
TUGboat, Volume 16 (1995), No. 2 103

A Practical Introduction to SGML

Michel Goossens and Janne Saarela

Abstract

SGML, the Standard Generalized Markup Language,
deals with the structural markup of electronic
documents. It was made an international standard
by ISO in October 1986. SGML soon became
very popular thanks in particular to its enthusiastic
acceptance in the editing world, by large multi-
national companies, governmental organizations,
and, more recently, by the ubiquity of HTML,
HyperText Markup Language, the source language
of structured documents on WWW. This article
discusses the basic ideas of SGML and looks at a few
interesting tools. It should provide the reader with
a better understanding of the latest developments in
the field of electronic documents in general, and of
SGML/HTML in particular.

1 Why SGML?

Since the late eighties we have witnessed an
ever quickening transition from book publishing
exclusively on paper to various forms of electronic
media. This evolution is merely a reflection of the
fact that the computer and electronics have made
inroads into almost every facet of human activity.
In a world in which one has to deal with an ever-
increasing amount of data, support of the computer
is a particularly welcome alternative for the
preparation of telephone directories, dictionaries, or
law texts—to mention just a few examples. In
such cases it is not only the volume of data that
is important, but also the need for it to be kept
constantly up-to-date.
Once data have been stored in electronic form

one can derive multiple products from a single
source document. For instance, an address list can
be turned into a directory on paper, but it can
also be put on CD-ROM, as a database allowing
interactive or e-mail access on the Internet or to
print a series of labels. Using a set of law texts or a
series of articles on history marked up in SGML, one
can first publish a textbook containing complete law
texts, or a historic encyclopedia, and then provide
regular updates or extract a series of articles on a
given subject; one can also offer a service which may
be consulted or interrogated on Internet, via gopher
or WWW, or develop a hypertext system on CD-
ROM.
All these applications suppose that the infor-

mation is not saved in a format that is only suited

for printing (for example, WYSIWYG), but that its
logical structure is clearly marked.
To recapitulate, the main aims of generic

markup (in SGML) are the following:

• the quality of the source document is improved;

• the document can be used more rationally,
resulting in an improved life-cycle;

• the publishing costs are reduced;

• the information can be easily reused, yielding
an added value to the document (printed,
hypertext, database).

1.1 The origins of SGML

In order to treat documents electronically it is
essential that their logical structure be clearly
marked. On top of that, to ensure that documents
are really interchangeable, one had to develop
a common language to implement this type of
representation.
A big step forward was the publication by ISO

(the International Standards Organization, with its
headquarters in Geneva, Switzerland) in October
1986 of SGML as Standard ISO 8879 (ISO, 1986).
Because SGML had been officially endorsed by
ISO, the Standard was quickly adopted by various
national or international organizations and by the
large software developers. One can thus be fairly
confident that SGML is here to stay and that its
role in electronic publishing will continue to grow.

1.2 Who uses SGML?

With the appearance of new techniques and needs
linked to the constantly increasing importance of
electronic data processing, the traditional way of
exchanging documents has been drastically changed.
Today, SGML has become an ubiquitous tool for
document handling and text processing.
First among the application areas we will

consider in which SGML is at present actively
used is the work of the American Association of
Publishers (AAP). The AAP (see AAP (1989) to
AAP (1989c)) selected three types of documents
in the field of publishing: a book, a series
publication, and an article. For each of these a
document type definition (DTD, see below, especially
Section 4) has been developed. Together, the
AAP and the EPS (European Physical Society)
have proposed a standard method for marking
up scientific documents (especially tables and
mathematical documents). This work forms the
basis of ISO/IEC 12083.
Another application actively developed during

the last few years is the CALS (Computer-aided

TUGboat, Volume 16 (1995), No. 2 104

Acquisition and Logistic Support) initiative of the
US Department of Defense (DoD). This initiative
aims at the replacement of paper documents by
electronic media for the documentation of all arms
systems. The DoD decided that all documentation
must be marked up in SGML, thus also making (the
frequent) revisions a lot easier.
A few other examples of the use of SGML are:1

• the Publications Office of the European Com-
munities (FORMEX);

• the Association of German editors (Börsen-
verein des Deutschen Buchhandels);

• the British Library with “SGML: Guidelines for
editors and publishers” and “SGML: Guidelines
for authors”;

• in France, the Syndicat national de l’édi-
tion and the Cercle de la librairie, two
associations of French publishers, have defined
an application for the French editing world
(Vignaud, 1990);

• the ISO Publishing Department;

• the British Patents Office (HMSO);

• Oxford University Press;

• the Text Encoding Initiative (classic texts and
comments);

• the technical documentation of many major
computer manufacturers or scientific publish-
ers, for instance the Doc-Book or other dedi-
cated DTDs used by IBM, HP, OSF, O’Reilly,
etc.

• many text processing and database applications
have SGML input/output modules (filters), for
example, Frame, Interleaf, Microsoft, Oracle,
Wordperfect;

• McGraw-Hill (Encyclopedia of Science and
Technology);

• the electronics industry (Pinacle), the aero-
space industry and the airlines (Boeing, Airbus,
Rolls Royce, Lufthansa, etc.), the pharmaceu-
tical industry;

• press agencies;

• text editors and tools with direct SGML
interfaces, such as ArborText, EBT (Electronic
Book Technologies), Exoterica, Grif, Softquad;

• and, of course, HTML and WWW!

1 See also the “SGMLWeb Page” at the URL http://www.
sil.org/sgml/sgml.html for more information on who uses
SGML and why.

2 SGML Basic Principles

SGML is a standard method of representing the
information contained in a document independently
of the system used for input, formatting, or output.

SGML uses the principle of logical document
markup, and applies this principle in the form of the
definition of a generalized markup language. SGML
in itself does not define a markup language, but
provides a framework to construct various kinds of
markup languages, in other words SGML is a meta-
language.

2.1 Different types of markup

The “text processing” systems that have found
their way into almost every PC or workstation
nowadays are mostly of the WYSIWYG type,
i.e.,, one specifically chooses the “presentation” or
“formatting” characteristics of the various textual
elements. They can be compared to an earlier
generation of formatting languages, where specific
codes were mixed with the (printable) text of
the document to control the typesetting on the
micro level. For example, line and page breaks,
explicit horizontal or vertical alignments or skips
were frequently used to compose the various pages.
In general these control characters were extremely
application-specific, and it was difficult to treat
sources marked up in one of these systems with
one of the others. On the other hand, this type
of markup does a very good job of defining the
specific physical representation of a document, and
for certain kinds of documents it might be more
convenient for obtaining a given layout, in allowing
precise control of line and page breaks. This
approach makes viewing and printing documents
particularly easy, but re-using the source for other
purposes can be difficult, even impossible.
To successfully prepare a document for use in

multiple ways it is mandatory to clearly describe
its logical structure by eliminating every reference
to a physical representation. This is what is
understood under the term logical or generic
markup. The logical function of all elements of
a document—title, sections, paragraphs, tables,
possibly bibliographic references, or mathematical
equations—as well as the structural relations
between these elements, should be clearly defined.
Figure 1 shows a few examples of marking

up the same text. One clearly sees the difference
between specific markup, where precise instructions
are given to the text formatter for controlling the
layout (for example, the commands \vskip or .sp),

TUGboat, Volume 16 (1995), No. 2 105

Specific markup

TEX

\vfil\eject

\par\noindent

{\bf Chapter 2: Title of Chapter}

\par\vskip\baselineskip

Script

.pa

.bd Chapter 2: Title of Chapter

.sp

Generic or logical markup

LATEX

\chapter{Title of Chapter}

\par

HTML (SGML)

<H1>Title of Chapter</H1>

<P>

Figure 1: Different kinds of markup

and generic markup, where only the logical function
(chapter or beginning of paragraph) is specified.

2.2 Generalized logical markup

The principle of logical markup consists in marking
the structure of a document, and its definition has
two different phases:

1. the definition of a set of “tags” identifying all
elements of a document, and of formal “rules”
expressing the relations between the elements
and its structure (this is the role of the DTD);

2. entering the markup into the source of the
document according to the rules laid out in the
DTD.

Several document instances can belong to the
same document “class”, i.e.,, they are described
by the same Document Type Definition (DTD)—
in other words they have the same logical structure.
As an example let us consider two source texts of an
article (see Figure 2), where the specific structures
look different, but the logical structure is built
according to the same pattern: a title, followed by
one or more sections, each one subdivided into zero
or more subsections, and a bibliography at the end.
We can say that the document instances belong to
the document class “article”.
To describe the formal structure of all docu-

ments of type “article” one has to construct the
DTD of the document class “article”. A DTD is
expressed in a language defined by the SGML Stan-
dard and identifies all the elements that are allowed
in a document belonging to the document class be-

Article A Article B

========= =========

Title Title

Section 1 Section 1

Subsection 1.1 Subsection 1.1

Subsection 1.2 Subsection 1.2

Section 2 Subsection 1.3

Section 3 Section 2

Subsection 3.1 Subsection 2.1

Subsection 3.2 Subsection 2.2

Subsection 3.3

Subsection 3.4

Bibliography Bibliography

Figure 2: Two instances of the same document
class “article”

ing defined (sections, subsections, etc.). The DTD
assigns a name to each such structural element, of-
ten an abbreviation conveying the function of the
element in question (for example, “sec” for a sec-
tion). If needed, the DTD also associates one or
more descriptive attributes to each element, and de-
scribes the relations between elements (for example,
the bibliography always comes at end of the doc-
ument, while sections can, but need not, contain
subsections). Note that the relations between el-
ements do not always have to be hierarchical, for
instance the relation between a section title and a
cross-reference to that title three sections further
down is not a hierarchical type of relation. In gen-
eral, DTDs use element attributes to express these
kinds of cross-link.
Having defined the DTD one can then start

marking up the document source itself (article A
or article B), using the “short” names defined for
each document element. For instance, with “sec”
one forms the tag <sec> for marking the start of a
section and </sec> to mark its end, and similarly
one has <ssec> and </ssec> for subsection, and so
on.

<article>

<tit>An introduction to SGML</tit>

<sec>SGML: the basic principles</sec>

<P> ...

<ssec>Generalized logical markup</ssec>

<P> ...

2.3 A few words about the DTD

If one wants to apply the latest powerful data
processing techniques to electronic documents, using
the information about their structure, one must have
ways to ensure that they are marked up without
mistakes. One must also ensure that the structure of
a document instance is coherent: a document must

TUGboat, Volume 16 (1995), No. 2 106

obey the rules laid out for documents of the given
document class, according to the DTD for that class.
To fulfill all these aims a DTD defines:

• the name of the elements that can be used;

• the contents of each element (Section 4.2.1);

• how often and in what order each element can
occur (Section 4.2.3);

• if the begin or end tag can be omitted
(Section 4.2.2);

• possible attributes and their default values
(Section 4.3);

• the name of the entities that can be used
(Section 4.4).

3 Transmitting the Information Relative
to a Document

The aim of SGML is to represent the information
contained in a document. Already in Section 2.2 we
have explained that SGML operates in two stages to
define the structure of a document:

• a declaration phase;

• a utilization phase, where the document
source is marked up using declared elements,
attributes and entities.

This basic principle is used for the transmission
of all the information related to the document to be
exchanged.
The basic character set is ASCII, as defined

by International Standard ISO/IEC 646. One
can change the character set by changing this
declaration at the beginning of the parsing of the
document, when the SGML declaration associated
to the DTD is read in (see Appendix C on page 131).
A document can contain symbols or characters

that cannot be entered directly on the keyboard,
such as Greek letters or mathematical symbols,
or even illustrations, photos, or parts of another
document. This functionality is implemented
through the use of entity references (see Section 4.4).
The markup system is based on a set of

delimiters, special symbols, and keywords with
special meaning.2 For instance when “sec”
identifies the element “Section”, then in the
document source <sec> is the tag marking the
beginning of a Section, with the delimiters “<”
and “>” indicating, respectively, the tag start and
end. Similarly, the formal structure of the document
(described by the DTD) has its own language defined
by the SGML Standard.
More generally, the SGML Standard does

not define once and for all the structure of a
2 These symbols can also be redefined at the beginning of

the document.

document and all elements that it can contain,
i.e.,, the delimiters and special symbols, but merely
specifies the construction rules they have to follow.
Also, SGML does not fix the markup language,
but offers an abstract syntax, allowing one to
construct particular syntax instances as needed.
The Standard proposes an example syntax, called
the reference concrete syntax, used throughout this
article. We can thus safely state that SGML is a
meta-language.

4 The Structure of a DTD

To better understand how SGML works we propose
to examine a real example of a modern SGML appli-
cation, namely HTML level 2, which corresponds to
the functionality offered by popular HTML viewing
programs, such as Mosaic, Netscape or Lynx. The
complete DTD of HTML2 is shown in Appendix B
starting on page 124. To make it easier to identify
the various parts of the DTD the lines have been
numbered.
Before starting to parse a DTD the SGML

declaration is read in by the parser. For HTML this
declaration is shown in Appendix C on page 131.
It defines the character set, special characters and
option settings used in the DTD and allowed in
the document instance. For instance, in the area
of markup minimization, the parameter OMITTAG
(Line 66) has the value YES, which allows tag
minimization, i.e.,, under certain circumstances
(specified in the DTD) tags can be omitted, as
explained in Section 4.2.2. If, on the other hand,
the value is specified as NO then tag minimization is
disallowed altogether.
The DTD defines all elements, their possible

attributes and the entities associated with a given
document class (HTML2 in our example).
Inside a DTD the start of a declaration is noted

by the sequence “<!” and its termination by ‘>”.
Certain sections of a DTD are identified (marked) by
a keyword to ensure they are handled correctly, or to
(de)activate their contents according to the value of
the keyword (IGNORE or INCLUDE). The notation for
the beginning, respectively the end of such a marked
section is “<![\emph{keyword} [” and “]]>” (see
Lines 37–39, and 303–305).

4.1 Comments

It is always a good idea to include comment lines
inside document sources or DTDs, whose presence
will make them more readable and help in their
future maintenance.
An SGML comment has the form:

<!-- text of the comment -->

TUGboat, Volume 16 (1995), No. 2 107

The comment is delimited by the double hyphen
signs, --, and can span several lines, as seen, for
instance in Lines 1–11 and 28–35.

4.2 The elements

4.2.1 An element declaration

Each element belonging to the logical structure of
a document must be declared. This declaration
specifies the name of the element, as well as,
between parentheses, its content model, i.e.,, which
elements can or must be part of the element in
question.

<!ELEMENT name n m (content model)>

For instance Lines 614 and 616 are equivalent to the
declaration:3

<!ELEMENT HTML O O (HEAD, BODY)>

The part between the element name “HTML” and
the content model “(HEAD, BODY)” describes the
minimization possibilities for the <HTML> tag (see
“Omit tags” below). The present declaration
specifies that an HTML document contains a “HEAD”
followed by a “BODY”. Line 533 and the definition
of the parameter entity on Lines 548–551 specify
further that the document head must contain a
“TITLE” and can contain a few more elements
(ISINDEX, BASE, META, etc.).

4.2.2 Omit tags

It is possible that under certain circumstances one
can infer automatically from the context that an
omitted tag is present. This possibility must be
declared for each element between the element’s
name and its content model in the form of two blank
separated characters, corresponding, respectively, to
the omit tag characteristics of the start and end
tag. There are only two possible values, namely a
hyphen “-” indicating that the tag must be present
(cannot be omitted), and an uppercase letter O “O”
signifying that it may be omitted. For example,
for numbered (OL) and unnumbered (UL) lists and
their elements (LI) one has (from Lines 379 and 411,
resp.):4

<!ELEMENT (OL|UL) - - (LI)+>

<!ELEMENT LI - O %flow>

The two blank-separated hyphens, “- -”, on the
first line specify that one must always use the begin
and end tags for the list declarations (. . .

3 The form used in the DTD at line 616 uses a parameter
entity, see Section 4.4.

4 The meaning of the symbols | and + is explained in
Section 4.2.3, see especially Table 1; the definition of the
parameter entity %flow can be found on Line 313, see also
Section 4.2.3.

symbol description
, all must appear and in the order

indicated (ordered “and”)
& all must appear but any order is allowed

(unordered “and”)
| one and only one can appear (exclusive

“or”)
+ element must appear once or more
? optional element (0 or one)
* element can appear zero times or more

Table 1: Order and choice operators

and . . .) while the “- O” on the second
line indicate that the end tag for the members of a
list (. . .) may be omitted.

4.2.3 The contents model

As already mentioned, the content model uses order
and choice operators (see Table 1 for a list).
We already encountered the operator of choice

(\vbar), which specifies that one of the elements can
be present (but not more than one at a time). Let
us now turn our attention to another example with
a description list (<DL>) as declared on Line 357 as:

<!ELEMENT DL - - (DT*, DD?)+>

This indicates that for a description list the start
tag <DL> and end tag </DL>must always be present,
and that the list can contain one or more occurrences
((...)+) of zero or more <DT> tags (DT*) that can
be followed (,) by at most one <DD> tag (DD?).
An element with multiple members that can

appear in any order is defined on Lines 548–553.
These lines essentially stipulate that an HTML head
can contain, in any order, a title (TITLE), zero or one
<ISINDEX>, <BASE>, and <NEXTID> tags, and zero or
more <META> and <LINK>:

<!ELEMENT HEAD O O (%head.content)>

<!ENTITY % head.content

"TITLE & ISINDEX? & BASE? &

(%head.extra)">

<!ENTITY % head.extra

"NEXTID? & META* & LINK*">

An element can contain other elements, char-
acters, or both (in the latter case one speaks of a
mixed content).
One can specify to the SGML parser the type of

characters that can be used. The following reserved
names are defined for that purpose:

PCDATA parsed character data.
The characters are supposed to have been
treated by the parser and can thus no
longer contain entity references or tags.

TUGboat, Volume 16 (1995), No. 2 108

For instance, on Line 557 an HTML title is
defined as:

<!ELEMENT TITLE - - (#PCDATA)>

RCDATA replaceable character data.
The parser can expect to find only
characters or entity references, i.e.,, (begin
and end) tags are forbidden.

CDATA character data.
No further processing is needed by the
SGML parser (nevertheless, the data might
be processed by another program, for
instance PostScript). A telephone number
in a letterhead could be declared thus:

<!ELEMENT TEL CDATA>

ANY The element can contain data of type
PCDATA or any other element defined in the
DTD.

EMPTY The element has an empty content. It
can, however, be qualified by possible
attributes (see Section 4.3). An example
of this is the tag and its attributes
as defined on Lines 233–240.

Certain elements can be used anywhere in the
document source. In this case it is convenient to
declare them as included in the element document.
More generally, an element can be contained in
the content model of another element and can be
part of any of the element’s constituents. In this
case the syntax +(...) is used. Similarly, one can
exclude certain elements from the element being
defined by using the syntax -(...). For instance,
the electronic HTML form is defined on Line 457 as
follows:

<!ELEMENT FORM - - %body.content

-(FORM) +(INPUT|SELECT|TEXTAREA)>

This states that the <FORM> element can contain ev-
erything specified by the %body.content parameter
entity (Lines 430, 267, 146, and 309–311). Moreover,
all these elements can contain, at any level the tags
<INPUT>, <SELECT>, or <TEXTAREA>. On the other
hand, forms are not recursive, since the <FORM> tag
cannot itself contain (-(FORM)).

4.3 Attributes

All possible attributes of all elements in a DTD must
be explicitly declared in the same DTD. For reasons
of clarity and convenience, attribute declarations
normally immediately follow the declaration of the
element they refer to.
An attribute declaration consists of:

• the name of the element(s) that it refers to;

• the name of the attribute;

keyword value of attribute
CDATA textual data (any characters)
ENTITY(IES) general entity name(s)
ID an SGML element identifier
IDREF(S) value(s) of element identifier

reference(s)
NAME(S) SGML name(s)
NMTOKEN(S) nominal lexical token(s)
NOTATION notation name
NUMBER(S) number(s)
NUTOKEN(S) numeric lexical token(s)

Table 2: Keywords for attribute types

• either the attribute type, specified as one of
the keywords shown in Table 2, or, between
parentheses, the list of values the attribute can
take;

• a default value (one of the possible values
specified between quotes, or one of the keywords
shown in Table 3).

An attribute declaration thus takes the follow-
ing form:

<!ATTLIST element_name

attribute_1 (values) "default"

attribute_2 (values) "default"

... >

For instance, the list declaration (<DL>) (Lines
357–362) defines an attribute “compact” to indicate
that the members of a list should be typeset more
densely.

<!ATTLIST DL COMPACT (COMPACT) #IMPLIED

This declaration specifies that the only possible
value is COMPACT and that the system (the parser)
will provide a default value (#IMPLIED, see Table 3).
One might also wish to specify numeric

information, for instance, the <PRE> tag (Lines 317–
320) has an attribute to specify the width of the
line:

<!ATTLIST PRE WIDTH NUMBER #implied

The attribute type is an “(integer) number”
(keyword: NUMBER) and if no value is specified then
the parser will supply a default (#implied).
As a last example let us once more look at

the element (image) and its attributes (Lines
234–240), whose definitions correspond essentially
to the following declaration:

<!ATTLIST IMG

SRC %URI; #REQUIRED

ALT CDATA #IMPLIED

ALIGN (top|middle|bottom) #IMPLIED

ISMAP (ISMAP) #IMPLIED

....

TUGboat, Volume 16 (1995), No. 2 109

keyword description
#FIXED The attribute has a fixed value

and can take only that value.
#REQUIRED The value is mandatory and must

be specified by the use.
#CURRENT If no value is specified, then the

default value will be the the last
specified value.

#CONREF The value will be used for
cross-references.

#IMPLIED If no value is specified, the parser
will assign a value.

Table 3: Keywords for attribute default values

The first line references the parameter entity
%URI (see Lines 73–84) that defines a Uniform
Resource Identifier. This attribute is mandatory
(#REQUIRED). The other attributes are optional and
have a system-defined default value (#IMPLIED). In
the case of the alignment attribute (ALIGN) a choice
of any of three values is possible.

4.4 Entities

Entities can be used for the following purposes:

• The definitions of abbreviated notations to ease
repetitive text strings (general entities); for
example,

<!ENTITY TUG "\TeX{} Users Group">

• The definition of notations to input special
characters, accents or symbols (general charac-
ter entities). An example of character entities
can be found on Lines 102–105;

<!ENTITY amp CDATA "&"

-- "&" (ampersand) -->

ISO has defined several standard character
entity sets, for instance, for national characters
(see Appendix E on page 134), graphical
symbols, mathematics, etc.

• The inclusion of external files (external enti-
ties).

• The definition of variables in a DTD (parameter
entities).

It is important to note that, contrary to element
and attribute names, which are case-insensitive and
can be specified in upper, lower, or mixed case,
entity names are case-sensitive, and one must take
care to specify them precisely as they are defined.
General entities are declared in the DTD. An

entity declaration first specifies a symbolic name
for the entity, followed by its contents. The latter

can contain tags, entity references, etc., that will be
interpreted when the entity is expanded.
To refer to an entity one makes use of an entity

reference, which takes the form:

&entity_name;

For example, if one wants to use the entity
“TUG” defined above, one should type in the
document source the string of characters &TUG; and
the parser replaces this by the string “TEX Users
Group”.
The data associated with an entity can be in

another (external) file (external entity). This kind of
entity can be used to include in the source document
being parsed a table or figure (or any kind of data)
that was prepared with another application. Instead
of including the complete contents of the file in the
declaration, one merely specifies the name of the
file where the data is stored. The filename must
be preceded by the keyword "SYSTEM", for example,
for the unix operating system one might have a
declaration of the form:

<!ENTITY article SYSTEM

"/usr/goossens/tug/sgmlart.sgml">

Inside a DTD one frequently uses parameter
entities that allow one to considerably increase the
modularity of the definition of the various elements
defined in the DTD. Simple examples are Lines 89,
91, and 175;

<!ENTITY % heading "H1|H2|H3|H4|H5|H6">

<!ENTITY % list " UL | OL | DIR | MENU " >

<!ENTITY % text "#PCDATA | A | IMG | BR">

These entities are used, for instance, on Lines 212,
267, 430.

<!ELEMENT (%heading) - - (%text;)+>

4.5 Other DTDs

In order to get a better idea of what DTDs for more
complex documents look like, we shall briefly discuss
HTML3, Doc-Book and ISO/IEC 12083.

4.5.1 HTML3

As it name indicates, HTML3 is a successor to the
present HTML Standard (also known as HTML2,
and discussed in detail in the previous sections).
HTML35 builds upon HTML2 and provides full
backwards compatibility. Tables have been one
of the most requested features; HTML3 proposes
a rather simple table model that is suitable for
rendering on a very wide range of output devices,
including braille and speech synthesizers.

5 See URL http://www.hpl.hp.co.uk/people/dsr/html/
CoverPage.html.

TUGboat, Volume 16 (1995), No. 2 110

Inline figures are available and provide for
client-side handling of ‘hot zones’ whilst cleanly
catering for non-graphical browsers. Text can flow
around figures and full flow control for starting new
elements is possible.
Mathematics support for equations and formu-

lae in HTML3 mainly uses TEX’s box paradigm. The
implementation uses a simple markup scheme, that
is still powerful enough to cope with the range of
mathematics created in common word processing
packages. Filters from TEX and other word process-
ing systems will allow one to easily convert existing
sources into HTML3.
As HTML is most often used to present

information on-screen, it is important to allow some
positioning control for the various elements in a
document. Therefore, HTML3 includes support
for customized lists, fine positioning control with
entities like \&emspace;, horizontal tabs, and
alignment of headers and paragraph text.
As well as this, many other often-requested

features have been included, most notably a style-
sheet mechanism, which counters the temptation
to continually add more presentation features by
giving the user almost full control over document
rendering, and taking into account the user’s
preferences (window size, resource limitations such
as availability of fonts).
The HTML3.0 Internet draft specification is

being developed by the IETF (Internet Engineering
Task Force) taking into account the following
guidelines:

• interoperability and openness;

• simplicity and scalability;

• platform independence;

• content, not presentation markup;

• support for cascaded style sheets, non-visual
media, and different ways of creating HTML.

To illustrate the use of this DTD one can look at
the table and mathematics parts of the HTML3 DTD
(see Appendix F on page 135) and at the markup
examples and generated output (Figures 3 and 4).

4.5.2 DocBook

The DocBook DTD6 defines structural SGML
markup for computer documentation and technical
books. It is supported by the Davenport Group,
an association of software documentation producers
established to promote the interchange and delivery
of computer documentation using SGML and other
relevant standards.

6 See URL ftp://ftp.ora.com/pub/davenport/docbook/
fullguide.sgm.

The primary goal in developing the DTD was to
filter existing software documentation into SGML.
It describes the structures the the Davenport group
and other producers and consumers of software
documentation have encountered in processing large
bodies of documentation. The Doc-BookDTD uses a
book model for the documents. A book is composed
of book elements such as Prefaces, Chapters,
Appendices, and Glossaries. Five section levels are
available and these may contain paragraphs, lists,
index entries, cross references and links.
The DTD also leaves room for localizations.

The user of the DTD is free to give own content
models for appendixes, chapters, equations, indexes,
etc.

4.5.3 The AAP effort and ISO/IEC 12083

The American Association of Publishers (AAP) has
been working since the publication of the SGML
Standard in 1986 on promoting SGML as an elec-
tronic standard for manuscript preparation. This
document, developed over several years as the “AAP
Standard,” was later promoted to by the Electronic
Publishing Special Interest Group (EPSIG) and the
AAP as “the Electronic Manuscript Standard,” and
is now a NISO (National Information Standards Or-
ganization) publication. The AAP/EPSIG applica-
tion is SGML-conforming, and provides a suggested
tag set for authors and publishers. It defines the
format syntax of the application of SGML publica-
tion of books and journals. The Standard achieves
two goals. First, it establishes an agreed way to
identify and tag parts of an electronic manuscript so
that computers can distinguish between these parts.
Second, it provides a logical way to represent spe-
cial characters, symbols, and tabular material, using
only the ASCII character set found on a standard
American keyboard.
For several years the AAP and the EPS

(European Physical Society) have been working
on a standard method for marking up scientific
documents. There work has been the basis
for International Standard ISO/IEC 12083, the
successor to the AAP/EPSIG Standard, and four
DTDs have been distributed by EPSIG as the “ISO”
DTDs.7

This DTD has a basic book structure consisting
of chapters, sections and subsections down to six
levels. The mathematics part is, however, of some
interest since it can be compared to HTML3.

7 They can be found at the URL http://www.sil.org/
sgml/gen-apps.html\#iso12083DTDs.

TUGboat, Volume 16 (1995), No. 2 111

<TABLE BORDER>
<TR> <TD>R1 C1</TD><TD>R1 C2</TD><TD>R1 C3</TD>
</TR>
<TR> <TD>R2 C1</TD><TD>R2 C2</TD><TD>R2 C3</TD>
</TR>
</TABLE>

<TABLE BORDER>
<TR> <TD ROWSPAN=2>R12 C1</TD>

<TD>R1 C2</TD><TD>R1 C3</TD>
</TR>
<TR> <TD>R2 C2</TD><TD>R2 C3</TD>
</TR>
<TR> <TD>R3 C1</TD><TD COLSPAN=2>R3 C23</TD>
</TR>
</TABLE>

<TABLE BORDER>
<TR> <TH COLSPAN=2>Head 1-2</TH>

<TH COLSPAN=2>Head 3-4</TH>
</TR>
<TR> <TH>Head 1</TH><TH>Head 2</TH>

<TH>Head 3</TH><TH>Head 4</TH>
</TR>
<TR> <TD>R3 C1</TD><TD>R3 C2</TD>

<TD>R3 C3</TD><TD>R3 C4</TD>
</TR>
<TR> <TD>R4 C1</TD><TD>R4 C2</TD>

<TD>R4 C3</TD><TD>R4 C4</TD>
</TR>
</TABLE>
<P>
<TABLE BORDER>
<TR> <TH COLSPAN=2 ROWSPAN=2></TH>

<TH COLSPAN=2>Background</TH>
</TR>
<TR> <TH>Blue</TH><TH>Yellow</TH>
</TR>
<TR> <TH ROWSPAN=2>Text</TH>

<TH>Red</TH><TD>fair</TD><TD>good</TD>
</TR>
<TR> <TH>Green</TH><TD>bad</TD><TD>good</TD>
</TR>
</TABLE>

Figure 3: HTML3 example of tables (source and result with the Mosaic browser)

<!DOCTYPE html PUBLIC
"-//IETF//DTD HTML 3.0//EN//">

<HTML>
<TITLE>A Math Sampler</TITLE>
<BODY>
<H1>Formulae by examples</H1>
<MATH>x^Iy^J

z^K 
<BOX>(<LEFT>1 + u<OVER>v<RIGHT>)</BOX>

</MATH>
<P><MATH><BOX>[<LEFT>x + y<RIGHT>]</BOX> 

<BOX>(<LEFT>a<RIGHT>]</BOX> 
<BOX>||<LEFT>b<RIGHT>||</BOX></MATH>

<P><MATH>int_a^b
<BOX>f(x)<over>1+x</BOX> 

sin ( x²+1) dt</MATH>
<P><MATH>
<box>dσ<over>dε</box>
=<box>2πZr₀²m

<over>β²(E-m)</box>
[<box>(γ-1)²

<over>γ²</box>
+<box>1<over>ε</box>]

</MATH>
</BODY>
</HTML>

Figure 4: HTML3 example of simple mathematics (source and result with the arena browser)

TUGboat, Volume 16 (1995), No. 2 112

The ISO/IEC 12083 table model

The ISO 12083 table model consists of the following
elements (see Figure 5 for the relevant part of the
DTD):

<table> the table element;

<np> number;

<title> title;

<tbody> table body;

<head> head;

<tsubhead> table subhead;

<row> row;

<tstub> table stub;

<cell> cell.

This table model does not support spanning
rows or columns. It does, however, support subhead
elements that can be used to give more granularity
to the table contents. An example of a marked-up
table is shown below.

<table>

<no>1<title>Capitals in Europe

<tbody>

<row><cell>Helsinki<cell>Finland

<row><cell>Rome<cell>Italy

<row><cell>Bern<cell>Switzerland

</table>

Only the simple table model discussed above is part
of the basic ISO/IEC 12083 DTD as distributed.
There also exists a complex table model (AAP,
1989b) that allows the user to treat more complex
tabular material.

The ISO/IEC 12083 mathematics model

The mathematics model in ISO/IEC 12083 consists
of the following element categories:

character transformations
<bold>, <italic>, <sansser>,
<typewrit>, <smallcap>, <roman>;

fractions
<fraction>, <num>, <den>;

superiors, inferiors
<sup>, <inf>;

embellishments
<top>, <middle>, <bottom>;

fences, boxes, overlines and underlines
<mark>, <fence>, <post>, <box>,
<overline>, <undrline>;

roots
<radical>, <radix>, <radicand>;

arrays
<array>, <arrayrow>, <arraycol>,
<arraycel>;

spacing
<hspace>, <vspace>, <break>, <markref>;

formulas
<formula>, <dformula>, <dformgrp>.

The model has basically the same elements as
the HTML3 model, but is more visual. Emphasis
is on creating fences at the right places inside a
formula, whereas the HTML3 model uses <left>
and <right> elements. A simple example is:

<formula>

S = ∑<inf>n=1</inf>¹⁰

<fraction>

<num>1</num>

<den>

<radical>3<radix>n</radical>

</den>

</fraction>

</formula>

The complete DTD is shown in Appendix G on
page 139, which shows the file math.dtd that is part
of the ISO/IEC 12083 DTD set.

5 SGML Editors

Several solutions exist to enter SGML or HTML
markup into a document, but an editor that is
SGML-aware is probably the best solution. Several
(mostly commercial) products exist (see Karney
(1995a), Karney (1995b), and Ores (1995)), but in
the remaining part of this section we shall have a
look at a public domain solution based on the Emacs
editor with the psgml application and on the Grif-
based Symposia editor.

5.1 Emacs and psgml

Amajor mode for editing SGML documents, psgml,8

works with the latest versions of GNU Emacs. It
includes a simple SGML parser and accepts any
DTD. It offers several menus and commands
for inserting tags with only the contextually valid
tags, identification of structural errors, editing
of attribute values in a separate window with
information about types and defaults, and structure-
based editing.
Figure 6 shows the first HTML test example,

to be discussed later (see example test1.html in
Section 6.2.1). Both the psgml mode and the
nsgmls program, discussed below, use a catalog
file whose structure is defined by the SGML Open
consortium to locate the SGML declarations and
DTDs (see Appendix D on page 133). Thanks to
the name of the DTD declared on the <!DOCTYPE>
declaration and that catalog file, psgml loads the

8 The psgml home page is at the URL http://www.
lysator.liu.se/projects/about_psgml.html.

TUGboat, Volume 16 (1995), No. 2 113

<!-- +++ -->

<!-- Tables -->

<!-- +++ -->

<!ELEMENT table - - (no?, title?, tbody) -(%i.float;) >

<!ELEMENT tbody - O (head*, tsubhead*, row*) >

<!ELEMENT row - O (tstub?, cell*) >

<!ELEMENT tsubhead - O %m.ph; >

<!ELEMENT (tstub|cell) - O %m.pseq; >

Figure 5: Part of the ISO 12083 DTD relating to simple tables

HTML2 DTD into memory and can then handle
the HTML source file. In the Figure, all the
elements that can occur at the position of the
pointer are shown. Figure 7 shows the more
important key combinations for quickly calling
some functions. For instance, the sequence C-c
C-t (sgml-list-valid-tags) was used to obtain
the list in the lower part of Figure 6. As a
last technical (but important) detail, in order to
function properly, two variables should be defined
in the psgml initialization file psgml.el, namely
sgml-system-path, a list of directories used to
look for system identifiers, and sgml-public-map,
a mapping from public identifiers to file names.9

5.2 Symposia

At the Third International WorldWide Web Confer-
ence “Technology, Tools and Applications”,10 which
took place in Darmstadt, Germany, from 10–13
April 1995, Vincent Quint and collaborators dis-
cussed their authoring environment for SGML texts
in general, and HTML on WWW in particular.11

Their approach is based on the Grif editor, which
can work with any DTD. They announced that a
version with the HTML3 DTD will be made available
freely under the name of Symposia. Grif (and Sym-
posia) allow the user to enter text in a WYSIWYG
way, but entered elements are validated against the
DTD. An example is given in Figure 8, which shows
us to be in insert mode in the first column on the first
row of the table, where we input the word “text”,
whilst Figure 9 shows the generated SGML(HTML)
source, hidden from the user, but available for any
kind of treatment that one would like to do on the
document.

9 See the documentation coming with psgml for more
details.
10 An overview of the papers is at the URL http://www.

igd.fhg.de/www/www95/papers/.
11 Their paper is available at the URL http://www.igd.

fhg.de/www/www95/papers/84/EditHTML.html.

6 SGML Utilities

As SGML is now actively used in many applications
in the field of document production (see Section 1.2
and Karney (1995b)) several commercial and
publicly available solutions are now available to
increase the productivity, user-friendliness, and ease
of using SGML systems. This section reviews a few
of the more interesting publicly available tools.

6.1 Validating an SGML document with
nsgmls

It is often important and useful to be able to validate
an SGML (and hence HTML) document. This can,
for instance, be achieved with the publicly available
SGML parser nsgmls, which is part of SP,12 a system
developed by James Clark (jjc@jclark.com) and
a successor to his older sgmls,13 or by arcsgml,
written by Charles Goldfarb (Goldfarb, considered
by many to be the father of SGML, is also the
author of “The SGML Handbook” (Goldfarb, 1990)
describing the SGML Standard in great detail, a
reference work that every serious SGML user should
possess).
The nsgmls parser can be called with the

syntax:

nsgmls [-deglprsuvx] [-alinktype]

[-ffile] [-iname] [-mfile]

[-tfile] [-wwarning_type]

[filename...]

12
SP is available at the URL http://www.jclark.com/

sp.html. For more information about other publicly available
SGML software, have a look at the the public SGML software
list at the URL http://www.sil.org/sgml/publicSW.html.
More generally, on the SGML Web Page at http://www.sil.
org/sgml/sgml.html one finds entry points to all the above,
plus many examples of DTDs, more information about SGML,
Hytime, DSSSL, etc.
13 smgls is written in highly portable C code, whilst

nsgmls is C++ with extensive template use, which limits
the portability and makes the installation of the latter
somewhat more complicated. Also the executable module of
sgmls is about half the size of the one of nsgmls. See the
comments of Nelson Beebe at the URL http://www.math.
utah.edu/~beebe/sp-notes.html for the current situation
with implementing nsgmls on several architectures.

TUGboat, Volume 16 (1995), No. 2 114

Figure 8: Inserting text in an SGML document with Symposia

Figure 9: SGML source of the document shown in Figure 8

TUGboat, Volume 16 (1995), No. 2 115

Figure 6: Emacs in psgml mode

ESC C-SPC sgml-mark-element

ESC TAB sgml-complete

ESC C-t sgml-transpose-element

ESC C-h sgml-mark-current-element

ESC C-@ sgml-mark-element

ESC C-k sgml-kill-element

ESC C-u sgml-backward-up-element

ESC C-d sgml-down-element

ESC C-b sgml-backward-element

ESC C-f sgml-forward-element

ESC C-e sgml-end-of-element

ESC C-a sgml-beginning-of-element

C-c C-u Prefix Command

C-c RET sgml-split-element

C-c C-f Prefix Command

C-c C-w sgml-what-element

C-c C-v sgml-validate

C-c C-t sgml-list-valid-tags

C-c C-s sgml-unfold-line

C-c C-r sgml-tag-region

C-c C-q sgml-fill-element

C-c C-p sgml-parse-prolog

C-c C-o sgml-next-trouble-spot

C-c C-n sgml-up-element

C-c C-l sgml-show-or-clear-log

C-c C-k sgml-kill-markup

C-c C-e sgml-insert-element

C-c C-d sgml-next-data-field

C-c C-c sgml-show-context

C-c C-a sgml-edit-attributes

C-c = sgml-change-element-name

C-c < sgml-insert-tag

C-c / sgml-insert-end-tag

C-c - sgml-untag-element

C-c # sgml-make-character-reference

Figure 7: Emacs key-bindings with psgml

nsgmls needs at least four files to run:

• the catalog file, which describes how the SGML
file’s <!DOCTYPE> declaration is mapped to a
filename (see below);

• the SGML declaration, defining the character
set used by subsequent files, and the sizes of
various internal limits, such as the permitted
length of identifiers, as well as what features
of SGML are used, such as tag minimization
(see the start of Section 4 on page 106 and
Appendix C on page 131);

• the DTD for the document type;

• an SGML or HTML document instance.

6.2 The <!DOCTYPE> declaration

The <!DOCTYPE> declaration has three parameters,
as shown in the following example.

<!DOCTYPE html PUBLIC

"-//IETF//DTD HTML//EN">

The first parameter specifies the name of the
document class according to which the document
instance (the user’s source file) is marked up.
The second parameter is either SYSTEM or PUBLIC.
With the SYSTEM keyword the next parameter
contains the filename of the DTD, but since actual
filenames are system-dependent, this syntax should
be discouraged in favour of the PUBLIC keyword.
In this case, the whereabouts of the DTD are
defined via an external entity reference. The SGML
Standard does not itself define how the mapping
between this entity reference and an external file is
defined, but SGML Open has proposed the format of
a catalog file in which those mappings are specified.
A few examples are shown below.

PUBLIC "-//IETF//DTD HTML//EN"

/usr/goossens/sgml/dtds/html.dtd

PUBLIC "ISO 12083:1994//DTD Math//EN"

/usr/joe/dtds/math.dtd

PUBLIC "-//IETF//ENTITIES Latin 1//EN"

/use/joe/sgml/dtds/iso-lat1.sgm

The first string following the keyword PUBLIC is
called a “public identifier”, a name which is intended
to be meaningful across systems and different
user environments. Formally a public identifier is
composed of several fields, separated by a double
solidus, “//”. The first part is an “owner identifier”
(the first and third entries have a hyphen, -,
meaning that these identifiers were not formally
registered, and the organization who created the file
was the IETF (the Internet Engineering Task Force);
the second entry carries an ISO owner identifier.
The second part of the public identifier (following
the double solidus), is called the “text identifier”.

TUGboat, Volume 16 (1995), No. 2 116

The first word indicates the “public text class”
(for example, DTD and ENTITIES), and is followed
by the “public text description” (HTML, Latin 1,
etc.), then, optionally, after another double solidus
one finds the “public text language”, a code from
ISO Standard 639 (ISO (1988)— EN, for English in
our case), and this can be followed by a “display
version”, if needed.
The final element is the filename associated

with the public identifier specified in the second
field.

6.2.1 HTML examples

It is not our intention to describe the various options
of this program in detail, but we shall limit ourselves
to showing, with the help of a few simple examples,
how this interesting tool can be used.

<!DOCTYPE html PUBLIC

"-//IETF//DTD HTML 2.0//EN">

<HTML>

<!-- This is document test1.html -->

<HEAD>

<TITLE>Document test1.html</TITLE>

</HEAD>

<!-- Beginning of body of document -->

<BODY>

<DL>

<DT>term 1<DD>data 1

<DT>term 2<DD>data 2

<DT>term 3

<DT>term 4<DD>data 4<DD>data 4 bis

</DL>

á

</BODY>

</HTML>

Presenting this document to nsgmls one obtains
the following output in the “Element Structure
Information Set” (ESIS) format.

> nsgmls -m catalog sgml.decl test1.html

#SDA

AVERSION CDATA -//IETF//DTD HTML 2.0//EN

ASDAFORM CDATA Book

(HTML

(HEAD

ASDAFORM CDATA Ti

(TITLE

-Document test1.html

)TITLE

)HEAD

(BODY

ACOMPACT IMPLIED

ASDAFORM CDATA List

ASDAPREF CDATA Definition List:

(DL

ASDAFORM CDATA Term

(DT

-term 1

)DT

ASDAFORM CDATA LItem

(DD

-data 1\n

)DD

ASDAFORM CDATA Term

(DT

-term 2

)DT

ASDAFORM CDATA LItem

(DD

-data 2\n

)DD

ASDAFORM CDATA Term

(DT

-term 3\n

)DT

ASDAFORM CDATA Term

(DT

-term 4

)DT

ASDAFORM CDATA LItem

(DD

-data 4

)DD

ASDAFORM CDATA LItem

(DD

-data 4 bis

)DD

)DL

-\n\|[aacute]\|

)BODY

)HTML

C

As it should, nsgmls parses this program without
problems, and shows the different elements it
encounters in ESIS format. The meaning of the most
common output commands generated by nsgmls is
as follows.

\\ a \;

\n a record end ;

\| brackets internal SDATA entities;

\nnn character whose octal code is nnn;

(gi start of element whose generic identifier is
gi, attributes for this element are specified
with A commands;

)gi end of element whose generic identifier is
gi;

-data data;

&name reference to external data entity name;

Aname val next element has an attribute name
with specifier and value val (see Tables 2
and 3)

TUGboat, Volume 16 (1995), No. 2 117

#text application information (can only occur
once);

C signals that the document was a conforming
document. It will always be the last
command output.

For incorrect documents nsgmls shows an error:

<!DOCTYPE html PUBLIC

"-//IETF//DTD HTML//EN">

<HTML>

<BODY>

<P>text inside a paragraph

</BODY>

</HTML>

If we present this document to nsgmls (placing the
HTML DTD shown in the appendix at the beginning
of the file) one obtains:

> nsgmls -m catalog sgml.decl test2.html

test2.html:4:6:E: \

element ‘BODY’ not allowed here

test2.html:7:7:E: \

end tag for ‘HTML’ which is not finished

#SDA

AVERSION CDATA -//IETF//DTD HTML 2.0//EN

ASDAFORM CDATA Book

(HTML

(BODY

-

ASDAFORM CDATA Para

(P

-text inside a paragraph

)P

)BODY

)HTML

Note that nsgmls indicates at the fourth line that a
<BODY> tag cannot be used at that particular point
(since no mandatory <HEAD> element—Line 614
of the DTD—was specified). Then, after reading
the last (seventh) line containing the </HTML>
tag, nsgmls complains that the HTML document
(enclosed inside <HTML> tags) is not yet finished.

<!DOCTYPE html PUBLIC

"-//IETF//DTD HTML//EN">

<HTML>

<HEAD>

<TITLE>title</TITLE>

</HEAD>

<BODY>

</BODY>

</HTML>

Those only interested in checking the syntax of a
document can run nsgmls with the -s option, so
that it will only print the error messages, as with
the incorrect HTML file above.

> nsgmls -s -m catalog sgml.decl test3.html

test3.html:8:4:E: \

element ‘LI’ not allowed here

nsgmls does not complain until Line 8, where an
isolated list member is found. As this is not
correct according to the DTD, nsgmls signals its
disagreement by stating that the tag is not
allowed at that point (Lines 379 and 394 of the DTD
state that list member elements of type can
only be used in lists of type , , <MENU>,
and <DIR>).

6.3 Prettyprinting

Nelson Beebe (beebe@math.utah.edu) has devel-
oped a program htmlpty,14 written in the lex and
C languages, to prettyprint HTML files. Its calling
sequence is:

htmlpty [-options] [file(s)]

where the more interesting options are:

-f filename name output file in comment ban-
ner;

-h display usage summary;

-i nnn set indentation to nnn spaces per
level;

-n no comment banner;

-w nnn set output line width to nnn.

The program was run on file test1.html with the
result shown below.

> html-pretty -i2 -n test1.html

<!DOCTYPE html PUBLIC

"-//IETF//DTD HTML//EN">

<HTML>

<!-- This is document doc1.sgm -->

<HEAD>

<TITLE>

Document test HTML

</TITLE>

</HEAD>

<!-- Beginning of body of document -->

<BODY>

<DL>

<DT>

term 1

</DT>

<DD>

data 1

</DD>

<DT>

term 2

</DT>

<DD>

data 2

</DD>

14 It is at URL ftp://ftp.math.utah.edu/pub/misc/

htmlpty-x.yy.trz (choose the latest version x.yz offered).

TUGboat, Volume 16 (1995), No. 2 118

<DT>

term 3

</DT>

<DT>

term 4

</DT>

<DD>

data 4

</DD>

<DD>

data 4 bis

</DD>

</DL>

á

</BODY>

</HTML>

The program html-pretty applies heuristics to
detect, and often correct, common HTML errors.
It can turn a pure ASCII file into a syntactically-
valid HTML file that may then only require a small
amount of additional markup to indicate required
line breaks.

6.4 SGML document analysis tools

Earl Hook (ehood@convex.com) has developed a set
of tools perlSGML,15 based on the perl language.
They permit the analysis of SGML documents or
DTDs.

dtd2html produces an HTML document starting
from an SGML DTD that permits an
easy hypertext navigation through the
given DTD;

dtddiff compares two DTDs and shows possi-
ble differences;

dtdtree shows visually the hierarchical tree
structure characterizing the relations
between the various elements of a
DTD;

stripsgml strips a text from its SGML markup,
and attempts to translate entity refer-
ences by standard ASCII characters.

Let us first look at the dtdtree utility.
When treating the HTML2 DTD, one obtains
a visual representation that is very useful for
understanding the relations that exist between
the various HTML elements. For each element
one explicitly sees the elements it can contain.
Three points “...” indicate that the contents of
the element has been shown previously. Lines
containing entries between brackets signal a list
of elements that can be included in—(I) and
(Ia)—or are excluded from—(X) and (Xa)—the

15 This system can be found at the URL ftp://ftp.uci.
edu/pub/dtd2html.

Figure 11: Hypertext description of the elements
of a DTD (HTML2) as presented by the HTML
browser mosaic

content model of the element. Figure 10 shows
in four columns the (condensed) output generated
by the dtdtree program when treating the HTML2
DTD. For more clarity most of the repeated blocks
have been eliminated and replaced by the string
*\vbar**\vbar**\vbar at the beginning of a line
and a few lines have been cut to make them fit
(marked with *** at the end of the line).

6.4.1 Documenting a DTD

To document a DTD (and hence a particular
SGML language instance) one can use the dtd2html
utility, which generates, starting from the DTD
in question and a file describing all document
elements, a hypertext representation (in HTML) of
all SGML language elements present in the DTD.
This representation makes it easier for users of an
SGML-based documentation system to obtain the
information relating to an element they need for
marking up their document. For example, in the
case of HTML2, Figure 11 shows the representation
as viewed by the HTML browser mosaic.

TUGboat, Volume 16 (1995), No. 2 119

HTML

|

|_body

| |

| |_#PCDATA

| |_a

| | | (X): a

| | |

| | |_#PCDATA

| | |_b ...

| | |_br ...

| | |_cite ...

| | |_code ...

| | |_em ...

| | |_h1 ...

| | |_h2 ...

| | |_h3 ...

| | |_h4 ...

| | |_h5 ...

| | |_h6 ...

| | |_i ...

| | |_img ...

| | |_kbd ...

| | |_samp ...

| | |_strong ...

| | |_tt ...

| | |_var ...

| |

| |_address

| | |

| | |_#PCDATA

| | |_a ...

| | |_b ...

| | |_br ...

| | |_cite ...

| | |_code ...

| | |_em ...

| | |_i ...

| | |_img ...

| | |_kbd ...

| | |_p ...

| | |_samp ...

| | |_strong ...

| | |_tt ...

| | |_var ...

| |

| |_b

| | |

*|**|**| Like address

| |

| |_blockquote

| | |

| | |_#PCDATA

| | |_a ...

| | |_address ...

| | |_b ...

| | |_blockquote ...

| | |_br ...

| | |_cite ...

| | |_code ...

| | |_dir ...

| | |_dl ...

| | |_em ...

| | |_form ...

| | |_h1 ...

| | |_h2 ...

| | |_h3 ...

| | |_h4 ...

| | |_h5 ...

| | |_h6 ...

| | |_hr ...

| | |_i ...

| | |_img ...

| | |_isindex ...

| | |_kbd ...

| | |_listing ...

| | |_menu ...

| | |_ol ...

| | |_p ...

| | |_pre ...

| | |_samp ...

| | |_strong ...

| | |_tt ...

| | |_ul ...

| | |_var ...

| | |_xmp ...

| |

| |_br

| | |

| | |_EMPTY

| |

| |_cite

| | |

*|**|**| Like address

| |

| |_code

| | |

*|**|**| Like address

| |

| |_dir

| | | (X): ***

| | |

| | |_li

| | | (Xa): ***

| | |

*|**|*****| Like dd

| |

| |_dl

| | |

| | |_dd

| | | |

| | | |_#PCDATA

| | | |_a ...

| | | |_b ...

| | | |_blockquote ...

| | | |_br ...

| | | |_cite ...

| | | |_code ...

| | | |_dir ...

| | | |_dl ...

| | | |_em ...

| | | |_form ...

| | | |_i ...

| | | |_img ...

| | | |_isindex ...

| | | |_kbd ...

| | | |_listing ...

| | | |_menu ...

| | | |_ol ...

| | | |_p ...

| | | |_pre ...

| | | |_samp ...

| | | |_strong ...

| | | |_tt ...

| | | |_ul ...

| | | |_var ...

| | | |_xmp ...

| | |

| | |_dt

| | |

| | |_#PCDATA

| | |_a ...

| | |_b ...

| | |_br ...

| | |_cite ...

| | |_code ...

| | |_em ...

| | |_i ...

| | |_img ...

| | |_kbd ...

| | |_samp ...

| | |_strong ...

| | |_tt ...

| | |_var ...

| |

| |_em

| | |

*|**|**| Like h1

| |

| |_form

| | | (I): ***

| | | (X): form

| | |

| | |_#PCDATA

| | |_a ...

| | |_address ...

| | |_b ...

| | |_blockquote ...

| | |_br ...

| | |_cite ...

| | |_code ...

| | |_dir ...

| | |_dl ...

| | |_em ...

| | |_h1 ...

| | |_h2 ...

| | |_h3 ...

| | |_h4 ...

| | |_h5 ...

| | |_h6 ...

| | |_hr ...

| | |_i ...

| | |_img ...

| | |_input

| | | | (Ia): ***

| | | | (Xa): form

| | | |

| | | |_EMPTY

| | |

| | |_isindex ...

| | |_kbd ...

| | |_listing ...

| | |_menu ...

| | |_ol ...

| | |_p ...

| | |_pre ...

| | |_samp ...

| | |_select

| | | | (Ia): ***

| | | | (Xa): form

| | | |

| | | |_option

| | | | (Ia): ***

| | | | (Xa): form

| | | |

| | | |_#PCDATA

| | |

| | |_strong ...

| | |_textarea

| | | | (Ia): ***

| | | | (Xa): form

| | | |

| | | |_#PCDATA

| | |

| | |_tt ...

| | |_ul ...

| | |_var ...

| | |_xmp ...

| |

| |_h1

| | |

| | |_#PCDATA

| | |_a ...

| | |_b ...

| | |_br ...

| | |_cite ...

| | |_code ...

| | |_em ...

| | |_i ...

| | |_img ...

| | |_kbd ...

| | |_samp ...

| | |_strong ...

| | |_tt ...

| | |_var ...

| |

| |_h2 to h6

| |

| | |

*|**|**| Like h1

| |

| |_hr

| | |

| | |_EMPTY

| |

| |_i

| | |

*|**|**| Like h1

| |

| |_img

| | |

| | |_EMPTY

| |

| |_isindex

| | |

| | |_EMPTY

| |

| |_kbd

| | |

*|**|**| Like h1

| |

| |_listing

| | |

| | |_CDATA

| |

| |_menu

| | | (X): ***

| | |

| | |_li ...

| |

| |_ol

| | |

| | |_li ...

| |

| |_p

| | |

*|**|**| Like h1

| |

| |_pre

| | |

| | |_#PCDATA

| | |_a ...

| | |_b ...

| | |_br ...

| | |_cite ...

| | |_code ...

| | |_em ...

| | |_hr ...

| | |_i ...

| | |_kbd ...

| | |_samp ...

| | |_strong ...

| | |_tt ...

| | |_var ...

| |

| |_samp

| | |

*|**|**| Like h1

| |

| |_strong

| | |

*|**|**| Like h1

| |

| |_tt

| | |

*|**|**| Like h1

| |

| |_ul

| | |

| | |_li ...

| |

| |_var

| | |

*|**|**| Like h1

| |

| |_xmp

| |

| |_CDATA

|

|_head

| |

| |_base

| | |

| | |_EMPTY

| |

| |_isindex ...

| |_link

| | |

| | |_EMPTY

| |

| |_meta

| | |

| | |_EMPTY

| |

| |_nextid

| | |

| | |_EMPTY

| |

| |_title

| |

| |_#PCDATA

|

|_plaintext

|

|_CDATA

Figure 10: Output of the dtdtree program for the HTML2 DTD

TUGboat, Volume 16 (1995), No. 2 120

6.5 Searching and index entries

A search engine using regular expressions is available
for use with the HTML2 DTD16 (Figure 12), as well
as an index containing more than 1100 words and
phrases17 (Figure 13).

6.5.1 Checking an HTML document

For those who do not have sgmls or nsgmls installed
there exists a set of programs htmlchek,18 including
heuristic checkers for common style and grammar
violations. The programs, available in both perl
and awk versions, check the syntax of HTML2 and
HTML3 files for a number of possible errors; they can
perform local link cross-reference verification, and
generate a rudimentary reference-dependency map.

htmlchek checks an HTML file for errors,
and gives warnings about possible
problems;

makemenu makes a simple menu for HTML files,
based on each file’s <TITLE> tag;
it can also make a simple table of
contents based on the <H1>–<H6>
heading tags;

xtraclnk.pl perl procedure to extract links and
anchors from HTML files and to
isolate text contained inside the <A>
and <TITLE> elements;

dehtml removes all HTML markup from a
document; is useful for spell checking;

entify replaces 8-bit Latin-1 input by the
corresponding 7-bit-safe entity refer-
ences;

The syntax to use these programs is typically:
awk -f htmlchek.awk [opts] infile > outfile

perl htmlchek.pl [opts] infile > outfile

As an example we ran these scripts on the test files
of section 6.2.1 with the results shown below, which
are consistent with those obtained previously.
> perl dehtml.pl test1.html

Document test HTML

term 1data 1

term 2data 2

term 3

term 4data 4data 4 bis

> awk -f htmlchek.awk test2.html

Diagnostics for file "test2.html":

<body> without preceding <head>...</head>

Warning! at line 4 of file "test2.html"

16 http://hopf.math.nwu.edu/html2.0/dosearch.html.
17 http://hopf.math.nwu.edu/html2.0/docindex.html.
18 The documentation is at the URL http://uts.cc.

utexas.edu/~churchh/htmlchek.html and the tar file at
ftp://ftp.cs.buffalo.edu/pub/htmlchek/.

Figure 12: Searching the HTML2 DTD

Figure 13: Index entries for the HTML2 DTD

TUGboat, Volume 16 (1995), No. 2 121

No <H1> in <body>...</body>

Warning! at line 6 of file "test2.html"

<HEAD> not used in document

Warning! at END of file "test2.html"

<TITLE> not used in document

ERROR! at END of file "test2.html"

Tag P occurred

Tag HTML occurred

Tag BODY occurred

Tag !DOCTYPE occurred

> perl htmlchek.pl test3.html

Diagnostics for file "test3.html":

 outside of list

ERROR! at line 8 of file "test3.html"

No <H1> in <body>...</body>

Warning! at line 9 of file "test3.html"

Tag !DOCTYPE occurred

Tag BODY occurred

Tag HEAD occurred

Tag HTML occurred

Tag LI occurred

Tag TITLE occurred

7 DTD Transformations

The logical markup of SGML documents makes it
possible to transform the markup associated to a
DTD into that of another. When translating the
markup one has to take into consideration the fact
that between some elements a one-to-one mapping
may not exist, but that a many-to-one, and one-
to-many correspondence has to be considered. It
should also be noted that the tools used for this
purpose need to be sophisticated, since a normal
grammar tool, such as ya, is not suitable for parsing
SGML documents.

7.1 sgmls.pl

A translator skeleton, sgmls.pl, is included with
the nsgmls distribution. This perl script reads the
ESIS output of nsgmls and provides a set of routines
that can be used for calling user-specified translation
routines of each element.

7.2 SGMLS.pm and sgmlspl

David Megginson (University of Ottawa, Canada,
dmeggins@aix1.uottawa.ca) has developed a more
object-oriented approach for the translations, also
based on the ESIS output of nsgmls and calling
event-routines for each element found in the
input stream. This package includes a default
configuration for translating documents marked up
according to the Doc-BookDTD into HTML or LATEX
markup.
The sp parser provides an application level

interface to SGML document handling. The core
of sp uses C++ and provides a solid class library
for parsing SGML documents. The parsing of an

SGML document causes events and the user can
write handlers to translate them in the appropriate
way.

7.3 Conversion from Doc-Book to HTML3

The translation program generates events for each
primitive in the source document and these events
are handled by calling a corresponding routine.
These routines then produce the corresponding
HTML/LATEX output. Thanks to its object-oriented
flavour the overall architecture provides solid ground
for DTD translations. The following listing gives
an idea of how the conversion is implemented. In
the example below two elements are translated into
LATEX. When a tag is found that can be translated,
the corresponding string is produced.

Program listings appear in verbatim

sgml(’<PROGRAMLISTING>’,

"\n\\begin{verbatim}\n");

sgml(’</PROGRAMLISTING>’,

"\n\\end{verbatim}}\n");

Class names appear in typewriter.

sgml(’<CLASSNAME>’, "{\\ttfamily ");

sgml(’</CLASSNAME>’, "}");

This example is extremely simple since the
mappings are basically one-to-one. In the more
general case, when a document element can be used
inside different elements, the substitution is not
just a string, but a procedure call, which allows,
for instance, backtracking to cope with context-
dependent conversion rules that take into account
the current context. For instance, the code below
shows how, when reaching the <TITLE> end tag, the
title information is handled differently, according to
whether it occurred inside an article header, section
or table element.

sgml(’<TITLE>’,

sub { push_output ’string’; });

sgml(’</TITLE>’, sub {

my $element = shift;

my $data = pop_output;

if ($element->in(ARTHEADER)) {

$title = $data;

} elsif ($element->in(SECT1) ||

$element->in(IMPORTANT)) {

output "\n\n\\section{$data}\n";

output "\\label{$id}\n" if $id;

output "\n";

} elsif ($element->in(TABLE)) {

output "\\caption{$data}\n";

output "\\label{$id}\n" if $id;

output "\n";

TUGboat, Volume 16 (1995), No. 2 122

DocBook DTD sgmls
ESIS

representation
Translator

Configuration file

HTML3 DTD

Figure 14: Schematic overview of the Doc-Book to HTML conversion process

} else {

die "No TITLE allowed in "

. $element->parent->name . "\n";

}

});

A conversion example of an extract from the
Doc-Book DTD manual is given in Appendix H on
page 143. It shows part of the original Doc-Book
document markup, how it is presented in the ESIS
format, and finally its translation into HTML3.
Figure 14 shows the principle of the translation
process.

7.4 Commercial solutions

Several companies provide commercial solutions for
doing do the translations: Exoterica, AIS, EBT
(Electronic Book Technologies) and Avalanche to
mention a few.

8 Other Standards in the Area of
Electronic Documents

SGML is part of a vast project conceived by
the International Standards Organization (ISO) to
develop a model to describe the complete process
of creating, exchanging, editing and viewing or
printing of electronic documents. This model
consists of several standards, some already adopted,
others still under discussion (see Goossens and van
Herwijnen (1992) and Goossens and van Herwijnen
(1992a)).

SGML (Standard Generalized Markup
Language)

ISO 8879, the Standard described in this article,
is concerned with the creation and editing of doc-
uments. A complementary standard is ISO 9069
(ISO, 1988a), SDIF, for “SGML Document Inter-
change Format”. ISO/IEC 10744, the Hytime Stan-
dard, presents a formalism for the representation
of hypermedia documents. The Hytime language
(Goldfarb (1991), ISO (1992)) allows the descrip-

tions of situations that are time dependent (for ex-
ample CD-I).

DSSSL (Document Style Semantics and
Specification Language)

International Standard ISO/IEC 10179 (ISO,
1995a), was adopted at the beginning of 1995. It
presents a framework to express the concepts and
actions necessary for transforming a structurally
marked up document into its final physical form.
Although this Standard is primarily targeted at
document handling, it can also define other layouts,
such as those needed for use with databases.19

SPDL (Standard Page Description
Language)

International Standard ISO/IEC 10180 (ISO, 1995)
defines a formalism for the description of documents
in their final, completely typeset, unrevisable
form.20 The structure of the language and its syntax
strongly resemble the PostScript language, which is
not surprising since PostScript has become the de
facto standard page description language.

Fonts

To exchange documents one must also define a
font standard. ISO/IEC 9541 (ISO, 1991) describes
a method for naming and grouping glyphs or
glyph collections independently of a particular font
language (such as PostScript or Truetype).

Acknowledgments

We sincerely thank Nelson Beebe (Utah University,
beebe@math.utah.edu) for several interesting e-
mail discussions and for his detailed reading of
the compuscript. His suggestions and hints have
without doubt substantially improved the quality of
the text. We also want to acknowledge the help of
Steven Kennedy (CERN) who proofread the article.

19 More on DSSSL by James Clark is available at the URL
http://www.jclark.com/dsssl/.
20 More on SPDL can be found at the URL http://www.

st.rim.or.jp/~uda/spdl/spdl.html.

TUGboat, Volume 16 (1995), No. 2 123

References

Association of American Publishers, Electronic
Manuscript Series. Reference Manual on Elec-
tronic Manuscript Preparation and Markup
(Version 2). Association of American Publish-
ers, EPSIG, Dublin, OH, USA, 1989.

Association of American Publishers, Electronic
Manuscript Series. Author’s Guide to Electronic
Manuscript Preparation and Markup (Version
2). Association of American Publishers, EPSIG,
Dublin, OH, USA, 1989.

Association of American Publishers, Electronic
Manuscript Series. Markup of tabular material
(Version 2). Association of American Publishers,
EPSIG, Dublin, OH, USA, 1989.

Association of American Publishers, Electronic
Manuscript Series. Markup of mathematical
formulas (Version 2). Association of American
Publishers, EPSIG, Dublin, OH, USA, 1989.

Goldfarb, Charles F. HyTime: A standard for struc-
tured hypermedia interchange. IEEE Computer,
pages 81–84, August 1991.

Goldfarb, Charles F. The SGML Handbook. Oxford
University Press, 1990.

Goossens, Michel and Eric van Herwijnen. Introduc-
tion à SGML, DSSSL et SPDL. Cahiers GUTen-
berg, 12, pages 37–56, December 1991.

Goossens, Michel and Eric van Herwijnen. Scientific
Text Processing. International Journal of Mod-
ern Physics C, vol. 3(3), pages 479–546, June
1992.

van Herwijnen, Eric. Practical SGML (Second
Edition). Wolters-Kluwer Academic Publishers,
Boston, 1994.

International Organization or Standardization. In-
formation processing — Text and office sys-
tems — Standard Generalized Markup Language
(SGML). ISO 8879:1986(E), ISO Geneva, 1986.

International Organization for Standardization,
Code for the presentation of names of languages.
ISO 639:1988 (E/F), ISO Geneva, 1988.

International Organization for Standardization, In-
formation processing — SGML support facilities
— SGML Document Interchange Format (SDIF).
ISO 9069:1988, ISO Geneva, 1988.

International Organization for Standardization. In-
formation Technology — Font information in-
terchange (three parts). ISO/IEC 9541-1,2,3, ISO
Geneva, 1991 and 1993.

International Organization for Standardization. In-
formation Technology — Hypermedia/Time-
based Structuring Language (Hytime). ISO/IEC
10744:1992, ISO Geneva, 1992.

International Organization for Standardization. In-
formation Technology — Text Communication
— Standard Page Description Language (SPDL).
ISO/IEC 10180, ISO Geneva, 1995.

International Organization for Standardization. In-
formation processing — Text and office sys-
tems — Document Style Semantics and Specifi-
cation Language (DSSSL). ISO/IEC 10179.2, ISO
Geneva, 1995.

Karney, James “SGML and HTML TagMasters.” PC
Magazine, 14 (3), pages 144–162, 1995.

Karney, James “SGML: It’s Still à la Carte.” PC
Magazine, 14 (3), pages 168–171, 1995.

Ores, Pauline. “Hypertext Publishing — Edit
Trial.” PC Magazine, 14 (3), pages 132–143,
1995.

Vignaud, Dominique. L’édition structurée des docu-
ments. Éditions du Cercle de la Librairie, Paris,
1990.

⋄ Michel Goossens and Janne

Saarela

CERN, CN Division, CH-1211

Geneva 23, Switzerland

Email: goossens@cern.ch and

saarela@cern.ch

TUGboat, Volume 16 (1995), No. 2 124

Appendices

B The DTD of the HTML2 Language
1 <!-- html.dtd
2

3 Document Type Definition for the HyperText Markup Language
4 (HTML DTD)
5

6 $Id: html.dtd,v 1.25 1995/03/29 18:53:13 connolly Exp $
7

8 Author: Daniel W. Connolly <connolly@w3.org>
9 See Also: html.decl, html-0.dtd, html-1.dtd
10 http://info.cern.ch/hypertext/WWW/MarkUp/MarkUp.html
11 -->
12

13 <!ENTITY % HTML.Version
14 "-//IETF//DTD HTML 2.0//EN"
15

16 -- Typical usage:
17

18 <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
19 <html>
20 ...
21 </html>
22 --
23 >
24

25

26 <!--============ Feature Test Entities ========================-->
27

28 <!ENTITY % HTML.Recommended "IGNORE"
29 -- Certain features of the language are necessary for
30 compatibility with widespread usage, but they may
31 compromise the structural integrity of a document.
32 This feature test entity enables a more prescriptive
33 document type definition that eliminates
34 those features.
35 -->
36

37 <![%HTML.Recommended [
38 <!ENTITY % HTML.Deprecated "IGNORE">
39]]>
40

41 <!ENTITY % HTML.Deprecated "INCLUDE"
42 -- Certain features of the language are necessary for
43 compatibility with earlier versions of the specification,
44 but they tend to be used an implemented inconsistently,
45 and their use is deprecated. This feature test entity
46 enables a document type definition that eliminates
47 these features.
48 -->
49

50 <!ENTITY % HTML.Highlighting "INCLUDE"
51 -- Use this feature test entity to validate that a
52 document uses no highlighting tags, which may be
53 ignored on minimal implementations.
54 -->
55

56 <!ENTITY % HTML.Forms "INCLUDE"
57 -- Use this feature test entity to validate that a document
58 contains no forms, which may not be supported in minimal
59 implementations
60 -->
61

62 <!--============== Imported Names ==============================-->
63

64 <!ENTITY % Content-Type "CDATA"
65 -- meaning an internet media type
66 (aka MIME content type, as per RFC1521)
67 -->
68

69 <!ENTITY % HTTP-Method "GET | POST"
70 -- as per HTTP specification, in progress
71 -->
72

73 <!ENTITY % URI "CDATA"
74 -- The term URI means a CDATA attribute
75 whose value is a Uniform Resource Identifier,
76 as defined by
77 "Universal Resource Identifiers" by Tim Berners-Lee

TUGboat, Volume 16 (1995), No. 2 125

78 aka RFC 1630
79

80 Note that CDATA attributes are limited by the LITLEN
81 capacity (1024 in the current version of html.decl),
82 so that URIs in HTML have a bounded length.
83

84 -->
85

86

87 <!--========= DTD "Macros" =====================-->
88

89 <!ENTITY % heading "H1|H2|H3|H4|H5|H6">
90

91 <!ENTITY % list " UL | OL | DIR | MENU " >
92

93

94 <!--======= Character mnemonic entities =================-->
95

96

97 <!ENTITY % ISOlat1 PUBLIC
98 "-//IETF//ENTITIES Added Latin 1 for HTML//EN" "iso-lat1.gml">
99

100 %ISOlat1;
101

102 <!ENTITY amp CDATA "&" -- ampersand -->
103 <!ENTITY gt CDATA ">" -- greater than -->
104 <!ENTITY lt CDATA "<" -- less than -->
105 <!ENTITY quot CDATA """ -- double quote -->
106

107

108 <!--========= SGML Document Access (SDA) Parameter Entities =====-->
109

110 <!-- HTML 2.0 contains SGML Document Access (SDA) fixed attributes
111 in support of easy transformation to the International Committee
112 for Accessible Document Design (ICADD) DTD
113 "-//EC-USA-CDA/ICADD//DTD ICADD22//EN".
114 ICADD applications are designed to support usable access to
115 structured information by print-impaired individuals through
116 Braille, large print and voice synthesis. For more information on
117 SDA & ICADD:
118 - ISO 12083:1993, Annex A.8, Facilities for Braille,
119 large print and computer voice
120 - ICADD ListServ
121 <ICADD%ASUACAD.BITNET@ARIZVM1.ccit.arizona.edu>
122 - Usenet news group bit.listserv.easi
123 - Recording for the Blind, +1 800 221 4792
124 -->
125

126 <!ENTITY % SDAFORM "SDAFORM CDATA #FIXED"
127 -- one to one mapping -->
128 <!ENTITY % SDARULE "SDARULE CDATA #FIXED"
129 -- context-sensitive mapping -->
130 <!ENTITY % SDAPREF "SDAPREF CDATA #FIXED"
131 -- generated text prefix -->
132 <!ENTITY % SDASUFF "SDASUFF CDATA #FIXED"
133 -- generated text suffix -->
134 <!ENTITY % SDASUSP "SDASUSP NAME #FIXED"
135 -- suspend transform process -->
136

137

138 <!--========== Text Markup =====================-->
139

140 <![%HTML.Highlighting [
141

142 <!ENTITY % font " TT | B | I ">
143

144 <!ENTITY % phrase "EM | STRONG | CODE | SAMP | KBD | VAR | CITE ">
145

146 <!ENTITY % text "#PCDATA | A | IMG | BR | %phrase | %font">
147

148 <!ELEMENT (%font;|%phrase) - - (%text)*>
149 <!ATTLIST (TT | CODE | SAMP | KBD | VAR)
150 %SDAFORM; "Lit"
151 >
152 <!ATTLIST (B | STRONG)
153 %SDAFORM; "B"
154 >
155 <!ATTLIST (I | EM | CITE)
156 %SDAFORM; "It"
157 >

TUGboat, Volume 16 (1995), No. 2 126

158

159 <!-- <TT> Typewriter text -->
160 <!-- Bold text -->
161 <!-- <I> Italic text -->
162

163 <!-- Emphasized phrase -->
164 <!-- Strong emphais -->
165 <!-- <CODE> Source code phrase -->
166 <!-- <SAMP> Sample text or characters -->
167 <!-- <KBD> Keyboard phrase, e.g. user input -->
168 <!-- <VAR> Variable phrase or substituable -->
169 <!-- <CITE> Name or title of cited work -->
170

171 <!ENTITY % pre.content "#PCDATA | A | HR | BR | %font | %phrase">
172

173]]>
174

175 <!ENTITY % text "#PCDATA | A | IMG | BR">
176

177 <!ELEMENT BR - O EMPTY>
178 <!ATTLIST BR
179 %SDAPREF; "&#RE;"
180 >
181

182 <!--
 Line break -->
183

184

185 <!--========= Link Markup ======================-->
186

187 <![%HTML.Recommended [
188 <!ENTITY % linkName "ID">
189]]>
190

191 <!ENTITY % linkName "CDATA">
192

193 <!ENTITY % linkType "NAME"
194 -- a list of these will be specified at a later date -->
195

196 <!ENTITY % linkExtraAttributes
197 "REL %linkType #IMPLIED
198 REV %linkType #IMPLIED
199 URN CDATA #IMPLIED
200 TITLE CDATA #IMPLIED
201 METHODS NAMES #IMPLIED
202 ">
203

204 <![%HTML.Recommended [
205 <!ENTITY % A.content "(%text)*"
206 -- <H1>Heading</H1>
207 is preferred to
208 <H1>Heading</H1>
209 -->
210]]>
211

212 <!ENTITY % A.content "(%heading|%text)*">
213

214 <!ELEMENT A - - %A.content -(A)>
215 <!ATTLIST A
216 HREF %URI #IMPLIED
217 NAME %linkName #IMPLIED
218 %linkExtraAttributes;
219 %SDAPREF; "<Anchor: #AttList>"
220 >
221 <!-- <A> Anchor; source/destination of link -->
222 <!-- Name of this anchor -->
223 <!-- Address of link destination -->
224 <!-- Permanent address of destination -->
225 <!-- Relationship to destination -->
226 <!-- Relationship of destination to this -->
227 <!-- Title of destination (advisory) -->
228 <!-- Operations on destination (advisory) -->
229

230

231 <!--========== Images ==========================-->
232

233 <!ELEMENT IMG - O EMPTY>
234 <!ATTLIST IMG
235 SRC %URI; #REQUIRED
236 ALT CDATA #IMPLIED
237 ALIGN (top|middle|bottom) #IMPLIED

TUGboat, Volume 16 (1995), No. 2 127

238 ISMAP (ISMAP) #IMPLIED
239 %SDAPREF; "<Fig><?SDATrans Img: #AttList>#AttVal(Alt)</Fig>"
240 >
241

242 <!-- Image; icon, glyph or illustration -->
243 <!-- Address of image object -->
244 <!-- Textual alternative -->
245 <!-- Position relative to text -->
246 <!-- Each pixel can be a link -->
247

248 <!--========== Paragraphs=======================-->
249

250 <!ELEMENT P - O (%text)*>
251 <!ATTLIST P
252 %SDAFORM; "Para"
253 >
254

255 <!-- <P> Paragraph -->
256

257

258 <!--========== Headings, Titles, Sections ===============-->
259

260 <!ELEMENT HR - O EMPTY>
261 <!ATTLIST HR
262 %SDAPREF; "&#RE;&#RE;"
263 >
264

265 <!-- <HR> Horizontal rule -->
266

267 <!ELEMENT (%heading) - - (%text;)*>
268 <!ATTLIST H1
269 %SDAFORM; "H1"
270 >
271 <!ATTLIST H2
272 %SDAFORM; "H2"
273 >
274 <!ATTLIST H3
275 %SDAFORM; "H3"
276 >
277 <!ATTLIST H4
278 %SDAFORM; "H4"
279 >
280 <!ATTLIST H5
281 %SDAFORM; "H5"
282 >
283 <!ATTLIST H6
284 %SDAFORM; "H6"
285 >
286

287 <!-- <H1> Heading, level 1 -->
288 <!-- <H2> Heading, level 2 -->
289 <!-- <H3> Heading, level 3 -->
290 <!-- <H4> Heading, level 4 -->
291 <!-- <H5> Heading, level 5 -->
292 <!-- <H6> Heading, level 6 -->
293

294

295 <!--========== Text Flows ======================-->
296

297 <![%HTML.Forms [
298 <!ENTITY % block.forms "BLOCKQUOTE | FORM | ISINDEX">
299]]>
300

301 <!ENTITY % block.forms "BLOCKQUOTE">
302

303 <![%HTML.Deprecated [
304 <!ENTITY % preformatted "PRE | XMP | LISTING">
305]]>
306

307 <!ENTITY % preformatted "PRE">
308

309 <!ENTITY % block "P | %list | DL
310 | %preformatted
311 | %block.forms">
312

313 <!ENTITY % flow "(%text|%block)*">
314

315 <!ENTITY % pre.content "#PCDATA | A | HR | BR">
316 <!ELEMENT PRE - - (%pre.content)*>
317 <!ATTLIST PRE

TUGboat, Volume 16 (1995), No. 2 128

318 WIDTH NUMBER #implied
319 %SDAFORM; "Lit"
320 >
321

322 <!-- <PRE> Preformatted text -->
323 <!-- <PRE WIDTH=...> Maximum characters per line -->
324

325 <![%HTML.Deprecated [
326

327 <!ENTITY % literal "CDATA"
328 -- historical, non-conforming parsing mode where
329 the only markup signal is the end tag
330 in full
331 -->
332

333 <!ELEMENT (XMP|LISTING) - - %literal>
334 <!ATTLIST XMP
335 %SDAFORM; "Lit"
336 %SDAPREF; "Example:&#RE;"
337 >
338 <!ATTLIST LISTING
339 %SDAFORM; "Lit"
340 %SDAPREF; "Listing:&#RE;"
341 >
342

343 <!-- <XMP> Example section -->
344 <!-- <LISTING> Computer listing -->
345

346 <!ELEMENT PLAINTEXT - O %literal>
347 <!-- <PLAINTEXT> Plain text passage -->
348

349 <!ATTLIST PLAINTEXT
350 %SDAFORM; "Lit"
351 >
352]]>
353

354

355 <!--========== Lists ==================-->
356

357 <!ELEMENT DL - - (DT | DD)+>
358 <!ATTLIST DL
359 COMPACT (COMPACT) #IMPLIED
360 %SDAFORM; "List"
361 %SDAPREF; "Definition List:"
362 >
363

364 <!ELEMENT DT - O (%text)*>
365 <!ATTLIST DT
366 %SDAFORM; "Term"
367 >
368

369 <!ELEMENT DD - O %flow>
370 <!ATTLIST DD
371 %SDAFORM; "LItem"
372 >
373

374 <!-- <DL> Definition list, or glossary -->
375 <!-- <DL COMPACT> Compact style list -->
376 <!-- <DT> Term in definition list -->
377 <!-- <DD> Definition of term -->
378

379 <!ELEMENT (OL|UL) - - (LI)+>
380 <!ATTLIST OL
381 COMPACT (COMPACT) #IMPLIED
382 %SDAFORM; "List"
383 >
384 <!ATTLIST UL
385 COMPACT (COMPACT) #IMPLIED
386 %SDAFORM; "List"
387 >
388 <!-- Unordered list -->
389 <!-- <UL COMPACT> Compact list style -->
390 <!-- Ordered, or numbered list -->
391 <!-- <OL COMPACT> Compact list style -->
392

393

394 <!ELEMENT (DIR|MENU) - - (LI)+ -(%block)>
395 <!ATTLIST DIR
396 COMPACT (COMPACT) #IMPLIED
397 %SDAFORM; "List"

TUGboat, Volume 16 (1995), No. 2 129

398 %SDAPREF; "<LHead>Directory</LHead>"
399 >
400 <!ATTLIST MENU
401 COMPACT (COMPACT) #IMPLIED
402 %SDAFORM; "List"
403 %SDAPREF; "<LHead>Menu</LHead>"
404 >
405

406 <!-- <DIR> Directory list -->
407 <!-- <DIR COMPACT> Compact list style -->
408 <!-- <MENU> Menu list -->
409 <!-- <MENU COMPACT> Compact list style -->
410

411 <!ELEMENT LI - O %flow>
412 <!ATTLIST LI
413 %SDAFORM; "LItem"
414 >
415

416 <!-- List item -->
417

418 <!--========== Document Body ===================-->
419

420 <![%HTML.Recommended [
421 <!ENTITY % body.content "(%heading|%block|HR|ADDRESS|IMG)*"
422 -- <h1>Heading</h1>
423 <p>Text ...
424 is preferred to
425 <h1>Heading</h1>
426 Text ...
427 -->
428]]>
429

430 <!ENTITY % body.content "(%heading | %text | %block |
431 HR | ADDRESS)*">
432

433 <!ELEMENT BODY O O %body.content>
434

435 <!-- <BODY> Document body -->
436

437 <!ELEMENT BLOCKQUOTE - - %body.content>
438 <!ATTLIST BLOCKQUOTE
439 %SDAFORM; "BQ"
440 >
441

442 <!-- <BLOCKQUOTE> Quoted passage -->
443

444 <!ELEMENT ADDRESS - - (%text|P)*>
445 <!ATTLIST ADDRESS
446 %SDAFORM; "Lit"
447 %SDAPREF; "Address:&#RE;"
448 >
449

450 <!-- <ADDRESS> Address, signature, or byline -->
451

452

453 <!--======= Forms ====================-->
454

455 <![%HTML.Forms [
456

457 <!ELEMENT FORM - - %body.content -(FORM) +(INPUT|SELECT|TEXTAREA)>
458 <!ATTLIST FORM
459 ACTION %URI #IMPLIED
460 METHOD (%HTTP-Method) GET
461 ENCTYPE %Content-Type; "application/x-www-form-urlencoded"
462 %SDAPREF; "<Para>Form:</Para>"
463 %SDASUFF; "<Para>Form End.</Para>"
464 >
465

466 <!-- <FORM> Fill-out or data-entry form -->
467 <!-- <FORM ACTION="..."> Address for completed form -->
468 <!-- <FORM METHOD=...> Method of submitting form -->
469 <!-- <FORM ENCTYPE="..."> Representation of form data -->
470

471 <!ENTITY % InputType "(TEXT | PASSWORD | CHECKBOX |
472 RADIO | SUBMIT | RESET |
473 IMAGE | HIDDEN)">
474 <!ELEMENT INPUT - O EMPTY>
475 <!ATTLIST INPUT
476 TYPE %InputType TEXT
477 NAME CDATA #IMPLIED

TUGboat, Volume 16 (1995), No. 2 130

478 VALUE CDATA #IMPLIED
479 SRC %URI #IMPLIED
480 CHECKED (CHECKED) #IMPLIED
481 SIZE CDATA #IMPLIED
482 MAXLENGTH NUMBER #IMPLIED
483 ALIGN (top|middle|bottom) #IMPLIED
484 %SDAPREF; "Input: "
485 >
486

487 <!-- <INPUT> Form input datum -->
488 <!-- <INPUT TYPE=...> Type of input interaction -->
489 <!-- <INPUT NAME=...> Name of form datum -->
490 <!-- <INPUT VALUE="..."> Default/initial/selected value -->
491 <!-- <INPUT SRC="..."> Address of image -->
492 <!-- <INPUT CHECKED> Initial state is "on" -->
493 <!-- <INPUT SIZE=...> Field size hint -->
494 <!-- <INPUT MAXLENGTH=...> Data length maximum -->
495 <!-- <INPUT ALIGN=...> Image alignment -->
496

497 <!ELEMENT SELECT - - (OPTION+) -(INPUT|SELECT|TEXTAREA)>
498 <!ATTLIST SELECT
499 NAME CDATA #REQUIRED
500 SIZE NUMBER #IMPLIED
501 MULTIPLE (MULTIPLE) #IMPLIED
502 %SDAFORM; "List"
503 %SDAPREF;
504 "<LHead>Select #AttVal(Multiple)</LHead>"
505 >
506

507 <!-- <SELECT> Selection of option(s) -->
508 <!-- <SELECT NAME=...> Name of form datum -->
509 <!-- <SELECT SIZE=...> Options displayed at a time -->
510 <!-- <SELECT MULTIPLE> Multiple selections allowed -->
511

512 <!ELEMENT OPTION - O (#PCDATA)*>
513 <!ATTLIST OPTION
514 SELECTED (SELECTED) #IMPLIED
515 VALUE CDATA #IMPLIED
516 %SDAFORM; "LItem"
517 %SDAPREF;
518 "Option: #AttVal(Value) #AttVal(Selected)"
519 >
520

521 <!-- <OPTION> A selection option -->
522 <!-- <OPTION SELECTED> Initial state -->
523 <!-- <OPTION VALUE="..."> Form datum value for this option-->
524

525 <!ELEMENT TEXTAREA - - (#PCDATA)* -(INPUT|SELECT|TEXTAREA)>
526 <!ATTLIST TEXTAREA
527 NAME CDATA #REQUIRED
528 ROWS NUMBER #REQUIRED
529 COLS NUMBER #REQUIRED
530 %SDAFORM; "Para"
531 %SDAPREF; "Input Text -- #AttVal(Name): "
532 >
533

534 <!-- <TEXTAREA> An area for text input -->
535 <!-- <TEXTAREA NAME=...> Name of form datum -->
536 <!-- <TEXTAREA ROWS=...> Height of area -->
537 <!-- <TEXTAREA COLS=...> Width of area -->
538

539]]>
540

541

542 <!--======= Document Head ======================-->
543

544 <![%HTML.Recommended [
545 <!ENTITY % head.extra "META* & LINK*">
546]]>
547

548 <!ENTITY % head.extra "NEXTID? & META* & LINK*">
549

550 <!ENTITY % head.content "TITLE & ISINDEX? & BASE? &
551 (%head.extra)">
552

553 <!ELEMENT HEAD O O (%head.content)>
554

555 <!-- <HEAD> Document head -->
556

557 <!ELEMENT TITLE - - (#PCDATA)*>

TUGboat, Volume 16 (1995), No. 2 131

558 <!ATTLIST TITLE
559 %SDAFORM; "Ti" >
560

561 <!-- <TITLE> Title of document -->
562

563 <!ELEMENT LINK - O EMPTY>
564 <!ATTLIST LINK
565 HREF %URI #REQUIRED
566 %linkExtraAttributes;
567 %SDAPREF; "Linked to : #AttVal (TITLE) (URN) (HREF)>" >
568

569 <!-- <LINK> Link from this document -->
570 <!-- <LINK HREF="..."> Address of link destination -->
571 <!-- <LINK URN="..."> Lasting name of destination -->
572 <!-- <LINK REL=...> Relationship to destination -->
573 <!-- <LINK REV=...> Relationship of destination to this -->
574 <!-- <LINK TITLE="..."> Title of destination (advisory) -->
575 <!-- <LINK METHODS="..."> Operations allowed (advisory) -->
576

577 <!ELEMENT ISINDEX - O EMPTY>
578 <!ATTLIST ISINDEX
579 %SDAPREF;
580 "<Para>[Document is indexed/searchable.]</Para>">
581

582 <!-- <ISINDEX> Document is a searchable index -->
583

584 <!ELEMENT BASE - O EMPTY>
585 <!ATTLIST BASE
586 HREF %URI; #REQUIRED >
587

588 <!-- <BASE> Base context document -->
589 <!-- <BASE HREF="..."> Address for this document -->
590

591 <!ELEMENT NEXTID - O EMPTY>
592 <!ATTLIST NEXTID
593 N %linkName #REQUIRED >
594

595 <!-- <NEXTID> Next ID to use for link name -->
596 <!-- <NEXTID N=...> Next ID to use for link name -->
597

598 <!ELEMENT META - O EMPTY>
599 <!ATTLIST META
600 HTTP-EQUIV NAME #IMPLIED
601 NAME NAME #IMPLIED
602 CONTENT CDATA #REQUIRED >
603

604 <!-- <META> Generic Metainformation -->
605 <!-- <META HTTP-EQUIV=...> HTTP response header name -->
606 <!-- <META NAME=...> Metainformation name -->
607 <!-- <META CONTENT="..."> Associated information -->
608

609 <!--======= Document Structure =================-->
610

611 <![%HTML.Deprecated [
612 <!ENTITY % html.content "HEAD, BODY, PLAINTEXT?">
613]]>
614 <!ENTITY % html.content "HEAD, BODY">
615

616 <!ELEMENT HTML O O (%html.content)>
617 <!ENTITY % version.attr "VERSION CDATA #FIXED ’%HTML.Version;’">
618

619 <!ATTLIST HTML
620 %version.attr;
621 %SDAFORM; "Book"
622 >
623

624 <!-- <HTML> HTML Document -->

C The HTML2 SGML Declaration
1 <!SGML "ISO 8879:1986"
2 --
3 SGML Declaration for HyperText Markup Language (HTML).
4

TUGboat, Volume 16 (1995), No. 2 132

5 --
6

7 CHARSET
8 BASESET "ISO 646:1983//CHARSET
9 International Reference Version
10 (IRV)//ESC 2/5 4/0"
11 DESCSET 0 9 UNUSED
12 9 2 9
13 11 2 UNUSED
14 13 1 13
15 14 18 UNUSED
16 32 95 32
17 127 1 UNUSED
18 BASESET "ISO Registration Number 100//CHARSET
19 ECMA-94 Right Part of
20 Latin Alphabet Nr. 1//ESC 2/13 4/1"
21

22 DESCSET 128 32 UNUSED
23 160 96 32
24

25 CAPACITY SGMLREF
26 TOTALCAP 150000
27 GRPCAP 150000
28

29 SCOPE DOCUMENT
30 SYNTAX
31 SHUNCHAR CONTROLS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
32 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 127
33 BASESET "ISO 646:1983//CHARSET
34 International Reference Version
35 (IRV)//ESC 2/5 4/0"
36 DESCSET 0 128 0
37 FUNCTION
38 RE 13
39 RS 10
40 SPACE 32
41 TAB SEPCHAR 9
42

43

44 NAMING LCNMSTRT ""
45 UCNMSTRT ""
46 LCNMCHAR ".-"
47 UCNMCHAR ".-"
48 NAMECASE GENERAL YES
49 ENTITY NO
50 DELIM GENERAL SGMLREF
51 SHORTREF SGMLREF
52 NAMES SGMLREF
53 QUANTITY SGMLREF
54 ATTSPLEN 2100
55 LITLEN 1024
56 NAMELEN 72 -- somewhat arbitrary; taken from
57 internet line length conventions --
58 PILEN 1024
59 TAGLEN 2100
60 GRPGTCNT 150
61 GRPCNT 64
62

63 FEATURES
64 MINIMIZE
65 DATATAG NO
66 OMITTAG YES
67 RANK NO
68 SHORTTAG YES
69 LINK
70 SIMPLE NO
71 IMPLICIT NO
72 EXPLICIT NO
73 OTHER
74 CONCUR NO
75 SUBDOC NO
76 FORMAL YES
77 APPINFO "SDA" -- conforming SGML Document Access application
78 --
79 >
80 <!--
81 $Id: html.decl,v 1.14 1995/02/10 22:20:05 connolly Exp $
82

83 Author: Daniel W. Connolly <connolly@hal.com>
84

TUGboat, Volume 16 (1995), No. 2 133

85 See also: http://www.hal.com/%7Econnolly/html-spec
86 http://info.cern.ch/hypertext/WWW/MarkUp/MarkUp.html
87 -->

D The SGML Open HTML Catalog File

SGML Open is an industry consortium dedicated to encouraging the adoption of SGML as a standard for
document and data interchange. It proposes a standard way for mapping entity and other external references
in a DTD to file names via a “catalog” file. Below is an example of such a catalog file for HTML.
1 -- catalog: SGML Open style entity catalog for HTML --
2 -- $Id: catalog,v 1.2 1994/11/30 23:45:18 connolly Exp $ --
3

4 -- Ways to refer to Level 2: most general to most specific --
5 PUBLIC "-//IETF//DTD HTML//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html.dtd
6 PUBLIC "-//IETF//DTD HTML 2.0//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html.dtd
7 PUBLIC "-//IETF//DTD HTML Level 2//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html.dtd
8 PUBLIC "-//IETF//DTD HTML 2.0 Level 2//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html.dtd
9

10 -- Ways to refer to Level 1: most general to most specific --
11 PUBLIC "-//IETF//DTD HTML Level 1//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html-1.dtd
12 PUBLIC "-//IETF//DTD HTML 2.0 Level 1//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html-1.dtd
13

14 -- Ways to refer to Level 0: most general to most specific --
15 PUBLIC "-//IETF//DTD HTML Level 0//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html-0.dtd
16 PUBLIC "-//IETF//DTD HTML 2.0 Level 0//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html-0.dtd
17

18

19 -- Ways to refer to Strict Level 2: most general to most specific --
20 PUBLIC "-//IETF//DTD HTML Strict//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html-s.dtd
21 PUBLIC "-//IETF//DTD HTML 2.0 Strict//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html-s.dtd
22 PUBLIC "-//IETF//DTD HTML Strict Level 2//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html-s.dtd
23 PUBLIC "-//IETF//DTD HTML 2.0 Strict Level 2//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html-s.dtd
24

25 -- Ways to refer to Strict Level 1: most general to most specific --
26 PUBLIC "-//IETF//DTD HTML Strict Level 1//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html-1s.dtd
27 PUBLIC "-//IETF//DTD HTML 2.0 Strict Level 1//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html-1s.dtd
28

29 -- Ways to refer to Strict Level 0: most general to most specific --
30 PUBLIC "-//IETF//DTD HTML Strict Level 0//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html-0s.dtd
31 PUBLIC "-//IETF//DTD HTML 2.0 Strict Level 0//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html-0s.dtd
32

33 -- PUBLIC entity sets --
34 PUBLIC "ISO 8879-1986//ENTITIES Added Latin 1//EN//HTML" /afs/cern.ch/user/j/jsaarela/sgml/dtds/iso-lat1.gml
35 PUBLIC "-//IETF//ENTITIES Added Latin 1 for HTML//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/iso-lat1.gml
36 PUBLIC "-//IETF//ENTITIES icons for HTML//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/htmlicons.gml
37 PUBLIC "-//IETF//ENTITIES Math and Greek for HTML//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/iso-grk1.gml
38

39 -- HTML3 --
40 PUBLIC "-//IETF//DTD HTML 3.0//EN//" /afs/cern.ch/user/j/jsaarela/sgml/dtds/html3.dtd
41

42 -- ISO 12083 --
43 PUBLIC "ISO 12083:1994//DTD Mathematics//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/math.dtd
44 PUBLIC "-//ISO 12083:1994//DTD Mathematics//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/math.dtd
45 PUBLIC "ISO 12083:1994//DTD Book//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/book.dtd
46 PUBLIC "-//ISO 12083:1994//DTD Book//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/book.dtd
47

48 -- DocBook DTD --
49 PUBLIC "-//HaL and O’Reilly//DTD DocBook//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/docbook.2.2.1.dtd
50

51 -- General --
52 PUBLIC "ISO 8879:1986//ENTITIES Publishing//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/iso-pub.gml
53 PUBLIC "ISO 8879:1986//ENTITIES Numeric and Special Graphic//EN" /afs/cern.ch/user/j/jsaarela/sgml/dtds/iso-num.gml
54

55 SGMLDECL "/afs/cern.ch/user/j/jsaarela/sgml/dtds/html3.decl"

TUGboat, Volume 16 (1995), No. 2 134

E The ISO-Latin1 Entity Set

To have an idea of how character entity sets are defined in practice, below is shown the file corresponding
to Latin1 (standard ISO/IEC 8859-1), available as SGML public entity set ISOlat1 with ISO 8879.
1 <!-- (C) International Organization for Standardization 1986
2 Permission to copy in any form is granted for use with
3 conforming SGML systems and applications as defined in
4 ISO 8879, provided this notice is included in all copies.
5 -->
6 <!-- Character entity set. Typical invocation:
7 <!ENTITY % ISOlat1 PUBLIC
8 "ISO 8879-1986//ENTITIES Added Latin 1//EN">
9 %ISOlat1;
10 -->
11 <!ENTITY aacute SDATA "[aacute]"--=small a, acute accent-->
12 <!ENTITY Aacute SDATA "[Aacute]"--=capital A, acute accent-->
13 <!ENTITY acirc SDATA "[acirc]"--=small a, circumflex accent-->
14 <!ENTITY Acirc SDATA "[Acirc]"--=capital A, circumflex accent-->
15 <!ENTITY agrave SDATA "[agrave]"--=small a, grave accent-->
16 <!ENTITY Agrave SDATA "[Agrave]"--=capital A, grave accent-->
17 <!ENTITY aring SDATA "[aring]"--=small a, ring-->
18 <!ENTITY Aring SDATA "[Aring]"--=capital A, ring-->
19 <!ENTITY atilde SDATA "[atilde]"--=small a, tilde-->
20 <!ENTITY Atilde SDATA "[Atilde]"--=capital A, tilde-->
21 <!ENTITY auml SDATA "[auml]"--=small a, dieresis or umlaut mark-->
22 <!ENTITY Auml SDATA "[Auml]"--=capital A, dieresis or umlaut mark-->
23 <!ENTITY aelig SDATA "[aelig]"--=small ae diphthong (ligature)-->
24 <!ENTITY AElig SDATA "[AElig]"--=capital AE diphthong (ligature)-->
25 <!ENTITY ccedil SDATA "[ccedil]"--=small c, cedilla-->
26 <!ENTITY Ccedil SDATA "[Ccedil]"--=capital C, cedilla-->
27 <!ENTITY eth SDATA "[eth]"--=small eth, Icelandic-->
28 <!ENTITY ETH SDATA "[ETH]"--=capital Eth, Icelandic-->
29 <!ENTITY eacute SDATA "[eacute]"--=small e, acute accent-->
30 <!ENTITY Eacute SDATA "[Eacute]"--=capital E, acute accent-->
31 <!ENTITY ecirc SDATA "[ecirc]"--=small e, circumflex accent-->
32 <!ENTITY Ecirc SDATA "[Ecirc]"--=capital E, circumflex accent-->
33 <!ENTITY egrave SDATA "[egrave]"--=small e, grave accent-->
34 <!ENTITY Egrave SDATA "[Egrave]"--=capital E, grave accent-->
35 <!ENTITY euml SDATA "[euml]"--=small e, dieresis or umlaut mark-->
36 <!ENTITY Euml SDATA "[Euml]"--=capital E, dieresis or umlaut mark-->
37 <!ENTITY iacute SDATA "[iacute]"--=small i, acute accent-->
38 <!ENTITY Iacute SDATA "[Iacute]"--=capital I, acute accent-->
39 <!ENTITY icirc SDATA "[icirc]"--=small i, circumflex accent-->
40 <!ENTITY Icirc SDATA "[Icirc]"--=capital I, circumflex accent-->
41 <!ENTITY igrave SDATA "[igrave]"--=small i, grave accent-->
42 <!ENTITY Igrave SDATA "[Igrave]"--=capital I, grave accent-->
43 <!ENTITY iuml SDATA "[iuml]"--=small i, dieresis or umlaut mark-->
44 <!ENTITY Iuml SDATA "[Iuml]"--=capital I, dieresis or umlaut mark-->
45 <!ENTITY ntilde SDATA "[ntilde]"--=small n, tilde-->
46 <!ENTITY Ntilde SDATA "[Ntilde]"--=capital N, tilde-->
47 <!ENTITY oacute SDATA "[oacute]"--=small o, acute accent-->
48 <!ENTITY Oacute SDATA "[Oacute]"--=capital O, acute accent-->
49 <!ENTITY ocirc SDATA "[ocirc]"--=small o, circumflex accent-->
50 <!ENTITY Ocirc SDATA "[Ocirc]"--=capital O, circumflex accent-->
51 <!ENTITY ograve SDATA "[ograve]"--=small o, grave accent-->
52 <!ENTITY Ograve SDATA "[Ograve]"--=capital O, grave accent-->
53 <!ENTITY oslash SDATA "[oslash]"--=small o, slash-->
54 <!ENTITY Oslash SDATA "[Oslash]"--=capital O, slash-->
55 <!ENTITY otilde SDATA "[otilde]"--=small o, tilde-->
56 <!ENTITY Otilde SDATA "[Otilde]"--=capital O, tilde-->
57 <!ENTITY ouml SDATA "[ouml]"--=small o, dieresis or umlaut mark-->
58 <!ENTITY Ouml SDATA "[Ouml]"--=capital O, dieresis or umlaut mark-->
59 <!ENTITY szlig SDATA "[szlig]"--=small sharp s, German (sz ligature)-->
60 <!ENTITY thorn SDATA "[thorn]"--=small thorn, Icelandic-->
61 <!ENTITY THORN SDATA "[THORN]"--=capital THORN, Icelandic-->
62 <!ENTITY uacute SDATA "[uacute]"--=small u, acute accent-->
63 <!ENTITY Uacute SDATA "[Uacute]"--=capital U, acute accent-->
64 <!ENTITY ucirc SDATA "[ucirc]"--=small u, circumflex accent-->
65 <!ENTITY Ucirc SDATA "[Ucirc]"--=capital U, circumflex accent-->
66 <!ENTITY ugrave SDATA "[ugrave]"--=small u, grave accent-->
67 <!ENTITY Ugrave SDATA "[Ugrave]"--=capital U, grave accent-->
68 <!ENTITY uuml SDATA "[uuml]"--=small u, dieresis or umlaut mark-->
69 <!ENTITY Uuml SDATA "[Uuml]"--=capital U, dieresis or umlaut mark-->
70 <!ENTITY yacute SDATA "[yacute]"--=small y, acute accent-->
71 <!ENTITY Yacute SDATA "[Yacute]"--=capital Y, acute accent-->
72 <!ENTITY yuml SDATA "[yuml]"--=small y, dieresis or umlaut mark-->
73

TUGboat, Volume 16 (1995), No. 2 135

F The HTML3 DTD—Tables and Mathematics Parts

This appendix shows those parts of the HTML3 DTD that relate to tables and mathematics.
1 <!--======================= Captions ======================================-->
2

3 <!ELEMENT CAPTION - - (%text;)+ -- table or figure caption -->
4 <!ATTLIST CAPTION
5 %attrs;
6 align (top|bottom|left|right) #IMPLIED
7 >
8 <!--======================= Tables ==-->
9

10 <!--
11 Tables and figures can be aligned in several ways:
12

13 bleedleft flush left with the left (window) border
14 left flush left with the left text margin
15 center centered (text flow is disabled for this mode)
16 right flush right with the right text margin
17 bleedright flush right with the right (window) border
18 justify when applicable the table/figure should stretch
19 to fill space between the text margins
20

21 Note: text will flow around the table or figure if the browser
22 judges there is enough room and the alignment is not centered
23 or justified. The table or figure may itself be part of the
24 text flow around some earlier figure. You can in this case use
25 the clear or needs attributes to move the new table or figure
26 down the page beyond the obstructing earlier figure. Similarly,
27 you can use the clear or needs attributes with other elements
28 such as headers and lists to move them further down the page.
29 -->
30

31 <!ENTITY % block.align
32 "align (bleedleft|left|center|right|bleedright|justify) center">
33

34 <!--
35 The HTML 3.0 table model has been chosen for its simplicity
36 and the ease in writing filters from common DTP packages.
37

38 By default the table is automatically sized according to the
39 cell contents and the current window size. Specifying the columns
40 widths using the colspec attribute allows browsers to start
41 displaying the table without having to wait for last row.
42

43 The colspec attribute is a list of column widths and alignment
44 specifications. The columns are listed from left to right with
45 a capital letter followed by a number, e.g. COLSPEC="L20 C8 L40".
46 The letter is L for left, C for center, R for right alignment of
47 cell contents. J is for justification, when feasible, otherwise
48 this is treated in the same way as L for left alignment.
49 Column entries are delimited by one or more space characters.
50

51 The number specifies the width in em’s, pixels or as a
52 fractional value of the table width, as according to the
53 associated units attribute. This approach is more compact
54 than used with most SGML table models and chosen to simplify
55 hand entry. The width attribute allows you to specify the
56 width of the table in pixels, em units or as a percentage
57 of the space between the current left and right margins.
58

59 To assist with rendering to speech, row and column headers
60 can be given short names using the AXIS attribute. The AXES
61 attribute is used to explicitly specify the row and column
62 names for use with each cell. Otherwise browsers can follow
63 up columns and left along rows (right for some languages)
64 to find the corresponding header cells.
65

66 Table content model: Braille limits the width of tables,
67 placing severe limits on column widths. User agents need
68 to render big cells by moving the content to a note placed
69 before the table. The cell is then rendered as a link to
70 the corresponding note.
71

72 To assist with formatting tables to paged media, authors
73 can differentiate leading and trailing rows that are to
74 be duplicated when splitting tables across page boundaries.
75 The recommended way is to subclass rows with the CLASS attribute
76 For example: <TR CLASS=Header>, <TR CLASS=Footer> are used for
77 header and footer rows. Paged browsers insert footer rows at

TUGboat, Volume 16 (1995), No. 2 136

78 the bottom of the current page and header rows at the top of
79 the new page, followed by the remaining body rows.
80 -->
81

82 <!ELEMENT TABLE - - (CAPTION?, TR*) -- mixed headers and data -->
83 <!ATTLIST TABLE
84 %attrs;
85 %needs; -- for control of text flow --
86 border (border) #IMPLIED -- draw borders --
87 colspec CDATA #IMPLIED -- column widths and alignment --
88 units (em|pixels|relative) em -- units for column widths --
89 width NUMBER #IMPLIED -- absolute or percentage width --
90 %block.align; -- horizontal alignment --
91 nowrap (nowrap) #IMPLIED -- don’t wrap words --
92 >
93

94 <!ENTITY % cell "TH | TD">
95 <!ENTITY % vertical.align "top|middle|bottom|baseline">
96

97 <!--
98 Browsers should tolerate an omission of the first <TR>
99 tag as it is implied by the context. Missing trailing
100 <TR>s implied by rowspans should be ignored.
101

102 The alignment attributes act as defaults for rows
103 overriding the colspec attribute and being in turn
104 overridden by alignment attributes on cell elements.
105 Use valign=baseline when you want to ensure that text
106 in different cells on the same row is aligned on the
107 same baseline regardless of fonts. It only applies
108 when the cells contain a single line of text.
109 -->
110

111 <!ELEMENT TR - O (%cell)* -- row container -->
112 <!ATTLIST TR
113 %attrs;
114 align (left|center|right|justify) #IMPLIED
115 valign (%vertical.align) top -- vertical alignment --
116 nowrap (nowrap) #IMPLIED -- don’t wrap words --
117 >
118

119 <!--
120 Note that table cells can include nested tables.
121 Missing cells are considered to be empty, while
122 missing rows should be ignored, i.e. if a cell
123 spans a row and there are no further TR elements
124 then the implied row should be ignored.
125 -->
126

127 <!ELEMENT (%cell) - O %body.content>
128 <!ATTLIST (%cell)
129 %attrs;
130 colspan NUMBER 1 -- columns spanned --
131 rowspan NUMBER 1 -- rows spanned --
132 align (left|center|right|justify) #IMPLIED
133 valign (%vertical.align) top -- vertical alignment --
134 nowrap (nowrap) #IMPLIED -- don’t wrap words --
135 axis CDATA #IMPLIED -- axis name, defaults to element content --
136 axes CDATA #IMPLIED -- comma separated list of axis names --
137 >
138

139 <!--================ Entities for math symbols ============================-->
140

141 <!-- ISO subset chosen for use with the widely available Adobe math font -->
142

143 <!ENTITY % HTMLmath PUBLIC
144 "-//IETF//ENTITIES Math and Greek for HTML//EN">
145 %HTMLmath;
146

147 <!--======================== Math ==-->
148

149 <!-- Use     etc for greater control of spacing. -->
150

151 <!-- Subscripts and Superscripts
152

153 <SUB> and <SUP> are used for subscripts and superscripts.
154

155 i j
156 X ⁱY^j is X Y
157

TUGboat, Volume 16 (1995), No. 2 137

158 i.e. the space following the X disambiguates the binding.
159 The align attribute can be used for horizontal alignment,
160 e.g. to explicitly place an index above an element:
161 i
162 Xⁱ produces X
163

164 Short references are defined for superscripts, subscripts and boxes
165 to save typing when manually editing HTML math, e.g.
166

167 x^2^ is mapped to x²
168 y_z_ is mapped to y_z
169 {a+b} is mapped to <box>a + b</box>
170

171 Note that these only apply within the MATH element and can’t be
172 used in normal text!
173 -->
174 <!ENTITY REF1 STARTTAG "SUP">
175 <!ENTITY REF2 ENDTAG "SUP">
176 <!ENTITY REF3 STARTTAG "SUB">
177 <!ENTITY REF4 ENDTAG "SUB">
178 <!ENTITY REF5 STARTTAG "BOX">
179 <!ENTITY REF6 ENDTAG "BOX">
180

181 <!USEMAP MAP1 MATH>
182 <!USEMAP MAP2 SUP>
183 <!USEMAP MAP3 SUB>
184 <!USEMAP MAP4 BOX>
185

186 <!SHORTREF MAP1 "^" REF1
187 "_" REF3
188 "{" REF5 >
189

190 <!SHORTREF MAP2 "^" REF2
191 "_" REF3
192 "{" REF5 >
193

194 <!SHORTREF MAP3 "_" REF4
195 "^" REF1
196 "{" REF5 >
197

198 <!SHORTREF MAP4 "}" REF6
199 "^" REF1
200 "_" REF3
201 "{" REF5 >
202

203 <!--
204 The inclusion of %math and exclusion of %notmath is used here
205 to alter the content model for the B, SUB and SUP elements,
206 to limit them to formulae rather than general text elements.
207 -->
208

209 <!ENTITY % mathvec "VEC|BAR|DOT|DDOT|HAT|TILDE" -- common accents -->
210 <!ENTITY % mathface "B|T|BT" -- control of font face -->
211 <!ENTITY % math "BOX|ABOVE|BELOW|%mathvec|ROOT|SQRT|ARRAY|SUB|SUP|%mathface">
212 <!ENTITY % formula "#PCDATA|%math">
213

214 <!ELEMENT MATH - - (#PCDATA)* -(%notmath) +(%math)>
215 <!ATTLIST MATH
216 id ID #IMPLIED
217 model CDATA #IMPLIED>
218

219 <!-- The BOX element acts as brackets. Delimiters are optional and
220 stretch to match the height of the box. The OVER element is used
221 when you want a line between numerator and denominator. This line
222 is suppressed with the alternative ATOP element. CHOOSE acts like
223 ATOP but adds enclosing round brackets as a convenience for binomial
224 coefficients. Note the use of { and } as shorthand for <BOX> and
225 </BOX> respectively:
226

227 1 + X
228 {1 + X<OVER>Y} is _______
229 Y
230

231 a + b
232 {a + b<ATOP>c - d} is
233 c - d
234

235 The delimiters are represented using the LEFT and RIGHT
236 elements as in:
237

TUGboat, Volume 16 (1995), No. 2 138

238 {[<LEFT>x + y<RIGHT>]} is [x + y]
239 {(<LEFT>a<RIGHT>]} is (a]
240 {||<LEFT>a<RIGHT>||} is || a ||
241

242 Use { and } for "{" and "}" respectively as
243 these symbols are used as shorthand for BOX, e.g.
244

245 {{<LEFT>a+b<RIGHT>}} is {a+b}
246

247 You can stretch definite integrals to match the integrand, e.g.
248

249 {∫_a^b<LEFT>{f(x)<over>1+x} dx}
250

251 b
252 / f(x)
253 | ----- dx
254 / 1 + x
255 a
256

257 Note the complex content model for BOX is a work around
258 for the absence of support for infix operators in SGML.
259

260 You can get oversize delimiters with the SIZE attribute,
261 for example <BOX SIZE=large>(<LEFT>...<RIGHT>)</BOX>
262

263 Note that the names of common functions are recognized
264 by the parser without the need to use "&" and ";" around
265 them, e.g. int, sum, sin, cos, tan, ...
266 -->
267

268 <!ELEMENT BOX - - ((%formula)*, (LEFT, (%formula)*)?,
269 ((OVER|ATOP|CHOOSE), (%formula)*)?,
270 (RIGHT, (%formula)*)?)>
271 <!ATTLIST BOX
272 size (normal|medium|large|huge) normal -- oversize delims -->
273

274 <!ELEMENT (OVER|ATOP|CHOOSE|LEFT|RIGHT) - O EMPTY>
275

276 <!-- Horizontal line drawn ABOVE contents
277 The symbol attribute allows authors to supply
278 an entity name for an accent, arrow symbol etc.
279 Generalisation of LaTeX’s overline command.
280 -->
281

282 <!ELEMENT ABOVE - - (%formula)+>
283 <!ATTLIST ABOVE symbol ENTITY #IMPLIED>
284

285 <!-- Horizontal line drawn BELOW contents
286 The symbol attribute allows authors to
287 supply an entity name for an arrow symbol etc.
288 Generalisation of LaTeX’s underline command.
289 -->
290

291 <!ELEMENT BELOW - - (%formula)+>
292 <!ATTLIST BELOW symbol ENTITY #IMPLIED>
293

294 <!-- Convenience tags for common accents:
295 vec, bar, dot, ddot, hat and tilde
296 -->
297

298 <!ELEMENT (%mathvec) - - (%formula)+>
299

300 <!--
301 T and BT are used to designate terms which should
302 be rendered in an upright font (& bold face for BT)
303 -->
304

305 <!ELEMENT (T|BT) - - (%formula)+>
306 <!ATTLIST (T|BT) class NAMES #IMPLIED>
307

308 <!-- Roots e.g. <ROOT>3<OF>1+x</ROOT> -->
309

310 <!ELEMENT ROOT - - ((%formula)+, OF, (%formula)+)>
311 <!ELEMENT OF - O (%formula)* -- what the root applies to -->
312

313 <!ELEMENT SQRT - - (%formula)* -- square root convenience tag -->
314

315 <!-- LaTeX like arrays. The COLDEF attribute specifies
316 a single capital letter for each column determining
317 how the column should be aligned, e.g. coldef="CCC"

TUGboat, Volume 16 (1995), No. 2 139

318

319 "L" left
320 "C" center
321 "R" right
322

323 An optional separator letter can occur between columns
324 and should be one of + - or =, e.g. "C+C+C+C=C".
325 Whitespace within coldef is ignored. By default, the
326 columns are all centered.
327

328 The ALIGN attribute alters the vertical position of the
329 array as compared with preceding and following expressions.
330

331 Use LDELIM and RDELIM attributes for delimiter entities.
332 When the LABELS attribute is present, the array is
333 displayed with the first row and the first column as
334 labels displaced from the other elements. In this case,
335 the first element of the first row should normally be
336 left blank.
337

338 Use &vdots; &cdots; and &ddots; for vertical, horizontal
339 and diagonal ellipsis dots. Use &dotfill; to fill an array
340 cell with horizontal dots (e.g. for a full row).
341 Note &ldots; places the dots on the baseline, while &cdots;
342 places them higher up.
343 -->
344

345 <!ELEMENT ARRAY - - (ROW)+>
346 <!ATTLIST ARRAY
347 align (top|middle|bottom) middle -- vertical alignment --
348 coldef CDATA #IMPLIED -- column alignment and separator --
349 ldelim NAMES #IMPLIED -- stretchy left delimiter --
350 rdelim NAMES #IMPLIED -- stretchy right delimiter --
351 labels (labels) #IMPLIED -- TeX’s \bordermatrix style -->
352

353 <!ELEMENT ROW - O (ITEM)*>
354 <!ELEMENT ITEM - O (%formula)*>
355 <!ATTLIST ITEM
356 align CDATA #IMPLIED -- override coldef alignment --
357 colspan NUMBER 1 -- merge columns as per TABLE --
358 rowspan NUMBER 1 -- merge rows as per TABLE -->

G The ISO/IEC 12083 Mathematics DTD

This appendix shows the mathematics DTD math.dtd of the ISO/IEC 12083 DTD.
1 <!-- This is the ISO12083:1994 document type definition for Mathematics -->
2

3 <!-- Copyright: (C) International Organization for Standardization 1994.
4 Permission to copy in any form is granted for use with conforming SGML
5 systems and applications as defined in ISO 8879:1986, provided this notice
6 is included in all copies. -->
7

8 <!-- === -->
9 <!-- PUBLIC DOCUMENT TYPE DEFINITION SUBSET -->
10 <!-- === -->
11

12 <!--
13 This DTD is included by the Book and Article DTDs of ISO12083:1994.
14 As it is a separate entity it may also be included by other DTDs.
15

16 Since there is no consensus on how to describe the semantics of formulas,
17 it only describes their presentational or visual structure. Since, however,
18 there is a strong need for such description (especially within the
19 print-disabled community), it is recommended that the following
20 declaration be added where there is a requirement for a consistent,
21 standardized mechanism to carry semantic meanings for the SGML
22 elements declared throughout this part of this International Standard:
23

24 <!ENTITY % SDAMAP "SDAMAP NAME #IMPLIED" >
25

26 and that the attribute represented by %SDAMAP; be made available for
27 all elements which may require a semantic association, or, in the simpler
28 case, be added to all elements in this DTD. -->

TUGboat, Volume 16 (1995), No. 2 140

29

30

31

32 <!-- === -->
33 <!-- Parameter entities describing the possible contents of formulas. -->
34 <!-- === -->
35

36 <!ENTITY % p.trans "bold|italic|sansser|typewrit|smallcap|roman"
37 -- character transformations -->
38 <!ENTITY % m.math "fraction|subform|sup|inf|top|bottom|middle|fence|mark|
39 post|box|overline|undrline|radical|array|hspace|vspace|break|markref|
40 #PCDATA" -- mathematical formula elements -->
41

42

43

44 <!-- === -->
45 <!-- Accessible Document and other Parameter Entities
46 If this DTD is not imbedded by a ISO12083:1994 Book or Article,
47 the comment delimiters should be removed. -->
48 <!-- === -->
49

50 <!--ENTITY % SDAFORM "SDAFORM CDATA #FIXED" -->
51 <!--ENTITY % SDARULE "SDARULE CDATA #FIXED" -->
52 <!--ENTITY % SDAPREF "SDAPREF CDATA #FIXED" -->
53 <!--ENTITY % SDASUFF "SDASUFF CDATA #FIXED" -->
54 <!--ENTITY % SDASUSP "SDASUSP NAME #FIXED" -->
55

56

57

58 <!-- === -->
59 <!-- This entity is for an attribute to indicate which alphabet is
60 used in the element (formula, dformula). You may change this to
61 a notation attribute, where the notation could describe a
62 keyboard mapping. Please modify the set as necessary.
63 If this DTD is not imbedded by a ISO12083:1994 Book or Article,
64 the comment delimiters should be removed. -->
65 <!-- === -->
66

67 <!-- ENTITY % a.types "(latin|greek|cyrillic|hebrew|kanji) latin" -->
68

69

70 <!-- === -->
71 <!-- character transformations -->
72 <!-- === -->
73

74 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->
75 <!ELEMENT bold - - (%p.trans;|#PCDATA)* -- bold -->
76 <!ELEMENT italic - - (%p.trans;|#PCDATA)* -- italic -->
77 <!ELEMENT sansser - - (%p.trans;|#PCDATA)* -- sans serif -->
78 <!ELEMENT typewrit - - (%p.trans;|#PCDATA)* -- typewriter -->
79 <!ELEMENT smallcap - - (%p.trans;|#PCDATA)* -- small caps -->
80 <!ELEMENT roman - - (%p.trans;|#PCDATA)* -- roman -->
81

82

83 <!-- === -->
84 <!-- Fractions -->
85 <!-- === -->
86

87 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->
88 <!ELEMENT fraction - - (num, den) -- fraction -->
89 <!ELEMENT num - - (%p.trans;|%m.math;)* -- numerator -->
90 <!ELEMENT den - - (%p.trans;|%m.math;)* -- denominator -->
91 <!-- ELEMENT NAME VALUE DEFAULT -->
92 <!ATTLIST fraction shape (built|case) #IMPLIED
93 align (left|center|right)
94 center
95 style (single|double|triple|dash|dot|bold|blank|none)
96 single >
97

98

99

100 <!-- === -->
101 <!-- Superiors, inferiors, accents, over and under -->
102 <!-- === -->
103

104 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->
105 <!ELEMENT sup - - (%p.trans;|%m.math;)* -- superior -->
106 <!ELEMENT inf - - (%p.trans;|%m.math;)* -- inferior -->
107 <!-- ELEMENT NAME VALUE DEFAULT -->
108 <!ATTLIST sup location (pre|post) post

TUGboat, Volume 16 (1995), No. 2 141

109 arrange (compact|stagger)
110 compact >
111 <!ATTLIST inf location (pre|post) post
112 arrange (compact|stagger) compact >
113

114

115 <!-- === -->
116 <!-- Embellishments -->
117 <!-- === -->
118

119 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->
120 <!ELEMENT top - - (%p.trans;|%m.math;)*
121 -- top embellishment -->
122 <!ELEMENT middle - - (%p.trans;|%m.math;)*
123 -- middle, or "through" -->
124 <!ELEMENT bottom - - (%p.trans;|%m.math;)*
125 -- bottom embellishment -->
126 <!-- ELEMENT NAME VALUE DEFAULT -->
127 <!ATTLIST top align (left|center|right)
128 center
129 sizeid ID #IMPLIED
130 -- to pass on the height -->
131 <!ATTLIST middle align (left|center|right)
132 center
133 sizeid ID #IMPLIED
134 -- to pass on the height -->
135 <!ATTLIST bottom align (left|center|right)
136 center
137 sizeid ID #IMPLIED
138 -- to pass on the height -->
139

140

141 <!-- The subform element is defined later -->
142

143

144

145 <!-- === -->
146 <!-- Fences, boxes, overlines and underlines -->
147 <!-- === -->
148

149 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->
150 <!ELEMENT mark - O EMPTY >
151 <!ELEMENT fence - - (%p.trans;|%m.math;)* -- fence -->
152 <!ELEMENT post - O EMPTY -- post -->
153 <!ELEMENT box - - (%p.trans;|%m.math;)* -- box -->
154 <!ELEMENT overline - - (%p.trans;|%m.math;)* -- overline -->
155 <!ELEMENT undrline - - (%p.trans;|%m.math;)* -- underline -->
156 <!-- ELEMENT NAME VALUE DEFAULT -->
157 <!ATTLIST mark id ID #REQUIRED >
158 <!ATTLIST fence lpost CDATA "|" -- left post --
159 rpost CDATA "|" -- right post --
160 style (single|double|triple|dash|dot|bold|blank|none)
161 single
162 sizeid ID #IMPLIED
163 -- to pass on the height --
164 sizeref IDREF #IMPLIED
165 -- to pick up a height -->
166 <!ATTLIST post post CDATA "|"
167 style (single|double|triple|dash|dot|bold|blank|none)
168 single
169 sizeid ID #IMPLIED
170 -- to pass on the height --
171 sizeref IDREF #IMPLIED
172 -- to pick up a height -->
173 <!ATTLIST box style (single|double|triple|dash|dot|bold|blank|none)
174 single >
175 <!ATTLIST overline type CDATA "-" -- embellishment type --
176 style (single|double|triple|dash|dot|bold|blank|none)
177 single
178 start IDREF #IMPLIED
179 end IDREF #IMPLIED >
180

181 <!ATTLIST undrline type CDATA "_" -- embellishment
182 type --
183 style (single|double|triple|dash|dot|bold|blank|none)
184 single
185 start IDREF #IMPLIED
186 end IDREF #IMPLIED >
187

188

TUGboat, Volume 16 (1995), No. 2 142

189 <!-- === -->
190 <!-- Labelled arrows -->
191 <!-- === -->
192

193 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->
194 <!ELEMENT subform - - (%p.trans;|%m.math;)* -- base element -->
195 <!-- ELEMENT NAME VALUE DEFAULT -->
196 <!ATTLIST subform sizeid ID #IMPLIED
197 -- to pass on a width, or
198 a height --
199 sizeref IDREF #IMPLIED
200 -- to pick up a width -->
201

202

203 <!-- === -->
204 <!-- Roots -->
205 <!-- === -->
206

207 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->
208 <!ELEMENT radical - - (radix?, radicand) -- root or radical -->
209 <!ELEMENT radix - - (%p.trans;|%m.math;)* -- radix -->
210 <!ELEMENT radicand O O (%p.trans;|%m.math;)* -- radicand -->
211

212

213 <!-- === -->
214 <!-- Arrays -->
215 <!-- === -->
216

217 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->
218 <!ELEMENT array - - (arrayrow+|arraycol+) -- array -->
219 <!ELEMENT arrayrow - O (arraycel+) -- array row -->
220 <!ELEMENT arraycol - O (arraycel+) -- array column -->
221 <!ELEMENT arraycel - O (%p.trans;|%m.math;)* -- array cell -->
222

223 <!-- ELEMENT NAME VALUE DEFAULT -->
224 <!ATTLIST array rowalign NMTOKENS #IMPLIED -- row alignment --
225 colalign NMTOKENS #IMPLIED -- column
226 alignment --
227 rowsep NMTOKENS #IMPLIED -- row separators --
228 colsep NMTOKENS #IMPLIED -- column
229 separators -->
230

231

232 <!-- === -->
233 <!-- Spacing -->
234 <!-- === -->
235

236 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->
237 <!ELEMENT hspace - O EMPTY -- horizontal spacing -->
238 <!ELEMENT vspace - O EMPTY -- vertical spacing -->
239 <!ELEMENT break - O EMPTY -- turn line, break -->
240 <!ELEMENT markref - O EMPTY -- hmark reference -->
241

242 <!-- ELEMENT NAME VALUE DEFAULT -->
243 <!ATTLIST hspace space CDATA "1 mm"
244 -- units as required -->
245 <!ATTLIST vspace space CDATA "1 mm"
246 -- units as required -->
247 <!ATTLIST markref refid IDREF #REQUIRED
248 direct (hor|ver) hor
249 -- horizontal or vertical -->
250

251

252 <!-- === -->
253 <!-- the formula elements -->
254 <!-- === -->
255

256 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->
257 <!ELEMENT formula - - (%p.trans;|%m.math;)*
258 -- in-line formula -->
259 <!ELEMENT dformula - - (%p.trans;|%m.math;)*
260 -- display formula -->
261 <!ELEMENT dformgrp - - (formula|dformula)+
262 -- display-formula group -->
263

264 <!-- ELEMENT NAME VALUE DEFAULT -->
265 <!ATTLIST formula id ID #IMPLIED
266 alphabet %a.types;
267 -- %SDAPREF; "<?SDATRANS>Inline formula" --
268 -- %SDASUSP; "SUSPEND" --

TUGboat, Volume 16 (1995), No. 2 143

269 >
270 <!ATTLIST dformula id ID #IMPLIED
271 num CDATA #IMPLIED
272 align (left|center|right)
273 center
274 alphabet %a.types;
275 -- %SDAPREF; "<?SDATRANS>Display formula" --
276 -- %SDASUSP; "SUSPEND" --
277 >
278 <!ATTLIST dformgrp id ID #IMPLIED
279 num CDATA #IMPLIED
280 align (left|center|right)
281 center
282 -- %SDAPREF; "<?SDATRANS>Display formula group" --
283

284 >

H Example of a Conversion of the DocBook DTD to HTML3

H.1 The original document marked up in the Doc-Book DTD

The listing below is part of the manual describing the Doc-Book DTD and is tagged according to that same
Doc-Book DTD (V2.2.1).
<sect1><title>How to Get the DocBook \DTD{} Online</title>

<para>

You can find the DocBook \DTD{} and its documentation online in

the Davenport archive (<filename>/pub/davenport/docbook</filename>)

at <filename>ftp.ora.com</filename> (198.112.208.13).

</para>

<para>

This sample session shows how to retrieve the DTD and its documentation:

<screen>

<!-- could mark up the prompt in next line with computeroutput -->

<systemitem class="prompt">%</><userinput>ftp ftp.ora.com</>

<computeroutput>Connected to amber.ora.com.</>

<computeroutput>220 amber FTP server (Version wu-2.4(1) Fri Apr 15 14:14:30 EDT 1994) ready.</>

<computeroutput>Name (ftp.ora.com:terry): </><userinput>anonymous</>

<computeroutput>331 Guest login ok, send your complete e-mail address as password.</>

<computeroutput>Password: </><lineannotation>← type e-mail address</>

<systemitem class="prompt">ftp></><userinput>cd pub/davenport/docbook</>

</screen>

The DocBook DTD and related \ASCII\ files are in a file named

<filename>docbook.N.shar</>, where <emphasis>N</>

is the current revision number:

<screen>

<systemitem class="prompt">ftp></><userinput>get docbook.2.2.1.shar</>

</screen>

Most of these files also exist separately and may be ftp’d individually.

</para>

<para>

The <command>get</> command will put this \ASCII\ shar file

on your system. You must later unpack it on your system:

<screen>

<userinput>sh docbook.2.2.1.shar</>

</screen>

</para>

TUGboat, Volume 16 (1995), No. 2 144

H.2 ESIS representation of the source document

The following is the ESIS representation of the same document produced by nsgmls.

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

ALABEL IMPLIED

ARENDERAS IMPLIED

(SECT1

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

APAGENUM IMPLIED

(TITLE

-How to Get the DocBook DTD

Online

)TITLE

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

(PARA

-You can find the DocBook DTD

and its documentation \nonline

in the Davenport archive \n(

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(FILENAME

-/pub/davenport/docbook

)FILENAME

-) at \n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(FILENAME

-ftp.ora.com

)FILENAME

- (198.112.208.13).

)PARA

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

(PARA

-This sample session shows how

to retrieve the DTD\nand its

documentation:\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

sline ends and leading white

space must be preserved in

output

NLINESPECIFIC

AFORMAT NOTATION LINESPECIFIC

AWIDTH IMPLIED

(SCREEN

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

ACLASS TOKEN PROMPT

AMOREINFO TOKEN NONE

(SYSTEMITEM

-%

)SYSTEMITEM

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(USERINPUT

-ftp ftp.ora.com

)USERINPUT

-\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(COMPUTEROUTPUT

-Connected to amber.ora.com.

)COMPUTEROUTPUT

-\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(COMPUTEROUTPUT

-220 amber FTP server (Version

wu-2.4(1) Fri Apr 15 14:14:30

EDT 1994) ready.

)COMPUTEROUTPUT

-\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(COMPUTEROUTPUT

-Name (ftp.ora.com:terry):

)COMPUTEROUTPUT

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(USERINPUT

-anonymous

)USERINPUT

-\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(COMPUTEROUTPUT

-331 Guest login ok, send your

complete e-mail address as

password.

)COMPUTEROUTPUT

-\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(COMPUTEROUTPUT

-Password:

)COMPUTEROUTPUT

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

(LINEANNOTATION

-\|[larr]\| type e-mail

address

)LINEANNOTATION

-\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

ACLASS TOKEN PROMPT

AMOREINFO TOKEN NONE

(SYSTEMITEM

-ftp\|[gt]\|

)SYSTEMITEM

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(USERINPUT

-cd pub/davenport/docbook

)USERINPUT

)SCREEN

-\nThe DocBook DTD and related

ASCII files are in\na file

named

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(FILENAME

-docbook.N.shar

)FILENAME

-, where

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

(EMPHASIS

-N

)EMPHASIS

-\nis the current revision

number:\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AFORMAT NOTATION LINESPECIFIC

AWIDTH IMPLIED

(SCREEN

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

ACLASS TOKEN PROMPT

AMOREINFO TOKEN NONE

(SYSTEMITEM

-ftp\|[gt]\|

)SYSTEMITEM

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(USERINPUT

-get docbook.2.2.1.shar

)USERINPUT

)SCREEN

-\nMost of these files\nalso

exist separately and may be

ftp’d individually.

)PARA

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

TUGboat, Volume 16 (1995), No. 2 145

(PARA

-The

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(COMMAND

-get

)COMMAND

- command will put this ASCII

shar \nfile on your system.

You must later unpack \nit on

your system:\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AFORMAT NOTATION LINESPECIFIC

AWIDTH IMPLIED

(SCREEN

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(USERINPUT

-sh docbook.2.2.1.shar

)USERINPUT

)SCREEN

)PARA

H.3 HTML3 output

The following presents the final HTML3 output resulting from the translation process.
<HTML>

<HEAD>

<TITLE>How to Get the DocBook DTD Online</TITLE>

</HEAD>

<BODY>

<H1>How to Get the DocBook DTD Online</H1>

You can find the DocBook DTD and its documentation online in the

Davenport archive (/pub/davenport/docbook) at ftp.ora.com

(198.112.208.13).<P>This sample session shows how to retrieve

the DTD and its documentation:

<pre>

%<i>ftp ftp.ora.com</i>

Connected to amber.ora.com.

220 amber FTP server (Version wu-2.4(1) Fri Apr 15 14:14:30 EDT 1994) ready.

Name (ftp.ora.com:terry): <i>anonymous</i>

331 Guest login ok, send your complete e-mail address as password.

Password: type e-mail address

ftp><i>cd pub/davenport/docbook</i>

</pre>

The DocBook DTD and related ASCII files are in a file named docbook.N.shar,

where N is the current revision number:

<pre>

ftp><i>get docbook.2.2.1.shar</i>

</pre>

Most of these files also exist separately and may be ftp’d individually.

<P>

The get command will put this ASCII shar file on your system.

You must later unpack it on your system:

<pre>

<i>sh docbook.2.2.1.shar</i>

</pre>

</BODY>

</HTML>

