
TUGboat, Volume 20 (1999), No. 4 359

Book Reviews

The LATEX Graphics Companion and
TEX Unbound — A Review of Two Books

Bill Casselman

Michel Goossens, Sebastian Rahtz, and Frank Mit-
telbach, The LATEX Graphics Companion: Illustrat-
ing documents with TEX and PostScript. Addison-
Wesley, Reading, Massachusetts, 1997, ISBN 0-201-
85469-4, 554 + xxv pages, $39.95.

Alan Hoenig, TEX Unbound: LATEX & TEX Strate-
gies for Fonts, Graphics, & More. Oxford Univer-
sity Press, New York, 1998, ISBN 0-19-509686-X
580 + ix pages, http://www.oup-usa.org/docs/
019509686X.html, $35.00 (paper).

It is not easy to incorporate good mathematical
figures in mathematical exposition—which is to
say that the revolution in mathematical typesetting
brought about by Donald Knuth’s invention of TEX
has not yet been matched by one in mathematical
illustration. Curiously, at the same time Knuth
gave us TEX, he also gave us the graphics language
METAFONT, but this has never enjoyed anywhere
near the popularity of TEX itself.

There are many reasons why mathematical
illustration is difficult. One’s first impression is
probably that the main difficulties are simply tech-
nical and that just around the corner will appear
the perfect software tool. It is certainly true that
in spite of the power of modern desktop com-
puters, the technical tools available currently are
either hard to use or of low quality, at least for
mathematical purposes. But I would argue that
the main difficulties are intrinsic to the problem—
that mathematical illustration is a skill requiring
practice and experimentation if not natural talent.
It may be that the awkwardness of the available
tools has established an unnecessarily high threshold
at which one is forced to begin, but I have trouble
imagining that the task will ever be trivial. If one
asks, for example, why the success of TEX has not
been accompanied by success for METAFONT, then
one possible answer is that typesetting (in spite of
appearances!) is essentially a one-dimensional world
where the number of choices is inherently limited.

There are roughly two separate phases to the
technical difficulties of illustration: (1) producing

This review originally appeared in the Notices of the Ameri-
can Mathematical Society, 46:11 (December 1999), pp. 1402–
1406, and appears here by permission.

360 TUGboat, Volume 20 (1999), No. 4

the illustrations, and (2) including them in mathe-
matical papers written in TEX. The second step is
largely distinguished from the first in that it does
not involve the actual content of the illustrations.
The lowest level of technical difficulty encountered
in the second step is getting TEX to recognize the
existence of an illustration, say, by constructing a
box from it. Even this is occasionally frustrating,
since the techniques used depend on the computer
environment, and portability is not guaranteed. But
the second step also frequently involves manipu-
lating illustrations in various simple ways (scaling,
rotating, perhaps coloring) which do not depend
essentially on their content. Actually, the border
between production and display of graphics in TEX
is not so sharp as might first appear, as anyone who
has tried to construct complicated commutative dia-
grams knows from painful experience. The fuzziness
of the boundary is also shown by current practices of
font design. I like to think that one of the unsolvable
philosophical problems of modern times is how to
decide where text ends and graphics begin.

Both of the books under review are concerned
with what might be called the middle ground of
mathematical graphics. They describe in modest
depth a large number of ways to produce illustra-
tions, and include in addition a briefer discussion
of how to manipulate them once they are pro-
duced. Both limit themselves to techniques which
can be used in almost all computer environments
and without serious expense. Neither includes
anything whatsoever on the intellectual process of
making illustrations; neither discusses large com-
mercial programs which one might wish to use to
produce one’s illustrations; and neither discusses
seriously the details of page make-up that might
lead one to abandon pure TEX and take up one of
the commercial programs such as that used by the
AMS, for example, to produce the final version of
the Notices. Both books do, however, touch lightly
on the question of how to produce mathematical
graphics for display on the Internet, and both books
also devote a fair amount of effort to explaining some
aspects of font handling in TEX.

In this review I shall first discuss how the books
handle what I call the second step of mathematical
illustration—the incorporation of graphics already
produced. I will then move on to the first step—
that of producing mathematical illustrations—and
talk about some options not covered in either book.
Because the review weaves together discussion of
both books, I have provided separate descriptions
of the contents of each book in the last section

of the review, together with some closing remarks
comparing the two books.

Manipulating graphics

Once illustrations have been produced, it ought to
be a mechanical process to incorporate them in a
mathematical paper. This is essentially the case, but
the difference between essence and reality can often
be exasperating. Even here difficulties which appear
at first merely technical are occasionally a matter of
something deeper, such as questions of how figures
are to be placed exactly where one wants them.

Hoenig’s book begins with a somewhat discur-
sive introduction to LATEX and other flavors of TEX.
It does not attempt to give details of how to use TEX,
but contents itself with an interesting survey which
does a fairly good job of placing TEX in perspective.
The book by Goossens et al. does nothing like this,
but after all, the same authors have covered this
territory already in the authoritative manual The
LATEX Companion. Well, not quite, because in
this volume as well as the earlier one, Goossens
et al. do indeed restrict their attention to LATEX.
This is probably a blessing for the large number
who use only LATEX, but their book is therefore
of limited use to the more technically sophisticated
readers who would otherwise be attracted to it. The
restriction to LATEX is especially frustrating since
almost all of the advice they give can be paralleled
in any flavor of TEX. However, figuring out the
necessary adjustments in a non-LATEX environment
might take a great deal of time. Those who do
restrict themselves to LATEX will be able to use
the LATEX graphicx package, which contains the
convenient macro \includegraphics. This handles
easily a very wide variety of input, and handles
well the problems of scaling and rotation one might
encounter. Hoenig devotes a few pages to the
LATEX graphics bundle, but Goossens et al. spend a
whole chapter on it, and do a more thorough job.
Here, too, my impression is that this package is
unnecessarily tied to LATEX1 and that it would not
have been a difficult task for its developers to have
made it available outside the LATEX environment.

In discussing the incorporation of graphics al-
ready produced, both books go on to lengthy dis-
cussions of font handling and to some comparison
of the technical tools necessary for turning graphics
into TEX boxes. Fonts make up, of course, one of the
principal no-man’s lands between graphics and text.
Both books do a reasonably good job of explaining,

1 Editor’s note: This misunderstanding is cleared up in
the Afterword.

TUGboat, Volume 20 (1999), No. 4 361

for example, how to use PostScript fonts instead of
the bit-mapped fonts that are often used currently
by default in TEX. Hoenig spends more than 200
pages dealing with fonts, including a useful survey
of the role of METAFONT in TEX’s fonts, and his is
one of the more interesting and valuable treatments
currently available. Goossens et al. spend much less
space on the topic, but perhaps what they say will
be enough for most users of LATEX. Incidentally, font
problems become more important when one takes up
serious graphics work, because good mathematics
illustration will not avoid labels and other textual
inclusions, and it is not usually trivial to get text
and figures to match well.

The problems of embedding a given graphic in a
given TEX file are not always hard, but at times they
can be formidable. This is largely because there is
a wide variety in the kind of graphics file one wants
to embed. Both books do well at explaining how
to deal with the problem, given the assumptions of
the authors. As I have already said, Goossens et
al. explain primarily the graphicx package available
with LATEX. Like many similar packages, it probably
does not deal with all possibilities, but it does pretty
well at hiding unnecessary complexities in those sit-
uations where it does work. In particular, it makes
available a more or less homogeneous interface to
the low-level programs such as dvips which it calls
on to actually include graphics. The book is slightly
frustrating here because they really do not tell one
what to do if one does not want to use the graphicx
package. Hoenig has the virtue of dealing with all
kinds of TEX, but does not really say much here
except about the package dvips. This is a terrific
program written and maintained by Tom Rokicki,
once a student of Knuth’s. In my experience it
works best in a UNIX environment, where it can be
incorporated easily into a make configuration, but
even in other environments it often offers unique
capabilities. At any rate, anyone incorporating com-
plicated graphics in a paper should realize right from
the start that publishers may have trouble dealing
with them unless they are rendered into portable
PostScript. There are pitfalls here—packages such
as Mathematica are capable of producing stand-
alone PostScript output, but it may take a little
care to get it, since these packages can also produce
semi-complete files which call on a special PostScript
library that may be unavailable to a publisher.
It is best to check portability and completeness
by running pictures through a standard PostScript
interpreter.

Neither of the books under review eliminates
entirely the technical difficulties of incorporating

graphics, but given the intrinsic complexity of the
environment, and given their announced assump-
tions, they do pretty well. Each of them also
includes a few technical gems. I cannot resist
mentioning in some detail the one that I find most
useful, although it certainly might be considered
unduly arcane by many. A common problem these
days, dealt with briefly by both books, is that of
rendering PostScript pictures into bitmap images
(usually .gif files) for embedding into Web pages.
There are certainly several commercial packages
that do this well, if expensively. In the low cost
domain I inhabit, the standard procedure is to use
the workhorse program ghostscript (maintained
by Peter Deutsch and Aladdin) to convert .ps to
a simple but verbose bitmap format, from which
another suite of programs of various kinds can pro-
duce the .gif. The main problem is that the initial
conversion normally takes up an enormous amount
of computer memory, because by default it works on
a whole 8.5′′ × 11′′ page even if the image is quite
small. I suppose I should have thought of it myself,
but I was pleased to read on p. 458 of Goossens
et al. how to insert a PostScript setpagedevice
command into the .ps file like this

<< /PageSize [100 100] >> setpagedevice

in order to shrink the size of the area converted (and
hence stop my computer from spilling out petulant
error messages about running out of memory).

Producing graphics

In contrast to the technical problems mentioned
above, producing the illustration itself is, I believe,
an intrinsically difficult process, even if one dis-
counts the higher intellectual activity required to
get the picture to show what one wants it to. It
does not, perhaps, have to be as difficult as it now
often seems.

Here is a rough list of the options available to a
mathematician who wants to produce mathematical
illustrations:

(1) Commercial drawing program such as
Adobe Illustrator or Corel Draw. Among these,
the most suitable will be those producing vector
graphics, which are uniformly scalable, rather than
bit maps which show obvious defects when resized.
In my experience, these programs are not usually
suitable for mathematics illustrations since one of-
ten wants to exhibit a complicated structure they
cannot easily deal with. There is one extremely
important role which these programs can play in
mathematical graphics, however. The most notori-
ous problem one commonly confronts in this domain

362 TUGboat, Volume 20 (1999), No. 4

is that of embedding mathematical text in pictures.
Of course TEX is the only serious candidate for
producing the text itself, but how does one then
get the text into pictures? It is not difficult to
use TEX and dvips, say, to produce what is called
an encapsulated PostScript (EPS) file containing
just a single label. Nearly all commercial graphics
programs then allow one to import the EPS file into
almost any figure, using a graphical interface for
correct placement. This is certainly in many ways
the most convenient solution to the problem. It
would be great if one of the free PostScript viewing
programs, such as ghostview, allowed one to do
this, but as far as I know none do yet. A recent
release of Java includes a PostScript interpreter as
a demonstration, and it ought not be too difficult a
task to extend it to an EPS-importing tool.

(2) CAD (computer-aided design) programs de-
veloped primarily for engineering and architectural
work. These often rely internally on a true program-
ming language which can give pictures the required
structure. However, they include a lot of capability
which a mathematician will probably never use, and
they are very expensive. It probably would not
occur to most mathematicians to use one of these,
but at least one person I know who does great
graphics work relies almost entirely on AutoCAD.
Their 3-dimensional capability is pretty good.

(3) Mathematical software packages such as
Mathematica, Maple, Matlab. They cost real
money, but they can be used for a variety of purposes
in addition to illustration. My major criticism here
is that they are not quite flexible enough to produce
highest quality pictures in all circumstances, but
after all this is an aesthetic judgment. They can
get one a long way towards great pictures, but if
anyone has to resort to serious programming in one
of these to draw pictures he or she would probably
be better off doing something else.

(4) Real graphics programming. For this, one
might use some of the extensive graphics packages
in C or Java, and then write output in PostScript.
One might even program directly in PostScript,
although it is slow and severely limited in floating
point accuracy. The option of using a production
programming language seems rarely to be seriously
considered by mathematicians. Of course program-
ming is intrinsically difficult, but my own belief is
that the difficulty of programming is not greater
than the difficulties of designing good mathematical
graphics in the first place and that the quality of
output is almost always commensurate with the
work put into it. One other possibility is the
graphics language METAFONT, which both books

under review cover in some detail. I have already
mentioned that METAFONT was designed by Donald
Knuth to accompany TEX, and its use by Knuth in
font design played a crucial role in TEX’s success.
For this reason alone, perhaps, it should occupy at
least a small part of the heart and mind of every
TEX user. In both these books some very elegant
pictures produced by METAFONT are exhibited.
However, I would not advise someone who dislikes
programming to take it up, since it is really a rather
complicated language; nor would I advise someone
who likes programming to take it up, since I think
it would be far more fruitful to take up C or Java
or PostScript. Nonetheless, anyone who uses TEX
extensively will probably find it useful to have at
least a rough idea of what METAFONT is like, and
each of these books offers a brief chapter on the
topic. Both books also discuss PostScript, but more
as an adjunct to printing rather than a feasible way
to produce pictures in the first place. They share
also an apparent aversion to ghostscript, a freely
available PostScript interpreter which I have found
to be convenient and even invaluable.

(5) Several packages enabling one to do graphics
more or less from within TEX. Both books cover
a number of these. They generally have one great
virtue pretty much missing from all of the options
(1)–(4), which is that they enable one to include
TEX text inside the pictures they produce, and often
without a lot of fuss. In my opinion all but one of
the packages discussed in these books suffer from
extremely low versatility and quality, however. The
exception is the PSTricks package developed by
Timothy van Zandt and Denis Girou, which comes
with most free TEX distributions. This is essentially
a TEX interface to PostScript. If explored in depth
it can do nearly anything that basic PostScript
can, although I myself find the basic PostScript
environment more pleasant. The great advantage of
PSTricks is that it includes a large library of built-
in routines that can produce spectacular effects. It
also deals better than most with the problem of
embedding mathematical text in figures.

One unfortunate but unavoidable fact is that
no single tool does all tasks. It is not clear to me
that one single tool ever will.

Summary

These two books have much in common, but they
have their differences, too. It might make a compar-
ison easier if I summarize the contents of each.

The book by Goossens et al. opens with a
chapter summarizing how to use graphics in LATEX.
Chapter 2 describes the package of tools, such as

TUGboat, Volume 20 (1999), No. 4 363

graphics and graphicx, that are bundled with
LATEX. Chapter 3 describes METAFONT and a de-
rivative program called METAPOST, a METAFONT-
like interface to PostScript. Chapter 4 is concerned
with PSTricks. Chapter 5 describes the package
Xy-pic, which is a simple graphics language entirely
embedded in TEX itself. Chapters 6–8 describe
packages adapted to special areas such as chemistry,
music and games. Chapter 9 deals with the simple
use of color in both drawings and text. Chapter
10 is concerned with how to use PostScript fonts,
and Chapter 11 is a brief survey of other aspects of
PostScript.

The book by Hoenig opens with a general
description of TEX and LATEX. Chapter 2 tells
how to obtain packages from the Internet. Chapter
3 is about METAFONT, and Chapter 4 describes
the special features of LATEX, as opposed to other
flavors of TEX. Chapter 5 covers the relations
between TEX and other commonly used computer
tools such as text editors and extensions of TEX
that allow hyperlinks. Chapters 6–10 deal with
fonts. Hoenig’s treatment of graphics, with which
the second half of the book is concerned, begins
with a general discussion in Chapter 11. Chapter
12 discusses TEX-based graphics tools, Chapter 13
covers METAFONT and METAPOST, and Chapter
14 deals with PSTricks. (Thus Hoenig’s Chapters
11–14 overlap closely with Chapters 1–4 of Goossens
et al.) The final chapter is about a package mfpic,
which is a TEX interface to METAFONT.

It will be apparent from this outline that the
books overlap quite a bit, that Hoenig addresses
a wider range of questions than Goossens et al.,
and that Goossens et al. are more specifically con-
cerned with graphics questions. Given that they are
addressing a somewhat narrow range of problems,
both of the books under review do a fairly good
job of explaining relatively simple solutions to the
problems they do address. For those who use LATEX
exclusively, and are not interested in large-scale
graphics production and font management, the book
by Goossens et al. will be enough for most purposes.
Hoenig’s book is a more enjoyable read, and suggests
more distant journeys. The book by Hoenig, it
seems to me, also provides more examples of figures
useful to mathematicians.

Some other remarks: (1) In both books the
figures of highest quality and interest were generally
produced by PSTricks. The value of this package
is perhaps not as clear as it would be if the books
were to spend less time on less capable programs.
(2) Presumably because it works only in a UNIX

environment, neither book covers xfig (although

Goossens et al. have a misleading reference to it,
implying it is for some reason suitable only for
computer scientists). (3) The book by Goossens
et al. has not one but three separate indices. This
eccentric and interesting organization is useful for
some purposes, but none of the three qualifies as a
traditional subject index, and this is occasionally
annoying. (4) Both books lamentably seem to
accept and encourage the current and widespread
prejudice against doing serious programming in or-
der to produce illustrations, but this is undoubtedly
realistic in the current mathematical climate.

One final remark is that much of the most
technical content of these books would be convenient
to have in one public source on the Internet. This is
especially true since this sort of information changes
rather rapidly. For example, although Hoenig refers
briefly to the CM fonts in PostScript form made
available by Blue Sky Research, his reference is out
of date, and Goossens et al. do not refer at all to
them. This sort of thing is, of course, inevitable
given the practices of traditional publishing.

References

The programs dvips and PSTricks are available at
any of the CTAN archives. Some good sources of
documentation are

http://www.tug.org/dvipsk/
http://www.tug.org/applications/PSTricks/

index.html
http://www.radicaleye.com/dvips.html

PostScript versions of mathematics fonts are
indispensable for any serious integration of math-
ematical graphics and text. The Blue Sky fonts and
a few others are available now from the AMS at
http://www.ams.org/index/tex/

type1-cm-fonts.html

One source of useful technical information on
TEX in general is the journal of the TEX Users
Group, TUGboat. Information about it (and about
TEX in general), including how to access some
articles on line, can be found at

http://www.tug.org

There are many sources for the programming
graphics language PostScript on the Internet. A
huge list can be found at
http://www.geocities.com/SiliconValley/

5682/postscript.html#OTHER

One reference of interest to mathematicians
might be the text I have been using for several
years to teach an integrated course on geometry and
programming. This text is available at

364 TUGboat, Volume 20 (1999), No. 4

http://sunsite.ubc.ca/DigitalMathArchive/
Graphics/text/www/index.html

An extensive account of what Mathematica
can do with graphics, which is of interest even if
one does not use Mathematica, is contained in the
book Mathematica Graphics, Tom Wickham-Jones,
Springer-Verlag, 1994.

For some of us, one of the most striking con-
tributions of Donald Knuth is the observation that
typography is of mathematical interest, in the sense
that solving difficult technical problems in typogra-
phy requires mathematical methods. The closest ap-
proximation to Knuth’s style in the field of computer
graphics is perhaps the column Jim Blinn’s Corner
published regularly in the IEEE journal Computer
Graphics and Applications. Several of these columns
have been collected together in A Trip Down the
Graphics Pipeline (1996) and Dirty Pixels (1998),
both written by Jim Blinn and published by Morgan
Kauffmann. Blinn’s home page is at

http://research.microsoft.com/~blinn/
default.htm

Afterword

Note to the reissue in TUGboat:
Since the original publication of this review

in the American Mathematical Society Notices, it
has been called to my attention that although both
books here under review indicate strongly that the
graphicx package is tied to LATEX, this is not in fact
the case. A version for use with plain TEX should
be available at any of the CTAN archives.

It has also been called to my attention that I
might have mentioned the package psfrag, which
helps embed TEX labels in PostScript figures. It
is not in my view a perfect program, but it is
nonetheless impressive. The original version was
written, apparently, in perl, but the current version
has been written in TEX itself. As Hoenig says
of another program in his book, in this program
you can see TEX do things it may never have been
intended to do (although who of us can presume
to read the mind of Don Knuth?). Reading the
source for psfrag might bring a shudder to any
programmer who values readability and flexibility
highly, but of course it trades these virtues for
another—namely, portability.

One of the referees of the original article
claimed that my advice to use ‘raw’ PostScript for
drawing mathematical pictures was in some way a
betrayal of the highest standards of mathematical
elegance. I would like to say with even more
emphasis here that in my view good mathematical

graphics requires an input of mathematical con-
cepts. Programming directly in PostScript, if a
reasonable library is at hand, suits admirably, and
can without doubt produce the best possible output.
I have used it for this purpose for several years, and
have managed even to teach my techniques over the
years to hundreds of mathematics undergraduates.
Almost everyone who has tried it has come away
quite pleased.

Finally, the last line of the original review has
been misinterpreted as saying that my home page
is at microsoft.com. Nothing is further from the
truth, and that line has been changed in this version.

� Bill Casselman
Mathematics Department
University of British Columbia
Vancouver, Canada V6T 1Y4
cass@math.ubc.ca

Book review: Digital Typography

Peter Flynn

Donald Knuth, Digital Typography. CSLI Publica-
tions, Stanford, CA, 1998, 1-575586-010-4.

Over two decades of METAFONT, TEX, and LATEX
have left the world with a wealth of material about
to the digital nature of type, typography, type-
setting, and type design related to these systems.
However, although the standard manuals [1, 2, 3]

This illustration appears on page 1 of Digital Typography,
and is used here by permission. The file contains this note:
“Fake woodcut I picked up somewhere in early 80s. If
anybody can identify the source, I’ll gladly give credit. . .

-- Don Knuth

TUGboat, Volume 20 (1999), No. 4 365

mention some of the topics where they are imme-
diately relevant, and over half of them have been
printed in TUGboat at some stage, a lot of the
material is not part of the actual programs or
their documentation. Instead, it forms part of the
background or history of TEX and friends: some of it
is transient, being posted to newsgroups or mailing
lists; some is anecdotal; and some has probably even
reached the status of myth.

I am therefore particularly pleased to be able
to review this book by Knuth himself, which not
only describes the development of METAFONT and
TEX but sets out many of the fundamental principles
of digital type design and typography, and explains
those aspects of the theory and practice which
underpin the programs and affect how they get used.

The book is arranged in 34 chapters, each being
an article or note on a specific topic. The subjects
covered range wide over the field, from the internal
details of the algorithms for breaking paragraphs
into lines to a simple way to do diagonal fractions
for weights and measures in cooking. Along the way
we are treated to dissertations on the design of the
letter S; the origins of the Euler, Concrete, and Punk
fonts; typesetting tricks like flowing text around an
image; the use of fonts in Indian script and in right-
to-left languages; digital half-tones; the real origins
of the first drafts of TEX; and Knuth’s views on the
past and future of his creations, taken from Q&A
sessions with users (see the Table of Contents on
page 365).

The old Army phrase, ‘on parade, on parade;
off parade, off parade’, can just as well be applied to
mathematicians and computer scientists: this book
is Knuth off-duty. The formal papers and articles
are mixed with teaching notes and recipes, diary
entries and interviews. His lucid, fluent, and exact
prose makes it a pleasure to read, and the occasional
diversions give us an insight into some of the byways
Knuth explored on his journeys from drafts and
early ideas to finished programs and fonts. Along
with the æsthetics there is some programming (I had
to dust off what Pascal I once knew!), and of course
some mathematics, so designers and programmers
alike will find plenty to read—as will every user.
Much of it is not tied to TEX, and the developers
of less competent systems would do well to read the
book to see where they are going wrong.

The first two chapters deal with a little typo-
graphic history and the demands that mathematics
places on typography (the original reason for TEX’s
existence). Chapters three and four explain in great
detail how paragraph formatting works: not line by
line but by treating the paragraph as a whole. In
chapters five to nine we have a series of useful macros
(in plain TEX; but LATEX equivalents exist in almost

every case) covering a variety of small formatting
needs. Chapters 10 and 11 handle some internal
details of TEX and WEB.

From chapter 12 to chapter 20 we are deep
in fontland, on letter design, the meta-ness of
METAFONT and the lessons it teaches, and the
design and use of math fonts. Chapters 21–23 may
come as something of a surprise: half-tones and the
digitization of angles are unusual topics in books on
typography, and yet they are very welcome because
they explain clearly the problems of rasterization:
fitting the dots when the dots won’t sit in a line.

The historical chapters 24–26 contain probably
the least-known material: Knuth opens his diary on
the days when he was designing and nurturing TEX.
As Tom Lehrer says, some of you may have had
occasion to run into mathematicians, and to wonder
therefore how they got that way [4]. . . the labor of
love expressed in these chapters may go some way
towards explaining it!

Chapter 27 contains another small diversion:
the bitmaps for the canonical icons for TEX and
friends. Chapter 28 explains how Knuth got from
computing into typesetting. From chapter 29 to 33
we find the future: in a series of question-and-answer
sessions at conferences, Knuth explains his views
on how things happened and where they go from
here. Finally, he begins the process of winding down
on TEX, as the number of new errors discovered
asymptotes to zero.

I have found this book a wonderful source of
both information and knowledge. Whether you’re
new to type or you’ve been using it for 20 years or
more, there’s something here you didn’t know. Go
and buy it now.

Here is the table of contents:
1. Digital Typography
2. Mathematical Typography
3. Breaking Paragraphs Into Lines
4. Mixing Right-to-Left Texts with Left-to-Right

Texts
5. Recipes and Fractions
6. The TEX Logo in Various Fonts
7. Printing Out Selected Pages
8. Macros for Jill
9. Problem for a Saturday Morning
10. Exercises for TEX: The Program
11. Mini-Indexes for Literate Programs
12. Virtual Fonts: More Fun for Grand Wizards
13. The Letter S
14. My First Experience with Indian Scripts
15. The Concept of a Meta-Font
16. Lessons Learned from METAFONT

366 TUGboat, Volume 20 (1999), No. 4

17. AMS Euler—A New Typeface for Mathematics
18. Typesetting Concrete Mathematics
19. A Course on METAFONT Programming
20. A Punk Meta-Font
21. Fonts for Digital Halftones
22. Digital Halftones by Dot Diffusion
23. A Note on Digital Angles
24. TEXDR.AFT
25. TEX.ONE
26. TEX Incunabula
27. Icons for TEX and METAFONT

28. Computers and Typesetting
29. The New Versions of TEX and METAFONT

30. The Future of TEX and METAFONT

31. Questions and Answers, I
32. Questions and Answers, II
33. Questions and Answers, III
34. The Final Errors of TEX

References

[1] Donald E. Knuth. The METAFONTbook.
Addison-Wesley, Reading, MA, 1986.

[2] Donald E. Knuth. The TEXbook. Addison-
Wesley, Reading, MA, 2nd edition, 1986.

[3] Leslie Lamport. LATEX, a document preparation
system. Addison-Wesley, Reading, MA, 2nd
edition, 1994.

[4] Tom Lehrer. Lobachevsky. In Tom Lehrer
Revisited. Reprise Warner, Burbank, CA, 1959.

� Peter Flynn
Computer Centre, University

College, Cork, Ireland
pflynn@imbolc.ucc.ie

http://imbolc.ucc.ie/~pflynn

