
TUGboat, Volume 15 (1994), No. 1

Slanted lines with controlled thickness

David Salomon and Matthew N. Hendryx

So far as the authors know, the original idea for a

slanted line is due to A. Hendrickson (Ref. 1). The

idea was to typeset a period, to move a small step

in the desired direction, and to repeat the process.

Some improvements to the basic idea are described

in Ref. 2, together with the observation that better

results can be obtained by typesetting a small rule,

since the size of a rule can be precisely controlled,

and can be adapted to the specific printer used.

m, by M. Wichura (Ref. 3), is an excellent

macro package for drawing diagrams in plain m .

It uses the basic idea of typesetting a period and

moving it. The article by Wichura does not explain

the plotting algorithms used by m, except to

say that linear and quadratic interpolation are used.

One problem with the traditional method is

the lack of control over the thickness of the re-

sulting line. In a high-quality diagram containing

horizontal, vertical and slanted lines, the thickness

of all lines should be the same.

The principle

The method described here makes it possible to

typeset slanted lines of any thickness by typesetting

a rule, shifting it in the desired direction, and

repeating the process a number of times (Fig. 1).

The user specifies the following four quantities:

1-2. X and Y, the horizontal and vertical

displacements of the line, respectively (Fig. 1).

3. The thickness, t , of the line (Fig. 2).

4. The height, h, of a rule. This is determined

by the printer used. For a given printer, the same

value of h is used for all slanted lines.

The program has to calculate three values:

1. The width, b, of a single rule (Fig. 1).

2. The amount i by which each rule is shifted

relative to its predecessor (Fig. 1).

3. The number T of rules necessary to get a

complete slanted line (register \rep in the macros

below).

The derivation

The three quantities are derived from elementary

trigonometry. From Fig. 1 we get tan a = X / Y

and also t a n a = i /h or i = h tana . From Fig. 2,

f 2 + t 2 = w2 and also sina = f /w or f = wsincw

which, in turn, implies w2 sin2 a + t2 = w2 or t2 =

w2(1 - sin2 a) = w2 cos2 a = w2/(1 + tan2 a). (The

last step uses the identity sin2 a + cos2 a = 1.) Since

w is defined as b + i , we get b = t m - i.

The number T of necessary rules is easily seen to be

(Ylh) - 1.

To summarize, the quantities X , Y, t , and h

are given. From them, the three quantities i , b and

T should be calculated by: i = h t a n a = h X / Y ,

b = t d 1 + t a n 2 a - i = t d m - i and T =

(Y/h) - 1.

The only problem is the square root calculation.

this calculation is easy to perform using Newton's

method but, because of the limited precision of

m, the results are often imprecise (which does

not seem to affect the quality of the final lines by

much). Here are the details of Newton's method.

Square root calculation

Newton's method for finding a root of a given

function f (x) , is iterative. One starts with a first

approximation xo (usually a guess), and performs

the iteration xi+l - x, - f (xi)/ f f(xi) , i = 0,1,. . .
To adapt the method for square root cal-

culation, we select the function f (x) = x2 - n.

Clearly, any root of this function equals fi. Since

f f (x) = 22, the iterations above become

A good guess for x,-, is n/2, and 3 or 4 iterations are

usually sufficient to get within 1% of the right value.

We use eight iterations, to get better precision for

small values of n.

Since the calculations involve non-integers, a

implementation should use \dimen registers.

Since the calculations involve division, \count reg-

isters are also necessary. In the macros below, the

\dimen register \nn stands for n, \xx stands for xi

Fig. 1

60 TUGboat, Volume 15 (1994), No. 1

and \yy, for x,+l. The final result is returned in

\yy. The calculation is straightforward except for
two points:

1. The '\multiply\yy by 100' is neces-

sary since otherwise the division that follows

(\divide\yy by\xx) would result in a truncated

quotient.

2. The '\multiply\yy by 655' is necessary to

scale the value of \yy from scaled points to points.

The full factor is 65536 but we use 655 because of

the previous multiplication by 100. The macros are:

\newdimen\nn \newcount\xx \newdimen\yy

\def \Sqrt#l{\nn=#l \xx=\nn \divide\xx by2

\iter\iter\iter\iter\iter\iter\iter\iter)

\def\iter(\yy=\nn \multiply\yy 100

\divide\yy by\xx \multiply\yy by 655

\advance\yy by\xx sp \divide\yy by2

\xx=\yy)

A typical expansion is \Sqrt(.8in). Fol-

lowing which, the command '\the\yy' produces

'7.59865pt', less than 1% away from the true value.

Note that, because of the limited arithmetic capabil-

ities of m, values over 163pt cause an arithmetic

overflow. For small values, more iterations may

be necessary. For example \Sqrt(50sp) produces

0.125pt after 4 iterations, 0.036pt after 6 iterations,

and 0.024pt after 8 iterations. The correct value is

close to 0.0276pt. A more robust square-root macro

is presented in a later section.

The result

The final macro, \slant, takes three parameters,

the quantities X, Y and t above. It creates the

rules in \box\slnt whose width is (Fig. 1) X + b+ i

and whose height is Y. The user can then typeset

the box in any desired way.

Note that the height of an individual rule is

not a parameter of \slant but must be assigned

explicitly t o the \dimen register \hh before \slant

is expanded. This is because our experience shows

that, in practice, the height of the rules that make

up the slanted lines depends on the printer used,

and is thus the same for all slanted lines in the

document. It is easy, of course, to specify the

height as a parameter (#4) of \slant, if desired.

The macro should simply say '\ttt=#3 \ii=#2

\auxi=#4'.

The macro has four parts. The first three

calculate r (in register \rep), i and b. Part four

creates the rules.

% Part 1. Number of repetitions
\def\slant#1#2#3C\ttt=#3 \ii=#2 \auxi=\hh

\multiply\ii by655 \divide\ii by\auxi

\multiply\ii by100

\rep=\ii \divide\rep by65536 % \rep:=Y/h-I
% Part 2. i=h tan a
\tga=#l \ii=#2 \auxi=\ii

\multiply\tga by655 \divide\tga by\auxi

\multiply\tga by100 \auxi=\tga \ii=\hh

\divide\ii by655 \multiply\ii by\auxi

\divide\ii by100 % i=h tan a
% Part 3. b:=t\sqrtCtan^2a +I)-i
\divide\auxi by10 \multiply\auxi by\auxi

\divide\auxi by655 % tanA2a
\tga=\auxi sp \advance\tga bylpt

\Sqrt(\the\tga)% \sqrt{tanA2a +I)

\auxi=\yy \divide\auxi by655 \bb=\ttt

\multiply\bb by\auxi \divide\bb by100

\ifdim\ii>Opt\advance\bb by-\ii

\else\advance\bb by\ii\fi % b:=t\sqrt(..)-i
\tga=Opt % Part 4. Build the rules
\setbox\slnt=\vbox(\offinterlineskip

\loop \ifnum\rep>O\advance\rep-1

\hboxC\kern\tga\vrule width\bb height\hh)%

\advance\tga by\ii

\repeat))

A typical expansion is: \a=. 3pt

\slant(l5pt)(l5pt)(1pt~A\box\slnt B,

which results in Opt pluslem

A N B Opt pluslem (the boundaries

of \box\slnt are shown for illustration purposes).

The macro works for a negative X, but the width

of \box\slnt in this case is b, and the line sticks

out on the left. A typical example is A, created

by \slant(-15pt)(l5pt)€lpt)C\box\slnt D. The

macro does not work for negative values of Y. To

create slanted lines that go below the text, a \lower

should be used. Thus \slant(l5pt)C15pt3Cipt)

A\lower4pt\box\slnt B, creates A ~ B .
Other examples are:

TUGboat, Volume 15 (1994), No. 1

\hh= .5pt

D\lower6pt\hbox{\vrule height2lpt widthlpt

\slant~2lpt){2lpt)~lpt)\wd\slnt=0pt\box\slnt

\vrule width2lpt he igh t lp t depthopt)

\quad

E\slantClpt~Cl5pt)C8pt~\box\slnt

\slant{l5pt){3pt){8pt)\box\slnt

Note that the last example is wrong. We ask for

a slanted line with Y = 3pt and a thickness of 8pt,

which is impossible. The line came out with a thick-

ness of 3pt. The reader should compare this line

with, e.g., \slantCl5pt)~13pt)~8pt)\box\slnt,

which has the right thickness of 8pt.

Large values of \hh can create nice patterns (try

\hh=4pt\slant~18pt)fi8pt~~6pt)\box\slnt),

but experience shows that values around 0.3pt-0.5pt

are best for a typical 300dpi laser printer.

Possible improvements

1. The square root algorithm used here is iterative.

It turns out that, for lines with slants close to 45O,

3 or 4 iterations are enough to get to within 1% of

the correct square root. For slants closer to 0" or to

90°, more iterations are necessary. In a document

with many slanted lines, it is possible to speed up

the macros by changing the number of iterations

depending on the slant, because both tancv and

cot a are available.

2 . The square-root macro presented earlier

is simple and fast, but is not robust. It causes

an arithmetic overflow for values over 163pt. The

macro shown below is slower and more complex, but

produces results accurate to 28 significant bits. This

macro is the one used by METAFONT to calculate

square-roots (Ref. 4, sections 121-123). It has been

translated from WEB to TEX, and has been provided

to us by the referee.

\def\incr#l{\advance#l by 1)

\def \decr#l{\advance#l by -1)

\def\half#l{\divide#l by 2 3
\def\double#l{\multiply#l by 2)

\def\fractiontwo{536870912) % 2-29,

% r ep re sen t s 2.000000000

\def\fractionfour{1073741824) % 2-30,

% r ep re sen t s 4.000000000

% Find t h e square root of #I placing the

% r e s u l t s i n \yy.

% The square root i s i n scaled numbers

% which are in teger representat ions

% of numbers mult ipl ied by 2-{-16)

% That i s , 1 = 65536, 2=131072,

% and so on. This uses Newton

% approximation, with s h i f t s t o

% preserve accuracy.

\def \Sqrt#l({\yy=#l \x=\yy

\ i f num\x>O

\k=23 \q=2

\ loop\relax

\ifnum\x<\fractiontwo

\decr\k \multiply\x by 4

\ repeat

%
\ ifnum\x<\fractionfour \y=O

\ e l s e

\advance\x by - \ fract ionfour \y=l

\f i

%
% Decrease k by 1 , maintaining t h e

% invar ian t r e l a t i o n s between x , y & q

\loop

\double\x \double\y

\ifnum\x<\fractionfour \ e l s e

\advance\x by -\f ract ionf our

\ incr \y

\f i

\double\x

\advance\y by \y \advance\y by -\q

\double\q

\ifnum \x<\fract ionfour \ e l s e

\advance\x by -\f ract ionf our

\ incr \y

\f i

\ifnum\y>\q

\advance\y by -\q \advance\q by 2

\else\ifnum \y > 0 \ e l s e

\advance\q by -2 \advance\y by \q

\f i \ f i

\decr\k

\ifnum\k>O\relax

\ repeat

%
\ha l f \q \global\yy=\q sp % f i n a l r e s u l t

%
\ e l s e

% case of non-positive argument

\ i f num\x<O

\message

{Sqrt of #I has been replaced by 0)

TUGboat, Volume 15 (1994), No. 1

References

1. Hendrickson, A., Some Diagonal Line Hacks,

TUGboat 6(2), 83-86 (July 1985).

2. Salomon, D., DDA Methods in m, TUGboat

10(2), 207-217 (July 1989).

3. Wichura. M., P i C W : Macros for Drawing Pic-

tures, TUGboat 9(2), 193-197 (July 1988). (The

actual macros are available from the various 7$X

archives.)

4. Knuth, D., The METFIFONT~OO~, Reading, MA,

Addison-Wesley, 1986.

o David Salomon

California State University,

Northridge

Computer Science Department

Northridge, CA 91330-8281

dxsQsecs.csun.edu

o Matthew N. Hendryx

P. 0. Box 218

North Manchester, IN 46962

Letters

On indexing and errors

In his letter (TUGboat 14, no. 2, page 141) Lincoln

Durst finds fault with my article (TUGboat 13,

no. 4, page 495) which in turn found fault in his

earlier article (TUGboat 12, no. 2, pages 248-52).

However, I still hold to my original criticism,

which was that the code of Durst would on specified

occasions produce 0010 in an index file when in fact

010 is required. No criticism of Knuth's code was

intended, nor I believe made, in my article.

It is easy to make an error. Harder is to find

error in the work of another, and harder yet in

one's own work. But most difficult, I have found,

is to express and accept criticism in a friendly and

respectful manner.

Yours sincerely,

Jonathan Fine

203 Coldhams Lane

Cambridge CB1 3HY, England

J.Fine@pmms.cam.ac.uk

