
LYX offers the ability to break a long unwieldy work
into separate, more manageable documents.

The structure of the main document might look
like that shown in figure 13. It contains only the
details of the chapters and sections (e.g., table of
contents or index) that are to be inserted, as well as
information about the manner in which the pages
are to be numbered. It is not necessary for the main
document to contain any text whatsoever.

LYX automatically opens all the required sub-
documents, if they are not yet open, whenever the

Figure 13: The main structure of a multipart
document

main document is first translated (e.g., to create
a pdf, PostScript, or dvi file) or when one sub-
document attempts to cross-reference a location in
another sub-document. LYX creates a common list
of all labels from the various sub-documents to fa-
cilitate cross-references between the sub-documents.

13 Bibliography

LYX supervises the entire process of creating a
bibliography: it runs the BibTEX program when
it is needed, without bothering the user with the
details. The insertion of a literature citation is done
by making a selection from a menu containing all the
entries in the bibliographical database (figure 14), or
by typing the keyword for this entry. The upcoming
1.2 version of LYX will give full natbib-support.

There are also several programs which make
the maintaining of the database easier. In LYX,
then, one only needs to choose from the database
the correct entry from which LYX should make
the citation. It is also possible to work with a
separate citation-database program that supports
input/output redirection (“piping”); Pybliographer,

38 TUGboat, Volume 22 (2001), No. 1/2

Figure 14: The citation-menu

for example, is such a program. “Piping” enables the
program to directly insert a citation into the text
through the so-called LYX server. This capability
is found in several current BibTEX programs, such
as TkBibTEX

14 and Sixpack.15 Instead of using
an external literature database, it is also possible to
work with the bibliography facility that is directly
supported within LYX. The citation keys must be
entered within the document that is currently being
edited, as shown in figure 15.

However, this procedure is not recommended,
because these citations cannot be reused in the
straightforward way that a database can be reused.
Such citations can only be inserted into other docu-
ments using the “cut-and-paste” method, which re-
quires that the user always have the name of the old
document handy.

14 Spellcheck

Since LYX doesn’t include its own spellchecker, the
user is free to employ any spellchecker that is started
from the command line, such as the ispell program.
The operation of the spellchecker is illustrated in
figure 16; since there is nothing novel about LYX’s
use of the spellchecker, we will not go into further
detail.

14 http://www.cat.csiro.au/cmst/staff/pic/tkbibtex.

html
15 http://www.santafe.edu/~dirk/sixpack/

Figure 15: The use of the bibliography layout

Figure 16: Running the Spellchecker

15 Preview and Printing

The print preview process takes place completely
outside of the LYX system, as well as outside the
realm of LATEX and TEX. LATEX produces a data
file in the dvi format, and the xdvi viewer can then
be used to preview the document. One drawback of
this process, however, is that if a document contains
many errors, LATEX will be unable to produce a dvi
file at all, which in turn makes it more difficult for
the user to locate the errors. As an alternative
to the dvi output, LYX can also create a Post-
Script file which can be viewed with the ghostview

program. This avenue is especially recommended for
documents containing special effects such as colors
or rotated figures and tables, since the dvi-viewer
lacks the capability to display such things. If the
option of printing to a file is chosen, then an external
shell script can subsequently be used on the file to
create a two-sided DIN-A5 output for a book.

TUGboat, Volume 22 (2001), No. 1/2 39

Figure 17: Supported Import/Export formats

16 Importing and Exporting

LYX supports many import and export methods di-
rectly from the Files ⊲ Import/Export menu, allow-
ing the corresponding external program to be se-
lected by the user. This is especially important for
converting a document to HTML, since the programs
for doing so differ greatly. Even though LYX has its
own file format, it is currently not recognized by any
known applications; therefore conversion from LYX
to another format is possible only by first converting
a LYX file to a TEX file. For this reason, in the list of
predefined conversions shown in figure 17, which can
be found under Edit ⊲ Preferences ⊲ Converter, LYX
doesn’t appear on the left-hand side of any of the
conversion options.

Frequently, the conversion of a LYX document
to PDF format is required. This conversion can be
achieved using either the ps2pdf program or with
the pdftex program; both possibilities exist within
LYX. A frequently asked question is whether the
capability exists to convert to and from Microsoft
Word. There is no simple solution to this problem;
in extreme cases, such as when complex formulas
and extensive tables are present, the RTF format
must be used. However, simple text can be success-
fully converted, both from RTF to TEX, and vice
versa. LYX supports the wvware program, if it is in-

stalled.16 The subsequent transfer from TEX to LYX
can be accomplished through the reLYX import op-
tion.

LYX offers direct support of chess diagrams, bit-
map graphics such as GIF, JPEG, and xfig files,
which are converted with convert in the eps-format.
In particular, the documentation of chess matches is
greatly simplified.

17 The LATEX Preamble

The LATEX preamble constitutes the actual interface
between LYX and LATEX, because it contains all the
(LA)TEX-specific definitions. A large part of the
LATEX preamble could be included instead in the
LYX text within TEX mode, but this action is not
recommended because no insight is gained by doing
so.

The LATEX preamble is an integral part of
every TEX file, although in theory it may be left
empty if no modifications to the standard document
class are desired. For LYX documents, though, at
the very least the preamble contains the command
describing how LYX should be printed, so that it
doesn’t appear as LYX. LYX itself tries to manage
the preamble itself, so that the user puts only
very special commands in the visible part of the
preamble.

In principle the preamble is nothing more than
a simple editor window in which the necessary
additional packages are specified, those which aren’t
automatically loaded by LYX itself. The use of
these simple editing functions is not one of LYX’s
strong points, but instead are vestiges of the past
that must be lived with. One could even use the
\input command to read in the entire preamble
as an external file, and employ an external editor
to modify it. A text with a complicated layout
routinely will have a complicated preamble as a
result.

18 Error Analysis

LYX runs LATEX always in batchmode and tries
its best to locate any errors that are generated
during this process, marking them with an error
flag in the spot in the document where they occur.
Clicking on the error flag will generate a window
(shown in figure 18) detailing the condition that
caused the error, enabling the user to analyze and
then eliminate the problem. These LATEX error
messages are sometimes very general, so that LYX
has problems locating the error and it can only do
its best.

16 http://www.wvware.com

40 TUGboat, Volume 22 (2001), No. 1/2

Figure 18: Error message

A LATEX run is similar to the compilation of
source code in a programming language; a single
error in the code may result in a very large number
of error messages. In longer documents, the number
of errors can easily reach one hundred or more.

19 Navigation

Navigating within an extensive document can be
a challenge, so LYX offers help in the form of a
document-specific menu. This menu contains the
names of all section and subsections, as well as tables
and figures, enabling the user to jump to any point
in the text with relative ease. Figure 19 shows all
sections and all figures of this text, which are all like
internal links, so that jumping to any place in the
text is easy.

Another navigational tool exists under Edit ⊲

Find and Replace, which operates in the same man-
ner as in other text editors. In the current version
of LYX, the “Find and Replace” utility works only
on text that appears on the screen; unfortunately it
does not “find and replace” command sequences.

20 Documentation

A large problem with open source projects is always
the documentation and help, which operate within
mailing lists. The volunteers who maintain the doc-
umentation are frequently unable to keep up with
the frantic pace of the developers, so that the doc-
umentation lags behind the currently available ver-
sion. Furthermore, users will often skip the docu-
mentation altogether, preferring instead to send a
question directly to the mailing list, a question that
most likely has already been asked and answered
many times over. Under the LYX menu option Help
there is a selection of help documents that are them-
selves LYX files, which may easily be printed. Al-
though the help files cover a considerable amount
of material, they suffer from a somewhat uninspired

Figure 19: Navigation in a LYX-Sourcefile

organization; for this reason users frequently have
problems finding the answer to a question.

The current version of LYX (1.1.6) contains
substantial differences from previous versions, yet
in a few places the documentation still needs to
be brought up to date. This task is being put
on hold for the time being, though, while most
of the documentation effort is going towards the
preparation of upcoming version 1.2.

21 Examples

Now that we have completed our whirlwind tour
through the basic features of LYX, we present a few
examples that will demonstrate the merits of using
a typesetting system like TEX in conjunction with
a document processor like LYX. The first example
(figure 20) shows the extensive use of LYX’s nearly
WYSIWYG-Matheditor.

The next example (figure 21) shows the use of
Unicode for Hebrew, Arabic and Russian. LYX also
supports Right-To-Left-written languages; however,
for some special issues, like search and replace, there
are restrictions. More Information about this special
topic of LYX is available at http://www.math.tau.
ac.il/~dekelts/lyx/.

TUGboat, Volume 22 (2001), No. 1/2 41

Figure 20: LYX and the use of the matheditor

Figure 21: LYX and the use of Unicode

22 LYX Sources

The web site http://www.lyx.org contains all the
essential information for installing LYX on all cur-
rent operating systems. For OS/2 and Windows
machines, an X-server is also needed. All systems
must have a fully installed TEX system, which can
be freely downloaded from http://www.ctan.org

or any mirror. Further download sources can be
found at http://www.lyx.org/help/, in particular
for special versions of LYX, like the one for Solaris
or Debian.

23 The LYX Community

As an open-source project, LYX must rely on the
intensive collaborative efforts of users who are in
constant communication about the implementation
and development of LYX. The LYX homepage, as
mentioned before, is at http://www.lyx.org. In
addition, there are mailing lists for:

Users: lyx-users@lists.lyx.org

(medium volume)

Developers: lyx-devel@lists.lyx.org

(medium to high volume)

Documentation team: lyx-doc@lists.lyx.org

(low volume)

Directions on how to register for one of these
mailing lists can be found on the LYX home-
page. An extensive website with tips and tricks
for LYX is located at http://www.lyx.org/help/.
For all mailing lists there are online archives lo-
cated at http://www.mail-archive.com/lyx-???

@lists.lyx.org/, where “???” should be substi-
tuted with “devel”, “user”, or “doc”.

A mid-term goal of LYX development is for
LYX to have the capability to run in every possible
GUI environment. A recurring theme is also the
integration of more LATEX packages, so that the user
is spared having to know about the inner workings
of LATEX.

⋄ Laura Elizabeth Jackson
Raleigh, North Carolina (USA)
lejacks2@unity.ncsu.edu

⋄ Herbert Voß
Berlin (Germany)
voss@lyx.org

42 TUGboat, Volume 22 (2001), No. 1/2

DVII: A TEX dvi file information utility

Adam H. Lewenberg

Abstract

dvii is a free utility written in portable C that extracts in-
formation from a TEX dvi file and displays it on the com-
mand line. The information can include paging, fonts,
specials, and per-page message digests. The output is
designed to be easily parsed by a text-processing lan-
guage (such as Perl) to allow other kinds of summaries
to be generated (such as a font difference utility, or to
help dvips print only those pages containing certain kinds
of \special’s).

−− ∗ −−

1 Introduction

Consider a dvi file. Perhaps you created it by com-
piling a TEX, or maybe you received it in your e-
mail. Here are some questions about the dvi file:

1. How many pages does it contain?

2. How do the “physical” pages correspond to the
“TEX” pages? (For example, if the file is printed,
what page number will be printed at the bot-
tom of the seventh page out of the printer; it
will not necessarily be 7.)

3. What fonts are called for? Which fonts are
called for on a specific page?

4. Which pages contain (externally linked) figures?

5. Have the page breaks changed since the last
time I compiled?

6. Has this file been corrupted?

7. When was this file compiled?1

8. Does this file use the same fonts as some other
file?

The dvii program is a free utility that extracts
and displays information from a TEX dvi file that
allows us to answer all of these questions quickly
and easily. For information on where to download
the dvii utility, see section 10.

2 An Example

If we run the dvii utility on the file test.dvi we get
the following output:

File size: 1188 bytes (1 K)

Comment string: TeX output 2001.12.29:2041

Page count: 7

Number of fonts: 3

f:[50/cmr10/1200]::4bf16079

f:[23/cmbx10/1000]::1af22256

f:[0/cmr10/1000]::4bf16079

1 This is not necessarily the same as the file date.

p:[1/1]

p:[2/2]

p:[3/3]

p:[4/4]

p:[5/5]

p:[6/-1]

p:[7/-3]

s:[3/3]:: A short special

s:[5/5]:: PSfile 1.eps

s:[5/5]:: PSfile 2.eps

s:[5/5]:: PSfile 3.EPS

s:[5/5]:: PSfile dog1.gif

s:[5/5]:: PSfile cat.eps

(To the see the source file test.tex see Appendix A.)
This output tells us several things. First of all,

there is a summary of the dvi file including the file
size, the comment string, and the number of fonts
and pages in the dvi file. Next, there is more de-
tailed information listing the fonts used, the pages
(both the “physical” page and the TEX page), and
the TEX specials.

3 Purpose and Motivation

Much of what dvii does could be done with Donald
Knuth’s dvitype and a text processing language like
Perl. My motivation was not to make another dvi

parser, but to create a utility that would extract
specific sorts of information quickly from a dvi file.

I wrote dvii with the following goals in mind:

1. It should be fast, faster than dvitype.

2. It should be easy to use the output as a back end
to Perl (or any other text processing language),
enabling the easy manipulation of the data for
more specific purposes.

3. It should be useful to the TEX community.

4. It should be portable.

I believe I have met most2 of these goals, but if
anyone has suggestions for improving this utility, I
will be quite happy to hear them.

4 Consistency

You can check that a dvi file has not been corrupted
by using the -C option.

dvii -C test.dvi

dvi file ’test.dvi’ passed validation

check (level 1).

Here is an example where dvii detects a problem:

dvii -C bad.dvi

[dvi validation error] missing postamble id

(should be 2)

2 However, it is hard to beat Knuth in program efficiency
and speed!

TUGboat, Volume 22 (2001), No. 1/2 43

5 Pages

You want to know the number of pages in a dvi

file. How do you determine this? You could view it
with a dvi viewer, or perhaps look at the .log file
that was generated when the dvi file was originally
created. But a dvi viewer is rather heavy machinery
to simply find the number of pages in a dvi file, and,
besides, you may be working from the command line
where there is no dvi viewer handy. As for the .log
file, it may no longer be around.

The dvii utility provides a page count virtu-
ally instantaneously. Furthermore, if you want to
know the page numbering layout of physical vs. TEX
pages, dvii will also tell you that. (By a “physical”
page I mean the order of the page as printed, and by
TEX page I mean the page as it appears printed in
the footer or running head. For example, the third
page out of the printer might have TEX page num-
ber −3, that is, iii.)3

From the example There are seven physical
pages where the first five have TEX page num-
ber matching the physical page number. Physical
pages 6 and 7 have TEX pages −1 and −3.

6 Fonts

One of the reasons that dvi files are not very por-
table is that the fonts that a dvi file uses are not
embedded in the dvi file itself, but rather are iden-
tified by number and name. TEX leaves it to the dvi
interpreter to find the proper external font. Thus,
if you receive a dvi file via e-mail or download one
from the web, there is a good chance it will not look
the way the author intended or perhaps it will not
display at all, unless you have the same fonts with
the same names as the dvi file’s author. So, a list
of fonts that a dvi file calls for is, at times, quite
useful.

The dvii utility will list each font used in a dvi

file listing its name, font number, scale factor, and
checksum. The checksum is especially useful in de-
tecting when two fonts that seem to be the same
(same name and scale) are in fact different.

From the example There are three fonts, two
copies of cmr10 (Computer Modern Roman 10pt)
scaled at 100% (font number 0) and 120% (font num-
ber 50), and cmbx10 (Computer Modern BoldFace
10pt) scaled at 100% (font number 23).

3 More accurately, by TEX page I mean the contents of
the \count0 register which (normally) stores the page number
that is printed on the page itself.

7 Specials

The TEX special is a “hook” that D. Knuth put
into TEX to allow later functionality without hav-
ing to rewrite TEX. To insert a special you use the
\special{} command. For all practical purposes,
TEX ignores specials,4 merely copying the special
text to the dvi output. It is up to the dvi driver to
decide what meaning (if any) to give to a special.

Some uses that people have made of specials are
to incorporate color, to help with the edit-compose-
view cycle, and, most commonly, to allow external
figure file inclusion, in particular the inclusion of
EPS files. The graphics and graphicx packages along
with most dvi-to-PostScript drivers indicate the in-
clusion of an EPS file by inserting a special that
starts with the string PSfile and then is followed
by a number of arguments including the file name
and the dimensions of the figure.

The dvii utility will list all specials in a dvi

file. If you want to list all specials that match some
particular string, you can pipe the output of dvii

through the standard grep utility.

From the example There are six specials, one on
page 3, and five on page 5. The specials on page 5
appear to be included EPS files with the file name
specified after the string PSfile.

8 Message Hashes

At this point, I have shown how to answer all the
questions asked in section 1 except questions 5 and 8.
For an answer to question 8 see section 9.1. In this
section I will take up question 5.

The trickiest part of setting type is almost al-
ways page optimization, that is, fixing bad page
breaks and getting floats (figures, tables, etc.) put in
the right places. This part of composition is more an
art than a science although TEX and LATEX do pro-
vide tools to help. This is why you always, always5

wait until the last possible second before doing final
page layout.

But, inevitably, after you have spent a week get-
ting all your page breaks and floats in your 800 page
book set just where you want them, someone comes
along and insists on making some small change that
has the potential of messing everything up. Wouldn’t
it be nice to have a quick and easy method to see
how a change to the text affects the page layout for
the entire document?

My solution to this is to take a numerical “snap-
shot” of each page before and after the change and

4 Well, almost. It is possible for a special to affect page
breaks.

5 Always!

44 TUGboat, Volume 22 (2001), No. 1/2

then see which pages’ snapshots have changed. This
snapshot is called a message digest or checksum. dvii

can, if asked, calculate a 16-byte checksum for each
page. This checksum will change if the contents of
the page change. Thus, if you calculate the mes-
sage digest before and after a change to the TEX
source, you can see which pages have changed and
thus where to look for possible new bad page breaks.

From the example Here is the message digest
for test.dvi:

dvii -m test.dvi

[message digest: simple sum]

p:[1/1]::D8C977816A091771A3A631E7582DAD6D

p:[2/2]::284E8575505581BAA95B7CB132F1F435

p:[3/3]::16E5A31FF87F926DB1F86CAD165C5453

p:[4/4]::C72EE84EFA36764C537229D4968F8DF9

p:[5/5]::68E5A2E9D7320743CB85769CAAEAB023

p:[6/-1]::DE72BC3345FFDF7E779C8C667DCE3F97

p:[7/-3]::13B730AA855EB18E30CED11AB1D26FAF

Let test2.tex be an exact copy of test.tex
except that we have changed the first word “This”
to “Thus” (see source listing in Appendix A). Here
is the resulting message digest.

dvii -m test2

[message digest: simple sum]

p:[1/1]::556A2538928963D8B5776E1245364DE6

p:[2/2]::284E8575505581BAA95B7CB132F1F435

p:[3/3]::16E5A31FF87F926DB1F86CAD165C5453

p:[4/4]::C72EE84EFA36764C537229D4968F8DF9

p:[5/5]::68E5A2E9D7320743CB85769CAAEAB023

p:[6/-1]::DE72BC3345FFDF7E779C8C667DCE3F97

p:[7/-3]::13B730AA855EB18E30CED11AB1D26FAF

If you look carefully, you will notice that the check-
sum for the first page has changed while the others
have not.

For a large project you would not want to try
to detect such changes by eye, so you would instead
use a utility such as diff to detect the differences.

dvii -m test > test.md

dvii -m test2 > test2.md

diff test.md test2.md

2c2

< p:[1/1]::D8C977816A091771A3A631E7582DAD6D

> p:[1/1]::556A2538928963D8B5776E1245364DE6

The first two commands store the message digests
in the files test.md and test2.md. The third com-
mand uses the diff command to find how the two
files test.md and test2.md differ; in this case, the
diff command shows us that they differ only in the
first line.

9 Some applications based on dvii

The output of dvii has been designed to make it
easy for text processing programs to manipulate and

provide further useful information. Because of its
near ubiquitousness, ease of use, and low cost (free),
I use Perl. If Unix is your computing environment
you probably already have Perl installed. If you use
Windows, then you can download a free version. See
section 10 for more information on where to get Perl.

In what follows I describe two such scripts based
on Perl.6

9.1 fontdiff.pl

The Perl script fontdiff.pl finds the font differ-
ences between two dvi files, that is, it lists which
fonts are present in one and not the other. Here is
an example using the two dvi files a.dvi and b.dvi:

perl fontdiff.pl -l a b

Fonts in a.dvi NOT in b.dvi:

NOTE: fonts marked with * are in BOTH files

f:[NN/cmbx10/1000]::1af22256

* f:[NN/cmr10/1000]::4bf16079

Fonts in b.dvi NOT in a.dvi:

NOTE: fonts marked with * are in BOTH files

f:[NN/cmti10/1000]::fd00273a

f:[NN/cmsl10/1000]::70ae304a

* f:[NN/cmr10/1000]::4bf16079

9.2 specials.pl

This Perl script creates the command-line option
that works with Tom Rockicki’s dvips so that
just those pages of a dvi file containing specials
get printed. Recall from Section 2, the dvi file
test.dvi has \special’s on pages 3 and 5. To
print just those pages using dvips you would type
dvips -pp3,5 test. If you run specials.pl on
the file test.dvi we get

perl specials.pl test

-pp3,5

Although this example is short, you can see how
useful it would be to generate this page list auto-
matically if your dvi file had hundreds of pages and
dozens of figures.

Observe that in the above example page 3 was
listed even though page 3 does not have a figure spe-
cial. To list only those pages that have a \special

matching some string, you can use the --grep op-
tion. For example, most TEX and LATEX graphics in-
clusion packages indicate an included figure by start-
ing the \special with the string PSfile, so to list

6 Both Perl scripts, as well as more information on their
use, are available at the dvii home page; see Section 10.

TUGboat, Volume 22 (2001), No. 1/2 45

only those pages which have a special that contain
the string PSfile you would type

perl specials.pl --grep PSfile test

-pp5

10 Where and how to get it

The dvii utility has its home page at http://www.

macrotex.net/dvii/dvii.html. At this site you
can download the C source code which consists of a
single file and should compile with any standard C
compiler. No special libraries are required. There
are no licensing restrictions on the use of this utility.

If you do not wish to, or are unable to com-
pile the source code, there are binaries for Windows,
Linux, Solaris, and DOS.7 To install, download the
appropriate executable file and put it somewhere in
your path.

You can also download a manual for dvii which
explains in detail all the options. This manual is
available in HTML, dvi, and PDF formats.

If you prefer, you can download from CTAN the
source code, manual (in PDF), and a DOS/Windows
executable which you will find in the dviware/dvii
directory.

Perl is available on nearly every computing plat-
form for no cost. If you work on a Unix or Unix-
like platform Perl is probably already installed. For
more information on obtaining Perl, go to the Com-
prehensive Perl Archive Network (CPAN) at www.

cpan.org.
The diff and grep utilities are even more likely

to be already available on Unix and Unix-like sys-
tems. If they are not, you can get GNU versions
at www.gnu.org. If you run Windows, you can get
them at the Cygwin home at http://sourceware.
cygnus.com/cygwin/.

11 Acknowledgements

Heiko Oberdiek made significant suggestions on im-
proving the performance of the code, and pointed
out several errors. Tom Kacvinsky helped make the
code work on 64-bit machines.

7 If you can compile the code for other platforms, I would
be happy to post them there. I am especially looking for a
Macintosh version (does Macintosh have a command line?).

A The source for test.tex

% This is test.tex

This is page 1/1.

\eject

This is page 2/2.

\eject

This is page 3/3 with a short special.

Also, a rule.

\vrule width1cm depth1cm height 1cm\relax

\special{A short special}

\eject

This is page 4/4 {\bf without} any specials.

\eject

This is page 5/5 with 5 specials.

\special{PSfile 1.eps}

\special{PSfile 2.eps}

\special{PSfile 3.EPS}

\special{PSfile dog1.gif}

\special{PSfile cat.eps}

\eject

\pageno = -1

\font\a=cmr10 scaled 1200

{\a This is page 6/-1 with font cmr10

scaled 1200.}

\eject

\pageno = -3

This page is nothing special.

\eject\eject\eject\eject

\bye

References

[1] Donald E. Knuth. The TEXbook. Addison-
Wesley, Reading, Massachusetts, October 1990.

⋄ Adam H. Lewenberg
211 Paddock Drive East
Savoy, Illinois 61874
adam@macrotex.net

46 TUGboat, Volume 22 (2001), No. 1/2

Graphics

Drawing Graphs with MetaPost

John D. Hobby

Abstract

This paper describes a graph-drawing package that
has been implemented as an extension to the Meta-
Post graphics language. MetaPost has a powerful
macro facility for implementing such extensions.
There are also some new language features that
support the graph macros. Existing features for
generating and manipulating pictures allow the user
to do things that would be difficult to achieve in a
stand-alone graph package.

1 Introduction

MetaPost is a batch-oriented graphics language
based on Knuth’s METAFONT, but with PostScript
output and numerous features for integrating text
and graphics. The author has tried to make this
paper as independent as possible of the user’s man-
ual [6], but fully appreciating all the material re-
quires some knowledge of the MetaPost language.

We concentrate on the mechanics of producing
particular kinds of graphs because the question of
what type of graph is best in a given situation
is covered elsewhere; e.g., Cleveland [2, 4, 3] and
Tufte [11]. The goal is to provide at least the power
of UNIX grap [1], but within the MetaPost language.
Hence the package is implemented using MetaPost’s
powerful macro facility.

The graph macros provide the following func-
tionality:

1. Automatic scaling

2. Automatic generation and labeling of tick
marks or grid lines

3. Multiple coordinate systems

4. Linear and logarithmic scales

5. Separate data files

6. Ability to handle numbers outside the usual
range

7. Arbitrary plotting symbols

8. Drawing, filling, and labeling commands for
graphs

In addition to these items, the user also has access
to all the features described in the MetaPost user’s
manual [6]. These include access to almost all the
features of PostScript, ability to use and manipulate
typeset text, ability to solve linear equations, and

data types for points, curves, pictures, and coordi-
nate transformations.

Section 2 describes the graph macros from a
user’s perspective and presents several examples.
Sections 3 and 4 discuss auxiliary packages for ma-
nipulating and typesetting numbers and Section 5
gives some concluding remarks. Appendix A sum-
marizes the graph-drawing macros, and Appendix B
describes some recent additions to the MetaPost
language that have not been presented elsewhere.

2 Using the Graph Macros

A MetaPost input file that uses the graph macros
should begin with

input graph

This reads a macro file graph.mp and defines the
graph-drawing commands explained below. The rest
of the file should be one or more instances of

beginfig(〈figure number〉);
〈graphics commands〉 endfig;

followed by end.
The following 〈graphics commands〉 suffice to

generate the graph in Figure 1 from the data file
agepop91.d:

draw begingraph(3in,2in);

gdraw "agepop91.d";

endgraph;

(Each line of agepop91.d gives an age followed the
estimated number of Americans of that age in 1991
[10].)

2.1 Basic Graph-Drawing Commands

All graphs should begin with

begingraph(〈width〉,〈height〉);

and end with endgraph. This is syntactically a
〈picture expression〉, so it should be preceded by
draw and followed by a semicolon as in the example.1

The 〈width〉 and 〈height〉 give the dimensions of the
graph itself without the axis labels.

The command

gdraw 〈expression〉 〈option list〉

draws a graph line. If the 〈expression〉 is of type
string, it names a data file; otherwise it is a path
that gives the function to draw. The 〈option list〉 is
zero or more drawing options

withpen 〈pen expression〉
| withcolor 〈color expression〉
| dashed 〈picture expression〉

1 See the user’s manual [6] for explanations of draw

commands and syntactic elements like 〈picture expression〉.

TUGboat, Volume 22 (2001), No. 1/2 47

0 20 40 60 80

106

2×106

3×106

4×106

Figure 1: A graph of the 1991 age distribution in the United States

that give the line width, color, or dash pattern as
explained in the User’s Manual [6].

In addition to the standard drawing options,
the 〈option list〉 in a gdraw statement can contain

plot 〈picture expression〉

The 〈picture expression〉 gives a plotting symbol
to be drawn at each path knot. The plot option
suppresses line drawing so that2

gdraw "agepop91.d" plot btex • etex

generates only bullets as shown in Figure 2. (Fol-
lowing the plot option with a withpen option would
cause the line to reappear superimposed on the
plotting symbols.)

The glabel and gdotlabel commands add
labels to a graph. The syntax for glabel is

glabel.〈label suffix〉
(〈string or picture expression〉, 〈location〉)
〈option list〉

where 〈location〉 identifies the location being labeled
and 〈label suffix〉 tells how the label is offset relative
to that location. The gdotlabel command is
identical, except it marks the location with a dot.
A 〈label suffix〉 is as in plain MetaPost: 〈empty〉
centers the label on the location; lft, rt, top, bot
offset the label horizontally or vertically; and ulft,
urt, llft, lrt give diagonal offsets. The 〈location〉
can be a pair of graph coordinates, a knot number
on the last gdraw path, or the special location OUT.
Thus

gdotlabel.top(btex (50, 0) etex, 50,0)

2 Troff users should replace btex \bullet etex with
btex \(bu etex.

would put a dot at graph coordinates (50,0) and
place the typeset text “(50, 0)” above it. Alterna-
tively,

glabel.ulft("Knot3", 3)

typesets the string "Knot3" and places it above and
to the left of Knot 3 of the last gdraw path. (The
knot number 3 is the path’s “time” parameter [6,
Section 8.2].)

The 〈location〉 OUT places a label relative to
the whole graph. For example, replacing “gdraw
"agepop91.d"” with

glabel.lft(btex \vbox{\hbox{Population}

\hbox{in millions}} etex, OUT);

glabel.bot(btex Age in years etex, OUT)

gdraw "agepopm.d";

in the input for Figure 1 generates Figure 3. This
improves the graph by adding axis labels and using a
new data file agepopm.d where the populations have
been divided by one million to avoid large numbers.
We shall see later that simple transformations such
as this can be achieved without generating new data
files.

All flavors of TEX can handle multi-line labels
via the \hboxwithin \vbox arrangement used above,
but LATEX users will find it more natural to use the
tabular environment [9]. Troff users can use nofill
mode:

btex .nf Population in millions etex

2.2 Coordinate Systems

The graph macros automatically shift and rescale
coordinates from data files, gdraw paths, and
glabel locations to fit the graph. Whether the
range of y coordinates is 0.64 to 4.6 or 640,000 to
4,600,000, they get scaled to fill about 88% of the

48 TUGboat, Volume 22 (2001), No. 1/2

••
•••••••

•••
•••••••

•
••
•••
•
•
•
•

•••••••••
•
•
••••

•

•••••
•
•••••••••

•••••••••••••••••••••••••

0 20 40 60 80

106

2×106

3×106

4×106

Figure 2: The 1991 age distribution plotted with bullets

0 20 40 60 80

1

2

3

4

Age in years

Population
in millions

Figure 3: An improved version of the 1991 age distribution graph

height specified in the begingraph statement. Of
course line widths, labels, and plotting symbols are
not rescaled.

The setrange command controls the shifting
and rescaling process by specifying the minimum
and maximum graph coordinates:

setrange(〈coordinates〉, 〈coordinates〉)

where

〈coordinates〉 → 〈pair expression〉
| 〈numeric or string expression〉,
〈numeric or string expression〉

The first 〈coordinates〉 give (xmin, ymin) and the
second give (xmax, ymax). The lines x = xmin,
x = xmax, y = ymin, and y = ymax define the
rectangular frame around the graph in Figures 1–
3. For example, an adding a statement

setrange(origin, whatever,whatever)

to the input for Figure 3 yields Figure 4. The
first 〈coordinates〉 are given by the predefined pair
constant origin, and the other coordinates are
left unspecified. Any unknown value would work
as well, but whatever is the standard MetaPost
representation for an anonymous unknown value.

Notice that the syntax for setrange allows
coordinate values to be given as strings. Many
commands in the graph package allow this option.
It is provided because the MetaPost language uses
fixed point numbers that must be less than 32768.
This limitation is not as serious as it sounds because
good graph design dictates that coordinate values
should be “of reasonable magnitude” [2, 11]. If you
really want x and y to range from 0 to 1,000,000,

setrange(origin, "1e6","1e6")

TUGboat, Volume 22 (2001), No. 1/2 49

draw begingraph(3in,2in);

glabel.lft(btex \vbox{\hbox{Population} \hbox{in millions}} etex, OUT);

glabel.bot(btex Age in years etex, OUT);

setrange(origin, whatever,whatever);

gdraw "agepopm.d";

endgraph;

0 20 40 60 80

0

1

2

3

4

Age in years

Population
in millions

Figure 4: The 1991 age distribution graph and the input that creates it.

does the job. Any fixed or floating point repre-
sentation is acceptable as long as the exponent is
introduced by the letter “e”.

Coordinate systems need not be linear. The
setcoords command allows either or both axes to
have logarithmic spacing:

〈coordinate setting〉 →
setcoords(〈coordinate type〉, 〈coordinate type〉)

〈coordinate type〉 →
log | linear | -log | -linear

A negative 〈coordinate type〉 makes x (or y) run
backwards so it is largest on the left side (or bottom)
of the graph.

Figure 5 graphs execution times for two matrix
multiplication algorithms using

setcoords(log,log)

to specify logarithmic spacing on both axes. The
data file matmul.d gives timings for both algorithms:

20 .007861 standard MM: size, seconds

30 .022051

40 .050391

60 .15922

80 .4031

120 1.53

160 3.915

240 18.55

320 78.28

480 279.24

20 .006611 Strassen: size, seconds

30 .020820

40 .049219

60 .163281

80 .3975

120 1.3125

160 3.04

240 9.95

320 22.17

480 72.60

A blank line in a data file ends a data set. Sub-
sequent gdraw commands access additional data sets
by just naming the same data file again. Since each
line gives one x coordinate and one y coordinate,
commentary material after the second data field on
a line is ignored.

Placing a setcoords command between two
gdraw commands graphs two functions in different
coordinate systems as shown in Figure 6. Whenever
you give a setcoords command, the interpreter
examines what has been drawn, selects appropriate
x and y ranges, and scales everything to fit. Every-
thing drawn afterward is in a new coordinate system
that need not have anything in common with the
old coordinates unless setrange commands enforce
similar coordinate ranges. For instance, the two
setrange commands force both coordinate systems
to have x ranging from 80 to 90 and y starting at 0.

When you use multiple coordinate systems, you
have to specify where the axis labels go. The default
is to put tick marks on the bottom and the left
side of the frame using the coordinate system in

50 TUGboat, Volume 22 (2001), No. 1/2

Standard

Strassen

20 50 100 200 500

0.01

0.1

1

10

100

Matrix size

Seconds

draw begingraph(2.3in,2in);

setcoords(log,log);

glabel.lft(btex Seconds etex,OUT);

glabel.bot(btex Matrix size etex,

OUT);

gdraw "matmul.d" dashed evenly;

glabel.ulft(btex Standard etex,8);

gdraw "matmul.d";

glabel.lrt(btex Strassen etex,7);

endgraph;

Figure 5: Timings for two matrix multiplication algorithms with the corresponding MetaPost input.

draw begingraph(6.5cm,4.5cm);

setrange(80,0, 90,whatever);

glabel.bot(btex Year etex, OUT);

glabel.lft(btex \vbox{\hbox{Emissions in} \hbox{thousands of}

\hbox{metric tons} \hbox{(heavy line)}}etex, OUT);

gdraw "lead.d" withpen pencircle scaled 1.5pt;

autogrid(,otick.lft);

setcoords(linear,linear);

setrange(80,0, 90,whatever);

glabel.rt(btex \vbox{\hbox{Micrograms} \hbox{per cubic}

\hbox{meter of air} \hbox{(thin line)}}etex, OUT);

gdraw "lead.d";

autogrid(otick.bot,otick.rt);

endgraph;

0

20

40

60

80 82 84 86 88 90

0

0.1

0.2

0.3

0.4

0.5

Year

Micrograms
per cubic
meter of air
(thin line)

Emissions in
thousands of
metric tons
(heavy line)

Figure 6: Annual lead emissions and average level at atmospheric monitoring stations in the United
States. The MetaPost input is shown above the graph.

TUGboat, Volume 22 (2001), No. 1/2 51

effect when the endgraph command is interpreted.
Figure 6 uses the

autogrid(,otick.lft)

to label the left side of the graph with the y co-
ordinates in effect before the setcoords command.
This suppresses the default axis labels, so another
autogrid command is needed to label the bottom
and right sides of the graph using the new coordinate
system. The general syntax is

autogrid(〈axis label command〉,
〈axis label command〉) 〈option list〉

where

〈axis label command〉 →
〈empty〉 | 〈grid or tick〉 〈label suffix〉

〈grid or tick〉 → grid | itick | otick

The 〈label suffix〉 should be lft, rt, top, or bot.
The first argument to autogrid tells how to

label the x axis and the second argument does
the same for y. An 〈empty〉 argument suppresses
labeling for that axis. Otherwise, the 〈label suffix〉
tells which side of the graph gets the numeric label.
Be careful to use bot or top for the x axis and lft

or rt for the y axis. Use otick for outward tick
marks, itick for inward tick marks, and grid for
grid lines. The 〈option list〉 tells how to draw the
tick marks or grid lines. Grid lines tend to be a
little overpowering, so it is a good idea to give a
withcolor option to make them light gray so they
do not make the graph too busy.

2.3 Explicit Grids and Framing

In case autogrid is not flexible enough, axis label
commands generate grid lines or tick marks one at
a time. The syntax is

〈grid or tick〉.〈label suffix〉
(〈label format〉, 〈numeric or string expression〉)
〈option list〉

where 〈grid or tick〉 and 〈label suffix〉 are as in
autogrid, and 〈label format〉 is either a format
string like "%g" or a picture containing the typeset
numeric label.

The axis label commands use a macro

format(〈format string〉,
〈numeric or string expression〉)

to typeset numeric labels. Full details appear in Sec-
tion 4, but when the 〈format string〉 is "%g", it uses
decimal notation unless the number is large enough
or small enough to require scientific notation.

The example in Figure 7 invokes

format("

explicitly so that grid lines can be placed at trans-
formed coordinates. It defines the transformation

newy(y) = y/75 + ln y and shows that this function
increases almost linearly.3 This is a little like using
logarithmic y-coordinates, except that y is mapped
to y/75 + ln y instead of just ln y.

Figure 7 uses the command

frame.〈label suffix〉 〈option list〉

to draw a special frame around the graph. In
this case the 〈label suffix〉 is llft to draw just
the bottom and left sides of the frame. Suffixes
lrt, ulft, and urt draw other combinations of two
sides; suffixes lft, rt, top, bot draw one side, and
〈empty〉 draws the whole frame. For example

frame dashed evenly

draws all four sides with dashed lines. The default
four-sided frame is drawn only when there is no
explicit frame command.

To label an axis as autogrid does but with the
labels transformed somehow, use

auto.x or auto.y

for positioning tick marks or grid lines. These
macros produce comma-separated lists for use in
for loops. Any x or y values in these lists that
cannot be represented accurately within MetaPost’s
fixed-point number system are given as strings. A
standard macro package that is loaded via

input sarith

defines arithmetic operators that work on numbers
or strings. Binary operators Sadd, Ssub, Smul, and
Sdiv do addition, subtraction, multiplication, and
division.

One possible application is rescaling data. Fig-
ure 4 used a special data file agepopm.d that had
y values divided by one million. This could be
avoided by replacing “gdraw "agepopm.d"” by

gdraw "agepop91.d";

for u=auto.y:

otick.lft(format(" endfor

autogrid(otick.bot,)

2.4 Processing Data Files

The most general tool for processing data files is the
gdata command:

gdata(〈string expression〉, 〈variable〉,
〈commands〉)

It takes a file name, a variable v, and a list of
commands to be executed for each line of the data
file. The commands are executed with i set to the
input line number and strings v1, v2, v3, . . . set to
the input fields on the current line. A null string
marks the end of the v array.

3 The manual [6] explains how vardef defines functions
and mlog computes logarithms.

52 TUGboat, Volume 22 (2001), No. 1/2

vardef newy(expr y) = (256/75)*y + mlog y enddef;

draw begingraph(3in,2in);

glabel.lft(btex \vbox{\hbox{Population} \hbox{in millions}} etex, OUT);

gdraw "ttimepop.d";

for y=5,10,20,50,100,150,200,250:

grid.lft(format("%g",y), newy(y)) withcolor .85white;

endfor

autogrid(grid.bot,) withcolor .85white;

frame.llft;

endgraph;

5

10

20

50

100

150

200

250

1800 1850 1900 1950 2000

Population
in millions

Figure 7: Population of the United States in millions versus time with the population re-expressed as
p/75 + ln p. The MetaPost input shown above the graph assumes a data file ttimepop.d that gives (year,
p/75 + ln p) pairs.

Using a glabel command inside of gdata gen-
erates a scatter plot as shown in Figure 8. The data
file countries.d begins

20.910 75.7 US

1.831 66.7 Alg

where the last field in each line gives the label to
be plotted. Setting defaultfont in the first line of
input selects a small font for these labels. Without
these labels, no gdata command would be needed.
Replacing the gdata command with

gdraw "countries.d" plot btex \circetex

would change the abbreviated country names to
open circles.

Both gdraw and gdata ignore an optional initial
‘%’ on each input line, parse data fields separated by
white space, and stop if they encounter an input
line with no data fields. Leading percent signs make
graph data look like MetaPost comments so that
numeric data can be placed at the beginning of a
MetaPost input file.

It is often useful to construct one or more paths
when reading a data file with gdata. The augment

command is designed for this:

augment.〈path variable〉 (〈coordinates〉)

If the path variable does not have a known value, it
becomes a path of length zero at the given coordi-
nates; otherwise a line segment to the given coordi-
nates is appended to the path. The 〈coordinates〉
may be a pair expression or any combination of
strings and numerics as explained at the beginning
of Section 2.2.

If a file timepop.d gives t, p pairs, augment can
be used like this to graph newy(p) versus t:

path p;

gdata("timepop.d", s,

augment.p(s1, newy(scantokens s2)););

gdraw p;

(MetaPost’s scantokens primitive interprets a
string as if it were the contents of an input file. This
finds the numeric value of data field s2.)

Figure 9 shows how to use augment to read
multiple column data and make multiple paths.
Paths p2, p3, p4, p5 give cumulative totals for
columns 2 through 5 and pictures lab2 through lab5
give corresponding labels. The expression

image(unfill bbox lab[j]; draw lab[j])

executes the given drawing commands and returns
the resulting picture: “unfill bbox lab[j]” puts

TUGboat, Volume 22 (2001), No. 1/2 53

defaultfont:="cmr7";

draw begingraph(3in,2in);

glabel.lft(btex \vbox{\hbox{Life}\hbox{expectancy}} etex, OUT);

glabel.bot(btex Per capita G.N.P. (thousands of dollars) etex, OUT);

setcoords(log,linear);

gdata("countries.d", s,

glabel(s3, s1, s2);

)

endgraph;

US

Alg

Arg

Aus

Ban

Bel

Brz

Bul

Bur

Can

Chl

Chn

Tai

Col
Cze

Egy

Eth

Fra
Ger

Gha

Gre

Hun

Ind

Inn

Irn

Ita
Jap

Ken

Mad

Mal

Mex

Mor

Moz

Nep

Nth

Nig

NKo

Pak

PerPhi

Pol
Por

Rom

SAf

SKo USS

Spn

Sri

Sud

Swe
Swi

Syr

Tnz

Tha
Tur

Uga

UK

Ven
Yug

Zai

0.1 0.2 0.5 1 2 5 10 20

50

60

70

80

Per capita G.N.P. (thousands of dollars)

Life
expectancy

Figure 8: A scatter plot and the commands that generated it

down a white background and “draw lab[j]” puts
the label on the background. The gfill command
is just like gdraw, except it takes a cyclic path and
fills the interior with a solid color. The color is black
unless a withcolor clause specifies another color.
See the manual [6] for explanations of for loops,
arrays, colors, and path construction operators like
--, cycle, and reverse.

3 Manipulating Big Numbers

MetaPost inherits a fixed-point number system from
Knuth’s METAFONT [8]. Numbers are expressed
in multiples of 2−16 and they must have absolute
value less than 32768. Knuth chose this system
because it is perfectly adequate for font design, and
it is guaranteed to give identical results on all types
of computers. Fixed-point numbers are seldom a
problem in MetaPost because all computations are
based on coordinates that are limited by the size
of the paper on which the output is to be printed.
This does not hold for the input data in a graph-
drawing application. Although graphs look best
when coordinate axes are labeled with numbers of
reasonable magnitude, the strict limits of fixed-point
arithmetic would be inconvenient.

A simple way to handle large numbers is to
include the line

input sarith

and then use binary operators Sadd, Ssub, Smul, and
Sdiv in place of +, -, *, and /. These operators are
inefficient but very flexible. They accept numbers
or strings and return strings in exponential notation
with the exponent marked by “e”; e.g., "6.7e-11"
means 6.7× 10−11.

The unary operator4

Sabs 〈string〉

finds a string that represents the absolute value.
Binary operators Sleq and Sneq perform numeric
comparisons on strings and return boolean results.

The operation

Scvnum 〈string〉

finds the numeric value for a string if this can
be done without overflowing MetaPost’s fixed-point
number system. If the string does not contain “e”, it
is much more efficient to use the primitive operation

scantokens 〈string〉

The above operators are based on a low-level
package that manipulates numbers in “Mlog form.”

4 The argument to a unary operator need not be paren-
thesized unless it is an expression involving binary operators.

54 TUGboat, Volume 22 (2001), No. 1/2

draw begingraph(3in,2in);

glabel.lft(btex \vbox{\hbox{Quadrillions}\hbox{of BTU}} etex, OUT);

path p[];

numeric t;

gdata("energy.d", $,

t:=0; augment.p1($1,0);

for j=2 upto 5:

t:=t+scantokens $[j]; augment.p[j]($1,t);

endfor)

picture lab[];

lab2=btex coal etex; lab3=btex crude oil etex;

lab4=btex natural gas etex; lab5=btex hydroelectric etex;

for j=5 downto 2:

gfill p[j]--reverse p[j-1]--cycle withcolor .16j*white;

glabel.lft(image(unfill bbox lab[j]; draw lab[j]), .7+length p[j]);

endfor

endgraph;

hydroelectric

natural gas

crude oil

coal

1900 1920 1940 1960

0

20

40

60

Quadrillions
of BTU

Figure 9: A graph of U.S. annual energy production and the commands that generated it

A number x in Mlog form represents

µ216x, where µ = −e2−24

.

Any value between 1.61×10−28 and 3.88×1055 can
be represented this way. (There is a constant Mten
such that k ∗ Mten represents 10k for any integer k
in the interval [−29, 55].)

The main reason for mentioning Mlog form is
that it allows graph data to be manipulated as a
MetaPost path. The function

Mreadpath(〈file name〉)

reads a data file and returns a path where all the
coordinates are in Mlog form. An internal variable
Gpaths determines whether gdraw and gfill expect
paths to be given in Mlog form. For example, this
graphs the data in agepop91.d with y coordinates
divided by one million:

interim Gpaths:=log;

gdraw Mreadpath("agepop91.d")

shifted (0,-6*Mten);

4 Typesetting Numbers

The graph package needs to compute axis labels and
then typeset them. The macro

format(〈string expression〉,
〈numeric or string expression〉)

does this. You must first input graph or input

format to load the macro file. The macro takes a
format string and a number to typeset and returns
a picture containing the typeset result. Thus

format("%g",2+2) yields 4

and

format("%3g","6.022e23") yields 6.02×1023

A format string consists of

TUGboat, Volume 22 (2001), No. 1/2 55

• an optional initial string not containing a per-
cent sign,

• a percent sign,

• an optional numeric precision p,

• one of the conversion letters e, f, g, G,

• an optional final string β.

The initial and final strings are typeset in the default
font (usually cmr10), and the typeset number is
placed between them. For the e and g formats, the
precision p is the number of significant digits allowed
after rounding; for f and G, the number is rounded
to the nearest multiple of 10−p. If the precision is
not specified, the default is p = 3. The e format
always uses scientific notation and the f format uses
ordinary decimal notation but reverts to scientific
notation if the number is at least 10000. The g and
G formats also revert to scientific notation for non-
zero numbers of magnitude less than 0.001.

The format macro needs a set of templates
to determine what font to use, how to position
the exponent, etc. The templates are normally
initialized automatically, but it is possible to set
them explicitly by passing five picture expressions to
init_numbers. For instance, the default definition
for TEX users is

init_numbers(btex$-$etex, btex1etex,

btex${\times}10$etex,

btex${}^-$etex, btex2etex)

The first argument tells how to typeset a leading
minus sign; the second argument is an example of
a 1-digit mantissa; third comes whatever to put
after the mantissa in scientific notation; next come
a leading minus sign for the exponent and a sample
1-digit exponent.

Picture variable Fe_plus gives a leading plus
sign for positive numbers, and Fe_base gives what-
ever should precede the exponent when typeset-
ting a power of ten. Calling init_numbers initial-
izes Fe_plus to an empty picture and constructs
Fe_base from its second and third arguments.

5 Conclusion

The graph package makes it convenient to generate
graphs from within the MetaPost language. The
primary benefits are the power of the MetaPost
language and its ability to interact with TEX or troff
for typesetting labels. Typeset labels can be stored
in picture variables and manipulated in various ways
such as measuring the bounding box and providing
a white background.

We have seen how to generate shaded regions
and control line width, color, and styles of dashed
lines. Numerous other variations are possible. The

full MetaPost language [6] provides many other
potentially useful features. It also has enough
computing power to be useful for generating and
processing data.

A Summary of the Graph Package

In the following descriptions, italic letters such as
w and h denote expression parameters and words
in angle brackets denote other syntactic elements.
Unless specified otherwise, expression parameters
can be either numerics or strings. An 〈option
list〉 is a list of drawing options such as withcolor
.5white or dashed evenly; a 〈label suffix〉 is one
of lft, rt, top, bot, ulft, urt, llft, lrt.

A.1 Graph Administration

begingraph(w,h) Begin a new graph with the
frame width and height given by numeric pa-
rameters w and h.

endgraph End a graph and return the resulting
picture.

setcoords(tx, ty) Set up a new coordinate system
as specified by numeric flags tx, ty. Flag values
are ±linear and ±log.

setrange(〈coordinates〉, 〈coordinates〉) Set the
lower and upper limits for the current coor-
dinate system. Each 〈coordinates〉 can be a
single pair expression or two numeric or string
expressions.

A.2 Drawing and Labeling

All of the drawing and labeling commands can be
followed by an 〈option list〉. In addition to the usual
MetaPost drawing options, the list can contain a
plot 〈picture〉 clause to plot a specified picture at
each data point.

The drawing and labeling commands are
closely related to a set of similarly named com-
mands in plain MetaPost. The gdrawarrow and
gdrawdblarrow commands are included to maintain
this relationship.

gdotlabel.〈label suffix〉(p, 〈location〉) This is like
glabel except it also puts a dot at the location
being labeled.

gdraw p Draw path p, or if p is a string, read co-
ordinate pairs from file p and draw a polygonal
line through them.

gdrawarrow p This is like dgraw p except it adds
an arrowhead at the end of the path.

gdrawdblarrow p This is like dgraw p except it
adds an arrowhead at each end of the path.

gfill p Fill cyclic path p or read coordinates from
the file named by string p and fill the resulting
polygonal outline.

56 TUGboat, Volume 22 (2001), No. 1/2

glabel.〈label suffix〉(p, 〈location〉) If p is not a
picture, it should be a string. Typeset it
using defaultfont, then place it near the
given location and offset as specified by the
〈label suffix〉. The 〈location〉 can be x and y
coordinates, a pair giving x and y, a numeric
value giving a time on the last path drawn, or
OUT to label the outside of the graph.

A.3 Grids, Tick Marks, and Framing

auto.〈x or y〉 Generate default x or y coordinates
for tick marks.

autogrid(〈axis label command〉,
〈axis label command〉)

Draw default axis labels using the specified
commands for the x and y axes. An 〈axis label
command〉 may be 〈empty〉 or it may be itick,
otick, or grid followed by a 〈label suffix〉.

frame.〈label suffix〉 〈option list〉 Draw a frame
around the graph, or draw the part of the frame
specified by the 〈label suffix〉.

grid.〈label suffix〉(f ,z) Draw a grid line across the
graph from the side specified by the 〈label
suffix〉, and label it there using format string f
and coordinate value z. If f is a picture, it gives
the label.

itick.〈label suffix〉(f ,z) This is like grid except it
draws an inward tick mark.

otick.〈label suffix〉(f ,z) This is like grid except it
draws an outward tick mark.

A.4 Miscellaneous Commands

augment.〈variable〉(〈coordinates〉) Append 〈coor-
dinates〉 to the path stored in 〈variable〉.

format(f,x) Typeset x according to format string f
and return the resulting picture.

gdata(f, 〈variable〉, 〈commands〉) Read the file
named by string f and execute 〈commands〉 for
each input line using the 〈variable〉 as an array
to store data fields.

init numbers(s,m, x, t, e) Provide five pictures
as templates for future format operations: s
is a leading minus; m is a sample mantissa; x
follows the mantissa; t is a leading minus for
the exponent e.

Mreadpath(f) Read a path for the data file named
by string f and return it in “Mlog form”.

A.5 Arithmetic on Numeric Strings

It is necessary to input sarith before using the
following macros:

Sabs x Compute |x| and return a numeric string.

x Sadd y Compute x + y and return a numeric
string.

Scvnum x Return the numeric value for string x.

x Sdiv y Compute x/y and return a numeric
string.

x Sleq y Return the boolean result of the compar-
ison x ≤ y.

x Smul y Compute x ∗ y and return a numeric
string.

x Sneq y Return the boolean result of the compar-
ison x �= y.

x Ssub y Compute x − y and return a numeric
string.

A.6 Internal Variables and Constants

Autoform Format string used by autogrid. De-
fault: "%g".

Fe base What precedes the exponent when typeset-
ting a power of ten.

Fe plus Picture of the leading plus sign for positive
exponents.

Gmarks Minimum number of tick marks per axis for
auto and autogrid. Default: 4.

Gminlog Minimum largest/smallest ratio for loga-
rithmic spacing with auto and autogrid. De-
fault: 3.0.

Gpaths Code for coordinates used in gdraw and
gfill paths: linear for standard form, log for
“Mlog form”.

Mten The “Mlog form” for 10.0

B New Language Features

The graph.mp macros and the arithmetic routines
in marith.mp and sarith.mp use various language
features that were introduced in Version 0.60 of the
MetaPost language. We summarize these features
here because they are not covered in existing docu-
mentation [6, 5]. Also new is the built-in macro

image(〈drawing commands〉)

that was used in Section 2.4 to find the picture
produced by a sequence of drawing commands.

B.1 Reading and Writing Files

A new operator

readfrom 〈file name〉

returns a string giving the next line of input from
the named file. The 〈file name〉 can be any primary
expression of type string. If the file has ended or
cannot be read, the result is a string consisting of a
single null character. The preloaded plain macro
package introduces the name EOF for this string.

TUGboat, Volume 22 (2001), No. 1/2 57

After readfrom has returned EOF, additional reads
from the same file cause the file to be reread from
the start.

The opposite of readfrom is the command

write 〈string expression〉 to〈file name〉

This writes a line of text to the specified output file,
opening the file first if necessary. All such files are
closed automatically when the program terminates.
They can also be closed explicitly by using EOF as
the 〈string expression〉. The only way to tell if a
write command has succeeded is to close the file
and use readfrom to look at it.

B.2 Extracting Information from Pictures

MetaPost pictures are composed of stroked lines,
filled outlines, pieces of typeset text, clipping paths,
and setbounds paths. (A setbounds path gives an
artificial bounding box as is needed for TEX output.)
A picture can have many components of each type.
They can be accessed via an iteration of the form

for 〈symbolic token〉 within 〈picture expression〉:
〈loop text〉 endfor

The 〈loop text〉 can be anything that is balanced
with respect to for and endfor. The 〈symbolic
token〉 is a loop variable that scans the components
of the picture in the order in which they were
drawn. The component for a clipping or setbounds
path includes everything the path applies to. Thus
if a single clipping or setbounds path applies to
everything in the 〈picture expression〉, the whole
picture could be thought of as one big component.
In order to make the contents of such a picture
accessible, the for. . . within iteration ignores the
enclosing clipping or setbounds path in this case.

Once the for. . . within iteration has found a
picture component, there are numerous operators
for identifying it and extracting relevant informa-
tion. The operator

stroked 〈primary expression〉

tests whether the expression is a known picture
whose first component is a stroked line. Similarly,
the filled and textual operators return true if
the first component is a filled outline or a piece of
typeset text. The clipped and bounded operators
test whether the argument is a known picture that
starts with a clipping path or a setbounds path.
This is true if the first component is clipped or
bounded or if the entire picture is enclosed in a
clipping or setbounds path.

There are also numerous part extraction opera-
tors that test the first component of a picture. If p is
a picture and stroked p is true, pathpart p is the

path describing the line that got stroked, penpart
p is the pen that was used, dashpart p is the dash
pattern, and the color is

(redpart p, greenpart p, bluepart p)

If the line is not dashed, dashpart p returns an
empty picture.

The same part extraction operators work when
filled p is true, except that dashpart p is
not meaningful in that case. For text compo-
nents, textual p is true, textpart p gives the
text that got typeset, fontpart p gives the font
that was used, and xpart p, ypart p, xxpart p,
xypart p, yxpart p, yypart p tell how the text
has been shifted, rotated, and scaled. The redpart,
greenpart, and bluepart operators also work for
text components.

When clipped p or bounded p is true,
pathpart p gives the clipping or setbounds path
and the other part extraction operators are not
meaningful. Such non-meaningful part extractions
do not generate errors— they return null values in-
stead: the trivial path (0,0) for pathpart, nullpen
for penpart, an empty picture for dashpart, zero for
redpart, greenpart, bluepart, and the null string
for textpart or fontpart.

One final operator for extracting information
from a picture is

length 〈picture primary〉

This returns the number of components that a
for. . . within iteration would find.

B.3 Other New Features

The marith.mp and sarith.mp packages use num-
bers of magnitude 4096 or more. Since such numbers
can cause overflow problems in MetaPost’s linear
equation solving and path fitting algorithms, they
are normally allowed only as intermediate results.
This limitation is removed when the internal vari-
able warningcheck is zero. In earlier versions of
MetaPost, the limitation could be removed for vari-
ables but explicit constants were always restricted
to be less than 4096.

For completeness, we also mention one other
new feature of MetaPost Version 0.60. When TEX
material is included in a picture via the btex. . . etex
feature, the thickness of horizontal and vertical
rules gets rounded to exactly the right number of
pixels; i.e., interpreting MetaPost output according
to the PostScript scan conversion rules [7] makes the
pixel width equal to the ceiling of the unrounded
width. In fact, a similar relationship holds for all
line widths. The generated PostScript sets line

58 TUGboat, Volume 22 (2001), No. 1/2

widths by first transforming to device coordinates
and rounding appropriately.

References

[1] Jon L. Bentley and Brian W. Kernighan.
Grap—a language for typesetting graphs. In
Unix Research System Papers, volume II, pages
109–146. AT&T Bell Laboratories, Murray Hill,
New Jersey, tenth edition, 1990.

[2] William S. Cleveland. The Elements of Graph-

ing Data. Hobart Press, Summit, New Jersey,
1985.

[3] William S. Cleveland. A model for studying
display methods of statistical graphics (with
discussion). Journal of Computational and

Statistical Graphics, 3, to appear.

[4] William S. Cleveland. Visualizing Data. Hobart
Press, Summit, New Jersey, to appear.

[5] John D. Hobby. Introduction to MetaPost.
In EuroTEX ’92 Proceedings, pages 21–36,
September 1992.

[6] John D. Hobby. A user’s manual for MetaPost.
Computing Science Technical Report no. 162,
AT&T Bell Laboratories, Murray Hill, New
Jersey, April 1992. Available as http://cm.bell-
labs.com/cs/cstr/162.ps.gz.

[7] Adobe Systems Inc. PostScript Language Ref-

erence Manual. Addison Wesley, Reading, Mas-
sachusetts, second edition, 1990.

[8] Donald E. Knuth. METAFONT the Program.
AddisonWesley, Reading, Massachusetts, 1986.
Volume D of Computers and Typesetting.

[9] Leslie Lamport. LATEX: A Document Prepara-

tion System. Addison Wesley, Reading, Mas-
sachusetts, 1986.

[10] U.S. Bureau of the Census. Statistical Abstracts

of the United States: 1992. Washington, D.C.,
112th edition, 1992.

[11] Edward R. Tufte. Visual Display of Quanti-

tative Information. Graphics Press, Box 430,
Cheshire, Connecticut 06410, 1983.

⋄ John D. Hobby

Bell Laboratories

Room 2C-458

700 Mountain Ave.

Murray Hill, NJ 07974-0636

hobby@research.bell-labs.com

58 TUGboat, Volume 22 (2001), No. 1/2

Reports

The status quo of the NTS project

Hans Hagen1

The reason

In the last decade, several initiatives were started
in extending “TEX The Program”. Most closely re-
lated to the original is ε-TEX. This program adds
some primitives to TEX that provide more control
over expansion, extends the range of registers be-
yond 255, and provides bidirectional typesetting at
the paragraph level. The fact that ε-TEX is pro-
grammed within the original WEB concept makes it
a close relative.

Donald Knuth’s main motivation for writing
TEX was the need to typeset his own books in the
best of typographic traditions. Therefore, it will be
no surprise that its typographic engine favours the
English script over other, more complicated, scripts.
Composed characters and glyphs, advanced liga-
tures, complicated input encodings, and tightly in-
tegrated multi-directional typesetting, are not han-
dled well by TEX, but they are covered by Omega,
yet another relative of good old TEX. Omega not
only provides an advanced input translation proces-
sor, it also extends the range of registers. In con-
trast to ε-TEX, Omega can handle a large number
of math font families. However, it is especially the
multi-lingual capabilities that have given Omega a
well-deserved position in the family of TEX descen-
dants.

The third major descendant of TEX is pdfTEX.
Where ε-TEX demonstrates quite well that TEX can
be extended, and Omega gives TEX its place in type-
setting non-western languages, pdfTEX lets TEX sur-
vive in the turbulent Internet environment. It does
so by providing an alternative back-end, which en-
ables TEX users to prepare documents that can be
distributed, viewed and printed without additional
resources; in color, with graphics included, and en-
hanced with hyperlinks and widgets.

Because pdfTEX can be combined with ε-TEX
it can also provide the ε-TEX goodies, but it offers
more. pdfTEX extends TEX’s paragraph building

This article first appeared in Die TEXnische Komödie,
1/2001, pages 36–53. Reprinted with permission.

1 I want to express my thanks to Jerzy Ludwichowski,
Karel Skoupý, and Volker RW Schaa for proofreading this ar-
ticle, improving the English and providing suggestions. Don’t
confuse my opinions with theirs.

TUGboat, Volume 22 (2001), No. 1/2 59

routines with character protruding (marginal kern-
ing) as well as horizontal font expansion (hz opti-
mization). In doing so, pdfTEX ensures that TEX is
still quite up to date and ready for the near future.

There are a few more extensions, like those pro-
vided by MLTEX, which focuses on 8-bit encodings
and mapping, but these extensions are small com-
pared to the ones already mentioned. Being use-
ful for European languages, they are often part of
the mainstream TEX distributions, probably with-
out users being aware of it.

So, to summarize the current state of TEX, we
can classify the programs developed so far as follows:

• TEX: the stable and bug-free ancestor

• ε-TEX: the useful successor

• Omega: the much-needed extension

• pdfTEX: the successful descendant

pdfTEX differs from the other two TEX descen-
dants in that it goes a step further in combining
more tools into one. This is a logical consequence
of the fact that it is a typesetting engine as well as
a back-end. It has to handle all aspects of fonts,
images and resources. It does so by using new
code, written within the WEB paradigm, but it also
uses existing code, available as precompiled C li-
braries, while some of its subsystems are written
from scratch in C instead of Pascal.

When TEX was written, Pascal was one of the
favourite structured languages. In order to make
TEX portable, Knuth sacrificed some of Pascal’s fea-
tures and implemented his own memory manage-
ment. Also, instead of relying on Pascal data struc-
tures, he used his literate programming environment
WEB as a wrapper. As a result, extending TEX is pos-
sible, but only to a certain extent. The main rea-
son for this is that many data structures are reused
and/or overloaded. Another handicap is that many
variables have a global nature, so that one should
be very careful in manipulating them. TEX is one of
the few programs that really benefit from faster ma-
chines since the code is highly optimized, but some-
times these optimizations have the nasty side effect
that they obscure what the code does. It is no se-
cret that pdfTEX demonstrates quite well that the
limits of extending TEX within its current concept
have been reached.

At the time when ε-TEX took shape, Omega
prototypes started to show up, and pdfTEX was not
yet invented, there was already a more structured
discussion taking place on re-implementing “TEX
The Program”. This re-implementation should be
done in such a way that extending TEX would be
more easy. This envisaged successor has been desig-

nated as The New Typesetting System, or NTS for
short.

For quite some time, the ε-TEX and the NTS

projects were combined and hosted by the German
user group DANTE. Since the start of the project,
DANTE has been funding it substantially. This
makes the project unique in the TEX world, since
the projects ε-TEX, Omega and pdfTEX were not
funded at all, or at least not to that extent. Be-
fore discussing the NTS project, we will spend some
words on the environment where these developments
take place.

The environment

Visiting a TEX user group meeting is a special expe-
rience. Such meetings often look more like a gath-
ering of family and friends than a conference of ex-
perts. This is not to say that the people present are
not experts. Actually, they are an interesting mix
of highly qualified professionals with many areas of
interest. They share the feeling that TEX is special,
and by using TEX they can express their knowledge
on paper in the way that they want. Although a mi-
nority of them has in-depth typographic knowledge
by education, they embody quite some expertise in
the, sometimes even dark, areas of high quality au-
tomatic typesetting.

Given that everything related to computers
evolves fast, the TEX community is rather stable.
Many users will stick to using TEX when they are
permitted, and even when they are forced to use
commercial software in their offices, they keep an
eye on TEX. However, open source software is gain-
ing attention and we may consider TEX and friends
to be one of the oldest examples of open source. (It
is in this respect interesting to observe that TEX
distributions are always struggling with the public
licenses, that somehow do not fit them well. Many
TEX distributions depend on stability and consis-
tency and thereby sometimes pose some restrictions,
mainly to guarantee their users a working system.)

One of the main drives for using TEX is that it
makes one independent, especially if one also uses re-
lated or similar free tools. Although there are com-
mercial versions of TEX available, some with quite
interesting extensions, the wish to be independent
implies that the successor of TEX has to originate
from the user community and so far, the extensions
mentioned before did so.

As a demonstration that TEX could be ex-
tended, Donald Knuth added the \special and
\write primitives. I think that there is much truth
in saying that although they can be qualified as
“just” extensions, both mechanisms have given TEX

60 TUGboat, Volume 22 (2001), No. 1/2

an edge over competitors. Two decades after TEX
was born, we make documents with lots of graphics,
color, and extensive referencing, all of which would
not be possible without those primitives.

This demonstrates that what can be regarded
as an interesting example of an extension today,
tomorrow can prove to be a necessity. Currently,
pdfTEX has some extensions that are waiting to be
used to the full extent some day in the future.

The number of people that understand enough
of programming, typography and user interfacing
to extend “TEX The Program”, is not that large.
Therefore, the statement that TEX is extensible
is rather an optimistic one. Even if a successor
would be implemented using today’s technologies,
this would not change much. And if some limita-
tions of the good old TEX can be qualified as fun-
damental shortcomings, this does not automatically
mean that replacing them by better alternatives can
be achieved in a couple of days programming. For
some problems there are no simple solutions, and
some of the current limitations are quite natural,
given the solution space.

The development of pdfTEX is a good demon-
stration that, although many people are involved in
testing the core program, only a few people are in-
volved in the actual development of the program.
Actually, the making of pdfTEX is mainly a one-
person job, namely Hàn Thé̂ Thành’s. But, this one
person can fall back on the experience embodied in
the TEX community. Experts in the areas of fonts,
images, PDF and macro writing can be consulted
and when they see the potential of the extensions,
they are willing to participate. The number of ex-
perts is small, but their expertise is available when-
ever needed. Those operating at the cutting edge
of what TEX can do want to be involved, and often
are involved. Fortunately only one person pulls the
car, which means that right from the start work-
ing prototypes were available, bugs were being fixed
quite fast, and what is even more important, design
decisions were made.

Because TEX has its own DVI output format,
the whole suite of related programs (think of DVI

viewers and converters and font generators) is rather
independent from commercial developments. Be-
cause pdfTEX is used also to produce PDF output,
it is more dependent on the outside world. It is no
secret that Hàn Thé̂ Thành has spent quite a lot of
time in keeping (buggy) viewers happy and figuring
out the real PDF specs. One (maybe only philosoph-
ical) question we should ask ourselves is if we want
to be that dependent. Both alternatives ask their
price.

In the last few years we have seen that (finally)
the TEX community managed to get a hold on their
multitude of files and resources. There is a well-
defined TEX directory structure and there are some
de facto standard distributions with binaries, fonts,
macros and more. As a direct result, extensions like
ε-TEX, Omega, and pdfTEX are available for every-
one who uses TEX and on many platforms.

This also means that the maintainers of those
resources (distributions) can ensure that such exten-
sions are being integrated into the current frame-
work of TEX in a natural way. For instance, when
Omega is part of a distribution, its unique (re-)en-
coding and font resources are available too. Or,
when pdfTEX is on someone’s system, one can also
be sure that the right configuration files are around
somewhere. Development of new technologies is in-
tegrated into the constant process of updating and
distributing TEX.

I already mentioned TEX user groups. They are
organized by country or language and many of them
have regular meetings and journals. Although the
number of members differs from hundreds to thou-
sands, the number of users that attend meetings is
often not more than 75–100. A survey by the NTG

showed that many members, when asked for the rea-
son to be a member, responded that they are a mem-
ber out of sympathy. Although many of them do
not understand everything that is published, they
are happy to be kept informed that there are de-
velopments. It shows them that TEX is alive. Of
course members also like the regular distribution of
CD-ROMs and the support that mailing lists pro-
vide.

So, whereas the large audience wants to be kept
informed and is willing to support the TEX commu-
nity, a small group actively attends meetings where
issues like the future of TEX, extending TEX, and
writing of macros are discussed. It will be no sur-
prise that this group harbours many of the people
that also take part in the developments.

We can summarize the main characteristics of
the TEX community as follows:

• the developers want to be involved,

• the maintainers want to be in control,

• the users want to be kept informed, and

• they all want to be independent.

It is in this framework of TEX developments
and the TEX community that I will discuss the cur-
rent state of the NTS project. So far I have been
rather general in my remarks, but I will be more ex-
plicit from now on. The following observations can
therefore be seen as personal ones, and I express my

TUGboat, Volume 22 (2001), No. 1/2 61

sincere hope that future developments may benefit
from them.

The project

I started this article by mentioning a few extensions
to TEX of which the NTS project was planned to
become one. It was started in the early nineties,
and after some years of discussion the decision was
made to re-implement “TEX The Program” using
a modern programming language and applying to-
day’s software technology.

In spite of the fact that the project has run for
nearly ten years, it is quite unknown. One reason
for this is that for a long time it was only a mental
exercise. Where each of ε-TEX, Omega and pdfTEX
at a certain point led to a real usable product NTS

only existed in the minds of a few people. I don’t
know much about what took place in those early
days, but I am told that NTS was discussed by a
broad audience, but at the moment when I joined
the team, the group of people that were taking part
in it had become rather small.

At a certain point in time the NTS dream be-
came an official project and there are not that many
of them in the TEX community. Most efforts are con-
centrated around a rather active group of develop-
ers, and driven by users who see the benefits from
those efforts. The community is rather open, and
the lines of communication are short. This means
that when someone becomes aware of an effort that
is of common interest, this knowledge spreads rather
fast.

Knowing that TEX has some limitations and
that ε-TEX could not solve them all, it should not
be a surprise that NTS became the magic succes-
sor that was supposed to solve those problems. Its
official project statement gave it a reputation before-
hand. The magic resulted from the fact that for a
long time there had been talks of a successor, but no
real progress was seen. It is interesting to observe
that meanwhile some extensions have been imple-
mented in ε-TEX, Omega and pdfTEX in a quite
acceptable way, which proves that demand can lead
to solutions quite effectively.

In many user groups, or sometimes between
user groups, projects are being launched with am-
bitious goals. Some of these projects keep rolling
while others get stuck in the conceptual phase or
merge with other efforts. Most projects in one way
or another contribute to the constant developments,
if only because their ideas merge with others. None
of these projects is really official, and as far as I
know, none of them is like the NTS project.

The NTS project, for instance, has an inter-
esting structure. There is a managing director, a
project manager, a technical director, about three
members and (since recently again) a treasurer. The
real work is done by one paid programmer. Al-
though undoubtedly the original ideas behind this
structure were sound, in practice it does not work
out that well. One reason is that this is not a
real project in the sense of projects that are being
run within institutions or companies. There are no
clear roles, and there are no clear functions amid the
structure. The project is not embedded in research,
but there have even been suggestions to organize the
project as a legal body. Apart from occasional email
exchanges, there is no day-to-day communication,
no formal responsibilities and there is no planning.

However, there is progress, which is mainly due
to the fact that there is a professional programmer
involved. Thanks to DANTE, the project was able
to hire such a programmer. One of the quoted rea-
sons behind making the conversion work into a paid
job was that it would speed up the process. An-
other reason was that it would lead to a consistent
redesign. We can safely agree with the second rea-
son, but right from the start it has proven to be
impossible to estimate how much time was needed.

The latter is in itself interesting. Given that
TEX is considered to be a well-documented program,
and given that it is almost bug free, the first very op-
timistic estimate was that a conversion would take
a few months using a rapid prototyping language.
This later became more than two years because the
prototyping stage was omitted. So far, each interme-
diate estimate for the moment when the first stage
could be finished has been wrong.

This has its (in itself valid) reasons. As I men-
tioned before, users want to be in control, and part
of this control is in using stable tools. And, “TEX
The Program” is as stable as a program can be,
both in terms of functionality and in terms of relia-
bility. This is clearly proved by the fact that during
the process of re-implementation, no bug has shown
up in the original TEX, although there are certainly
questionable areas. However, in the process of clean-
ing up and reaching full compatibility, a real bug in
TEX surfaced when processing the TEXbook.2

For many users stability means that any future
extensions, like NTS, should be able to compile ex-
isting documents and macros. For some users, this

2 The bug is related to \xleaders and makes the last lead-
ing box disappear in an inconsistent way. Karel Skoupý and
Bernd Raichle did an in-depth analysis of this bug and will
report on this.

62 TUGboat, Volume 22 (2001), No. 1/2

also means that the result should be 100% compat-
ible, both in terms of DVI output as well as the log
file content.

A considerable amount of time has been spent
on making the re-implementation 100% TEX com-
patible. As a side effect, the new code is not as
beautiful as it could be, due to some strange depen-
dencies, resulting from the requirement that also the
log files should be identical. However, this also re-
sulted in the new implementation being quite bug
free, because the programmer had to test every tiny
aspect in order to get exactly the same DVI and
log files as TEX does. Full compatibility is only the
starting point, and future (extended) versions would
be upward compatible in functionality, but will not
necessarily produce the same output.

I will not elaborate on the pros and cons of
the conversion, the problems encountered, the joy
and frustrations of the programmer, the quality of
the code, portability and the performance of the
re-implementation. In due time Karel Skoupý, the
NTS programmer, will share his insights with us in
a more systematic way, as he already did at sev-
eral user group meetings. However, I think that the
project missed a chance to research in a systematic
way why it took so long to go from one implemen-
tation to another, especially since the language of
choice, Java, qualified as a highly portable and easy
to use language.

In an earlier stage of the project a rapid pro-
totyping language was considered but this option
has been rejected in favour of Java. Given some
negative experience with this language, in terms of
sub-optimal performance, lack of portability and an
insufficient design (features), Karel has been dis-
cussing alternatives with some experts in object-
oriented programming. It is his strong belief that,
given the object-oriented design of the current re-
implementation, switching to another language is
not a real problem.

Because we were dealing with a program that
is very well documented, “which does not automat-
ically mean that the subject at hand is easy and
trivial”, it is an interesting question why the re-
implementation took so much effort. Since no sys-
tematic data has been gathered during the project,
we will never know the complete answer to this ques-
tion.

Another fact that became clear, especially in
the final stage of the re-implementation, was that
good old TEX runs much faster. The Java re-imple-
mentation is far more memory hungry and about
30 times slower in processing the TEXbook, and

thereby much slower when used in large applica-
tions. When Knuth wrote TEX, department com-
puters were much slower than today’s desktops. So
what exactly is slow? Anyhow, when one watches
the page numbers appearing so slowly on the screen,
one gets a good impression on how precise Knuth
must have been in writing code in order not to waste
much time waiting. One may argue that speed is not
an issue, but evolving macro packages are getting
more and more demanding and new features in the
typesetting engine will ask for much more processing
power.

I already mentioned that ε-TEX, Omega, and
pdfTEX have been created by individuals but were
developed with the help of users and experts. As
a result, these programs are really used. The NTS

project on the other hand has had a rather low pro-
file. When the first alpha versions were made avail-
able, only a few people did a few tests. One reason
for this is that the implementation is uncomfortably
slow, is not as portable as the development environ-
ment promises, is not yet embedded in the existing
file structures, and, most of all, does not offer any-
thing new. I believe that there are also a few more
reasons for this isolation on which I will elaborate
later.

Some of the ideas behind the original project
were to boost TEX into the future by providing a
successor with more advanced features, as well as
providing means to add a user interface. A third
objective was that anyone could take the code and
extend the program.

Even if we can envision those more advanced
features, these are not goals that are reached fast.
There are a few good ideas about areas of exten-
sions. But to say for instance that, given a nice
re-implementation, we can build a stable and full
functional multi-column mechanism is a gross over-
simplification of the problems at hand. Giving TEX
a nice user interface is not by definition something
that goes hand in hand with its batch processing
character. And, how many people really understand
the issues that TEX has to deal with to the extent
that he or she can extend the program?

People use word processors for everyday tasks,
and these programs have become better over time.
In typesetting, WYSIWYG page layout programs
have become more sophisticated, and some of the
features that made TEX famous, like its paragraph
builder, have made it into some of those. On the
other hand, TEX is one of the few programs which
can deal with today’s document encoding formats,
like for instance XML, in advanced ways. It is also

TUGboat, Volume 22 (2001), No. 1/2 63

one of a few programs that can handle database out-
put with ease and speed. And, in the math arena it
is still the best.

Times are changing, both in terms of demands
and usage patterns. The main objective for a TEX
successor is to provide better and more flexible gen-
eral purpose routines to handle any input, typeset
any document, in any language. In this respect the
NTS project is far more ambitious than its prede-
cessors ε-TEX, Omega and pdfTEX. But while all
of these are already available, used and appreciated,
the full NTS implementation is still a dream.

The status

One could expect that an effort like NTS would
make other developments obsolete. But the oppo-
site can be observed. Even after 20 years of TEX,
user group meetings show that TEX is far from be-
ing dead. At such meetings, users often demonstrate
new applications. They demonstrate specific ε-TEX,
Omega or pdfTEX features and demonstrate new
and advanced macros. When discussing those fea-
tures, and possible future extensions, NTS never is
part of the discussion.

In spite of being overloaded with official func-
tions, the project team has not managed to get a
good and promising reputation. In general, public-
ity has been handled at a bare minimum. And, even
where the project is known, it is not so per definition
in the positive sense.

One reason for this is that at a certain moment
in time, politics entered the project. I must admit
that I am only partially aware of the fine details
of the political issues, since much of what I know
comes from secondary sources. Surely some of the
DANTE internal affairs influenced the project. On
the other hand, the generous contributions and pos-
itive attitude of past and present DANTE boards
towards the NTS project have ensured that at least
the first main objective, the TEX re-implementation,
has been achieved. Unfortunately the project lost
some valuable German participants already in its
early stage, which in my opinion has damaged the
project.

I already pointed out that this project has quite
a number of official tasks in its organization. Since
I am participating in more “projects” than NTS

alone, I can safely conclude that this has been coun-
terproductive rather than productive. No other
project in the TEX world has such a formal struc-
ture, no other project has spent so much user group
money, and no other project has such a vague rep-
utation as the NTS project. Instead of having a

stronghold in the TEX community, this project has
isolated itself beyond an acceptable limit.

I want to summarize the previous observations
as follows:

• the NTS effort is largely unknown,

• the project is not really managed,

• the re-implementation is not embedded in re-
search,

• the project objectives seem to be out of sync
with reality,

• publicity has been handled badly or not at all,
and

• the project is too isolated from other develop-
ments.

It may be clear that most of the conclusions re-
sult from the fact that the project was organized in
such a way that the key players in the TEX commu-
nity were only minimally involved. In this respect, I
think that one way or another, the project became
a hostage of its own structure. In spite of this, one
of the objectives, namely the re-implementation of
“TEX The Program” has been achieved. In the next
section I will therefore elaborate on the future of the
project as I see it.

The short term objective of the NTS project
was to re-implement TEX. At the time of this writ-
ing, NTS can process the TEXbook. As Karel and
I demonstrated at the DANTE October 2000 meet-
ing, there is still a small problem in processing the
METAFONTbook, and the trip test is passed largely,
but not completely. Personally I presented the pro-
gram with some more complicated situations and
apart from a few not so dramatic bugs I am im-
pressed by what Karel has achieved so far.

In the week before DANTE 2001 Karel an-
nounced that NTS has reached the beta stage. An
important milestone was reached, namely that NTS
can operate in the de facto standard TDS (the so-
called texmf tree). From that moment on NTS

could be really used as a replacement for traditional
TEX.

In the continuous process of debugging, the pro-
grammer will also clean up some messy code, im-
prove the performance where possible and document
the source to the extent needed for further develop-
ment. Because the team is very aware of the fact
that users expect any TEX to be stable, and will ex-
pect the same from a re-implementation, the official
release date is left to the programmer.

We can safely assume that in the summer of
2001 the code will be present in the TEX archives
and part of distributions. At that moment we can
start evaluating if the money spent so far has been

64 TUGboat, Volume 22 (2001), No. 1/2

worth it. This may be a good place to mention that
the main official contributions to the project were
from DANTE (85,000 DM), GUTenberg (3,000 EUR),
TUG ($ 5,000), CSTUG (20,000 CZK for Karel’s ex-
penses), an unknown donor (5,000 DM), and the
NTG (3,000 HFL) which means that until now the
whole project has consumed over 100,000 DM. The
finances were managed by DANTE, and the regular
payments to the programmer went through Masaryk
University in Brno (Czech Republic). This univer-
sity also provided Karel with an email account and
internet facilities, for which it deserves the team’s
gratitude.

By the way I want to note that at DANTE 2001
the membership decided to provide a regular budget
for projects related in any kind to TEX, METAFONT,
METAPOST and friends. For a couple of years, the
NTG has had a similar budget for projects. The
NTS project has demonstrated the need for such
financing requirements. One obstacle has been the
proper way to handle transactions in such a way
that it fits into the tax regimes of the countries that
are involved. This topic is a good candidate for the
agenda of future cross-user group board meetings.

So, we can now safely conclude that:

• NTS version zero is there as a beta release, but
still being debugged and cleaned up,

• some basic documentation will be provided,

• soon everyone can take the source and go ahead,

• so far the project has cost about 100,000 DM,
and that

• thanks to Masaryk University we were able to
transfer the money to the programmer.

Especially the fact that there is not much money
left, causes the need to look into the future.

In recent publications in the GUTenberg mag-
azine (spring 2000) and the TUG proceedings (fall
2000), some team members have drawn conclusions
with regard to the project, its history, status and
future. These conclusions were not discussed within
the team, so a less informed reader could understand
them as the voice of the whole team. Unfortunately,
I don’t share the views aired in those articles and, if
I am right, also some other team members disagree.
To state it clearly, the following section reflects my
own thoughts and therefore should not be taken as
the views of the whole NTS team.

The future

At a certain moment in time I got involved in dis-
cussions with regard to ε-TEX, which at that time
were also related to NTS. I must say that those dis-
cussions were quite interesting, and each proposal

was considered in detail. Some made it into ε-TEX
already, others could make it into future versions of
ε-TEX, but those that were too complicated were
put on the agenda for NTS.

After a while, I got involved in the more ambi-
tious NTS project, first as a reviewer for DANTE,
later as a project member with the obligation to re-
port to the DANTE membership about the progress
of the project, since reporting had proven to be a
weak spot of the project.

I have only been involved in the last stage of
the project, a period when not many fundamen-
tal discussions were taking place within the team.
Nonetheless, I carry pleasant memories of the dis-
cussions concerning the design that I had with Karel
whenever I was visiting him in Brno. I saw it as my
main contribution to make sure that this stage was
finished and tried as hard as possible to be of help
to him.

So, in the light of my experience, how do I see
the future of NTS, or to be more specific, how do I
think a TEX successor should be developed? What
lessons can be learned from the past, and how should
we proceed?

I already remarked that the project is rather
isolated from the rest of the TEX community and I
see no indication that this will change soon. Given
this, and given that I don’t regard myself as being
a real member of the NTS team any longer, if only
because I am not one of the founding members, I
feel that my role will be finished as soon as the first
official release is there.

The language. I think that at this stage, the pos-
itive conclusion can be drawn that at least there is
a working re-implementation, possibly with all the
flaws that the language of choice imposed, but a
major goal is reached. This means that we have a
pretty good starting point for further development.

At a certain stage in the project, the decision
was made to use the Java programming language.
Such a decision is not easy, especially since everyone
has his or her favourite language. At that time,
Java was brand new and promising, and the public
relations were good.

In every discussion I had so far, this choice is
being highly criticized and not without reason. An
interesting aspect is that when discussing alterna-
tives, the availability comes up as a criterion. When
NTS started the re-implementation, Java’s future
was yet unsure and portability was (and to some
extent is) still an issue. Since we cannot foresee the
future yet, any choice can be the wrong one.

TUGboat, Volume 22 (2001), No. 1/2 65

In the current version of NTS some lines are
commented out in order to let the program run on
all platforms. In due time Karel will reflect on the
re-implementation with respect to the language used
and I’m sure that he will discuss how Java com-
pares to other languages and how well it suits proper
object-oriented programming.

I think that, in order to succeed, a group of
very dedicated people is far more important than
the programming language, especially if languages
are chosen that compile to the heavily portable C
language. It may even be of a certain charm if the
language of choice is special, and very well-suited for
the task. A strong belief in the virtues of a language
is equally important to the success as dedication to
high quality typesetting. It is my strong belief that
the project should be directed by those who do the
work. This is not to say that there is no need for
advisers in any of the areas involved.

The fact that TEX was programmed in WEB

and Pascal did not stop it from becoming available
on nearly all platforms. An important aspect of
Knuth’s efforts was the documentation. Flagged as
literate programming, the WEB system stimulates a
particular way of programming. Programmers may
like it or not, this has its charm, and it has cer-
tainly given TEX its place in the history of software
development.

One thing that strikes me when people discuss
a re-implementation of TEX, the language of choice
is a major item. Of course we can wonder why
we should keep on re-implementing TEX, and if re-
implementing NTS is an issue, but at least I want to
remark that the people involved in extending TEX
should feel comfortable with the language that is
used. There have been attempts to rewrite TEX,
and I know of at least one other re-implementation
project going on, but going from idea to full con-
ception is not trivial, if not to speak of coming up
with the right structuring for extensions. Current
TEX has some flaws, but is nevertheless rather pow-
erful (and often underestimated), so a successor had
better be really good in order to succeed.

At TUG 2000 in Oxford, a number of the peo-
ple involved in maintaining and extending TEX were
present (among them some well known TEX ex-
perts like Hàn Thé̂ Thành, Karel Skoupý, Fabrice
Popineau, John Plaice). Since the descendants of
TEX have all reached a more or less mature state,
their creators shared their views on the future of
TEX with the others experts present. Apart from
the shared vision that those developments should
converge in the near future, they all have strong
opinions about the languages that are most suitable

for a re-implementation. Most people involved in
less trivial TEX programming agree on the fact that
in order to extend, we need to re-implement. But in
what language and in which architecture is a non-
trivial decision.

Functional languages are the first choice, but
this choice is more a (challenging) academic one, and
it is understood that they are not the most stimu-
lating candidates for users who want to extend TEX
themselves. After some discussion, the language of
choice was the object-oriented language Eiffel, which
especially John Plaice considered to be a good can-
didate for a re-implementation of Omega.

Although I am completely new to this language,
I cannot deny that reading the specs alone already
gives me the good feeling that it suits such a project
well. It compares to what I felt when for the first
time I read the TEXbook, the METAFONTbook, the
(real) books about Modula, SmallTalk, Lisp and the
like.

But is a functional language, or a language with
a vision like Eiffel the best choice on the long run? In
this respect I owe much to Fabrice Popineau for shar-
ing with me his balanced visions on the ideal lan-
guages versus practical languages (like C++). What-
ever the outcome of merging these efforts into the
worthy and stable successor will be, I am sure that
those talented people will make the right decisions
with regards to the tools to use.

The design. Some time ago Karel and I discussed
the viability to implement a successor in layers, like
an efficient core in a pure imperative object-ori-
ented language, a programming layer in a functional
language, and on top of that the macro language.
Whatever choices are made, the languages that are
used should be able to interface to other languages.
Especially pdfTEX demonstrates how useful it is to
fall back on existing libraries, like those that deal
with font embedding, bitmap and PDF inclusion and
compression.

So, given that we can organize an enthusias-
tic group of people who want to spend time and
effort on a successor, and given that we have a rea-
sonable starting point in the well-organized TEX re-
implementation called NTS, there is a good chance
that in the near future a real successor will show up.

At the TUG 2000 conference as well as preced-
ing conferences the basis for cooperation has already
been laid. But, we are talking of another project,
with another name, this time properly embedded in
the TEX community, and (again) carried by the user
groups. Given the complexity of the typographic
problems at hand, this should not be a näıve effort

66 TUGboat, Volume 22 (2001), No. 1/2

to come up with a collection of a thousand classes for
everyone to extend, but a stable, flexible, and still
extendable program, that can carry on the tradition
started by TEX for another 20 years. As said, the
existing extensions combined with the NTS redesign
of TEX, provide a pretty good starting point.

Whatever course developments take, the results
should be highly usable, (intermediate) distributions
have to be stable, and the system should be open for
future extensions. Of course it should also solve our
most persistent typographic problems.

The environment. Another interesting develop-
ment is that at TUG 2000 in Oxford, Karel was
offered the opportunity to join the ETH in Zurich.
There can be no doubt that a project like NTS or its
successor will benefit from the possibility to embed
it in proper research. We will learn more about those
options when Karel has moved to Zurich (around the
summer of 2001).

A result of a more close cooperation with the
developers of TEX’s multi-lingual follower Omega
will also mean that developments can be related to
the fundamental research that will follow the next
release of Omega (this was presented at TUG 2000).

Apart from the fact that the (new) project
could benefit from more fundamental research, an
academic environment also gives access to all kind
of resources. Given that for developers such envi-
ronments can be inspiring in themselves, this will
enlarge the chance of success.

The organization. One thing that can be learned
from the current NTS project is that this is not the
way to organize a project in the TEX community.
The ε-TEX, Omega and pdfTEX projects demon-
strate clearly how a successor can be developed suc-
cessfully, while the NTS project demonstrates the
contrary. And, at a much higher cost.

At TUG 2000, I have participated in discussions
between the developers of pdfTEX and Omega and
experienced programmers and users from the TEX
community. To some extent, these discussions were
a continuation of discussions at previous user group
meetings and from email exchange.

For me, it is always a great experience to see
how people share their ideas about future TEXs, the
languages of choice, and the possibilities to integrate

ideas. It demonstrates the real power of the TEX
community when it comes to combining efforts. It
also shows the way in which the next stage in devel-
oping a successful successor should take place.

One of the leading mottos of the NTS project is
that “anyone can take the source and go forward”.
Given that the current team — except for the pro-
grammer— is not functioning in optimal form and
seems to be unable to keep up its promises, this
seems to be the right moment to take it at its word
and start a new project.

Informal discussions at user group meetings
have also demonstrated that it is quite possible to
organize those who play a role in developments in a
new team. I would not suggest this if I were con-
vinced that the current team could be reorganized.
Unfortunately there is too much historic ballast in-
volved to guarantee success. Therefore I think that
as soon as NTS version zero is released, the moment
has come to start a new thread in the development of
the successor. We need a fresh restart, run in such
a way that user groups are involved in the proper
way. We cannot do without a team, but apart from a
group of people who can represent their user group,
we also need dedicated teams for research, develop-
ment and testing.

Let’s do it. The current NTS team has managed
to re-implement TEX in an object-oriented way, so
in a sense it has accomplished its main objective.
It is my strong belief that in order to achieve the
more ambitious goals, a new team of enthusiastic
and active people is needed. During the last couple
of years I have received enough signals that such
people are there waiting to get going.

At Bachotek 2001 as well as EuroTEX 2001
there will be NTS related sessions. Especially the
(expected to be memorable) Bachotek meeting will
provide the right ambiance to make such a fresh
start. There, in the woods along the lake, team
members Jerzy Ludwichowski and Karel Skoupý will
present NTS in its full glory and invite us to discuss
the future. I hope that you will be there too.

⋄ Hans Hagen

Hasselt, The Netherlands

October 2000 – March 2001

pragma@wxs.nl

TUGboat, Volume 22 (2001), No. 1/2 67

The Treasure Chest

Packages posted to CTAN

“What’s in a name?” I did not realize that Jan
Tschichold’s typographic standards lived on in the
koma-script package often mentioned on usenet (in
comp.text.tex) until I happened upon the listing
for it in a previous edition of “The Treasure Chest”.
This column is an attempt to give TEX users an on-
going glimpse of the trove which is CTAN.

This is a chronological list of packages posted
to CTAN between June and December 2000 with
descriptive text pulled from the announcement and
edited for brevity —however, all errors are mine.
Packages are in alphabetic order and are listed only
in the last month they were updated. Individual files
/ partial uploads are listed under their own name if
so uploaded. If not otherwise noted, packages are in
macros/latex/contrib/supported/. Subdirecto-
ries (e.g. foo) of macros/latex/contrib/ are listed
as .../foo/ to save space.

Corrections and suggestions are welcome.

June 2000

abstract Gives you control over abstracts, and in par-
ticular provides for a one column abstract in a two
column paper.

amsclass: in
macros/latex/required/amslatex/classes

AMS-LATEX document classes and theorem pack-
age. Bug-fix updates.

arrayjob: in macros/generic/arrayjob

The arrayjob package provides array data struc-
tures in LATEX, like those in Fortran, Ada or C, and
macros to manipulate them.

catdvi: in dviware

DVI to plain text translator aiming to replace
dvi2tty.

dvichk: in dviware

(V.1.91) Checks .dvi/.log files and displays the
page numbers found on standard output.

epsfview: in systems/mac

AppleScript tool (for Mac) mainly intended for view-
ing figures generated with METAPOST, even if they
have negative coordinates.

geometry (V.2.3) An easy and flexible user interface
to customize page layout. Update adds columnsep
and footnotesep options, vtex option is added to
support VTEX, sophisticated magnification setting.

ifmslide A package (v.0.3) from the Institute of Me-
chanics (ifm) Univ. of Technology, Darmstadt, Ger-
many, for producing slides with LATEX2ε. Based on

the concept of pdfslide, but completely rewritten
for compatibility with texpower and seminar.

ifsym: in fonts

Fonts with symbols for alpinistic, electronic, mete-
orological, geometric, etc., usage. A LATEX2ε pack-
age simplifies usage.

jas99_m.bst: in biblio/bibtex/contrib

Update of jas99.bst, modified for better confor-
mity to the American Meteorological Society.

LaTeX WIDE: in nonfree/systems/win32/LaTeX_WIDE

A demonstration version of an integrated editor
and shell for TEX—free for noncommercial use, but
without registration, customization is disabled.

lhelp: LATEX2ε macro package of simple, “little helpers”
converted into dtx format. Includes common units
with preceding thinspaces, framed boxes, start new
odd or even pages, draft markers, notes, condi-
tional includes (including EPS files), and versions
of enumerate and itemize which allow spacing to
be changed.

makecmds Provides commands to make commands, envi-
ronments, counters and lengths. Moved from
.../misc to supported.

mathpazo: in fonts

Package (fonts and LATEX style file) for mathemat-
ical typesetting with the Palatino fonts.

secdot: in .../other/misc

Section numbers with trailing dots.

substr Provides commands to deal with substrings in
strings: Determine if a string contains a substring,
count appearances of a substring in a string.

texdoctk: in systems/unix/teTeX/1.0/contrib

(V.0.4.0) A Perl/Tk-based GUI for easy access to
package documentation; the databases it uses are
based on the texmf/doc subtrees of teTEX v.1.0.x,
but database files for local configurations with mod-
ified/extended directories can be derived from them.
Update adds: view multiple documents simultane-
ously, UI improvements, internal text viewer, uses
kpsewhich, bug fixes, manpage.

TeXnicCenter: in systems/win32

An integrated development environment (IDE) for
developing LATEX documents in Windows (95, 98,
2000, NT 4.0). Project oriented, unlimited “output
types”, customizable editor, structure View, etc.

titling Provides control over the typesetting of the
\maketitle command, and makes information from
it permanently available.

tugboat/t-of-c: in digests

tb1594.cnt, tb1695.cnt, tb1998.cnt, tb2099.cnt
and tbcv20.tex.

varindex.sty: in .../misc

Provides a convenient front-end for the index com-
mand. For example, it allows generation of mul-
tiple index entries in almost any form by a single
command. Extremely customizable. Works with
all versions of LATEX and probably most other TEX
formats, too.

68 TUGboat, Volume 22 (2001), No. 1/2

WinShell: in systems/win32/

Bug fix to WinShell, a graphical user interface for
easily working with TEX. It is not a TEX system so
requires one to have a system such as MikTEX or
TEXLive installed.

July 2000

amsmath: in macros/latex/required/amslatex/math

(V.2.13) Bug fix for an equation numbering prob-
lem with the hyperref package.

arydshln New version (1.4). Extension of the array

package which allows dashed lines/rules in tables,
and control over the spacing of vertical rules.

bbl2html: in biblio/bibtex/utils

Converts a LATEX .bbl file to (mostly) formatted
HTML code. Probably also works if applied directly
to a .tex file.

bytefield The bytefield package helps the user cre-
ate illustrations for network protocol specifications
and anything else that utilizes fields of data. These
illustrations show how the bits and bytes are laid
out in a packet or in memory.

chngpage: in biblio/bibtex/utils

(V.1.1) Provides commands to change the page lay-
out in the middle of a document. Now uses empty
arguments instead of zero lengths, new adjustwidth

environment for extra wide (or narrow) paragraphs
or over-width floats

combine (V.0.41) Bundles individual documents into
a single document, such as when preparing a con-
ference proceedings. The auxiliary combinet pack-
age puts the titles and authors into the main doc-
ument’s Table of Contents. Now cooperates with
the abstract and titling packages.

CWEBbin: in web/c_cpp

(V.3.61) A set of change files (to be applied with
the TIE processor) that make the original sources
usable with ANSI-C/C++ compilers on UNIX/Linux,
MS Windows, and Amiga. Now fully supports
“HyperCWEB”.

Fontmap.cmr: in fonts/cm/ps-type1/contrib

Makes Computer Modern available to ghostscript.

french: in languages

Light version has a maximum of automatic features:
translation, layout, microtypography, etc., but no
specific commands are available.

Hexdump.sty: in macros/generic

Reads an ASCII hexdump file and puts it formatted
into the document. Additional macros included,
e.g., for a Directory of Dumps.

html2text: in support

HTML-to-text converter for UNIX, which, unlike
lynx-dump, handles tables.

koma-script

Reimplementation of the LATEX classes (article,
report, book, letter), “implementing European

rules of typography and paper formats as docu-
mented in Tschichold (Selected Papers on Book De-

sign and Typography).”

newvbtm Allows one to define one’s own verbatim-like
environment with variants.

notoccite.sty: in .../other/misc

Prevents erroneous numbering of the cites in the
toc or lof or lot when using bibtex/unsrt.

ntabbing: in .../other

An extension of the tabbing environment that sup-
ports automatic line numbering with referencing.

patchcmd Provides a command \patchcommand that adds
materials at the beginning and/or end of the re-
placement text of an existing macro.

Portuguese-Portugal: in systems/win32/winedt/dict
WinEdt dictionary—Portuguese (Portugal version).

poster-os2: in support

A program to generate large-size and multi-sheet
posters from PostScript files. Also works in DOS.

pstoedit: in support

(V.3.20) Converts PostScript and PDF files to other
vector graphic formats so that they can be edited
graphically.

scientificviewer: in nonfree/systems/win32

Scientific Viewer 3.5 is a free program for reading
and printing (read-only) documents created with
Scientific Notebook, Scientific Word or Scientific
WorkPlace by MacKichan Software, Inc. Scientific
Viewer can also be used to view many native LATEX
documents.

semantic (V.2.0 alpha) Adds customizable math mode
ligatures; support for typesetting reserved words in
a consistent way and the drawing of inference rules
has been substantially improved, allowing deeper
nesting.

stdclsdv (V.1.1) allows package writers to learn what
sectioning divisions are provided by the document’s
class.

Swiss-German: in systems/win32/winedt/dict

WinEdt dictionary—Swiss-German.

ticket Provides an easy interface to produce visiting
cards, labels for your files, stickers, pins and other
stuff for your office, conferences, etc.

umoline Allows underlines while allowing line breaking.

wotree.sty: in graphics/dratex

Supports drawing of Warnier/Orr diagrams. Docu-
mentation is at http://www.cis.ohio-state.edu/
~gurari/wo-diag/wo-diagrams.html.

yafoot Contains three style files: pfnote.sty to enclose
footnote numbers within a page;
fnpos.sty to control the position of footnotes;
dblfnote to make footnotes double-columned.

TUGboat, Volume 22 (2001), No. 1/2 69

August 2000

accents: in .../bezos

(V.1.2) Quick fix in accents to work with amsmath.

accfonts: in fonts/utilities

V.0.212 of the program vpl2vpl (bug fix), updated
CHANGES file.

amslatex-primer: in info

An updated version of “Getting up and running
with AMS-LATEX”. An attempt to give enough in-
formation for a newcomer to LATEX (but with some
plain TEX or AMS-TEX experience) to quickly be
able to make use of AMS-LATEX. Updated to cur-
rent version (LATEX2ε).

BioCon Typesets some biological entities. Initial version
(0.01) which only typesets species.

circuit_macros: in graphics

(V.4.9) A set of macros for drawing high-quality
electric circuit diagrams containing fundamental el-
ements, amplifiers, transistors, and basic logic gates.
Several tools and examples for other types of dia-
grams are also included. More robust NOT gate,
Function pmod(), macro shade(), etc.

cuisine Package for typesetting recipes in steps in which
each ingredient is on the left of the page next to the
method step in which it is used.

curves Draws curves in the standard LATEX picture en-
vironment using parabolas between data points with
continuous slope at joins. V.1.42 (bug fix) can still
be used with LATEX 2.09. V.1.50 can only be used
with standard LATEX. It has improved documenta-
tion, greater drawing accuracy and is more efficient.
Four package options for dvi specials improve draw-
ing performance and some specials work with color.

directory: in biblio/bibtex/contrib

(V.1.15) Adds cellular phone fields, flexible defini-
tion of headers to generate nicer address booklets,
use of hyperrref to produce directories with hy-
perlinks.

dvi2bitmap: in nonfree/dviware

A utility to convert TEX dvi files directly to bitmaps.

dvipsconfig: in dviware

(V.1.5) A set of PostScript header files for dvips

to control various printer functions such as paper
size, duplex, and paper source (e.g., manual feeder,
envelope feeder, and trays 1, 2, and 3). Adds paper
size usledger and addpsctrl, which inserts these
controls into existing files.

expressg: in graphics/metapost/contrib/macros

(V.1.4) Provides facilities to assist in drawing dia-
grams that consist of boxes, lines and annotations.
Although particular support is provided for creat-
ing EXPRESS-G diagrams, examples are provided of
IDEF0, IDEF1X, Shlaer-Mellor, E-R, OMT, NIAM,
and other diagrams. Update adds outines for gen-
erating piecewise linear paths with either sharp or
rounded corners, diagram showing labeling conven-
tion for a drum and general tidying up of the code.

germbib: in biblio/bibtex/contrib

Now supports the language packages ngerman.sty
and babel.sty.

isodate Tunes the output format of the \today com-
mand providing \isodate, \numdate, \shortdate,
\TeXdate and \origdate and two additional com-
mands to print a date argument using the actual
date format for output. Compatible with bibgerm

style file.

jkthesis Updated class for formatting a thesis (bug fix
and now has ASCII-encoding). Documentation in
German only.

LaTeX 2000/06/01 The last (nominal) 6-monthly release
of LATEX2ε. Further updates will be on an annual
basis.

latex2man: in support

(V.1.11) Bug-fix update. A tool to translate UNIX

manual pages written with LATEX into a format un-
derstood by the UNIX man(1) command.

listbib Lists the contents of .bib files in a printable
format. V.2.2, enhancements to the listbib shell
script, example listbib.cfg, support for entry fields
URL and ‘totalpages’ (custom-bib uses them).

MiKTeX: in systems/win32/miktex/2.0-beta

V.2.0 beta 4 update. MiKTEX is a free TEX distri-
bution for Windows.

oands: in fonts/archaic

METAFONT version of some odd characters that are
used as symbols when transliterating ancient scripts
(like Hieroglyphs).

springer: in obsolete/macros/plain/contrib

Springer-Verlag Heidelberg/Berlin officially pulled
the macros in macros/plain/contrib/springer,
hence the move to obsolete. Up-to-date LATEX
files are at: macros/latex/contrib/supported/

springer.

tcltexed: in support

An editor written in the scripting language Tcl/Tk
for writing LATEX documents.

textcomptst: in info/textcomp-list

A list of all symbols available using the package
textcomp.sty.

textmerg: in .../other

Minor problem fixed and placed in public domain.
Word-processor-style merges for TEX and LATEX.

truncate.sty: in .../other/misc

Allows truncation of horizontal (lr mode) text to a
specified width. New version allows truncation at
arbitrary characters, without loading any special
hyphenation patterns.

tth-2.7-3.i386.rpm: in support

Version update to 2.7-3. TEX (or LATEX) to HTML

converter. Includes equations using native fonts in
tables.

TVS: in support/TVS

TEX Versioning System—Perl script collects com-
plete source codes of TEX documents in order to be

70 TUGboat, Volume 22 (2001), No. 1/2

able to re-typeset them exactly the same way. New
version 1.0 contains better support for packing for-
mat file sources and improved documentation (in
TEXinfo format).

undertilde Provides an \utilde command that puts a
tilde under math material.

vertbars An extension to the lineno package to put
vertical rules at left (right) of lines instead of num-
bers. Only complete paragraphs can be barred.

September 2000

adobe.zip: in .../psnfssx

Replaces files (alucida.dtx/ins & adobe.dtx/ins)
which were “lost” during restructuring the PSNFSS

distribution.

ams2bib: in biblio/bibtex/utils

A Perl script that translates AMS-TEX references
into BibTEX.

archaic: in fonts

Samples of archaic fonts.

blindtext: in .../minutes

Creation of text to get an impression of the look of
classes.

bsamples: in fonts/archaic

Sampler showing all 5 of the bookhands fonts.

CBGreek: in systems/win32/bakoma/contrib

CBGreek fonts (Small Caps) in Type 1 font format.

dvipscol: in .../oberdiek

Fix color stack overflows by dvips (ε-TEX recom-
mended).

elsart.cls: in .../elsevier

Elsevier class for compuscript (as opposed to man-
uscript) submission of publications. License clarifi-
cation (now LPPL).

engord: in .../oberdiek

Converts numbers to English ordinal numbers.

fac LATEX2ε class file and guide for the Springer Verlag
journal Formal Aspects of Computing.

fltpoint V.1.0c is an update needed for the new ver-
sion of the rccol package with minor changes to
the documentation. Provides basic floating point
calculations inside TEX.

fncylab.sty: in .../misc

Package allows customizing the appearance of la-
bels (without modifying internal commands), and
provides a \labelformat command for changing
the format of references to labels.

hieroglf: in fonts/archaic

METAFONT rendition of some 60 plus Egyptian
Hieroglyphs (used between 3000 BC and 100 AD),
and accompanying files to use them in LATEX. (5
new glyphs.)

hypcap: in .../oberdiek

Fix for using hyperref with figures, table environ-
ments and the star forms.

inslrmaj: in fonts/archaic

METAFONT rendition of the Insular Majuscule book-
hand in use in Ireland (and England) between the
sixth and ninth centuries, and the necessary files
for use with LATEX.

jtbnew.bst: in biblio/bibtex/contrib

Bibliography stylefile for the Journal of Theoretical

Biology ’s new style.

latex2rtf-1.8aa-os2.zip: in support

OS/2 port of latex2rtf converter. Needs emxrt.zip,
version 0.9d or higher.

lh: in fonts/cyrillic

Bug-fix update (v.3.4b). Cyrillic fonts including
characters for languages often not supported such
as Kazakh.

listings LATEX source code printer. Language update.

listliketab Makes list-like tabulars so that the user
can add additional columns to each entry.

lshort: in info/lshort/italian

The Italian version of lshort (The Not So Short

Introduction to LATEX2ε), version 3.15.

lshortth: in info/lshort

Thai translation of lshort (The Not So Short In-

troduction to LATEX2ε).

MetaPost4OS2: in graphics/metapost

Replaced with a symbolic link to the MS-DOS ver-
sion.

mfpic: in graphics

(V.0.4 beta) A pdfTEX package for drawing pic-
tures using METAFONT or METAPOST commands.

MHequ: in .../other

A package to easily create multicolumn equation
environments, and to tag the equations therein.
New version fixes compatibility problems with the
packages showkeys and hyperref.

minutes A package (v.1.4b) for setting minutes and build-
ing collections of minutes.

model-harv.pdf: in .../elsevier

Instructions for use and template files for Elsevier
authors.

model-num.pdf: in .../elsevier

Instructions for use and template files for Elsevier
authors.

mv4vtex.zip: in fonts/psfonts/marvosym/vtex

Instructions for installing the Marvosym font for
use with VTEX/Free and a font map file.

nomencl Help formatting a nomenclature using Make-
Index. V.3.1 adds support for Croatian, more ex-
amples and the ins file creates some sample config-
uration files.

numprint Prints numbers with separators and exponent
if necessary. New version includes an option for
units.

oldprsn: in fonts/archaic

METAFONT and LATEX files for typesetting with the
Old Persian cuneiform font, in use between 500 and
350 BC.

TUGboat, Volume 22 (2001), No. 1/2 71

othello Creates othello boards using LATEX.

pdfcolmk: in .../oberdiek

Fixes color problems with pdfTEX at page breaks.

pdftex.def: in macros/pdftex/graphics

(V.0.3e) Adds viewport and trim with clip support.

protosem: in fonts/archaic

METAFONT rendition of a Proto-Semitic script used
about 1600 BC in the Middle East, and the neces-
sary files for use in LATEX.

rccol (V.1.1) Supports different decimal signs in input
and output. Provides ‘right-centered’, optionally
rounded numbers in tabulars.

refcheck (V.1.8) Fix of bug when \ref, \pageref oc-
curred in a material processed to \write. Also im-
proved compability withAMS-LATEX and HyperRef.

refcount: in .../oberdiek

Extracts the numbers from references.

settobox: in .../oberdiek

Defines commands similar to LATEX’s \settowidth
commands for boxes.

template-harv.tex: in .../elsevier

Instructions for use and template files for Elsevier
authors.

template-num.tex: in .../elsevier

Instructions for use and template files for Elsevier
authors.

tfmpktest.pl: in fonts/utilities

Checksum of pk fonts. Can delete bad pk font with
checksum mismatch and recreate it.

thumbpdf: in support

The package provides support for thumbnails with
pdfTEX, and plain/LATEX formats. Requirements:
Perl5, ghostscript, pdfTEX. V.2.5 reduces filesize by
only loading fonts once.

ugarite: in fonts/archaic

METAFONT and LATEX files for typesetting with the
Ugaritic Cuneiform script (dating from about 1300
BC).

vpe: in .../oberdiek

Enables source specials for pdf files (clicking on
special annotations will launch an editor with the
source file at the source line) in VTEX/Linux, pdf-
TEX, and with dvips.

wordcount Provides a relatively easy and accurate way
of counting the number of characters and words in
a LATEX document.

October 2000

Augie: in fonts

A Type 1 handwriting font, based on American
style casual handwriting. The font itself is freeware
by emerald city fontwerks www.speakeasy.org/~ecf.
The package adds metrics, .vf, .fd and map files.

BibGene: in biblio/bibtex/utils/bibgene

Macintosh bibliographic database program; free-
ware application for maintaining databases of ref-
erences. BibGene 1.2.2 is PowerPC-only. For ver-
sions for M68K Macs, see http://www.ics.uci.

edu/~eppstein/bibs/bibgene/.

ConcProg Sets music concert programmes, with support
for part divisions, etc.

coordsys Provides commands for typesetting number
lines (coordinate axes) and coordinate systems in
the picture environment.

CWEB3.6.2forMacOS: in web/systems/mac/cweb

Improved port of CWEB (no fake /dev/null files
any more) for MacOS v.3.6.2.

ecta.bst: in biblio/bibtex/contrib/economic

Econometrica bibliography style—now follows ex-
actly the official recommendations. Also compati-
ble with natbib.

emTeXTDS: in systems/os2/emtex-contrib

Version 0.54 of the emTEX/TDS distribution for
OS/2, featuring the latest releases of LATEX, AMS-
LATEX and other packages, as well as several bug
fixes.

fancyhdr Update of the fancyhdr package: added LPPL

license, some small enhancements (error messages),
some bug fixes in extramarks.sty, obsolete file re-
moved and documentation updated

hpsdiss Class file (documented in .dtx) developed by
Hanspeter Schmid to typeset his dissertation. .pdf
sample provided.

hyperref: (V.6.71) Bug fixes and enhancements of this
package for creating/enabling hyperlinks in docu-
ments.

isi2bibtex: in biblio/bibtex/utils

(V.0.40) Isi2bibtex converts an Institute for Sci-
entific Information (ISI, known in the UK as ‘BIDS’
or ‘MIMAS WoS’) bibliographic database file to a
BibTEX file for use with TEX and LATEX

jurabib Various forms of short and long citations—
now more flexible and no longer just for German
law students. Changes in 0.5d: English documen-
tation, option to place the howcited remark for all
entries french.sty-compatibility, keyval-interface
more intuitive, minimal example document for the
humanities, etc.

KTeXShell: in systems/unix

A graphical user interface to TEX, LATEX, and re-
lated programs, running on Linux/UNIX with KDE.
It is not another WYSIWYG approach. Instead it
provides a document development interface where
you can define your files, edit, compose, view, and
print them with a mouseclick.

logsys Extends the oordsys package by providing log-
arithmic, semi- and double-logarithmic coordinate
systems and grids.

mathetx/mathmtx: in
fonts/utilities/fontinst-prerelease/inputs

72 TUGboat, Volume 22 (2001), No. 1/2

A partial collection of metric and encoding files for
fontinst v.1.915.

macos-fonts.zip: in systems/mac/fonts/oztex

Collection of freely available PS fonts in MacOS for-
mat. Includes: Belleek, CharterBT, LOGO, MAN-

UAL, MathPazo, RSFS and Utopia. Can be adapted
for use with other TEX systems in the MacOS.

NRC Macros for typesetting papers for submission to jour-
nals published by the National Research Council of
Canada.

rfc2bib.awk: in biblio/bibtex/utils

gAWK script to automatically generate BibTEX en-
tries from IETF RFCs.

skak: in fonts

Package for typesetting chess. Bug fix (regarding
knight and queen movement).

TeXshade Package (1.4a update) for setting nucleotide
and protein alignments in LATEX. Features new pos-
siblities for positioning the legend and some changes
in the documentation and the FAQ-list.

titleref.sty: in .../other

Version 3.0. Provides a \titleref command to
cross-reference section (and chapter, etc.) titles and
captions like \ref and \pageref. Now licensed as
PD.

verbdef.sty: in .../other

Define robust commands which expand to verba-
tim text—can be used in arguments for other com-
mands/macros.

November 2000

arabtex-oztex.sit: in systems/mac/fonts/oztex

A MacOS adaption of Taco Hoekwater’s PostScript
Type 1 version of Dr. Prf. Klaus Lagally’s Nastaliq
arab fonts, with additional support for OzTEX.

bibtopic A package for sectioned/multiple bibliogra-
phies. Update to version, 1.0j, fixes a problem with
babel.sty’s redefinition of \ifthenelse. V.1.0e
adds compatibility with hyperref and another up-
date added compatibility for natbib v.7.0.

dinat: in biblio/bibtex/contrib/german

Enhancement of the old dinat-style for proceedings,
inbook and misc. Improves handling of names to
avoid problems with the “von” part.

filippou: in
language/greek/package-babel/hyphenation

Update of the hyphenation patterns for ancient and
modern Greek in polytonic (multi-accent) and mono-
tonic (uni-accent) systems. Works with the greek
option of babel or Dryllerakis’ GreeKTeX.

jcc.bst: in biblio/bibtex/contrib/chem-journal

BibTEX style file for Journal of Computational

Chemistry.

jpc.bst: in biblio/bibtex/contrib/chem-journal

BibTEX style file for Journal of Physical Chemistry.

keystroke Provides macros for the graphical represen-
tation of the keys on a computer keyboard.

LatexHelpBook: in info

HTML-based help for LATEX for Windows 98, 95,
NT 4, and 5.

mpic21.zip: in graphics/pictex/mathspic

mathsPIC (DOS vers 2.1), a DOS filter program for
use with PiCTEX.

pccp.bst: in biblio/bibtex/contrib/chem-journal

BibTEX style file for the journal Physical Chemistry

Chemical Physics.

Prosper A LATEX class on top of the seminar class. Per-
mits easily writing slides for both printing and dis-
play with a video projector, including animation
effects such as incremental display. Several slide
styles are available and new ones are easily added.

revcompchem: in
biblio/bibtex/contrib/chem-journal

BibTEX style file for Reviews in Computational

Chemistry.

rtf2latex2e: in support

Beta release. rtf2latex2e 1.0 beta 3 converts RTF

files into LATEX2ε. Detects text style (bold, italic,
color, big, small, etc.), reads tables (simple to semi-
complex), converts embeddedMathType equations,
converts most Greek and math symbols, reads foot-
notes (not in tables), support for use of the fontenc
package, translates hyperlinks using the hyperref

package.

TransFig: in graphics

TransFig is a set of tools for creating TEX doc-
uments with graphics which are portable, in the
sense that they can be printed in a wide variety of
environments.

ucs.sty This package implements a facility for map-
ping Unicode characters to LATEX macros and to use
UTF-8 as an input encoding with standard LATEX2ε.

xfig: in graphics

Xfig is a menu-driven tool that allows the user to
draw and manipulate objects interactively in an
X window. The resulting pictures can be saved,
printed on PostScript printers or converted to a va-
riety of other formats.

xipa-oztex.sit: in systems/mac/fonts/oztex

A Stuffit 5 archive containing MacOS versions of
the PostScript Type 1 XIPA fonts created by Taco
Hoekwater. These fonts provide IPA93 characters
plus extensions to be used with Times Roman and
Helvetica for use with Fukui Rei’s tipa package.

XyMTeX Update. Package including LATEX document-
style options for typesetting chemical structural for-
mulas.

ziffer Formats numbers with the correct German spac-
ing (even in math mode).

December 2000

bakoma: in systems/win32

BaKoMa TEX system upgrade to v.3.10.

TUGboat, Volume 22 (2001), No. 1/2 73

bakoma/index.html: in systems/win32/bakoma

Updated version of this file with new information
about the BaKoMa TEX mailing list which is in-
tended for news, questions, answers, and user dis-
cussions about BaKoMa TEX Software.

BibTexMng: in biblio/bibtex/utils

Easy to use bibliographic software for Windows.
Combines online searching, reference management,
bibliography making, and information sharing into
a single user-friendly environment. It was written
to be used with LATEX, using BibTEX.

bophook (V.0.01) Hook for adding material at the be-
ginning of each page.

bpchem: in .../other

This package provides commands and environments,
which are useful for typesetting chemical formulæ
as well as breakpoints in multiline chemical names
and a set of commands to enumerate/reference chem-
ical substances.

bundledoc: in support

Post-processor for the snapshot package that bun-
dles together the classes, packages, and files needed
to build a given LATEX document into a .tar.gz file,
suitable for moving across systems, transmitting to
a colleague, etc.

docmfp Update to v 1.1 of the docmfp package. This
extends the doc package to document non-LATEX
code, such as METAFONT and METAPOST, or even
C code. Adds a generalized \Describe macro and
a Code environment.

dvi2tty-german umlauts.patch: in
nonfree/dviware/dvi2tty

With this patch, dvi2tty replaces some special char-
acters (a-,o-,u-umlauts, sz-ligature, a-ring) by their
Latin-1 representation.

eso-ex3.tex: in .../ms/contrib

Example for the LATEX package eso-pic showing
how to include pages from an external (PDF) doc-
ument.

fancyhdr: in /info/german

A short german introduction to fancyhdr with ex-
amples.

faq: in usergrps/uktug

V.2.5 of the FAQ by the UK TEX Users Group, also
available from http://www.tex.ac.uk/faq.

FiNK The LATEX2ε File Name Keeper, first public re-
lease. This package keeps track of files \input’ed
(the LATEX way) or \include’ed in your document.
Also comes with support for AUC-TeX.

FiXme A LATEX2ε package for inserting “fixme” notes in
draft documents. V.1.1, the first public release—
provides a way to insert “fixme” notes in draft doc-
uments, either in the margin of the document, as
index entries, in the log file and/or as warnings on
stdout or to summarize them in a list. Also comes
with support for AUC-TeX.

itamsldoc: in info/italian

Italian translation of the amsmath documentation.

latex.zip: in systems/win32/miktex/1.20

LATEX2ε update (2000/6/1) for the MiKTEX 1.20e
distribution.

LigaTeX: in support

Version 0.2.0 of LigaTEX (a package which removes
certain ligatures from text). Now switched on and
off by the babel-package macros.

LGrind: in nonfree/support/lgrind

V. 3.65. Last update by Michael Piefel (due to
non-free license issues) for the pretty printer LGrind
which can produce nice LATEX from source code.
Moved from support/lgrind (but a symbolic link
to that location has been added).

lineno.sty Update for compatibility with longtable.

ltx3info.pdf: in .../ms/contrib

Article describing the motivation, achievements and
future of the LATEX3 Project.

MacDevnag: in language/devanagari/contrib

Macintosh port of the devnag program—a prepro-
cessor which is part of the Devanagari package (in
language/devanagari/distrib).

minitoc Update to version 34. This package adds mini
tables of contents by chapters, parts or sections
(and minilofs, minilots). Updated documentation
(a section for use with tocbibend and a French
translation (fminitoc.ps) and additional .mld files
for alternate names of languages.

mtgreek A mathtime.sty supplement, uppercase Greek
letters displayed as either roman or italic glyphs.

pxfonts: in fonts

Final update to v.3.1 of the PX fonts (based on
Palatino). Only obvious bugs, if they are found,
will be fixed through patches, no modification to or
adding of letters/symbols in the near future.

references: in support

Updated to v.3.6. references is bibliographic soft-
ware for authors of scientific manuscripts and for
management of bibliographic data. Supports LATEX
including BibTEX. Able to import bibliographic
records in the MEDLINE format.

rtkinenc Similar to the standard package inputenc,
but allows the user to specify a fallback procedure
to use when the text command corresponding to
some input character isn’t available.

scriptfonts: in info/symbols/math

A summary of readily-available script fonts for use
in mathematical typesetting.

setspace.sty The setspace package, version 6.7, has
three new options, to set default spacing (single-
spacing, onehalfspacing, doublespacing) when
the package is loaded.

tcldoc Defines a couple of environments and commands
for documenting Tcl (Tool Command Language)
source code in .dtx-style documented source files.

74 TUGboat, Volume 22 (2001), No. 1/2

TeXmacs: in systems/unix

Update to v.0.3.0-7 of GNU TeXmacs, a text editor
inspired by the popular TEX typesetting system and
the emacs editor. Runs on PCs under Linux and on
SUN computers: “It is reasonable to expect that it
will run on most UNIX/X-Windows systems in the
near future.”

trsym: in fonts

Horizontal and vertical symbols used for transfor-
mations (e.g. Laplace transformation) including in-
verse transformation.

txfonts: in fonts

Final update to v.3.1 of the TX fonts (a complete
set of fonts with math support based on Times and
Helvetica). Only obvious bugs, if they are found,
will be fixed through patches, no modification to or
adding of letters/symbols in the near future.

u8tex.el: in support/emacs-modes

Quail package to input TEX characters (and some
more) using familiar notation. Changes in v.1.2:
Documentation, adoption of some HTML abbrevia-
tions, more amssymb characters and bug fixes.

varindex Bug fix update.

WinEdt: in nonfree/systems/win32

Official release of WinEdt 5.2 (shareware). Com-
plete information at http://www.winedt.com.

xdoc2: in macros/latex/exptl/xdoc

Second prototype for the hypothetical xdoc pack-
age. Reimplements some of the features found in
the standard LATEX doc package. Additionally pro-
vides support for defining new commands similar
to \DescribeMacro and new environments similar
to the macro environment, for two-sided document
layouts, for external cross-referencing, for making
index entries for invisible characters, and for op-
tionally ignoring certain prefixes (such as @ and @@)
in macro names when sorting them.

zefonts: in fonts

New version of zefonts with two new fd files and
a comparison between aefonts and zefonts.

⋄ William F. Adams
75 Utley Drive, Ste. 110
Mechanicsburg, PA 17055
USA
willadams@aol.com

74 TUGboat, Volume 22 (2001), No. 1/2

Tutorials

Publishing legacy documents on the Web

George Grätzer

Abstract

A great deal has been written recently about pub-
lishing LATEX documents on the Web. But what
happens if you are not lucky enough to have your
document in LATEX?

I am going to describe my adventures putting
old documents on the Web. There are a few pitfalls
on the way. If you follow this how-to guide, you can
get your legacy articles on the Web in no time at all.

1 Introduction

I have made an effort in the past few years to make
all my mathematical research articles available on
the Web. If you check my Web site: http://www.

math.umanitoba.ca/homepages/gratzer/you find
all my articles, 165–202, in PDF format. The turning
point was 1994, when David Carlisle’s graphics pack-
age came into use. After 1994, I wrote all my articles
in standard LATEX and I included the diagrams—
saved in eps format—with the

\includegraphics

command of the graphics package. Now, seven or so
years later, LATEX is the same, eps is the same, all
the articles 165–202 typeset today as they did when
they were written.

If you want to read about how to publish such
documents on the Web, read Chapter 14 of my book
[2]; if you want to read a whole book on the topic,
read Michel Goossens and Sebastian Rahtz (with
Eitan Gurari, Ross Moore, and Robert Sutor) [1].
The best book on the technical aspects of PDF is
Thomas Merz [3].

I would like to thank R. Padmanabhan, Jacob
Palme, and Thomas Merz for reading the manu-
script and giving good advice.

2 Legacy documents

All my articles written bc (Before Carlisle) are
legacy articles—with a few exceptions.

Here are the major categories of legacy docu-
ments:

1. Old documents written on a typewriter and
then typeset in a printing shop. All my arti-
cles written before 1990 (1–132) fall into this
category.

TUGboat, Volume 22 (2001), No. 1/2 75

2. Documents written in an old word processor
that is no longer available or in an old version of
a word processor that went through too many
changes. For instance, my papers that were
written in Word 6.0/1995 (on the Mac) would
need significant editing: many symbols appear
wrong (was there a change in the encoding
vector of the Symbol font?) and they are full
of mysterious messages:

Error! Bookmark not defined.

You find lots of examples of this in the group
1990–99.

3. LATEX papers whose source code has been mis-
placed; LATEX papers that utilize packages or
document classes that are no longer available
or that are not compatible with today’s LATEX.

4. LATEX papers with diagrams drawn with draw-
ing programs that are no longer around. For
instance, article 161.

5. LATEX 2.09 and AMS-LATEX papers. Although
Appendix G of [2] gives detailed and pretty
straightforward instructions on how to convert
such articles to LATEX, carrying out such a
conversion may be too large a task.

3 The quick and dirty solution

It became clear to me that a number of people going
to my Web site are looking for older articles. So I
decided that I will put all my articles on the Web.

This sounded really easy to do:

1. I scan the article.

2. I use Adobe Acrobat to turn the tiff files
created by the scanner to a PDF file.

It was indeed easy to do, but the result was
terrible. Firstly, I came to realize that the edges
of an old reprint were not necessarily cut parallel
with the printed lines. So the scanned images were
crooked. I also did not know how to optimally set
my scanner. And when I set it to 300dpi, black
and white bitmap, the printed version came out
50% magnified, and as a result, really ugly (similar
to a 200dpi scan). Why is that? Go to the print
dialog box of a PostScript printer, and choose the
Acrobat pane; by default, it has a checkmarked box,
Fit to Page. Uncheckmark the box, and the PDF

file will print properly.
So you must warn the users, to leave the

Fit to Page box unchecked. A better solution is in
the next section.

4 The proper solution

We now use the following procedure to obtain the
PDF files for legacy documents.

1. Scan each page of the document at 300dpi,
black and white bitmap.

Justification. The first decision to be made is
at what dpi to scan. Since most printers these days
are 1200dpi printers, there is a temptation to scan
at 1200dpi.

Table 1 shows the size of a typical (large)
printed page.

A 12 page paper at 300 dpi is about 1MB; it
is more than 3MB at 600dpi. At 1200dpi, it is
almost 6MB, obviously too large for most people
to download.

Another way of increasing the file size is by
using grayscale, instead of black and white bitmap,
for the scanning. This increases the file size dramat-
ically, and often decreases the quality of the PDF

document. Avoid using grayscale unless there are
grayscale illustrations in the document.

2. Open each page in Photoshop (or another
similar application) and perform the following steps
(stated specific to Photoshop):

Step 1. Change the page to grayscale
Image>Mode>Grayscale

keeping the Image Ratio at the default value 1.
Step 2. Enlarge the page and set the grid

visible.
View>Show>Grid

Step 3. Use the eraser to get rid of dirt on the
page.

Step 4. If necessary, rotate the picture in
increments of 0.1 degrees to make the lines straight.
Image>Rotate Canvas>Arbitrary...

Step 5. When the lines are straight, change
the page to black and white bitmap
Image>Mode>Bitmap...

keeping the Output at 300 pixels/inch.
Step 6. Change the canvas size to 8.5 inches

by 11 inches; place the original image in the center
(the default).
Image>Canvas Size...

Step 7. Save the image with Save As..., keep
the tiff format, and checkmark LZW Compression.

Justification. Step 1 is necessary, otherwise
Step 4 cannot be done. Step 6 is useful, because
then it no longer matters whether the Fit to Page

box is checked.
Comment 1. Photoshop allows the creation of

“buttons” to facilitate this process. The buttons are
colored and carry a descriptive name to indicate the
action that is carried out by one click on the button.
I have five buttons for this procedure:

1. To grayscale It is colored gray. It does Steps
1 and 2.

76 TUGboat, Volume 22 (2001), No. 1/2

Table 1: Size of a one-page scanned file

Scanning at 150 dpi 200 dpi 300 dpi 600 dpi
Size of tiff file 172K 300K 668K 2.5MB
Size of PDF file 36K 52K 88K 212K
Quality of printed document poor poor O.K. excellent

2. Turn clockwise It turns clockwise by 0.1 de-
grees.

3. Turn counterclockwise It turns counterclock-
wise by 0.1 degrees.

4. To bitmap It is colored white. It does Step 5.

5. Large canvas It does Step 6.

Such a set of buttons can be saved. Then the
set can be loaded as necessary.

Comment 2. J. Palme [4] raises the question
how can you make a PDF document “international”,
that is, printable in North America in standard
letter format, and outside of North America in A4
format. The summary of his advice is:

If you are using U.S. Letter paper format,
ensure that both the left and right margins
are at least 21 mm (0.8 in).

Note that Step 6 ensures this in most circumstances,
certainly with the 150 or so of my legacy articles.

Comment 3. You may get better PDF files if
you make Step 4 slightly more sophisticated. Scan
the document at 600dpi. Then straighten the pages
as follows:

• Select the Measure Tool (it hides behind the
Eyedropper Tool).

• Drag it to draw a straight line across the page.

• Choose the menu item:
Image>Rotate Canvas>Arbitrary...

and a dialogue box comes up, showing the ro-
tation necessary to straighten the page. Carry
out the action by clicking OK.

Theoretically, this should give a better quality PDF

document. In actual practice, I cannot see the
improvement. Step 4, as recommended, has the
advantage of simplicity. My papers were converted
by a service bureau (Sri RAM Technicraft, e-mail:
sukanya8@mb.sympatico.ca). Since they use un-
trained persons for such work, they appreciated the
simplicity of the process.

3. Now take a look at how the pages are
numbered. The scanner assigned them names such
as

File1.xyz

File2.xyz

and so on. This will create problems if you have
more than nine pages. So rename them

File01.xyz

File02.xyz

4. In Acrobat, choose File>Import>Image,
choose all the pages in the document, and click on
Done. The PDF file will be ready in a few seconds.

5. Acrobat will balk if you wish to make a
PDF document of more than 50 pages. In this
case, make more than one PDF document, and
merge them as follows: open the first document in
Acrobat. Choose Document>Insert Pages...; in
the open dialog box, select the second PDF file. In
the dialog box that comes up, for Location select
After, and for page select Last. Clicking on OK will
merge the two documents. Proceed thus until all
the documents are merged.

Figure 1 shows a few lines of a scanned page on
the Web. It is reminiscent of math papers printed
on old 300dpi laser printers.

5 Covers

Unfortunately, old reprints had covers containing
vital information, maybe even the author and the
title. As a rule, the journal information was on the
cover only. So it is necessary in many instances to
include the front cover with the article.

The covers pose special problems: they are
often colored (say, medium blue) and somewhat the
worse for the wear. If you scan them as in Section 4,
the scanned image may be full of black spots— the
image seems to be damaged beyond repair.

Here is what you have to do.
Step 1. Scan the cover at 600dpi, grayscale.
Comment. Even the 600 dpi bitmap may be full

of dirt or even completely black!
Step 2. In Photoshop, choose

Select>Color Range....
In the dialogue box, pull down the Select menu,
and choose Shadows. This selection consists of all
the printed letters and logos (and a few dirt spots).

Step 3. Fill the selected area with black. This
will change the grayscale print to black.

Step 4. Invert the selection with
Select>Inverse,
and fill the selection with white. This will create

TUGboat, Volume 22 (2001), No. 1/2 77

Figure 1: 300 dpi scan on the Web.

Figure 2: Cover scanned at 600 dpi.

a white background. Clean up the dirt, and if
necessary, repeat Steps 3 and 4. Now you should
have a beautiful black and white cover.

Figure 2 shows a portion of a cover scanned
grayscale at 600dpi. Figure 3 is the cleaned up
version.

R. Padmanabhan suggested to cut from the
cleaned up cover the information missing from the
first page and paste it on the top of the first page.
This saves storage and download time. However,
the reader may be under the impression that the
scanned pages are faithful representations of the
original, which would not remain quite true with
this scheme.

6 Future

Obviously, some years in the future, my Web site
as set up today will appear obsolete. When most
users will have very fast Web connections, when data
storage will be measured in hundreds of gigabytes,
all articles will be scanned at 2400dpi.

More importantly, Adobe Acrobat introduced
the capture command, which allows us to store a
legacy document in two ways: as an image and as
text (linked to the image). This has the advantage
that we can view a legacy document as it looked
originally, and the text layer allows complete search-
ing capabilities. Unfortunately, I was completely

unsuccessful in my attempts to use capture for my
documents. Even PDF files converted from LATEX
showed a very high failure rate.

You can get a glimpse of the future at http:
//www.jstor.org/, the Web site of JSTOR, The
Journal Storage, The Scholarly Journal Archive.
The image files are created at 600dpi and the text
recognition is accomplished with proprietary soft-
ware (and carefully proofread). The mathematics
journals include the Proceedings of the American
Mathematical Society and the Transactions of the
American Mathematical Society.

The future will have all this and links: internal

links in an article from “by Lemma 5” to Lemma 5,
from “see [12]” to the citation [12]; and externally,
from citation [12] to the actual article.

References

[1] Michel Goossens and Sebastian Rahtz (with Ei-
tan Gurari, Ross Moore, and Robert Sutor), The

LATEX Web Companion: Integrating TEX, HTML

and XML. Addison-Wesley, Reading, MA, 1999.

[2] George Grätzer, Math into LATEX, third edition,
Birkhäuser Verlag, Boston, Springer-Verlag,
New York, 2000. xl+584 pp. ISBN 0-8176-4131-9,
ISBN 3-7643-4131-9.

[3] Thomas Merz, Web Publishing with Acrobat

PDF. Springer-Verlag New York, 1998.

78 TUGboat, Volume 22 (2001), No. 1/2

Figure 3: Cover cleaned up.

[4] Jacob Palme, Making Postscript and PDF

International, Network Working Group, Request
for Comments: 2346, Stockholm University,
May 1998.
http://dsv.su.se/jpalme/ietf/

jp-ietf-home.html\#anchor1470437,
http://www.ietf.cnri.reston.va.us/rfc/

rfc2346.txt

⋄ George Grätzer

Department of Mathematics

University of Manitoba

Winnipeg MN, R3T 2N2

Canada

gratzer@cc.umanitoba.ca

http://server.math.umanitoba.

ca/homepages/gratzer/

78 TUGboat, Volume 22 (2001), No. 1/2

Anatomy of a macro

Denis Roegel

Abstract

In this article, we explain in detail a TEX macro for
computing prime numbers. This gives us an oppor-
tunity to illustrate technical aspects often ignored
by TEX beginners.

This article is dedicated to Chrystel Barraband for

whom the first version was written in 1993.

This article is a translation, with corrections, of the article

“Anatomie d’une macro” published in the Cahiers GUTen-

berg, number 31, December 1998, pages 19–27. Reprinted

with permission.

Introduction

A TEX macro can be seen as the definition of a com-
mand by other commands. Both the definition of a
command and the way arguments are passed obey
rules which are both precise and simple, but which
are often overlooked, though indispensable to a good
understanding of TEX.

Moreover, the call of a TEX macro is a very dif-
ferent process from what happens in classical lan-
guages. It is similar to a macro call in the C prepro-
cessor and it is hard to imagine programming with
such a language! A macro call merely entails a re-
placement or a substitution, but it can also call other
macros, including itself, which allows recursion.

Computing prime numbers

We will focus on the computation of prime numbers.
n > 1 is prime if n is divisible only by itself and 1. If

TUGboat, Volume 22 (2001), No. 1/2 79

n is odd, it is sufficient to divide n by 3, 5, 7, . . . , p ≤
⌊√n⌋. For, if n can be divided by p > ⌊√n⌋, then
n can also be divided by q < ⌊√n⌋. The divisors p

will be tried until p2 > n.

Macros

The following example, from The TEXbook (Knuth,
1984), is of an advanced level but will allow us to
go straight to the heart of the matter. The macro
\primes makes it possible to determine the first
n prime numbers, starting with 2. For instance,
\primes{30} returns the first 30 prime numbers.
Here are all the definitions.1 We will then analyze
them in detail:

\newif\ifprime \newif\ifunknown

\newcount\n \newcount\p

\newcount\d \newcount\a

\def\primes#1{2,~3% assume that #1>2

\n=#1 \advance\n by-2 % n more to go

\p=5 % odd primes starting with p

\loop\ifnum\n>0 \printifprime

\advance\p by2 \repeat}

\def\printp{, % invoked if p is prime

\ifnum\n=1 and~\fi

\number\p \advance\n by -1 }

\def\printifprime{\testprimality

\ifprime\printp\fi}

\def\testprimality{{\d=3 \global\primetrue

\loop\trialdivision

\ifunknown\advance\d by2 \repeat}}

\def\trialdivision{\a=\p \divide\a by\d

\ifnum\a>\d \unknowntrue

\else\unknownfalse\fi

\multiply\a by\d

\ifnum\a=\p \global\primefalse

\unknownfalse\fi}

Declarations

First, we declare two booleans, or more precisely two
tests.

\newif\ifprime

\ifprime is equivalent to \iftrue if “prime”
is true. This boolean will make it possible to see if
a number must be printed; thus, in \printifprime,
the expression \ifprime\printp\fi means that if
\ifprime is evaluated to \iftrue, then \printp

(that is, the macro that will print the number of in-
terest to us, namely \p) will be executed, otherwise
nothing will happen.

\newif\ifunknown

1 The code was slightly reformatted to fit in the columns.

“unknown” will be true if we are not yet sure
whether \p is composed or not. Neither is known.
Initially, “unknown” is thus true and the \ifunknown
test succeeds. If “unknown” is false, we have knowl-
edge about \p’s primality, that is, we know if \p is
prime or not.

Next the code defines a few integer variables
useful in what follows:

• \newcount\n

\n is the number of prime numbers that re-
main to be printed.

• \newcount\p

\p is the current number for which primality
is tested.

• \newcount\d

\d is a variable containing the sequence of
trials of divisors of \p.

• \newcount\a

\a is an auxiliary variable.

Main macro

The main macro is \primes. It takes an argument.
When the macro is defined, this argument has the
name #1. If there were a second argument, it would
be #2, etc. (It is not possible to have — directly —
more than nine arguments; indirectly however, one
can have as many arguments as one wants, including
a variable number, which could for instance be a
function of one of the arguments.)

\def\primes#1{2,~3%

\n=#1 \advance\n by-2 %

\p=5 %

\loop\ifnum\n>0 \printifprime

\advance\p by2 \repeat}

When the \primes macro is called, for instance
with 30, \primes{30} is replaced by the body of
\primes (that is, the group between braces which
follows the list of \primes’ formal arguments), in
which #1 is replaced by the two characters 3 and
0. \primes{30} hence becomes (we have removed
spaces at the beginning of the lines, because they
are ignored by TEX):

2,~3%

\n=30 \advance\n by-2 %

\p=5 %

\loop\ifnum\n>0 \printifprime

\advance\p by2 \repeat

What happens now? We print “2,~3”, that is,
2 followed by a comma, followed by an unbreakable
space (i.e., the line will in no case be split after the
comma); then 30 is assigned to \n. Immediately, 2 is

80 TUGboat, Volume 22 (2001), No. 1/2

subtracted from \n, and \n then contains the num-
ber of primes that remain to be printed. To keep
it simple, we have assumed that at least the three
first primes must be displayed. Therefore, we are
sure that \n is at least equal to 1. This is also why
it was possible to put a comma between 2 and 3,
because we know that 3 is not the last number to be
printed. We want the last number printed to be pre-
ceded by “and”. Hence, when we ask \primes{3},
we want to obtain “2, 3, and 5”. It should also be
noticed that the “%” after “3” is essential to prevent
insertion of a spurious space. “3” will be followed by
a comma when \printp is called. The “%” after the
second and third lines are not really needed since
TEX gobbles all spaces after explicit numbers; these
“%” signs appear only as remnants of comments.

We said that \p is the current number whose
primality must be tested. We must therefore initial-
ize \p to 5, since it is the first odd number after
3 (which we don’t bother to check if it is prime or
not).

The body of \primes{30} ends with a loop:

\loop\ifnum\n>0 \printifprime

\advance\p by2 \repeat

It is a \loop/\repeat loop. In general, these
loops have the form

\loop A text \if... B text \repeat

This loop executes as follows: it starts with
\loop, the A text is executed, then the \if... test.
If this test succeeds, the B text is executed, then
\repeat makes us return to \loop. If the test fails,
the loop is over.

Hence, in the case of \primes{30}, it amounts
to execute

\printifprime\advance\p by2

as long as \n is strictly positive, that is, as long as
prime numbers remain to be printed. In order for
this to produce the expected result, it is of course
necessary to decrement the value of \n. This is
done every time a number is printed with the call to
\printifprime.

As a consequence, if at least one number re-
mains to be printed, \printifprime will be called
and will print \p if \p is prime. Whatever the re-
sult, we pass then to the next odd number with
\advance\p by2.

Printing

The prime numbers are printed with \printp:

\def\printp{, %

\ifnum\n=1 and~\fi

\number\p \advance\n by -1 }

This macro is called only when \p is prime (see its
call in \printifprime). In any case, this macro has
no arguments and gets expanded into

, %

\ifnum\n=1 and~\fi

\number\p \advance\n by -1

that is a comma and a space, followed by “and ”
if \n equals 1 (in the case where the number to be
printed is the last one), followed by \p (the \number
function is analogous to \the and converts a variable
into a sequence of printable characters); finally, \n
is decremented by 1, as announced, and this allows
a normal unfolding of the \loop...\repeat loop in
the \primes macro.

The macro \printifprime is called by \primes.
It calls the function computing the primality of \p
and this determines if \p must be printed or not.

\def\printifprime{\testprimality

\ifprime\printp\fi}

As one can guess, the \testprimality macro
sets the “prime” boolean to “true” or “false,” or
if one prefers, it makes the \ifprime test succeed or
fail.

Primality test

The macro testing \p’s primality uses the classi-
cal algorithm where divisions are tried by numbers
smaller than \p’s square root.

\def\testprimality{{\d=3 \global\primetrue

\loop\trialdivision

\ifunknown\advance\d by2 \repeat}}

This macro is more complex because it involves
an additional “group,” shown here by the braces.
Therefore, when \testprimality is expanded, we
are left with

{\d=3 \global\primetrue

\loop\trialdivision

\ifunknown\advance\d by2 \repeat}

meaning that what happens between the braces will
be — when not otherwise specified— local to that
group. This was not the case in the expansions seen
previously.

Let us first ignore the group. What are we do-
ing? 3 is first assigned to \d where \d is the divisor
being tested. We will test 3, 5, 7, etc., in succes-
sion, and this will go on as long as it is not known
for certain whether \p is prime or not. As soon as
we know if \p is prime or composed, the “unknown”
boolean will become false and the \ifunknown test
will fail.

Now, let us look at this again: we start with
\d=3; the default is to consider \p prime, hence the

TUGboat, Volume 22 (2001), No. 1/2 81

“true” value is given to the “prime” boolean. This
is normally done with

\primetrue

but in our case, it would not be sufficient. Indeed,
at the end of

{\d=3 \primetrue

\loop\trialdivision

\ifunknown\advance\d by2 \repeat}

all variables take again their former value, because
the assignments are local to the group. But the
“prime” boolean is used when the \ifprime... test
is being done in \printifprime, which is called
after \testprimality. The group must therefore
be transcended and the assignment is coerced to be
global. This is obtained with

\global\primetrue

The remainder is then obvious: an attempt is
made to divide \p by \d, and this is the purpose
of \trialdivision. If nothing more has been dis-
covered, that is, if “unknown” is still “true”, the
value of the trial divisor is set to the next value
with \advance\d by2. Sooner or later this process
stops, as shown by the \trialdivision definition.

The additional group in \testprimality can
now be explained. If the group is not introduced,
the expansion of \primes{30} leads to

...

\loop\ifnum\n>0 \printifprime

\advance\p by2 \repeat

Plain TEX defines \loop as follows:

\def\loop#1\repeat{\def\body{#1}\iterate}

\def\iterate{\body\let\next\iterate

\else\let\next\relax\fi \next}

Therefore, the initial text is expanded into

\def\body{\ifnum\n>0 \printifprime

\advance\p by2 }\iterate

Hence, the \loop. . . \repeat construct becomes

\ifnum\n>0 \printifprime\advance\p by2

\let\next\iterate

\else \let\next\relax\fi \next

If \n > 0, this leads to

\printifprime ...

\let\next\iterate \next

and hence to

\testprimality ...

\let\next\iterate \next

and to

... \loop\trialdivision

\ifunknown\advance\d by2 \repeat ...

\let\next\iterate \next

Now, \iterate will call \body, but the \body defini-
tion called will be the one defined by the second (in-
ner) \loop, and chaos will follow! This explain why
a group has been introduced. The group keeps the
inner \body definition away from the outer \loop

construct, hence each \iterate call produces the
appropriate result.

Division trials

The last macro is where the actual division of \p by
\d is made. An auxiliary variable \a is used.

\def\trialdivision{\a=\p \divide\a by\d

\ifnum\a>\d \unknowntrue

\else\unknownfalse\fi

\multiply\a by\d

\ifnum\a=\p \global\primefalse

\unknownfalse\fi}

\p is copied into \a, then \a is divided by \d.

This puts into \a the integer part of
\p
\d

. Two cases

must then be considered:

1. if \a > \d, that is, if \d is smaller than the
square root of \p, we are still in unknown terri-
tory. \d may be a divisor of \p, or there might
be another divisor of \p larger than \d and
smaller than the square root of \p root. The
“unknown” boolean is therefore set to “true”
with \unknowntrue.

2. if \a ≤ \d, we assume that we know, or at least,
that we will know momentarily. We write there-
fore \unknownfalse.

In order to be sure, we must check if there is a
remainder to \p’s division by \d, or rather to \a’s
division by \d: \a is therefore multiplied by \d:

\multiply\a by\d

\ifnum\a=\p \global\primefalse

\unknownfalse\fi

If \p is found again, it means that \d is one
of \p’s divisors. In that case, \p is of course not
prime and the “prime” boolean is set to false with
\primefalse. Since \trialdivision is actually
located in the group surrounding the body of the
\testprimality macro, and since the “prime” is
needed outside \testprimality, the group must
once again be transcended and the “prime” assign-
ment must be forced to be global. Hence:

\global\primefalse

Finally, in the case where \d divides \p, we set
\unknownfalse, which has as sole effect of causing
the loop to end:

\loop\trialdivision

\ifunknown\advance\d by2 \repeat

82 TUGboat, Volume 22 (2001), No. 1/2

that is, no other divisor is tested. One can observe
that there is no \global in front of \unknownfalse,
because \ifunknown is used within and not outside
the group.

If \p is not found again after the multiplication,
it means that \d is not a divisor of \p. At that time,
we had

• either \a ≤ \d, and therefore \a < \d (other-
wise \p would have been found after the multi-
plication), and hence \unknownfalse, therefore
the loop

\loop\trialdivision

\ifunknown\advance\d by2 \repeat

stops and since this happens in the context

\d=3 \global\primetrue

\loop\trialdivision

\ifunknown\advance\d by2 \repeat

where “prime” had been set to true, we con-
clude naturally that, no divisor having been
found up to \p’s square root, \p is prime.

Therefore, at the end of \testprimality’s
call, \ifprime succeeds and \p is printed.

• or \a > \d: in that case, we know nothing more,
\unknowntrue, and the next divisor must be
tried.

Conclusion

This ends the explanation of these macros, apart
from a few subtleties which were not mentioned.

It takes TEX a lot of time to do complex op-
erations such as the ones described. In order to
execute\primes{30}, TEX spends more time than it
needs on average to typeset a whole page with plain
TEX. \trialdivision is expanded 132 times. With
\primes{1000} there are 41331 expansions and with
\primes{10000} there are 1441624 expansions.

It should be stressed that the previous macros
are given in The TEXbook (Knuth, 1984, pp. 218–
219), with the following lines as the only explana-
tion:

The computation is fairly straightforward,
except that it involves a loop inside a loop;
therefore \testprimality introduces an ex-
tra set of braces, to keep the inner loop con-
trol from interfering with the outer loop. The
braces make it necessary to say ‘\global’
when \ifprime is being set true or false. TEX
spent more time constructing that sentence
than it usually spends on an entire page; the
\trialdivision macro was expanded 132
times.

TEX’s programming language is quite peculiar
and we gave only a glimpse of it. The interested
reader should dive into TEX’s “bible”, namely Don-
ald Knuth’s TEXbook (Knuth, 1984).

Acknowledgments

I would like to thank an anonymous referee for notic-
ing an important error in the French version of the
article.

References

Knuth, Donald E. The TEXbook. Addison-Wesley,
Reading, MA, USA, 1984.

⋄ Denis Roegel

LORIA

Campus scientifique

BP 239

54506 Vandœuvre-lès-Nancy cedex

FRANCE

roegel@loria.fr

http://www.loria.fr/~roegel/

TUGboat, Volume 22 (2001), No. 1/2 83

Macros

Macros with optional arguments

Victor Eijkhout

Users of LATEX are familiar with macros that have
optional arguments, such as \newcommand.

\newcommand\testa{ ... }

\newcommand\testb[2]{ ... }

Here, the second argument is optional; its inclusion
alters the workings of \newcommand. Wouldn’t it be
nice to be able to write such macros yourself?

Let’s set ourselves the project, for now, of writ-
ing a macro with one optional and one required ar-
gument. If the optional, first, argument is omitted,
the value of the second, required one should be used.
That is, our macro, which we shall call \aa, should
have the following behaviour: the input

\aa [1]2

\aa 2

should give the output

Opt: [1] Req: [2]

Opt: [2] Req: [2]

The crux to these optional arguments is a test
for the occurrence of the opening square bracket;
that is, somehow we need to peek at what follows
the macro. For this, TEX has the \futurelet com-
mand. The example

\futurelet\x\y z

has the effect of

\let\x z\y

That is, the first argument \x is ‘\let’ to whatever
follows the second argument \y, and then the sec-
ond argument is executed. Why does this help us?
Well, we can now \futurelet the token after \aa

to, say, \next, and then call a macro that investi-
gates whether \next is a square bracket, and acts
accordingly. The ‘acting accordingly’ part means
calling one or the other of two macros, the one han-
dling the case where there was a square bracket, the
other the case where there wasn’t.

\def\aa{\futurelet\next\aaX}

\def\aaX{%

\ifx[\next \expandafter\aaXX

\else \expandafter\aaXXX \fi}

We now define two separate macros, one with and
one without optional argument.

\def\aaXX[#1]#2{

Opt: [#1] Req: [#2]\par}

\def\aaXXX#1{

Opt: [#1] Req: [#1]\par}

Since we decided that calling the macro without
the optional argument would have the effect of dou-
bling the required argument — something that hap-
pens frequently in the internals of LATEX —we can
write

\def\aaXXX#1{\aaXX[#1]{#1}}

and save ourselves some code duplication.
If, instead of duplicating the first required ar-

gument, we wanted to use some default value for the
omitted optional argument, we would write

\def\aaXXX#1{\aaXX[<default>]{#1}}

Just one remark. Note that until the end, where
we call \aaXX, we never look at the other arguments,
and we do not care how many of them there are.
In calls such as \aa [1]234... we repeatedly re-
place the \aa control sequences by other control se-
quences. Only the final macros \aaXXX— in the case
of an optional argument— and \aaXX— in the case
of none — touch the actual arguments.

Now let’s consider the case where the optional
argument is not the first but the second. Say, we
want a macro \bb that, called as

\bb 1[2]3

\bb 13

gives

One: [1] Opt: [2] Req: [3]

One: [1] Opt: [3] Req: [3]

The trick here is to scoop up the first argument and
store it away:

\def\bb#1{\def\savedargone{{#1}}%

\futurelet\next\bbX}

After that, we proceed for a while as before

\def\bbX{%

\ifx[\next \expandafter\bbXX

\else \expandafter\bbXXX \fi}

\def\bbXXX#1{\bbXX[#1]{#1}}

and then we insert the saved argument in between
the final macro and the the remaining arguments:

\def\bbXX{\expandafter\bbY\savedargone}

\def\bbY#1[#2]#3{

One: [#1] Opt: [#2] Req: [#3]\par}

The \expandafter in \bbXX turns the sequence

\bbXX <arg 2><arg 3>

which first becomes

\expandafter\bbY\savedargone

<arg 2><arg 3>

into

84 TUGboat, Volume 22 (2001), No. 1/2

\bb <arg1><arg 2><arg 3>

Well, there you have it. All the ingredients for
writing macros with optional arguments.

So why isn’t this article over? Well, after writ-
ing macros like this becomes a second nature to you,
you might start wondering if there isn’t a way to au-
tomate this rather repetitive process. And of course
there is. But it is a bit of work. In fact, this may
well be the most mind-bending macro I have ever
written.

A small device to save us some typing:

\let\expa\expandafter

\let\noex\noexpand

We now set ourselves the goal of writing a
macro \defoptargcomm— ‘define an optional argu-
ment command’— that allows us to write

\defoptargcomm\def\aa[#1]#2{%

Opt: [#1] Req: [#2]\par}

so that again, as above,

\aa [1]2

\aa 2

gives the right result.
I will give the macro in increments. First of

all, the name of the macro to be defined is changed
from a control sequence into a string of characters,
so that we can base other macro names on it:

\def\defoptargcomm#1#2{%

\edef\bnon{\stringcsnoescape#2}%

The auxiliary macro \stringcsnoescape is given
below, as will be all further auxiliaries.

Next we define the macro that peeks at a pos-
sible square bracket. To get the effect of

\def\aa{\futurelet\next\aaX}

we write (where \nxarg and \nxname are auxiliaries;
see below)

\edef\anon{\nxarg#1{\bnon}{%

\futurelet\noex\next

\nxname{\bnon X}}}\anon

This is a good trick: since we will have to form some
new control sequences, we build the define state-
ment inside the \edef of an otherwise unimportant
macro. Calling this macro will then execute the def-
inition. (The auxiliary \nxname serves to build a
control sequence and further prevent it from being
expanded. See the end of this article.)

We use this trick again, this time to define the
macro that will decide, based on the presence or not
of a square bracket, which further macro to call. For

\def\aaX{%

\ifx[\next \expa\aaXX

\else \expa\aaXXX}\fi}

we write

\edef\anon{\nxarg#1{\bnon X}{%

\noex\ifx[\noex\next

\noex\expa

\nxname{\bnon XX}%

\noex\else

\noex\expa

\nxname{\bnon XXX}%

\noex\fi}}\anon

Here is the macro that duplicates the first argument
if there is no optional argument. For the equivalent
of

\def\aaXXX#1{\aaXX[#1]{#1}}

we write

\edef\anon{%

\nxarg#1{\bnon XXX}####1{%

\nxname{\bnon XX}[####1]{####1}}%

}\anon

And now we would have to do the actual definition of
the macro with optional argument, as we did in the
first part of the article. However, we can skip this,
as the definition was already in the input stream, so
we conclude the definition of \defoptargcomm with
the \def control sequence (argument #1) and the
name with two Xs attached. For

\def\aaXX ...

% .. after this come the parameters

% .. and definition

we conclude with

\arg#1{\bnon XX}}

Phew.
What? You want more?
Well, the assumption that an omitted optional

argument should take on the value of the first present
argument is a bit limiting. You may want it to take
on some default value. For instance, the syntax

\defoptargcomm[4]\def\bb[#1]#2{%

Opt: [#1] Req: [#2]\par}

would mean that the value taken in absence of an
optional argument is ‘4’. The input

\bb [1]2

\bb 2

then gives

Opt: [1] Req: [2]

Opt: [2] Req: [2]

That is not very hard to do: we need yet another
application of \futurelet.

\def\defoptargcomm{%

\futurelet\next\defoptargcommX}

TUGboat, Volume 22 (2001), No. 1/2 85

\def\defoptargcommX{%

\ifx[\next

\expandafter\defoptargcommXX

\else \def\optarg{[########1]}%

\expandafter\defoptargcommXXX

\fi}

\def\defoptargcommXX[#1]{%

\def\optarg{[#1]}\defoptargcommXXX}

We are thus saving the value of the optional argu-
ment in a control sequence \optarg. Note the se-
quence of eight hash characters, which I will not
further explain1.

Now the macro \defoptargcommXXX has to use
the value of \optarg. For this we change only a
small part. For the equivalent of

\def\bbXXX#1{%

\bbXX[optarg]{#1}}

\edef\anon{%

\nxarg#1{\bnon XXX}####1{%

\nxname{\bnon XX}\optarg{####1}}%

}\anon

Tada!
Now, if you’ve followed this exposition carefully,

you’ll have noticed that this ultra-powerful macro
can still not do something that we could do by hand:
let any argument be optional, not just the first. Let
us say that we want to write

\PACdefoptargncomm3%

\def\cc#1#2[#3]#4{First: [#1,#2]

Opt: [#3] Req: [#4]\par}

\cc 12[3]4

\cc 124

and get

First: [1,2] Opt: [3] Req: [4]

First: [1,2] Opt: [4] Req: [4]

Deep breath. Here comes the final version of
our macro for defining macros with optional argu-
ments.

I will explain this one bottom-up, instead of
top-down. Our first problem is that we need to get
the first couple of fixed arguments out of the way
before we can look at the optional argument. Sup-
pose we have a macro \firstarg that expands to
the arguments before the optional one, in this case

1 Okay, just a little bit then. If TEX sees one hash charac-

ter followed by a letter— which can only happen in a macro —

it replaces it by the corresponding macro argument. Two

hash characters in a row are replaced by a single, which is

further left untouched. Unless, that is, it is scanned again.

Since in the end the sequence here will be scanned three times

we need to write eight hash characters in order to get #1 in

the input stream.

#1#2, and a macro \savedarg with the same, but
in braces: {#1}{#2}, then to get the equivalent of

\def\cc#1#2{\def\ccsaved{{#1}{#2}}%

\futurelet\next\ccX}

we write —and compare this with the above —

\edef\anon{\nxarg#1{\bnon}\firstarg

{\def\nxname{\bnon saved}%

{\savedarg}%

\futurelet\noex\next

\nxname{\bnon X}}}\anon

Now that we have the first arguments set aside, we
can look for the square bracket. If is is not there, we
have to call a macro that duplicates the next argu-
ment; if is is there, we re-insert the saved arguments,
and call the final macro. This would read

\expa\ccXX\ccsaved

but because it occurs in a conditional it becomes

\expa\expa\expa\ccXX\expa\ccsaved

\else

and because it happens inside an \edef there are
\noexpands interspersed everywhere:

\edef\anon{\nxarg#1{\bnon X}{%

\noex\if[\noex\next

\noex\expa\noex\expa\noex\expa

\nxname{\bnon XX}%

\noex\expa\nxname

{\bnon saved}%

\noex\else

\noex\expa\nxname{\bnon XXX}%

\noex\fi}}\anon

By comparison, the macro to duplicate the argu-
ment after the omitted optional argument is child’s
play:

\edef\anon{%

\nxarg#1{\bnon XXX}####1{%

\noex\expa\nxname{\bnon XX}%

\nxname{\bnon saved}%

[\optarg]{####1}}}\anon

Note the \optarg, which contains either the tokens
####1, or a default value.

All this is inside a macro

\def\defoptargcommXXX#1#2{%

\def\protect{}%

\edef\bnon{\stringcsnoescape#2}%

< ... the above ... >

\arg#1{\bnon XX}}

This is the macro that handles the explicit default
value:

\def\defoptargcommXX[#1]{%

\def\optarg{#1}\defoptargcommXXX}

86 TUGboat, Volume 22 (2001), No. 1/2

We’re getting close to the interesting bits. This the
macro that tests for a default value:

\def\defoptargcommX{%

\ifx[\next

\expandafter\defoptargcommXX

\else

\edef\anon

{\def\noex\optarg{\protect\hash1}%

}\anon

\expandafter\PACdefoptargcommXXX

\fi}

Note the occurrence of a macro \hash, which we
will define in a minute. Here is the old macro for an
optional first argument:

\def\PACdefoptargcomm{%

\def\PACfirstarg{}\def\PACsavedarg{}%

\def\protect{\noex\protect\noex}%

\def\hash{########}%

\futurelet\next\defoptargcommX}

This is the nasty one: the macro that accepts the
location of the optional argument and builds the
\firstarg, \savedarg macros. We use two token
lists, which gradually get build inside a loop.

\def\defoptargncomm#1{%

\toksa={}\toksb={}\counta=#1\relax

\def\protect{\noex\protect\noex}%

\def\hash{########}%

{\count1=1 \count2=#1

\loop

\edef\PACanon{

\global\PACtoksa={\the\PACtoksa

\protect\hash\number\count1}%

\global\PACtoksb={\the\PACtoksb

{\protect\hash\number\count1}}%

}\PACanon

\advance\count1 by 1\relax

\ifnum\count1<\count2 \repeat

}%

\edef\anon{\def\noex\firstarg

{\the\toksa}}\PACanon

\edef\anon{\def\noex\savedarg

{\the\PACtoksb}}\PACanon

\futurelet\next\defoptargcommX}

And that’s it. You can get this monster from
CTAN as PAC_utils.tex; you also need CS_auxs.tex.

Finally, here are the auxiliary macros. I will
leave out mentioning various conditions on the func-
tioning of these macros; normally they will be sat-
isfied. To convert a control sequence to a string of
characters, purely by expansion:

\let\expa\expandafter

\let\noex\noexpand

\def\stringcsnoescape#1{%

\expa\gobbleescape\string#1}

{\escapechar-1

\expa\expa\expa\gdef

\expa\expa\expa\CSgobblearrow

\expa\string

\csname macro:->\endcsname{}

}

\def\gobbleescape#1{%

\ifnum‘\\=‘#1 \else #1\fi}

Here are various macros to build a control sequence
out of a string of characters, and subsequently to
protect the control sequence from further expansion:

\def\name#1{\csname#1\endcsname}

\def\arg#1#2{%

\expa#1\csname#2\endcsname}

\def\csarg#1#2{%

\name{#1\expa}\csname#2\endcsname}

\def\nxarg#1#2{%

\expa#1\expa\noex

\csname#2\endcsname}

\def\nxname#1{%

\expa\noex\csname#1\endcsname}

⋄ Victor Eijkhout

Computer Science Department

University of Tennessee

Knoxville, TN 37996-1301 U.S.A.

victor@eijkhout.net

TUGboat, Volume 22 (2001), No. 1/2 87

Drawing Message Sequence Charts

with LATEX

Sjouke Mauw and Victor Bos

Abstract

The MSC macro package facilitates LATEX users to
easily include Message Sequence Charts in their
texts. This article describes the motivation for
developing the MSC macro package, the features of
the MSC macro package, and the design of the MSC

macro package.

1 Introduction

The Message Sequence Chart (MSC) language is
a visual formalism to describe interaction between
components of a system. The language is standard-
ized by the ITU (International Telecommunication
Union) in Recommendation Z.120 [4]. An introduc-
tory text on MSC can be found in [5]. MSCs have a
wide application domain, ranging from requirements
specification to testing and documentation.

An example of a Message Sequence Chart is
given in Figure 1. The MSC shows an ftp login
session to a CTAN archive. Three players, called
instances, are involved in the session: User, ftp
client, and CTAN at location ftp.tex.ac.uk. The
instances are denoted by vertical lines. Interaction
between instances is denoted by labeled arrows. For
instance, the arrow ftp.tex.ac.uk is a message from
User to ftp client. Sending and receiving of a
message are special types of events ; each message
has a send event and a receive event. Later we
will see other types of events. Events occur on
instance lines. Events are ordered in time and
for each instance, time is supposed to run from
top to bottom. Furthermore, the send event of
a message never occurs after the receive event of
the message. For example, from Figure 1, we can
derive that the ftp.tex.ac.uk message occurs before
the connect message, because the receive event of
the first message occurs before the send event of the
second message.

In order to include MSCs in LATEX documents,
we have developed the MSC macro package. The
current version of the MSC macro package supports
almost the full MSC language as defined in the stan-
dard. In this article we will describe the motivation
of the MSC macro package, the features of the MSC

macro package, the design of the MSC macro pack-
age, and the limitations of the MSC macro package.
This paper does not describe all features of the MSC

macro package. For a thorough treatment of the
MSC macro package we refer to the user manual [2].

User ftp client ftp.tex.ac.uk

CTAN

ftp.tex.ac.uk

connect

getlogin

login

anonymous

anonymous

Ok

command
successful

msc ftp login to CTAN archive

Figure 1: An ftp login to the CTAN at
ftp.tex.ac.uk.

2 Motivation

Several commercial and non-commercial tools are
available, which support drawing or generating Mes-
sage Sequence Charts. However, these tools are in
general not freely available and often not flexible
enough to satisfy all users’ wishes with respect to
the layout and graphical appearance of an MSC.
Furthermore, they often do not allow the user to
include LATEX code in the MSCs. Another drawback
of these tools is that quite often they restructure
MSCs automatically. Though for simple MSCs this
might be what the user wants, for more complex
MSCs the result of automatic restructuring is usually
not desired.

Therefore, people often use general drawing
tools, such as xfig (see http://www.xfig.org/) to
draw MSCs. However flexible this approach is, it has
some drawbacks. First of all, general drawing tools
have (and should have) a low level of abstraction;
their interface is defined in terms of coordinates,
points, lines, polygons, etc. To draw MSCs, the user
would probably be more comfortable if the interface
was defined in terms of instances, messages, actions,
etc. For example, if you are drawing a message in
an MSC using a general drawing tool, you would
probably have to draw a line with an arrow head
from a position (x0, y0) to a position (x1, y1), instead
of drawing a message from an instance i0 to an
instance i1 of the MSC.

88 TUGboat, Volume 22 (2001), No. 1/2

Another drawback of using general drawing
tools is that they usually do not provide libraries
of MSC symbols. Therefore, if you have to draw
many MSCs, it will take much effort to get a set of
consistent looking MSCs. Furthermore, if you want
to change a parameter of the MSCs, e.g., the width
of the instance head symbols, you would probably
have to edit all MSCs manually.

For these reasons, we developed the MSC macro
package for LATEX. The macros in the package
enable a textual representation of an MSC in a LATEX
source document. By compiling the LATEX document
into PostScript, a graphical representation of the
MSC is generated.

The design requirements for the MSC macro
package were:

1. The package should follow the ITU standard
with respect to shape and placement of the
symbols of an MSC.

2. The interface of the package should be at the
right level of abstraction.

3. There should only be a limited amount of au-
tomatic restructuring and layout of the MSCs.

4. The appearance of (sets of) MSCs should be
configurable by an appropriate set of parame-
ters.

5. The MSC macro package should run on stan-
dard LATEX distributions.

3 User interface

In this section we will briefly describe the user
interface of the MSC macro package. We will do this
by giving examples and showing the LATEX code that
produced the examples.

MSC environment MSCs are drawn in the msc

environment. The syntax of this environment is
\begin{msc}[titlepos]{title} ... \end{msc}.
The title of the MSC is defined by the title param-
eter. The optional parameter titlepos determines
the position of the title. By default it is l (left
aligned). Other possible values are c (centered)
and r (right aligned).

Instances Instances are declared with the
\declinst[*]{nn}{an}{in}

command. The starred version produces a fat in-
stance which will not be discussed in this paper. The
nn parameter defines a nickname of the instance.
Nicknames identify instances and are used to draw
messages and events. The an parameter defines the
above name of the instance. This is the text to be
placed above the instance head symbol (the rectan-
gle at the top of an instance). The in parameter

defines the inside name of the instance. This is the
text to be placed inside the instance head symbol.
Both the inside name and the above name may be
empty.

Messages Messages are drawn with the
\mess[pos]{txt}{s}{r}[offset]

command. The optional pos parameter defines the
position of so-called self messages : messages from
an instance to itself. The default value of pos is l

(to the left of the instance) and another possible
value is r (to the right of the instance). The txt

parameter defines the label of the arrow representing
the message. The s parameter is the nickname of
the instance on which the send event occurs, i.e.,
the nickname of the sender. The r parameter is
the nickname of the instance on which the receive
event occurs, i.e., the nickname of the receiver. The
optional parameter offset defines the number of
levels the receive event is shifted vertically with
respect to the send event. Levels are discussed in the
next paragraph. Offsets are useful if two instances
send messages to each other and then wait for the
messages to be received. For example, Figure 2
shows messages a and b between instances i and j.
The receive event of message a occurs after the send
event of message b and vice versa. Both messages
have offset = 2 in order to place the receive events
two levels below the send events.

Levels The height of an msc environment is deter-
mined by the number of levels and a fixed amount
of vertical space above and below the first and
last level, respectively. Levels are created by the
\nextlevel[num] command. The optional param-
eter denotes the number of levels to be added; its
default value is 1. Levels are used to order events in
time. Recall that time runs from top to bottom, i.e.,
it runs from higher levels to lower levels. Events in
the same level are drawn at equal vertical distance
from the top of the MSC. The send event of a
message will always be drawn in the current level.
The receive event of a message can be drawn in
another level using the offset parameter of the
\mess command. Note that levels are not part of
the MSC language, they are just an implementation
means to draw MSCs.

Using the commands described so far, we can
generate the MSC of Figure 1. The LATEX input
to generate that MSC is given below. The length
\instdist, used in the last \mess command, defines
the distance between instances of an MSC and is
one of the parameters to configure the MSC macro
package. Here, it is used to create a \parbox that is

TUGboat, Volume 22 (2001), No. 1/2 89

i j

a

b

msc Messages

\begin{msc}{Messages}

\declinst{i}{i}{}

\declinst{j}{j}{}

\mess{a}{i}{j}[2]

\nextlevel

\mess{b}{j}{i}[2]

\nextlevel[2]

\end{msc}

Figure 2: Using non-zero message offsets.

15% smaller than the distance between the instances
of the MSC.

\begin{figure}[htb]

\begin{center}

\begin{msc}{ftp login to CTAN archive}

\declinst{usr}{User}{}

\declinst{ftp}{ftp client}{}

\declinst{ctan}{ftp.tex.ac.uk}{CTAN}

\mess{ftp.tex.ac.uk}{usr}{ftp}

\nextlevel

\mess{connect}{ftp}{ctan}

\nextlevel

\mess{getlogin}{ctan}{ftp}

\nextlevel

\mess{login}{ftp}{usr}

\nextlevel

\mess{anonymous}{usr}{ftp}

\nextlevel

\mess{anonymous}{ftp}{ctan}

\nextlevel

\mess{Ok}{ctan}{ftp}

\nextlevel[2]

\mess{\parbox[b]{.85\instdist}

{\centering command successful}}{ftp}{usr}

\end{msc}

\end{center}

\end{figure}

Actions Actions are events that can be used to
model internal activity of a particular instance.
Actions are defined with the \action{txt}{nn}

command. The txt parameter defines the text to be
placed inside the action symbol. The nn parameter
is the nickname of the instance that executes the
action. The action will be drawn at the current
level with its top aligned with send events at the
same level.

For example, suppose CTAN has to do some
computations in order to determine if the anony-
mous login is allowed. The computation could be
modeled by a check action, as depicted in Figure 3.
The LATEX code for the MSC of Figure 3 is:

\begin{msc}{Action}

\declinst{ftp}{ftp client}{}

\declinst{ctan}{ftp.tex.ac.uk}{CTAN}

\nextlevel

\mess{anonymous}{ftp}{ctan}

\nextlevel

\action{Check}{ctan}

\nextlevel[2]

\mess{Ok}{ctan}{ftp}

\end{msc}

ftp client ftp.tex.ac.uk

CTAN

anonymous

check

Ok

msc Action

Figure 3: An MSC with an action.

Regions Another way to model internal activity,
or inactivity, is by using regions. Regions are de-
fined by the \regionstart{regtype}{nn} and the
\regionend{nn} commands. The regtype param-
eter defines the type of the region: activation,

90 TUGboat, Volume 22 (2001), No. 1/2

coregion (which will not be discussed in this pa-
per), or suspension. The nn parameter is the
nickname of the instance on which the region should
be drawn. If an instance is active, e.g., doing some
computations, this can be modeled by an activation
region. If an instance is inactive, e.g., waiting for
results, this can be modeled by a suspension region.
For example, the computation of the CTAN could
be modeled by an activation region. Furthermore,
the ftp client is inactive during this computation,
which could be modeled by a suspension region.
Figure 4 shows the resulting MSC. The LATEX code
for the MSC of Figure 4 is:

\begin{msc}{Regions}

\declinst{usr}{User}{}

\declinst{ftp}{ftp client}{}

\declinst{ctan}{ftp.tex.ac.uk}{CTAN}

\regionstart{activation}{ftp}

\mess{anonymous}{usr}{ftp}

\nextlevel

\regionstart{suspension}{ftp}

\regionstart{activation}{ctan}

\mess{anonymous}{ftp}{ctan}

\nextlevel[2]

\mess{Ok}{ctan}{ftp}

\regionend{ctan}

\regionstart{activation}{ftp}

\nextlevel

\mess{\parbox[b]{.85\instdist}

{\centering command successful}}{ftp}{usr}

\regionend{ftp}

\end{msc}

Note that the space between the activation
region of the ftp client and the anonymous message
from the ftp client to CTAN is very small. In the
next paragraph we will show how redefining one of
the MSC parameters can increase this space.

User ftp client ftp.tex.ac.uk

CTAN

anonymous

anonymous

Okcommand
successful

msc Regions

Figure 4: An MSC with activation and
suspension regions.

MSC parameters The MSC macro package has
almost 30 parameters to change the layout of
MSCs. For example, the width of instances, the
distance between instances, the distance between
the head symbols and the MSC frame, and the width
and height of action symbols can all be changed.
These parameters are represented by the LATEX
lengths \instwidth, \instdist, \topheaddist,
\actionwidth, \actionheight, respectively. For
instance, in the MSC of Figure 4, the distance
between the instances should be slightly bigger,
in order to increase the space between the activa-
tion region of the ftp client and the anonymous
message from the ftp client to CTAN. Figure 5
shows the same MSC, but now the distance be-
tween instances is increased by 10%. The LATEX
code for this MSC is the code for Figure 4 in
which just after the line \begin{msc}{regions} the
line \setlength{\instdist}{1.1\instdist} is in-
cluded.

User ftp client ftp.tex.ac.uk

CTAN

anonymous

anonymous

Okcommand
successful

msc Regions 2

Figure 5: An MSC with larger distance between
instances.

The location where an MSC parameter is
changed in the LATEX source document determines
its effect. Since the MSC parameters are normal
LATEX macros or LATEX lengths, the normal LATEX
scoping rules for these entities apply. For example,
if a length parameter is changed outside any LATEX
environment, its effect is visible for all msc environ-
ments defined after the change. However, if it is
changed inside an msc environment, its effect is only
visible for that MSC.

Since there are many parameters to configure
the MSC macro package, there are three predefined
parameter settings to generate small, normal, or
large MSCs. The command \setmscvalues{parset}

TUGboat, Volume 22 (2001), No. 1/2 91

can be used to change the selected parameter set-
tings. The parset parameter should be small,
normal, or large. The default setting is normal.

4 Implementation

In this section we will describe some aspects of the
implementation of the MSC macro package.

Drawing MSCs In general, and as shown by the
examples of the previous sections, an MSC consists
of a number of vertically oriented instances that
are connected by horizontally oriented messages.
So, the width of an MSC is related to the number
of instances and the height of an MSC is related
to the number of (ordered) messages. Based on
this observation, there are several implementations
possible.

To define the width of an MSC, we could use
an additional parameter of the msc environment.
However, this strategy has some drawbacks. First of
all, an extra parameter, the horizontal position, is
required to declare instances. Furthermore, this pa-
rameter probably changes whenever a new instance
is added to the left of an existing instance. Finally,
the user should calculate the value of this parameter
carefully in order to get evenly spaced instances.

Therefore, we chose to compute the width of
an MSC based on the number of instances declared
by the user and the, user definable, \instdist

length that defines the distance between instances.
This decision does not violate requirement 3 of
Section 2, no automatic structuring and layout,
since the number of instances is under control of the
user. Furthermore, the user can adjust the space
to the left of the first instance and the space to the
right of the last instance by redefining the length
parameter \envinstdist.

The messages are partially ordered based on the
relative position of their send and receive events on
instances. We could have decided to provide com-
mands to order the events and then let the package
compute the final layout of the MSC. However, apart
from the fact that this computation is not trivial,
this strategy fails with respect to requirement 3: no
automatic structuring and layout.

Another strategy is to use an extra parameter of
the msc environment to define the vertical size of an
MSC. There are several drawbacks to this approach.
First of all, the vertical size has to be computed.
Secondly, commands to draw messages, actions,
regions, etc., should have one or more additional
parameter to indicate the vertical position at which
they should be drawn. Finally, if a new message
is to be added somewhere in the MSC, the vertical

placement parameter of commands below the new
message should probably be updated.

Therefore, we chose to only provide a command,
\nextlevel, to advance the current height of the
MSC. By increasing the current height between
two messages, the partial order can be defined.
Furthermore, one can easily add new messages to
the MSC at any vertical position without having to
change parameters of existing messages.

These decisions resulted in an msc environment
in which the MSC is drawn in a top-left bottom-right
fashion.

Nicknames As explained above, the MSC macro
package uses nicknames to identify instances. If
an instance is declared, the following attributes are
associated to its nickname:

• The inside name,

• The above name,

• The width of the instance line,

• A flag indicating if it is a normal or a fat
instance,

• The left, center, and right x-position of the
instance,

• The y-position from which this instance still has
to be drawn,

• The style of the instance line, and

• The style of the region of the instance.

The \declinst command defines the attributes us-
ing the following TEX code pattern:
\expandafter\def

\csname inst〈attrnickname〉\endcsname
{〈value〉} where 〈attrnickname〉 is the concatena-

tion of the attribute, e.g., abname (above name), and
the nickname and where 〈value〉 is the value of the
attribute. For instance, the declaration

\declinst{usr}{User}{}

defines the following commands:
\instabnameusr, \instinnameusr,
\instbarwidthusr, \instisfatusr, \instxposusr,
\instlxposusr, \instrxposusr, \instyposusr,
\instlinestyleusr, and \instregionstyleusr.

For each instance attribute, there is an internal
command to read the value of the attribute. For
example, to read the value of the above name of in-
stance usr, one should use \msc@instabname{usr}.
For some attributes, like the current y-position,
there is a command to change the value of the
attributes. For example, to change the y-position
of instance usr to the value y, one could use
\msc@setinstypos{usr}{y}.

92 TUGboat, Volume 22 (2001), No. 1/2

Underlying drawing engine The MSC macro
package uses the pstricks package, see [6] or Chap-
ter 4 of [3], to draw lines, arrows, and frames. This
package is now commonly available in LATEX distri-
butions, so relying on this package does not violate
requirement 5. A drawback of pstricks is that it is in-
compatible with PDFLATEX. Consequently, our MSC

macro package is incompatible with PDFLATEX, too.
However, there are other ways to generate pdf from
LATEX documents. One option is to first convert the
dvi file into PostScript, e.g., using dvips, and then
convert the PostScript file into pdf, e.g., using the
ps2pdf utility included in ghostscript distributions
(http://www.cs.wisc.edu/~ghost/).

5 Availability

The MSC macro package is freely available at CTAN,
see directory macros/latex/contrib/supported/

msc, and at http://www.win.tue.nl/~sjouke/

mscpackage.html. It is distributed under the
LATEX Project Public License, see http://www.

latex-project.org/lppl.txt. Documentation of
the package consists of a user manual [2] and a
reference manual [1]. These documents are included
in the distribution.

6 Conclusions

The MSC macro package enables users to include
MSCs in LATEX documents. Furthermore, the MSCs
have a consistent layout that can be configured by
an appropriate set of parameters. The package
supports almost the complete ITU standard of the
MSC language, including MSC documents and high
level MSCs (which were not discussed in this paper).

1. The abstraction level of the MSC macro package
is as desired.

2. The user has full control over the relative posi-
tion of instances, messages, etc.

3. Changing MSCs, e.g., adding extra instances or
messages, is easy and does not require compu-
tations by the user.

4. The MSC macro package is highly configurable.
There are about 30 user definable length param-
eters and a small number of text parameters.

The developers of the MSC macro package con-
sider the package more or less complete. Therefore,
the only changes to the package will be bug fixes
and/or code documentation.

References

[1] Victor Bos and Sjouke Mauw. A LATEX
macro package for Message Sequence Charts—
Reference Manual—Describing MSC macro
package version 1.5, April 2002. Included in
MSC macro package distribution.

[2] Victor Bos and Sjouke Mauw. A LATEX macro
package for Message Sequence Charts—User
Manual—Describing MSC macro package ver-
sion 1.5, April 2002. Included in MSC macro
package distribution.

[3] Michel Goossens, Frank Mittelbach, and Alexan-
der Samarin. The LATEX Companion. Addison-
Wesley, 1994.

[4] ITU-TS. ITU-TS Recommendation Z.120: Mes-
sage Sequence Chart (MSC). ITU-TS, Geneva,
2001.

[5] E. Rudolph, P. Graubmann, and J. Grabowski.
Tutorial on message sequence charts (msc’96).
In FORTE, 1996.

[6] Timothy van Zandt. Pstricks, PostScript macros
for Generic TEX. User’s Guide, available at every
CTAN site, (CTAN:graphics/pstricks/), 1993.

⋄ Sjouke Mauw

Computing Science Department

Eindhoven University of Technology

P.O.Box 513

NL-5600 MB, Eindhoven

The Netherlands

sjouke@win.tue.nl

⋄ Victor Bos

Software Construction Laboratory

Turku Centre for Computer Science

Lemminkäisenkatu 14 A

FIN-20520, Turku

Finland

v.bos@abo.fi

TUGboat, Volume 22 (2001), No. 1/2 93

LATEX

The trace package∗

Frank Mittelbach

Introduction

When writing new macros one often finds that they do not work as expected (at
least I do :-). If this happens and one can’t immediately figure out why there is a
problem one has to start doing some serious debugging. TEX offers a lot of bells
and whistles to control what is being traced but often enough I find myself applying
the crude command \tracingall which essentially means “give me whatever tracing
information is available”.

In fact I normally use ε-TEX in such a case, since that TEX extension offers me a
number of additional tracing possibilities which I find extremely helpful. The most
important ones are \tracingassigns, which will show you changes to register values
and changes to control sequences when they happen, and \tracinggroups, which will
tell you what groups are entered or left (very useful if your grouping got out of sync).

So what I really write is

\tracingassigns=1\tracinggroups=1\tracingall

That in itself is already a nuisance (since it is a mouthful) but there is a worse catch:
when using \tracingall you do get a awful lot of information and some of it is really
useless.

For example, if LATEX has to load a new font it enters some internal routines of
NFSS which scan font definition tables etc. And 99.9% of the time you are not at all
interested in that part of the processing but in the two lines before and the five lines
after. However, you have to scan through a few hundred lines of output to find the
lines you need.

Another example is the calc package. A simple statement like \setlength

\linewidth {1cm} inside your macro will result in

\setlength ->\protect \setlength

{\relax}

\setlength ->\calc@assign@skip

\calc@assign@skip ->\calc@assign@generic \calc@Askip \calc@Bskip

\calc@assign@generic #1#2#3#4->\let \calc@A #1\let \calc@B #2\expandafter \calc

@open \expandafter (#4!\global \calc@A \calc@B \endgroup #3\calc@B

#1<-\calc@Askip

#2<-\calc@Bskip

#3<-\linewidth

#4<-1cm

{\let}

{\let}

{\expandafter}

{\expandafter}

\calc@open (->\begingroup \aftergroup \calc@initB \begingroup \aftergroup \calc

@initB \calc@pre@scan

{\begingroup}

{\aftergroup}

{\begingroup}

{\aftergroup}

∗This file has version number 1.0a trace LaTeX code, last revised 2000/02/16.

94 TUGboat, Volume 22 (2001), No. 1/2

\calc@pre@scan #1->\ifx (#1\expandafter \calc@open \else \ifx \widthof #1\expan

dafter \expandafter \expandafter \calc@textsize \else \calc@numeric \fi \fi #1

#1<-1

{\ifx}

{false}

{\ifx}

{false}

\calc@numeric ->\afterassignment \calc@post@scan \global \calc@A

{\afterassignment}

{\global}

{\fi}

{\fi}

\calc@post@scan #1->\ifx #1!\let \calc@next \endgroup \else \ifx #1+\let \calc@

next \calc@add \else \ifx #1-\let \calc@next \calc@subtract \else \ifx #1*\let

\calc@next \calc@multiplyx \else \ifx #1/\let \calc@next \calc@dividex \else \i

fx #1)\let \calc@next \calc@close \else \calc@error #1\fi \fi \fi \fi \fi \fi \

calc@next

#1<-!

{\ifx}

{true}

{\let}

{\else}

{\endgroup}

{restoring \calc@next=undefined}

\calc@initB ->\calc@B \calc@A

{\skip44}

{\global}

{\endgroup}

{restoring \skip44=0.0pt}

\calc@initB ->\calc@B \calc@A

{\skip44}

{\dimen27}

Do you still remember what I was talking about?

No? We’re trying to find a problem in macro code without having to scan too many
uninteresting lines. To make this possible we have to redefine a number of key com-
mands to turn tracing off temporarily in the hope that this will reduce the amount of
noise during the trace. For example, if we change one of the calc internals slightly,
the above tracing output can be reduced to:

\setlength ->\protect \setlength

{\relax}

\setlength ->\calc@assign@skip

\calc@assign@skip ->\calc@assign@generic \calc@Askip \calc@Bskip

\calc@assign@generic #1#2#3#4->\let \calc@A #1\let \calc@B #2\expandafter \calc

@open \expandafter (#4!\global \calc@A \calc@B \endgroup #3\calc@B

#1<-\calc@Askip

#2<-\calc@Bskip

#3<-\linewidth

#4<-1cm

{\let}

{\let}

{\expandafter}

{\expandafter}

\calc@open (->\begingroup \conditionally@traceoff \aftergroup \calc@initB \begi

ngroup \aftergroup \calc@initB \calc@pre@scan

\conditionally@traceoff ->\tracingrestores \z@ \tracingcommands \z@ \tracingpag

es \z@ \tracingmacros \z@ \tracingparagraphs \z@

TUGboat, Volume 22 (2001), No. 1/2 95

{\tracingrestores}

{\tracingcommands}

{restoring \tracingrestores=1}

\calc@initB ->\calc@B \calc@A

{\skip44}

{\dimen27}

Still a lot of noise but definitely preferable to the original case.

I redefined those internals that I found most annoyingly noisy. There are probably
many others that could be treated in a similar fashion, so if you think you found one
worth adding please drop me a short note.

∗ ∗ ∗

The package defines the two macros \traceon and \traceoff to unconditionally turn\traceon

\traceoff tracing on or off, respectively. \traceon is like \tracingall but additionally adds
\tracingassigns and \tracinggroups if the ε-TEX program (in extended mode) is
used. And \traceoff will turn tracing off again, a command which is already badly
missing in plain TEX, since it is often not desirable to restrict the tracing using extra
groups in the document.

There are also two internal macros that turn tracing on and off, but only if the user\conditionally@traceon

\conditionally@traceoff requested tracing in the first place. These are the ones that are used internally within
the code below.

Since the package overwrites some internals of other packages you should load it as
the last package in your preamble using \usepackage{trace}.

A sample file

The following small test file shows the benefits of the trace package. If one uncom-
ments the line loading the package, the amount of tracing data will be drastically
reduced. Without the trace package we get 6573 lines in the log file; adding the
package will reduce this to 1593 lines.

\documentclass{article}

\usepackage{calc}

%\usepackage{trace} % uncomment to see difference

\begin{document}

\ifx\traceon\undefined \tracingall \else \traceon \fi

\setlength\linewidth{1cm}

$foo=\bar a$

\small \texttt{\$} \stop

Implementation

This package is for use with LATEX (though something similar could be produced for
other formats).

〈∗package〉
\NeedsTeXFormat{LaTeX2e}[1998/12/01]

\if@tracing We need a switch to determine if we want any tracing at all. Otherwise, if we use
\traceoff. . . \traceon internally, we would unconditionally turn on tracing even
when no tracing was asked for in the first place.

\newif\if@tracing

96 TUGboat, Volume 22 (2001), No. 1/2

\traceon

\conditionally@traceoff

As stated in the introduction, the amount of tracing being done should depend on the
formatter we use. So we first test if we are running with ε-TEX in extended mode. In
the latter csse the command \tracinggroups is defined.1

\ifx\tracinggroups\undefined

If we are using standard TEX then \traceon is more or less another name for
\tracingall. The only differences are that we set the above @tracing switch to
true and reorder the assignments within it somewhat so that it will output no tracing
information about itself. In contrast, \tracingall itself produces

{vertical mode: \tracingstats}

{\tracingpages}

{\tracinglostchars}

{\tracingmacros}

{\tracingparagraphs}

{\tracingrestores}

{\errorcontextlines}

\showoutput ->\tracingoutput \@ne \showboxbreadth \maxdimen \showboxdepth \maxd

imen \errorstopmode \showoverfull

{\tracingoutput}

{\showboxbreadth}

{\showboxdepth}

{\errorstopmode}

\showoverfull ->\tracingonline \@ne

{\tracingonline}

Which is quite a lot given that none of it is of any help to the task at hand. In contrast
\traceon will produce nothing whatsoever since the noise generating switches are set
at the very end.

\def\traceon{%

We start by setting the @tracing switch to signal that tracing is asked for. This is
then followed by setting the various tracing primitives of TEX.

\@tracingtrue

\tracingstats\tw@

\tracingpages\@ne

\tracinglostchars\@ne

\tracingparagraphs\@ne

\errorcontextlines\maxdimen\showoutput

\tracingmacros\tw@

\tracingrestores\@ne

\tracingcommands\tw@

}

Now what should \conditionally@traceoff do in this case? Should it revert all
settings changed by \traceon? It should not, since our goal is to shorten the trace
output, thus setting all of the uninteresting values back makes the output unneces-
sarily longer. Therefore we restrict ourself to those \tracing... internals that really
contribute to listings like the above.

And one additional point is worth mentioning. The order in which we turn the tracing
internals off has effects on the output we see. So what needs to be turned off first?
Either \tracingrestores or \tracingcommands; it makes no difference which, as
long as they both come first. This is because those two are the only tracing switches
that produce output while tracing the command \conditionally@traceoff itself (see
example on page 95).

1 If some package writer has defined that command name for some reason—too bad—then we
make the wrong deduction from this fact and as a result the package will fail.

TUGboat, Volume 22 (2001), No. 1/2 97

In principle we would need to test the @tracing switch to see if there is anything to
turn off; after all, this is the conditional trace off. However this would lead to extra
output if we are currently tracing so we skip the test and instead accept that in case
we are not doing any tracing we unnecessarily set the tracing primitives back to zero
(i.e., the value they already have).

\def\conditionally@traceoff{%

\tracingrestores\z@

\tracingcommands\z@

\tracingpages\z@

\tracingmacros\z@

\tracingparagraphs\z@

As remarked above there are more tracing switches set by \traceon, however there is
no point in resetting \tracingstats or \tracinglostchars so we leave them alone.

% \tracingstats\z@

% \tracinglostchars\z@

Since this is the command that only conditionally turns off tracing we do not touch
the @tracing switch. This way a \conditionally@traceon will be able to turn the
tracing on again.

}

That covers the case for the standard TEX program. If \tracingsgroups was defined
we assume that we are running with ε-TEX in extended mode.

\else

In that case \traceon does more than \tracingall: it also turns on tracing of as-
signments and tracing of grouping.2 To keep tracing at a minimum \tracingassigns

should be turned on last (in fact like before we disassemble \tracingall and reorder
it partially).

\def\traceon{%

\@tracingtrue

\tracingstats\tw@

\tracingpages\@ne

\tracinglostchars\@ne

\tracingparagraphs\@ne

\errorcontextlines\maxdimen\showoutput

\tracingmacros\tw@

\tracinggroups\@ne

\tracingrestores\@ne

\tracingcommands\tw@

\tracingassigns\@ne

}

When turning tracing off again we now also have to turn off those additional tracing
switches. But what to turn off in what order? Since \tracingassigns is quite noisy
(two lines of output per assignment) and the whole command expansion consists of as-
signments, we had best start with this switch and follow it again by \tracingrestores

and \tracingcommands. The rest can be in any order, it doesn’t make a difference.

With the same reasoning as before we omit testing for the @tracing switch and always
set the primitives back to zero.

\def\conditionally@traceoff{%

\tracingassigns\z@

\tracingrestores\z@

2 These are my personal preference settings; ε-TEX does in fact offer some more tracing switches
and perhaps one or or more of them should be added here as well.

98 TUGboat, Volume 22 (2001), No. 1/2

\tracingcommands\z@

\tracingpages\z@

\tracingmacros\z@

\tracingparagraphs\z@

\tracinggroups\z@

}

This concludes the part that depends on the formatter being used.

\fi

\traceoff

\conditionally@traceon

Above we have defined \conditionally@traceoff and \traceon so now we have to
define their counterparts.

To stop tracing unconditionally we call \conditionally@traceoff (which in reality
is far from conditional except for not setting the @tracing switch :-) and then reset
the @tracing switch to false.

\def\traceoff{\conditionally@traceoff \@tracingfalse}

Now the \conditionally@traceon command will look at the @tracing switch and
if it is true it will call \traceon to restart tracing (note that the latter command
unnecessarily sets the switch to true as well). The reason for the \expandafter is to
get rid of the \fi primitive which would otherwise show up in the tracing output (and
perhaps puzzle somebody).

\def\conditionally@traceon{\if@tracing \expandafter \traceon \fi}

The rest of the package now consists of redefinitions of certain commands to make use
of \conditionally@traceoff.

Taming calc

\calc@open Near the start of parsing a calc expression the macro \calc@open is called. Since it
already involves a group it is perfectly suitable for our task—we don’t even have to
restart the tracing as this is done automatically for us.

\def\calc@open({\begingroup

\conditionally@traceoff

\aftergroup\calc@initB

\begingroup\aftergroup\calc@initB

\calc@pre@scan}

Making NFSS less noisy

\define@newfont Whenever NFSS determines that the font currently asked for is not already loaded, it
will start looking through font definition files and then load the font. This results in
a very large number of tracing lines which are not normally of interest (unless there is
a bug in that area—something we hope should have been found by now). Again the
code already contains its own group so we only have to turn the tracing off.

\def\define@newfont{%

\begingroup

\conditionally@traceoff

\let\typeout\@font@info

\escapechar\m@ne

\expandafter\expandafter\expandafter

\split@name\expandafter\string\font@name\@nil

\try@load@fontshape % try always

\expandafter\ifx

\csname\curr@fontshape\endcsname \relax

\wrong@fontshape\else

\extract@font\fi

\endgroup}

TUGboat, Volume 22 (2001), No. 1/2 99

\frozen@everymath

\frozen@everydisplay

At the beginning of every math formula NFSS will check whether or not the math fonts
are properly set up and if not will load whatever is needed. So we surround that part
of the code with \conditionally@traceoff and \conditionally@traceon thereby
avoiding all this uninteresting output.

\frozen@everymath =

{\conditionally@traceoff \check@mathfonts \conditionally@traceon

\the\everymath}

\frozen@everydisplay =

{\conditionally@traceoff \check@mathfonts \conditionally@traceon

\the\everydisplay}

Checking for italic corrections

\maybe@ic@ When executing \textit or its friends, LATEX looks ahead to determine whether or not
to add an italic correction at the end. This involves looping through the \nocorrlist
which outputs a lot of tracing lines we are normally not interested in. So we disable
tracing for this part of the processing.

\def \maybe@ic@ {%

\ifdim \fontdimen\@ne\font>\z@

\else

\conditionally@traceoff

\@tempswatrue

\expandafter\@tfor\expandafter\reserved@a\expandafter:\expandafter=%

\nocorrlist

\do \t@st@ic

\if@tempswa \sw@slant \fi

\conditionally@traceon

\fi

}

⋄ Frank Mittelbach

100 TUGboat, Volume 22 (2001), No. 1/2

Abstracts

Les Cahiers GUTenberg

Contents of Issue 35/36 (May 2000)
and Issue 37/38 (December 2000)

Double issue 35/36 (May 2000):
Proceedings of GUT 2000 “LATEX and XML:
Cooperation on the Internet”

Martial Chartoire, Éditorial : LATEX et XML :
coopération pour l’internet; pp. 3–4

The subject is the theme of the GUTenberg
2000 annual meeting in Toulouse. This issue of
the Cahiers includes a good number of conference
papers, which demonstrate that this cooperation has
become quite effective.

The editor muses about how far things have
come from the 1994 GUTenberg meeting, which had
as its theme “Distribution of electronic documents”:
from the advent of the Web and HTML, and now
XML and XSL, which bring screen output closer
to that which LATEX can produce. XML has been
adopted so quickly that four articles in this issue
are already discussing its application to various
projects.

The rest of the editorial touches on the vari-
ous articles in the issue, and closes with words of
thanks to those who had helped organize the 2000
conference in Toulouse.

Jacques André and Pascale Laurent,
Publications scientifiques électroniques : quoi et
comment ? (résumé étendu) [Electronic scientific
publication: what and how? (extended summary)];
pp. 5–13

This is a survey about scientific electronic jour-
nals and some current international experiments,
the results of which too often remain within the
domain of computer and documentation specialists.

[Based on authors’ résumé and abstract]

Frédéric Boulanger and Yolaine Bourda,
Documentation de projets en XML [Documenting
XML Projects]; pp. 15–23

The lack of documentation in most software
projects, and particularly in our students’ projects,
led us to develop a way to document software by
annotating it in comments. We generalize this ap-
proach to be able to document code in any language
and to create documentation in any format. How-
ever, XML is our preferred choice since this work is
part of a larger document processing project.

[Authors’ abstract]

Viviane Boulétreau and Jean-Paul Ducasse,
La production de documents électroniques
structurés à grande échelle : la diffusion
électronique des thèse universitaires [Large-scale
production of structured electronic documents:
electronic distribution of university theses];
pp. 25–35

The Université Lumière Lyon 2 has been work-
ing for a year on a project to distribute theses elec-
tronically. This requires that the document format
meet three crucial criteria: long-term availability,
efficient distribution, and ease of access. The article
provides an overview of the current project, plans
for future development (in the short term), and
pointers to the long-term role of such documents in
information exchange.

[Based on authors’ introduction]

Yolaine Bourda and Marc Hélier,
Métadonnées, RDF et documents pédagogiques
[Metadata, RDF and teaching documents];
pp. 37–52

In many fields, such as education, electronic
documents do not pay for themselves as they should
(reused, found . . .). One possible solution is to
rely on metadata, RDF and XML. The aim of this
paper is to present the idea of metadata and to
emphasize the importance of standardization. For
a given set of metadata, many implementations
using XML are possible. This multiplicity has
its drawbacks. A unique implementation may be
obtained by means of RDF. The Dublin Core
initiative and the Learning Objects, which are under
construction by the IEEE, are given as examples of
this process. [Authors’ abstract]

Philip Taylor, Jiř́ı Zlatuška and
Karel Skoupý, The NTS Project: From
conception to implementation; pp. 53–77

This 25-page article provides an overview of the
NTS project: its history, development approaches
and choices, current status, and impending comple-
tion.

[Based on authors’ introduction]

David Carlisle, Michel Goossens and
Sebastian Rahtz, De XML à PDF via xmltex,
XSLT et PassiveTEX [From XML to PDF via
xmltex, XSLT and PassiveTEX]; pp. 79–114

This article introduces xmltex, a TEX macro
package that parses an XML document and typesets
it under the control of configuration files. We also
discuss PassiveTEX, a library of TEX macros based
on xmltex, that processes XML documents contain-
ing XSL formatting objects and generates PDF or
DVI output. We compare these two approaches

TUGboat, Volume 22 (2001), No. 1/2 101

with a direct translation of the XML source file into
LATEX. We show examples of these techniques for the
TEI, DocBook and MathML DTDs. The appendix
gives details about the xmltex commands.

[Authors’ abstract]

Frank Mittelbach, David Carlisle and
Chris Rowley, New Interfaces for LATEX Class
Design; pp. 115–120

Traditional LATEX class files typically imple-
ment one fixed design via ad hoc, and often low-
level, (LA)TEX code. This style of implementation
makes it much harder than is either desirable or nec-
essary to produce classes that implement a specific
visual design. This article introduces some exten-
sions to LATEX that will help to provide a new, more
declarative interface that can be used in class files.
It is based on the idea of a template, which describes
how to carry out some action but which provides
some flexibility since its code uses the values of a
set of named (keyword) parameters.

[Based on authors’ introduction]

Benjamin Bayart, Nouvelles pistes pour une
distribution de TEX [New approaches for TEX
distributions]; pp. 121–132

We begin with a quick overview of the situa-
tion which led to the idea of a new type of TEX
distribution. Based on quite different problems,
a very old discussion about defining a TPM (TEX
Package Manager) had quickly led to quite similar
conclusions. The basic principles behind FDNTEX
(FDN = French Data Network) will be presented
and explained in detail.

[Translation of French résumé]

Michel Cubero-Castan, PolyDoc : un exemple
d’application XML pour la création personnalisée
de polycopiés [PolyDoc: Example of an XML

application for creating customized copies];
pp. 133–155

This article presents PolyDoc, a Java applica-
tion based on the W3C’s Document Object Model
(DOM), which allows translation of a document from
XML to HTML, LATEX, Open e-Book, . . . , or again
into XML (with a different DTD). Using PolyDoc,
we describe a document production process with
three stages: contents written in XML, global cus-
tomized formatting in Java, production of the result
via HTML, LATEX, . . .

[Based on French résumé]

Roberta Faggian, Integration of resources on
the World Wide Web using XML; pp. 157–167

An initiative to explain high energy physics to
the general public has been started at CERN. The

use of the Web has been identified as crucial to the
success of this initiative. An integral part of this
project is the construction of a Web-based informa-
tion system that collects many different resources on
the Web (information published by many European
and US particle physics institutes). This paper
proposes a solution to the problem of integration
and reuse of heterogeneous information by enriching
existing content semantic with metadata in order
to improve understanding and discovery. The main
part of the work is the study of the RDF standard
for representing metadata, and its implementation
using XML syntax. [Author’s abstract]

Jean-Michel Hufflen, Typographie : les
conventions, la tradition, les goûts, . . . et LATEX
[Typography: Conventions, traditions, tastes . . .
and LATEX]; pp. 169–214

This article is a transcript of a tutorial designed
to show that learning typographic rules, even learn-
ing both French and English rules, is not that diffi-
cult. The article also provides some starting points
for using the french and babel packages, the one for
writing in French, the other for dealing with most
other languages in a relatively homogeneous fashion.
The article then shows how to organize a new class
file as well as a new multilingual bibliography style.

[Translation of French résumé]

Christian Rossi, Le CTAN Navigator
[The CTAN Navigator]; pp. 215–221

The CTAN Navigator (http://ctan.loria.fr)
is a Web server that provides a set of tools to
facilitate the search, transfer, and installation of
files available from CTAN (the Comprehensive TEX
Archive Network).

[Translation of French résumé]

−− ∗ −−

Double issue 37/38 (December 2000)

Jacques André, Éditorial; pp. 3–4
Jacques André cites a passage from the GUTen-

berg statutes, one which states that the association’s
aims include bringing together French-language TEX
users, encouraging technical exchanges to promote
the printing and distribution of scientific publica-
tions, and offering its members a specific number
of services. Those aims are all represented in the
various articles included in this issue.

And as do all editors, Jacques laments the fact
that articles seem so rarely to arrive unsolicited—
and hopes that the new millenium will see this
change.

102 TUGboat, Volume 22 (2001), No. 1/2

Fabrice Popineau, Affichez vos documents
LATEX sur le Web avec TEX4ht [Post your LATEX
documents on the Web with TEX4ht]; pp. 5–43

Eitan Gurari is the author of TEX4ht, a clever
tool which allows TEX and LATEX documents to be
translated into HTML and XML. I’d like to show
here that TEX4ht is simple to use, powerful and
extensible. Let’s have a look at its features.

[Author’s abstract]

Hermann Zapf, Typographie des caractères
romains et de la Renaissance [Typography of
Roman characters and the Renaissance]; pp. 44–52

This paper is the French translation of a Ger-
man paper written by Hermann Zapf in 1953, ded-
icated to the Renaissance humanists who defined
Roman Capitals with the use of compass and rules.
Zapf shows that the design of characters is not just
a matter of geometry and that the re-design of a
classic character must take into account the original
drawings. [Author’s abstract]

The article was originally published in German as “Vom
Formgesetz der Renaissance Antiqua”, in the 1953 issue
of the annual series Gutenberg-Jahrbuch. The “Edito-
rial Note” accompanying the article gives more details.

Pierre Attar and Bruno Chatel, État
des recommandations XML dans le domaine
documentaire [Status of XML recommendations
for documents]; pp. 53–85

The purpose of this report is to present the
current state of the XML standard, its power and
its limits in addressing the needs of documentation
applications. As well, it looks at XML parsers, to
try and define their quality and efficiency.

[Translation of French résumé (abbreviated)]

Frank Mittelbach, Formater des documents
ayant des flottants : un nouvel algorithme pour
LATEX2ε* [Formatting documents with floats:
A new algorithm for LATEX2ε*]; pp. 86–108

This paper describes an approach to placement
of floats in multicolumn documents. The current
version of LATEX was originally written for single-
column documents and extended to support two-
column documents by essentially building each col-
umn independently from the other. As a result,
the current system shows severe limitations in two-
column mode, such as the fact that spanning floats
are always deferred to at least the next page or
that numbering between column floats and spanning
floats can get out of sequence.

The new algorithm is intended to overcome
these limitations and at the same time extend the
supported class of document layouts to multiple
columns with floats spanning an arbitrary number
of columns. [Author’s abstract]

This paper was also also presented at TUG 2000 in
Oxford, and appears in TUGboat 21, no. 3 (2000),
pp. 278–290.

−− ∗ −−

Articles from Cahiers issues can be found in PDF

format at the GUTenberg site:

http://www.gutenberg.eu.org/pub/gut/

publications

[Compiled by Christina Thiele]

2001

Feb 28 –
Mar 3

DANTE 2001, 24th meeting,
Fachhochschule Rosenheim,
Germany. For information, visit
http://www.dante.de/dante2001/.

Mar 26 – 28 XML World Europe, Amsterdam,
Netherlands. For information, visit
http://www.xmlworld.org/.

Apr 1 –
Jun 15

The Best of the Best: A traveling juried
exhibition of books by members of the
Guild of Book Workers. Ohio State
University Library, Athens, Ohio.
Sites and dates are listed at http://
palimpsest.stanford.edu/byorg/gbw.

Apr 9 – 13 Seybold Boston, Boston,
Massachusetts. For information, visit
http://www.key3media.com/

seyboldseminars/boston2001/.

Apr 29 –
May 2

BachoTEX 2001, 9th annual meeting of
the Polish TEX Users’ Group
(GUST), “Contemporary publishing
TEXnology”, Bachotek, Brodnica Lake
District, Poland. For information, visit
http://www.gust.org.pl/BachoTeX/.

May 14 – 17 Congrès GUTenberg 2001, “Le document
au XXIe Siècle”, Metz, France.
For information, visit http://

www.gutenberg.eu.org/manif/gut2001/.

Jun 6 – 8 Society for Scholarly Publishing,

23rd annual meeting, San Francisco,
California. For information, visit
http://www.sspnet.org.

Jun 13 – 17 ACH/ALLC 2001: Joint International
Conference of the Association for
Computers and the Humanities, and
Association for Literary and Linguistic
Computing, New York University, New
York. For information, visit http://

www.nyu.edu/its/humanities/ach_allc2001/.

TUGboat, Volume 22 (2001), No. 1/2 103

Calendar

Jul 13 – 15 TypeCon 2001, Rochester, New York.
For information, visit
http://www.typecon2001.com.

TUG2001

University of Delaware, Newark, Delaware.
For information, visit http://www.tug.org/tug2001/.

Aug 6 – 10 Intermediate/Advanced LATEX training
class.

Aug 12 – 16 The 22nd annual meeting of the TEX
Users Group, “2001: A TEX Odyssey”.

Aug 12 – 17 Extreme Markup Languages 2001:
“There’s Nothing so Practical as a
Good Theory”, Montréal, Canada.
For information, visit
http://www.gca.org.

Aug 12 – 17 SIGGRAPH 2001, Los Angeles,
California. For information, visit
http://www.siggraph.org/s2001/.

Sep 8 WDA’2001: First International Workshop
on Web Document Analysis, Seattle,
Washington. For information, visit
http://www.csc.liv.ac.uk/~wda2001.

Sep 17 – 20 XML World 2001, San Francisco,
California. For information, visit
http://www.xmlworld.org/.

Sep 23 – 27 EuroTEX2001, “TEX and Meta: the
Good, the Bad and the Ugly Bits”,
Kerkrade, Netherlands. For information,
visit http://www.ntg.nl/eurotex/.

Sep 29 29th Annual General Meeting of the
Danish TEX Users Group (DK-TUG),
Århus, Denmark. For information, visit
http://sunsite.dk/dk-tug/.

Oct 24 – 26 4th International Conference
on The Electronic Document,
Toulouse, France. For information, visit
http://www.irit.fr/CIDE2001/.

Status as of 1 July 2002

For additional information on TUG-sponsored events listed above, contact the TUG office
(+1 503 223-9994, fax: +1 503 223-3960, e-mail: office@tug.org). For events sponsored
by other organizations, please use the contact address provided.

Additional type-related events and news items are listed in the Sans Serif Web pages,
at http://news.serifmagazine.com/.

Owing to the lateness of this issue, please consider that all events shown for 2001 are
included only “for the record”.

Nov 9 – 10 ACM Symposium on Document
Engineering, Atlanta, Georgia.
For information, visit
http://www.documentengineering.org.

2002

Jan 16 –
Feb 20

The Best of the Best: A traveling
juried exhibition of books by
members of the Guild of Book
Workers. Swarthmore College,
Swarthmore, Pennsylvania. Sites
and dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

Feb 19 – 22 Seybold New York, New York
City. For information, visit
http://www.key3media.com/

seyboldseminars/ny2002/.

Feb 20 – 23 DANTE 2002, 26th meeting,
Universität Erlangen-Nürnberg,
Germany. For information, visit
http://www.dante.de/dante2002/.

Mar 13 –
Apr 23

The Best of the Best: A traveling juried
exhibition of books by members of the
Guild of Book Workers. San Diego
State University Malcolm A. Love
Library, San Diego, California. Sites
and dates are listed at http://

palimpsest.stanford.edu/byorg/gbw.

Apr 29 –
May 3

EuroBachoTEX 2002, 13th meeting

of European TEX Users and 10th

annual meeting of the Polish TEX
Users’ Group (GUST), “TEX and
beyond”, Bachotek, Brodnica Lake
District, Poland. For information, visit
http://www.gust.org.pl/BachoTeX/2002/.

May 7 –
Jun 27

The Best of the Best: A traveling juried
exhibition of books by members of the
Guild of Book Workers. San Francisco
Public Library, San Francisco,
California. San Diego, California.
Sites and dates are listed at http://
palimpsest.stanford.edu/byorg/gbw.

May 29 Journée GUTenberg, “Distributions”,
Paris, France. For information, visit
http://www.gutenberg.eu.org/.

May 29 – 31 Society for Scholarly Publishing,

24th annual meeting, Boston,
Massachusetts. For information, visit
http://www.sspnet.org.

Jul 12 – 14 TypeCon 2002, Toronto, Canada.
For information, visit
http://www.typecon2002.com.

104 TUGboat, Volume 22 (2001), No. 1/2

Jul 21 – 26 SIGGRAPH 2002, San Antonio,
Texas. For information, visit
http://www.siggraph.org/calendar/.

TUG2002

International Convention Centre,
Trivandrum, India. For information, visit
http://www.tug.org.in/tug2002/.

Sep 1 – 3 Tutorials: LATEX; LATEX to XML;
METAPOST; the Text Encoding
Initiative; TEX macro expansion.

Sep 4 – 7 The 23rd annual meeting of the TEX
Users Group, “Stand up and be proud of
TEX!”. For information, visit
http://www.tug.org.in/tug2002/.

Sep 19 – 22 Association Typographique Internationale
(ATypI) annual conference, Rome,
Italy. For information, visit
http://www.atypi.org/rome2002/.

Sep 24 – 25 First Annual Conference, Friends
of St. Bride Printing Library,
London, England. For information, visit
http://www.stbride.org/conference.htm

Oct 12 UK TUG Autumn meeting,
Nottingham University.
For information, contact Dick Nickalls,
dicknickalls@compuserve.com.

Oct 14 – 17 Book History Workshop,
Institue d’histoire du livre,
Lyons, France. For information, visit
http://ihl.enssib.fr.

Nov 8 – 9 ACM Symposium on Document
Engineering, McLean, Virginia.
For information, visit
http://www.sdml.cs.kent.edu/doceng2002/.

2003

TUG2003

Outrigger Waikoloa Beach Resort, Big Island,

Hawai‘i.

Jul 20 – 24 The 24th annual meeting of the TEX
Users Group. For information, visit
http://www.tug.org.in/tug2003/.

Sep 4 – 7 the TEX Users Group, “Stand up
and be proud of TEX!”, Trivandrum,
Kerala, India. For information, visit
http://www.tug.org.in/tug2002/.

Jul 27 –
Aug 1

SIGGRAPH 2003, San Diego,
California. For information, visit
http://www.siggraph.org/calendar/.

of the

 http://www.tug.org/tug2001

 For more information see:

Clayton Hall Conference Center

- P L E A S E P O S T -

REGISTER NOW!

PRE-CONFERENCE: Intermediate/Advanced LaTeX Classes; Aug 6-10, 2001 [$325 (members)/$350 (non-members) USD]

Embassy Suites, Newark-Wilmington South, DE

 tel: +1 302-368-8000; fax +1-302-368-8975
Sleep Inn, Newark, DE

 tel: +1 302-453-1700; fax +1-302-453-1710

ACCOMMODATION [ask for Extended Stay or University of Delaware rates]

TUG office

P.O. Box 2311 • Portland • OR 97208-2311 • USA

 email: office@tug.org
 tel: +1-503-223-9994; fax: +1-503-223-3960

REGISTRATION ON-LINE [$350 (members)/$425 (non-members) USD]

ORGANIZERS: Sue DeMeritt, Stephanie Hogue, Wendy McKay, Patricia Monohon, Heidi Seistrich, Anita Schwartz • tug2001@tug.org

August 12-16, 2001

Newark, Delaware, USA
[nearest airports PHL or BWI]

U N I V E R S I T Y O F D E L A W A R E

Ahoy! Come join us for

TeX Users Group

the 22nd Annual Meeting & Conference

106 TUGboat, Volume 22 (2001), No. 1/2

TUG Business

Minutes of TEX Users Group

Annual General Meeting held on

15 August 2000; Oxford, England

Susan DeMeritt, for
Arthur Ogawa, Secretary

Call to Order

The meeting was called to order at 2:30 p.m. by
Mimi Jett, President of TUG.

Reading of Last Year’s Minutes

Susan DeMeritt read the minutes of the 1999 Annual
General Meeting held in Vancouver, B.C., Canada.

Board of Directors Report

• Robin Laakso presented membership statistics,
explained the tasks involved in her job as office
manager and presented the office budget infor-
mation.

• Jonathan Fine stated that he feels that informa-
tion regarding the budget is not readily avail-
able. Robin Fairbairns countered that he likes
the way the Board is being run and that he does
not want to know the day-to-day dealings, he
wants to know the bottom line. Robin Laakso
expressed gratitude for Robin Fairbairns’ com-
ments and stated that she enjoys working with
TUG.

• Barbara Beeton reported that next year is an
election year. Five board positions, plus that
of President, will be open. Three of the five
board positions will be open because terms will
end for Arthur Ogawa, Patricia Monohon, and
Petr Sojka. Formal announcements will be sent
out on October 1 with a mid-January deadline
for receipt of nominations. Barbara Beeton dis-
cussed the possibility of electronic balloting.

• Susan DeMeritt reported that the 2001 meet-
ing will be held at the University of Delaware,
in Newark, Delaware. Discussion was started
about the 2002 meeting: proposals have been
received for Ireland and India. Susan DeMeritt
will put something on the web site where peo-
ple can let us know whether they would be able
to attend if it were held in India.

• Kaja Christiansen reported the the TUG Web
server will be moving to Aarhus, Denmark. The
transition should be smooth. Three new sys-

tems are going to be purchased this year: one
for the Web server, one for CTAN and one for
the office.

Training and Education

Mimi Jett reported that TUG is once again going to
offer training, seminars, and workshops. These will
be held twice a year in the US, and a site is also
being sought in the UK.

Promotional Materials

TUG will collaborate with other TEX groups on putting
out new promotional materials.

At this point, Jonathan Fine stood up and stated
a list of complaints that he wanted to have heard.

Financial Report

Don DeLand gave an overview of the budget, with
details on the LATEX3 fund and TUGboat expenses.
[See the next page for the report.]

Mimi Jett announced that $5,000 would be given
to the NTS project.

Don DeLand gave an overview of current bud-
get info.

Mimi Jett announced the gift of Metafog to
CyrTUG and GUST.

Old Business

There was no old business to discuss.

New Business

Jonathan Fine asked if a membership list could be
created. Don DeLand explained that because of pri-
vacy laws, especially in Europe, we may not be able
to make the list generally available. Sebastian Rahtz
suggested that a member should take on that task,
not a Board member. Ahmed Hindawi volunteered.

Nelson Beebe asked about the backlog of TUG-

boat. Mimi Jett mentioned that part of the problem
was not enough articles to print and encouraged the
membership to start writing more.

Jonathan Fine asked if it would be possible to
get TUGboat without being a member. It was stated
that TUGboat is a benefit of membership.

Once membership increases with training, con-
ferences, and seminars the readership will increase
as well.

The meeting was closed at 2:40 p.m. by Mimi
Jett.

⋄ Susan DeMeritt, for

Arthur Ogawa, Secretary

TUGboat, Volume 22 (2001), No. 1/2 107

Financial Statement, 2000

Donald DeLand

Report from the TUG Treasurer

The TEX Users Group is a 501(C)(6) not-for-profit
corporation under the Internal Revenue code. The
association is funded primarily by annual dues from
members and to a lesser degree by product sales and
interest income. Membership dues of $132,470 are
4.5% higher than they were in 1999. Cost of goods
expense was about 72% less than in 1999. The drop
is due in large part to the late production/delivery
(and absence of the accrued expense) for TUGboat.
(1999 cost of goods was also higher than normal.)
TUG bank accounts grew from $90,324 at year end
1999 to $125,100 at year end 2000, a 28% increase.

Dec 31, 2000

ASSETS

Current Assets
Checking/Savings

BofA CD 21204-07032 $ 36,181.91
BofA Checking 21203-10859 90.07
BofA MMkt Bursry 21204-11698 46.51
BofA Maximizer 21203-18374 88,766.90
Petty Cash 15.41

Total Checking/Savings 125,100.80

Accounts Receivable 1,519.15

Total Other Current Assets 1,010.00

Fixed Assets
Equipment 42,211.33
Accumulated Depreciation − 31,515.42

Total Fixed Assets 10,695.91

TOTAL ASSETS $ 138,325.86

LIABILITIES & EQUITY

Liabilities
AMS Prepaid Memberships $ 1,875.00
Total Payroll Liabilities 1,467.40

Total Liabilities 3,342.40

Equity
Perm Restricted – LATEX 1,467.50
Perm Restricted – Bursary 46.51
Unrestricted 79,786.06
Chg in Restrict Acct 2000 1,744.81
Net Income 51,938.58

Total Equity 134,983.46

TOTAL LIABILITIES

& EQUITY $ 138,325.86

If TUGboat expenses for 2000 were included below
it would have reduced the bank account and bottom
line by approximately $25K.

As always, the accounts have been reviewed by
TUG’s accountant but they have not been audited or
verified. We are working toward a more consistent
method of record-keeping so that the comparison
from year to year provides a more useful analysis.

⋄ Donald DeLand
Integre Technical Publishing Co.
4015 Carlisle NE, Suite A
Albuquerque, NM 87107
don.deland@tug.org

Profit & Loss

Jan–Dec 2000

Income

Membership Dues $ 132,470.00
Advertising 100.00
Conference 0.00
Product Sales 1,669.00
Contributions/Interest 11,462.00
Merchant charges and bank fees − 3,816.00

Total Income 141,885.00

Cost of Goods Sold

TUGboat 6,615.00
CD ROMs 9,791.00
Conference 2,100.00
Delivery 3,068.00
Miscellaneous 634.00

Total Cost of Goods Sold 20,563.00

Fund Disbursements

Bursary Fund 1,390.00
LATEX3 455.00

Total Fund Disbursements 3,490.00

Expense

Gross Wages 42,241.00
Equipment 502.00
Operations 17,593.00
Other 5,558.00

Total Expense 65,894.00

Net Income $ 51,938.00

108 TUGboat, Volume 22 (2001), No. 1/2

2003 TEX Users Group Election

Arthur Ogawa
for the Elections Committee

The positions of TUG President and of 11 members
of the Board of Directors will be open as of the 2003
Annual Board Meeting, which will take place in con-
junction with the 24th Annual TUG Meeting to be
held in July 2003 at the Outrigger Waikoloa Beach
Resort in Hawai‘i.

The current President, Mimi Jett, has stated that
she will not stand for re-election. The terms of the eleven
directors whose terms will expire in 2003 are Barbara
Beeton, Karl Berry, Kaja Christiansen, Don DeLand,
Susan DeMeritt, Stephanie Hogue, Judy Johnson, Ross
Moore, Cheryl Ponchin, Kristoffer Rose, and Philip Tay-
lor. Continuing directors, with terms ending in 2005, are
Wendy McKay, Arthur Ogawa, Patricia Monohon and
Michael Sofka.

The election to choose the new President and
Board members will be held in Spring of 2003. Nom-
inations for these openings are now being invited.

The Bylaws provide that “Any member may be
nominated for election to the office of TUG Presi-
dent/to the Board by submitting a nomination pe-
tition in accordance with the TUG Election Proce-
dures. Election . . . shall be by written mail ballot
of the entire membership, carried out in accordance
with those same Procedures.” The term of President
is two years.

The name of any member may be placed in
nomination for election to one of the open offices by
submission of a petition, signed by two other mem-
bers in good standing, to the TUG office at least
two weeks (14 days) prior to the mailing of ballots.
(A candidate’s membership dues for 2003 will be ex-
pected to be paid by the nomination deadline.) The
term of a member of the TUG Board is four years.

A nomination form follows this announcement;
forms may also be obtained from the TUG office, or
via the TUG Web pages at http://www.tug.org.

Along with a nomination form, each candidate is
asked to supply a passport-size photograph, a short bi-
ography, and a statement of intent to be included with
the ballot; the biography and statement of intent to-
gether may not exceed 400 words. The deadline for re-
ceipt at the TUG office of nomination forms and ballot
information is 1 February 2003.

Ballots will be mailed to all members within 30 days
after the close of nominations. Marked ballots must be
returned no more than six (6) weeks following the mail-
ing; the exact dates will be noted on the ballots.

Ballots will be counted by a disinterested party not
part of the TUG organization. The results of the election
should be available by early June, and will be announced
in a future issue of TUGboat as well as through various
TEX-related electronic lists.

2003 TUG Election —Nomination Form

Only TUG members whose dues have been paid for 2003
will be eligible to participate in the election. The sig-
natures of two (2) members in good standing at the
time they sign the nomination form are required in ad-
dition to that of the nominee. Type or print names
clearly, using the name by which you are known to TUG.
Names that cannot be identified from the TUG member-
ship records will not be accepted as valid.

The undersigned TUG members propose the nomi-
nation of:

Name of Nominee:

Signature:

Date:

for the position of (check one):

✷ TUG President

✷ Member of the TUG Board of Directors

for a term beginning with the 2003 Annual Meeting,
July 2003.

Members supporting this nomination:

1.
(please print)

(signature) (date)

2.
(please print)

(signature) (date)

Return this nomination form to the TUG office (FAXed
forms will be accepted). Nomination forms and all re-
quired supplementary material (photograph, biography
and personal statement for inclusion on the ballot) must
be received in the TUG office no later than 1 February

2003.1 It is the responsibility of the candidate to ensure
that this deadline is met. Under no circumstances will
incomplete applications be accepted.

✷ nomination form

✷ photograph

✷ biography/personal statement

TEX Users Group FAX: +1 503 223-3960
Nominations for 2003 Election

1466 NW Naito Parkway, Suite 3141
Portland, OR 97209-2820
U.S.A.

1 Supplementary material may be sent separately from

the form, and supporting signatures need not all appear on

one form.

Institutional

Members

American Mathematical Society,
Providence, Rhode Island

Center for Computing Science,
Bowie, Maryland

Cessna Aircraft Company,
Wichita, Kansas

The Clarinda Company,
Clarinda, Iowa

CNRS - IDRIS,
Orsay, France

CSTUG, Praha, Czech Republic

Florida State University,
School of Computational Science
and Information Technology,
Tallahassee, Florida

IBM Corporation,
T J Watson Research Center,
Yorktown, New York

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Center for Communications
Research, Princeton, New Jersey

Iowa State University,
Computation Center,
Ames, Iowa

Kluwer Academic Publishers,
Dordrecht, The Netherlands

KTH Royal Institute of
Technology, Stockholm, Sweden

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Masaryk University,
Faculty of Informatics,
Brno, Czechoslovakia

Max Planck Institut
für Mathematik,
Bonn, Germany

New York University,
Academic Computing Facility,
New York, New York

Princeton University,
Department of Mathematics,
Princeton, New Jersey

Springer-Verlag Heidelberg,
Heidelberg, Germany

Stanford Linear Accelerator
Center (SLAC),
Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

TUGboat, Volume 22 (2001), No. 1/2 109

Stockholm University,
Department of Mathematics,
Stockholm, Sweden

University College, Cork,
Computer Centre,
Cork, Ireland

University of Delaware,
Computing and Network Services,
Newark, Delaware

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

Università degli Studi di Trieste,
Trieste, Italy

Vanderbilt University,
Nashville, Tennessee

TEX
USERS
GROUP

Promoting the use of
TEX throughout the

world

mailing address:
P.O. Box 2311

Portland, OR 97208–2311 USA

shipping address:
1466 NW Naito Parkway,

Suite 3141

Portland, OR 97209–2820 USA

Phone: +1 503 223–9994

Fax: +1 503 223–3960

Email: office@tug.org

WWW: www.tug.org

President: Mimi Jett

Vice-President: Arthur Ogawa

Treasurer: Donald W. DeLand

Secretary: Susan DeMeritt

2002 TUG Membership Form
Rates for TUG membership and TUGboat subscription are listed below. Please check

the appropriate boxes and mail payment (in US dollars, drawn on a United States

bank) along with a copy of this form. If paying by credit card, you may fax the

completed form to the number at left.

• 2002 TUGboat (Volume 23)

• 2002 CD-ROMs include TEX Live 7 (1 disk) and Dante’s CTAN 2002 (3 disk set).

• Multi-year orders: You may use this year’s rate to pay for more than one year of

membership.

• Orders received after 30 April, 2002: please add $10 to cover the additional expense

of shipping back numbers of TUGboat and CD-ROMs.

Rate Amount

Annual membership for 2002 (TUGboat and CD-ROMs) $65

Student/Senior membership for 2002 (TUGboat, CD-ROMs)* $35

Subscription for 2002 (TUGboat and CD-ROMs) (Non-voting) $75

Shipping charge if after 30 April, 2002 $10

Materials for 2001‡

TUGboat Volume 22 $45

TEX Live 6 CD-ROM $5

2001 CTAN CD-ROMs $10

Voluntary donations

General TUG contribution

Contribution to Bursary Fund†

Total $

Payment (check one) Payment enclosed Charge Visa/Mastercard/AmEx

Account Number:

Exp. date: Signature:

* Please attach photocopy of (if student) 2002 student ID or (if senior) ID showing age 65

years or older.

† The Bursary Fund provides financial assistance for attendance at the TUG Annual Meeting.

‡ If you were not a TUG member in 2001 and wish to receive TEX Live and CTAN CDs right

away, please order the desired item(s) along with your 2002 membership.

Information for TUG membership list

TUG uses the information you provide to mail you products, publications, notices, and (for voting members) official ballots,

or in a printed or electronic membership list, available to TUG members only.

Note: TUG neither sells its membership list nor provides it to anyone outside of its own membership.

Allowing TUG to send you notices electronically will generally ensure that you receive them much earlier than the notice in

printed form. However, if you would rather not receive TUG notices via electronic mail, please check the appropriate box.

Do not send me TUG notices via email .

TUG plans to prepare a printed or electronic membership list, available to TUG members only. If you would like a listing in

such a publication, please check the appropriate box.

Please do include my information in a published members-only TUG directory .

Name:

Department:

Institution:

Address:

Phone: Fax:

Email address:

Position: Affiliation:

Information about these services can be obtained

from:

TEX Users Group

1466 NW Naito Parkway, Suite 3141

Portland, OR 97209-2820, U.S.A.

Phone: +1 503 223-9994

Fax: +1 503 223-3960

Email: office@tug.org

URL: http://www.tug.org/

consultants.html

North America

Loew, Elizabeth

President, TEXniques, Inc.,
675 Massachusetts Avenue, 6th Floor,

Cambridge, MA 02139;

(617) 876-2333; Fax: (781) 344-8158
Email: loew@texniques.com

Complete book and journal production in the areas of
mathematics, physics, engineering, and biology. Services
include copyediting, layout, art sizing, preparation of
electronic figures; we keyboard from raw manuscript or
tweak TEX files.

Ogawa, Arthur

40453 Cherokee Oaks Drive,
Three Rivers, CA 93271-9743;
(209) 561-4585
Email: Ogawa@teleport.com

Bookbuilding services, including design, copyedit, art,
and composition; color is my speciality. Custom TEX
macros and LATEX2ε document classes and packages.
Instruction, support, and consultation for workgroups and
authors. Application development in LATEX, TEX, SGML,
PostScript, Java, and ßC++. Database and corporate
publishing. Extensive references.

Veytsman, Boris

2239 Double Eagle Ct.
Reston, VA 20191;
(703) 860-0013
Email: boris@lk.net

I provide training, consulting, software design and
implementation for Unix, Perl, SQL, TEX, and LATEX. I
have authored several popular packages for LATEX and
latelx2html. I have contributed to several web-based
projects for generating and typesetting reports.
For more information please visit my web page:
http://users.lk.net/ borisv.

TUGboat, Volume 22 (2001), No. 1/2 111

TEX Consulting & Production Services

The Unicorn Collaborative, Inc, Ted Zajdel

115 Aspen Drive, Suite K
Pacheco, CA 94553

(925) 689-7442

Email: contact@unicorn-collab.com

We are a technical documentation company, initiated

in 1990, which time, strives for error free, seamless

documentation, delivered on time, and within budget. We
provide high quality documentation services such as
document design, graphic design and copy editing. We have
extensive experience using tools such as FrameMaker, TEX,
LATEX, Word, Acrobat, and many graphics programs. One
of our specialties is producing technical manuals and
books using LATEX and TEX. Our experienced staff
can be trained to use any tool required to meet your

needs. We can help you develop, rewrite, or simply
copy-edit your documentation. Our broad experience with

different industries allows us to handle many types of

documentation including, but not limited to, software
and hardware systems, communications, scientific
instrumentation, engineering, physics, astronomy, chemistry,
pharmaceuticals, biotechnology, semiconductor technology,
manufacturing and control systems. For more information
see our web page http://www.unicorn-collab.com.

Outside North America

DocuTEXing: TEX Typesetting Facility

43 Ibn Kotaiba Street,
Nasr City, Cairo 11471, Egypt
+20 2 4034178; Fax: +20 2 4034178
Email: main-office@DocuTeXing.com

DocuTEXing provides high-quality TEX and LATEX
typesetting services to authors, editors, and publishers.
Our services extend from simple typesetting and technical

illustrations to full production of electronic journals. For

more information, samples, and references, please visit our
web site: http://www.DocuTeXing.com or contact us by
e-mail.

b y David Bausum, Lighthouse & Associates, Beloit, WI, USA

The TeX Reference Manual is the first comprehensive reference manual

written by a programmer for programmers. It contains reference pages for

each of TeX’s 325 primitive control sequences. Over 80% of its reference

pages contain examples that range from simple to challenging. Each example

i s is typeset verbatim in a style which is easy to read and experiment with. TeX

Reference Manual also just typesets the example, so you can see what it

makes, and explains how the example works. The description on each

primitive’s reference page is an annotated discussion of The TeXbook’s

treatment of the primitive. That means a TeX user will find it natural to move

back and forth between the two books. One of TeX Reference Manual’s

innovative features is families. They simplify the search for the primitive which

performs a particular task.

 February 2002 Hardbound, ISBN 0-7923-7673-0

 390 pp. EUR 108.00 / USD 99.00 / GBP 68.00

123456789012345678901234567890121234567890123
123456789012345678901234567890121234567890123
123456789012345678901234567890121234567890123
123456789012345678901234567890121234567890123
123456789012345678901234567890121234567890123
123456789012345678901234567890121234567890123
123456789012345678901234567890121234567890123

Just Published

TEX Reference

Manual

TeX Reference Manual has appendices which

provide a comprehensive discussion of:

verbatim material, PostScript fonts, and two-

column material. In particular, one word

describes its font macros, elegant. The TeX

Reference Manual is an invaluable tool for both

the experienced and new users of TeX.

CONTENTS
Preface;

1. Families and Primitive Control Sequences.

2. Reference Pages for the Primitives.

Appendix A. Typesetting Verbatim Material.

Appendix B. Working with PostScript Fonts.

Appendix C. Typesetting Material in Two Columns.

Bibliography. Index.

ORDER TODAY!
ONLINE: WWW.WKAP.NL

Fax your order:

USA: 781-681-9045

Rest of World: +31 78 6546 474

Phone:

USA: +781-871-6600

Rest of World: +31 78 6392 392

Email:

USA: kluwer@wkap.com

Rest of World: services@wkap.nl

Primitive Control Sequences

Family Name Type Description

Box (29) Logic (20) C Command (163)

Character (16) Macro (20) D Derived Command (17)

Debugging (25) Marks (4) IQ Internal Quantity (42)

File I/O (13) Math (69) PI Parameter (integer) (55)

Fonts (5) Page (13) PD Parameter (dimen) (21)

Glue (12) Paragraph (30) PG Parameter (glue) (15)

Hyphenation (11) Penalties (12) PM Parameter (muglue) (3)

Inserts (8) Registers (11) PT Parameter (token) (9)

 Job (11) Tables (9)

 Kern (7)

