
An Abstract Model for Tables

Xlnxin Wang
Department of Computer Science, University of Waterloo
Waterloo, Ontario N2L 3G1, Canada
internet: wangewatdragon. uwaterloo. ca.

Derick Wood
Department of Computer Science, University of Western Ontario
London, Ontario N6A 5B7, Canada
Internet: dwoodecsd . uwo. ca.

Abstract

We present a tabular model that abstracts a wide range of tables. We abstract the

logical structure of tables, rather than their presentational form. The model can be

used to guide the design and implementation of tabular editors and formatters.

In addition, the model is formatter independent; it can be used to direct the

formatting of tables in many typesetting systems, including TEX.

Introduction

Although tables are widely used in daily life to con-

vey information in a compact and convenient form,

tabular processing is one of the most difficult parts

of document processing, because tables are more

complex than other textual objects. The separation

of the logical and layout structures of documents is

widely used in many document formatting systems

(Lamport (1985); Quint and Vatton (1986); and Reid

(1980)). It enables authors to focus on the manip-

ulation of the logical structure of a document. The

layout structure is determined by the formatting sys-

tems based on style specifications; thus, h g h qual-

ity typeset documents can be produced with little

or no help from typographers. Tabular formatting

is, however, the weak link in most formatting sys-

tems. The main reason is that the tabular models

used in many systems (Beach (1995); Biggerstaff et

al. (1984); Cameron (1989); Lamport (1985); and

Lesk (1979)) are presentation dependent; that is,

the models describe tables based on their presenta-

tional form. In other words, it is the user's respon-

sibility to design the geometric arrangement of tab-

ular components. Some systems (Improv Handbook

(1991) and Vanoirbeek and Coray, eds. (1992)) use

presentation-independent models for tables that are

based on their logical structure; however, the mod-

els fall short in that they are made with specific en-

vironments i n mind. The strength of our model is

that it is not tied to any specific realization and it

can be viewed as an abstract data type. One other

drawback of most tabular systems is that the tab-

ular operations that are provided are too weak to

manipulate tables based on the logical relationshps

among tabular components.

We are currently developing a tabular composi-

tion system based on this model, whch can be used

as a front end for LATEX tables.

In this paper, we first summarize the main char-

acteristics of tables, and then present our model. To

conclude the presentation, we compare our model

with Vanoirbeek's model and also discuss the influ-

ence of our model on the design and implementation

of a tabular composition system.

The Characteristics of Tables

The Oxford English Dictionary defines a table as:

"an arrangement of numbers, words or items of any

lund, in a definite and compact form, so as to ex-

hbi t some set of facts or relations in a distinct and

comprehensive way, for convenience of study, ref-

erence, or calculation". This definition summarizes

the characteristics of a table using three different

aspects: content, form and function.

The content of a table. The content of a table is a

collection of inrerrelated items, which can be num-

bers, text, symbols, figures, mathematical equations,

or even other tables. In most tables, these items can

be divided into two classes based on their function

in the table: entries, which are facts of any lund that

we present in a table, and labels, which we use to

locate the entries. The logical relationships among

the items of a table are the associations among la-

bels and entries. Each entry is associated with a set

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting 231

Xinxin Wang and Derick Wood

Table 1: The average marks of CS351i1991-1992).

k&y Term

1991

Winter

Summer

Fall

1992

Winter

Summer

Fall

-1 Final

lidter Final marks

of labels; for example, in Table 1, entry 85 is as-

sociated with labels 1991, Winter, Assignments and

Assl. The items and the logical relationships among

them provide the logical structure of a table, which

is the primary information conveyed by the table and

which is independent of its presentational form.

We can describe the logical structure of a wide

range of tables in this way: first, we group the labels

into n categories such that in each category labels

are organized in a tree structure, and then we asso-

ciate each entry with one, or more, n-element sets

of label sequences where each label sequence is the

catenation of labels on the path from the root to a

leaf in a category. For example, the labels of Table 1

can be grouped into three categories:

Year = 11991, 19921,

Term = {&'inter, Summer, Fall}, and

Mark = {Assignments, Exams, Final marks}.

In category Mark, there are two subcategories:

Assignments = {Assl, Ass21 and

Exams = {Midterm, Final}.

Entry 85 is associated with a 3-element set

of label sequences: {Year.1991, Term.Winter,

Mark.Assignments.Ass1); Entry 76 , whch appears

in the table twice, is associated with two 3-

element sets of label sequences: iYear.1992,

Term.Fal1, Mark.Assignments.Assl} and iYear.1992,

Term.Surnmer, Mark.Assignments.Ass2 } .

The form of a table. The content of a table must be

presented in some form and on some medium. Usu-

ally, tables are presented as a row-column structure

on a two-dimensional plane, such as paper or screen.

The presentational form of a table consists of two

components: the topological arrangement and the

typographc specification. The topological arrange-

ment is a n arrangement of the table components in

Table 2: The average marks of CS351i1991-1992).

Exams

Final

Mark

two-dimensional space such that the logical struc-

ture of the table is clearly conveyed; for example,

where to put the labels and entries and how to order

the labels in a category. The typographc specifica-

tion is a group of formatting attributes for rendering

tabular data and the graphc objects that are used

to outline the topological arrangement, such as the

font type for entries, the line style for rules, and so

on. The content of a table can be presented with dif-

ferent topological arrangements and different typo-

graphic specifications. For example, Tables 1 and 2

are two different presentations for a three-category

table. Although the row-column structure is a famil-

iar and natural form for tabular presentation, tables

may also be presented in other forms, such as the

bar graph, the pie graph, and so on.

Final Marks

The function of a table. The main function of a

table is to convey data and its relationship in a com-

pact and convenient way.

Winter

The Tabular Model

1991

74

In our opinion, a tabular composition system should

allow users to be mainly concerned about the logical

structure of tables; they should leave the presenta-

tional form to a high-quality tabular formatting sys-

tem that requires little or no user intervention. A

tabular model for such a system should possess the

following characteristics:

1992

Summer

it can be used to abstract a wide range of tables;

1991

Fall

75

it is presentation independent; that is, it cap-

tures the logical structure of tables and ignores

any topological and typographc attributes; and

1992 1991

0 it includes a group of operations that support

tabular manipulation.

199;

70

232 TUGboar, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

78 80 72

An Abstract Model for Tables

2. l abe l o (U F i x]) , if D = (l a b e l , S) .

Figure 1: The relationship between a labeled domain

and its tree.

We specify our tabular model with mathematical

notions so as to avoid the representational struc-

ture and the implementation details. Therefore, the

model can also be viewed as an abstract data type;

that is, an abstract table and a set of operations.

Terminology. We first define some terminology be-

fore we give the definition of an abstract table.

A labeled set is a label together with a set. We

denote a labeled set as (l abe1 , s e t) .

A labeled domain is defined inductively as fol-

lows:

1. A labeled empty set (L , 0) is a labeled domain.

2. A labeled set of labeled domains is a labeled

domain.

3. Only labeled sets that are obtained with rules 1

and 2 are labeled domains.

A labeled domain can be represented by an un-

ordered tree of labels. Figure 1 presents the re-

lationshp between a labeled domain and its tree.

Each node in the tree represents a labeled domain.

For convenience, we will use the tree of a labeled

domain to explain some concepts that are related to

labeled domains. If a labeled domain D = (L , S), we

use L[Dl to denote the label L, of D, and S[Dl to

denote the set S of D.

A label sequence is either one label or the cate-

nation of multiple labels separated with the symbol

'.'. With the tree of Figure 1 , D l and D l . d l l . d l l 1 are

two examples of label sequences. Operation o takes

a l abe l and a set of label sequences i s l , . . . , snl as

operands and its result is a set of label sequences

such that

l abe l o Isl, . . . , s n] = { l a b e l s l , . . . , label.s,}.

The frontier of a labeled domain D is the set

of external nodes of the tree of D. It is denoted by

F[Dl and is defined inductively as

1. { l a b e l } , if D = (l a b e l , 0) ;

xES

With the labeled domain of Figure 1, F[D1] =

{ D l . d l l . d l l l , D l . d l l . d l 1 2 , D l . d l 2 , D l . d l 3 j .

A frontier item of label domain D is any mem-

ber of F[Dl. It is the label sequence on a path from

the root to an external node in the tree of labeled

domain D.
An item of a labeled domain D is any prefix of a

frontier item of D; it is the label sequence on a path

from the root to a node in the tree of D. With the la-

beled domain of Figure 1, D l , D l . d l 1 , D l . d l l . d l l 1 ,

D l . d l l . d l l 2 , D l . d l 2 and D l . d l 3 are all items of

the labeled domain D l . An item is actually the la-

bel sequence on the path from the root to a node in

the tree of the labeled domain D. We use an item to

identify its associated node.

If i is an item, we use L D [i] to denote the la-

beled domain represented by the associated node of

i and P [i] to denote the item that identifies the direct

parent of the associated node of i. For example, with

the labeled domain of Figure 1 , if i = D l . d l l . d l l 2 ,

then L D [i] is the labeled domain (d 1 1 2 , 0) and

P [i] = D 1 . d l l . If L D [i] = (L , S) , we also use L [i]

to denote the label L, S [i] to denote the set S , and

F [i] to denote the frontier of L D [i] .

The dimension of a labeled domain D = (L , S)

is denoted by D i m [D] ; it is the number of elements

in S. With the labeled domain of Figure 1 , D l =

(D l , i d l l , d 1 2 , d 1 3 1) ; thus, D i m [D 1] = 3. We say

that two items i and j are in the same dimension of

D if and only if both the associated nodes of i and j

are in a child subtree of the tree of D. For example,

with the labeled domain of Figure 1, D l . d l 1 and

D l . d l l . d l 1 1 are in the same dimension of D l , but

D l . d l 1 and D l . d l 2 are not.

For n > 1 , an n-set is a set of n elements. For

two sets A and B, A 8 B is the set of all 2-sets that

consists of one element of A and one element of B.

A 8 B is similar to, yet different from, A x B, the

Cartesian product of A and B. It is similar in that we

take all pairs of elements, one from A and one from

B; it is different because we obtain unordered pairs,

rather than ordered pairs. It is unordered Cartesian

product.
We now apply @ to labeled domains as follows.

It takes a labeled domain D = (L , S) as operand and

it results in a set in whch each element contains

D i m [D] frontier items, each of which identifies an

external node of a labeled domain in S; that is,

D = 0, i f S = 0
= { L o I t l , . . . , t,] 1 t i E F[D,], 1 I i I n l ,

i f S = { D 1 , . . . , D n l .

TUGboat, Volume 14 (1993) , No. 3 -Proceedings of the 1993 Annual Meeting

Xinxin Wang and Derick Wood

Table 3: A three-category table.

D = (D , { (D l , { (d l l , 01, (d 1 2 , 0) 1 1,
(0 2 , { (d 2 1 , 0) , (d 2 2 , 0) , (d 2 3 , 0111,
(0 3 , I (d 3 1 , { (d 3 l l , D) , (d 3 l 2 , 0111,

(d 3 2 , 0) 1
1

1
) 9

E = { e l , e 2 , e3, e4 , e5 , e6, e7 , e8 , e 9 } , and

G ({ D . D l . d l l , D.D2.d21, D.D3.d31.d311)) = e l ;

G ({ D . D l . d l l , D.DZ.d21, D.D3.d31.d312}) = e2;

G ({ D . D l . d l l , D.D2.d22, D.D3.d31.d311]) = e3;

G ({ D . D l . d l l , D.D2.d22, D.D3.d31.d312}) = e3;

G ({ D . D l . d l l , D.DZ.d23, D.D3.d31.d311}) = e4;

d ({ D . D l . d l l , D.DZ.d21, D.D3.d32}) = e5;

G ({ D . D l . d l l , D.D2.d22, D.D3.d32}) = e5;

For example, with the labeled domain of Figure 1,

D l = { { D l . d l l . d l l l , D l . d l 2 , D l . d 1 3 } ,

i D l . d l l . d l l 2 , D l . d l 2 , D l . d l 3) j .

The definition of an abstract table. An abstract ta-

ble consists of three elements: a labeled domain, a

set of entries, and a function from a set of n-element

sets of frontier items (n is the dimension of the la-

beled domain) to the set of entries. It can be formally

defined by a tuple (D , E, 6) , where

D is a labeled domain

E is a set of entries

6 is a partial function from @D onto E

We use a labeled domain D to describe the cat-

egory structure of a table, the dimension of a la-

beled domain corresponds to the number of cate-

gories of the table, and each labeled domain in S[Dl

corresponds to a category. We use a function to

describe the logical associations among labels and

entries. Using t h s model, Table 3 can be abstracted

by (D , E, 6) , where

Table 4: A two-category table.

1
e l l e l 2 e l 3 e l 4

Basic operations for abstract tables. We define a

basic set of operations for tabular editing. These

operations are divided into four groups: operations

for categories, items, labels, and entries. For each

operation, we first give its name and the types of its

operands and result, and then explain its semantics

informally.

Category operations. There are two operations for

categories.

The operation Add-Category adds a new cate-

gory to a table. It takes a table T = (D , E , 6) and a

labeled domain Dm as operands, and returns a new

table T = (D ' , E' , 6 ') such that:

(1) D' is produced by inserting Dm into the set of

D;

(2 j the entry set E' is the same as E;

(3) 6' maps any f s E @Dl, whch contains an ele-

ment L [D l . f such that f is a frontier item of

Dm, to 6 (f s - { L [D] . f } j . For example, if T

is Table 4 , Add_Category(T,D3), where 0 3 =

(0 3 , { (T l , 0), (T2, @) I) , produces Table 5 .

The operation Remove-Category removes a

category from a table. It takes a table T = (D, E , 6)

and an item d i (whch must identify an element of

the set of labeled domain D) as operands, and re-

turns a new table T = (D ' , E' , 6 ') such that:

(1) D' is produced by deleting the labeled domain

LD[d ,] from the set of D;

234 TUGboat, Volume 14 (1993) , No. 3 -Proceedings of the 1993 Annual Meeting

An Abstract Model for Tables

Table 5: After adding a new category to Table 4.

1 I-; 1 1 e2 1 e3 1 e4 1 e5 1
T2 e7 e8 e9 e l0

L3 e l l e l2 e l 3 e l 4 e l5

Table 6: After removing a category from Table 5 .

S 2

e5

e l0

e l5

e l e2 e3 e4

T 1 e6 e7 e8 e9

e l l e l2 e l 3 e l 4

e l e2 e3 e4

T2 e6 e7 e8 e9

e l l e l2 e l3 e l 4

S13

e4

e9

e l4

S12

(2) E' is a set in whch each element is {6(f s u
{LID].kl}), . . . , 6 (f s u {L[D].k,})} where f s

is any element of @D' and k l , . . . , k, are all

frontier items of LD[d,];

(3) 6' maps any f s E 8D' to set {6(fsu{L[D].kl}),

. . ,6 (fsu{L[D].k,})}. For example, if Tis Ta-

ble 5, then Remove-Category (T, D l) produces

Table 6.

Item operations. There are four operations for

items.

The operation Insert-Item inserts a labeled tree

to a category. It takes a table T = (D, E, 6), one of its

items p (whch cannot be D) and a labeled domain C

as operands and returns a new table T = (D', E', 6')

such that:

(1) D' is produced by inserting C into the tree of D

such that C will be a chld of LD[pl ;

(2) E' is the same as E;

(3) if p is a frontier item of D, then 6' will map

every element f s E @Di whch contains p.f

T1

Table 7: After inserting an item to Table 4.

L 1

L2

L3

Table 8: After deleting an item from Table 4.

I I I I I I

e l

e6

e l l

such that f is a frontier item of C, to 6((f s -

{p. f}) u {p}); otherwise, 6' on these elements

is undefined; for other f s E @Dt, 6'(f s) is

the same as 6(fs). For example, if T is Ta-

ble 4, Insert-Item(T,D.DZ.Sl, C), where C =

(S14,0) , produces Table 7.

The operation Delete-Item deletes a labeled

tree from a category. It takes a table T = (D, E, 6)

and one of its items i (whch cannot be D or any item

that identifies a child of D) as operands, and returns

a new table T = (D', E', 6') such that:

(1) D' is produced by removing the labeled domain

LD[i] from D;

(2) E' is produced by removing all entries that are

not mapped from any element in sD ' by 6;

(3) if the old parent of i, i.e, P[i], becomes a frontier

item, then 6' on any f s E 8D1, which contains

P[i], is undefined; for other f s E sD', 6'(f s) is

the same as 6(f s) . For example, if T is Table 4,

Delete-Item(T, D.D2.Sl.S12) produces Table 8.

The operation Move-Item moves a subtree to

a new place within a category. It takes a table

T = (D,E, 6) and two of its items c and p that

L3

TUGboal, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

e2

e7

e l2
e l4 L3

e3

e8

e l 3
e l 3 e l2 e l l

e l l

e l 3

el2 e l4 e l5

Xinxin Wang and Derick Wood

Table 9: After moving an item in Table 4.

are in the same dimension of D (p cannot be a de-

scendant of c) as operands, and returns a new table

T = (D', E', 6') such that:

(1) D' is produced by moving labeled domain

LD[c] to be a child of labeled domain LD[p];

(2) E' is the same as E;

(3) 6' maps any f s E @D' which contains item

p.t where t is a frontier item of LD[cl to

b((fs - {p.t}) u {P[c].t)), and if the old par-

ent of c , i.e, P[c], become a frontier item of

D', then 6 on any f s E @D', which contains

P[cl, is undefined; for other fs E @Df, S f (f s)

is the same as 6(f s) . For example, if T is Ta-

ble 4, Move-Item(T, D.D2.S1 3 1 , D.D2) pro-

duces Table 9.

The operation Copy-Item duplicates a subtree

in a category. It takes a table T = (D,E, 6) , two of

its items c and p that are in the same dimension of

D, and a label 1 as operands, and returns a new table

T = (D', E', 6') such that:

(1) D' is produced by copying labeled domain

LD[cl to be a chld of labeled domain LD[p]

and assigning label 1 to the new labeled domain

copied from LD[c];

(2) E' is the same as E;

(3) if c is a frontier item of D, then 6' maps

any f s E sD' which contains item p.l to

6 ((f s - {p.1)) u {c)) , otherwise, 6' maps any

f s E sD ' w h ~ h contains item p.1.t such that

c.t is a frontier item of D to 6 ((f s - {p.l.t}) u
{c.t)); for other f s E @Df, d'(fs) is the

same as 6 (f 5). For example, if T is Table 4,

Copy-Item(T, D.D2.Sl.S112, D.D2.Sl,S14)

produces Table 10.

Label operations. There are two operations for la-

bels.

The operation Put-Label assigns a new label to

a labeled domain. It takes a table T = (D, E, 61, one

of its items i, and a label 1 as operands, and returns a

Table 10: After copying an item in Table 4.

new table by assigning the label 1 to labeled domain

LD[i].

The operation Get-Label takes a table T =

(D , E, 6) and one of its items i and returns the la-

bel of i.

Entry operations. There are two operations for en-

tries.

The operation Put-Entry associates a new en-

try with a set of frontier items. It takes a table

T = (D, E, b) , an entry e and a number of fron-

tier items f i , . . . , f ~ i m (o] such that {fi, . . . , fDim[D] I
must be an element of sD . It returns a new table by

putting entry e into table T such that the new func-

tion maps { f l , . . . , fDtm[D1} to e. If the old entry

mapped from { f i , . . . , fDim[D]} is not mapped from

any other element in @D, it will be deleted from E.

The operation Get-Entry returns the entry that

is associated to a set of frontier items. It takes a ta-

ble T and a number of frontier items fl , . . . , fDim[Dl

such that { f i , . . . , fDimrol} must be an element of

s D as operands, and returns the entry that is

mapped from {fi, . . . , fDim[D] 1 .

L2

L3

Conclusions

We have presented a tabular model that, although it

is not a universal model, can be used to abstract

a wide range of tables. This model is presenta-

tion independent because it abstracts only the log-

ical structure of multi-dimensional tables and ex-

cludes any topological and typographic attributes.

T h s characteristic makes it possible to design a tab-

ular composition system in such a way that users

are mainly concerned about the logical structure of

tables, and the layout structure of a table is deter-

mined by the system based on style specifications.

In t h s way, we can manipulate and format tables in

a uniform way like other textual objects.

e6

e l l

236 TUCboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

e7

e l2

e8

e l3

e9

e l4

e7

e l2

e l0

e l 5

An Abstract Model for Tables

Our model is simdar to Vanoirbeek's model

(Vanoirbeek and Coray, eds., 1992), although we de-

rived it independently. The major difference be-

tween these two models is the way to specify the

logical structure of a table. In Vanoirbeek's model,

the logical structure of a table is modeled by a tree

with additional links: a table contains a set of logi-

cal dimensions and a set of items (entries); the log-

ical dimensions include rubrics (labels) which may

themselves contain subrubrics; links are used to rep-

resent the connections between items and rubrics.

The main reason for t h s representation mechanism

is to ensure that the table representation conforms

with the hierarchical structured document represen-

tation used in the host system Grif (Quint and Vat-

ton, 1986). In our model, the logical structure of a

table is specified mathematically; it avoids the rep-

resentational structure and implementation details.

Our model is not tied to any specific environment;

thus, we can develop a tabular composition sys-

tem based on this model that can be used to direct

the formatting of tables in different typesetting sys-

tems. Another difference is that the operations for

rearranging the category structure and maintaining

the logical relationships among labels and entries in

Vanoirbeek's model and its Grif implementation are

weaker than those in our model; for example, we can

move and copy all labels in a subtree of a category

and their associated entries.

Acknowledgements

We thank Darrell Raymond for his support and care-

ful reading of a preliminary version of thls paper.

Bibliography

Improv Handbook. Lotus Development Corporation,

Cambridge, MA, 199 1.

Beach, R. J. Setting Tables and Illustrations with Style.

PhD thesis, University of Waterloo, Waterloo,

Ontario, Canada, May 1985. Also issued as Tech-

nical Report CSL-85-3, Xerox Palo Alto Research

Center, Palo Alto, CA.

Biggerstaff, Ted J., D. Mack Endres, and Ira R. For-

man. "TABLE: Object Oriented Editing of Com-

plex Structures". In Proceeding of the 7th Inter-

national Conference on Software Engineering,

pages 334-345, 1984.

Cameron, J. P. A Cognitive Model for Tabular Edit-

ing. Techmcal Report OSU-CISRC-6/89-TR 26,

The Ohio State University, Columbus, OH, June

1989.

Lamport, Leslie. ETg: A Document Preparation Sys-

tem. Addison-Wesley, Reading, M A , 1985.

Lesk, M. E. "tbl-A Program to Format Tables". In

UNLX Programmer's Manual, volume 2A. Bell

Telephone Laboratories, Murray Hill, NJ, 7th edi-

tion, January 19 79.

Quint, Vincent and Irene Vatton. "Grif: An Interac-

tive System for Structured Document Manipu-

lation". In Text Processing and Document Ma-

nipulation, Proceedings o f the International Con-

ference, pages 200-312, Cambridge, UK, 1986.

Cambridge University Press.

Reid, Brian K. Scribe: A Document Specification Lan-

guage and its Compiler. PhD thesis, Carnegie-

Mellon University, Pittsburgh, PA, October 1980.

Also issued as Technical Report CMU-CS-81-

100, Carnegie-Mellon University.

Vanoirbeek, Christine. "Formatting Structured Ta-

bles". In C. Vanoirbeek & G. Coray, edi-

tor, EP92fProceedings of Electronic Publishing,

1 992), pages 291-309, Cambridge, UK, 1992.

Cambridge University Press.

TUGboat, Volume 14 (1993), No. 3 -Proceedings of the 1993 Annual Meeting

