Hyphenation in $T_E X - Quo Vadis?^*$

Petr Sojka Faculty of Informatics, Masaryk University Burešova 20, 60200 Brno Czech Republic Email: sojka@muni.cz

Pavel Ševeček Faculty of Informatics, Masaryk University Burešova 20, 60200 Brno Czech Republic Email: pavel@muni.cz

Abstract

Significant progress has been made in the hyphenation ability of T_EX since its first version in 1978. However, in practice, we still face problems in many languages such as Czech, German, Swedish etc. when trying to adopt local typesetting industry standards.

In this paper we discuss problems of hyphenation in multilingual documents in general, we show how we've made Czech and Slovak hyphenation patterns, and we describe our results achieved using the program PATGEN for hyphenation pattern generation. We show that hyphenation of compound words may be partially solved even within the scope of TEX82. We discuss possible enhancements of the process of hyphenation pattern generation and describe features that might be reasonable to think about to be incorporated in Ω or another successor to TEX82.

Motivation

"Go forth and make masterpieces of hyphenation patterns ..." (Haralambous, 1994)

Editors' and publishers' typographical requirements for camera-ready prepared documents are growing. To meet some of their requirements in T_EX , especially when typesetting in narrow columns, one needs perfect hyphenation patterns in order to find almost all permissible hyphenation points.

When making Czech hyphenation patterns and typesetting multilingual documents we encountered some problems with achieving quality hyphenation and decent-looking documents with T_EX . This work has led to our ideas about possible remedies and future extensions in a successor to T_EX .

Our paper consists of three parts. In the first part we try to summarize the developments that have been made on the issue since $T_{E}X$'s birth.

In the second, we describe our attempts to create Czech and Slovak hyphenation patterns and summarize hints and suggestions for PATGEN users.

In the third part we discuss possible improvements that might take place in a T_EX successor (Ω , ε -T_FX or New Typesetting System (\mathcal{NTS})).

The hyphenation story

Let's review the developments in hyphenation in T_EX that have been made so far.

English In T_EX78 a rule-driven algorithm for English was built-in by Liang and Knuth. Their algorithm found 40 % of the allowable hyphens, with about 1 % error (Liang, 1981). Although authors claimed that these results are "quite good", Liang continued working on the generalization of the idea of rules expressed by hyphenating and inhibiting patterns. In his dissertation (Liang, 1983) he describes a method, which is used in T_EX82, based on the generalization of the prefix, suffix and the vowel-consonant-consonant-vowel rules. He wrote (in WEB) the program PATGEN (Liang and Breitenlohner, 1991) to automate the process of pattern generation from a set of already hyphenated words.

^{*} Reprinted with corrections from EuroT_EX' 94 proceedings, Gdańsk, pp. 59–68 with permission.

He started with the 1966 edition of Webster's Pocket Dictionary that included hyphenated words and inflections (about 50 000 entries in total). In the early stages, testing the algorithm on a 115 000 word dictionary from the publisher, 10 000 errors in words not occurring in the pocket dictionary were found. "Most of these were specialized technical terms that we decided not to worry about, but a few hundred were embarrasing enough that we decided to add them to the word list." (Liang, 1983, p. 30). He reports the following figures: 89,3 % permissible hyphens found in the *input* word-list with 4447 patterns with 14 exceptions.

Liang's method is described by Knuth (1986b, Appendix H) and was later adopted in many programs such as troff (Emerson and Paulsell, 1987) and Lout, and in localizations of today's WYSI-WYG DTP systems such as QuarkXPress, Ventura, etc. Although specialized dictionaries such as Allen's (1990) by Oxford University Press separate possible word-division points into at least two categories (preferred and less recommended), we have not seen any program that incorporates the possibility of taking into account these classes of hyphenation points so far.

Those other languages

"... patterns are supposed to be prepared by experts who are paid well for their expertise." (Knuth, 1986b, p. 453, 8th printing)

The first version of T_EX82 allowed only one set of patterns to be loaded at a time. Thus it was not possible to typeset multilingual documents with correct hyphenation in all languages and this limitation was quite unsatisfactory. Already in 1985, two attempts to solve the problem were made:

- Multilingual TÊX: Extensions, most of which afterwards Knuth adopted in TEX 3.x were suggested and implemented by Ferguson (1985). A new primitive \language¹ was introduced for switching between several sets of \patterns and hyphenation exceptions. A new \charsubdef primitive is still used in today's 8-bit implementations of TEX. Full details are give by Ferguson (1988).
- $\mathbf{IS^{IT}EX}$: Barth and Nirschl (1985) presented an approach on achieving decent hyphenation in German texts under the name $S^{I}T_{E}X$, or in its interactive version under the name $\mathbf{IS^{I}T_{E}X}$. Their method, (available as a change file for UNIXT_EX from eiunix.tuwien.ac.at) has been used

in Germany for years and is being improved (Barth and Steiner, 1992; Barth, Steiner, and Herbeck, 1993). This approach has been proposed for inclusion in \mathcal{NTS} (NTS-L, 1992–).

 $S^{1}T_{E}X$ (IS¹T_EX for the interactive version) introduces a new primitive **\nebenpenalty** which allows differentiation between main (compound word boundaries) and secondary (word stem) hyphenation points.

A new notation for hyphenation patterns is introduced and a hyphenation algorithm for German is hardwired into the program. The tables for the algorithm, file sihyphen.tex (60K) are written manually and can be simply edited and enriched. However, no provision for the generation of these patterns from a word-list (such as the PATGEN program) is offered.

During the last 15 years almost every year there appeared a paper in TUGboat reporting new patterns for some language (see table 1). Another couple of hyphenation patterns, fonts and preprocessors are available in ScholarT_EX² (Haralambous, 1991).

Although Don Knuth introduced the new primitives \language and \setlanguage for switching between several sets of hyphenation patterns in T_EX 3.0, there are indications that not all of the related problems have been solved and further investigations are necessary (Fanton, 1991).

Proposals on how to customize T_FX for a new language were suggested by Partl (1990). New tools to simplify the generation of 8-bit (virtual) fonts were designed — fontinst (Jeffrey, 1993) and accents (Zlatuška, 1991). A macro package for simple language switching, babel (Braams, 1991a; Braams, 1991b; Braams, 1993), was produced to simplify typesetting of multilingual documents. An international version of the Makeindex program was written (Schrod, 1991). The DC fonts (Ferguson, 1990; Haralambous, 1992a; Haralambous, 1993a), designed to permit hyphenation in many languages, are now being widely distributed, forced by the new LATEX wave. Compliance with the suggestions of the working group TWGMLC³ (Haralambous, 1992a) could help too (naming conventions for hyphenation files, etc.). Multilingual document aspects of typesetting are being collected in the scope of LATEX3 project in (Gaulle, 1994), where a nice collection of language-related T_EX primitives can be found, together with definitions of the terminology used.

 $^{^1}$ A rather misleading name, as it deals with only one particular feature of a language — hyphenation — which feature is of only limited interest to linguists.

 $^{^2~{\}rm ScholarT}_{\rm E}{\rm X}$ is a registered trademark of Yannis Haralambous

 $^{^3\}ensuremath{\,\rm TE}\ensuremath{\rm Xnical}$ Working Group on Multiple Language Coordination

language	trie	ops	done by	# patt	size	author (& reference)
BG (Bulgarian)	688	56	hand	263	1672	Ognyan Tonev/90
CA (Catalan)	661	11	hand	826	6136	Goncal Badenes, Francina Turon/91
CY (Welsh)	8552	143	PATGEN	6728	43162	Yannis Haralambous (Haralambous, 1993b)
CZ_1 (Czech)	3676	90	hand	4479	25710	Ladislav Lhotka (1991)
CZ_2	5302	67	PATGEN	4196	23474	Pavel Ševeček (Sojka and Ševeček, 1994)
DE _{min} (German)	6099	170	PATGEN	4066	25660	Norbert Schwarz/88
DEmax	9980	255	PATGEN	7007	45720	Norbert Schwarz/88
DE(v3.1)	8375	207	PATGEN	5719	39251	Norbert Schwarz, Bernd Raichle/94
						(Schulze, 1984; Partl, 1988; Breitenlohner,
						1988; Obermiller, 1991; Kopka, 1991)
DK (Danish)	1815	60	PATGEN	1145	6411	Frank Jensen/92
EL (Mod. Greek)	1278	23	hand	1616	8786	Yannis Haralambous/92
EO (Esperanto)	4895	143	PATGEN	4118	23224	Derk Ederveen/93
ES (Spanish)	1106	29	hand	578	4609	Francesc Carmona/93
ET (Estonian)	2054	45	PATGEN	1267	7976	Enn Saar/92
FI (Finnish)	583	27	hand	232	1342	Kauko Saarinen/92, (Saarinen, 1988)
FR (French)	1634	86	comb.	917	30022	Jacques Désarménien (1984), Daniel Flipo,
						Bernard Gaulle et al./84–94
Ancient Greek			hand			Yannis Haralambous (Haralambous, 1992b)
HR (Croatian)	1471	46	hand	916	7250	Cvetana Krstev/93
HY (Armenian)						Yannis Haralambous (in ScholarT _E X)
IS (Icelandic)	5477	145	PATGEN	4187	29919	Jorgen Pind/87
IT (Italian)	1327	15	hand	729	4255	Salvatore Filippone/92 (Canzii, Genolini,
						and Lucarella, 1984)
IT (Italian)	529	37	hand	210	2571	Claudio Beccari/93 (Beccari, 1992)
Latin			hand			Yannis Haralambous (1992b)
Modern Latin			hand			Claudio Beccari (1992)
LT (Lithuanian)	2169	77	PATGEN	1546	9639	Vitautas Statulevicius & Yannis
						Haralambous/92
NL_1 (Dutch)	7824	124	PATGEN	6105	37997	CELEX/89
NL_2	10338	187	PATGEN	7928	50969	CELEX/89
NL_3	520	24	hand	326	1732	Peter Vanroose
NO (Norwegian)	3669	220	PATGEN	2371	15589	Ivar Aavatsmark/92
PL (Polish)	4954	194	hand	4053	28907	Hanna Kołodziejska (1987, 1988)
PT (Portuguese)	374	10	hand	126	534	Pedro J. de Rezende (1987)
RU (Russian)	4599	92	hand	4121	29272	Dimitri Vulis (Vulis, 1989; Malyshev,
						Samarin, and Vulis, 1991a; Malyshev,
						Samarin, and Vulis, 1991b; Samarin and
						Urvantsev, 1991)
SK (Slovak)	3600	248	hand	2569	22628	Jana Chlebíkova/92
SK	7606	78	PATGEN	6137	35623	Pavel Seveček (Sojka and Seveček, 1994)
SR (Serbian)	1475	40	hand	896	6890	Cvetana Krstev/89 (Krstev, 1991)
SV (Swedish)	5269	125	PATGEN	3733	23821	Jan Michael Rynning/91
TR (Turkish)	678	16	hand	1834	9580	Pierre A. MacKay (1988)
UK (UK English)	10995	224	PATGEN	8527	54769	Dominik Wujastyk/93
US (US English)	6075	181	PATGEN	4447	27302	Frank Liang/82 (Liang, 1983)
US	6661	229	PATGEN	4810	30141	G.D.C. Kuiken (1990)

Table 1: Hyphenation patterns for $\mathrm{T}_{\!E}\!X$ with <code>PATGEN</code> statistics for various languages

Exception logs "If any computer center decides to preload different exceptions from those in plain T_EX (i.e., in the file HYPHEN.TEX), the changed exceptions should not under any circumstances be put into HYPHEN.TEX or PLAIN.TEX. All local changes should go into a separate file, so that T_EX will still produce identical results on all machines. In fact, I recommend not preloading those changes, but rather assuming that individual users will have their own favorite collection of updates to the standard format files." (Knuth, 1983)

The exception log and corrections for US English hyphenation have been reported several times – (e.g. Thulin, 1987; Beeton, 1989; Kuiken, 1990; Beeton, 1992), as shown in table 2. These listings are published in accordance with DEK's wish (Knuth, 1983). Only words with *wrongly* placed hyphenation points are listed, not those where T_EX finds only a subset of possible breakpoints.

Table 2: Growing number of exceptions for hyphen.tex

$\# ext{ of }$	where
exceptions	reported
14	(Liang, 1983)
24	(Beeton, 1984, TUGboat 5, no. 1)
88	(Beeton, 1985, TUGboat 6, no. 3)
127	(Beeton, 1986, TUGboat 7, no. 3)
129	(Thulin, 1987, TUGboat 8, no. 1)
501	(Beeton, 1989, <i>TUGboat</i> 10, no. 3)
543	(Beeton, 1992, $TUGboat$ 13, no. 4)

This shows that significant care and effort is still needed and is being gradually spent on the checking of hyphenation points during proof-reading and that the standard US patterns are not sufficient to satisfy current needs. Additional sets of patterns (2 versions - ushyphen.add and ushyphen.max) have been generated by Kuiken (1990) to cover the exceptions by additional patterns and these add-on files are available on CTAN and other hosts, e.g., ftp.cs.umb.edu. But, after having added one of these files at the end of the \patterns command in hyphen.tex, in order to overcome huge exception lists that should be loaded with every document, one loses the compatibility between different installations and acts against Knuth's wishes.

The need to re-generate US English patterns

! TeX capacity exceeded, sorry [exception dictionary=307.] DEK

So, to follow Knuth's rules, every document should start with loading the exception file – for this, one has to increase T_EX82 's exception size (in words) from 307 to at least 607 (as is now usual in UNIXTEX, emTEX and other installations). However, this is barely sufficient for the current English exception file (remember one has to add words in all possible inflexions) but for flexive languages (such as Czech, where from one stem there are about 20 different suffices) it is unusable.

Maybe it is time to re-generate the patterns from a bigger (say, 200 000 entry) word-list once again from scratch?⁴ Imagine the day when you will know that T_EX will find 99.99% of hyphens contained in your copy of Webster, so you will not have to go through a list of exceptions and a couple of dictionaries to check hyphenation points in your document! For backward compatibility one has to save every document together with the patterns and exceptions used anyway.⁵

Making Czech and Slovak hyphenation patterns with PATGEN

"A program should do one thing, and do it well." Ken Thompson

The first Czech patterns were made in 1988 by Novák using PATGEN from a list of 170 000 word forms. Because of errors in his word-list, and only partially optimized PATGEN parameter settings, the patterns were good but not perfect.

The patterns weren't publicly available, so a second attempt was done by hand by Lhotka (1991) just as MacKay (1988) did for Turkish. Because of lots of exceptions to the 'rules', their usage was not quite comfortable either.

As Novák's list of words had been lately made public, we started compiling a bigger word-list from various sources using the old patterns for bootstrapping. We've learned a lot from the experience described by Rynning (1991) and Haralambous (1993b) and in a tutorial (Haralambous, 1994).

 $^{^4}$ Otherwise in 2050 there will have to be an extra issue of *TUGboat* devoted to the publication of exceptions to hyphen.tex.

⁵ A search on CTAN via quote site index command shows 5 files of *different* lengths with the name hyphen.tex. (And Knuth and Liang's hyphen.tex can be found there under four different names-hyphen.tex, ushyph1.tex, ushyphen.std, ushyphen.tex-which leads to the total confusion!)

Czech hyphenation rules Czech hyphenation rules are described in (Zdeněk Hlavsa et al, 1993, pp. 56–57) and in a special book (Haller, 1956) where a list of exceptions was published. Briefly, we have syllable hyphenation with 'etymological' exceptions. Hyphenation is preferred between a prefix and the stem, and on the boundary of compound words. Things become complicated when:

- 1. The word evolved in such a way that although historically it was built from a prefix plus the stem of another word, today it is perceived as a new word stem. As an example may serve the word ro-zu-mět – "to understand" (syllable division) against roz-u-mět (roz is the prefix and umět means "to know").
- 2. There is no agreement on word hyphenation e.g., the *current* rules for word sestra "sister" allow one to hyphenate se-stra, ses-tra and sest-ra.
- 3. Word stem hyphenation points change when a suffix is added e.g., hrad "castle" can't be hyphenated, but with a suffix could hra-du.
- Compound words e.g. tři-a-třiceti-letý "33 years old" are taken into account. Czech has a lot of compound words, but not to the extent that German has.
- 5. The hyphenation of a word depends on the semantics: nar-val and na-rval.

These rules make it hard to create patterns that describe all these exceptions and exceptions to exceptions. As we had handy a word-list with lists of allowable prefixes and suffixes, together with preliminary patterns to hyphenate word stems for bootstrapping, we decided to generate a hyphenated list of Czech words for PATGEN.

Stratified sampling

"A large body of information can be comprehended reasonably well by studying more or less random portions of the data. The technical term for this approach is stratified sampling." (Knuth, 1991, p. 3)

Czech is a very flexive language; on average 20–30 inflexions can be derived from one word stem by changing the suffix added and one can multiply it almost twice, as negation can be created from many words (adjectives, verbs) by prefixing ne. Thus from a 170 000 stem word-list about 5 000 000 inflexions may be generated. Generating patterns from such a list would be very impractical. Because the suffixes are often the same or similar, we generated a word-list by means of the following rules:

- 1. We add only every 7th (actually 17th worked as well) derived word form from the full list to the PATGEN input list, with exceptions that:
- 2. every stem must be accompanied by at least one derived form, and
- 3. every derived form with overlapping prefixes has to be present in the PATGEN input list as well, and
- only one word with prefixes ne (by which one can create negation to almost every word) and nej (by which one creates superlatives) is included, and
- 5. the hand-made list of exceptions from Haller (1956) (about 10 000 words) and other sources are always included.

With this procedure we have 372 562 Czech words to work with PATGEN. We used the same approach for Slovak. The results are in table 3.

Table 3: **PATGEN** statistics for the Czech and Slovak languages

$\# ext{ of }$	# of hyphenation points					
words	Correct Wrong Miss					
Czech						
372562	1019686	39	18086			
	(98.26%)	(0.01%)	(1.74%)			
	Slovak					
333139	1025450	34	15273			
	(98.53%)	(0.01%)	(1.47%)			

Samples of PATGEN statistics are presented in tables 4, 5 and 6. These tables show that by twiddling with PATGEN parameters one may generate various versions of patterns. Usually the size of patterns and % of bad hyphenations are the minimization criteria, but maximization of % of good (found) hyphenations and other strategies might be chosen.

Compound words

"Hints for hyphenation are most often needed at the word boundaries of compound words." (Saarinen, 1988, p. 191)

As an experiment we took our (rather huge) wordlist of Czech words in which there was marked hyphenation only on prefix and compound word boundaries.

level	length	param	% correct	% wrong	# patterns	size
1	2 - 3	$1 \ 2 \ 20$	96.95	14.97	+ 855	
2	3 - 4	$2\ 1\ 8$	94.33	0.47	+1706	
3	4 - 5	$1\ 4\ 7$	98.28	0.56	+1033	
4	5-6	$3\ 2\ 1$	98.22	0.01	+2028	32 kB

Table 4: Standard Czech hyphenation with Liang's parameters for English

Table 5: Standard Czech hyphenation with improved (size optimized) strategy (cf. table 3)

level	length	param	% correct	% wrong	# patterns	size
1	1 - 3	$1 \ 2 \ 20$	97.41	23.23	+ 605	
2	2 - 4	$2\ 1\ 8$	85.98	0.31	+ 904	
3	3 - 5	14 7	98.40	0.78	+1267	
4	4-6	$3\ 2\ 1$	98.26	0.01	+1665	23 kB

Table 6: Standard Czech hyphenation with improved (% of correct optimized) strategy

level	length	param	% correct	% wrong	# patterns	size
1	1 - 3	$1 \ 5 \ 1$	95.43	6.84	+2261	
2	1 - 3	$1 \ 5 \ 1$	95.84	1.17	+1051	
3	2 - 5	$1 \ 3 \ 1$	99.69	1.24	+3255	
4	2 - 5	$1 \ 3 \ 1$	99.63	0.09	+1672	40 kB

Table 7: Czech hyphenation of composed words with Liang's parameters but allowing 1-length patterns in level 1

level	length	param	% correct	% wrong	# patterns	size
1	1 - 3	$1 \ 2 \ 20$	72.97	14.32	+ 300	
2	2 - 4	$2\ 1\ 8$	69.32	3.09	+ 450	
3	3 - 5	$1\ 4\ 7$	84.09	4.02	+ 870	
4	4-6	$3\ 2\ 1$	82.61	0.33	+2625	25 kB

Table 8: Czech hyphenation of composed words with slightly modified parameters (% of correct slightly optimized)

level	length	param	% correct	% wrong	# patterns	size
1	1 - 3	$1 \ 2 \ 20$	72.97	14.32	+ 300	
2	2 - 4	$2\ 1\ 8$	69.32	3.09	+ 450	
3	3 - 5	$1\ 4\ 3$	90.82	4.24	+3014	
4	4-6	$3\ 2\ 1$	89.07	0.36	+2770	40 kB

Table 9: Czech hyphenation of composed words with other parameters (% of correct optimized, but % of wrong and size increased)

level	length	param	% correct	% wrong	# patterns	size
1	1 - 3	151	64.35	5.34	+1415	
2	2 - 4	$1 \ 5 \ 1$	67.10	1.88	+1261	
3	3 - 5	$1 \ 3 \ 1$	97.94	5.39	+8239	
4	4-6	$1 \ 3 \ 1$	97.91	1.14	+2882	84 kB

The PATGEN program was able to produce hyphenation patterns for this list successfully. The number of patterns was rather large, but feasible (25–84 kB, depending on parameters). From a 380 698 item word-list the patterns found 307 470 of the hyphenation points⁶ correctly, 5040 points were hyphenated wrongly (exceptions), and 4680 hyphenation points were missing.

To test the possibility of creating patterns for compound words in detail, we generated a word-list of more than 100 000 words with 101 687 hyphenation points marked. The list included both compound words and simple ones too.

The results of some of the runs are shown in tables 7, 8 and 9.

Some other numbers Just for fun we've tried patterns for different languages on our Czech PATGEN input word-list—see table 10. There are interesting speculations about these numbers—e.g., trying Slovak patterns on the Czech word-list, one finds more than 90% of hyphenation points. On the contrary, probably because of non-syllabic principles and different rules for pronunciation, UK English rules are totally different — only 19% of Czech words are hyphenated correctly by UK patterns. Surprisingly, Swedish, Finnish and Dutch (NE₃) patterns make fewer wrong hyphenations than the Czech old hyphenation patterns. The difference between Dutch patterns made by hand (NE_3) based on the syllabic principle) and those made by PATGEN (NE₁, NE₂) may by caused by the fact that general syllable hyphenation is relatively good for languages in which the hyphenation is based on syllabic principles. Having hyphenated word lists of different languages, it might be interesting to measure the 'syllabic principles of hyphenation' of different languages on an universal syllable hyphenation.

As hyphenation in most languages is based on syllabic principles, it is worth trying to create universal syllabic hyphenation and only learn the difference (exceptions) from this universal hyphenation. Let's try to summarize what we think should be done in the future.

Table 10: Patgen-like statistics for using various language patterns on Czech hyphenated word-list

Language	Correct	Wrong	Missed
CZ (Sev)	98.26~%	0.01~%	1.74~%
NE_3	57.38~%	4.11~%	42.62~%
SV	57.10~%	5.32~%	42.90~%
FI	52.67~%	5.40~%	47.32~%
CZ (Lho)	93.39~%	5.89~%	6.61~%
SK	90.77~%	7.28~%	9.23~%
US	31.84~%	9.58~%	68.16~%
IT	49.27~%	9.88~%	50.73~%
NO	51.61~%	11.32~%	48.39~%
\mathbf{FR}	59.07~%	11.54~%	40.93~%
NE_1	59.14~%	11.59~%	41.86~%
NE_2	$58.80\ \%$	11.99~%	41.20~%
UK	18.84~%	12.19~%	81.16~%
DE_{min}	58.62~%	12.50~%	41.38~%
DE_{max}	58.56~%	12.70~%	41.44~%
PL^*	69.00~%	12.96~%	31.00~%
PL	68.06~%	13.12~%	31.94~%
DE (v.3.1)	58.84~%	13.86~%	41.16~%
* with transformed	patterns-	-accented [letters sub-

stituted by non-accented ones

Future

"I hope T_EX82 will remain stable at least until I finish Volume 7 of The Art of Computer Programming." (Knuth, 1989, p. 625)

Possible extensions in a successor to $T_{\rm E}X$

"Good typography therefore is a silent art; not its presence but rather its absence is noticeable" (Mittelbach and Rowley, 1992b)

It seems feasible to incorporate either $S^{I}T_{E}X$ (Barth, Steiner, and Herbeck, 1993) changes or separate compound word hyphenation patterns in ε -T_FX.

These experiments, discussed above (in the section "Compound words") show that, even with the current T_EX , only doubling the patterns for a language with compounds might allow, e.g., switching between standard hyphenation in narrow columns and compound-word-only hyphenation in wide columns.

With a simple change in the program, one may achieve additional flexibility in hyphenation:

New registers \leftcompoundhyphenmin and \rightcompoundhyphenmin may be helpful for filtering unneeded hyphenation near compound word borders and \compoundwordhyphenpenalty might set a penalty (usually much lower than

⁶ Some of these points might be wrong, as the database we used is only preliminary. Due to our experience with the standard hyphenation list, after correction of errors (wrongly marked hyphenation points, typos) PATGEN can generalize *substantially* better and the size of the list of patterns is reduced significantly.

Another minor addition might be added too, e.g., ε -TEX: in the old version of MLTEX there was implemented a flag \dischyph indicating whether or not to hyphenate words with discretionaries (i.e. embedded hyphens) or not. As an example may serve the citation (for Author-Prepared Books, 1993) in this paper, where we had to insert discretionaries by hand in the compound word "Author-Prepared" to achieve the limits on underfull boxes set by the editor. With setting \dischyph=1 this wouldn't be necessary.

Pattern generalization Apart from PATGEN extensions according to character clustering, which are orthogonal, we are thinking of the following generalization. Currently, there are only 2 classes of inter-letter state: an odd or even number that carries information whether to hyphenate or not. The natural generalization would be to have nclasses. Inter-letter numbers in patterns would code these classes in such a way that number m between letters will mean that this position belongs to the class number $m \pmod{n}$ (when numbering classes from 0). The case n = 2 is the current situation, so \pattern[2] might mean the classical Liang patterns. Another class might be prefix boundary, compound word boundary or whatever else might possibly be useful for the hyphenation algorithm to be aware of in the word (discretionary being another possibility).

An application for English is straightforward too. Our approach will allow one to distingush "preferred" and "less recommended" classes of hyphenation points as published in Allen (1990).

In German, one may make other classes (and patterns), e.g. classes for different discretionary breaks.

Possible extensions in a successor to $T_{\! E\! } X$

"Please correct if you have a hyphenated word at the bottom of a right-hand page." (for Author-Prepared Books, 1993)

A possible direction was shown by Plaice (1993) and in Haralambous and Plaice (1994) and Plaice (1994). With suggested clustering of letters and enriched **PATGEN** (Liang and Breitenlohner, 1991) one could achieve context-dependent discretionaries and thus solve the $c-k \rightarrow k-k$ -like problems in German. Taylor (1992, p. 249) mentions a possible definition of \brokenpenalty = \ifrecto 500\else 200\fi. If the output routine could communicate with the parameter-breaking algorithm, word breaks crossing page boundaries could be eliminated.

Conclusions

"Therefore it still is not the right moment to manufacture TEX on a chip." (Knuth, 1989, p. 641)

In our survey we presented an overview on the topic of hyphenation in T_EX and our results based on experience with Czech and Slovak. We conclude that the current possibilities of T_EX are far from perfect and might be improved either in the scope of T_EX82 (creation of better hyphenation patterns for various languages by PATGEN), ε -T_EX (e.g. duplication of hyphenation mechanism for compound words), or Ω or \mathcal{NTS} (special capabilities for context-dependent discretionaries).

Acknowledgement

The presentation of this work has been made possible due to the support of Czech Grant Agency (grant Nr. 201/93/1269). We would like to thank our referee, Yannis Haralambous, Libor Škarvada and Jiří Zlatuška for comments and useful suggestions on how to improve this paper.

References

- Allen, R.E. The Oxford Spelling Dictionary, volume II of The Oxford Library of English Usage. Oxford University Press, 1990.
- AMS–Instructions for Author-Prepared Books. "AMS–Instructions for Author-Prepared Books". 1993.
- Barth, W. and H. Nirschl. "Implementierung eines Verfahrens für die Silbentrennung". Technical Report Bericht Nr. 26, Institut für Praktische Informatik, 1985.
- Barth, W. and H. Steiner. "Deutsche Silbentrennung für T_EX 3.1 (German hyphenation for T_EX 3.1)". *Die T_EXnische Komödie* (Heft 1), 1992. Journal of DANTE (Deutschsprachige Anwendervereinigung T_EX e.V.); Group of Germanspeaking T_EX Users.
- Barth, W., H. Steiner, and H. Herbeck. " $_{I}S^{I}T_{E}X$ Interaktive Silbentrennung für die deutsche Sprache unter $T_{E}X$ 3.14 und 3.141 unter UNIX (Interactive hyphenation for German and $T_{E}X$ 3.14 and 3.141 under UNIX)". electronic documentation of $_{I}S^{I}T_{E}X$ distributed from eiunix.tuwien. ac.at, 1993.

- Beccari, Claudio. "Computer Aided Hyphenation for Italian and Modern Latin". TUGboat 13(1), 23–33, 1992.
- Beeton, Barbara. "Hyphenation exception log". TUGboat 10(3), 336–341, 1989.
- Beeton, B. N. "Hyphenation exception log". TUGboat 5(1), 15, 1984.
- Beeton, B. N. "Hyphenation exception log". TUGboat 6(3), 121, 1985.
- Beeton, B. N. "Hyphenation exception log". TUGboat 7(3), 145–146, 1986.
- Beeton, B. N. "Hyphenation exception log". TUGboat 13(4), 1992.
- Braams, J. "Babel, a multilingual style-option system". Cahiers GUTenberg 10-11, 71–72, 1991a.
- Braams, Johannes. "Babel, a multilingual styleoption system for use with IATEX's standard document styles". *TUGboat* **12**(2), 291–301, 1991b.
- Braams, Johannes. "An update on the babel system". TUGboat 14(1), 60–62, 1993.
- Breitenlohner, Peter. "German T_EX, a next step". TUGboat 9(2), 183–185, 1988.
- Canzii, G., F. Genolini, and D. Lucarella. "Hyphenation of Italian words". *TUGboat* 5(1), 14, 1984.
- de Rezende, Pedro. "Portuguese hyphenation table for TFX". *TUGboat* 8(2), 102–102, 1987.
- Désarménien, Jacques. "How to run T_EX in a French environment: Hyphenation, fonts, typography". TUGboat 5(2), 91, 1984.
- DUDEN. Duden Band 1—Rechtschreibung der deutschen Sprache. Dudenverlag, 20., neu bearbeitete und erweiterte Auflage edition, 1991.
- Emerson, Sandra L. and K. Paulsell. troff Typesetting for UNIXTM Systems. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1987.
- Fanton, M. "T_EX : les limites du multilinguisme". Cahiers GUTenberg 10-11, 73-80, 1991.
- Ferguson, Michael J. "A multilingual TÊX". TUGboat 6(2), 57–58, 1985.
- Ferguson, Michael J. "T_EX is Multilingual". In Thiele (1988), pages 179–189.
- Ferguson, M. J. "Fontes latines européennes et T_EX 3.0". Cahiers GUTenberg 7, 29–32, 1990.
- Gaulle, Bernard. "Requirements in multilingual environments". in electronic form (version 1.02) on CTAN as file vt15d02.tex, 1994.
- Haller, Jiří Jak se dělí slova (How the words get hyphenated). SPN Praha, 1956.
- Haralambous, Y. "ScholarT_EX". Cahiers GUTenberg 10-11, 69–70, 1991.
- Haralambous, Yannis. "TEX Conventions Concerning Languages". TEX and TUG News 1(4), 3–10, 1992a.

- Haralambous, Yannis. "Hyphenation patterns for ancient Greek and Latin". TUGboat 13(4), 457– 469, 1992b.
- Haralambous, Yannis. "DC fonts—questions and answers". $T_{E}X$ and TUG News 2(1), 10–12, 1993a.
- Haralambous, Yannis. "Using PATGEN to Create Welsh Patterns". Submitted to TUGboat, 1993b.
- Haralambous, Yannis. "A small tutorial on the multilingual features of Patgen2". in electronic form, available from CTAN as info/patgen2. tutorial, 1994.
- Haralambous, Yannis and J. Plaice. "First applications of Ω: Adobe Poetica, Arabic, Greek, Khmer". TUGboat 15(3), 344–352, 1994.
- Jeffrey, Alan. "A PostScript font installation package written in T_EX". TUGboat 14(3), 285–292, 1993.
- Knuth, Donald. "A note on hyphenation". TUGboat 4(2), 64, 1983.
- Knuth, Donald E. The T_EXbook, volume A of Computers and Typesetting. Addison-Wesley, Reading, MA, USA, 1986b.
- Knuth, Donald E. T_EX: The Program, volume B of Computers and Typesetting. Addison-Wesley, Reading, MA, USA, 1986a.
- Knuth, Donald E. "The Errors of TEX". Technical Report STAN-CS-88-1223, Stanford University, Department of Computer Science, 1988.
- Knuth, D. E. "The Errors of T_EX". Software Practice and Experience 19(7), 607–681, 1989. This is an updated version of Knuth (1988).
- Knuth, Donald Ervin. 3:16 Bible texts illuminated. A-R Editions, Inc., 1991.
- Kołodziejska, Hanna. "Dzielenie wyrazów polskich w systemie T_EX". Technical Report 165, Sprawozdania Instytutu Informatyki Uniwersytetu Warszawskiego, 1987.
- Kołodziejska, Hanna. "Le traitement des textes polonais avec le logiciel T_EX". Cahiers GUTenberg (0), 3–10, 1988.
- Kopka, Helmut. *LATEX—Erweiterungsmöglichkeiten* mit einer Einfürung in METAFONT. Addison-Wesley Verlag, Bonn, Germany, second edition, 1991.
- Krstev, Cvetana. "Serbo-Croatian hyphenation: a T_EX point of view". TUGboat 12(2), 215–223, 1991.
- Kuiken, Gerard. "Additional Hyphenation Patterns". TUGboat 11(1), 24–25, 1990.
- Lhotka, Ladislav. "České dělení pro T_EX (Czech hyphenation for T_EX)". $C_{S}TUG$ bulletin (4), 8–9, 1991.

- Liang, Frank and P. Breitenlohner. "PATtern GENeration program for the T_EX82 hyphenator". Electronic documentation of PATGEN program version 2.0 from UNIXT_EX distribution at ftp. cs.umb.edu, 1991.
- Liang, Frank M. "TEX and hyphenation". TUGboat $\mathbf{2}(2),$ 19–20, 1981.
- Liang, Franklin Mark. "Word Hy-phen-a-tion by Com-pu-ter". Technical Report STAN-CS-83-977, Stanford University, 1983.
- MacKay, Pierre A. "Turkish hyphenations for TEX". $TUGboat \ \mathbf{9}(1), 12-14, 1988.$
- Malyshev, B., A. Samarin, and D. Vulis. "Russian T_EX". *Cahiers GUTenberg* **10-11**, 1–6, 1991a.
- Malyshev, Basil, A. Samarin, and D. Vulis. "Russian T_EX ". TUGboat 12(2), 212–214, 1991b.
- Mittelbach, Frank and C. Rowley. "The future of high quality typesetting: structure and design". In Zlatuška (1992), page 255.
- Mittelbach, Frank and C. Rowley. "The pursuit of quality — How can automated typesetting achieve the highest standards of craft typography?". In Proceedings of the International Conference on Electronic Publishing, Document Manipulation & Typography, Lausanne, Switzerland, 1992, edited by C. Vanoirbeek and G. Coray, pages 261–273, New York. Cambridge University Press, 1992b.
- NTS-L. "New Typesetting System discussion list". 1992-. This is an electronic list devoted to discussions about T_EX's successor. To subscribe, send a request with the text subscribe nts-l to listserv@vm.urz.uni-heidelberg.de.
- Obermiller, Walter. "T_EX in Germany". *TUGboat* **12**(2), 211–212, 1991.
- Partl, Hubert. "German T_EX". *TUGboat* **9**(1), 70–72, 1988.
- Partl, Hubert. "How to make T_EX and L^AT_EX international". In Man-Machine Interface in the Scientific Environment. Proceedings of the 8th European Summer School on Computing Techniques in Physics. Skalský Dvur, Czecholsovakia, 19–28 September 1989, edited by J. Nadrchal, volume 61 of Computer Physics Communications, pages 190–200, Amsterdam, The Netherlands. European Summer Schools on Computing Techniques in Physics, North-Holland Publishing Company; Elsevier Science Publishers B. V., 1990. Invited paper.
- Plaice, John. "Language-dependent ligatures". TUGboat 14(3), 271–274, 1993.
- Plaice, John. "Progress in the Omega project". TUGboat 15(3), 320–324, 1994.

- Rynning, Jan Michael. "Swedish Hyphenation for T_EX". Received in electronic form from author via email jmr@nada.kth.se, 1991.
- Saarinen, Kauko. "Experiences with T_EX in Finland". In Thiele (1988), pages 189–194.
- Samarin, A. and A. Urvantsev. "CyrTUG, le monde TEX en cyrillique". Cahiers GUTenberg 12, 71– 74, 1991.
- Schrod, Joachim. "An International Version of MakeIndex". Cahiers GUTenberg 10–11, 81–90, 1991.
- Schulze, Bernd. "German hyphenation and Umlauts in T_EX". TUGboat 5(2), 103, 1984.
- Sojka, Petr and P. Ševeček. "Hyphenation in T_EX Quo Vadis?". In Proceedings of the 9th European T_EX Conference, Gdańsk, 1994, edited by W. Bzyl and T. Przechlewski, pages 59–68. 1994.
- Taylor, Philip. "The Future of T_EX". In Zlatuška (1992), pages 235–254.
- Thiele, Christina, editor. Proceedings of the T_EX Users Group 9th Annual Meeting, Montréal, 1988, Providence, U.S.A. T_EX Users Group, 1988.
- Thulin, Anders. "More hyphenation exceptions". TUGboat 8(1), 76–76, 1987.
- Vulis, Dimitri. "Notes on Russian T_EX". TUGboat 10(3), 332–336, 1989.
- Zdeněk Hlavsa et al. *Pravidla českého pravopisu* (*The rules of the Czech spelling*). Academia Praha, 1993.
- Zlatuška, J. "Automatic generation of virtual fonts with accented letters for T_EX". Cahiers GUTenberg 10-11, 57–68, 1991.
- Zlatuška, Jiří editor. Proceedings of the 7th European T_EX Conference, Prague, 1992. Masarykova Universita Brno, 1992.