264

Graphics

BTEX, dvips, EPS and the web ...
Sebastian Rahtz

Abstract

Browsers of TEX question fora like comp.text.tex
will often be asked what are the issues surrounding
Encapsulated PostScript, and how one goes about
making EPS files from KTEX output, and maybe
using them on the World Wide Web. This short
note offers some suggestions.

1 What and why is EPS?

EPS stands for Encapsulated PostScript; EPS files
are PostScript, but they conform to a minimum
standard of good behaviour. This is so they can
be included in other documents, possibly resized or
rotated. In practice EPS means not using certain
commands which have global effects (don’t worry,
this is quite rare), and inserting structured com-
ments (starting with %%) which tell other programs
something about the file. The PostScript Language
Reference Manual goes into great depth describing
what these comments can contain, but the minu-
mum that is necessary for practical purposes are:

TUGboat, Volume 17 (1996), No. 3

1. A first line starting %!'PS-Adobe; dwips, for
instance, puts ’%!PS-Adobe-2.0 EPSF-2.0 in
its output, meaning that it claims conformance
with version 2 of the EPS standard (we are now
at version 3);

2. A ‘BoundingBox’, like %%BoundingBox: 33
101 584 715 which tells applications how much
space on the page is occupied.

How do you turn PS files into EPS files? They
probably are already, if they come from a reputable
bit of software (avoid anything from Micro$oft) —
a good check is to see if there is a BoundingBox.

You will come across three types of problem
with files that look like EPS. Firstly, the Bounding-
Box may not be accurate; since this determines how
much space will be left in enclosing applications like
TgEX, it matters. Keith Reckdahl’s recent tutorial in
TUGboat goes into detail on this problem.

Secondly, your file may be serious EPS, and use
all the facilities of structured comments to specify
what sort of resources (fonts etc) it expects you to
supply when you deal with it. This is bad news if
you are in TEX world outside a Macintosh. Look
out for lines with words like ProcSetsNeeded.

Thirdly, your file may think it is EPS, but in
fact breaks the rules, and has weird PostScript in it.
The rescue technique is to read it with a forgiving
PostScript interpreter, and get a new version written
out. Three programs to try are:

1. Adobe Acrobat Distiller; this turns PostScript
files into PDF, and Acrobat Exchange can
then load them, and save them as ordinary
PostScript. Since it is written by Adobe, Dis-
tiller is an extremely powerful PostScript inter-
preter, and can cope with almost anything you
throw at it. It is not cheap, but worth having.

2. Recent versions of Adobe Illustrator share some
of the Acrobat code, and can read PostScript
files, as well as edit PDF files.

3. The free GhostScript is now a very mature and
sophisticated product. It understands all of
the current Level 2 PostScript, and can turn
it onto a wide variety of bitmap forms. Version
4 (released in June 1996) also performs many of
the functions of Distiller, and it already reads
PDF files and writes PostScript. Unfortunately,
its handling of PostScript text to PDF is at
present unfinished. However, you can still use
GhostScript to read your PostScript and write
it out again as a bitmap (eg TIFF).

TUGboat, Volume 17 (1996), No. 3

2 What about dvi to Encapsulated
PostScript?

Most TEX systems, free or commercial, supply a dvi
to PostScript driver; most of them write out more or
less acceptable Encapsulated PostScript, but three
are especially well-featured (in the author’s experi-
ence): the Macintosh Textures driver, Y&Y’s dvip-
sone for DOS and the free dvips. Since the latter is
available for all platforms, is well-supported, and is
probably the finest of its type,! we shall concentrate
on that.

If you want to produce re-useable PostScript
output from dvips (and this includes output destined
for Acrobat Distiller), the absolute priority is to use
outline fonts, not the PK fonts traditionally used by
TEX. You can either use traditional fonts (usually
commercial, like Adobe Times, but GhostScript now
comes with an excellent free set donated by URW)
or Computer Modern itself in PostScript Type 1
format. Either buy these from Y&Y for Windows
and Unix or Blue Sky for Macintosh, or use Basil
Malyshev’s BaKoMa set, of almost comparable qual-
ity.2

If you do not use outline fonts, and re-use
your output scaled up, you will not like the effect
of Figure 1 at all, compared to Figure 2. If you
want to turn your documents into PDF, Distiller
will produce vile results from PK fonts.

The second priority is to get the right bounding
box. Surprisingly many applications cheat by simply
making it the page size, regardless of whether the
whole area is used. dvips does this by default too,
but has a command-line option -E, which asks it
to try and calculate the actual extent used. Note
that EPS files are, by definition, only one page, so
you also have to use dvips options to select just one
page. There are two caveats when preparing the
input. Firstly, make sure you do not include a page
number (try \pagestyle{empty} in IATEX), or else
the bounding box will cover that too. Secondly,
dvips does not always work out the extent of text
correctly. For instance, if you wrote (why, I have no
idea):

Hello\raisebox{10pt} [Opt] [Opt]{Up therel}!

you would be asking KTEX to raise Up there off
the baseline, but to pretend that it has no effect on
the height calculation. dvips will believe this, and

! For several years, dvipsone has offered partial download-
ing of fonts, a very powerful feature, but this is now coming
into dvips; there are also flaws in dvips’ use of structured EPS
comments, and Textures is superior in this respect.

2 Windows-worshippers may prefer to get into the world
of TrueType fonts, which are available for Computer Modern
from Kinch Computer Company.

265

calculate a bounding box on the claimed height. If
you use complicated add-in packages like PSTricks,
which add in arbitrary PostScript code, you will also
end up in real trouble. In these cases you can either
adjust the BoundingBox by hand, or place invisible
marks in ATEX to make sure that dvips recognizes
the full extent.

A useful trick to remember if you think that
TEX knows what you want, but dvips does not, is
to make judicious use of color. Suppose you wanted
to use PSTricks to encircle a mathematical symbol,
you might write:

absurd \pscirclebox{\surd}

TEX leaves the right space, since the PSTricks
macros understand what is going on, but dvips is
told to draw the circle in raw PostScript, and the
bounding box calculation ignores that. The result
is that the limits are set just around the size of the
letters. If we wrote:

\framebox{absurd \pscirclebox{\surd}}

it would work correctly, because dvips would look
at the enclosing frame, not just the words. But you
end up with an unwanted box; so make it (in effect)
invisible by writing:
{\color{white}\fboxsep{Optl}/
\framebox{/,

{\color{black}absurd

\pscirclebox{\surd}}/

%
}
This creates a white frame around black text; ITEX
proceeds happily, and so does dvips, calculating the
right extents, but nothing shows on paper. Obvi-
ously, this only works in a monochrome environ-
ment.

3 FETEX to EPS to GIF to Web

Why do we do all this in practice? Often, these
days, because people want their R'TEX mathematical
output on the World Wide Web, and their only
recourse is to embed GIF images in their HTML.
The sophisticated latex2html program does all this
for you; its technique is worth understanding, as it
has general utility; the sequence of events is:

1. Place bits of ®TEX in an special file, one frag-
ment per page, and with no page numbers;

2. Run IATEX to generate a multi-page dvi file;

3. Use dvips’ -1 and -S options to generate one
self-contained output file per page;

4. Give each page to GhostScript, and ask it to
render them in pbm (Portable Bitmap) form;

266

i (

TUGboat, Volume 17 (1996), No. 3

0
0y —(®yasing| - &y —(Dpasing) - Ay |y + —(ady)| siny = —adyfsin g

0y g

Ja
1)

Figure 1: Bitmap EPS file, enlarged and distorted

0 0

0

~0y—(®,asing) — &y —(@pasing) — Ay |Bg + —(ady) | sinp = —adyf sin g

i 0y

da
)

Figure 2: Outline font EPS file, enlarged and distorted

5. Use the PBMplus/Netpbm utility pnmcrop to
trim away white space;

6. Use the ppmtogif utility to convert the result
to a GIF image.

Note that it does not use the -E option for dvips, but
relies on simply removing all white pixels until just
text is left. This has the advantage that it avoids
the problem we saw in the last section, but it has
three disadvantages:

1. The PBM utilities are primarily Unix tools, and
many people do not have access to them;

2. The cropping process is memory-intensive, slow
and eats temporary disk space;

3. The cropping forces everything to the baseline,
effectively. A character like em-dash (—) which
sits above the baseline, will be cropped above
and below, so that the placed GIF looks wrong.

The core of the problem is the use of GhostScript,
which always creates a page-sized bitmap, even if
there is only one word on the page. What we want
is for GhostScript to render just the portion of the
image inside the bounding box, if we do use the
-E flag for dvips. We can achieve this by giving
GhostScript a customized page size, which is the size
of the bounding box. Then we can insert some extra
PostScript code to move the image so that it starts
at the 0,0 coordinate (adjusting the bounding box
accordingly). GhostScript then displays or converts
the image just within the desired area, and no
cropping is needed.

The transformations of the bounding box can
be achieved using epsffit, which is part of An-
gus Duggan’s psutils collection (CTAN:support/

psutils); the page size change is most easily done
using a Level 2 PostScript operator setpagedevice.
Thus a PostScript file which starts:

%!PS-Adobe-2.0 EPSF-2.0
%/%BoundingBox: 135 528 284 668

needs to be transformed to something like:

%!PS-Adobe-2.0 EPSF-2.0

%%BoundingBox: O 0 149 140

<< /PageSize [149 140] >> setpagedevice
gsave -135 -528 translate

grestore

Here we have worked out the width and height of
the enclosing rectangle (149 x 140 units), moved
the origin down to 0,0 on the page, and set the
page size. PostScript purists will shudder at the
setpagedevice command, and point out that this
is probably illegal in Encapsulated PostScript, but
as long as we only use this file strictly in the
controlled environment of GhostScript, we are safe
enough. Figure 3 lists a simple Perl script which
performs the necessary changes to a PostScript file
for GhostScript to eat, without any need for epsffit®
Now that GhostScript is only rendering the
desired area, we can use its builtin bitmap output
facilities. The Unix or DOS command line:

gs -dNOPAUSE -q -r100 -sDEVICE=tiffg4 \
-sOutputFile=foo.tif foo.ps -c quit

31 am aware that it does not cope with an (atend)
bounding box. ..

TUGboat, Volume 17 (1996), No. 3 267

#!/usr/local/bin/perl
$bbneeded=1;
$bbpatt="[0-9\.\-1";
while (<>) {
if (/%/BoundingBox: (\s$bbpatt+)\s($bbpatt+)\s($bbpatt+)\s($bbpatt+)/)
{
if ($bbneeded) {
$width = $3 - $1;
$height = $4 - $2;
$xoffset = 0 - $1;
$yoffset = 0 - $2;
print "J%BoundingBox: O O $width $height\n";
print "<< /PageSize [$width $height] >> setpagedevice\n";
print "gsave $xoffset $yoffset translate\n";

$bbneeded=0;

}
}
else { print; }
}
print "grestore\n";
};

Figure 3: A Perl script to transform an EPS file for GhostScript

will generate a TIFF fax group 4 image (GhostScript
does not support GIF output directly, for legal
reasons) at 100dpi of just the imaged area of the
PostScript file foo.ps with no further ado. Ghost-
Script version 4 adds anti-aliasing facilities; using
the Netpbm tools under Unix, we can create a
variant GIF image, using the command line:

gs -r100 -dNOPAUSE -q -sOutputFile=- \

—-sDEVICE=pnm -dTextAlphaBits=4 \

-dGraphicsAlphaBits=4 foo.ps -c quit | \

ppmtogif -interlace \

-transparent \#ffffff > \

equation.gif
Figures 4 and 5 show the result of transformations
with and without anti-aliasing. There is one re-
maining problem — the World Wide Web browsers
can usually align images top, middle or bottom; but
what if we have an image of some characters with
descenders below the base line? Bottom alignment
of the images places the bottom of the descenders on
the baseline; top alignment is riduculous, and middle
alignment is not quite right either. The answer is
to use middle alignment, and make TEX lie to dvips
(and thence down the chain) about the extent of the
character; making its depth equal to its height, and
then middle aligning it in the Web browser, has the
desired effect. So how do we make TEX lie? Here is
my suggestion:

\newsavebox{\@Fragment}

\def\Fragment#1{/,
\savebox{\@Fragment}{#1}%
\@tempdima\ht\@Fragment
\@tempdimb\dp\@Fragment
\ifdim\@tempdima>\@tempdimb

\dp\@Fragment\@tempdima
\else
\ht\@Fragment\@tempdimb
\fi
\fboxsepOpt
\color{whitel}%
\fbox{’
{\color{black}’
\box\@Fragment}/
Y

I use the WTEX box framing command to ensure that
dvips thinks the depth is there, with the same color
trick as we saw earlier.

Unfortunately, there is a side effect —an HTML
browser loading the resulting GIF image mid-aligns
the image and sticks the ‘ballast’ white space into
the line below, making an unsightly gap (see Fig-
ure 6, where the Greek etas have a small descender).
With the current browser technology, there is little
than be done about this. In practice, we will have
to check first whether there is any descender; if so,
we use the mid-align technique, and accept the gap;

268 TUGboat, Volume 17 (1996), No. 3

3 . 3 . [3 1 . .
—Po— (P asin@) — &) — (Ppasia@) — A | g + —(aPp) | sio @ = —aPof sin @
dp 3 I da |

Figure 4: BWTgX — dvi —» EPS —» GIF

]] A .
g . . g . . . g
- To—— Tasing) - Ty —— iTeesing) - A | To + —ialpl | sin @ = -«Tof sin g
E"W .‘_;W | &ad _

Figure 5: BTEX — dvi -+ EPS — GIF, anti-aliased
£ Lq
By the use of iterative error correction as
before to obtain the relative errors nl and

N3, the estimated damping coefficients

become
Figure 6: Mid-aligned GIF image in Netscape

if there is not, we can make a simpler process and
use bottom alignment.

It is imperative, of course, that Web-making
readers do not take these examples as ‘recipes’,
without both a precise specification of the desired
Web page, or an understanding of some of the
basic image-processing techniques. The aim here
has simply been to show how relatively trivial and
efficient it is to create bitmap output from KTEX
and dvips using the free facilities of GhostScript.

o Sebastian Rahtz
Elsevier Science Ltd
The Boulevard
Langford Lane
Kidlington
Oxford
UK

s.rahtz@elsevier.co.uk

