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Slanted lines with controlled thickness 

David Salomon and Matthew N. Hendryx 

So far as the authors know, the original idea for a 

slanted line is due to A. Hendrickson (Ref. 1). The 

idea was to typeset a period, to move a small step 

in the desired direction, and to repeat the process. 

Some improvements to the basic idea are described 

in Ref. 2, together with the observation that better 

results can be obtained by typesetting a small rule, 

since the size of a rule can be precisely controlled, 

and can be adapted to the specific printer used. 

m, by M. Wichura (Ref. 3), is an excellent 

macro package for drawing diagrams in plain m .  

It uses the basic idea of typesetting a period and 

moving it. The article by Wichura does not explain 

the plotting algorithms used by m, except to 

say that linear and quadratic interpolation are used. 

One problem with the traditional method is 

the lack of control over the thickness of the re- 

sulting line. In a high-quality diagram containing 

horizontal, vertical and slanted lines, the thickness 

of all lines should be the same. 

The principle 

The method described here makes it possible to 

typeset slanted lines of any thickness by typesetting 

a rule, shifting it in the desired direction, and 

repeating the process a number of times (Fig. 1). 

The user specifies the following four quantities: 

1-2. X and Y, the horizontal and vertical 

displacements of the line, respectively (Fig. 1). 

3. The thickness, t ,  of the line (Fig. 2). 

4. The height, h, of a rule. This is determined 

by the printer used. For a given printer, the same 

value of h is used for all slanted lines. 

The program has to calculate three values: 

1. The width, b, of a single rule (Fig. 1). 

2. The amount i by which each rule is shifted 

relative to its predecessor (Fig. 1). 

3. The number T of rules necessary to get a 

complete slanted line (register \rep in the macros 

below). 

The derivation 

The three quantities are derived from elementary 

trigonometry. From Fig. 1 we get tan a = X / Y  

and also t a n a  = i /h  or i = h tana .  From Fig. 2, 

f 2  + t 2  = w2 and also sina = f /w or f = wsincw 

which, in turn, implies w2 sin2 a + t2 = w2 or t2 = 

w2(1 - sin2 a )  = w2 cos2 a = w2/(1 + tan2 a). (The 

last step uses the identity sin2 a + cos2 a = 1.) Since 

w is defined as b + i ,  we get b = t m  - i. 

The number T of necessary rules is easily seen to be 

(Ylh) - 1. 

To summarize, the quantities X ,  Y, t ,  and h 

are given. From them, the three quantities i ,  b and 

T should be calculated by: i = h t a n a  = h X / Y ,  

b = t d 1 + t a n 2 a - i  = t d m - i  and T = 

(Y/h) - 1. 

The only problem is the square root calculation. 

this calculation is easy to perform using Newton's 

method but, because of the limited precision of 

m, the results are often imprecise (which does 

not seem to affect the quality of the final lines by 

much). Here are the details of Newton's method. 

Square root calculation 

Newton's method for finding a root of a given 

function f (x) ,  is iterative. One starts with a first 

approximation xo (usually a guess), and performs 

the iteration xi+l - x, - f (xi)/  f f(xi) ,  i = 0,1,.  . . 
To adapt the method for square root cal- 

culation, we select the function f (x) = x2 - n. 

Clearly, any root of this function equals fi. Since 

f f ( x )  = 22, the iterations above become 

A good guess for x,-, is n/2, and 3 or 4 iterations are 

usually sufficient to get within 1% of the right value. 

We use eight iterations, to get better precision for 

small values of n. 

Since the calculations involve non-integers, a 

implementation should use \dimen registers. 

Since the calculations involve division, \count reg- 

isters are also necessary. In the macros below, the 

\dimen register \nn stands for n, \xx stands for xi 

Fig. 1 



60 TUGboat, Volume 15 (1994), No. 1 

and \yy, for x,+l. The final result is returned in 

\yy. The calculation is straightforward except for 
two points: 

1. The '\multiply\yy by 100' is neces- 

sary since otherwise the division that follows 

(\divide\yy by\xx) would result in a truncated 

quotient. 

2. The '\multiply\yy by 655' is necessary to 

scale the value of \yy from scaled points to points. 

The full factor is 65536 but we use 655 because of 

the previous multiplication by 100. The macros are: 

\newdimen\nn \newcount\xx \newdimen\yy 

\def \Sqrt#l{\nn=#l \xx=\nn \divide\xx by2 

\iter\iter\iter\iter\iter\iter\iter\iter) 

\def\iter(\yy=\nn \multiply\yy 100 

\divide\yy by\xx \multiply\yy by 655 

\advance\yy by\xx sp \divide\yy by2 

\xx=\yy) 

A typical expansion is \Sqrt(.8in). Fol- 

lowing which, the command '\the\yy' produces 

'7.59865pt', less than 1% away from the true value. 

Note that, because of the limited arithmetic capabil- 

ities of m, values over 163pt cause an arithmetic 

overflow. For small values, more iterations may 

be necessary. For example \Sqrt(50sp) produces 

0.125pt after 4 iterations, 0.036pt after 6 iterations, 

and 0.024pt after 8 iterations. The correct value is 

close to 0.0276pt. A more robust square-root macro 

is presented in a later section. 

The result 

The final macro, \slant, takes three parameters, 

the quantities X, Y and t above. It creates the 

rules in \box\slnt whose width is (Fig. 1) X + b+ i 

and whose height is Y. The user can then typeset 

the box in any desired way. 

Note that the height of an individual rule is 

not a parameter of \slant but must be assigned 

explicitly t o  the \dimen register \hh before \slant 

is expanded. This is because our experience shows 

that, in practice, the height of the rules that make 

up the slanted lines depends on the printer used, 

and is thus the same for all slanted lines in the 

document. It is easy, of course, to specify the 

height as a parameter (#4) of \slant, if desired. 

The macro should simply say '\ttt=#3 \ii=#2 

\auxi=#4'. 

The macro has four parts. The first three 

calculate r (in register \rep), i and b. Part four 

creates the rules. 

% Part 1. Number of repetitions 
\def\slant#1#2#3C\ttt=#3 \ii=#2 \auxi=\hh 

\multiply\ii by655 \divide\ii by\auxi 

\multiply\ii by100 

\rep=\ii \divide\rep by65536 % \rep:=Y/h-I 
% Part 2. i=h tan a 
\tga=#l \ii=#2 \auxi=\ii 

\multiply\tga by655 \divide\tga by\auxi 

\multiply\tga by100 \auxi=\tga \ii=\hh 

\divide\ii by655 \multiply\ii by\auxi 

\divide\ii by100 % i=h tan a 
% Part 3. b:=t\sqrtCtan^2a +I)-i 
\divide\auxi by10 \multiply\auxi by\auxi 

\divide\auxi by655 % tanA2a 
\tga=\auxi sp \advance\tga bylpt 

\Sqrt(\the\tga)% \sqrt{tanA2a +I) 

\auxi=\yy \divide\auxi by655 \bb=\ttt 

\multiply\bb by\auxi \divide\bb by100 

\ifdim\ii>Opt\advance\bb by-\ii 

\else\advance\bb by\ii\fi % b:=t\sqrt(..)-i 
\tga=Opt % Part 4. Build the rules 
\setbox\slnt=\vbox(\offinterlineskip 

\loop \ifnum\rep>O\advance\rep-1 

\hboxC\kern\tga\vrule width\bb height\hh)% 

\advance\tga by\ii 

\repeat)) 

A typical expansion is: \a=. 3pt 

\slant(l5pt)(l5pt)(1pt~A\box\slnt B, 

which results in Opt pluslem 

A N B  Opt pluslem (the boundaries 

of \box\slnt are shown for illustration purposes). 

The macro works for a negative X, but the width 

of \box\slnt in this case is b, and the line sticks 

out on the left. A typical example is A, created 

by \slant(-15pt)(l5pt)€lpt)C\box\slnt D. The 

macro does not work for negative values of Y. To 

create slanted lines that go below the text, a \lower 

should be used. Thus \slant(l5pt)C15pt3Cipt) 

A\lower4pt\box\slnt B, creates A ~ B .  
Other examples are: 
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\hh= .5pt  

D\lower6pt\hbox{\vrule height2lpt  widthlpt 

\slant~2lpt){2lpt)~lpt)\wd\slnt=0pt\box\slnt 

\vrule  width2lpt he igh t lp t  depthopt) 

\quad 

E\slantClpt~Cl5pt)C8pt~\box\slnt 

\slant{l5pt){3pt){8pt)\box\slnt 

Note that the last example is wrong. We ask for 

a slanted line with Y = 3pt and a thickness of 8pt, 

which is impossible. The line came out with a thick- 

ness of 3pt. The reader should compare this line 

with, e.g., \slantCl5pt)~13pt)~8pt)\box\slnt, 

which has the right thickness of 8pt. 

Large values of \hh can create nice patterns (try 

\hh=4pt\slant~18pt)fi8pt~~6pt)\box\slnt), 

but experience shows that values around 0.3pt-0.5pt 

are best for a typical 300dpi laser printer. 

Possible improvements 

1. The square root algorithm used here is iterative. 

It  turns out that, for lines with slants close to 45O, 

3 or 4 iterations are enough to get to within 1% of 

the correct square root. For slants closer to 0" or to 

90°, more iterations are necessary. In a document 

with many slanted lines, it is possible to speed up 

the macros by changing the number of iterations 

depending on the slant, because both tancv and 

cot a are available. 

2 .  The square-root macro presented earlier 

is simple and fast, but is not robust. It causes 

an arithmetic overflow for values over 163pt. The 

macro shown below is slower and more complex, but 

produces results accurate to 28 significant bits. This 

macro is the one used by METAFONT to calculate 

square-roots (Ref. 4, sections 121-123). It has been 

translated from WEB to TEX, and has been provided 

to us by the referee. 

\def\incr#l{\advance#l by 1 ) 

\def \decr#l{\advance#l by -1 ) 

\def\half#l{\divide#l by 2 3 
\def\double#l{\multiply#l by 2 ) 

\def\fractiontwo{536870912 ) % 2-29, 

% r ep re sen t s  2.000000000 

\def\fractionfour{1073741824 ) % 2-30, 

% r ep re sen t s  4.000000000 

% Find t h e  square root  of #I placing the  

% r e s u l t s  i n  \yy. 

% The square root  i s  i n  scaled numbers 

% which are in teger  representat ions 

% of numbers mult ipl ied by 2-{-16) 

% That i s ,  1 = 65536, 2=131072, 

% and so on. This uses Newton 

% approximation, with s h i f t s  t o  

% preserve accuracy. 

\def \Sqrt#l({\yy=#l \x=\yy 

\ i f  num\x>O 

\k=23 \q=2 

\ loop\relax 

\ifnum\x<\fractiontwo 

\decr\k \multiply\x by 4 

\ repeat  

% 
\ ifnum\x<\fractionfour \y=O 

\ e l s e  

\advance\x by - \ fract ionfour \y=l 

\f i 

% 
% Decrease k by 1 ,  maintaining t h e  

% invar ian t  r e l a t i o n s  between x ,  y & q 

\loop 

\double\x \double\y 

\ifnum\x<\fractionfour \ e l s e  

\advance\x by -\f ract ionf  our 

\ incr \y  

\f i 

\double\x 

\advance\y by \y \advance\y by -\q 

\double\q 

\ifnum \x<\fract ionfour \ e l s e  

\advance\x by -\f ract ionf  our 

\ incr \y  

\f i 

\ifnum\y>\q 

\advance\y by -\q \advance\q by 2 

\else\ifnum \y > 0 \ e l s e  

\advance\q by -2 \advance\y by \q 

\f i \ f  i 

\decr\k 

\ifnum\k>O\relax 

\ repeat  

% 
\ha l f \q  \global\yy=\q sp  % f i n a l  r e s u l t  

% 
\ e l s e  

% case of non-positive argument 

\ i f  num\x<O 

\message 

{Sqrt of #I  has been replaced by 0) 
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Letters 

On indexing and errors 

In his letter (TUGboat 14, no. 2, page 141) Lincoln 

Durst finds fault with my article (TUGboat 13, 

no. 4, page 495) which in turn found fault in his 

earlier article (TUGboat 12, no. 2, pages 248-52). 

However, I still hold to my original criticism, 

which was that the code of Durst would on specified 

occasions produce 0010 in an index file when in fact 

010 is required. No criticism of Knuth's code was 

intended, nor I believe made, in my article. 

It is easy to make an error. Harder is to find 

error in the work of another, and harder yet in 

one's own work. But most difficult, I have found, 

is to express and accept criticism in a friendly and 

respectful manner. 

Yours sincerely, 

Jonathan Fine 

203 Coldhams Lane 

Cambridge CB1 3HY, England 

J.Fine@pmms.cam.ac.uk 


