
The Communications of the Users Group

Volume 13, Number 4, December 1992

Users G r o u p Board of Directors

Memberships a n d Subscriptions
TUGboat (ISSN 0896-3207) is published four times
a year plus one supplement by the rn Users
Group. As of December 1, 1992, the TUG office is
moving from 653 North Main Street, P. 0 . Box 9506,
Providence, RI 02940, U.S. A., to Balboa Building,
Room 307, 735 State Street, Santa Barbara, CA
93101, U.S.A.

1993 dues for individual members are as follows:
Ordinary members: $60

rn Students: $30
Membership in the TfjX Users Group is for the cal-
endar year, and includes all issues of TUGboat and

and TUG News for the year in which member-
ship begins or is renewed. Individual membership
is open only to named individuals, and carries with
it such rights and responsibilities as voting in the
annual election. A membership form is provided on
page 000.

TUGboat subscriptions are available to organi-
zations and others wishing to receive TUGboat in a
name other than that of an individual. Subscription
rates: North America $60 a year; all other countries,
delivery by surface mail $60, by air mail $80.

Second-class postage paid at Providence, RI,
and additional mailing offices. Postmaster: Send
address changes to the rn Users Group, P. 0 . Box
9506, Providence, RI 02940, U.S. A.

Inst i tut ional Membership
Institutional Membership is a means of showing
continuing interest in and support for both
and the TEX Users Group. For further information,
contact the TUG office.

TUGboat @ Copyright 1992, Users Group

Permission is granted to make and distribute verbatim

copies of this publication or of individual items from this

publication provided the copyright notice and this permission

notice are preserved on al! copies.

Permission is granted to copy and distribute modified

versions of this publication or of individual items from

this publication under the conditions for verbatim copying,

provided that the entire resulting derived work is distributed

under the terms of a permission notice identical t o this one.

Permission is granted to copy and distribute transla-

tions of this publication or of individual items from this

publication into another language, under the above condi-

tions for modified versions, except that this permission notice

may be included in translations approved by the 7$X Users

Group instead of in the original English.

Some individual authors may wish to retain traditional

copyright rights to their own articles. Such articles can be

identified by the presence of a copyright notice thereon.

Donald Knuth, Grand Wizard of m-arcanat
Malcolm Clark, President*
Ken Dreyhaupt*, Vice President
Bill Woolf * , Treasurer
Peter Flynn* , Secretary
Peter Abbott, Vice-president for U K W U G
Bernard Gaulle, Vice-president for GUTenberg
Roswitha Graham, Vice-President for

the Nordic countries
Kees van der Laan, Vice-president for NTG
Joachim Lammarsch, Vice-President for DANTE
Barbara Beeton
Luzia Dietsche
Michael Ferguson
Raymond Goucher, Founding Executive Director'
Yannis Haralambous
Doug Henderson
Alan Hoenig
Anita Hoover
Mimi Jett
David Kellerman
Nico Poppelier
Jon Radel
Christina Thiele
Hermann Zapf, Wizard of Fontst

*member of executive committee

t honorary

Addresses
General correspondence:
7&X Users Group
P. 0. Box 869
Santa Barbara, CA 93102

Payments:
rn Users Group
P. 0 . Box 21041
Santa Barbara,

CA 93121-1041

Parcel post,
delivery services:

l&X Users Group
Balboa Building
Room 307
735 State Street
Santa Barbara. CA 93101

Telephone
805-899-4673

Fax
[not known at press time]

Electronic Mai l
(Internet)

General correspondence:
TUGQMath.AMS.com

Submissions to TUGboat:
TUGboatQMath. AMS. com

!l&X is a trademark of the American Mathematical
Society.

I do not know when the term "fine art" was invented and
the breach between it and craftsmanship began to widen,
but I have come to believe that it was a sorry day for
both.

T. M. Cleland
"Progress" in the Graphic Arts
(1949)

COMMUNICATIONS O F THE USERS GROUP

EDITOR BARBARA BEETON

VOLUME 13, NUMBER 4 DECEMBER 1992

PROVIDENCE RHODE ISLAND . U.S.A.

T U G boat TUGboa t Editorial Board

During 1993, the communications of the 'I)$ Users
Group will be published in four issues. One issue
(Vol. 14, No. 3) will contain the Proceedings of the
1993 TUG Annual Meeting.

TUGboat is distributed as a benefit of mem-
bership to all members.

Submissions to TUGboat are reviewed by vol-
unteers and checked by the Editor before publica-
tion. However, the authors are still assumed to be
the experts. Questions regarding content or accu-
racy should therefore be directed to the authors,
with an information copy to the Editor.

Submitt ing I tems for Publication

The next regular issue will be Vol. 14, No. 1;

deadlines for that issue will have passed by the
time this issue is mailed. Deadlines for Vol. 14,
No. 2 are February 16, 1993, for technical items,
and March 16, 1993, for reports and similar items.
Mailing dates for these two issues are scheduled for
March and May. Deadlines for future issues are
listed in the Calendar, page 530.

Manuscripts should be submitted to a member
of the TUGboat Editorial Board. Articles of general
interest, those not covered by any of the editorial
departments listed, and all items submitted on
magnetic media or as camera-ready copy should
be addressed to the Editor, Barbara Beeton (see
address on p. 415).

Contributions in electronic form are encour-
aged, via electronic mail, on magnetic tape or
diskette, or transferred directly to the American
Mathematical Society's computer; contributions in
the form of camera copy are also accepted. The
TUGboat "style files", for use with either p l a i n

QX or U r n , are available "on all good archives".
For authors who have no access to a network, they
will be sent on request; please specify which is
preferred. For instructions, write or call the TUG
office.

An address has been set up on the AMS com-
puter for receipt of contributions sent via electronic
mail: TUGboatQMath. AMS. corn on the Internet.

Reviewers

Additional reviewers are needed, to assist in check-
ing new articles for completeness, accuracy, and
presentation. Volunteers are invited to submit
their names and interests for consideration; write to
TUGboatQMath. AMS . corn or to the Editor, Barbara
Beeton (see address on p. 415).

Barbara Beeton, Editor
Victor Eijkhout, Associate Editor, Macros
Jackie Darnrau, Associate Editor, iYm
Alan Hoenig, Associate Editor, Typesetting on

Personal Computers

See page 415 for addresses.

Other TUG Publications

TUG publishes the series mniques , in which have
appeared reference materials and user manuals for
macro packages and w - r e l a t e d software, as well
as the Proceedings of the 1987 and 1988 Annual
Meetings. Other publications on m n i c a l subjects
also appear from time to time.

TUG is interested in considering additional
manuscripts for publication. These might include
manuals, instructional materials, documentation, or
works on any other topic that might bguseful to
the 'I)$ community in general. Provision can be
made for including macro packages or software in
computer-readable form. If you have any such items
or know of any that you would like considered for
publication, send the information to the attention
of the Publications Committee in care of the TUG
office.

TUGboa t Advertising a n d Mailing Lists

For information about advertising rates, publication
schedules or the purchase of TUG mailing lists,
write or call the TUG office.

Trademarks

Many trademarked names appear in the pages of
TUGboat. If there is any question about whether
3, name is or is not a trademark, prudence dictates
that it should be treated as if it is. The following
list of trademarks which appear in this issue may
not be complete.
APS p5 is a trademark of Autologic, Inc.
DOS and MS/DOS are trademarks of Microsoft

Corporation
METAFONT is a trademark of Addison-Wesley Inc.
PC 'I)$ is a registered trademark of Personal w.

Inc.
PostScript is a trademark of Adobe Systems, Inc.
'I)$ and A M S - ~ are trademarks of the American

Mathematical Society.
Textures is a trademark of Blue Sky Research.
UNIX is a registered trademark of UNIX Systems

Laboratories, Inc.

TUGboat, Volume 13 (1992), No. 4

General Delivery

T h e back benches beckon

Malcolm Clark

It might be appropriate to use this last opportunity
to write as the President of the group to review the
past year and produce a 'state of the nation' report.
Rather than do this, I will simply present a brief
mosaic of themes which reflect some of my current
concerns.

I have always held the view that the TEX Users
Group is an international group. A cursory glance
at the membership list reveals many members in
many countries. And this is not just because
of the use of english as the lingua franca of the
scientific and scholarly world. It is also because
TUG is at the heart of a wide range of m - r e l a t e d
activities (as usual, I use Tl-jX as a shorthand
for all the other bits and pieces which cluster
round m). Therefore to site the next annual
meeting in Britain (a small European offshore
island between continental America and continental
Europe) seems most appropriate. It simultaneously
reflects the international nature of TEX and TUG,
while acknowledging the great strides made within
Europe in the formation of a large number of user
groups, whose combined membership might rival
TUG'S international membership.

But there is more. It is especially noticeable
that a sizeable amount of w activity revolves
around electronic communication. True, the major-
ity of TUG members and w users do not have
straightforward (far less 'free') electronic access, but
the activity generated by the privileged minority
probably represents the bulk of development work
going on at present. Aston University will be the
host of the TUG meeting. Aston provides the
largest repository of w material: it aggressively
tracks down and installs style files, macro packages,
public domain implementations for a wide variety
of platforms, and all the other paraphernalia of the
m - w i s e . Its recent announcement of a gopher

service should simplify use of the archive. Just
another good reason for choosing Aston.

The ease and facility of listservers and other
forms of electronic communication sometimes fools
us into believing that it is enough to create a

list and subscribe to it. Since this ignores the
majority of TUG members (and users) we
must be very wary of the conclusions and any

decisions which develop. It has been an essential
part of the UTm3 project to inform the rest of the
world of their progress and current thinking. This
places an additional burden on the key personnel
in the project, but since U r n users will be among
the beneficiaries of the project, they must be kept
informed. The same sort of argument must be true
for any other projects which may have far reaching
effects on the w using community.

Each year brings a few new user groups: the
national and language-based groups tend to attract
most interest and attention, but we should not
forget the many small 'local' groups which are
around. This summer I had the pleasure of
meeting many of the Santa Barbara User Group.
Stimulated by meeting these enthusiastic and able
people, Chris Rowley and I are seeking to initiate
the West Hampstead 7&X group here in London.
There is surely scope for many more! At a rather
larger scale, I recently attended a conference in
L'viv in Ukraine which ended by recommending
that a Ukrainian User Group be founded. TUG is
commited to assisting groups at all scales, but it is
clear that there is no one model of assistance: it
may range from the purely symbolic to the practical
and substantial.

By the time this is published, the new Executive
Director will have been appointed, and my successor
will be known. On these two people hinges a great
deal. But not on them solely. An individual
has only a small influence on TUG. All the
membership influences the way and direction in
which we are headed. Don't expect either of these
two to be a magic bullet which will solve all ills
(nor will future successes be theirs alone). We
all have a part to play. I am acutely conscious
that the stability and smooth(er) development over
the last year or so has been aided conspicuously
by a number of people. While it is invidious to
single out individuals, I will do so nevertheless. I
was ably supported by the other members of the
Executive Committee, Bill Woolf, Ken Dreyhaupt
and Peter Flynn; I am keenly aware of the support
given myself, the Executive Committee, the Board,
and the membership by Ron Whitney, the retiring
Business Manager. These four people helped to
make my TUG life so much easier and productive. I
am confident that a similar relationship will develop
in the future. And naturally there are many
other individuals, some on the Board, some who
I have met at conferences, and some with whom
I have corresponded by email, who have all gone
on to make my life as President of TUG rather
interesting. I'm reminded of an announcement in

418 TUGboat, Volume 13 (1992), No. 4

The Times where someone wished all of his friends
and colleagues a Merry Christmas, 'except one'.
But I could hardly be so uncharitable, or wish to
be.

o Malcolm Clark
Information Resource Services
Polytechnic of Central London
115 New Cavendish Street
London W1M 8JS, England
UK
Janet: malcolmc@uk. ac .pcl. sun

Editorial Comments

Barbara Beeton

'&X: the past . . .

From time to time, bits of trivia related to W ' s
history come to light. The most recent is a copy
of a letter that Don Knuth found in his files and
forwarded to me with the comment that it was
"written 2.5 years before I began working on m!!"

Dated November 7, 1974, it is addressed to
Dr. Daniel Shanks of the Naval Ship Research and
Development Center, Bethesda, Maryland; Shanks
was at that time a member of the editorial board
of the journal Mathematics of Computation. The
letter states, in part,

I would like to record my great disappointment in
the quality of the new typography in Mathematics
of Computation. I know that the change was caused
by economic concerns, but I don't understand why
we can't achieve in the 1970's what was routinely
done in the 1870's. The type font is unattractive;
the spacing between letters of a word is jerky and
not conducive to smooth reading; a lot of the letters
look slightly too large or too small. Although the
right margin is ragged (and I don't mind this
especially), many of the words are noticeably
crowded together as if some margin alignment is
being done anyway. This unattractive appearance
will certainly discourage me from submitting any
further papers to MOC, at least until all the other
journals have deteriorated to the same level.

The October 1974 issue of Math. of Comp. was
the f i s t set in "cold type" -by a sophisticated
typewriter. That method continued in use up to
the first issue of 1981, when a switch was made to
a composition system (not yet 7&X) running on an

in-house computer at AMS. The next piece of Don's
writing published by the AMS was "Mathematical
Typography",* the lecture that introduced to
the world at large.

Some more glimpses of the past appear on the
following pages, in the transcription of a conversa-
tion between Don and Roswitha Graham, president
of the Nordic rn Users Group.

. and the future

Although Don announced in these pages that his
work on is complete, many users are concerned
that there are things that cannot do, that are
nonetheless desirable and consistent with the prac-
tice of fine typography. Discussions are proceeding
in several electronic discussion lists and at meetings
of W users whenever they occur. The importance
of this topic is such that the column dedicated to
"future" topics, Dreamboat, has been moved from
its former location near the end of TUGboat issues
to a more prominent location immediately following
this introductory section.

Two articles in this column deal with the state
of m and possibilities for the future. The first,
by Dick Palais (whom old-timers will remember as
the founding chairman of TUG), gives a perspective
colored by tradition and personal acquaintance with
Don and the Stanford 'l&X project. The other is
by Phil Taylor, who, while by no means a !QX
newcomer, was introduced to 'I)$ far from its point
of origin and approaches the matter from quite a
different direction.

Both Dick and Phil are faithful to Don's exhor-
tation to create "masterpieces of the publishing art'!
If their methods differ, it is because their experience
differs; I have never met two users who have
learned it in the same way, or even the same parts
of it, and it has long since ceased to surprise me
when I learn something new about rn from even a
new practitioner. The discussion is interesting, and
Phil's article includes instructions on how to listen
in or join it.

Another article (p. 510) solicits volunteers for
tasks associated with the implementation of I P W 3 .
This important project, when complete, should
provide a W environment even more attractive to
new users than the present I P W , as well as flexible
methods for implementing the requirements of book
and journal designers, features much desired by

* Bulletin Amer. Math. Soc. (N.S.) 1 (March
1979), 337-372

TUGboat, Volume 13 (1992), No. 4 419

anyone working in a production environment. Your it depends) -which optimizes text in such a way
participation is encouraged. as to achieve nearly equal word spacing throughout

each paragraph, using several interesting techniques
TUG: the present that I believe are of interest to readers of TUGboat.

TUG is going through some changes.
Sometime very soon after I write this, the

TUG office will be moving from Providence to
Santa Barbara. A new Executive Director, Pat
Monohon, will be taking charge. For much of the
past year, Pat has been in charge of a group of
volunteers who have been copying and distributing
the public domain TEX packages that are available
from TUG. So she has already begun to become
familiar with some of the functions that are part of
the TUG office duties. We wish her well.

I would also like to take this opportunity to
recognize everyone who has worked so diligently
in the Providence TUG office: Karen Butler, Cliff
Alper, Teresa Pires, Kathy Sheely. They have been
unstintingly helpful whenever I've had questions,
and I shall miss working with them. And I'm
not forgetting Ron Whitney - his contribution to
making my job easier has been greater than I can

say; in addition to managing the office, he has
continued to respond to my requests for assistance
with the TUGboat styles, and the credit for their
reliability and ease of use in production is mainly
his. Thank you all!

Not only is the office undergoing a transition-
the elected management will be changing too. As
already announced in and TUG News, no one
stepped forward to stand for election as TUG
president, so the Executive Committee has studied
the Bylaws for guidance in this situation. There
will be a new president for a term beginning on
January 1; the specifics will be announced in the
next issue of TTN.

Please remember that this is your organization,
and its success depends on you. Let's all of us,
every TUG member, pull together and give our new
representatives the support they deserve.

New ideas in typography

Earlier this fall I attended the Goudy Award Sympo-
sium at the Rochester Institute of Technology. This
annual event, named for the esteemed American ty-
pographer, honors an outstanding type practitioner
with an award and a program of talks about type
and typographers.

One of the speakers this year was Peter Karow,
of URW, Hamburg. His talk described a new
typesetting program-the hz-Programm (named
for Hermann Zapf, who designed the fonts on which

The first technique should be familiar already:
paragraph-wide line breaking; this is, of course, the
technique used in m, and though Karow didn't
mention it during his talk, when I asked if the
source were Knuth's algorithm his answer was "Of
course!"

The second technique depends on specially
designed fonts to lengthen or shorten lines to
approach the target measure. For selected letters
multiple shapes of differing widths are provided;
typically these are letters that occur relatively
frequently (e.g. "en) or have shapes that can by a
small change have a significant effect on line length
(e.g. "m").

A third technique can be called "intelligent
kerning"; this consists in applying only positive
kerning to lines that are shorter than the target
length, and only negative kerning to lines that are
longer.

There are two more components to the package.
The typographic quality of the resulting text is most
impressive. The paper will be published elsewhere,
but I have asked, and expect to receive permission,
to reprint it here in a future issue.

o Barbara Beeton
American Mathematical Society
P. 0. Box 6248
Providence, RI 02940
USA
bnbQMath.AMS.com

An Interview with Donald Knuth

In November 1991, Donald Knuth was one of a
select group honored by appointments to Honorary
Doctorates by the Royal Institute of Technology
(KTH), Stockholm (see TUGboat 13, no. 2, p. 134).
After his installation, he participated in a meeting
of the Nordic Users Group, where he responded
to questions from the audience. He also spent some
time talking informally with Roswitha Graham, the
president of the Nordic group. These discussions
were recorded, and edited transcriptions appear
here with the permission of the participants.

420 TUGboat, Volume 13 (1992), No. 4

Don also spent some time relaxing at the Gra- remember the name of it now, but I remember
hams' country house on an island in the archipelago it had a green cover and it was a nice booklet
outside the Stockholm harbor. A helpful spider about 40 pages long-a mathematical report. [It
provided an appropriate setting for the author of was Non-linear Inverse Problems by Gerd Ericksson
WEB. (1983), 46 pp.; see "w incunabula," TUGboat 5,

Question and answer session at the Nordic
group meeting

Donald Knuth (DEK): I would like to say a big
"Thank you" to Roswitha, and to the School of
Computer Science and Department of Mathematics,
for making my visit here possible and arranging
everything. Also, I'm glad to be back here-I
wanted to say that rn owes a lot to the Nordic
countries and to Sweden in particular.

I guess I never mentioned this in print, but
when I designed W , I chose three examples
of mathematical typesetting that I considered as
standards of excellence, and I studied those three
very carefully. I scanned them digitally - in those
days we used a TV camera-and made a lot of
careful measurements. One of the three was a
volume of Acta Mathematica, printed in Stockholm
about 1910. The second, in case you're wondering,
was from the Netherlands in 1950, the mathematical
section of their Academy of Science proceedings; the
third was Addison-Wesley's house style as used in

The Art of Computer Programming, when math
composition was still done by hand.

Also, here at KTH you had one of the first four
Alphatype machines running my original software.
I received a copy of an early publication-I don't

no. 1 (May 1984), 4-11. - ed.] So some of the very
first extensive uses of w happened right at this
institution. That makes me especially pleased to be
here.

At the end of my courses at Stanford, I usually
reserve the last day of class for a session we call
"All questions answered," and I volunteer to answer
questions on any subject whatsoever except religion
or politics. And in recent years I've also excluded
questions about Volume 4 of The Art of Computer
Programming. [laughter] But today this looks like
a very friendly audience, and I don't even mind
if you have questions about Volume 4 of The Art
of Computer Programming. So ask any questions
whatsoever, go ahead. (Including politics.)

Question: I have a question about Chinese char-
acters used with 'l&X.

DEK: Well, I don't know too much, but 1'11 tell
you what I do know. One of the first scientific
visitors from the People's Republic of China to
the United States was Dong YunMei, who came
to work with me and designed a system called
LCCD, Language for Chinese Character Definition;
he wrote a Stanford Computer Science report about
that work. It was inspired by METAFONT, but
he had special graphical primitives in there so
that LCCD could do things that were especially
important in Chinese for positioning radicals and
so on. It was a language that wasn't based on,
but was similar to METAFONT; he implemented it
entirely himself. In the second edition of Volume 2
of The Art of Computer Programming (which was
published in 1981, and was the first real use of

'l&X78), we used LCCD to typeset the Chinese
names in the index. Then Dong went back to
China, and now he heads a group at the Institute
for Software Technology in Beijing. That group
has, of course, done a lot toward extending his work
since those early days. They now have a language
called SP for typesetting Chinese and arbitrary
Western texts; it was mentioned in the proceedings
of the IFIP Congress, 1989, held in San Francisco;
there's a brief, 5-6 page report about what is
going on in computer research in China, and this
is one of the projects mentioned. When he was at
Stanford, he spelled his name "Tung"; now he spells
it "Dong", but it's still pronounced "Doong" . He's
a very fine man. The most exciting thing for me is

TUGboat, Volume 13 (1992), No. 4 421

that he's now directing a big project to use literate
programming for Chinese, so they have a good way
to document their programs, like the WEB system
for documentation. This system, called CDP,
combines the C programming language with the SP
typesetting language. They also have an ongoing
project for drawing Chinese characters electronically
with a kind of metalanguage. However, I don't think
they're anywhere near doing all the characters that
way. That part of his group's activity seems to be
more of a research project than a real production
project.

There was another visitor from China at the
same time, 1980-Mr. Ma, who worked at the
Mathematics Department of the University of Bei-

jing. He had some pretty good Chinese fonts at
that time, which we could use on our laser printers.
But that's all old stuff.

Just three weeks ago, I had a chance to meet
Mr. Gu Guoan again. He's from Shanghai and now
working for Ikarus, so he is affiliated with Peter
Karow in Hamburg. Gu is the head of the Ikarus
bureau in Shanghai. He originally came to Stanford
from the Shanghai Printing Company, which is the
largest printing company in China, shortly after
Dong and Ma had returned to China. Gu wrote
a paper with John Hobby that is mentioned in
The METRFONTbook, describing about a META-

FONT system for Chinese characters. That paper
[TUGboat 5, no. 2 (1984), 119-136-ed.] was
published as a Stanford Report and has lots of
illustrations. They designed a system that did
about a hundred test characters, all programmed in
terms of 19 basic strokes. One of the basic strokes,
for instance, is [draws on blackboard]. But they
add a lot of parameters to it, so that it can appear
in many different proportions. Then they have
another basic stroke that looks something like this
[more drawing]; you can have it tipped in different
ways, and you can control exactly how much of a
teardrop you have, and so on. So you have nineteen
of these basic strokes, all done with parameters.
Then you design the hundred Chinese characters by
saying "do stroke number 1 in this position, and
stroke number 2 in another position." The almost
incredible thing about their system was that you
could redesign the nineteen primitive subroutines
and get completely different styles, still looking
like real typefaces; so you could get Chinese in
bold style, and you could get Chinese in the Ming
Dynasty style, from the exact same descriptions
of the hundred characters, just by changing the
nineteen subroutines. Their article presented a kind
of sans serif as well as a seriffed version, and they

also had what they call a "Long" style or something
like that. So they were getting three styles, and the
design was a true meta-font in that sense. Their

work was quite exciting to me, but as far as I know
no one has pursued it; it was done by university
researchers, who assume that when they're done,
industry will march in and take over, but that
didn't happen. I don't think there were any flaws in
the research; I think it's just a matter of somebody
picking up the idea and matched it with the right
group.

On the other hand, Gu is now working for
Ikarus, and is about to finish a massive conversion
of Chinese characters into Ikarus format, then into
Postscript with "hints"; this represents the entire
set of all known Chinese characters - more than
50,000 but less than 60,000. He was visiting Adobe,
so I happened to meet him a month ago when he
came to California. His Ikarus descriptions won't
be a meta-font, since they represent only one style.
But he has access to the very best fonts, because
the Shanghai Printing Company has these in the
form of photographic masters.

Conversation wi th Roswitha Graham

Roswitha G r a h a m (RG): Was anything new
brought to you at the Nordic meeting, anything
that you didn't expect to be there, as you listened
to Frank [Mittelbach] and Yannis [Haralambous]?

DEK: As I said earlier, I was very impressed by
the quality of the work that they're doing. I knew
Frank's work before, because I'd talked to him at
length when he came to Stanford. He had very

penetrating insights into the whole program and
has found many of the most subtle bugs in m.
Also I know that he has this great commitment
to quality publishing where he really wants to go
a level beyond what I had ever conceived that I
could do. So the proposals that he's made for
going into even finer-than-fine quality printing, I
know he comes from the right spirit. He might
discover, as I did, that when you make some things
better, other things get worse, and so finally you
have to find a balance. But he might find a way
to make everything better. So it's very inspiring
to me to see the time that he puts into this and
the vision that he has for making further advances.
Also, an international perspective is important -
people with different backgrounds from my own can
obviously contribute things to that I couldn't
do myself; I'm only one person.

422 TUGboat, Volume 13 (1992)' No. 4

Then I met Yannis for the first time. His
work.. . , that was the biggest surprise for me, to
see how much he has achieved singlehandedly, doing
things that I thought would need half a dozen or
ten people to do, because of his background in
many languages. Again, he has this great love
for quality and love for preserving the beauty of
"the good old days" in printing (where sometimes
modern progress has taken steps backward). It was
certainly exciting for me to see the care that he is
taking to make keyboarding of so many kinds of
text reasonable. When I was working on TEX, I
wouldn't have dared to dream that it would become
so easy to use the system in connection with Hebrew
with vowel points, as well as Greek with all the
breathings, and Ethiopian and Urdu and Arabic
and many of these other things.

RG: Will you try this when you come home?

DEK: Well no, my life is too short. There are so
many things that I could love very much spending
my life doing-I could spend a lifetime doing fonts;
I could spend a lifetime playing with color; I could
spend a lifetime doing many languages. But I've
already decided that the rest of my life is going to
be The Art of Computer Programming. That's at
least a twenty-year job, so I can't take any time off
to do anything else from now on.

RG: I meant actually if you are going to try, not if
you are going to work with it . . .just play with it?

DEK: I usually allow myself one or two days a
year to play with some toy, so it's quite possible
that I'll do that, one of these years.

RG: Did you get some mail from Beijing? We just
got mail from Beijing, what this Chinese fellow had
done. He had done some preprocessing.

DEK: Yes, that's thrilling for me too. People all
around the world feel the same need for quality
publishing that I had for mathematics publishing.
So when I see people putting a lot of spare time
into the work, I know that this is rewarding to
them, and t o many people afterwards having the
fruit of their work. That's why it's exciting to me,
of course, to have helped make this possible. I now
see many publications where the authors were just
inspired to create a fine book that they would never
have begun if they hadn't had the power to do it
themselves, and they needed something like W or
METAFONT in order to be able to do it at all.

RG: Could 'TpX be an ideal program to communi-
cate between different languages? Do you think it
could be used in that way as well?

DEK: Well, as far as I know it's the best existing
system to control things like paragraphing while
dealing with many languages with respect to hy-
phenation and so on. But certainly I never thought
that W would be the last word. In fact, one thing
hasn't happened that I was expecting: When people
were faced with special kinds of publishing projects,
I was assuming that they would just make their
own version of instead of trying to use rn
as it is. For example, if someone wanted to come
up with a new edition of the Bible, I was really
expecting them to use some WEB change files, hiring
a programmer who would be able to give them new
features adapted to their project. You know, if
you are going to produce an ArabicjEnglish dic-
tionary, or something like that, you'll want special
capabilities. I never expected TEX itself to be a
general tool for all these purposes. Now I find that
people are close enough to being able to do most
of these things, that hardly anybody is actually
changing the WEB code. Instead, they've found that
they could do almost everything they want with
standard 'I&$. Yannis found a way.. . I said, are
you worried that I have only 256 characters in the
font when you're dealing with Greek? (The first
fonts of Greek that were developed in Europe, in
the Netherlands, had some six hundred characters
including a huge number of ligatures.) But he
assured me that he's not at all worried about this
restriction. He doesn't find the existing system
problematical.

Now I see here the report from Chinese m,
and it's got chemical formulas as well as Chinese
and mathematics, done with a preprocessor. Of
course, to do some of these things you can't expect
macros would handle everything the easiest way.
My goal was to build an engine that would be
versatile, that would be very good at balancing
texts and able to do hyphenation in a variety of
languages, and so on, and I was hoping that it
would facilitate printing the languages of people all
over the world - and now here it is!

Since Professor Romanovskii is with us today,
I'm reminded also of recent developments in Russia.
We all know that when people do some work
they're proud of, they also want to make it look
like something they're proud of. In America, I
couldn't write a book that I thought was going
to be produced by a printer who wouldn't do it
well. In the Soviet Union, when it was government
policy not to have easy access to Xerox machines
or laser printers, the policy was holding everybody
back from being able to communicate their best
work. So it's also a big hope of mine th& a new

TUGboat, Volume 13 (1992), No. 4 423

. . . freedom isn't the right word for it, I guess pages of it, a beautiful job. They claim they are

I mean an ability to communicate to the world enjoying their prison life because of m. What

community in mathematics . . . will lead to a great could be nicer?
flourishing of new Russian books. So much Soviet
mathematics I've seen had to be condensed into a
few pages. I'm sure the authors were just as proud
of their results as we are-deservedly even more
proud-but just had no way to let it out. It's the
same with computer programs as with mathematics.
Computer programs need to be communicated, to
be read by people.

The communication factor is the real, to me
the most important reason why so many changes
began to happen in the Soviet Union. The rest
of the world was improving its communications
rapidly, while in the Soviet Union, computers were
used mostly for numerical calculations and couldn't
be used extensively for word processing; it was
too much against the policy of the government.
So this need for communication, also for beautiful
communication, is something that I had long wished
for in every part of the world, but especially in the
Soviet Union. Jill can tell you about times when
I would play Tchaikovsky on the piano, with tears
in my eyes because I was thinking how beautiful
this music is, but how I wished that my friends in
Russia could be doing some of the other things that
I was doing.

Communication between machines has become
the real reason for computers in most of the world.
China faces the same problem; they can never reach
modern levels of technology until all limitations are
removed fiom their communication networks.

RG: What difference is there between the Japanese
way of doing TEX and the Chinese way?

DEK: I'm not familiar with it, but in both cases
they seem to be getting quality. So I'm happy, as
long as the output looks great.

I get completely unexpected mail every once in
a while. Did I tell you the story about Italy? I
guess not. The m b o o k has been translated not
only into Japanese, but also into Italian (though
not yet published in Italian). The people who
did the translation are actually prisoners, political
prisoners thrown into jail in the '70's because they
were liberal activists. But they're in a minimum
security prison, so they're supposed to work for
their living. This one group decided that their job
was going t o be to typeset mathematics with
for the Italian Mathematical Society; so they did
this. They sent me a letter explaining how they're
prisoners, and they enclosed a laser-printed copy
of the entire m b o o k translated into Italian, 500

RG: That's a point of view I never thought of,
actually. I find it great that you have given to the
world something that is free of charge and it's a
challenge for everyone who wants to communicate.
If the possibility is given, I think it's wonderful
there is something like this. I find it amazing that
so many people have put in so many working hours
without ever asking any labor union about it.

DEK: It was part of my original thinking that
should not be competing with a labor union, or even
with other people's egos. In other words, I knew
that if I had been working at Bell Laboratories,
for example, I could never do anything that would
compete with t r o f f , because that would be not
respectful to the other people there who had put
years and years into it. To me, t r o f f had proved
that the whole idea of something like TEX was
possible, and therefore it was a good idea to start
over from scratch and think over how to do it if
you were starting over. Well, it's impossible to do
such things in an existing organization. Similarly,
if I hadn't done m for mathematics, if I had had
as my first goal to do newspapers, or the yellow
pages, or something that counts for the majority
of publications in the world, then (if successful) I
would have been putting a lot of other people out of
work and making them angry at me. I didn't want
to do that. So I was happy to be creating a tool for
mathematics; it seemed to me that nobody in the
world enjoyed typesetting mathematics. Good - I
wasn't going to offend anybody. This was 2 strong
component of my thinking as I wrote W. Well, it
turned out there was one person who was offended,
and he complained at one of the TUG meetings;
this man from Science Typographers had spent a lot
of his time making a commercial system, which is
still used. He keeps improving it, and it's excellent.
There's absolutely no reason to question the quality
of the journals his company typesets, in any way.
But he did complain, and that made me feel bad,
because I didn't think I was going to make anybody
unhappy by doing m.

Another thrill at this Nordic meeting was to
learn that TEX will soon be used to typeset the
journal Acta Mathernatica. The main reason it's
exciting to me is that a circle is being closed: Acta
Mathernatica was one of my first models for quality
when I designed m. As I said at the meeting,
I had selected three standards of excellence that I
did a lot of measurements on, hoping to be able to

424 TUGboat, Volume 13 (1992), No. 4

match their quality. Acta Mathematica, in 1910,
was the mathematics journal that had the best
budget in the world at the time, and they did a
very good job; so I had looked at it very closely
in 1977. Now comes the surprise: Right after the
TFJ meeting, I ran into Jan Michael [Rynning] at
the Institute talking to people about how to do
Acta Mathematica with m! The decision has
apparently been made now. Not only that, but
Leif Andersson showed at the Nordic TUG meeting
that he understood all the intricacies of making new
mathematics fonts for TFJ. So it should be possible
to do Acta Mathematica in the fonts that you had
in 1910 as well.

RG: Did they agree to?

DEK: Who knows, but he could certainly do it.
The expertise exists in Sweden to make this possible.

I tried to design TFJ so that people who
would be spending a lot of time working with it
would still find their job pleasurable. Suppose they
have to deal with 7&X many hours of every day
for years and years. I tried to make it so that
they would still find this a pleasant job, because
they could keep discovering new constructions that
would be somehow fun or beautiful or satisfying,
in amongst all the other things they have to fight
in order to cope with unusual constructions that
always come up in printing. My hope was that
people could continue to find yet more elegant ways
to solve certain problems, and enjoy the process.
The number of people around the world who are
putting in this extra effort seems to indicate that
the language is working in this respect as I had
hoped.

RG: Just being interested in people communicating
. . . , because I am visualizing that it will be possible
to have this text in a mail and it could even be
translated by the language.

DEK: Oh yes, we could build it into fax machines
and so on. I hope that in January I will see the
absolute last bug in m, and somebody can make
a chip so that it will be easy to have 7&X inside any
machine!

The American Math Society is making
source available now; the Math Reviews are avail-
able in 'QjX form going back fifteen years or so, and
they continue to extend this so that mathematicians
can look for an article on a certain topic and can see
it typeset on the screen. And this is something that
could certainly work for all sorts of complicated
applications.

But you still need, if you are to get the highest
quality, to have copy editors review everything and
make sure you have the right style of quotation
marks, for example. Every academic discipline has
its own problems and every standard reference work
can use typography in ways that make the reference
work more effective but also is specific to that book.
So every book is a new challenge. The advantage of
7&X is that it's able to be adapted to these different
challenges; it doesn't put everything into a single
format. On the other hand you could also consider
that a disadvantage.

Suppose you were allowed to rewrite all the
world's literature; should you try to put it all into
the same format? I doubt it. I tend to think such
unification is a dream that's not going to work.

Authors have adapted themselves to the medium
that they are using at the time, and if we're going
to understand the authors' intentions, we should see
something close to that medium. The medium of
the future may be some other sort of standard for
international communication; whatever the future
brings, people can use that method. Authors will
express themselves best in the medium they are
using for creation. Authors using TFJ now can.
for example, write a different kind of mathematical
paper than they did ten years ago, because they
know they can choose a notation that isn't going
to be misunderstood by a typesetter who knows no
mathematics. So I can write a more effective tech-
nical paper if I know that I can make the diagrams
correct -I can put in different kinds of diagrams
and tables than I would have dared to if I was
going through other people who didn't understand
my intentions. Things that were written 20 years
ago were written in a style that was optimized for
older technology. Movies are analogous: People
who made silent films chose different scenes than
they would in a sound film, but their work was
effective as a silent movie. And you can't just take
a movie that's black and white and colorize it and
get the same effect. It's the same thing with older
texts as well as texts for special purposes and other
languages. So this idea of a standard format is only
something for the future, not for the past.

RG: You can't leave the field! You'll follow up in
some way what's happening with 7&X, even if you
now are going to devote your time to something
else, you cannot let it go. You have spent so much
time.. . Is it a hate/love, or is it only love?

DEK: Well, it's hate when I learn that I made yet
another error. I just got a message in the mail
saying that if somebody sets the math unit to a

TUGboat, Volume 13 (1992), No. 4

negative value-which nobody in their right mind

would ever do, but if they do-apparently ' I j jX

goes crazy. So I have to fix that, Ugh.

What I love is when excellent new publications

come out that I know wouldn't have been done at

all without w, and also when I see people - as I
said, Frank and Yannis-spending a considerable

part of their lives doing work that has very high

quality. They are excited just by the chance of

improving the quality of publication. Those are the

things that make me happy.

RG: Thank you very much.

Dreamboat

Moving a Fixed Point

Richard Palais

Abstract

In the past few years there has been increasing discus-
sion of the question LLHas the time has come to make
basic changes to the inner workings of w?". In late
May of 1992, Rainer Schoepf set up a mailing list on
the Internet, called LLNTS-L1l, to discuss the matter. I
started out being completely opposed to the idea of
even the slightest changes to the m code, feeling
that whatever failings 'QX might have, they are best
approached by pre and post processing ("front and
back ends"), and anyway are negligible compared to
the danger of losing the remarkable coherence and in-
terchangeability of 7JiJ software, everywhere and on all
platforms that is enforced by the discipline of having a
single, universally accepted underlying piece of software
(INITEX). However, after following the discussion care-
fully for nearly two months, I was convinced by evidence
that, for certain purposes, 7JiJ was no longer fulfilling
its promise of providing typesetting of uncompromising
high quality, and probably only careful and limited
changes and additions to m primitives could correct
this. What follows is a long message I posted to NTS-
L, outlining a minimalist approach to changing m,
and also a suggested method for implementing changes
to 7$X code that would insure documents written for
standard could still run under the new system. A
number of replies to my message were posted to NTS-L
and others were addressed to me personally via email.
Rather than incorporate these comments by making
appropriate changes to the version I posted, I have

decided to append a short addendum, mentioning a few
of the more important points made in these replies.

This is going to be more a "position paper" than

a simple message. I have been following the NTS-L

mail list discussion with considerable interest and

finally felt that there were so many issues that

I wanted to address and remarks that I wanted

either to agree with or to dispute, that only a

fairly extensive reply would do. Here is a table of

contents:

Section 1:

Section 2:

Section 3:

Section 4:

Section 5:
Section 6:
Section 7:
Section 8:

Section 9:

Introduction

The Many Faces of l&X
A "Standards" Approach to

Solving Portability Problems

The Matter of Compatibility

TjjX as a Front End

m as a Programming Language

Changing the Fixed Point

Summary

Postscript

Introduction

First a short personal introduction. The oldtimers

of the T@ world will perhaps remember me-I

was the founding chairman of TUG, worked closely

with Don Knuth during the early years of w, and

I wrote a column on mathematical typesetting in

the Notices of the AMS for three years, with the

goal of easing the transition in the mathematical

community from the typewriter, along WYSIWYG

road, and into the bright new Promised Land of

m. But my name may well be unfamiliar to more

recent arrivals in the w world, for lately I have

been only a "lurker" on comp.text.tex, and while I
read TUGboat and use w daily for writing my

letters, papers, and books, and in connection with

my duties as an editor of the Bulletin of the AMS,
I have not recently been contributing either to the

development or to the public discussion of m.
Next a disclaimer. While I know my way

around in The m b o o k and have been writing my

own macros and formats since 1978, I consider my-

self an amateur, not at all in the same league with

m p e r t s like Barbara Beeton, Michael Downes,

Victor Eijkhout, Karl Berry, Larry Siebenmann,

Tim Murphy, and others who have been contribut-

ing to this discussion. So I will happily defer to

them on technical matters and hope that they will

correct any of my misstatements. What I would

like to do is take the point of view of a devoted

TUGboat, Volume 13 (1992), No. 4

user; one not so enamoured of rn as to be unable

to see its warts, but one who appreciates what a

unique software miracle TEX is, and is willing to
try to fix things only if assured that it will not

subvert that miracle. One more fact about me

bears emphasizing; as a mathematician I do have a

somewhat biased view of m. For me m is not

just a typesetting system, it is the mathematical

and "mnica l " typesetting system.
I would like to begin with a quotation from Don

Knuth's "Remarks to Celebrate the Publication

of Computers & Typesetting" at the Computer

Museum, Boston, Massachusetts, May 21, 1986, as
printed in TUGboat, vol. 7 (1986) no. 2, pp. 95-98:

Ever since these beginnings in 1977, the
research project that I embarked on was driven
by two major goals. The first goal was quality:
we wanted to produce documents that were not
just nice, but actually the best.. .My goal was to
take the last step and go all the way to the finest
quality that had ever been achieved in printed
documents.. .

The second major design goal was to be
archival: to create systems that would be inde-
pendent of changes in printing technology as much
as possible. When the next generation of printing
devices came along, I wanted to be able to retain
the same quality already achieved, instead of hav-
ing to solve all the problems anew. I wanted to
design something that would still be usable in 100
years. In other words, my goal was to arrange
things so that, if book specifications are saved
now, our descendants should be able to produce
an equivalent book in the year 2086. Although I
expect that there will be a continual development
of "front ends" to 'Ij$ and METAFONT, as well as
a continual develo~ment of "back ends" or device
drivers that operate on the output of the systems, I
designed and METAFONT themselves so they
will not have to change at all: They should be fixed
points in the middle, solid enough to build and rely
on.

Perhaps it is because I was in the audience when

Don made those remarks that they seem particularly
important to me, but in any case, as my contribution

to the NTS discussion, let me attempt to analyse the

TEX system and some of its purported shortcomings

in the light of Knuth's quotation. More specifically,
I would like t o address the following:

QUESTIONS.

1) Are Knuth's two goals consistent, or has the

continual quest for ultimate quality in typeset-

ting exposed problems with TEX so intractible

that they cannot be addressed simply by creat-

ing new and better front and back ends for the

system?

If so, can these "intractible" problems be solved

by changes to that will leave it compatible

with the current version (and in particular able

to pass Knuth's "trip-test").

T h e Many Faces of TEX

TEX is a complex system that can appear as many

things to different people (or even to one person

at different times). In fact it is a little like the

proverbial elephant that the blind men perceived in
so many ways depending on how they "interfaced"

with it.
I think that this many-faceted nature of TFJ

may account, at least in part, for some of the un-

focused and chaotic discourse that has been taking

place on this mailing list. Someone will comment

either critically or in praise of one aspect of the TkJ
system and someone else will contradict that com-

ment, but really in reference to some other aspect of

the system. As anyone scanning comp.text.tex real-
izes, U r n users face a whole different set of prob-

lems than plain TEX users, and likewise A M - W
and I t p ~ S - w provide still other environments,

with differing attendant strengths, problems, and

difficulties. The complaint, repeated several times

in the recent discussions, that is incompetent

to do commutative diagrams, may seem obvious to

a frustrated user of plain TpjX, but it would perplex

a user of V M S - T ~ X who will tell you that it is

an absolute snap using "m" to make beautiful
commutative diagrams, even very complicated ones

with arrows set at almost arbitrary slopes and with

all kinds of decorations on them. Likewise, it is

well-known that designing tables can be a painful

chore with (plain) m . But there are a number

of excellent macro packages around that automate

this problem away. Even that most serious problem

of integrating graphics into l&X can be consid-

ered solved in the right TEX environment. In the

hands of a competent artist, a Macintosh equipped
with Textures, Adobe Illustrator, and a Postscript

printer can create strikingly professional integrated

graphics and text. Yes, I know that this solu-

tion gives up the portability of TFJ documents-

bad things can sometimes even happen between the

proofing device and the high resolution camera copy

typesetter-but the point is that m a n y apparent

problems with TjjX can be solved by coupling Qj?X t o

suitable front and back ends, with n o reprogramming
a t all of itself. Someone suggested that Tj$

TUGboat, Volume 13 (1992), No. 4 427

needs BCzier curves as a new primitive. I will argue
that the BCzier curves belong in an Illustrator-like
program, not in 'IJjX. Solving the problem of
portability is trivial in comparison with the night-
marish difficulties that I foresee as virtually certain
to follow from trying to add anything so foreign as
BCzier curves to m ' s data structures!

A "Standards" Approach to Solving T '
Portability Problems

As just suggested above, I believe that at least
some of the major defects currently perceived in the
w system are not so much problems with 'IQX
itself, but rather arise from the vital requirement
that T&X documents should be completely portable
between various hardware platforms. As long as
we are dealing with w itself, this portability is
assured by the minimal requirement that all true
m systems will produce the same DVI file from a
given source file. But of course a DVI file is only part
of the way to a printed page, so TEX without some
sort of back end is virtually useless. We sometimes
forget that even the software combinations formed
by a set of font glyphs (either bitmaps or outlines)
and a screen previewer or printer driver is already
a back end to w. If we are willing to stick
with the Computer Modern family of fonts in the
bitmapped format provided by METAFONT, then
virtually all screen previewers and printer drivers
will work faultlessly and provide "identical" output
to a tolerance limited only by resolution. The
reason of course is that these fonts are a carefully
specifled standard, on which the writer of a device
driver can completely rely. But of course Knuth
never intended TEX to be limited to the CM family
of fonts, or even to METAFONT designed fonts.
Currently, Adobe's Postscript Type 1 fonts are the
world's favorite, and it has become increasingly the
case that a typesetting system, if it is to remain
acceptable, must be able to deal at the very least
with the basic thirty-five fonts built into PostScript
printers. Of course w was easily up to the
challenge. All that is necessary is to build a TFM
file for each Type 1 font (or better yet an AFM
to TFM conversion program), and add the basic
code to the device driver to handle a Type 1 font.
On any given system this is an easy task, since
again the Type 1 format is a completely specified
standard. I know this was done several years
ago on the Macintosh, and I believe it has also
been done for most of the other major hardware
platforms. There are now even a number of well
hinted Type 1 versions of the basic Computer

Modern fonts available. However even this quite
simple new back end leads to portability problems
between systems. I have never tried it, but I suspect
strongly that if I sent a colleague with an IBM clone
one of my Textures source files that used Times
Roman, it would not work under P C W or emT@
without modification. The problems here are quite
trivial, involving little more than differences in font
naming conventions. All that would be necessary
to regain complete cross-platform portability when
using PostScript fonts is some standardized naming
conventions. I have made a point of this not
because it is a difficult problem that has worried
people much; rather because it is a simple problem
with an easy solution-but one that I think can
be generalized to solve many other 'IJjX problems
without in any way tampering with TJT'J itself.

For a hard example, let's consider a problem
that has been the subject of a great deal of
discussion in the community and in TUGboat,
namely specifying graphics within a W source file.
Of course one possibility that has been mentioned
would be to add a number of graphics primitives
to 'IJjX: lines, circles, BCzier curves, colors, fills,
bitmaps, etc. To my mind this would be absolute
madness, and I find it hard to believe any one
would seriously consider it. The obvious reason
to reject this approach is that it would lead to
a program infinitely more complex than TEX that
could never be made bug free or portable. Moreover
in a few years, when BCzier curves are perhaps
out of fashion, and some new graphics goodies are
all the rage, there will be a call for yet another
"upgrade" of 'IJjX. But a better reason to reject it
is that one should not attempt to brush one's teeth
with a paintbrush or try to paint a picture with a
toothbrush-use the correct tool for each job. And
while Swiss Army knives may make fine souvenirs
and conversation pieces, they are not high quality
tools.

The simple and straightforward solution is to
consider a graphic as just another box (a "bounding
box"), just like any other TFJ box, and let some
appropriate back end worry about what is inside
the box and render it appropriately on a screen
or sheet of paper. Then one can always create
graphics with the very best front end graphics
tools currently available on a given platform, save
it in an appropriate ASCII-based file format, such
as encapsulated PostScript, tell T@X about its
bounding box and its format, and let the back
end take over from there. "But wait a minute,"
you say, "isn't that exactly the old "\specialn

approach?" Of course it is, and I claim that

428 TUGboat, Volume 13 (1992), No. 4

the \ spec ia l mechanism has worked very well
except for the problems with portability that it
has introduced. Now experience has taught that
the correct approach to portability problems is
not to create complex do-it-all programs and then
struggle to make them work on dozens of different
platforms. Rather, one should have single purpose
modules with simple data structures and well-
defined interfaces, and use these to build up more
complex systems. So, I maintain that what is
required to solve the portability difficulties caused
by graphic elements in TjjX is to make a serious
effort to set up cross-platform TEX standards for
various officially recognized graphics formats and
a standard syntax for \specials to go along with
them. It would have to be understood that as
technology advances, older formats will probably die
out and be replaced by newer ones, so there should
probably be a standing committee, perhaps of
TUG, to oversee the promulgation and maintenance
of these graphics standards. In the same way
there could be another standing committee for
setting Tj$ standards for font formats and naming
conventions for fonts.

By the way, while we are on the matter of
fonts and standards, let me complain about what
I feel is a serious failing of the TEX community.
The Grand Wizard, as a sort of parting gift, gave
us a potentially very valuable tool to handle all
sorts of font problems. This was in the form of
a well-defined standard - I'm referring of course to
virtual fonts (VF). I'm a little over my head here
technically, but I believe that as well as solving
the more obvious problems for which they were
introduced, virtual fonts could be used to handle
some more esoteric tricks like adding color and other
attributes to fonts. But my feeling is that we have
dropped the ball. Not enough TF$ systems have
implemented VF to make it a dependable way to
solve cross-platform TEX problems - even Blue Sky
Research, which prides itself in providing a state of
the art TEX environment for their Textures system
on the Macintosh, has yet to implement it.

Let me end this part of the discussion with a
mention of one thing that I feel should neither be
a part of NTS nor even a standardized front end
for it, and that is the user interface. I would not
have brought this up except that there has been
discussion on this list giving favorable mention to
creating a standardized graphical user interface as
part of NTS. But the hardest part of programming
these days, and the most system dependent, is
building a GUI. Even on a single platform, like
the Macintosh, these can break when a new system

update comes out. In general, even with systems as
close in spirit as the Mac OS, Windows, and NeXT,
it is extremely difficult to write a uniform GUI for
a program meant to run on several platforms, and
porting a GUI from one of these to say X-Windows
on UNIX would be even harder. Moreover, each
platform has certain User Interface Guidelines for its
own GUI, and users get quite upset when a program
deviates from them. Since these guidelines differ
from one platform to the next, some users, and most
likely all, would be upset by any uniform choice.
Finally, what is the point? All this would do is
stifle creativity and progress. Let the implementors
of NTS on each platform design and construct the
user interface most suitable for that platform.

The Matter of Compatibility

There has been a lot of discussion on NTS-L
concerning the question of whether NTS should
necessarily be compatible with the current version
of TEX. Until this point I have tried to be calmly
analytical, but this is a crucial issue, and one I feel
very strongly about, so I am going to drop into a
more polemical mode at this point (though I will
try to keep my arguments rational). In a word I
feel that backwards compatibility is an absolute sine
qua n o n for any system that aspires to be accepted
as a L'successor77 to l&Y.

Of course, if a group wants to break off to
design a completely new typesetting system from
scratch that is fine with me-just as long as they
don't use l&X in the name or pretend it is some
sort of "successor" to m. As for me, I would
like to see NTS be an improved version of m,
and for this, it should either be 100% compatible
with m, or if not it should at least default to a
"compatibility mode" which is 100% compatible. I
will suggest later a method by which major internal
changes could be made to Tf?J and still satisfy this
essential requirement, but now let me be precise
about what I mean by compatibility and say why I
feel that this a no-compromise issue.

INITEX is the core m program, the basic
compiled version of the Tj$ code that knows only
W'S primitives. In a certain sense INITEX is m .
It is the implementation of INITEX that determines
whether a "w system is authentic, i.e., passes
Knuth's trip-test, and I think there is little doubt
that INITEX is one of the "fixed points" that Don
was referring to in the above quotation. Let me

argue as strongly as I can that whatever NTS is,
its core typesetting function should be based on
INITEX - a version that will pass the trip-test. The

TUGboat, Volume 13 (1992), No. 4

reason has nothing to do with "keeping the faith".
Rather it is purely practical. If the new system is
compatible with 7&X, it will find ready acceptance.
But if it is not, then the immense installed base of
'l&X users will almost certainly shun it, and it will
consequently be stillborn.

Let me provide some details about the part
of this "user base" that I know something about,
the mathematical community, since I have seen
comments on the mailing list that indicate a serious
lack of comprehension of how sizable this group is
(relative to the TEX community) and how dependent
it has become on m. This in turn may have led
to what I consider a very unfair comment, namely
that TFJ is a "toy for mathematicians". By the
way, while my firsthand knowledge is restricted to
mathematics, I know by hearsay that much of the
following holds true for theoretical physics and also
in many other scientific and technical disciplines in
which mathematical text makes up a substantial
part of papers written in that discipline.

First, virtually all mathematics graduate stu-
dents now write their dissertations in TEX, and
from then on write all their papers in m . Sec-
ondly, nearly all mathematicians below age forty
have learned m, and an increasing number of
the older generation are either switching to T)$,
if they write their own papers, or else are having
their secretaries and technical typists learn T)$
and write their papers in it. A couple of years ago
many mathematicians were still using WYSIWYG
mathematical word processors, but now one sees
very few preprints prepared in any format except

m . There are of course lots of reasons for this
rapid, wholesale switching to m, and probably
different reasons have been important for different
people. Here are a few:

Mathematics set by TEX looks much more
professional.
Setting mathematics with TFJ is faster and
easier (after a painful, but short, learning
curve).
Mathematical text in TFJ format can be sent
over the Internet and works on all machines.
This makes 7&X an ideal medium for joint
authors to use in their collaboration. WYSI-
WYG formats are machine dependent and need
special coding and decoding when sent over the
net.
As a result of the above, the m mathematical
input language is becoming a lingua franca for
the linearization of mathematical text in email

and other ASCII documents, even if they are
not meant for typesetting.

0 The two largest mathematical publishers, the
American Mathematical Society and Springer-
Verlag (and many others besides), now accept
papers in TEX format, either on disc or over
the Internet. Papers submitted this way often
get published more rapidly and of course final
proofreading is minimal.

In any case, the mathematical community now
has become so dependent on and has such a
substantial investment in software, personal macro
files, and source files for the current version of m,
that I believe it is virtually certain to reject any
purported successor system that does not protect
that investment.

Since I seem to be at odds with Mike Dowling
on this matter, let me quote some of his remarks
and point out an important issue he seems to have
overlooked:

(1) Upwards compatibility is a very minor issue for
the user. Theses are written only once; there is
little or no need to recompile under the successor
to after the thesis has been submitted. The
same comment goes for publications. It is easy to
dream up exceptions to this, but I contend that
they are just that, exceptions. (A good counter
example is a script accompanying a course. This
script will be modified and recompiled every time
the course is offered.)

Well, let me dream up another minor exception for
you! If you take a look in your local science library
you will find several feet of shelf space occupied by
the issues of Mathematical Reviews (MR) from just
the past year. In fact, every year the American
Mathematical Society not only publishes many
tens of thousands of pages of books and primary
mathematical journals in m, it also publishes
more tens of thousands of pages of MR. The cost

of producing just one year of MR is well in excess
of five million dollars, and all of MR going back
to 1959 (about one million records) is stored online
in Qj$ format in the MathSci database. People

all over the world download bibliographic data and
reviews from MathSci and use software to
preview or print it. Many others spend hundreds
of dollars per year to lease two CD-ROMs with the
last ten years of MathSci. Obviously the AMS is
unlikely to agree with the above assessment of the
importance of compatibility. In fact they are certain
to protect their investment in MathSci by making
sure that the retrieval system they have invested
in so heavily does not break. And they have a

430 TUGboat, Volume 13 (1992), No. 4

powerful means to protect that investment -with Pascal - and it is the programmability provided by
Knuth's blessing, they own the trademark on the this macro language that gives TEX its remarkable
TEX name and logo, and will not let it be used for flexibility and survivability. However, there is no
a system that does not pass the trip-test. denying that, while TEX macros may indeed always

behave exactly the way (a careful reading of) the
w as a Front End m b o o k says they will, it often takes a lot of study

Early in the NTS-L discussion there was some
discussion concerning extending rn so it could flow
text around pictures, and have other sophisticated
facilities of page layout programs such as PageMaker
or QuarkXPress. This quickly died out, I think
because most people on the list had thought enough
about such matters to realize that typesetting and
page layout are almost orthogonal activities. The
ability of rn to break text into lines, paragraphs,
and pages is aimed at producing printed pages
consisting mainly of text for books and journals.
Of course, such pages frequently do need diagrams,
pictures, and other graphic elements. But these
usually fit neatly inside captioned boxes, with no
need to have text flow around them, and we have
already discussed making such extensions to m .
The page layout programs, on the other hand,
are designed with the quite different purpose of
producing illustrated magazines, newsletters, and
newspapers. These are documents in which the
graphics often outweighs the text, and in which
each page can have a complex, and different pattern
of text and pictures. Building such pages is an
interactive process best handled with a WYSIWYG
interface. The good page layout programs often
have only quite limited word-processing facilities
built in, because the proper way to use them is
not for creating either text or graphics, but rather
to organize into pages text and graphics imported
from other programs.

But this brings up an interesting point. To
what extent would it be possible to import text
typeset by into a page layout program? Cer-
tainly this would not be easy! The way TEX freezes
the shape of a paragraph, once it has created it, is
quite different from the way a normal word proces-
sor works, so one would probably have to create a
special page layout program, one that understood
m ' s data structures and could have an interactive
dialog with Q$ during the layout process. This
would be a tough but worthy undertaking.

'QX as a Programming Language

Many contributors to NTS-L have complained that
the T ' programming language is terrible. In
its favor one should point out that it is Turing
effective-and so just as powerful as say C or

for a non-wizard to find the features responsible
for a macro behaving the crazy way it does, rather
than the way that was intended. Still, most
l&X users do learn easily enough to write simple
substitution macros or even special purpose macros
with parameters. The real problems arise when
one tries to write a complex package of general
purpose macros for others to use in an unknown
environment. One can take the attitude that this
activity is simply intrinsically difficult, and should
be left to the experts, but it seems to me that
those complaining have a good point. Someone who
has learned to program in a standard programming
language should not have to learn another whole
new system of programming; they should be able
to use the familiar syntactic and semantic features
that they are used to for programming m . Since
changing the 'l&X macro language would introduce
the worst kind of compatibility problems, some
other solution is called for. One that comes
to mind is to write a "compiler" whose source
language would be some sort of high-level, ALGOL-
like language, with all the usual features such as
strongly typed variables and scoping rules, and
whose target language would be the TEX macro
language. Creating such a compiler would not be an
easy task, but it would constitute another important
application of Knuth's principle of keeping TEX itself
a fixed point while making "changes" to the rn
system by creating new front ends.

Changing the Fixed Point

I would be a lot happier if I could stop at this point
and conclude that there is no need for any changes
to the 7QX code itself-that all of w ' s perceived
problems can be solved by creating the appropriate
front and back ends. For the overwhelming majority
of m users this is in fact the case. If one is willing
to put up with occasionally having TFJ fall just
short of perfection, or if one doesn't mind making
up for these lapses on m ' s part by doing some
careful manual tuning (my own approach), then
the current is all one will ever need. But
for those who take seriously Knuth's goal of not
compromising on quality, and moreover insist on a
system that permits them to automate excellence, a

TUGboat, Volume 13 (1992), No. 4 431

very good case has been made that rn has several
serious deficiencies hard-wired into it.

Frank Mittelbach made this point very co-
gently and convincingly in his presentation " E - w :
Guidelines for future at the 1990 TUG meet-
ing (published in TUGboat vol. 11 no. 3, September
1990). And Michael Downes amplified and extended
Mittelbach's comments in a message he sent to the
tex-euro mail list, February 20, 1992, in response
to an announcement by Joachim Lammarsch of the
intent of Dante e.V. to set up a working group on
"Future Developments of w. Downes posted a
copy of that message to NTS-L on June 2, 1992, and
I see no need to repeat either of their remarks here.

Instead I would like to suggest a mechanism
to permit necessary changes to be made to rn
code and still maintain compatibility in the sense
described above. The idea is both simple and
obvious. When NTS starts up it will be ordinary
m. However if the first string of characters in the
source is, let us say, "\VERSION=NTSn then the l&X
code will be rolled out of RAM and replaced with
NTS code.

But how are we going to get from 'l&X to NTS?
My own preference would be to take a gradual
approach, analyzing the problems that have been
pointed out in m into families of related problems,
each reasonably independent of the others, and then
tackling these families one by one in stages, from
easiest to hardest, starting from the original w
sources and gradually perturbing them. In this
way NTS could evolve in a controlled way from
the current version of m through a sequence of
versions, each compatible with standard rn, each
new version curing one more of the difficulties that
Mittelbach, Downes and others have pointed out,
and each being carefully tested before going on to
the next stage. I know this may seem like a dull and

. pedestrian way to go about things, particularly to
those wishing to strike out boldly in new directions.
But I think it has the a very good chance of success.
It will not demand many resources to get started
so it stands a reasonable chance of getting off the
ground. And once the first step is taken, well as the
saying goes, nothing succeeds like success.

Summary

Let me now summarize my major points and
suggest ions:

Many of the problems and "missing features"
in the m system that have been discussed
in NTS-L are not really deficiencies of w ,
but rather features omitted as a consequence

of Knuth's decision to limit the functionality
of m , in order to make it stable and trans-
portable. Many of these problems have been
solved in a quite satisfactory manner on one
or more platforms by coupling T)$ with the
appropriate front or back end. What remains

is to solve these problems in a manner that
preserves transportability of sources, and
the way to do this is to specify standard file
formats and other data strucures, and a stan-
dard \special syntax for instructing TfjX to
interact with them.

0 To carry out the above, TUG should appoint
a "Committee on rn Standards". This com-
mittee should have the overall responsibility for
deciding what types of standards are important
to insure that important front and back ends
for can be built in a way that is platform
independent, and it should appoint committees
of experts to promulgate and maintain these
various standards.

0 Nevertheless, an excellent case has been made
that certain specific features of W ' s primi-
tives and coding make it nearly impossible to
automate certain functions required to attain
one of Knuth's goals for w, production of
"the finest quality that had ever been achieved
in printed documents". While most users may
never feel the need for the subtle touches that
make the difference between typesetting that is
merely excellent, and typesetting that is "the
finest quality", for those that do a follow-on to
w , NTS, should be developed.

0 NTS should be backward compatible with
source files from the current version of w .
This means that it should default to a "com-

patibility mode" that would pass the trip-test,
and that any new features that might introduce
incompatibilities should have to be "turned on"
by the user.

0 NTS should be developed in a sequence of
versions, starting with rn and curing its
problems one at a time.

Postscript

As indicated above, I believe it is possible for a
group to design and implement ab ovo a completely
new and state of the art typesetting system-a

for the Twenty-first Century" to use Philip
Taylor's words. As explained above, I also believe
that such a system could be implemented in a way
that would keep it functionally compatible with the
current T)$ system. But, before getting started on

TUGboat, Volume 13 (1992), No. 4

such a massive project, ample consideration should
first be given to some prior considerations:

0 Don't forget what a monumental task the cre-
ation of w was, and remember that its author
is a totally exceptional individual. He is not
only a great computer scientist who happens
to love and understand high quality typogra-
phy, he is also, fortunately, an incredibly good
programmer - and finally he has unmatched
Sitzjleisch. Whole work groups of system ana-
lysts and programmers could easily have failed
in the same task-and if they had succeeded
they would probably have taken longer to cre-
ate a buggy program that runs on a single
platform. And they certainly would not have
put the code in the Public Domain!
Knuth is a tenured Full Professor at Stanford.
While he was designing rn and writing the
code, he had NSF grant support that not only
provided him with the time and equipment he
needed, but also supported a team of devoted
and brilliant graduate students who did an
enormous amount of work helping design and
write the large quantity of ancillary software
needed to make the TEX system work.

a So, consider this question: Where will the
resources come from for what will have to be
at least an equally massive effort? And will
the provider of those resources be willing, at
the end of the project, to put the fruits of all
this effort in the Public Domain? I consider
this point particularly important. I think it
is accepted that it is the combination of the
quality and the PD status of the rn code that
have been the two principal factors responsible
for its remarkable and unique universality. I
doubt that any system that is not PD would
have much chance of weaning away a sufficient
number of rn users to make all the effort
worthwhile.

0 Finally, don't repeat the sad history of ALGOL
68! The ALGOL 60 programming language was
a gem. True, it had its flaws, but these were
well-known and understood, and I think all
of us ALGOL lovers assumed that the ALGOL
68 design committee was going to polish that
gem for us and remove the flaws. Instead they
decided to start over from scratch and came
up with a language that nobody understood,
loved, or used. And that spelled the doom of
poor old ALGOL- who was going to maintain
an ALGOL 60 compiler once ALGOL 68 was

NTS isn't going to kill m, but it would be
sad to waste all that time and effort -and a
great opportunity.

Addendum

A number of people responded to my posting-
some by email directly to me, and others by a
posting of their own to NTS-L. I would like to
thank all who took the trouble to reply, but for
reasons of space I will mention here only a couple
of replies that bear most directly on my previous
remarks.

I would particularly like to thank Nelson Beebe
for pointing out that several of the front and
back ends I was wishing for either already exist
or are in the works. First, and perhaps most
important, Nelson himself has made a proposal for
a standardized syntax for \specials that he has
submitted to the TUG DVI Committee, and this
will appear shortly in TUGboat. Second, Nelson
reminded me of an article by Luigi Semenzato
and Edward Wang in the November 1991 issue of
TUGboat. This describes a LISP front end for rn
macro writing, of just the sort I was calling for
in the section "rn as a Programming Language".
(But I'd still like to see one based on an ALGOL
family syntax!) And finally he pointed out Graham
Asher's article "Inside Type & Set" in the April
1992 issue of TUGboat, describing a program that
does page makeup with lines and paragraphs typeset
using rn code.

Larry Siebenmann sent me a long list of inter-
esting comments, however I will not mention them
here since I hope and expect he will himself write
something on these matters in these pages.

o Richard Palais
Department of Mathematics
Brandeis University
Waltham, Massachusetts 02254

palais@binah.cc.brandeis.edu

"on the way"? Needless to say, even a botched

TUGboat, Volume 13 (1992), No. 4

The Future of TJQC*

Philip TAYLOR

T h i s paper is dedicated to Professor Donald Knuth ,
without w h o m there would simply be n o m, n o
METAFONT, and almost n o chance that any of
u s would ever have m e t , o n the occasion of the
approxzmate anniversary of his pronouncement two
years ago that m and METAFONT were complete.

Abstract

QjX and the other members of Knuth's Computers &
Typesettzng family are arguably amongst the most suc-

cessful examples of computer software in the world.

having been ported to almost every conceivable oper-

ating system and attracting an allegiance that verges

on the fanatical. Development work on this family

has now ceased, and many members of the computer

typesetting community are concerned that some action

should be taken to ensure that the ideas and philosophy

enshrined in l&X are not allowed simply to fade away.

In this paper. we discuss some of the options available

for perpetuating the philosophy, and examine the

strengths and weaknesses of the present QjX system. We

conclude by postulating a development strategy for the

future which will honour both the letter and the spirit of

Knuth's wish that Q$. METAFONT and the Computer

Modern typefaces remain his sole responsibility, and at

the same time ensure that the philosophy and paradigms

which are the strengths of are not lost for ever by

having artificial constraints placed on their evolution.

"My work on developing m . METAFONT and Com-
puter Modern has come to an end." [I] With these

words, Professor Donald E. Knuth, creator of m,
informed the world that the evolution of probably

the most successful computer typesetting system yet
developed had ceased, and that with the sole excep-

tion of essential bug fixes, no further changes would

be made. m ' s version number will asymptotically

approach ;.r as bug fixes are made, and at the time of
his death, it will be renamed 'm, Version T ' ; there-

after it will remain exactly as he last left it: a fitting

and appropriate memorial to one of the most pro-

ductive and inspired computer scientists (and math-

ematicians, and Bible scholars) that the world has
ever known.

The future of l&X is therefore totally deter-
mined: why, then, is this paper entitled T h e Future

* This article is reproduced by kind permission
of t he organisers of the E u r o - m '92

conference in Prague, Czechoslovakia, in the

proceedings of which [4] it first appeared.

of 7$jV Because, primarily. is already fifteen

years old-four years as a child (m 78); eight

years as an adult (w 82); and three years in matu-

rity (Tp33). Fifteen years is a long time in the life-

span of computer languages: Algol 68, for example,

was certainly at or beyond its peak by 1982, and is

today almost as rare as the Tasmanian wolf,' if not

yet as dead as the Dodo:2 a language must evolve, or
die. (There are numerous natural languages which

are almost certainly in terminal decline, despite the

most strenuous efforts of a nucleus of active speak-

ers to artificially prolong their lives: Cornish and

Manx are surely dead; Gaelic must feature in any

linguistic 'Red Book' of endangered languages; only
Welsh, which alone among the British native minor-

ity tongues continues to evolve, shews any real resis-

tance to morbidity and eventual death.) If natu-

ral languages must evolve or die, how much more

so must computer languages, whose evolution must
keep pace with a technology which evolves at a rate

so rapid that it is unmatched in the natural world

even by irradiated fruit-flies.3

So, my underlying hypothesis is: TjjjX must

evolve, or die. If we are to believe the evidence of
our ears and eyes, the underlying Tj-$ philosophy is

already as anachronistic as the horse and cart: TEX

represents the pinnacle of Neanderthal evolution,

building on the genetic heritage of Runoff, Nroff,
Troff, Ditroff and Scribe, whilst Cro-Magnon man,

in the guise of Ventura Publisher, Aldus Pagemaker
and Quark Xpress, is already sweeping over the face

of the planet. The halcyon days are long since gone

(or so it would seem) when it was socially accept-

able to: enter text; check it for spelling errors (by
eye!); insert a series of formatting commands: pass

the whole through an interpreter; identify the first

error; correct the first error; pass the whole through

the interpreter again; identify the second error; cor-
rect the second error; pass the whole through the

interpreter for a third time; repeat for all subsequent

errors.. . ; pass the whole through the interpreter for

the nth time; then pass it through the interpreter
again (to resolve forward- and cross-references); pre-

view a facsimile of the final copy on the computer

screen; notice a formatting error; and go right back

t o editing the file: our colleagues sit there click-

ing away on their mice4 like demented death-watch

Thylacznus cynocephalus
Raphus cucullatus
Drosophzla melanogaster
MUS ordznatus m z c r o s o f t ~ e n ~ ~ s or MUS
ordznatus applemaczntoshzz

TUGboat, Volume 13 (1992), No. 4

beetles5 and think us totally mad; and mad we

surely must be, for we not only enjoy this mode

of working. we seek to convert the demented mouse
clickers into users as well!

Why? What is it about that is so totally

addictive? Is it perhaps m ' s descriptive and

character-oriented nature - the fact that, in direct
opposition to current trends, m requires the user

to think about what he or she wants to achieve, and

then to express that thought as a series of words

and symbols in a file. rather than as a series of
ephemeral mouse movements on a screen? Is it.

perhaps, its portability - the fact that implementa-

tions (almost entirely public domain) exist for every
major operating system in the world? Is it the deter-

ministic nature of T)$- the fact that a given sequ-

ence of 'IJjX commands and text-to-be-typeset will
always produce exactly the same results, regardless

of the machine on which it is processed? Is it the
'boxes and glue' paradigm, which provides a sim-

ple but somewhat naive model of black and white

space on the printed page? The ease with which

form and content can be separated? The imple-
mentation as a macro, rather than a procedural,

language? (would a procedural still be recog-

nisably m?) Is it, perhaps, the incredible contor-

tions through which one occasionally has to go to
achieve a desired result? (Or the incredible elation

when such contortions finally achieve their intended

effect?) How many of these elements could be elim-
inated and still leave something that is recognisably

m? I propose to return to these questions, and to

attempt to answer some of them, later in this paper.
A related question: what is the potential life-

span of a w - b a s e d typesetting system, or for that

matter, of any computer language? Of all the gen-
eral purpose computer languages which have sprung

into existence since the advent of compilers (which

point in time really marks the beginning of all the
computer languages that are in general use today),

Cobol and Fortran are probably among the longest

lived; but Fortran has evolved enormously since the

days of Fortran 2 (which is as far back as my mem-
ory goes), whilst Cobol has evolved relatively little;

Basic, too, is still with us, although the originators

of Dartmouth Basic would find little to recognise

in the 'Visual Basic' of Microsoft today. Algol60

evolved via various routes into Algo168, which for
me represents the pinnacle of language design, but

evolved no further, and is today reaching the end

of its twilight years. Pascal, which owes much to
the Algol family, gave birth to Modula, which itself

became transmuted into Oberon; in a sense, this last

Xestobzum rufovzllosum

example represents a failure of the evolutionary sys-

tem, for in its heyday Pascal was almost universally
adopted. giving birth to the UCSD 'P ' system as

well as making possible the unbelievably successful

(and revolutionary) 'Turbo Pascal', whilst Modula,

although lauded by computer scientists, remained of

relatively limited acceptance and acceptability, and
Oberon remains almost unknown without the walls

of academia. Most recently, among the procedu-

ral languages at least, we come to 'C ' , and its bas-

tard offspring 'C++'; these languages have an hon-

ourable history, tracing their roots back through 'B'
(or so I am told-I have never encountered 'B'
myself) to BCPL, the 'Basic Combined (or Cam-

bridge, depending on one's background) Program-
ming Language', itself derived from CPL which sim-

ply wasn't so basic! En route, data typing was

acquired, and lost, and acquired again, and poly-
morphism was acquired with the advent of 'C++'.
Other evolutionary lines are represented by Pro-

log, which epitomises the declarative family, and

Lisp, which is the archetype of list processing lan-
guages (and which remains almost unchanged since

its inception). Poplog, encompassing as it does rep-
resentatives of all three families (Pop 11, based on

Pop 2, Prolog and Lisp) is perhaps a unique synthe-
sis. Finally one should not omit mention of that

most modestly titled of all programming languages,
APL: ' A Programming Language'.

But this is not a history of programming lan-

guages: I cite the above examples only to place Q X

within context. for although when teaching to
secretaries one does not necessarily stress the fact of

its being a computer programming language per se.

a computer programming language it most certainly
is. Indeed, TjiJ is 'Turing complete', which is a com-

puter scientist's jargon for saying that 7$J could be

used as a general purpose programming language
since it has the necessary flexibility, although apart

from the intellectual satisfaction there would be lit-

tle point in so doing: w ' s forte is clearly computer

typesetting. and only programmers or perverts could

derive pleasure from coercing it into calculating cube

roots or cosines!
So what is the common theme among all the

languages cited above? Simply this: that almost

every one of them has either given birth to a suc-

cessor (which is not necessarily more successful:

cf. Pascal 4 Modula -+ Oberon), or has simply

fallen into disuse; Cobol and Lisp alone, which

occupy highly specialised niches, remain relatively
unchanged. and of these only Cobol continues to

play a significant rijle in mainstream computing

(although Lisp remains the language of choice for
many linguistic and related tasks).

TUGboat, Volume 13 (1992), No. 4

It seems, then, that we have a choice: we can

either allow natural selection to take its course, in

which case m, having fulfilled its appointed r81e on

this planet (which I assume is to teach us the merits
of literate programming, whilst encouraging us to

devote ever more time to the typesetting of beauti-

ful papers, presumably at the expense of ever less

time spent actually researching or writing them),

will surely join XCHLF, JEAN & JOSS in the great

bit-bin in the sky; or we can adopt a corporate

responsibility for the future of and intercede
in the process of natural selection, taking steps to

ensure that evolves into a typesetting system

which is so demonstrably superior to the miasma

of mouse-based, menu-driven, manipulators of text
and images which are currently snapping at its heels

that no-one will be able to deny it its rightful place

at the forefront of typesetting technology for the
twenty-first century.

Let us consider the options which are available
to us:

1. We can leave exactly as it is: this is clearly
a defensible position as it is exactly what Knuth

himself intends to do: it would be extremely

arrogant of us to suggest that we know better
than Knuth in this respect.

2. We can enhance rn by just enough that those

who really understand its power, its limita-
tions, and its inner workings agree that it

no longer has demonstrable defects (i.e. there

are some 'simple' typesetting tasks with which

Tj$r could not deal correctly, but with which

an enhanced T&X could).
3. We can enhance TEX by incorporating the

combined wish-lists of its major practitioners,

thereby seeking to make all things to
all men (and all women), whilst retaining its
present 'look and feel'.

4. We can enhance as in option 3 above,
whilst taking the opportunity to re-consider.

and perhaps substantially change, its present
look and feel.

5. We can take the opportunity to do what

I believe Knuth himself might do, were he
to consider today the problems of typesetting

for the first time: look at the very best of
today's typesetting systems (clearly including

lJ$ among these), and then design a new type-
setting system, far more than just a synthesis

of all that is best today. which addresses the
needs and potential not only of today's technol-

ogy, bu t that of the foreseeable future as well.

We would need to find some way to incorpo-
rate tha t spark of genius which characterizes
Knuth's work!

No doubt each of us will have his or her own ideas on

the desirability or otherwise of each of these options;
it is not my intention in this paper to attempt to

persuade you that any one of them is clearly prefer-

able; but I would be shirking my responsibilities

were I not to caution that, in my opinion, option 3

appears to represent the worst of all possible worlds.

representing as it does a clear case of 'creeping fea-

turism' at its worst while not possessing any redeem-
ing qualities of originality.

Option 1 is, as I have suggested above, clearly
defensible, in that it is Knuth's own preferred posi-

tion; despite my fears that rn will succumb to the

pressures of natural selection if it is adopted, it may

be that represents both the pinnacle and the

end of an evolutionary line, and that future typeset-

ting systems will be based on an entirely different

philosophy (e.g. mouse-based).

Option 2 represents the most conservative evo-
lutionary position and has. I believe, much to com-

mend it, certainly in the short term: it would retain

the present look and feel of TEX; and compatibility

with current programs, whilst not intrinsically

guaranteed, could be ensured by careful design; at
the very worst, one could envisage a command-line

qualifier which would disable the extensions, leav-

ing a true QjX3 underneath. Although option 2

is in opposition to Knuth's expressed wishes, he
has made it plain that he has no objection to such

enhancements provided that the resulting system is

not called 'l$JL I propose that we term the results of
adopting option 2 'Extended W', both to indicate

its nature, and, more importantly. to comply with

the spirit as well as the letter of Knuth's wishes.
Option 3 is considerably less conservative, but

does at least retain the present look and feel of

w; it is completely open-ended in terms of the

extensions made to w, and offers the opportu-
nity to make sweeping enhancements (I hesitate to

use the word 'improvements' for the reasons out-

lined above). Compatibility with current TFJ pro-

grams need not prove problen~atic, provided that the

design were adequately thought out, and again the
possibility of a '/noextensions' qualifier provides

a fallback position. The timescale for such an imple-

mentation would not be small if a new swarm of bugs

is to be prevented, and it is not clear how future
obsolescence is to be avoided: after all, if 'The Ulti-

mate m' (as I will term it) includes all the pro-

posed enhancements of m ' s major practitioners,

what enhancements remain to be implemented in
the future?

Option 4 represents the first attempt at a true

436 TUGboat, Volume 13 (1992), No. 4

re-design of m, allowing as it does the option to re-

think m ' s look and feel, whilst continuing to incor-

porate many of its underlying algorithms. One could

envisage, for example, an implementation of in

which text and markup were kept entirely separate.

with a system of pointers from markup to text (and

vzce versa?). One advantage of such a scheme is

that it would eliminate, at a stroke, the trouble-
some nature of the <space> character which cur-

rently complicates p; the escape character could

become redundant, and the problems of category

codes possibly eliminated. Of course, this is just one

of many such possibilities: once one abandons the

look and feel of m, the whole world becomes one's

typesetting oyster. One might term such a version
of 'Future m'.

Option 5 is without doubt the most radical: not

only does it reject (at least, initially), W ' s look and

feel, it challenges the entire received wisdom of m
and asks instead the fundamental question: "How

should computer typesetting be carried out?" In

so doing, I believe it best represents Knuth's own

thoughts prior to his creation of p 7 8 , and, by

extrapolation. the thoughts which he might have
today, were he faced for the first time with the prob-

lems of persuading a phototypesetter to produce

results worthy of the texts which it is required to set.
I think it important to note that there is nothing in

option 5 which automatically implies the rejection

of the '&jX philosophy and paradigms: it may well

be that, after adequate introspection, we will decide
that does, in fact, continue to represent the

state of the typesetting art, and that we can do no

better than either to leave it exactly as it is, or per-
haps to extend it to a greater or lesser extent whilst

retaining its basic model of the typesetting universe
of discourse; on the other hand, neither does it imply

that we wzll reach these conclusions. I will call such

a system 'A New Typesetting System' (to differen-
tiate it from 'The New Typesetting System' which

is the remit of NTS, 9.v.).

The options outlined above are not necessarily

mutually exclusive: we might decide. for example, to
adopt option 2 as an interim measure, whilst seek-

ing the resources necessary to allow the adoption of

option 5 as the preferred long-term position (indeed,

I have considerable sympathy with this approach

myself). But no matter which of the options we

adopt, we also need to develop a plan of campaign.

both to decide which of the options is the most

preferable (or perhaps to adopt an option which

I have not considered) and then to co-ordinate the
implementation of the selected option or options.

As many of you will be aware. a start has
already been made to this end: at a meeting of

DANTE (the German-speaking Users' Group)

earlier this year, Joachim Lammarsch announced

the formation of a steering group, organised under

the zgis of DANTE, to co-ordinate developments of

m; this group, diplomatically called 'NTS' so as

to avoid any suggestion that it is T)$ itself whose

future is being considered, is chaired by Rainer

Schopf; the members are listed in Appendix . An e-
mail discussion list has also been created (called

NTS-L),~ with an open membership;7 all messages

are automatically forwarded to members of the NTS

team. At the time of writing this article, the group
has not yet formally met: instead, we have been con-

tent to listen to the many positive suggestions which

have been put via the medium of NTS-L. It is clear

that there is no general consensus at the moment
as to which of the five options outlined above is

preferable; some argue for strict compatibility with

existing implementations, whilst others argue

that we must grasp the nettle and take this oppor-
tunity to create a truly revolutionary typesetting

system. Some, at least, are quite content to adopt

the Knuthian position, and simply use ?&X as it is:

" m is perfect" was the subject of more than one
submission to NTS-L. One of the more interesting

facts to emerge from the discussion is the different

ways in which m is perceived: some see it simply

as a tool for mathematical typesetting; others want
to be able to create the most complex graphics with-

out ever leaving m ' s protective shell; many want

to be able to typeset arbitrarily complex documents
(not necessarily containing one line of mathematics),

but are content to leave graphics, at least, without

W ' s remit.

So far, this paper has been concerned primarily
with generalities; but I propose now to look at some

of the specific issues to which I have earlier merely

alluded, and to offer some personal opinions on pos-
sible ways forward. I propose to start by attempt-

ing to answer the question which I believe lies at

the very heart of our quest: "What is the essence

of W?"
It seems to me that there are some aspects

of which are truly fundamental. and some

which are merely peripheral: among the funda-

mental I include its descriptive and character-
oriented nature, its portability, and its determinis-

tic behaviour; I also include some elements which

I have not so far discussed: its programmability

NTS-L@VM . URZ . Uni-Heidelberg . De
Send a message to

LISTSERV@VM.URZ.Uni-Heidelberg.De

with a single line body containing the text

Subscribe N t s - L <givenname> <SURNAME>

TUGboat, Volume 13 (1992), No. 4 437

(for example, the way in which loops can be imple-

mented, even though they are not intrinsic to its

design), its generality (the fact that it can be used

to typeset text, mathematics, and even music), its

device independence, and its sheer xithetic excel-

lence (the fact that, in reasonably skilled hands.

it can produce results which are virtually indistin-

guishable from material set professionally using tra-

ditional techniques). Equally important, but from

a different perspective, are the facts that it is totally
documented in the ultimate exposition of literate

programming (the Computers 63 Typesetting quin-

tology), that it is virtually bug-free, that any bugs

which do emerge from the woodwork are rapidly

exterminated by its author, and finally that for
higher-level problems (i.e. those which are at the

programming/user-interface level rather than at the

WEB level), there are literally thousands of skilled

users to whom one can appeal for assistance. We

should not forget, too, Knuth's altruism in making

the entire source codes freely available with an abso-

lute minimum of constraints. It is almost certainly

true that this last fact, combined solely with the
sheer excellence of 'I$$, is responsible for w ' s

widespread adoption over so much of the face of our

planet today.

Among its more peripheral attributes I include
its implementation as a macro, rather than as a pro-

cedural or declarative, language, and perhaps more

contentiously, its fundamental paradigm of 'boxes

and glue'. I hesitate to claim that boxes and glue

are not fundamental to m, since in many senses
they clearly are: yet it seems to me that if a descen-

dant of were to have detailed knowledge of

the shape of every glyph (rather than its bound-

ing box, as at present), and if it were perhaps to

be capable of typesetting things on a grid, rather
than floating in space and separated by differentially

stretchable and shrinkable white space, but were to

retain all of the other attributes asserted above to

be truly fundamental, then most would recognise

it as a true descendant of w, rather than some
mutated chimera.

Without consciously thinking about it. I have,
of course, characterized TEX by its strengths rather

than its weaknessesg But if we are to intervene in

the processes of natural selection, then it is essen-

tial that we are as familiar with m ' s weaknesses as

with its strengths: if it had no weaknesses, then our

including source for the TEX and

METAFONT books; this is frequently
forgotten.. .
OK, I admit it: w might have

weaknesses. . .

intervention would be unnecessary, and the whole

question of the future of TEX would never have

arisen. But whilst it is (relatively) easy to iden-

tify a subset of its characteristics which the major-

ity of its practitioners (I hesitate to say .all') would

agree represent its fundamental strengths, identify-

ing a similar subset of its characteristics which rep-

resent its fundamental weaknesses is far more con-

tentious. None the less, identify such a subset we

must.
Perhaps the safest starting point is to con-

sider the tacit design criteria which Knuth must

have had in mind when he first conceived of Q X ,

and which remain an integral part of its function-

ality today. w, remember, was born in 1978-

a time when computer memories were measured in

kilobytes rather than megabytes, when laser print-

ers were almost unknown, when the CPU power of

even a University mainframe was probably less than

that available on the desktops of each of its aca-
demics today, and when real-time preview was just

a pipe dream.'' Each and every one of these limita-

tions must have played a part in w ' s design, even

though Knuth may not have been consciously aware

of the limitations at the time. (After all, we are only

aware of the scarcity of laser printers in 1978 because
of their ubiquity today; we aren't aware of the lim-

iting effects of the scarcity of ion-beam hyperdrives

because they haven't yet been invented. . . .) But

by careful reading of T h e 7jjXboolc (and even more

careful reading of TEX .WEB), we can start to become

aware of some of the design constraints which were
placed on Knuth (and hence on w) because of the

limits of the then-current technology. For example,

on page 110 one reads: "m uses a special method
to find the optimum breakpoints for the lines in

an entire paragraph, but it doesn't attempt to find

the optimum breakpoints for the pages in an entire

document. T h e computer doesn't have enough hzgh-
speed m e m o r y capacity t o remember the contents of
several pages [my stress], so simply chooses each

page break as best it can, by a process of 'local'
rather than 'global' optimization." I think we can

reasonably deduce from this that if memory had

been as cheap and as readily available in 1978 as it

is today, w ' s page-breaking algorithm may have

been very different. Other possible limitations may

be inferred from the list of numeric constants which

appear on page 336, where, for example. the limit

of 16 families for maths fonts is stated (a source

lo Although on page 387 (page numbers all

refer to T h e TJjXbook unless otherwise

stated), we find "Some implementations of

Q X display the output as you are running".

438 TUGboat, Volume 13 (1992)) No. 4

of considerable difficulties for the designers of the

New Font Selection Scheme);'' 16 category codes.

too, although seemingly just enough, force the caret

character (-) to serve triple duty, introducing not
only 64-byte offset characters and hexadecimal char-

acter specifiers, but also serving as the superscript
operator.

So. we may reasonably infer that the combined

restrictions of limited high-speed memory. inade-

quate CPU power, and very limited preview and

proof facilities, combined to place limitations on the
original design of TEX, limitations the effect of which

may still be felt today. It is perhaps unfortunate

that in at least one of these areas, that of high-

speed memory, there are still systems being sold
today which have fundamental deficiencies in that

area: I refer, of course, to the countless MS/DOS-

based systems (without doubt the most popular

computer system ever invented) which continue to
carry within them the design constraints of the orig-

inal 8088/8086 processors. Because of the ubiquity

of such systems, there have been a fair number of

submissions t o the NTS list urging that any devel-
opment of bear the constraints of these systems

in mind; despite the fact that I too am primarily

an MS/DOS user, I have to say that I do not feel

that the 64K-segment, 640K-overall limitations of
MS/DOS should in any way influence the design of

a new typesetting system. Whilst I feel little affinity

for the GUI-based nature of Microsoft Windows. its

elimination of the 640K-limit for native-mode pro-
grams is such a step forward that I am prepared

t o argue that any future typesetting system for

MS/DOS-based systems should assume the existence

of Windows (or OS/2), or otherwise avoid the 640K
barrier by using techniques such as that adopted by

Eberhard Mattes' e r n m 3 8 6 . l 2 If we continue to

observe the constraints imposed by primitive sys-
tems such as MS/DOS. what hope have we of creat-

ing a typesetting system for the future rather than
for yesterday?

These might be termed the historical (or 'nec-

essary') deficiencies of TJ$C deficiencies over which
Knuth essentially had no control. But in exam-

ining the deficiencies of m, we must also look

to the needs of its users, and determine where

m X falls short of these, regardless of the rea-

sons. The term 'users', in this context, is all-

encompassing. applying equally to the totally na'ive

user of LATEX and to the format designers them-

selves (people such as Leslie Lamport, Michael Spi-
vak, and Frank Mittelbach); for although it is possi-

l1 Frank Mittelbach and Rainer Schopf
l2 e m Q X 3 8 6 uses a so-called 'DOS extender'

ble for format designers to conceal certain deficien-

cies in TFJ itself (e.g. the lack of a \loop primi-

tive), the more fundamental deficiencies will affect

both. (Although it is fair t o say that a sure sign

of the skill of a format designer is the ease with

which he or she can conceal as many of the apparent

deficiencies as possible.) An excellent introduction

to this subject is the article by Frank Mittelbach

in TUGboat, ' E - m : Guidelines for future m'
121, and the subsequent article by Michael Vulis,

'Should l'@ be extended?' [3]. Perhaps less acces-
sible, and certainly more voluminous, are the com-

bined submissions to NTS-L, which are archived at

TeX.Ac.Uk as Disk\$TeX:[TeX-Archive.Nts]Nts-
L .All and at Ftp .Th-Darmstadt . De as /pub/tex/

documentat ion/nts-l/*.

So, what are these so-called 'fundamental defi-

ciencies'? No doubt each of us will have his or her
own ideas, and the three references cited above will

serve as an excellent starting point for those who

have never considered the subject before. What fol-

lows is essentially a very personal view-one per-

son's ideas of what he regards as being truly funda-
mental. I t is not intended to be exhaustive, nor nec-

essarily original: some of the ideas discussed will be

found in the references given; but I hope and believe

that it is truly representative of current thinking on

the subject. Without more ado, let us proceed t o

actual instances.

1. The lack of conditzon/exception handling: It

is not possible within to trap errors; if
an error occurs, it invariably results in a stan-

dard error message being issued, and if the

severity exceeds that of 'warning'13 (e.g. over-

full or underfull boxes), user interaction is
required. This makes it impossible for a format

designer t o ensure that all errors are handled by

the format, and actually prevents the adoption

of adequate defensive programming techniques.
For example, it is not possible for the designer

of a font-handling system to trap an attempt to

load a font which does not exist on the target

system.

2. The znabzlzty to determine that an error has
occurred: The \last.. . family (\lastbox,

\lastkern, \lastpenalty, \lastskip) are

unable to differentiate between the absence of

a matching entity on the current list and the

presence of a zero-valued entity; since there is

all the difference in the world between a penalty

l3 I use the VAX/VMS conventions of 'success',
'informational', 'warning', 'error' and

'severe error' as being reasonably intuitively
meaningful here.

TUGboat, Volume 13 (1992). No. 4

of zero and no penalty a t all. vital information
is lost.

3. T h e hzerarchzcal nature of lzne-breakzng and
page-breakzng: Once a paragraph has been bro-

ken into lines, it is virtually impossible to cause

t o reconsider its decisions. Thus, when

a paragraph spans two pages, the material a t

the top of the second page will have line breaks
within it which are conditioned by the line

breaks at the bottom of the previous page:
this is indefensible, as the two occur in differ-

ent visual contexts. Furthermore, it prevents

top-of-page from being afforded special typo-

graphic treatment: for example, a figure may

occur a t the top of the second page, around

which it is desired to flow text; if the para-

graph has already been broken, no such flowing

is possible (the issue of flowing text in general is

discussed below). The asynchronous nature of

page breaking also makes it almost impossible
to make paragraph shape dependent on posi-

tion: for example. a particular house style may

require paragraphs which start at top of page

to be unindented; this is non-trivial to achieve.

4. T h e local nature of page breakzng: For anything

which approximates to the format of a West-

ern book, the verso-recto spread represents one
obvious visual context. Thus one might wish

to ensure, for example, that verso-recto pairs

always have the same depth, even if that depth

varies from spread to spread by a line or so.

With m ' s present page breaking mechanism,
allied t o its treatment of insertions and marks,

that requirement is quite difficult to achieve.

Furthermore, by localising page breaking to the
context of a single page, the risk of generating

truly 'bad' pages is significantly increased, since

there is no look-ahead in the algorithm which

could allow the badness of subsequent pages to
affect t he page-breaking point on the current

page.
5. T h e analogue nature of 'glue': m ' s funda-

mental paradigm, that of boxes and glue. pro-

vides a n elegant. albeit simplistic, model of the

printed page. Unfortunately, the flexible nature

of glue, combined with the lack of any underly-

ing grid specification, makes grid-oriented page

layup impossible to achieve, at least in the gen-
eral case. The present boxes and glue model
could still be applicable in a grid-oriented ver-

sion of ?jEX, but in addition there would need

to be what might be termed 'baseline attrac-

tors': during the glue-setting phase, baselines

would b e drawn towards one of the two nearest

straints of \ l i ne sk ip l im i t (i.e. if the effect of

drawing a baseline upwards were to bring two

lines too close together, then the baseline would

be drawn downwards instead).

T h e lack of a n y generalised ability t o flow
text: 7&X provides only very simple paragraph

shaping tools at the moment, of which the

most powerful is \parshape; but one could

envisage a \pageshape primitive and even

a \spreadshape primitive, which would allow

the page or spread to be defined as a series of
discrete areas into which text would be allowed

to flow. There would need to be defined a mech-

anism (not necessarily within the primitives

of the language, but certainly within a kernel
format) which would allow floating objects to

interact with these primitives, thereby provid-

ing much needed functionality which is already

present in other (mouse-oriented) systems.

An over-simplistic model of l ines of text: Once

has broken paragraphs into lines, it encap-
sulates each line in an \hbox the dimensions
of which represent the overall bounding box

for the line; when (as is usually the case) two

such lines occur one above the other, the min-

imum separation between them is specified by
\ l i ne sk ip l im i t . If any two such lines con-

tain an anomalously deep character on the first

line, and/or an anomalously tall character on

the second, then the probability is quite great
that those two lines will be forced apart, to hon-

our the constraints of \ l i ne sk ip l im i t ; how-
ever, the probability of the anomalously deep

character coinciding with an ascender in the

line below, or of the anomalously tall character
coinciding with a descender in the line above,

is typically rather small: if TEX were t o adopt

a 'skyline'14 model of each line, rather than the
simplistic bounding-box model as a t present,

then such line pairs would not be forced apart

unless it was absolutely necessary for legibil-
ity that they so be. Note that this does not

require to have any knowledge of the char-

acters' shape; the present bounding-box model

for characters is still satisfactory, a t least for

the purposes of the present discussion.

8 . Only partial orthogonality in the treatment o j
d is t inct entit ies: provides a reasonably

orthogonal treatment for many of its entities

'"his most apposite and descriptive term n-as
coined by Michael Barr.

attractors, which would still honour the con-

440 TUGboat, Volume 13 (1992), No. 4

(for example, the \new.. . family of genera-

tors). but fails to extend this to cover all enti-
ties. Thus there is no mechanism for gener-

ating new instances of \marks. for example.

Similarly, whilst \ the can be used to deter-

mine the current value of many entities, \ the

\parshape returns only the number of ordered

pairs. and not their values (there is no way.
so far as can be ascertained, of determining

the current value of \parshape). It is possi-
ble to \ v s p l i t a \vbox (or \vtop), but not

to * \h sp l i t an \hbox. The decomposition of

arbitrary lists is impossible, as only a subset
of the necessary \ l a s t . . . or \un.. . operators

is provided. The operatorless implicit multi-

plication of <number><dimen-or-skip register>

(yielding <dimen>) is also a source of much
confusion; it might be beneficial if the con-

cept were generalised to <number><register>

(yielding <register-type>). However, this raises
many related questions concerning the arith-

metic capabilities of w which are probably

superficial to our present discussion. I would

summarise the main point by suggesting that
orthogonality could be much improved.

9. Inadequate parameterrsatzon: provides

a very comprehensive set of parameters with

which the typesetting process may be con-
trolled, yet it still does not go far enough.

For example, one has \doublehyphendemerits
which provide a numeric measure of the unde-

sirability of consecutive hyphens; it might rea-

sonably be posited that if two consecutive
hyphens are bad, three are worse, yet m
provides no way of indicating the increased

undesirability of three or more consecutive
hyphens. Also concerned with hyphenation is

\brokenpenalty, which places a numeric value

on the undesirability of breaking a page at
a hyphen; again it might be posited that the

undesirability of such a break is increased on

a recto page (or reduced on a verso page),
yet only one penalty is provided. A simple.

but potentially infinite, solution would be to

increase the number of parameters; a more flex-

ible solution might be to incorporate the con-

cept of formula-valued parameters, where, for

example, one might write something analogous
to \brokenpenalty = { \ i f r ec to 500 \ e l s e

200 \f i), with the implication of delayed eval-
uation.

10. Inadequate awareness of esthetzcs: lJjX is

capable of producing results which ~sthetically
are the equal or better of any computer type-

setting system available today, yet the results

may still be poorer than that achieved by more

traditional means. The reason for this lies in

the increased detachment of the human 'oper-

ator', who now merely conveys information

to the computer and sits back to await the

results. When typesetting was accomplished by

a human compositor, he or she was aware not

only of the overall shape of the text which was
being created, but of every subtle nuance which

was perceivable by looking at the shapes and

patterns created on the page. Thus, for exam-

ple, rivers (more or less obvious patterns of
white space within areas of text, where no such

patterns are intended), repetition (the same

word or phrase appearing in visually adjacent

locations, typically on the immediately preced-
ing or following line), and other zsthetic con-

siderations leapt out at the traditional typeset-

ter, whereas w is blissfully unaware of their

very existence. Fairly complex pattern match-
ing and even image processing enhancements

might need to be added to m before it was

truly capable of setting work to the standards
established by hot-metal compositors.

Clearly one could continue adding to this list almost

indefinitely; every system, no matter how complex,

is always capable of enhancement, and is no

exception to this rule. I have quite deliberately
omitted any reference to areas such as rotated text

and boxes, support for colour, or support for graph-

ics, as I believe them to be inappropriate to the cur-

rent discussion: they are truly extensions to m.
rather than deficiencies which might beneficially be
eliminated. But I believe I have established that

there are areas in which w is capable of being

improved, and would prefer to leave it a t that.
This brings us therefore to the final theme: how

should we proceed? The NTS-L approach is obvi-

ously helpful, in that it allows the entire (e-mail

connected) 7Q$ community to contribute t o the dis-
cussion, but I see at least two problems:

1. Those who are not on e-mail15 are essentially

excluded from the discussion; I do not see any

easy solution to this problem.

2. The views expressed are, in some cases, radi-

cally different, and I wonder whether we will

ever converge on a universally acceptable deci-
sion.

The second is in many ways the more important
issue (Knuth apart), for unless the decisions made

are acceptable to a very large majority of the con-

tributors, the group may split, with part electing to

l5 Knuth is not on e-mail. .

TUGboat, Volume 13 (1992), No. 4

go one route and another part electing t o adopt a dif-

ferent strategy. This could result in a proliferation

of ~ b e r - m s , with a concomitant fragmentation of
the user community. Natural selection would surely

winnow out the real non-starters before too long,

but I seriously worry about the effect of such a pro-

liferation on the m community, and even on w
itself: after all, if we can't agree amongst ourselves

whether there should be a successor to w, and if

so what functionality it should possess, the whole

credibility of the ethos will be called into ques-

tion. I would not like this to happen.

Somehow, therefore, we have to find a generally

acceptable solution. My intuitive feeling is that such
a solution will either be conservative or radical. but

nothing in between. (This may seem like a distinct

hedging of bets, but I hope that my meaning is clear:

I believe that a compromise solution. which tries to

be all things to all people, is doomed to failure.) I do
truly believe that adopting both solutions (one con-

servative. one radical) may be the best way forward:

as an initial step. we identify (as I have tried to

do above) any true deficzenczes of m - t h o s e that

actually prevent it from accomplishing its stated
aims-and rectify those, producing a system that is

backwards compatible with present implemen-

tations whilst being capable of achieving superior
results. In parallel with this (which is intended to be

a reasonably short term and straightforward project.

requiring not too much in the way of resources),

we start planning a truly radical New Typesetting

System, with the same fundamental design desider-
a ta as (portability, freely available, fully docu-

mented, bug-free. . .), but designed for the technol-

ogy of tomorrowl%ather than that of today.
Considering first the conservative approach, we

will need t o identify what is feasible, as well as what

is desirable. Clearly this will require advice from

those who are truly familiar with TEX. WEB, as I see

this approach purely as modifications to the WEB

rather than as a re-write in any sense. Chris Thomp-

son and Frank Mittelbach are obvious candidates
here, and Frank is already a member of the NTS

team; I would suggest that if we adopt this strategy,

Chris be invited to participate as well. Once we have

identified what is possible, we will need a reasonably

accurate estimate of time-to-implement, and if this

exceeds tha t w-lnich can be achieved with volunteer

labour, we will need to seek funds to implement this

solution. I would suggest that TUG be approached

at this stage (obviously they will have been kept

informed of the discussions), and asked if they are

l6 and beyond

willing to fund the project. There seems no point in

projecting beyond this stage in the present paper.
For the radical approach, familiarity with WEB

is probably unnecessary, and indeed may be a dis-

advantage: if we are seeking a truly NEW Typeset-

ting System, then detailed familiarity with current

systems may tend to obfuscate the issue, and cer-

tainly may tend to constrain what should otherwise

be free-ranging thoughts and ideas. We will need

t o consult with those outside the Q$ world, and
the advice of practising typographers17 and (proba-

bly retired) compositors will almost certainly prove

invaluable. But above all we will need people with

vision, people who are unconstrained by the present
limits of technology, and who are capable of letting

their imagination and creativity run riot.

And what conclusions might such a group

reach? Almost by definition, the prescience required

t o answer such rhetorical questions is denied to mere
mortals; but I have my own vision of a typesetting

system of the future, which I offer purely as an exam-

ple of what a New Typesetting System might be.

Firstly (and despite my quite ridiculous prejudices

against windowing systems), I believe it will inher-
ently require a multi-windowing environment, or will

provide such an environment itself (that is. I require

that it will make no assumptions about the under-

lying operating environment. but will instead make
well-defined calls through a generic interface: if the

host system supports a multi-windowing environ-
ment such as Microsoft Windows or the X Window

System, the NTS will exploit this; if the host sys-

tem does not provide such intrinsic support. then it
will be the responsibility of the implementor to pro-

vide the multi-windowing facilities). I envisage that

perhaps as many as eight concurrent displays might

be required: linked graphic and textual 110 dis-

plays, through which the designer will be able to
communicate the underlying graphic design in the

medium of his or her choice (and observe in the

other window the alternative representation of the

design); an algorithmic (textual) display, through

which the programmer will communicate how deci-

sions are to be made; two source displays. one text,

one graphic, through which the author will commu-

nicate the material to be typeset; and a preview

display, through which an exact facsimile of the fin-

ished product may be observed at any desired level

of detail. A further display will provide interac-

tion (for example, the system might inform the user

that some guidance is needed to place a particularly

Michael Twyman and Paul Stiff have

indicated a keen desire to be involved in the

project.

TUGboat, Volume 13 (1992), No. 4

tricky figure), and the last will enable the user to

watch the system making decisions, without clut-

tering up the main interactive window. Needless to

say, I assume that the system will essentially operate
in real time, such that changes to any of the input

windows will result in an immediate change in the

corresponding output windows. I assume, too, that

the input windows will be able to slave other unre-

lated programs, so that the user will be able t o use

the text and graphics editors of his or her choice. Of

course, not all windows will necessarily be required
by all users: those using pre-defined designs will not

need either the design-I/O or the algorithm-input

windows, and will be unlikely to need the trace-
output window; but the interaction window may still

be needed, and of course the source-input windows

unless the source, too, has been acquired from else-

where. For just such reasons, the system will be

capable of exporting any designs or documents cre-

ated on it in plain text format for import by other
systems.

And underneath all this? Perhaps no more than
a highly refined version of the Tm processor: totally

re-written. probably as a procedural language rather

than a macro language (why procedural rather than.

say, list processing or declarative? to ensure the
maximum acceptability of the system: there are stzll

more people in the world who feel comfortable with
procedural languages than with any of the other

major genres). and obviously embodying at least the

same set of enhancements as the interim conserva-
tive design, together with support for colour, rota-

tion. etc. The whole system will, of course, be a fur-

ther brilliant exposition of literate programming;
will be placed in the public domain; will be capa-

ble of generating DVI files as well as enhanced-DVI

and POSTSCRIPT; and will be so free of bugs that

its creators will be able to offer a reward, increasing
in geometric progression, for each new bug found. . .

But we will need one final element, and I have
deliberately left this point to the very end: we will

need the advice of Don Knuth himself. Don has

now distanced himself from the project, and

is concentrating on The Art of Computer Program-

mzng once again. This detachment is very under-

standable- TEX has, after all, taken an enormous
chunk out of his working (and. I suspect, private)

life - and I hope that we all respect his wish t o be

allowed to return once again to 'mainstream' com-

puter science, mathematics, and Bible study. But
I think it inconceivable that we can afford to ignore
his advice; and if I were to have one wish, it would

be this: t ha t I would be permitted to meet him,

for whatever time he felt he could spare. and dis-
cuss with him the entire NTS project. I would like

to know, above all, what changes he would make

to m, were he to be designing it today, rather

than fifteen years ago; I would like to know if he

agrees that the deficiencies listed above (and those

that appear elsewhere) are genuine deficiencies in

TEX, or are (as I sometimes fear) simply the result of

an inadequate understanding of the true power and
capabilities of TEX; and I would like to know how

he feels about the idea of an 'Extended TjjX' and

of a New Typesetting System (I suspect he would

be far more enthusiastic about the latter than the

former). And I suppose, if I am honest, I would

just like to say 'Thank you, Don', for the countless

hours, days, weeks, months and probably years of

pleasure which has given me.

Philip Taylor; July 1992

References

Donald E. KNUTH: ''The Future of and

METRFONT", in TUGboat, Vol. 11, No. 4,

p. 489, November 1990.

Frank MITTELBACH: "E-TFJ: Guidelines for

future w. in TUGboat, Vol. 11, No.3,

pp. 337-345, September 1990.

Michael VULIS: "Should TEX be extended?". in

TUGboat. Vol. 12, No. 3. pp. 442-447, Septem-

ber 1991.

ZlatuSka. Jiii (ed) : Euro TjjZ '92 Proceedzngs,
pp. 235-254, September 1992. Published by

CSTUG, Czechoslovak Q j X Users Group, ISBK

80-210-0480-0.

Appendix A

Inaugural members of the NTS-L team

Rainer Schopf (Chairman)

0 Peter Abbott

0 Peter Breitenlohner

0 Frank Mit>telbach

Joachim Schrod

0 Norbert Schwarz

Philip Taylor

o Philip TAYLOR
Royal Holloway and Bedford New College.
University of London,
Egham Hill,
Egham,
Surrey, U.K.
<P.Taylor@Vax.Rhbnc.Ac.Uk>

TUGboat: Volume 13 (1992), No. 4

Software

X B i b m and Friends*

Nickolas J. Kelly and Christian H. Bischof

Abstract

The XBibTEX utility provides an X Window interface

for inserting entries into a bibliography database in

 BIB^ format. XBibT@ provides a template of the

required and optional fields for each entry type defined

by BIB^. In addition, X B i b m accommodates two

additional entries named "keyword" and "annote" for

maintaining an annotated bibliography. The user enters

the information to be stored in the database; XBibTE)C

automatically inserts the entry in the bibliography file

in a format that conforms to BIBTJ~X'S specifications.

We also introduce two related utilities, bibprocess and

bibsearch. bibprocess allows one to merge the con-

tents of user-defined fields into a .bbl file produced by

 BIB^: bibsearch allows one to retrieve the L A W

key of publications that contain user-specified keywords.

This article describes the features of these programs.

1 How to Use X B i b m

While BIB^ provides a convenient mechanism for

storing and retrieving bibliographic records, it lacks
a convenient means for entering new items. The user

can easily make mistakes-for example. forgetting

the required fields, the double quotes, or the commas
surrounding the information in an entry.

X B i b W minimizes these errors by

displaying a template with all the fields defined
for a particular type of bibliographic entry.

making sure that information for required fields

is indeed provided, and

storing the information in a format that is guar-

anteed to be syntactically correct.

The 'look and feel' of XBibTpX is best con-
veyed through an example. After typing "xbibtex" ,
the Application Window in Figure 1 will appear.

This window contains a menu of options which the

user may select by pressing the left mouse button

over the appropriate option.

The Article, Book, Inproceedings, and Tech-
report buttons are bibliography entry types defined

by BIB^. A menu containing the other (in our

experience, less common) entry types known to

* This work was supported by the Applied Math-

ematical Sciences subprogram of the Office of En-

ergy Research, U. S. Department of Energy, under
Contract W-31-109-Eng-38.

XBibTeX

X-Window application for manipulating
the BlbTeX bibliography database,

Figure 1: Application Window

I Article

I

Directory: ~~et/rparky/sparky2/b1schof/tex/blbtex 1

Author: Ronald Reagaa I
Tl t le :

month:

Note:

It never rams ~n Southern C a l ~ f o r m q

Number:

Figure 2: Entry Window for an Article

Journal: Sunny Side Ug

3- I

X B i b W pops up when the user presses the Oth-
ers button.

Let us assume we enter an article into our bib-

liography database. After pressing the Artzcle but-
ton, the Article Entry Window displayed in Fig-

ure 2 will pop up. but with empty text fields. Notice

that all of the buttons in the Application Window

have been grayed except for the ClzpBoard button.

This "grey-out" prevents one from exiting the ap-

plication while entering an entry.

There are two kinds of fields: "required" and

"optional". The "required" fields must be filled in

for XBib'QX not to complain. For example, let us

assume that the author is Ronald Reagan; the title
of the article is "It never rains in Southern Califor-

nia''; the date of publication is 1987; the page range

is 33-44: and the volume, issue, and journal title

Pages: 33-44-

TUGboat, Volume 13 (1992), No. 4

I 1 Could not f m d database f ~ l a :
/Net/sparky/sparky2/b1schof/tex/bibtex/r.bib

I Would you like the database file t o be created? I I

Figure 3: The Confirmation Window

I <** XBIBTEX MESSAGE 86 $*>

Biblmgraphy Entry Information I
Type: ' 'artde' '
Key: "RonnleBIa"
DB Fi le Name: ' / N e t / s p a r k r / s p a r k r J Z / b ~ z c h h f / t s x / b ~ b t e

I Press any button vhlle In wmdou t o dismiss mesrage... I
Figure 4: A Sample Message Window

are Vol. 1, No. 3, Sunny Szde Up. Then one would

enter the text as displayed in Figure 2. Note that
there is no need to type the double quotes that sur-
round information in B I B W entries. X B i b W will

automatically generate them.

In addition, we have to specify a "key", and

we enter "Ronnie87" (say). One has to specify a
directory where the database (.b ib) files are kept.

The path can be an absolute path or can be relative

to the directory from which X B i b W was started.
The path entered is not expanded by the shell, so

the tilde (") notation does not work, for example,

to specify your home directory. Since database files
are usually kept in one directory. the environment

variable XBIBTEXDATABASE-PATH can be set

to specify this path so it need not be reentered ev-
ery time.

When all the information has been entered.
pressing the Save button causes the Article Win-

dow to disappear. and the Confirmation Win-

dow (see Figure 3) will appear since the database

file r. bib does not yet exist. Upon confirmation,
the Message Window (see Figure 4) will be dis-

played. The Message Window identifies the key

that should be used from now on in a LAW \cite

command t o refer to this entry. Notice that the
L * m key is not the same as the X B i b m key that
was entered-the LAW key is the X B i b w key

with an "a" appended to it. X B i b m automati-

cally indexes entries by appending a lower-case let-

ter. This procedure allows for multiple entries to

have the same X B i b W key, but has the restriction
that one can create only twenty-six entries with the

same "base" X B i b W key. The Message Win-

dow also shows in which file the new entry was

stored. The database file name is determined by the

first character of the X B i b m key with the ". blb"
extension appended.

I I

Directory: k~et /spark~/sparky2/b1s~hof / tex/b~btex/ I

Required B ~ b l m g r a p h y F i e l d s

Author: "elpresldente-

T i t l e : Hollywood Dreams,

Publisher: Beverley Hills Press,

Year: /1987. 1

Optional Blblmgraphy F l e l d s

Volume:

Series:

Rddress: I I

Month: I I

Note:

I
WQRNINGl May need t o e d l t entry depandmg on whether
you want f d d name t o be: Author" OR "Edl tar" .
W i l l autonat ica l ly rave f l e l d as ''Ruthor'.

Figure 5: Entry Window for a Book

Now let us repeat the same procedure, ex-

cept this time a book will be entered into the

database. Let us assume the book is, say, "Holly-

wood Dreams", again by Ronald Reagan, published

by Beverly Hills Press in 1987. After opening the

"book" template by pressing the Book button in the
Applications Window, we enter the information

as shown in Figure 5. Note that we entered the

same X B i b W key as before, namely, "Ronnie87".

Since there is already an entry that used the same

X B i b W key (and was stored with the LAW key

"Ronnie87an), the new entry will be assigned the
LAW key "Ronnie87bn. Also note that we entered

"elpresidente in the author field. If an entry starts

with a leading quote and has no spaces, newlines, or

tabs in it, it will be saved without quotes surround-
ing it. Therefore, a declaration like

@string(elpresidente = "Ronald Reagan")

causes this entry to be expanded correctly by

B I B W . The WARNING! message at the bottom

of the template indicates that if one wanted to enter

an 'editor' field instead of an 'author' field BIB^
requires one of the two), one has to edit the . b i b

file by hand after storing this entry, since X B i b W

TUGboat, Volume 13 (1992), No. 4

assumes that the "author" field has been entered.
If we press the "annote" button. another win-

dow pops up into which additional information can

be entered, which will be stored as an additional

entry labeled "annote". B I B W will ignore this en-

try since it is not one of those that BIB= knows

about. (The "bibprocess" utility described in Sec-

tion 2 makes it possible to merge this information

with output generated by standard B I B W .)
After saving this entry, the contents of the

 BIB^ database file will look as follows, assuming

that the file "r . b ibn did not exist or was empty
before, and "What great stuff!" was entered in the

"annote" window.

Qarticle{Ronnie87a,

author = "Ronald Reagan",

t i t l e = " I t never r a i n s i n Southern C a l i f o r n i a "

journa l = "Sunny Side Up",

year = "1987",

volume = "I",

number = "3",

pages = "33--44"

1

Qbook{Ronnie87b,

author = e l p r e s i d e n t e ,

t i t l e = "Hollywood Dreams1',

p u b l i s h e r = "Beverly H i l l s P r e s s " ,

year = " 1987" ,
annote = "What g r e a t s t u f f ! "

3

This example provided a flavor of the function-

ality that X B i b m affords. In summary. X B i b W

has

0

0

0

0

0

0

the following features:

Automatically provides a ternplate of the re-
quired and optional fields associated with each

entry type as defined by BIB^.
Ensures that the required fields of a specific en-

try are filled.

Produces a unique L A W key by which entries
are referenced.

Automatically inserts entries in alphabetical or-

der (by key) into the database.

Provides a clipboard that can be initialized to

display a specified file. This feature can be

useful for displaying an abbreviations file from

which t o cut and paste.

Provides two new fields, "annote" and "key-

words", that are useful for maintaining an an-

notated bibliography.

2 bibprocess and bibsearch

In this section we describe two related utilities:

bibprocess: which allows one to merge the con-

text of additional fields added to . b i b files into
the . b b l files produced by BIB^, and

bibsearch: which allows one to search for the
LATEX keys of bibliography entries containing

the desired information.

2.1 bibprocess

As mentioned above. XBibTm allows one to en-

ter two additional fields ("annote" and "keywords")
which are ignored by BIB^. bibprocess pro-

vides the functionality to merge the contents of those

fields (as well as others) with the BIB^ output.

Consider the output produced by BIB= when we

cite "Ronnie87an and "Ronnie87b". (For future ref-

erence. assume that it was written to t e s t . bbl.)

\begin{thebib l iographyrn

\bibitern{Ronnie87b)

Ronald Reagan.

\newblock {\em Hollywood Dreams).

\newblock Beverly H i l l s P r e s s , 1987

\bibitem{Ronnie87a)

Ronald Reagan.

\newblock It never r a i n s i n Southern C a l i f o r n i a .

\newblock {\ern Sunny Side Up), 1(3):33--44, 1987.

Since "annote" is a keyword that is not known to
 BIB^, the information in the "annote" field (i.e.,

"What great stuff!") was ignored.
The bibprocess utility makes it possible to

merge this information into the . bbl file. The syn-

tax is

bibprocess

< b i b f i l e > [< b i b f i l e > . . .] < b b l f i l e >

-f <f ormatf i l e >

-k <keyword> [-k <keyword> . . . 1
[-0 < o u t p u t f i l e > 1

Given a cbblf i l e > (a file with a . b b l exten-

sion) produced by BIB^ from a set of <bibf i l e s >

(files with a . b i b extension), bibprocess appends

the contents of the fields specified by <keyword>

to the corresponding entries in cbblf i l e > . The

output is written to < o u t p u t f i l e > if the -0 op-

tion is present. and to s tdou t otherwise. The

<f ormatf i l e > specifies how the new information is

to be formatted.
Again, it's easiest to understand this pro-

cess with an example. Assume that we wish to

merge the "keywords" and "annote" information
that X B i b W allowed us to specify. The origi-

nal BIB^ output is in t e s t .bb l , the bibliography

446 TUGboat, Volume 13 (1992). No. 4

file is r .bib, and the merged output should go t o

testmerged . bbl (say). We issue the command

bibprocess r.bib test.bb1 -f merge.fmt

-k keywords -k annote

-0 testmerged.bb1

The file merge. fmt contains the following informa-

tion:

annote

before: @\newblock {(\bf annote:) @

after: Q)Q

keywords

before: @\newblock ({\bf keywords:) @

after: @)@

We see that we have an entry for each keyword that

is to be merged, and for each keyword we specify
what string to place before and after the information

t o be merged. The "at" sign @ is used as a delimiter.

the entries must be separated by blank lines, and
the <keywords> ("annote" and "keywords" in our

example) must be specified with lower-case charac-

ters. testmerged.bb1 then contains the following

information:

\begin{thebibliography}{13

\bibitem{Ronnie87b)

Ronald Reagan.

\newblock {\em Hollywood Dreams).

\newblock Beverly Hills Press, 1987.

\newblock C(\bf annote :) What great stuff !)

\bibitem{Ronnie87a)

Ronald Reagan.

\newblock It never rains in Southern California.

\newblock {\em Sunny Side Up), 1(3):33--44, 1987

\end{thebibliography}

We see that the "annote" information has been ap-

pended to the "Ronnie87aW entry using the format
specified in merge. f mt . There was no "keywords"

information, so no field was created for it.

Using bibprocess you can thus augment the

functionality of BIB^ and augment its output with

any number of user-defined fields.

2.2 bibsearch

The syntax of bibsearch is as follows:

bibsearch <bibfile> -k <keyword>

[-k <keyword>] [-o coutputf ile>]

-s <searchword>

bibsearch searches the title field and the fields

specified by <keyword> in a bibliography file

<bibf ile> for an occurrence of <searchword> and

prints the LATEX keys of all entries either t o
<outputf iLe> or stdout . For example,

bibsearch r.bib -k annote -s "great stuff"

will produce

Ronnie87b

on the standard output. Note that one must en-

close the search string in quotes if it contains more
than one word.

In summary. bibsearch is useful for retriev-

ing citations containing information on specified

words -in particular, if one maintains a "keywords"
entry in the BIB^ database.

3 How t o Ob ta in X B i b m a n d Friends

The source for XBibTFX, bibprocess. and bib-
search as well as a more detailed user and instal-

lation guide can be retrieved via anonymous ftp

from info . mcs . an1 . gov (current Internet address:

140.221.10. 1). The pub/xbibtex subdirectory con-
tains the following files:

userguide. ps. Z: A more complete description of

X B i b m , bibprocess, and bibsearch, as well
as installation instructions.

xbibtex.shar.Z: Source code. man page, and
makefile for X B i b w .

bibuti1s.shar.Z: Source code, man pages and
makefiles for bibprocess and bibsearch.

All files must be transferred in 'binary' mode.

o Nickolas J. Kelly

Nielsen Advanced Information

Technology Center

Bannockburn Lake Office Plaza

2345 Waukegan Rd.
Bannockburn. IL 60015

o Christian H. Bischof

hlathematics and Computer

Science Division

Argonne National Laboratory

Argonne, Illinois 60439-4801

bischof@mcs,anl.gov

TUGboat, Volume 13 (1992), No. 4

Searching in a DVI File

Nigel Chapman

I. Introduction

Most, if not all, DVI previewers and printer drivers

provide a facility for selecting a subset of the pages

of a document; this subset is specified using the

contents of the \count0 to \count9 registers that

w outputs to identify each page of the file. This

makes it easy to preview just pages 7, 8 and 9, but

what if you know you want to look at the page with

the paragraph about Katzenellenbogen by the Sea?

If you're not sure how the page makeup worked out,

you won't know where that is. Trial and error will

find the right page sooner or later, but it would be

more convenient if there was a facility for selecting

a page by its content, that is, the occurrence on it

of a particular string.

Many efficient string searching algorithms al-

ready exist; they are used routinely in text editors
and other programs. These algorithms take as their

input a string of characters - the target - and a
pattern. The pattern specifies a set of strings.

The task of the searching algorithm is to find the
location, if any, within the target of a substring

that belongs to the set specified by the pattern.

The pattern may simply be a single string, speci-

fying itself, or it may use metacharacters and some

formalism such as regular expressions to specify a

larger set of strings. In general, the more elaborate

the language permitted for specifying patterns, the

more elaborate the search algorithm will be. There

are well known efficient algorithms for searching for

single strings [4] and for sets specified by regular

expressions [I].
A DVI file is a sequence of typesetting com-

mands, some of which may have parameters. (DVI

commands are fully described in [3,$§583-5901.) A
user specifying a pattern to search for will want to

type that pattern at a terminal using the subset
of ASCII that corresponds to printable characters.

Thus, before one of the standard string searching al-

gorithms can be employed, either the pattern must

be converted to a sequence of DVI commands, the

DVI file must be mapped into a string of printable

ASCII characters, or both DVI file and pattern must

be mapped into some other common representation.

Leaving aside the possibility of using anything

more elaborate than simple strings as patterns. a

possible approach based on the first of these options

is to use TEX to convert the pattern into DVI. Using

this approach, it would be possible for patterns

to be specified in the w language, and thus to

make use of macros and to carry out searches on

all features of a document, including math mode

material and even rules and spaces. Search patterns

could be extracted directly from the TJ$ source of

a document. (In fact. for non-trivial search strings

they would probably have to be, because of the

difficulty of deciding exactly what TJ$ commands
produced some particular output.) However, the

problems of interfacing TF$ are considerable, and

the overheads of running it to process every search
string are unlikely to be acceptable. Furthermore,

the actual DVI produced by for a particular

string will depend on the context in which that

string appears. Such elements as interword spacing,

line breaking and hyphenation may be very different

when the string appears in the middle of a paragraph

and when it is typeset in isolation. Thus, even after

a pattern was converted to DVI, it would not be

possible to apply simple string matching: some sort

of fuzzy matching would be necessary.
If converting the pattern to DVI is problemat-

ical, what about converting the DVI file to ASCII?

This is essentially the same task as that performed

by DVI previewers for dumb terminals, and it suffers
from the same limitations: only text material can

be dealt with properly, and spacing must be approx-

imated. It has the great virtue of being simple, and,

once the transformation has been done, any string

matching algorithm can be used, including those
that support regular expressions. This approach

will be looked at further in the next section.
Finally, there is the possibility of converting

both the DVI file and the pattern to some common
representation. The obvious choice here is the

extended character code set used by w to specify

characters in its math symbol and extension fonts.

This requires some means of specifying characters in

the pattern other than printable ASCII characters:
the obvious way of doing this is by permitting a

suitable subset of TEX commands to be used in

patterns. Matching can then be done on text and

math mode material. This approach is further

described in section 3.

2. Text Searching

The text parts of a TJ$ document will be typeset
using m ' s text fonts. Computer Modern text

fonts each contain 128 characters and these are

laid out in such a way that the printable ASCII

characters occur in the positions corresponding to

their ASCII codes. The positions corresponding

to the ASCII non-printable (control) characters are

used for ligatures, accents and Greek letters (see the

TUGboat, Volume 13 (1992), No. 4

font layout tables in Appendix F of [2]). A search
pattern typed by a user will only use printable

ASCII characters, but it is necessary to ensure that,

for example, the pattern f f i matches the ligature
ffi.

A DVI file can be thought of as a program in
the machine code of a virtual typesetting machine.

The instructions of this machine perform primitive

typesetting operations, such as set a character or

select a n e w font. These instructions are held

in the DVI file as bit patterns. For reading by

people, they can be represented by mnemonics,
just as conventional machine code instructions are

given mnemonic form in assembly language. DVI
instructions may have parameters, specifying, for

example, the length of a rule to be set, or the
code for a character. There are two sets of DVI
commands that cause a character to be typeset:

the set commands, with mnemonics set-char-0

through set-char-127, s e t i , set2, s e t 3 and set4,

and the put commands, put l , put2, put3 and put4.
The first 128 of these are unparameterized and

directly specify a character code, the others take

an argument of between one and four bytes. Q X
always uses set-char-n for a character with code n,
if 0 < n 5 127, so any ASCII character will be set

with either a set-char-n or p u t i (see [3,§585]).

Because of kerning, commands for spacing may

appear between character setting commands, even

within a word. For example, the DVI commands
corresponding to the word 'Katzenellenbogen', as it

appears near the beginning of the file containing this

paper, have the following mnemonic representation.

s e t char75

s e t char97
setchar116

se tchar i22

setchar101

setchar110

setchar101
setchar108

s e t char108

s e t c h a r l o i

setchar110
r i g h t 2 -18205

s e t char98

x0 18205

setchar111

setchar103

s e t c h a r i 0 i

s e t c h a r i l 0

(The r i g h t 2 and xO commands perform horizontal
spacing.)

A possible strategy for converting a DVI file

into a stream of characters is to scan the file,

ignoring everything except set and put commands,
and return the corresponding ASCII code. But this

doesn't do quite what is required. In the first

place, all characters not in text fonts should also be

skipped. To do this, it is necessary to keep track

of the current font by interpreting the additional

DVI commands fnt-def, f n t and fnt-num. The

external name of each font used can be found among

the parameters of its fnt-def; it is necessary to

have a priori knowledge of which of these names

correspond to text fonts-for Computer Modern
fonts this knowledge is obtainable in Appendix F of

The w b o o k [2].

Secondly, ligatures should be expanded into

their component letters, so, for example, when

a set-char-14 command is found, it should be

converted to the three letters f f i . Dashes should

also be expanded, en-dash to -- and em-dash to
--- . Dotless i and j should be replaced by ordinary

i and j. All other non-printable characters will have

to be skipped, as should the Spanish punctuation

marks i and i and hyphens, the last since a
pattern should match irrespective of whether the

corresponding occurrence in the DVI file is split

across lines. Strictly speaking, to skip hyphens it is
necessary to know the \hyphenchar of the current

font, and this can only be determined by examining

the format used in w i n g the document. It will

usually be safe, though, to assume it is ' \-.
If the scheme described is used, a stream

of characters can be produced from the DVI file,

corresponding to the textual parts of the document,

and these can be matched against a search string

made up of printable ASCII characters. However,
spacing in the DVI file will be entirely skipped, so

ASCII space characters in the search string will not

match anything. One response to this is to insert

space characters in places that correspond to word

breaks in the DVI file. Because of what TpjX does

with glue, however, these cannot be identified with
certainty (as the spacing produced by ASCII DVI

previewers such as dv i t t y testifies). The easier

alternative is to remove all spaces from the search

pattern. This will produce spurious matches, e.g..

pullover will match p u l l over, and vice versa,

but this is preferable to failing to match because of

incorrectly inserted spaces.

By allowing an escape character in the search

pattern, this scheme can be extended to cope with

the full range of accents in the Computer Modern

text fonts. The obvious scheme is to use plain

TUGboat, Volume 13 (1992), No. 4 449

w ' s control sequences for accents and accented

characters and expand them in the pattern.

Use of negative glue, \ l l ap , characters with

negative width, and so on can lead to the commands

for setting characters occurring in the DVI file in

a very different order &om that in which the

characters appear in the typeset document. Thus,

the matching obtained can only ever be approximate

unless DVI commands are first sorted by x and

y coordinates. For most applications, this probably
wouldn't matter, since most searches will be for

obviously identifiable words.

3. Searching in Mathematics

A DVI searching program based on the previous
section will suffice to find the page with the text

'Katzenellenbogen by the Sea', but what about the

page with
n k (z .pl + P?) ?

This is much more of a challenge. To begin with:

how should the search pattern be specified? The

obvious way is to use the rn language, but this is
not, in fact, an answer, because of W ' s powerful

macro facilities and its almost unbounded possibil-

ities for redefining the meaning of any character.
One must assume at least part of a format in

interpreting a search pattern. The obvious choice

is the plain format, so that a search string for the

above could be $(\sun-<i=l)^n \alpha-i-<m-13

+ \beta_i^{m_2))-k$. This illustrates several of

the problems that must be overcome when searching

in math mode material.

Firstly, \alpha and \beta represent characters

&om m ' s math italic font; these occur in the same

place as the ff and ffi ligatures in a text font and

the two have to be distinguished. does this by

using mathcodes, which specify a font family and

the position in the font (they also specify a type,

but that is irrelevant here) and defining control

sequences such as \alpha using \mathchardef.

The mathcode values for such symbols can be used
by the searching algorithm, provided the DVI file

can be turned into a stream of mathcodes. rather

than a stream of ASCII characters as described in

the previous section. This is not much more difficult

than determining when a character occurs in a text

font. By keeping track of the external name of the
current font it is possible to deduce the current font

family; to do this properly, it is necessary to look
at the format used to typeset the document and

interpret any assignments to \ t ex t f ontk. The lazy

alternative is to assume the assignments of plain

m. As all text fonts are assigned to family 0, the

text matching using ASCII codes will still work.
Not all the special symbols available in math

mode are defined by \mathchardef. Some are

built up as a combination of other symbols, for

example -. Such composite symbols must be
expanded into their components.t Some of these

combinations are defined in quite an elaborate way,

but it is relatively easy to deduce the sequence of

character setting DVI instructions they will produce.

Multiple sub- and superscripts present a dif-

ferent sort of problem. A term such as x: can be
produced in ?]EX by either $x-i^2$ or x^2-i.

Either pattern should match the DVI for x:, irre-

spective of how that was specified in the original

source. Study of Appendix G of The w b o o k

reveals that when an atom has both a subscript

and a superscript, TEX always sets the superscript
first, followed by the subscript. Thus, a pattern

with both can be normalized to a form with the

superscript first. The - and - can be ignored

and the sequence of component characters, in the
appropriate families, can be searched for. Again.

this may produce spurious matches ($x-i^2$ will
match x2i, for example) but will not fail to match

when it should.

The last major complication of searching in

math mode is caused by those characters that can
change their size. (How big are the parentheses

in the example at the beginning of this section?)
These include the things defined by \del imiter .

\mathaccent and \ rad ica l , which may give two

different mathcode values for the same control

sequence. Matters are made more complicated by

the fact that any character may be the first in a

linked sequence of characters or may be constructed

out of several pieces. These series and extensible

characters are considered part of the font, and

information about them has to be taken from its
TFM file.

A control sequence defined by \del imiter ,

or a mathcode that specifies a character that is

part of a sequence can be thought of as a pattern
that describes a set of alternatives. An extensible

character also specifies a set, but, in theory at

least, it is an infinite set of strings of the form

TR~MR" or T R ~ B where T , R, M and B
are the top, repeating, middle and bottom pieces
of the extensible character, and k 2 0. All these

possibilities can be described by regular expressions.

t A seemingly intractable problem here is the

underline symbol, represented by \- in plain m,
which is actually a rule.

TUGboat, Volume 13 (19921, No. 4

pattern +

p t e r m -+

pfactor +

ppr imary +

pelement +

mathpa t tern +

mathe lement -+

script ion +

scripte lement +

mathpa t i

p t e r m { I p t e r m)
pfactor (pfac tor)

pprimary lr l E l
{ [p a t t e r n] -) I $ mathpa t tern $
pelement
char la
mathe lement { m a t h e l e m e n t)
pelement [script ion]
{ mathpat [script ion]) -
t scripte lement [, s c r i ~ t e l e m e n t] -
, scripte lement [t scr ip te lement]

pelement I { [mathpa t])
mathe lement { m a t h e l e m e n t)

Figure 1. Grammar for search patterns.

A delimiter specifies dl I d2 where dl and d2 are the

small and large versions of the symbol; a series of

characters is just c l I cg I . . . I c,, and an extensible

recipe is (TR*MR*B) I (TR*B), which may be

simplified to TR*(M I e)RSB (6 is the empty

string). Thus if patterns are specified as regular

expressions, and searching is done using finite

state machines, control sequences and characters

corresponding to symbols that can change size one

way or another can be treated as shorthands for

these regular expressions. Note that the fact that
the regular expression for an extensible character

does not enforce the restriction that the number of

repeatable segments above and below the middle
must be the same doesn't matter, because no other

combination can occur.

In summary, to deal with math mode, the

DVI file must be converted to mathcodes specifying

font family and character position and the pattern
must be modified so that characters and control

sequences in it are mapped into regular expressions

matching such codes, taking into account the font

family characters will be typeset in, delimiter codes,
character series and extensible characters.

4. An Implementation

A prototype DVI searching facility based on the

ideas in the previous sections has been implemented
as part of a m - b a s e d hypertext system I am

developing. Search patterns may be written in a

language defined by the extended BNF grammar

in Figure 1. (The symbols [, 1 , {,) and I are

grammar metacharacters: items enclosed in [and]
are optional, those in { and) may occur zero or

more times, I separates alternatives. The terminal
symbols-the symbols of the pattern language-

are underlined. Note the difference between the

metacharacters {,) and I and the terminals {,

) and I.) In patterns, the I operator separates -
alternat&es, the postfix ;r meak that the preceding

pattern element may occur zero or more times,

and the 2 that it is optional. Curly brackets are

used to group items: the syntax of the pattern

language means that they work as expected to
delimit complex sub- and superscripts, but they

are also used as brackets to override the default

associativity of regular expression operators, in the

usual way. The terminals char and g represent

lexical classes consisting of single characters other

than pattern metacharacters and m - s t y l e control

sequences, respectively. The metacharacters are
represented in patterns by \\, *, \?, etc.

A pattern input by the user is parsed by a sim-

ple recursive descent parser, and a data structure for

a nondeterministic finite state machine with 6 tran-

sitions is constructed in a syntax-directed manner

using the conventional construction (see [I]) . When

the lowest level parsing function recognizes a con-

trol sequence or an extensible character, it returns
a primitive finite state machine to recognize the

strings described by it. For most control sequences

defined by mathchardefs this is just a two state, one

transition machine that recognizes the correspond-

ing mathcode. For delimiters and other characters

that change their size in different ways, and for

composite characters, a more elaborate machine,

corresponding to the appropriate regular expres-

sions, as described in section 3, are produced. For

any single, non-extensible character, a machine to

recognize the character in the appropriate family

is constructed. A special control sequence \any is

recognized; it matches any single symbol.

The code to construct the finite state machines

for control sequences and so on is derived from

the definitions in plain.tex and PL files for the

Computer Modern fonts. If a more general facility

were desired, tables would have to be constructed

automatically from any user-specified m format
and TFM or PL files, a task requiring non-trivial

analysis of these files.

Once the nondeterministic finite state machine

with 6-transitions has been constructed, the 6-

transitions are removed, but the machine is not

made deterministic. The nondeterministic machine

is used directly in the searching process, by keeping

track of a set of active states. State transitions

are performed by calling a function that returns
the next symbol from the DVI file. This function

performs the mapping to a sequence of mathcode

values as described previously. It is assumed that

only Computer Modern fonts are used, and the font

TUGboat, Volume 13 (1992), No. 4 451

family assignments of plain are wired into the
code.

A problem not previously mentioned is that of
displaying the location of the matching string if one
is found. This facility was felt to be useful. In
order to do it, it is necessary to interpret enough
of the DVI commands to keep track of the x and
y coordinates at which each character would be
displayed. When the finite state machine accepts
a string, the coordinates of its end are known and
an arrow can be displayed pointing back at the
matched string. A more elegant method, such
as highlighting the entire match in reverse video,
requires finding the coordinates of the start of the
string too, which is more difficult.

The majority of the code implementing DVI
searching is concerned with parsing patterns, con-
structing nondeterministic finite state machines and
removing €-transitions - that is, the code that any
searching program based on finite state machines
would require. Most of the overhead specifically
resulting from the application to DVI searching
is in the code to produce primitive machines for
control sequences and extensible characters. The
code required to transform the DVI into a stream of
mathcodes is relatively simple.

5. Conclusion

The implementation described demonstrates that it
is possible to search in a DVI file, using the ideas
presented here. Consideration of this implementa-
tion suggests that text searching is a feature well
worth implementing, but that searching in math
mode is less clearly worthwhile.

As should be evident, searching in mathemat-
ics adds a good deal of complexity and requires
large amounts of code for dealing with mathemat-
ical control sequences. This in turn requires the
manual or automatic processing of formats
and PL or TFM files. Extensible characters pretty
much dictate the use of finite state machines for
searching, rather than some simpler algorithm such
as Knuth-Morris-Pratt. Searching in maths also
introduces an undesirable feature into the searching
interface: some mathematical control sequences are
recognized, but others are not. It might seem capri-
cious to a user that it is all right to use \a lpha in
a search pattern, but not, for example, \pmatrix.

Furthermore, if you actually did want to search for
the page containing

x - X 1 (0 x - A !)
0 0 x - X

it would be no trivial task to construct a suitable
pattern out of the facilities available.

However, searching in text is quite another
matter. Implementing the transformation of the
textual parts of the DVI file to ASCII is very
simple. This can easily be combined with any
string searching algorithm that scans from left to
right to produce an efficient text searching facility.
In practice, this is likely to be adequate to select
any page of a document by content. As well as
the experimental system described in section 4, the
dv i sc r previewer distributed with emtex already
supports basic text searching, correctly handling
accents and ligatures. It is to be hoped that,
in future, text searching will become a common
enhancement to DVI previewers and printer drivers.

References

1. Alfred V. Aho, John E. Hopcroft and Jeffrey D.
Ullman, The Design and Analysis of Computer
Algorithms. Reading, Mass.: Addison-Wesley,
1974.

2. Donald E. Knuth, Computers and Typeset-
ting, Volume A, The W b o o k . Reading, Mass.:
Addison-Wesley, 1986.

3. Donald E. Knuth, Computers and Typesetting,
Volume B, l&Y: The Program. Reading, Mass.:
Addison-Wesley, 1986.

4. Klaus Pirklbauer, 'A study of pattern-matching
algorithms', Structured Programming 13(2),
89-98, 1992.

o Nigel Chapman
Department of Computer Science,
University College London,
Gower Street,
London, WClE 6BT
U.K.
Janet: N . Chapman@&. ac .ucl. cs

TUGboat, Volume 13 (1992), No. 4

Hyphenation Exception Log

Barbara Beeton

This is the periodic update of the list of words
that fails to hyphenate properly. The list
last appeared in TUGboat 10, no. 3, starting on
page 336. Everything listed there is repeated
here. Owing to the length of the list, it has been
subdivided into two parts: English words, and
names and non-English words that occur in English
texts.

This list is specific to the hyphenation patterns
that appear in the original hyphen. tex, that is,
the patterns for US. English. If such information
for other patterns becomes available, consideration
will be given to listing that too. (See below.
"Hyphenation for languages other than English" .)

In the list below, the first column gives re-
sults from W ' s \showhyphensi. . .); entries in
the second column are suitable for inclusion in a
\hyphenation{. . .) list.

In most instances, inflected forms are not shown
for nouns and verbs; note that all forms must be
specified in a \hyphenation{. . .) list if they occur
in your document.

Thanks to all who have submitted entries to
the list. Since some suggestions demonstrated a
lack of familiarity with the rules of the hyphenation
algorithm, here is a short reminder of the relevant
idiosyncrasies. Hyphens will not be inserted before
the number of letters specified by \lefthyphen-
min, nor after the number of letters specified by
\righthyphenmin. For U.S. English, \ le f thy-
phenmin=2 and \righthyphenmin=3; thus no word
shorter than five letters will be hyphenated. (For
the details, see The W b o o k , page 454. For a
digression on other views of hyphenation rules, see
below under "English hyphenation" .) This partic-
ular rule is violated in some of the words listed;
however, if a word is hyphenated correctly by
except for "missing" hyphens at the beginning or
end, it has not been included here.

Some other permissible hyphens have been
omitted for reasons of style or clarity. While this is
at least partly a matter of personal taste, an author
should think of the reader when deciding whether
or not to permit just one more break-point in some
obscure or confusing word. There really are times
when a bit of rewriting is preferable.

One other warning: Some words can be more
than one part of speech. depending on context, and
have different hyphenations; for example, 'analyses'
can be either a verb or a plural noun. If such a word

appears in this list, hyphens are shown only for the
portions of the word that would be hyphenated
the same regardless of usage. These words are
marked with a ' * I ; additional hyphenation points, if
needed in your document, should be inserted with
discretionary hyphens.

The reference used to check these hyphenations
is Webster 's Third New International Dictionary,
Unabridged.

English hyphenation

It has been pointed out to me that the hyphenation
rules of British English are based on the etymology
of the words being hyphenated as opposed to the
"syllabic" principles used in the U.S. Furthermore,
in the U.K., it is considered bad style to hyphenate
a word after only two letters. In order to make 7JjX
defer hyphenation until after three initial letters,
set \ le f thyphenmin=3.

Of course, British hyphenation patterns should
be used as well. A set of patterns for UK English
has been created by Dominik Wujastyk and Graham
Toal, using Frank Liang's PATGEN and based on a
file of 114925 British-hyphenated words generously
made available to Dominik by Oxford University
Press. (This list of words and the hyphenation
break points in the words are copyright to the
OUP and may not be redistributed.) The file of
hyphenation patterns may be freely distributed; it
is stored in the UK TEX Archive at Aston and may
be retrieved by anonymous FTP.

Hyphenation for languages
other than English

Patterns now exist for many languages other than
English. The Stuttgart archive

f tp .un i - s tu t tga r t . de

holds an extensive collection in the directory

soft/tex/languages/hyphenation

The List - English words

academy(ies1

addable

ad-di-ble

adrenaline

af -terthought

agronomist

am-phetamine

anal-yse

anal-y-ses

anomaly (ies)

an-tideriva-tive

anti-nomy(ies)

acad-e-my (ies)

add-a- ble

add-i-ble

adren-a-line

af-ter-thought

agron-@mist

am-phet-a-mine

an-a-lyse

analy-ses *
anom-aly (ies)

an-ti-deriv-a-tive

an-tin-emy(ies)

TUGboat, Volume 13 (1992), No. 4

antin-u-clear

antin-u-cleon

an-tirev-o-lu-tion-ary

apotheoses

apotheo-sis

ap-pendix

archipelago

archety-pal

archetyp-i-cal

arc-t-an-gent

assignable

as-sig-nor

as-sis-tantship

asymp-tomatic

asymp-totic

asp-chronous

atheroscle-ro-sis

at-mo-sphere

at-tributed

at-tributable

avoirdupois

avo-ken

ban-dleader

bankrupt (cy)

ba-ronies

base-li-neskip

bathymetry

bathyscaphe

bea-nies

be-haviour

be-vies

bib-li-ographis-che

bid-if-fer-en-tial

bil-1-able

biomath-e-mat-ics

biomedicine

biorhythms

bitmap

blan-der

blan-d-est

blin-der

blon-des

blueprint

bornolog-i-cal

bo-tulism

brus-quer

bus-ier

bus-i-est

buss-ing

but-ted

buz-zword

ca-caphony (ies)

cam-er-a-men

cartwheel

catar-rhs

catas-trophic

catas-troph-i-cally

cauliflower

cha-parral

chartreuse

cholesteric

cigarette

cin-que-f oil

an- ti-nu-clear

an-ti-nu-cle-on

an- t i-rev-o-lu-t ion-ary

apoth-e-o-ses

apoth-e-o-sis

ap-pen-dix

arch-i-pel-ago

ar-che-typ-a1

ar-che-typ-i-cal

arc- tan-gent

(better: arc tangent)

as-sign-a-ble

as-sign-or

as-sist-ant-ship

asymp-to-matic

as-ymp-tot-ic

asyn-chro-nous

ath-er-o-scle-ro-sis

at-mos-phere

at-trib-uted

at-trib-ut-able

av-oir-du-pois

awok-en

band-leader

bank-rupt(-cy)

bar-onies

\base-line-skip

ba-thym-e-try

bathy-scaphe

bean-ies

be-hav-iour

bevies

bib-li-o-gra-phi-sche

bi-dif-fer-en-tial

bill-able

bio-math-e-mat-ics

bio-med-i-cine

bio-rhythms

bit-map

bland-er

bland-est

blind-er

blondes

blueprint

bor-no-log-i-cal

bot-u-lism

brusquer

busier

busiest

bussing

butted

buzz-word

ca-caph-o-ny(ies)

cam-era-men

cart-wheel

ca-tarrhs

cat-a-stroph-ic

cat-a-stroph-i-cally

cau-li-flow-er

chap-ar-ral

char-treuse

cho-les-teric

cig-a-rette

cinque-foil

cognac

cog-nacs

com-parand

com-para-nds

comptroller

con-formable

con-formist

con-for-mity

congress

cose-cant

cot an-gent

crankshaft

crocodile

crosshatch(ed)

dachshund

database

dat-a-p-ath

declarable

def ini-tive

delectable

democrat ism

de-mos

deriva-tive

diffract

di-rer

di-re-ness

dis-parand

dis-traugh-tly

dis-tribute(d)

dou-blespace (ing)

dol-lish

drif -tage

driver (s)

dromedary (ies)

duopolist

duopoly

eco-nomics

economist

elec-trome-chan-i-ca1

elec-tromechanoa-cous-tic

eli-tist

en-trepreneur(ia1)

epinephrine

equiv-ari-ant

ethy-lene

ev-ersible

ev-ert (s , ed, ing)
exquisite

ex-traor-dl-nary

f ermions

flag-el-lum(1a)

flammables

fledgling

flowchart

formidable(y)

forsythia

forthright

freeloader

friendlier

frivolity

frivolous

ga-some-ter

geodesic

geode-tlc

co-gnac

co-gnacs

corn-par-and

com-par-ands

comp-trol-ler

con-form-able

con-form-ist

con-form-ity

con-gress

co-se-cant

co-tan-gent

crank-shaft

croc-o-dile

cross-hatch(ed)

dachs- hund

data-base

data-path

declar-able

de-fin-i-tive

de-lec-ta-ble

de-moc-ra- tism

demos

de-riv-a-tive

dif-fract

direr

dire-ness

dis-par-and

dis-traught-ly

dis-trib-ute(d)

dou- ble-space(-ing)

doll-ish

drift-age

dri-ver(s)

drom-e-dary(ies)

du-op-o-list

du-op-oly

eco- nom- ics

econ-o-mist

electro-mechan-i-cal

electro-mechano-acoustic

elit-ist

en-tre-preneur(-ial)

ep-i-neph-rine

equi-vari-ant

eth-yl-ene

ever-si-ble

evert(s,-ed,-ing)

ex-quis-ite

ex-tra-or-di-nary

fermi-ons

fla-gel-lum(-la)

flam-ma-bles

fledg-ling

flow-chart

for-mi-da-ble(y)

for-syth-ia

forth-right

free-loader

friend-lier

fri-vol-ity

friv-0-lous

gas-om-e-ter

ge-o-des-ic

ge-o-det-ic

TUGboat, Volume 13 (1992), No. 4

ge-o-met-ric

geotropism

gnomon

grievance

grievous(1y)

hairstyle

hairstylist

harbinger

harlequin

hatcheries

hemoglobin

hemophilia

hep-atic

hermaphrodite(ic)

heroes

hex-adec-i-ma1

halon-omy

ho-mo-th-etic

horseradish

hy-potha-la-mus

ide-als

ideographs

id-iosyn-crasy

ig-niter

ig-n-i-tor

ig-nores-paces

impedances

in-f initely

in-finites-i-ma1

in-fras-truc-ture

in-ter-dis-ci-plinary

inu-tile

inu-til-ity

ir-re-vo-ca-ble

itinerary(ies)

jeremi-ads

keystroke

kil-ning

la-ciest

lamentable

land-sca-per

larceny(ist)

lif es-pan

lightweight

limousines

linebacker

lines-pac-ing

lithographed

lithographs

lobotomy(ize)

lo-ges

macroe-co-nomics

malapropism

manuscript

marginal

mat-tes

med-i-caid

mediocre

medi-o-crities

me-galith

metabolic

metabolism

met-a-lan-page

metropo-lis(es)

geo-met-ric

ge-ot-ro-pism

gno-mon

griev-ance

griev-om(-ly)

hair-style

hair-styl-ist

har-bin-ger

har-le-quin

hatch-eries

he-mo-glo-bin

he-mo-phil-ia

he-pat-ic

her-maph-ro-dite(-ic)

he-roes

hexa-dec-i-ma1

ho-lo-no-my

ho-mo-thetic

horse-rad-ish

hy-po-thal-a-mus

ideals

ideo-graphs

idio-syn-crasy

ig-nit-er

ig-ni-tor

\ignore-spaces

im-ped-ances

in-fin-ite-ly

in-fin-i-tesi-ma1

in-fra-struc-ture

in-ter-dis-ci-pli-nary

in-utile

in-util-i-ty

ir-rev-o-ca-ble

it in-er-ary(ies)
je-re-mi-ads

key-stroke

kiln-ing

lac-i-est

lam-en-ta-ble

land-scap-er

lar-ce-ny(-ist)

life-span

light-weight

lim-ou-sines

line-backer

\line-spacing

lith-o-graphed

lith-o-graphs

lo-bot-omy(-ize)

loges

macro-eco-nomics

mal-a-prop-ism

man-u-script

mar-gin-a1

mattes

med-ic-aid

medi-ocre

medi-oc-ri-ties

mega-lith

meta-bol-ic

me-tab-o-lism

meta-lan-guage

me-trop-o-lis(es)

metropoli-tan

mi-croe-co-nomics

mi-crofiche

mil-lage

milliliter

mimeographed

mimeographs

mimi-cries

mi-nis

min-uter (est)

mis-chievously

mis-ers

mis-ogamy

mod-elling

molecule

monar-chs

mon-eylen-der

monochrome

mo-noen-er-getic

monoid

monopole

monopoly

monos-pline

monos-trofic

mono-tonies

monotonous

mo-ro-nism

mosquito

mu-d-room

mul-ti-f aceted

mul-ti-pli-ca-ble

mul-tiuser

ne-ofields

newslet-ter

none-mer-gency

nonequiv-ari-ance

noneu-clidean

non-i-so-mor-phic

nonpseu-do-corn-pact

non-s-mooth

nonuni-f orm(ly)

nore-pinephrine

nutcracker

oer-st-eds

oligopolist

oligopoly (ies)

operand(s)

orangutan

or-thodon-tist

or-thok-er-a-tol-ogy

or-thoni-tro-toluene

overview

ox-i-dic

painlessly

pal-mate

parabola

parabolic

paraboloid

paradigm

parachute

paradimethyl-ben-zene

met-ro-pol-i-tan

micro-eco-nomics

mi-cro-fiche

mill-age

mil-li-liter

mimeo-graphed

mimeo-graphs

mim-ic-ries

min-is

mi-nut-er(-est)

mis-chie-vous-ly

mi-sers

mi-sog-a-my

mod-el-ling

mol-e-cule

mon-archs

money-len-der

mono-chrome

mono-en-er-getic

mon-oid

mono-pole

mo-nop-oly

mono-spline

mono-strofic

mo-not-o-nies

mc-not-o-nous

mo-ron-ism

mos-qui-to

mud-room

mul-ti-fac-eted

mul-ti-plic-able

multi-user (better

with explicit hyphen)

neo-fields

news-let-ter

non-emer-gency

non-equi-vari-ance

non-euclid-ean

non-iso-mor-phic

non-pseudo-com-pact

non-smooth

non-uni-form(1y)

nor-ep-i-neph-rine

nut-crack-er

oer-steds

oli-gop-o-list

oli-gop-oly(ies)

op-er-and(s)

orangutan

or-tho-don-tist

or-tho-ker-a-tol-ogy

ortho-nitro-toluene

(or-tho-ni-tro-tol-u-ene)
over-view

ox-id-ic

pain-less-ly

palmate

par-a-bola

par-a-bol-ic

pa-rab-c-loid

par-a-digm

para-chute

para-di-methyl-benzene

(para-di-meth- yl-ben-zene)

TUGboat, Volume 13 (1992), No. 4

para-fluoro-toluene

(pareflu-o-ro-tol-u-ene)

para-graph-er

para-le-gal

par-al-lel-ism

para-mag-net-ism

para-medic

para-methyl-anisole

(para-meth-yl-an-is-ole)

pa-ram-e-trize

para-mil-i-tary

para-mount

pat h-o-gen-ic

peev-ish(-ness)

pen-ta-gon

pe-tro-le-um

phe-nom-e-non

phi-lat-e-list

phos-phor-ic

pic-a-dor

pi-ra-nhas

placa-ble

pleas-ance

pol-ter-geist

poly-ene

poly-eth-yl-ene

po-lyg-a-mist(s)

polyg-on-i-za-tion

po-lyph-o-nous

poly-styrene

pome-gran-ate

poro-elas- tic

post-am-ble

post-script

pos-tur-a1

pre-am-ble

pre-loaded

pre-par-ing

pre-proces-sor

\ p re - sp l i t - t i ng

priest-esses

pro-ce-dur-a1

process

pro-cur-ance

prog-e-nies

prog-e-ny

pro-hib-i-tive(-ly)

pro-sciut-to

pro-test-er(s)

pro- tes- tor(s)

pro-to-typ-a1

pseu-do-dif-fer-en-tial

pseu-do-fi-nite

pseu-do-fi-nite-ly

pseu-do-forces

pseu-do-nym

pseu-do-word

psy-che-del-ic

psychs

pu-bes-cence

qua-drat-ics

quad-ra-ture

quad-ri-pleg-ic

quaint-er(est)

quasiequiv-a-lence qua-si-equiv-a-lence

or quasi-

qua-si-hy-po-nor-ma1

qua-si-rad-i-cal

paraflu-o-ro-toluene

para-g-ra-pher

par-ale-gal

par-al-lel ism

para-m-ag-netism

paramedic

param-ethy-lanisole

quasir-ad-i-cal

quasiresid-ual

qua-sis-mooth

qua-sis-ta-t ion-ary

qua-si-resid-ual

qua-si-smooth

qua-si-sta-tion-ary

qua-si-topos

qua-si-tri-an-gu-lar

qu-a-sito-pos

qu-a-si-tri-an-gu-lar

quintessence

qu in t e s sen - t i a l

rab-bi - t ry

quin-tes-sence parametrize

paramil-i- tary quin-tes-sen-tial

rab-bit-ry

ra-di-og-ra-phy

raff-ish(-ly)

paramount

pathogenic

pee-vish(ness)

pen-tagon

petroleum

ra-dio-g-ra-phy

raf - f - i sh(1y)

ramshackle

ravenous

re-ar-range-ment

ram-shackle

rav-en-ous

re-arrange-ment

rec-i-proc-i-ties

rec-i-proc-i-ty

phe-nomenon

p h i l a t e l i s t re-c iproc- i - t ies

phos-pho-ric

pi-cador

pi-ran-has

pla-ca-ble

rec i -proci ty

rect-an-gle

ree-cho

r e s to rab le

re t - r i -bu- t ion(s)

r e t r o f i t (ted)

rec- tan-gle

re-echo

re-stor-able

ret-ri-bu-tion(s)

retro-fit(-ted)
plea-sance

po l t e rge i s t

polyene

polyethy-lene

polygamist (s)

rhinoceros

righ-teous(ness)

r ingleader

robot

rhi-noc-er-os

right-eous(-ness)

ring-leader

ro-bot

ro-bot-ics

round-table

poly-go-niza-tion

polyphonous

polystyrene

pomegranate

poroe- las- t ic

robo t i c s

roundtable

s a l e sc l e rk

sa lesc le- rks

saleswoman (en)

sales-clerk

sales-clerks

sales-woman(en)

sal-mo-nel-la
postam-ble

pos t sc r ip t

pos-tu-ral

pream-ble

preloaded

salmonella

sar-sa-par-il-la s a r s a p a r i l l a

sauerkraut

sca-to-log-i-cal

schedul-ing

sauer-kraut

scat-o-log-i-cal

sched-ul-ing

schiz-o-phrenic
prepar-ing

pre-pro-ces-sor

pre-s-p l i t - t ing

p r i e s t e s se s

pro-ce-du-ral

schizophrenic

schnauzer

schoolchi ld(ren)

schoolteacher

scy-thing

schnau-zer

school-child(-ren)

school-teacher

scyth-ing

sem-a-phore
pro-cess

semaphore procu-rance

pro-ge-nies

progeny
pro-hibi t ive (l y)

se-mes-ter

semi-def-i-nite

semi-ho-mo-thet-ic

semi-ring

semi-skilled

sero-epi-de-mi-o-log-i-cal

semester

semidef-i-nite

semi-ho-mo-th-etic

semir-ing

semiski l led
prosc i -u t to

p ro t e s to r (s)

pro-to-ty-pal

pseu-dod-if-fer-en-tial

pseud-of i - n i t e

seroepi-demi-o-log-i-cal

ser-vomech-a-nism

se tup

severe ly

ser-vo-mech-anism

set-up

se-vere-ly

shape-able pseud-of in i te ly sha-peable

pseud-o-f o rces

pseudonym

pseu-dovord

shoes t r ing

s ides t ep

sideswipe

skyscraper

shoe-string

side-step

side-swipe

sky-scraper

smoke-stack
psychedelic

psy-chs

pubescence

quadrat-ics

quadra-ture

smokestack

snorke-1-ing

solenoid

so - lu t e (s)

snor-kel-ing

so-le-noid

solute(s)

sov-er-eign

spa-ces
quadr ip legic sovereign

spaces

TUGboat, Volume 13 (1992), No. 4

specious

spelunker

spend th r i f t

spheroid(a1)

sph-inges

sp i - c i l y

sp inors

spokeswoman (en)

spo r t s cas t

spo r t i ve ly

sportswear

spo r t swr i t e r

s p r i g h t l i e r

squeamish

stan-dalone

s t a r t l i n g c l y)

s t a t i s - t i c s

s t e a l t h i l y

s teeplechase

s tochas- t ic

s t r a i g h t - e s t

strangeness

stratagem

s t r e t c h i e r

stronghold

s tup i -de r (e s t)

summable

su-perego

su-pere-gos

supremacist

survei l - lance

swim-m-ingly

syrup-tomatic

syn-chromesh

syn-chronous

syn-chrotron

t a l k a t i v e

t a p e s t r y (i e s)

t a r p a u l i n

tele-g-ra-pher

t e l e k i n e t i c

t e l e r -obo t i c s

t e s tbed

tha-la-nus

ther-moe-las-tic

times-tamp

t o o l k i t

to-po-graph-i-cal

to-ques

t r a i t o r o u s

t r ansce ive r

t r ansg res s

t r ansve r - sa l (s)

t r a n s v e s t i t e

t r ave r sab le

t r a v e r - s a l (s)

t r eache r i e s

treach-ery

troubadour

turnaround

ty-pal

unattached

unerr ingly

un - f r i end ly (i e r)

spe-cious

spe-lunk-er

spend-thrift

spher-oid(a1)

sphin-ges

spic-i-ly

spin-ors

spokes-woman(en)

sports-cast

spor-tive-ly

sports-wear

sports-writer

spright-lier

squea-mish

stand-alone

star-tling(1y)

sta-tis-tics

stealth-ily

steeple-chase

sto-chas-tic

straight-est

strange-ness

strat-a-gem

stretch-i-er

strong-hold

sum-ma-ble

super-ego

super-egos

su-prema-cist

sur-veil-lance

swim-ming-ly

symp-tematic

syn-chro-mesh

syn-chrenous

syn-chro-tron

talk-a-tive

ta-pes-try(ies)

tar-pau-lin

te-leg-ra-pher

tele-ki-net-ic

tele-ro-bot-ics

test-bed

thal-%mus

ther-mo-elas-tic

time-stamp

tool-kit

topegraph-i-cal

toques

trai-tor-ous

trans-ceiver

trans-gress

trans-ver-sal(s)

trans-ves-tite

tra-vers-a-ble

tra-ver-sal(s)

treach-eries

treach-ery

trou-ba-dour

turn-around

typ-a1

un-at-tached

un-err-ing-ly

un-friend-ly(i-er)

v a - p e r

vaudeville

v i -cars

v i l - l a i -nes s

viviparous

voicepr in t

vs-pace

wallflower

wastew-a-ter

waveg-uide

we-b-like

weeknight

wheelchair

whichever

whitesided

whites-pace

widespread

wingspread

wi tchcraf t

workhorse

wraparound

wretched(1y)

yes t e ryew

vaguer

vaudeville

vic-ars

vil-lain-ess

vi-vip-a-rous

voice-print

\vspace

wall-flower

waste-water

wave-guide

web-like

week-night

wheel-chair

which-ever

white-sided

white-space

wide-spread

wing-spread

witch-craft

work- horse

wrap-around

wretch-ed(-ly)

yes-ter-year

Names and non-English words

used in English text

al-ge-brais-che

Al-legheny

Arkansas

au-toma-tisierter

Be-di-enung

Brow-n-ian

Columbia

Czechoslo-vakia

Di-jk-stra

dy-namis-che

En-glish

Eu-le-rian

Febru-ary

F e s t s c h r i f t

F lo r ida

Forschungsin-sti- tut

funk-t-sional

Gaus-sian

Greif -swald

Grothendieck

Grundlehren

Hamil-to-nian

Her-mi-tian

Hi-bbs

Jan-uary

Japanese

Kadomt-sev

Kansas

Karl-sruhe

KO-rteweg

Leg-en-dre

Le-ices-ter

Lip-s-chitz(ian)

Louisiana

Manch-ester

Marko-vian

Mas-sachusetts

al-ge-brai-sche

Al-le-ghe-ny

Ar-kan-sas

autemati-sier-ter

Bedie-nung

Brown-ian

Co-lum-bia

Czecho-slo-va-kia

Dijk-stra

dy-na-mi-sche

Eng-lish

Euler-ian

Feb-ru-ary

Fest-schrift

Flor-i-da

For-schungs-in-sti-tut

funk-tsional

Gauss-ian

Greifs-wald

Grothen-dieck

Grund-leh-ren

Hamil-ton-ian

Her-mit-ian

Hibbs

Jan-u-ary

Japan-ese

Kad-om-tsev

Kan-sas

Karls-ruhe

Kor- te-weg

Legendre

Leices-ter

Lip-schitz(-ian)

Lou-i-si-ana

Man-ches-ter

Mar-kov-ian

Mass-a-chu-setts

TUGboat, Volume 13 (1992), No. 4

Min-nesota Min-ne-sota

Ni- jmegen Nij-me-gen

Noethe-rim Noe-ther-ian

No-ord-wi-jk-er-hout Noord-wijker-hout

Novem-ber No-vem-ber

Poincare Poin-care

Po-ten-tial-gle-ichung Po-ten-tial-glei-chung

rathskeller rat hs- kel-ler

Rie-man-nian Rie-mann-ian

Ry-d-berg Ryd-berg

schot-tis-che schot-tische

Schrodinger Schro-ding-er

Schwabacher Schwa-ba-cher

Schwarzschild Schwarz-schild

Septem-ber Sep-tem-ber

Stokess-che Stokes-sche

Susque-hanna Sus-que-han-na

tech-nis-che tech-ni-sche

Ten-nessee Ten-nes-see

ve-r-all-ge-mein-erte ver-all-ge-mein-erte

Verteilun-gen Ver-tei-lun-gen

Wahrschein-lichkeit-s-the-o-rie

Wahr-schein-lich-keits-the-o-rie

Werthe-rian Wer-ther-ian

Winch-ester Win-ches-ter

Yingy-ong Shuxue Jisuan Ying-yong Shu-xue Ji-suan

Zeitschrift Zeit-schrift

1 Literate Programming 1
Errata: Li te ra te Programming,

A Pract i t ioner 's View

T U G b o a t 13, no. 3, pp. 261-268

Bart Childs

The address lyman .pppl . princeton. edu should

have read lyman.pppl .gov (a careless error on

my part). The address csseq. c s . t a m . edu no

longer permits anonymous ftp. Due to some
network breakins from different places, extensive

local network changes are being done and relevant

sources will be placed on f t p . c s . tamu. edu no later
than January 1993. The author will e-mail any

desired sources in the meantime.

o Bart Childs
Texas A&M University
Department of Computer Science
College Station, TX 77843-3112
bartQcs.tamu.edu

Philology

Hyphenat ion pa t t e rn s for ancient Greek

a n d Lat in

Yannis Haralambous

The amount of compound words in ancient Greek

makes its hyphenation by computer a quite difficult
task; it is impossible to predict all combinations of

words. To be efficient, a set of patterns must be

accessible to the final user; a scholar must be able

to add patterns, according to new words he/she en-
counters. Use of w ' s \hyphenation primitive is

not appropriate since most Greek words are declin-

able: for each word one would have to add a dozen

hyphenation exceptions.

After a short introduction to the concept of hy-

phenation by TEX the author presents a method for

hyphenation of ancient Greek. Using this method.

he compiled a list of patterns out of a dictio-

nary [Bail of 50,000 words. These patterns are pre-

sented in a comprehensible format, in a way that
scholars can easily determine the patterns that have

to be added, to solve specific hyphenation problems.
The same approach is applied to Latin. A

list of patterns has been compiled out of a dictio-

nary [B-C]. The size of this list is very small com-

pared to the one of ancient Greek patterns. although

Latin also uses compound words.
Finally examples of hyphenated classical texts

are given.

1 W h a t d o I have t o know a b o u t
hyphenat ion?

When creates a format like P l a in or LaTeX it

also reads information from a file called hyphen. t e x

(or Ushyphen. t ex , or FRhyphen. t e x and so forth)

which contains the hyphenation patterns for a spe-

cific language. These are clusters consisting of let-

ters separated by digits, like xly2z. The idea is the

following:

0 if your set of patterns is empty. there is no hy-
phenation at all.

a if you have a pattern xiy then on every occur-

rence of the cluster "xy", hyphenation "x-y"

will be possible. If the pattern is xlyzw, then

the pair of letters "xy" will be hyphenated only
when followed by "zw" .

TUGboat. Volume 13 (1992), No. 4

if there is a pattern x l y and a pattern x2yabc.

then the pair "xy" will be hyphenated, except

when it is followed by "abc". So the digit 2

indicates an exception to the rule .'separate z
and y".

the same holds for greater numbers: 3 will be

an exception of patterns with number 2, and so
on. You can now read [DEK], pp. 449-451. for

more details on W ' s hyphenation algorithm.

a dot in front of (or behind) a pattern specifies

that the latter is valid only at the beginning (or

the end) of a word. In this way, for example.
. xy2z. will be applied only to the word .xyz'.

Despite the existence of some fundamental
rules, hyphenation of a particular language can be
very complicated, especially when it depends on ety-

mological criteria. There are two ways to handle this

complexity: one can investigate the hidden mecha-

nisms of hyphenation and make patterns correspond
to the analytical steps of manual hyphenation; or

one can use a "pattern generator" like PATGEN on a

sufficiently representative set of already hyphenated

words. The choice of the method depends on the na-
ture of the language and on the size of the available

set of hyphenated words: theoretically one could cre-

ate a file containing all words of a particular lan-

guage in hyphenated form; the pattern generator

would then give an exhaustwe set of patterns. Since
it is more probable to have partial sets of words, the

"pattern generator" will only produce more or less

good approximations. For ancient Greek and Latin,

the author has chosen the first method.

2 Why is hyphenation of ancient Greek so

difficult for a computer?

As mentioned in TUGboat 11, no. 1, since 1990 pat-

terns have existed for modern Greek (made by the

author). What then makes hyphenation of ancient
Greek so different? Why is it so difficult?

First of all. because of compound words. The
difficulty lies in the fact that components are often

altered when composed: id and aivij gives t m t v i j

(not intatvij) while tni composed with pjlhlw pro-

duces ii~$&hhw. Could we hence hyphenate always

in-a and 8x1-? well, actually not. because there is

also the case of id + ikhhw = i.nth'~ho which is hy-

phenated tx-t&lXw. Then perhaps we could produce

patterns for roots, like -a~v, to insure hyphenation of

In-atvoq, xaz-aivsoiq, +eu6-atvij and so forth? No,
because this would produce wrong hyphenation of
b-aOpi-vw, oq-pi-vw, 6-cpa: 1-VW.. .

A second problem is declension and diacrit-
ics. While the latter are provided to facilitate

The reader should excuse the unusual order

of cases: nominative, genitive, dative, accusative,

vocative. This order is used in education and schol-

arly literature. in Greece.

comprehension of a word. they rather obstruct the

work of the computer. Because for the computer
a . &. ?i. a, it, &, etc., are dzstznct entities. So

tmi and insi are to be treated as entirely dis-

tinct words. In most languages declension affects

only endings of words: ~ A ~ H E I ~ , 3 ~ a w ~ s r . ~ A ~ H M K) .

~ J ~ H Z P . 3 ~ a ~ ~ e l r . 3,qa~mn and so forth. In Greek,

the root of the word remains mostly the same (ex-

cept in cases such as 6 bvip, TOG bv6pb~) but the

accent migrates: 6 &vOponog, to6 kvOp6nou. It fol-

lows that when creating patterns, one must consider

all possible diacritics and their positions.

To illustrate this, here is an example of two

words which look very similar but are hyphenated
in two different ways:

&+-oppoc (from B+ and Bpvvp)

and
&+6-ppoog (or b+6ppou<. from B+ and ,bdw).

We will decline them and try to extract the neces-

sary patterns so that can correctly hyphenate
them. in all cases1:

B &+oppo<
toi, h+6ppou

+ &+6ppy
zbv &+oppov

6 &+oppe

ol &+oppoi

rijv h+6ppwv
zois &+6ppot<

tab< &+6ppou<
6 &,boppot

B &+6ppoog
toi, &+opp6ou

74 h+opp6y
zbv &+6ppoov
ij &+6ppos

oi &+6ppoot

TGV &+opp6ov

zoiq &+opp6oi<

zob< &+opp60u<

6 h+6ppoot

For the word h+oppog it would be enough to intro-

duce patterns &+-opp and h+-6pp. In this case, the

word &+6ppoo< would be wrongly hyphenated. To
distinguish this word we must include an o at the

end of the pattern. and hence introduce the pattern

h+6ppo. This would again change the hyphenation
of the genitive case of bi+oppo<, namely b+6ppou. For

this reason we will rather use the pattern h+6-ppoo.

This has the advantage of not interfering with the

hyphenation of &+oppoq, but cannot be applied t o

the vocative case of h+6ppoog. For this, we need a
second pattern h+d-ppoe, which is actually the whole

word. In the remaining cases of &+6ppoo<, the accent

is on the penultimate syllable ppo. But the word

&+oppo< is never accented on that syllable. so that

an unaccented pattern like &+o-pp would apply only

TUGboat, Volume 13 (1992), No. 4

to the genitive, dative and plural accusative cases of

&+6ppooq.

Using this method, we found five patterns:

bi+-opp, &+-6pp, &+6-ppoo, &+6ppoe, h+o-pp

The reader can verify that with these, all cases of

both words are correctly hyphenated.

The example illustrates another fact: when

writing down new patterns, one must constantly

compare the newly hyphenated words with the ones

which produced the previous patterns, so that con-

flicts can be avoided.
Finally there are some rare cases where iden-

tical words have different meanings and different

hyphenations: &-vomoq from u and v602oq. biv-oatoq
from &v and Bra: ZV-ET~)~ from verb kv-iqp~ and i -vdg

(Venitian) .

3 The fundamental rules of ancient Greek

hyphenation, and the corresponding

patterns

The Chicago Manual of Style ([Chi], 9.130) asserts

that: IN [ancient] GREEK, WORD DIVISION FOL-

LOWS RULES THAT ARE STRAIGHTFORWARD AND

FAIRLY EASY T O APPLY.

Here are the rules following this quotation in

[Chi], and the necessary patterns (v,,n > 1 will be

vowels and c,, n 2 1 consonants):

1. WHEN A SINGLE CONSONANT OCCURS BE-

T W E E N T W O VOWELS, DIVIDE BEFORE T H E

CONSONANT: vl-cv2. The necessary patterns

will be alp, uly, a16. . . . ol+ where vowels are

taken with all possible combinations of accents.

spirits, dizresis and subscript iota. These pat-
terns cover also the case of a vowel followed by

more than one consonant; this feature will be

useful in rule 4.
2 . IF A CONSONANT IS DOUBLED, O R I F A MUTE

IS FOLLOWED BY ITS CORRESPONDING AS-

PIRATE, DIVIDE AFTER T H E FIRST CONSO-

NANT: vlcl-e2v2 for c1 = c2, or (el, CZ) E

{(x, v) , (T, 0)) (x, X) , (y, X)). The patterns will be
2plp, 2yly . . . 2+1+ for the first part of the

rule, and 2nlv, 2210, 2 x 1 ~ ~ 2ylx for the second.

For grammatical reasons, it would be best to

exclude 2plp (and 2645) from these patterns.

3. IF T H E COMBINATION O F T W O O R MORE CON-

SONANTS BEGINS WITH A LIQUID O R A NASAL,

DIVIDE A F T E R T H E LIQUID O R NASAL [although
not stated in the rule. it follows from the exam-

ples given in [Chi] that two consecutive nasals

should not be separated]: vlcl-cz . . . c ,u~ , for

cl E {A, p, p . ~) but vl-cl . . . cnv2 if (el, c2) =

(p. v) . The required patterns are 2Xlp, 2Aly . . .
2 ~ 1 4 ~ (except of course 2A1A, 2plp. 2p1p. 2vlv

which have been taken into account in rule 2) ,

and 2plv.

THE DIVISION COMES BEFORE ALL OTHER

COMBINATIONS O F T W O O R MORE CONSO-

NANTS. We do not need any additional pat-

terns to handle this rule; for example in the
word &oxpov, the cluster bio will be hyphenated

because of rule 1, and clusters 02, ~ p , po will not

be hyphenated, because they do not appear in

any previous pattern list. Theoretically, a prob-
lem could occur in the case of a combination

of 3 or more consonants contaznzng a cluster

mentioned in rules 2 or 3. But this is highly

improbable and should be taken as an excep-

tion.

COMPOUND WORDS ARE DIVIDED INTO THEIR

ORIGINAL PARTS; WITHIN EACH PART T H E

FOREGOING RULES APPLY. The patterns

needed to fulfill this rule will be discussed in

next section.

It might be interesting to point out that the

rules specified by the Academy of Athens in 1939

([Aca], "EyxA~o~c ~6vou xai ouh-ha/3~opbq) are slightly

different from the ones above. According to this

set of rules, compound words are separated, except

when an eclipse has occurred: napQxw is hyphenated

as if it was a simple word: nu-pi-xw. instead of mp-

ixo as suggested in [Chi]. Following the rules of the
Academy of Athens would result in a completely dif-

ferent set of patterns, since the eclipse phenomenon

occurs very often.
The patterns we have introduced thus far are

not sufficient for fundamental hyphenation. We still
must introduce two families of patterns:

Pairs of vowels are to be separated, except in

the case of diphthongs. This leads to patterns

ulct, a l ~ , ulq, al'i . . . olo including all diacrit-

icized vowels.

0 In Greek, the smallest part of a word remaining

on a line is a syllable. This may shock a Tj$
user, but hyphenations like &-npoo&ppomoq and

dn~be~xv6-w are allowed, and can frequently be

found in books. The problem is that by setting

\lefthyphenmin and \righthyphenrnin equal

to 1, one can eventually separate single conso-
nants, which do not form syllables: Fijpo-v is

Wnica l ly allowed, since \righthyphenmin=l.
but should be avoided. For this we just have

to introduce patterns 2P.. 26. . . . 2+. [or even

6P., 66. . . . 6+. to be sure that no forthcoming
exception will affect them].

460 TUGboat; Volume 13 (1992), No. 4

What remains now are patterns concerning sep-

aration of compound words, according to rule 5 .

These are described in the following section.

4 Hyphenation of ancient Greek

compound words

No puede combinar unos caracteres dhcm-

rlchtdj que la divina Biblioteca no haya pre-
visto y que en alguna de sus lenguas secretas
no encierren u n terrible sentido. . .

writes J. L. Borges in the "Biblioteca de Babel"; the

situation is similar for ancient (or modern) Greek

compound words. By combining words one can eas-
ily exceed Mark Twain's

"Mekkamuselmannenmassenmenchenmorder-

mohrenmuttermarmorn~onumentenmachen" ,

given in [DEK], p. 451. As already pointed out,

one could make patterns out of all possible roots, so

that any possible combination of them is correctly

hyphenated. The problem is, though, that the com-
binations of letters forming these roots can also oc-

cur inside single words, and only by their meaning

can one decide if a particular root is present in a

word: nsvtepqq is formed by nsvr- and -qp- (from

&pa). The words tpnjpq~, pov$pq<, tqfipq<, a11 con-
tain the same root -qp- But introducing a pattern

3q4p3 would cause tremendous problems, since thou-

sands of words contain the cluster qp, hyphenated as

q-p: tsxpfi-PLOV, 074-plypa, xq-p6a and so forth. The
fact is that such patterns should be avoided, or in-

troduced only after extensive investigation.

The author has chosen a different method. In-

stead of introducing patterns for roots of words, only
beginnings of words are taken into account. In this

way, when writing for example .i4v3 one can be sure

that only words beginning with the prefix i v will
be affected. Exceptions to this rule can easily be

found by consulting the dictionary. This method

is very effective in hyphenating the most frequent

words, but fails when new compound words are to

be hyphenated: in-arvG and xat-alvG will be cor-
rectly hyphenated (since patterns in- and xat-al are

included in the list) but not an eventual xar-m-a~vG,

unless of course the user adds a new pattern xat-en-

t o the list in section 5.

Another advantage of this method is the fact

that, contrary to most pattern lists, such a list is

easily comprehensible, and hence can be completed

easily by the final user himself (who does not have

to be a %-guru). This comes from the fact that -

except for the fundamental patterns explained in
the previous section- all patterns are beginnings of

words. By checking in the list, one can instantly ver-

ify why a specific word is hyphenated in a particular

way; once this is understood, one can add the nec-

essary pattern(s) to remedy to the situation. This

is highly inadvisable for a pattern file created by a

"pattern generator", where a simple change can have

very strange and obscure results (until now pattern

files always started with the most categorical phrase
[NOT TO BE CHANGED IN ANY WAY! I).

To facilitate even more the comprehension of
this list of patterns, the author has chosen to present
it in a very special format. Here is a sample excerpt
of the pattern list which the reader can find in next
section:

The words abt6-oo(u~o<) and a8to-oo(btou) consti-

tute one entry. In both cases, the patterns them-
selves are given in straight characters: abt6-oo and

aha-oo. The slanted endings between parentheses

are just possible examples, which justify the exis-

tence of these patterns. It is important that the

reader realizes that these examples are not unique
but just indicative. So only what is written in

straight letters will appear as a pattern.

The entry 6.q-, &q- is called a rule. Because of

its frequency, the author has preferred not to give
any example, and to present it "as a general rule".

The symbol + introduces exceptions, and exceptions

to exceptions. The difference is shown by indenta-

tion. In this case, h-cp&h is an exception to &cp-, and
hcpblou (genitive case of ijlcpahog) is an example of a

word starting with this cluster. hy-&hA is an excep-

tion to &-y&h, and &y&Ahoya~ a possible example.

Same thing for hy-, h-cqhv, hy-avF.

Let's take a look to the concrete realization of
these patterns: since hy- is an exception to the fun-

damental hyphenation rules, the pattern can for ex-

ample be .h2yl; the exception &-rqhA could be ex-

pressed as " z f by is followed by &A, do not cut be-
tween y and &, but do cut between & and y". This

leads us to the pattern .b3y2hh . The reader can

verify that the further exception hy-&Ah requires a

pattern like .&4cp3&AA .
In the next section, the complete list of patterns

extracted from [Bail is presented, in the format ex-

plained above.

TUGboat, V o l u m e 13 (1992), No. 4

5 Patterns for ancient Greek compound

words

byan-fiv(op), hyan-qv(6pwv)

hyeh-hp(~qg), h y e h - a p (~ 6 v)

ayp-u(nvog), &yp-6jxvou)

h y x - 6 (paAog), h y x - w (pOiAou)

h y w v - h (p~qg), hywv-a(px6v)

atxp-&A (ozog), ccixp-ah (Bzou)

hxp-Qv (u~og), hxp-wv (ixou)

hxp-Qp(eia), ixxp-wp(cia~)

hhi&av(Fpog). hh~&hv(Fpou), &hat-av(Fpivb~)

&p-a(&), &p-hjtqg), &p-a(&%)

hpph-w (xbg)

hpx-dx(w), hpcp-kE (w)

+ &p-*-x&-x6 (vq)

&px-i(oXw), ixyn-L (u p i o p a i)

hpcp-ay (axhGd)

hpcp-ap (aj36w)

hpcp-kn(wj

~P'P~PX(OP"~)

hp(p-fi(xqd, ~p 'P-q(xGv)

&pq-Lhx(w)

hpcp-L@. (vo)

hpcpio-P(awa), hpcp~o-P(ctzkw)

hpcp-ior(rpi), hpcp-10s (Tjuo)

+ hpyi-oso (poq), hpp-os6(pou)

&ppou(Fi<), &~*(P-o~(FEw<)

&pcp-os(o<), hpcp-Br (ou), hpcp-wsjiq)

&v-ayvo(g), &v-ayva, hv-hyvo (u), hv-hyvo;,

hv-ayo(pc6w)

hv-hyw, &v-ayh jy iov) , hv-ayw(yfi)

&v-hbeh (yo<), &v-aFih (pou)

h v - a d (po)

hv-a0pk (o)

+ clva-0pi+ (w)

av-at (pog), &v-ai (vopai), b a t (ago), hv-SLL (pod)

bv-hxav (Ooq), clv-axhv (Oou), ixv-axav (Oivov)

&v-axio (par), kv-ax& (a t)

hv-axo(6pa1)

hv-axox(fi)

&v-ahccX (h@)
hv-hhy (qzog), ixv-a)il(fig)

hv-ahjlfJ(qg), hv-ah$(eg)

hv-ahi (uxw)

&v-ahx (ig), ixv-hhx(iFog), hv-ahx (eia)

hv -ahh (oiozog)

&v-ahp(og), hv-hhp(ou)

hv-ah6 (w)

+ hva-X6y (wg)

& v - a h (og), & v - h k (ou), b v - a h (hepo;)

hv-hhw (zog), bv-ah& (zou)

ixv-apht (auzo<), hv-apaE (e6zou)

hv-aphp (zqrog), hv-apap (zrjzou)

bv-hpP (azog), hv-apP (hou)

hv-ap'p(ihoyog)

&v-avF (pog), hv-hvF (pou), hv-crvF (pia)

h v - a v ~ (ippqzog)

&v-WUT (a), hv -hv r (75)

hv-hEt(og). hv-at;i(ou), hv-a&(dzepog)

hv-crnh6jo)

hv-axoF~(ixzo<)

hv-an6Fp (otozog), av-anobp (horou)

&v-hno~(vog), av-anoi(vou)

hv-an6Xa(uorog), hv-axoXa(iozou)

hv-an60 (razog), av-anoo (zoizou)

~ V - & ~ T (~) , &V-~+(U)

&v-ap (Opog), bv-hp (Opou), Zxv-ap (iepqzog)

hv-haxq (zog), &v-aoxfi (zou)

&v-mo (g), inv-&so (u) , & v - h m (v)

+ hva-soh(4)

&v-au (Fog), hv-a6 (yqrog), hv-au (y+pov)

+ &-vaug

clv-acpp6F (izog), hv-acppob (izou)

hvFp-hy (pia), &vFp-ay (aOio)

hvbp-ax(0fig)

hvbp-aix(cAog), av&p-etx(6Aou)

hvsp-qh (oizqg)

&v-E, bv- i . hv-E
+ &-veu

+ h-vdpjAogj , &-v&(pd(kou)

+ in-~&+(~a)

&v-q, bv-fi, hv-?j, bv-q

+ k-v4p, a-v+p

hve-
+ &v-qqu lg j

+ &v-0ep(ov), ixv-0ip(iov), &~-0ep(icopar)

+ hv-0ko, &~-0ds(ig), clv-0fo(pev)

+ hv-8W (pcv), &~-0ei(ze), hv-0ofi(ui)

+ av-Bfio(ewg), av-0qp(bg)

+ hv-Oi([w), &v-0t(vbg)

+ h v 8 6 (xpoxog), hv0o- (xpdxou)

+ hv0-op(ohoyo6pai)

+ hv0-on(Ai(w)

+ kv0-op (p h)

+ bv0-oojpia)

+ hv-0pjaxsLg)

&v-L, hv-i. bv-r

+ in-vixq(zog), &-vtxfi(zou)

+ h-v~xs6(noug)

+ ti-vrn(zog), h-vixso(u), h-vinzo(v)

&v-o, hv-6, hv-o

a-v6q(zog), h-vofi (zov)

+ &-vopo (g), h-v6yo (ug), ix-v6pw (v)

+ &-voo (g), h-v6o(u)

+ &-voo (og), in-v6o(ov)

+ hv-6o~(og), hv-ooi jou)
+ h-vou0(hqzog)

bvs-&, hvx-u

&VT-k, ~ V Z - E

+ hv-reiv(w)

+ av- rUh(w)

bvs-fi, hvs-q

ixvt-to6 (w)

avr-~ox(upicopar)

hvs-0, hvs-u. ixvs-w

&v-u, hv-6. kv-u

+ &-vuyqjog), &-v6pcp(~vzog), 21-vupcp(e6rou)

TUGboat, Volume 13 (1992), No. 4

xat-eyy (udw)

xaz-i6 (w)

+ xazf-6p(aOov)

xaz-ep (yhropar)

xaz-ao (Oh)

xaz-au (qp~pedw)

xaz-ecp(cil;iopu1)

xaz- kx(w)

x a r - 4 , x a z - q

xas- i , xas-L

x&s-0, xas-6 , xas-o

xevzp-qv EX*^)
xkpx-ou (pog)

x6xX-w+, xJxX-wnjog), xuxh-6n(wv)

xuv-ah (dnq5)

xuv-68 (oug), xuv-06 (dvzov)

T U G b o a t , Vo lume 13 (1992): No. 4

p6v-in jnog), pov-in(nou)

pov-68 (oug), pov-08 (6vrov)

pov-W (&)
pov-d+, pov-b+, pov-ijnjog), pov-hn(ov)

pu0-iay(j3og). pu8-ihp (pou)

pup-ah (oyia)

P ~ P - E (W)
puus-ay (w yio)
vaxp-hy (y~hrog), vexp-ay jykhrov)

V " ~ Y (& p w
vexp-ax(a6qpia)

vouv-ex(dvzog)

vuxs-ey (spriw)

vuxt-qy (opkw)

v u x v p ("cP?jd
vuxz-oJ(pwv), vuxs-oi)(poq)

Sev-ay (wyk)
~ E V - a n (&zqg)

Ssv-qA (azkw)

68-q (ybd
68-06 (vsxa), 68-06 (vexa)

oix-oup(6g)

oix-ocp (ehia)

oiv-hv8 (q), oiv-av8(Gv)

oiv-ep (aozfiq)

oh-o+. ob-on jog). oiv-6xjwv)

oiov-ei, oiov-EL

oi6o-xsp, oi6o-TE

Bxraxro- (~Uror)

6xt-.ild?ld, dx.c-.iip (4
bxswxa~8ex-k(zqg)

dX~y-av(6pia)

611y-&p(~qq), Bhy-ctp(rasIa)

bh~y-6te(poc), 6h~y-orijpov)

BAiy-op(og), 6Aty-dp(ou)

8p-ur(pog), 6p-aijpou)

6p-hh(rxog), 6p-M.h(4

8p-au(hog), 6p-a6jhou)

8p-EU (voq), 6pe6 (vou), bp-eu (vizqg)

~ p - r l (p 4 , bp-.il(pou), ~P-~(Y&P%)
Bp-!(hog), by-i(hou), 6p-~(hiaj

8p-~(pog), Bp-6p(ou), by-opjdprog)

6p-oup jog), 6p-06p (ou)

6p-dv (vpog), 6p-wv ($0~)

6 y d p (opoc). 6p-up (dylrog)

6v-qA (a~qg)

65-hh (h)
Bnou-ocv, Bxoo-r~(o6v)

6px-wp6(urov), opx-wpojuiou)

60-qp(ipar)

Bu-zs

80-rrg

ijr-av

066-onoo-tt(oh~), 068-oojzruoGv)

068-ap(6g)

06x- (ow), o h - (06v)

+ oiLxfd(v)

6+-d(vrov), 6+-w (viou)

na~8-oh (kzerpa)

nahui-x0(ov), nahat-~8(dvwv)

xcrhiv-. n a h ~ v -

nuh-iw (&), nah-id(fsog)

xkv - , 7CcrV-

+ na-vog. xa-v6<, xu-vi, na-vi, nit-va

+ nh-vu

nap-hy (w), nap-ay (yWhw)

+ napa-ye j6w)

+ naps-yri(p&o)
+ napa-yi (yvopar), napa-yt(yvdps0a)

+ naph-yp (api*a), n ~ p 9 - p (a ? f i)
+ napa-yujpvdo)

nap-aa (ism)

nap-ai(orog), nap-at(ouw), nap-atjvko), nap-a~(oodpe0a)

nap-axp(&(w)

nap-axoh(ou0dw)

nap-axov (oiw)

nap-hxo(uupa). nap-axojriw)

nap-ah(oq), nap-hh jou), nap-ah(ia)

+ napa-Xh(pnw), napa-Aajppoivo)

+ napa-Aiy (w)

+ naph-hei(+g), napa-heijno), napa-As~(xrkov)

+ nap-aheicpjw)

+ naph-h~p (voq), napa-hip (vou)

+ nap&-hoy jog), napa-h6y (ov), napa-Aoy (i(opar)

+ naph-Au(org), napa-X6(uawg), napa-Xu(nio)

nap-apa (ptoivw)

nap-a$ (hrivw)

nap-aps (ipw)

+ nccpa-pLv(w)

+ napa-yes jpio)

nap-apx(dxw)

nap-ava (yryvduxw)

+ mpa-vai(as&o)

nap-avi(qpr), nap-av~(axdps0a)

+ xapa-vrx(+)

nap-uvoiy (a)

nhp-avsa

nap-ho (pog), nap-a6 (pou)

nap-anas(oiw)

nap-anacp (iuxw)

nap-hnt (w)

nap-hp(Opqorg), nap-ap(0prjaawg)

+ naph-ppjupa), napa-pp(6pazog)

nhp-au(hog), nap-a6 (Aou), nap-au(F&o)

xhp-&(6pog), nap-d@pou), nap-~(yypoinrov)

+ na-pLo, na-pkejrg)

7~.hp-ri(w), nap-fi(yopoc), nap-.?(W, nap-q(Po)
nhp-L (uog), nap-i (uou), nap-L (nneh)

dip-o(8og). nap-6(80u), nap-0 (6~6~)

+ nh-pog

+ ~ c c - P ~ v (~ o <)

nap-pq (uia)

nap-6(ylarvov), nap-u(paivo)

nhp-~(~pog) , nap-6(~pou), nap-wjvvpici)

+ na-phv. xa-phv

xazp-hy (aOog), xasp-ay (aOia)

natp-ah (oiag)

nacp-wv6(p~og), nasp-wvujpiou)

TUGboat, Volume 13 (1992), No. 4

nooo-4 (papas), nooo-ij (pap). nooo-q (pcipwv)

xp6o-, xpoa-

+ npo-oriv (w), npo-orev (&(a)

+ np6-mepv (oc), npo-azkpv (ou), xpo-ozepv (i6ro1

+ n p 6 - o q (o v) , npo-ozG(ou), npo-ot@(ov)

owp-ao (xkw)

TUGboat, Volume 13 (1992), No. 4

6 The fundamental rules of Latin

hyphenation, and the corresponding
patterns

Taken from [Chi] (9.56-9.59), here are the rules

of Latin hyphenation and the necessary patterns

(v,, n > 1 will be vowels, including z and ce, and
c,. n 2 1 consonants) :

A LATIN WORD HAS AS MANY SYLLABLES

AS IT HAS VOWELS OR DIPHTHONGS (z, au.

ei. eu. ce, ui). Concerning word division,
this rule should be interpreted as "vowel clus-

ters should be separated, except when they
form a diphthong": vl-uz, for (vl, uz) pf

a , 1 , (a , e , 9, , 1 , 0 , , u , 4 . The
necessary patterns are a la . alae (since TEX con-

siders ae as one character) a l i , a lo , aice (same

remark) e i a , eke, e i e , e lo , eice, i l a , iiae, i l e ,
i l o , ilce, ili, i l u , o ia , 012, o l i , 010, o le ,

olu. u la , ulae, u ie , uio, ulce, ulu.

WHEN A SINGLE CONSONANT OCCURS BE-

TWEEN TWO VOWELS, DIVIDE BEFORE THE

CONSONANT: u1-~1u2. The required patterns
will be iba, ibae . . . Izu.

IN THE CASE OF TWO OR MORE CONSONANTS,
DIVIDE BEFORE THE LAST CONSONANT EX-

CEPT IN THE COMBINATIONS: MUTE (p, ph, b,

t , th, d, C, Ch, g) $ LIQUID (I , T) , AND qU OR

gu. The first part of this rule can be expressed
as

0

0

0

The required

ch2r, p21 . . .
not stated in

patterns will be ph21, ph2r . . .
g2r and p2h. t2h, c2h which is

the rule but seems to be an im-
plicit consequence, especially since "th" , " p h ,
"ch" are just transliterations of the Greek let-

ters 0, cp, X.
The second part of the rule ("and qu or gu")

is not clear. According t o the examples given

in [Chi] ("e-quus" , Yin-gua") the author esti-

mates that the correct interpretation is "con-

szder 'qu' and 'gu' as szngle consonants". It

follows from this interpretation, that these two

clusters form exceptions to rule 1 and that hy-

phenations "qu-a", "gu-a" . . . "gu-u" should be

prohibited. The required patterns are qu2a

. . . gu2u.

COMPOUND WORDS ARE SEPARATED FIRST

INTO THEIR COMPONENT ELEMENTS; WITHIN

EACH ELEMENT THE FOREGOING RULES AP-

PLY. The patterns needed to fulfill this rule

will be discussed in next section.

468 TUGboat, Volume 13 (1992)) No. 4

There is no mention of minimal left and right

hyphenations; after comparing several Latin edi-

tions, the author considers the traditional values
for \lefthyphenmin and \righthyphenmin to be 2

and 3 (as in English).

7 Hyphenation of Latin compound words

As with ancient Greek, the first idea would be to

make patterns out of roots: "ab" is such a root,

a pattern ab would insure hyphenation of "ab-
undare" , "in-ab-undare" and so forth. The problem

is again that the cluster "ab" is contained in thou-

sands of other words, where it should be hyphenated
as LLa-b'l ("la-born , "pro-ba-bi-lis" , "fa-bu-la" , etc.).

Therefore the same method is applied as in ancient

Greek: only beginnings of words are taken into ac-
count. As the reader will see in next section where
all patterns are listed, hyphenation ab- at the begin-

ning of a word is a general rule, with certain excep-

tions ("a-bacus", "a-bitus", and so forth). To hy-

phenate correctly the word "abs-cidere", a pattern
"abs-ci" has been introduced; this pattern produces

wrong hyphenation of word "ab-scindere". and so a

second pattern 'lab-scin" is introduced.

This explains the format of the pattern list in

next section: indentation and the symbol + indi-

cate entries, exceptions and exceptions to excep-
tions. The endings of words placed between paren-

theses are just examples, THEY ARE NOT TAKEN

INTO ACCOUNT IN PATTERN CONSTRUCTION. En-

tries in boldface are "general rules". For these, no

example is given. The same format has been used

in the list of patterns for ancient Greek compound
words, in section 5 .

8 Patterns for Latin compound words

ab-

+ a-bac(us)

+ a-bit (us)

+ abs-ce (dere)

+ abs-ci(dere)

+ ab-scin(dere)

+ abs-co(ndere)

+ abs-que

+ abs-te (mius)

+ abs-ti (nere)

+ abs-tr (ahere)

ad-

a-gnasc (i)

amb-i (gere)

antid-ea

a-sc (endere)

a-sperg (ere)

a-spern (ari)

a-spi (cere)

a-ste(rnere)

a-sti (pulari)

a-stre (pere)

a-strin (gere)

a-strue (re)

a-stup(ere)

cav-j jdium)

circum-

cis-a1 [pinus)

cis-rh (enanus)

com-

+ co-metjes)

+ co-mi [cus)

+ co-mff (dia)

de-sc (endere)

de-sp (icere)

de-st (inare)

di-ch(oreus)

di-gn (oscere)

dir-im (ere)

di-scrib (ere)

di-sperg (ere)

di-spi (cere)

di-sta [re)

ex-

id-eo

in-

+ i-nan(is)

+ ianim(us)

+ ind-ue(re)

+ ind-ep (t us)

+ ind-ig(es)

+ ind-ip (iscor)

+ ind-ue(re)

+ ini-ti(a)

inter-

long-jv (us)

neg-oti (urn)

ob-

+ obli-vi(o)

+ oblon- (gus)

+ obff-di(re)

pjn-ins (ula)

per-, post-, prj-

prod-ir (e)

prod-es (se)

prod-ig(ere)

pro-sc(jniurn)

pro-sp (ect us)

pro-st (are)

quinc-un [x)

quot-an (nis)

re-

+ red- (arguere)

+ re-don (are)

+ re-dor(mire)

TUGboat, Volume 13 (1992), No. 4

+ re-duc(ere)

sat-ag (ere)

sat is-ac (cipere)

sem-un (ciarius)

sem-us (t ulatus)

sesc-en (naris)

sic-ut (i)

sub-, super-

su-scr (ibere)

su-sp (icere)

ter-un(cius)

trans-ab- (ire)

trans-

+ tran-sil (ire)

+ tran-su(ere)

+ trans-us(que)

vel-ut (i)

9 Examples

Follow some examples of hyphenated ancient Greek
and Latin texts. The symbol t indicates hyphen-

ation using patterns from sections 5 and 8.

'EvzsG+0ev t(+s-Aab-vel oza0-pobq z p d g na-pa-

a&y-yag mv-ze-xai-FE-xa k-xi zbv EG-cpp&-zqv no-za-

p6v, dv-za zb sbpoq z~ t - z&-puv ma-Fi-ov xai x6-hrg

a6-26-81 Q - x ~ k o pa-y&-Aq xai €6-Fai-pwv O&-+a-xog
6-vo-pa. 'Evzabt0a I-PEL-vev 3-pi-pag xiv-TE. Kai KG-

pog ~~.s-za-7csy-~&-p~-vog toLg ozpat+q-yobq zi3v 'EA-

14-vwv I-As-~EV 8-TL 4 8-Fbg I-ool-zo npbg pa-01-Ad-a
pi-yav aiq Ba-pu-AG-va xai xs-h~b-s~ aG-zotg A&-yew

za6-za roiq ozpa-z1-rj-talg xai &-va-xsi-8&~v &-xa-o8~~.

O'i F i nol-+av-teq ix-xAq-ai-av hx+4y-ye-Aov TUG-za.

oi F i ozpa-tl-Cj-ra1 b-xa--hi-xal-vov zoig azpastq-yoig,
xai I-cga-oav aG-rot< n&-ha1 mGz' d-86-zaq xpb-nzelv,

xai oGx 2-cpa-oav i-i-val, t-inv pfi z ~ g ab-zoiq xpfi-pa-za

81-FQ. 6-omp zoiq xpo-zd-po~g ps-zix KG-pou b-va-PC-UL

[na-piz, zbv xa-zi-pa TOG Kb-pou], xai za6-za oGx 6-xi
p&-xrp i-6v-zov, hh-Aix xa-Ao6v-zog TOG na-zpbq KG-

pov. TaO-ta oi ozpaztqyoi Kb-pct, hxf4y-yd-Aov.
"0 F'bi~t&-ox~-zo hv-Fpi i-x&-ozct, 86-oslv d v - T E &p-

yu-pi-ou pvkq, i-xixv sig Ba-pu-AG-va 4-xu-al, xai zbv
pl-00bv bv-ss-A-fj pi-XPL biv xa-za-otfi-q robq "EA-Aq-

va< &i< 'I-w-vi-av x&-ALV. Tb piv Ffi no-At to6 'Eh-Aq-

v1-xoO 06-zwq &nei-oQq.

from Ewe-@v-zog K6-pou 'A-v&/3a-org. [EEv]

Flu-men est Arar, quod per fi-nes Hz-du-o-rum

et Se-qua-no-rum in Rho-da-num in-fluit, in-cre-di-

bili le-ni-tate, ita ut ocu-lis in ut-ram par-tem fluat
iu-di-cari non pos-sit. Id He-lu-e-tii ra-ti-bus ac lin-

tri-bus iunc-tis transti-bant. Vbi per ex-plo-ra-to-

res CE-sar cer-tior fac-tus est tres iam par-tes co-

pia-rum He-lu-e-tios id flu-men tra-du-xisse, quar-
tam fere par-tem citra flu-men Ara-rim re-li-quam

esse, de ter-tia ui-gi-lia cum le-gi-o-ni-bus tri-bus e

cast-ris pro-fec-tus ad eam par-tem pe-ru-e-nit q u z

non-dum flu-men transti-e-rat. Eos im-pe-di-tos

et in+o-pi-nan-tes ad-gres-sus mag-nam par-tem eo-

rum con-ci-dit: re-li-qui sese fugz man-da-runt at-

que in pro-xi-mas si-luas ab-di-de-runt.

from CE-sa-ris Corn-men-ta-rii

de Bello Gal-lico. /CE]

10 Availability

The files AGRhyphen. tex and LAThyphen. tex con-
taining hyphenation patterns for ancient Greek and

Latin (as described in this paper) are part of the

S c h o l a r w package.

The hyphenation patterns for modern Greek

mentioned in section 2 (file GRhyphen.tex) are in
the public domain; they are included in E u r o - O z m

and can also be obtained directly from the author.

Readers interested in Greek (ancient or modern) are

invited to join the ELLHNIKA discussion list, by send-

ing the SUBSCRIBE ELLHNIKA <name> command to
LISTSERV@DHDURZI.BITNET.

References

I. KahA~zoouv&xqq (siaqyqz4g), 'OpBoypa-
pxbv &bypappa zflg 'AxaFqpiag 'ABrjvdv,

IIpaxz~xbt. 'AxaFqpiaq 'ABqvijv, z. LF' , 1939.

A. Bailly, Abrdg4 du dictionnaire grec-
fran~ais, Hachette, Paris, 1901.

H. Bornecque et F. Cauet, Dictionnaire

latin-fian~ais, Librairie classique Eugkne
Belin, Paris, 1990.

Cksar, Guerre des Gaules, trad. par L.-A.
Constans, Les belles lettres, Paris 1984.

The Chicago Manual of Style, The Univer-

sity of Chicago Press, Chicago and Lon-

don, 1982.

D. E. Knuth, Computers & Typesetting,

A: The W b o o k , Addison-Wesley, Read-

ing, 1989.

XBnophon, Anabase, trad. par P. Mas-

queray, Les belles lettres, Paris 1970.

TUGboat, Volume 13 (1992), No. 4

The Exotic Croatian Glagolitic Alphabet

Darko ~ u b r i n i ~

Dedicated to the memory of Gordan Lederer
(1 958-1 991)

Just for fun, one day I decided to write my own
name in Glagolitic letters. I was very proud of the
result: Uhhhca ~ a ~ 6 z ~ s w . Without creating TfjX
Prof. Donald Knuth probably would have never had
opportunity to see his name written as

(The h = k was dropped because it is not pro-
nounced.)

The origins of the Croatian Glagolitic alphabet
are still mysterious. The only thing we can state for
sure is that it has existed in my homeland for more
than a thousand years, i.e. since the ninth century.
Croats have been living in their homeland since
the seventh century and they were the first among
Slavs to be Christianized. It used to be generally
regarded that the Glagolitic alphabet was created
by St. Cyrill, a Greek apostle from Thessaloniki,
but now there exist several very different theories
about its origins. However, the fact that Croats had
already been Christianized when St. Cyrill was born
(825), together with the unique multiorthographic
tradition of written documents (Glagolitic, Latin,
Cyrillic) in medieval Croatia, and above all, more
than a thousand years' history of Glagolitic script in
Croatia, seem to prove that the origins of Glagolitic
script are authentically Croatian.

One of the earliest Glagolitic inscriptions we
know of in Croatia can be seen on a stone monument
found in the church of St. Lucy near the city of
Bashka on the island of Krk, dating back to around
1100 AD. It is the oldest known monument written
in my native tongue which mentions the name of
Croatia (i.e. Hrvatska) and the name of the Croatian
king Zvonimir .

Through the Glagolitic alphabet Croats kept in
touch with other European cultures of the Middle
Ages. For example, in 1347 the famous Czech
king Charles IV established a Glagolitic convent
near Prague, where Croatian priests were teaching
the Glagolitic alphabet. Similarly, the Polish king
Wladislav I1 Yagiell organized (in 1390) a Glagolitic
convent near Krakow.

Especially interesting is the story of the old
Glagolitic book handwritten on the island of Krk in
Croatia, that somehow came from Prague to Reims
in France. There, for centuries afterwards, French
kings were sworn in by putting their hands on this
holy book (it still exists).

In 1248, by the decree of Pope Innocent IV,
Croats were allowed to practise Glagolitic liturgy
(i.e. early Croatian), using holy books written in
Glagolitic instead of Latin or Greek. This decision
of the Pope was unique in medieval Europe-
Croats were the only nation in Europe who were
allowed to use their own language in liturgy instead
of Latin.

Even today the Glagolitic liturgy is preserved
in some parts of Croatia, with priests still singing
in early Croatian language as in St. Cyrill's time
(the ninth century!). The Glagolitic alphabet
has probably been our most important cultural
monument for thirteen centuries of difficult, but
rich life in Europe.

As for the name of Croatia, let me mention
by the way that the French and German names for
tie - cravate and die Krawate - were coined from
it. It would take us too far from our purpose to tell
in detail this very interesting story.

There are thousands of monuments, pergament
letters and books written in the Glagolitic alphabet.
One of the most beautiful certainly is "Misal"
(or Mxahdb), printed in 1483, most probably in
the Croatian town of Kosinj, only 37 years after
Gutenberg's invention, or only six years after the
first printed books appeared in Paris and Venice,
or 70 years before the first book was printed in
Moscow. Like Gutenberg's Bible, it has many
ligatures. Unfortunately, in 1493 there was a
penetration of the Turkish Ottoman Empire, which
was stopped in Croatia (until the XIXth century!).
This did not allow a normal development of printing
as in other parts of Europe. Despite very difficult
conditions many Glagolitic documents bear witness
to surprisingly rich cultural activity in medieval
Croatia, especially on the island of Krk and the
Istrian penisula.

Glagolitic books for Croatian priests were also
printed in Venice, which even had two Glagolitic
churches at one time, then in Rome. With the
help of Croatian protestants books were printed
in Wittenberg and Urach in Germany. One of
the founders of protestantism in Europe was the
Croatian philosopher Flacius Illiricus. The Gla-
golitic alphabet was also taught in the city of
Dubrovnik. Besides in Croatia, Croatian books
and manuscripts written in the Glagolitic alphabet
are now kept in Rome, Sankt Petersburg, Berlin,
Vienna, Innsbruck, Moscow, Copenhagen, London,
Oxford, Constantinople, Paris, Tours, New York,
Krakow, Porto, Budapest, Trento, Padova, Sienna,
and some other places.

There are a few Glagolitic letters that came
from Greek, like Q, (f), 3 (e); the letter u (sh) came

TUGboat, Volume 13 (1992), No. 4 471

from Hebrew. You will also find these letters in

Cyrillic script, created later by the followers of St. am e$ mi 0 olju

Method in Bulgaria on the basis of the Greek uncial
script. a bl Z ko a!? ml 3 ot

Of course, one can find some similarities with bo li @ mlc nl[l pl
other Cyrillic and roman letters, but the difference

is considerable. It is interesting to note that $ br lo d mo pivr

the Glagolitic A = is almost the same as the il abO it 4% ms d so

Ethiopian 'ha'. I learned that in a very interesting ili lv ? no

article [I].
tvr

The complete font, together with numerical it bfO lju a 01 vod

jur dfOb ljud oli 86 zr values, looks like this:

A 1

B 2

v 3

G 4

D 5

E 6

z 7

Dz 8

z 9

I ie 10

I 20

J 30

K 40

L 50

M 60

N 70

0

P

R

S

T

u
F

H

Ot

s t , sc, c
C

c
s

Ja, Je

Ju

It was created according to the above men-
tioned "Misal" from 1483. Note that the letter

.Pt = ch looks rather 'chinese'. From the table we

see that some of the symbols had only numerical
values, like T = 10.

The letters were also assigned appropriate nu-
merical values, similarly to the old Greek script. For

example the year 1254 could have been written as

.B.a.fi.%.. Numbers from 11 to 19 were written
in the reverse order, for instance P?? = 12. What

do you say about the following arithmetic:

& + % = P T , T + B = . P t h ?

Ligatures give a special flavor to Glagolitic
manuscripts. As an example, the Glagolitic expres-

sion for 'moon' is in some manuscripts given by

&% (in Croatian: mjesec).
A few words about the T@-community in

Croatia. It is rather widespread. Many students

prepare their graduation works using TEX, while

among mathematicians it has become a routine
means of creating documents. However, we still

lack some basic literature, and we are still not

organized as in other countries. We hope this will
improve through collaboration with your excellent

journal.

I would be pleased to contact anyone wishing
to learn more about the Glagolitic alphabet. Let

me take the opportunity to illustrate it by greeting

my friends and colleagues in the USA who know
Croatian:

I would like to thank Sonja ~ t e r c (Zagreb) and

Barbara Beeton for help during the preparation of

this article.

References

[1] Abass Andulem: The road to Ethiopic W.
TUGboat, Vol. 10, No. 3 (November 1989),

352-354.

[2] Donald Knuth: The METRFONTbook, Addison
Wesley, 1986.

Among many interesting ligatures let me men- o Darko ~ubriniC
University of Zagreb

tion a 'three storey m' = a, which was used
ETF, Avenija Vukovar 39, Zagreb

for [ml] (our language is not easy - remember the
Croatia

tongue-twisting island Krk), and 'double i' = a for Internet:
[ili], which I like very much. Some of the ligatures darko.zubrinicQetf.uni-zg.ac.mai1.y~

are represented on the following list:

TUGboat, Volume 13 (1992), No. 4

Fonts

Postnet codes using METAFONT

John Sauter

Abstract

A reimplementation of Dimitri Vulis' Postnet
bar codes.

1 Introduction

I was excited to read in TUGboat 12, no. 2,
about Dimitri Vulis' work with the Postnet bar

codes for envelopes. I was determined to include
his work into my letter-writing software until I

came to the last line of his article, where he says

"The macros are copyrighted, though, and I intend

to defend them strenuously against unauthorized
commercial use."

I was disappointed. This stricture meant that
I could not use Mr. Vulis' work, since I sometimes

write letters on behalf of a small retail store near
my home. I was determined to find a way to use
the Postnet codes in spite of Mr. Vulis' limitation.

2 A Different Approach

To avoid violating Mr. Vulis' copyright on his

macros, I decided to take a different approach to

the problem of producing Postnet codes. I would
implement the bar codes using METAFONT as much

as possible, with only as much TJ$ macros as

necessary for support. I started by visiting my
local Post Office, so I could obtain the information
for constructing the bar codes from the source, to

avoid any accusation that I had violated Mr. Vulis'

copyright by using the dimension information in his

macros.

I was pleased to find that the Post Office
has liberalized the rules for Postnet codes since

Mr. Vulis did his work. The FIM is no longer
necessary, and the Postnet code can be placed

immediately above the addressee's name, as follows:

1111111111l11lll,1lIIIIIIIIIIIIIIIIIIIIIllllllllllllllllllllll
John Sauter

9-801128-09 Elizabeth Drive

Merrimack, NH 03054-4576

Placing the Postnet code here avoids the hassle
of figuring out how to get the code to appear in the
proper corner of the envelope.

3 The METAFONT Font

The Postnet font file begins with identification

and setup information.

% Postnet font, for USPS barcodes.
%
mode-setup;

%displaying:=O;

"Postnet digits" ;

f ont-identif ier "POSTNET" ;

font-coding-scheme "Digits";

As Mr. Vulis describes in his article, Postnet rep-

resents digits using long and short bars. The first

order of business in the font, therefore, is to define
the dimensions of the bars and the spacing between

them. This information is taken from the United
States Postal Service regulations as described in the

Domestic Mail Manual (DMM) issue 39 (June 16,

1991) sections 551 and 552, as summarized and ex-

plained in Bar Code Update, a document provided
to me by my Postmaster.

% Primary parameters, as specified by
% the U. S. Postal Service.
bar-width# := 0.020in#;

% plus or minus 0.005in
half-bar-height#:= 0.050in#;

% plus or minus 0.010in
full-bar-height#:= 0.125in#;

% plus or minus 0.OlOin
bar-spacing# := 1/22in#;

% 20 to 24 bars per inch

The tolerances placed on the bar dimensions are

great enough that any reasonably modern printer

should have no trouble producing acceptable bar
codes.

I now define some secondary parameters, so
called because they are based on the primary
parameters.

% Secondary parameters
digit_width#:=5/22in#;

% width of a digit
digit-height#:=full-bar-height#+O.O4in#;

% leave space above bars
digit-depth#:=O.O4Oin#;

% min space below bars

The font parameters are next. These parame-

ters are very simple, since this is a fixed-width font

and all the characters are the same height.

font-size digit-height#;

font -slant 0 ;

font-normal-space digit-width#;

font-normal-stretch 0;

font-normal-shrink 0;

TUGboat, Volume 13 (1992), No. 4

font-x-height half-bar-height#;

f ont-quad digit-width#;

font-extra-space 0 ;

It is now time to specify pixel-dimensioned
versions of the necessary parameters. These will be
used when actually drawing characters.

def ine-pixels (bar-width) ;

def ine-pixels (half -bar-height) ;

def ine-pixels (full-bar-height) ;

def ine-pixels (bar-spacing) ;

define-pixels (digi t -width);

def ine-pixels (digi t -height) ;

def ine-pixels (digi t -depth) ;

Here is an alternate version of Plain MET&
FONT'S makebox, which provides more information
when printing proofs. It is based on an example in
The METRFONT~OO~, Appendix E.

def makebox(text r) =

f o r y=O,full-bar-height,

half-bar-height,digit-height,

- d i g i t -depth:

r ((0 , y) , (w, y)) ; endf o r % horizontals
f o r x=O s t e p bar-spacing u n t i l w :

r ((x , O) , (x , h)) ; endfor % v e r t i c a l s

r((w,O), (w,h)) ;
enddef ;

All of the real work in a bar code font is done
by drawing bars. It therefore seems fitting to place
the bar-drawing macro next. This macro has two
explicit parameters, the bar number and the bar
height. It defines two points, t at the top and b at
the bottom of the bar, and uses the current pen to
draw it. The macro also depends on bar-pos to be
the left edge of the bar, and increments this value
so that the next invocation of the macro will draw
the next bar in the following position.

def draw-bar (su f f ix $1
(expr bar-height) =

lft x$t = bar-pos*bar-spacing;

t o p y$t = bar-height;

x$b = x$t ;

bot y$b = 0;

draw (z$t -- z$b);

l a b e l s ($ t , $b) ;

bar-pos := bar-pos + 1

enddef ;

Now, following the example of Computer Mod-
ern, I have defined macros to provide the beginning
and end of each character. These macros are quite
simple because of the simple nature of the font. All
of the digits have the same width, height and depth,

so the only parameter is the character code of the
digit. The end macro is for aesthetics.

def beginpostnetchar (expr char-code) =

beginchar (char-code, digit-width#,

digi t -height#, digit-depth#) ;

bar-pos := 0;

pickup stdpen;

enddef ;

def endpostnetchar =

endchar ;

enddef ;

We use only a single pen, with a simple shape:
it has no height and is the width of a bar. We will
use this pen only for vertical strokes.

pen stdpen;

stdpen = penrazor xscaled bar-width;

Well, it seems I lied about this font only
containing digits. We need an additional full bar at
the beginning and end of numbers, and as long as
we need a separate full bar we should in fairnes~ also
have a half bar. We can use the draw-bar macro,
but not the others since they assume a complete
digit.

" f u l l bar" ;

beginchar ('If 'I, bar-spacing#,

d ig i t -he ight# , digit-depth#) ;

bar-pos := 0 ;

pickup stdpen;

draw-bar (0, f ull-bar-height) ;

endchar ;

"half bar" ;

beginchar ("h" , bar-spacing#,

digi t -height# , digit-depth#) ;

bar-pos := 0 ;

pickup stdpen;

draw-bar (0 , half -bar-height) ;

endchar ;

Now that the preliminaries are out of the way
we can proceed with the digits themselves. Each

digit consists of five bars, two full height and three
half height. The pattern for each digit is described
in Bar Code Update.

"Digi t Zero" ;

beginpostnetchar ("0") ;

draw-bar (0, fu l l -bar -he ight) ;

draw-bar (I , f ull-bar-height) ;

draw-bar (2 , half -bar-height) ;

draw-bar (3 , half-bar-height) ;

draw-bar (4, half -bar-height) ;

endpostnet char;

TUGboat. Volume 13 (1992), No. 4

"Digit One";

beginpostnetchar (" I ") ;

draw-bar (0 , half -bar-height) ;

draw-bar (1, half-bar-height) ;

draw-bar (2 , half -bar-height) ;

draw-bar (3, ful l -bar-height) ;

draw-bar (4, ful l -bar-height) ;

endpostnetchar;

"Digit Two" ;

beginpostnetchar ("2") ;

draw-bar (0, half-bar-height);

draw-bar (I , half -bar-height) ;

draw-bar (2, f ull-bar-height) ;

draw-bar (3, half-bar-height) ;

draw-bar (4, ful l -bar-height) ;

endpostnetchar;

"Digi t ThreeH;

beginpostnetchar ("3") ;

draw-bar (0, half-bar-height) ;

draw-bar (1, half -bar-height) ;

draw-bar (2, ful l -bar-height) ;

draw-bar (3, ful l -bar-height) ;

draw-bar (4, half-bar-height);

endpostnetchar;

"Digit Four";

beginpostnetchar ("4") ;

draw-bar (0, half-bar-height) ;

draw-bar (I , f ull-bar-height) ;

draw-bar (2, half -bar-height) ;

draw-bar (3, half-bar-height) ;

draw-bar (4, f ull-bar-height) ;

endpostnetchar;

"Digit Five" ;

beginpostnetchar ("5") ;

draw-bar (0, half -bar-height) ;

draw-bar (1, ful l -bar-height) ;

draw-bar (2, half -bar-height) ;

draw-bar (3, fu l l -bar -he ight) ;

draw-bar (4, half -bar-height) ;

endpostnetchar;

"Digit Six" ;

beginpostnetchar ("6") ;

draw-bar (0, half -bar-height) ;

draw-bar (1, ful l -bar-height) ;

draw-bar (2, f ull-bar-height) ;

draw-bar (3, half-bar-height) ;

draw-bar (4, half -bar-height) ;

endpostnetchar;

"Digi t Seven";

beginpostnetchar ("7") ;

draw-bar (0, ful l -bar-height) ;

draw-bar (1, half -bar-height) ;

draw-bar (2, half-bar-height);

draw-bar (3, half-bar-height) ;

draw-bar (4, ful l -bar-height) ;

endpostnet char ;

"Digit Eight" ;

beginpostnetchar ("8") ;

draw-bar (0, full-bar-height) ;

draw-bar (1, half-bar-height);

draw-bar (2 , half -bar-height) ;

draw-bar (3, f ull-bar-height) ;

draw-bar (4, half-bar-height);

endpostnet char ;

"Digit Nine" ;

beginpostnetchar ("9") ;

draw-bar (0 , ful l -bar-height) ;

draw-bar (1, half -bar-height) ;

draw-bar (2, ful l -bar-height) ;

draw-bar (3 , half -bar-height) ;

draw-bar (4, half -bar-height) ;

endpostnetchar;

In the Postnet code a number is more than a
string of digits. To be a proper number a string
of digits must have a full height bar before and
after it. We can use the new facilities of META-

FONT version 2 to provide these additional bars as
ligatures.

%
% l i g a t u r e t ab l e f o r Postnet fon t .

% provide t a l l bars a t t he beginning

% and end of numbers.

%
boundarychar := 32;

beginchar (boundarychar, 0 , 0 , 0) ;

endchar ;

TUGboat, Volume 13 (1992), No. 4 475

And with that, the font description is complete.

bye;

4 The macros

The font itself is adequate for simple examples,
like the one earlier in this article. However, as
explained by Mr. Vulis, each number also ends with
a check digit. I considered, very briefly, trying to do
the check digit computation as a ligature table in
the font. I came to the conclusion that METAFONT

is the wrong language for such a computation, since
the size of the ligature table gets very large with
11-digit numbers. Therefore, I decided to write the
check digit code using T@ macros. Mr. Vulis used
a very clever technique, but because of his copyright
I had to use a different method. After some hunting
I found an example of almost exactly what I needed
in The W b o o k , Appendix D.

In the following pair of macros, \postnet-

checkdigit takes as its argument a string of digits
followed by a vertical bar. It uses \getpostnet-
checkdigit to set \count0 to the sum of the digits,
and then arranges for token register \Postnet-
checktoken to be set to the correct checksum digit
for the string.

\def\getpostnetcheckdigit#l~\ifx#l\end

\let\next=\relax

\else\advance\countO by #I%

\let\next=\getpostnetcheckdigit\fi

\next3

\def\postnetcheckdigit#l~{{\count0=0

\getpostnetcheckdigit#l\end

\countl=\countO

\divide\count 1 by 10

\multiply\count 1 by 10

\advance\countO by -\count1

\count i=lO

\advance\countl by -\count0

\ifnum \count1>9

\advance\countl by -10\fi

\af tergroup\Postnet checktoken

\af tergroup=\af tergroupC%

\expandafter\aftergroup\number\countl

\af tergroup3%

33

The check digit must be combined carefully
with the rest of the digits so that the ligatures work
correctly, placing a full bar before the first digit and
after the check digit. In addition, it is convenient
to have a macro which specifies the Postnet digits

so they can be printed wherever in the letter the
style requires. In some cases the Postnet code will
be unknown or inappropriate, and so should not be
printed.

To accommodate these needs I have a macro
\Postnetdigits which accepts the digit string,
and \Postnetline which is used from my letter
formatting macros to set a line of Postnet bar
codes.

\def\Postnetdigits #I{%

\Postnettoken=C#l3%

\postnettrue3

\def\Postnetline(\ifpostnet

\expandafter\postnetcheckdigit

\the\Postnettokenl%

\Postnettoken=\expandafter\expandafter

\expandaf ter(\expandaf ter

\the\expandafter\Postnettoken

\the\Postnetchecktoken]%

{\Postnetfont \the\Postnettoken\hfil)%

\f i3

In support of the above macros we must declare
the token registers and the condition.

\newtoks\Postnettoken

\newtoks\Postnetchecktoken

\newif\ifpostnet

\postnetf alse

My letter formatting macros are based on
The W b o o k , Appendix E. I have placed the
Postnet code only on the envelope, so only macro
\makelabel needs modification. The Postnet bar
code goes just above \theaddress, as follows:

\def\makelabel(\endletter\hboxi\vrule

\vbox{\hrule \kern6truept

\hboxC\kern6truept

\vbox to 2truein

{\hsize=6truein

\smallheadf ont

\baselineskipgtruept

\returnaddress

\vfill\vbox C%
\hskip 2truein\Postnetline)%

\moveright 2truein

\copy\theaddress\vfi113%

\kern6truept)%

\kern6truept\hrule3%

\vrule3

\pageno=O\vfill\eject)

5 Conclusion

I thank Mr. Vulis for the motivation his article
gave me to re-implement his Postnet bar codes.

TUGboat, Volume 13 (1992), No. 4

Diag: A Drawing Preprocessor for W7i&X

Benjamin R. Seyfarth

Abstract

Diag is a preprocessor for drawing diagrams for

I4m documents. The user prepares a text file

containing commands in the diag language which

are processed by diag producing f i g commands

which are then processed by t ransf i g producing

commands in a variety of formats acceptable to

I4m. The diag preprocessor interprets a lan-
guage with graphics commands using infix expres-

sions with user-defined variables. In addition it pro-

vides a macro facility for simplifying repetitive op-

erations. The combination of diag and t ransf i g
provides a simple, portable method for producing
diagrams within I4".

1 Introduction

The T@ typesetting system by Donald Knuth [3]
provides a method for producing high-quality type-

setting on a wide variety of computer systems. TEX
has been augmented by Leslie Lamport's IPT@ [5]

to provide an easier interface for TEX users. T@
was designed for typesetting text and mathematical

formulas and does a splendid job for both. How-

ever, QjX provides nearly no support for graphics.

I4m provides a variety of macro packages which do

allow the user to incorporate drawings in a IPm
document, but none of these is particularly easy

to use. Diag provides a convenient alternative for

I4m drawings.
LNQX incorporates a simple picture drawing

environment which can be used to produce lines,

boxes, circles and arrows. Unfortunately, this pack-

age is designed around a set of line drawing char-
acters which can only be used to draw lines with

a Limited number of preset slopes. In addition the

package is written as T&X macros which means that

specifications of x and y values can become oner-

ous if the user must use macros to compute

locations. Lamport suggests that BTJ$ drawings
be completely designed using an initial drawing on

a piece of graph paper. This is feasible, but it does

not provide easily-modifiable diagrams.

There are several macro packages which have
been written for I4m to provide better graphics.

EPIC [7] is a n extension of the I P W picture environ-

ment which uses the LATEX drawing commands as

primitives t o produces lines, grids and arcs. EEPIC

[4] is an extension of EPIC which uses t p i c specials

to overcome the limitations inherent in the IPm
picture drawing primitives. The QCI'EX [8] pack-

age overcomes most of the limitations of the other

macro packages and can produce high-quality graph-

ics. Unfortunately it and the other macro packages

suffer from the inconvenience of doing arithmetic us-

ing T@ macros.
In contrast to these IPm macro packages is the

PIC preprocessor [2] for the t r o f f typesetting sys-

tem [6]. PIC provides a separate language support-

ing variables, infix expressions, looping and macros.

This language allows a user to describe a diagram

very simply using variables to define the x and y

coordinates for graphics objects. This makes it easy

to position objects relative to other objects which

makes diagrams easier to modify.
There is a version of the PIC preprocessor

called t p i c , which has been altered to output TEX
\ spec ia l commands. These specials are then in-

terpreted by DVI drivers to do the actual drawing.

Unfortunately t p i c is a modification of PIC and can
only be distributed to licensed PIC users.

A completely different alternative for producing

drawings in I4m is to use an interactive drawing

program such as f i g or xf ig . f i g is a graphics edi-
tor originally writ ten by Supoj Sut ant havibul at t he

University of Texas. xf i g is a version of f i g writ-

ten for the X Windowing System by Brian Smith

of the Lawrence Berkeley Laboratory and others.
Both these programs output f i g commands which

can be translated using t ransf i g into EPIC, EEPIC,

PfZQX, t p i c and several other formats usable in

This is a convenient proposition for people
with graphics terminals, but graphics terminals are

not always available. Another drawback to using in-
teractive drawing programs is that they do not gen-
erally support a convenient language interface. A

language interface would allow users to write special

programs to output graphic commands when there

are many drawings to create.

The diag preprocessor provides a language sim-

ilar to the PIC language, although it is considerably
simplified. It does support variables, in& expres-

sions, relative positioning and macros similarly to

PIC. It does not presently support loops or i f state-

ments, nor does it support as many relative posi-

tioning options as PIC. It was decided that loops

and conditional statements would be most useful
for graphing mathematical functions and the au-

thor suggests using the GNUPLOT program for plot-

ting functions. The relative positioning options in

diag are fewer than those in PIC, but s a c i e n t for

most uses. The diag language is designed to be easy

to learn and is capable of producing high-quality

graphics for IP'QX documents.

TUGboat, Volume 13 (1992), No. 4 479

diag tion can be used as a default for most commands

start finish and it can be explicitly altered. The variables x and

y refer to the current position and are available to

the user.

Figure 1: Getting There

2 Using diag

The input to d iag is a text file containing d iag com-
mands. Let's suppose that we have a text file named

"exl.dn which contains the following:

S t a r t : c i r c l e " s t a r t " a t (I , I) ;

Finish : c i r c l e " f in i sh" a t (3,1) ;
arrow "diag" S t a r t . e t o finish.^;

This file contains three d iag commands. The

first two draw circles and the third command draws

an arrow from the start circle to the finish circle,

placing the word "diag" above the arrow. The words

before the colons of the first two commands are the

names of the objects. The arrow is drawn from the

easternmost point of the start circle to the western-
most point of the finish circle. We could modify

.the location of either circle and still connect the two

circles using the same arrow command.

To convert the diag commands into

commands, we use the following command

d iag < ex1.d I fig2dev -L pic tex > ex1.tex

This will produce a file, "exl.texn containing com-

mands which can be input into using

\begin(figure)

\begin(center>
\input{exl)

\end(center)

\caption(Getting There)
\end(f igure)

The resulting diagram is shown in Figure 1.

3 The Diag Coordinate System

The default coordinate system for d iag uses mea-

surements in inches. The origin of the coordinate

system, (O , O) , is defined to be the lower left corner

of the diagram. From there increasing x values refer

to points t o the right and increasing y values refer
to points u p the page from the origin.

The default scaling can be altered by assigning
a new value to the s ca l e variable which is initially 1.

Making s c a l e larger will shrink your diagram, while

making it larger will expand your diagram. It is
possible to change scale in the middle of a diagram,

but this is likely to cause confusion.

As graphics commands are executed, diag

maintains a current drawing position. This posi-

4 The Diag Language

Parsing in diag is performed by an interpreter gen-
erated using the yacc parser generator. The in-

terpreter consists of a lexical analyzer feeding the

LALR(1) parser from yacc. The two work together

to translate commands in the diag language into

equivalent f i g commands.

4.1 Diag Lexical Conventions

The lexical analyzer expands macros. ignores com-

ments and groups input characters into lexical items.

The macro expansion facility will be defined later.
The d iag lexical items are identifiers, numbers,

strzngs and the following special characters:
+ - / * () > . : ? a n d =

An identifier is a letter followed by any number

of letters or digits. Upper and lower case letters are
permitted and denote different identifiers. Several

unexpected identifiers are keywords in diag and will

most likely cause syntax errors if they are used as
variable names. These include:

e n s w ne nw s w s e

A number in d iag must start with a digit and

may have any number of digits afterwards with at

most one decimal point. Any fraction less than 1.0

must have a leading zero as in "0.5". A number can

be preceded by a minus sign.
A string is defined as in the C programming

language to be anything between a pair of quote

symbols as in "s t r ing" . It is not possible to place
a quote symbol in a diag string.

The special characters are used to form arith-

metic expressions and for a handful of special pur-
poses detailed below.

Comments in diag are identified by either a #

or % and extend from that character to the end of

the line. This allows comments to either stand alone

or to be placed on the end of a command.
An identifier in diag is either a keyword or a

variable name. A variable becomes defined either by

an assignment statement or by a graphics command

preceded by an identifier naming a graphics object.

In either case the variable name is the first element
of the command. Most commands start with one

of the command keywords defined below and every

diag command is terminated with a semicolon.

480 TUGboat, Volume 13 (1992), No. 4

4.2 Diag Statements

A diagram is defined to be one or more statements
in the diag language. Using Backus-Naur Form
(BNF), we have:

diagram + diagram statement ;
-+ statement ;

There are several types of statements in diag:

statement -+ assignment
+ drawbox
+ drawcircle
+ drawellipse
+ drawline
+ drawarrow
-+ drawtext
-+ drawarc
+ drawcurve
-+ gotostatement

4.2.1 Assignment Statement

An assignment statement is defined to be a variable
name followed by an equals sign and an arithmetic
expression. The variable will be created if it does not
already exist. The BNF for assignment statements
and expressions is

assignment + IDENTIFIER = expr
expr --+ IDENTIFIER

+ NUMBER
+ expr + expr
+ expr*expr
+ expr - expr
+ e x p r / e x p r
+ - expr

+ (e x p r)
+ IDENTIFIER . xory
+ IDENTIFIER . pos . xory

xory x 1 y

Precedence for arithmetic expressions follows
the normal pattern with multiplication and division
having higher precedence than addition and subtrac-
tion. Parenthetical expressions are evaluated first.

Boxes, circles and ellipses may be named within
diag. This is done by preceding the command to
draw an object by a variable name and a colon. Af-
terwards the object's name can be used to specify a
position. The x and y coordinates of an object can
be used in a n expression by adding either ".x" or
" . y" after the variable name.

There are eight compass point positions defined
for every named object. These can be used to specify
positions in a diagram. This can be quite convenient
compared t o computing a position like the northeast
point of an ellipse.

Figure 2: Ellipses and arrow

Object names and corner points are special
cases of point expressions in diag. A point expres-
sion can also be specified as two arithmetic expres-
sions in parentheses. Here is the syntax for point
expressions:

ptexpr + (expr , expr)
+ ptexpr + ptexpr
+ ptexpr - ptexpr
-+ IDENTIFIER
-+ IDENTIFIER . pos
-+ IDENTIFIER . ?

pos -+ n l s l e l w1 ne1 n w I s e I sw

The following code draws two ellipses and con-
nects them with an arrow:

X I = I ;

x2 = X I + 2 ;

e l : e l l i p s e "1" a t (x 1 , l) ;

e2: e l l i p s e "2" a t (x2,eI .y+1);

arrow from e l . n e t o e2.w;

The diagram is in Figure 2. The second ellipse
is placed two inches to the right and one inch higher
than the first ellipse. The arrow is drawn from the
northeast point of the first ellipse to the west com-
pass point of the second ellipse.

Sometimes the eight compass points are not ex-
actly the right points. Suppose we wish to draw an
ellipse with four circles beneath and draw arrows to
each circle. This is indicated with an object name
followed by " . ?" to indicate that diag should calcu-
late a boundary point of the object for the connect
line or arrow. This is shown in Figure 3. Here is the
code required:

sca l e = 1 . 5 ;

e l : e l l i p s e "S ta r t " a t (2 .5 ,2) ;

c l : c i r c l e "1" a t (1 , l) ;

c2: c i r c l e "2" a t (2 , l) ;

c3: c i r c l e "3" a t (3,1) ;

c4: c i r c l e "4" a t (4 , l) ;

arrow from e l . ? t o c l . ? ;

arrow from e l . ? t o c2 .? ;

arrow from e l . ? t o c3 .? ;

TUGboat, Volume 13 (1992), No. 4

Start
sentence

Figure 4: Simple sentence

Figure 3: Ellipse and arrows to circles

arrow from el.? to c4.?;

4.2.2 Drawing Boxes

A diag box is a rectangle which has sides paral-
lel with the x and y axes. A box may include a
text string placed at its center. A box may be de-
scribed by giving two corner points or by specifying
its height, width and center point. A box speci-
fied by corner points must specify two corners which
must be opposite corners for the box. The syntax
allows the keywords from and to to be optional.

A box command without two corner points
specifies a box by height, width and center point.
The predefined variables boxht and boxwid provide
convenient defaults and the current point is used for
the center if it is omitted.

drawbox + objectname box boxopts
boxopts + E

+ boxopts from ptexpr to ptexpr
+ boxopts label
+ boxopts height expr
+ boxopts width expr
+ boxopts invisible
+ boxopts at ptexpr

objectname + E I IDENTIFIER :
label -+ S T R I N G

from -+ E 1 from
to E I to
at E 1 at

Notice that a box can be invisible. This can
be useful for drawing lines between words in a parse
tree. Consider the following code and its diagram in
Figure 4:

scale = 1.5;

boxht = 0.3;

bl: box invisible width 1.5 "sentence1'

at (2,2> ;
b2: box invisible width I "subject"

at (1,l);
b3: box invisible width 1 "verb"

at (2,l);
b4: box invisible width I "object"

at (3,l);
line from bl.? to b2.?;

line from bl.? to b3.?;

line from bl.? to b4.?;

4.2.3 Drawing Circles and Ellipses

A diag circle is defined by its radius and center
point. The default for the radius is provided by
the variable "circlerad", while the center point de-
faults to the current drawing position. An ellipse is
defined similarly except that an ellipse has a ma-
jor axis and a minor axis rather than a radius. In

diag the major axis always refers to the x axis of
an ellipse and the minor axis refers to the g axis.
The defaults for the ellipse axes are the variables
"majoraxis" and "minoraxis".

drawcircle +

circleopts +

+
--+

+

drawellipse +

ellipseopts +

+

objectname circle circleopts
E

circleopts label
circleopts radius expr
circleopts at ptexpr
objectname ellipse ellipseopts
E

ellipseopts label
ellipseopts major expr
ellipseopts minor expr
ellipseopts at ptexpr

4.2.4 Drawing Lines and Arrows

There are two basic ways to draw lines and arrows.
First you can specify the start and end points for
the line. The keyword from is optional, but the
keyword to is required if the end point is specified.
The second way to specify a line is to specify the end
point, a direction and a line length. The only possi-
ble directions are up, down, left and right. The start
point defaults to the current point and the direction
defaults to right.

Text may be drawn at the midpoint of the line
or arrow. Following a text string you may option-
ally specify where to place the text relative to the
midpoint of the line. The default is to place the text
slightly above the midpoint.

Here is the full syntax for line and arrow draw-
ing:

482 TUGboat, Volume 13 (1992), No. 4

drawline +

lineopts --t

4

i

4

4

direction +

drawarrow 4

where 4

4

l ine lineopts
E

lineopts label where
lineopts from ptexpr
lineopts t o ptexpr
lineopts direction expr
u p 1 down I left I right
arrow lineopts
E 1 above I below
left I right

4.2.5 Placing Text at Arbitrary Positions

It is possible to place a text string at any arbitrary
position of a diagram by entering the string followed
by the position for the string. The keyword a t is op-
tional and the position defaults to the current posi-
tion.

drawtext -+ S T R I N G a t ptexpr
+ S T R I N G

4.2.6 Drawing Circular Arcs and Curves

There are two types of curves supported by diag.

They are both circular arcs, but they are given sep-
arate commands for simplicity. The first type of
circular arc is drawn with the arc command. It is
always a 90 degree arc in one of the four quadrants.
Such an arc is specified by starting point, quadrant
and direction. The starting point defaults to the
current point. The quadrant is specified as ur, u l ,

11 or l r to indicate upper-right, upper-left, lower-
left or lower-right. The direction is either cw or ccw

to indicate clockwise or counter-clockwise.
The second type of arc is specified by start

point, end point and curvature. The curvature is
specified by the keyword bend followed by a number
or an expression. The curvature defaults to value of
the variable curvature. In general, the curvature
should be between 0 and 1, but not very close to
either.

The bend keyword is illustrated in Figure 5. In
this figure the bend was set to 0.2. This means that
the height of the curve, h, is 0.2 times the length of
the chord c. The code to produce Figure 5 is:

sca le = 2 . 0 ;

curve c w bend 0 . 2 (1 , l) t o (5 ,1) ;

l i n e s t y l e = dashed;

l i n e "cl' below from (1 , i) t o (5 , l) ;

l i n e "hl' l e f t from (3 , l) t o (3 , 1 . 8) ;

It is also possible to place an arrow head on
the end point of a curve. This is done by placing
a greater than symbol in the command. The full
syntax for drawing arcs and curves is:

Figure 5: Curvature definition

drawarc +

arcopts +

4

+
i

4

drawcurve +

C U T U ~ O ~ ~ S --+

-i

4

4

4

i

i

arcdir --+

quadrant -+

arc arcopts
E

arcopts quadrant
arcopts arcdir
arcopts radius expr
arcopts ptexpr
curve curveopts
E

curveopts label where
curveopts >
curveopts arcdir
curveopts bend expr
curveopts f r o m p t e x p ~
curveopts t o ptexpr
CW I ccw
ul I u r I 11 I lr

4.2.7 Changing the Current Drawing
Position

There is a goto command to explicitly change the
current drawing position of diag. It consists of the
keyword goto followed by an arbitrary point expres-
sion.

gotostatement + goto p t e x p ~

4.3 Predefined Variables

There are a number of variables created by diag

which can be changed to control things like line
thickness and arrow head length. These variables
are different from user-created variables only in the
sense that they exist when diag starts and diag uses
their values for various purposes.

4.3.1 arcrad and circlerad

The arc command will draw a 90 degree arc of
a certain radius. If the radius is not specified, it
will default to the value of arcrad. Similarly the
circle command defaults to a radius of circlerad.

Both these variables are measurements in inches un-
less sca le has been changed. The initial values for
arcrad and circlerad are each 0.25 inches.

4.3.2 boxht and boxwid

The box command can be used to draw a box with
a center at a certain position. In that usage the user
can specify the height and width of the box, or allow
diag to use boxht and boxwid as default values.

TUGboat, Volume 13 (1992), No. 4

These are measurements in inches by default. The

initial value for boxht is 0.5 inches and the initial

value for boxwid is 0.75 inches.

4.3.3 curvature

The curve command allows the user to specify the

curvature using the bend keyword. If bend is not

specified, the value of curvature will be used in-

stead. The initial value for curvature is 0.2.

4.3.4 dashlength

If the linestyle has been selected as dashed or dotted,

then the variable dashlength can be set to control

the length of dashes or the spacing of dots. This is a
measurement in inches by default. The initial value

of dashlength is 0.1 inches.

4.3.5 head

The length of the head of an arrow can be controlled
by the head variable. This is a measurement in

inches by default. The initial value of head is 0.1
inches.

4.3.6 linestyle

The variable linestyle can be used to change the

line style from solid to dashed or dotted. The
initial value of linestyle is solid. The variables

solid, dashed, and dotted have the values 0, 1 and

2 matching their fig values.

4.3.7 linethickness

This variable controls the thickness of lines in pixels.

Its initial value is 5 pixels.

4.3.8 majoraxis and minoraxis

These variables are used as defaults by the ellipse

command. The x axis is always considered the ma-

jor axis and the the y axis the minor axis. These
variables represent inches by default. The initial

value for majoraxis is 0.3 inches and the initial

value for minoraxis is 0.2 inches.

4.3.9 pi

This variable has the value 3.14159 and should not

be changed.

4.3.10 scale

The default scaling of coordinates in diag is in

inches. This can be overridden by assigning a new
value to scale. Coordinates in diag are divided by

scale before translating into dot positions on the

page. This means that making scale greater than
1.0 will shrink the diagram.

5 Defining and Using Macros

The macro facility of diag is implemented as a text
replacement algorithm by the lexical analyzer. A

macro is defined by the keyword define, the name

of the macro, and its replacement text. The replace-

ment text is identified by starting and ending it with

a special symbol such as '/,.
A macro invocation is either the macro name

followed by a semicolon or the name followed by
parameters in parentheses. These parameters are

positional parameters separated by commas and are

referred to within the macro's replacement text as

$1, $2, . . ., $9. There can be up to nine positional

parameters.
A sample macro definition to define a macro to

draw three boxes centered at a given position would

be

define ThreeBoxes #

box at ($1-boxwid, $2) ;

box at ($1 ,$2) ;

box at ($l+boxwid,$2) ;

This macro be used to create a three by three
arrangement of boxes using

p = 2;

ThreeBoxes (3, p) ;

ThreeBoxes (3, p-boxheight) ;

ThreeBoxes (3, p+boxheight 1;

A Larger Diagram

this section a diagram is shown of an array

pointers to structures containing pointers and
names. This is a reasonable example for illustrat-

ing macros. The code for this example is split up

into several sections along with some explanation.

The diagram is shown in Figure 6.
First there is a macro to draw a NULL pointer

to the right of some of the array elements. This

macro uses the variable bw to determine how long

the constituent lines should be.

define Null %
line right bw * 1.0;
line down bw * 0.15;
X = x;

Y = y;

line (X-0.2*bw,Y) to (X+0.2*bw,Y);

line (X-O.I25*bw,Y-0.05*bw)

to (X+o.l25*bw ,Y-0. O5*bw) ;

line (x-0.05*bw,~-O.l*bw)

to (X+O.O5*bw,Y-O.l*bw);

%

Next there is a macro to draw a box and then
move down bw inches. This macro draws the box

484 TUGboat, Volume 13 (1992), No. 4

-

, Bob \ Bea
-

I A \

Figure 6: Symbol Table with an Auxiliary Linked
List

at (xi, y1) and then modifies y1 to prepare for the
next vertical box.

define Vbox %
box (xi ,yi) to (xl+bw,yi-bw) ;

yi = y1 - bw;
goto (xl+bw/2, yi+bw/2) ;

%

Similarly there is a macro to draw a horizontal
box at (xi,yl) and move to the right bw inches.
This macro is used to draw structures containing
three boxes. In the struct macro each Hbox is given
a name to make it easy to connect the components
later. The first parameter of struct is the prefix
for the names of the boxes. The middle box is given
that name and the others are given that name with
an added 1 or r.

define Hbox %
box $1 (xi,yl) to (xl+bw,yi-bw);

xi = xi + bw;

define struct %
x1 = $2 - bw * 1.5;
yi = $3 + bw * 0.5;
$11: Hbox;

$1: Hbox ($4 ;

$ir: Hbox;

%

Now begins the first non-macro code. First the
variables xl, y1 and bw are initialized and then the

array of pointers to records is drawn along with sev-
eral null pointers.

scale = 1.8;

xi = 1;

y1 = 4;

bw = 0.6;

Place the array of record pointers

on the left.

A: Vbox;

B: Vbox;

Null ;

C: Vbox;

Null ;

D: Vbox;

E: Vbox;

Null ;

F: Vbox;

Null ;

G: Vbox;

H: Vbox;

Next the variable bw is shrunk to make slightly
smaller boxes and then the structures are drawn.
After the structures on a row are drawn, connecting
arrows and null pointers are drawn.

bw = bw * 0.8;

Add the 'B' records

struct(s1,3.25,A.y,"C\small Bob");

struct(s2,5.5,A.y,"C\small Bea");

arrow from A to s1l.w;

arrow from slr to s21.w;

goto s2r;

Null ;

Add the 'J' records

struct (s3,3.25,D. y, "(\small Joe)") ;

struct(s4,5.5,D.y, "{\small Jan)") ;

arrow from D to s31.w;

arrow from s3r to s41.w;

goto s4r;

Null ;

Add the 'S' records

struct (s5,3.25, G. y, "I\small Sue)") ;

struct (s6,5.5,G.y,"{\small Sam)") ;

arrow from G to s51.w;

arrow from s5r to s61.w;

goto s6r;

Null ;

TUGboat, Volume 13 (1992), No. 4 485

Add the 'T' record

struct(s7,3.25,H.y,"C\small Tom)");

arrow from H to s71.w;
goto s7r;

Null ;

Finally we add a collection of dashed arrows
and curves to indicate another linked list comprising
the same set of records.

Add auxiliary linked list pointers

linestyle = dashed;

arrow from sll to s31.n;

goto s31;

line down bw;

arc 11 ccw;

line right s4 .x-s3 .x-2*arcrad;

arc lr ccw;

arrow to s41.s;

arrow s41 to s21.s;

ya = (s2.y+s4.y) / 2;
yb = (s4.y+s6.y) / 2;
curve ccw bend 0.1 from s21

to (s4r.x,ya);

curve cw bend 0.4 to (s4r.x,yb);
curve > ccw bend 0.1 to s61.n;
curve > ccw bend 0.2 from s61 to s51.n;
arrow from s 5 1 t o s71.n;

goto s71;

line down bw*1.5;

X = x;
Y = y;

linestyle = solid;

line (X-0.2*bw,Y) to (X+0.2*bw,Y);

line (X-0.125*bw,Y-0.05*bw)

to (X+O. l25*bw ,Y-0 .05*bw) ;

line (X-0.05*bw,Y-O.l*bw)

to (X+0.05*bw1Y-O.l*bw);

7 Possible Additions to the Language

The most obvious features missing from the lan-
guage are conditional statements and loops. These
would clearly be useful, but are not critical for the
anticipated uses of diag.

If diag needs conditional statements and loops
at some future date, it is likely that procedures
would also be added. The current implementation
uses macros which look like procedure calls, but they
use global variables. There is no such thing as a
local variable and using macros which manipulate
variables is a hazard. Procedures would eliminate
this problem.

Another possible improvement to diag would
be to use the ".?" positioning operator with the
curve command. This would be relatively easy to
implement and could be useful for some diagrams.

It would be useful to draw and fill polygons.
This is supported by transf ig and would be easy
to add to diag. Another feature supported by
transfig which could be added is a spline draw-
ing command.

There are many more features which could be
added to the diag language. The author selected the
most basic commands for the first version of diag.
It is anticipated that the language will grow as needs
arise.

References

[I] Micah Beck, TransFig: Portable Figures for
TEX, Cornell University Dept. of Computer Sci-
ence Technical Report #89-967, February 1989.

[2] Brian W. Kernighan, PIC - A Graphics Lan-
guage for Typesetting, Bell Laboratories Com-
puting Science Technical Report 85, March
1982.

[3] Donald E. Knuth, The 7&Xbook, Addison-
Wesley, 1986.

[4] Conrad Kwok, EEPIC: Extensions to EPIC

and Picture Environment, Software doc-
umentation, University of California, Davis,
Dept. of Computer Science, July 1988.

[5] Leslie Lamport, l8W: A Document Prepara-
tion System, Reading, Mass.: Addison-Wesley,
1986.

[6] Joseph F. Osanna, NROFF/TROFF User's
Manual, Bell Laboratories Computing Science
Technical Report 54, October 11, 1976.

[7] Sunil Podar, Enhancements to the Picture En-
vironment of U r n , State University of New
York at Stony Brook, Dept. of Computer Sci-
ence, Technical Report #86-17, July 1986.

[8] Michael Wichura, The P- Manual, Univer-
sity of Chicago, November 1986.

o Benjamin R. Seyfarth
Department of Computer Science

and Statistics
The University of Southern

Mississippi
Southern Station
Box 5106
Hattiesburg, Mississippi

39406-5106

TUGboat, Volume 13 (1992), No. 4

Book Reviews

Review of: for the Beginner

Victor Eijkhout

Wynter Snow, T)$ for the Beginner. Addison-
Wesley, 1992. xii + 377 pp. + index (23 pp.) ISBN

0-201-54799-6.

The spectrum of books about TEX has been
broadened by another beginner's book about plain
l&X: with Introduction to (Norbert Schwarz;
Addison-Wesley, 1990), A Beginner's Book of TJ$
(Etaymond Seroul and Silvio Levy; Addison-Wesley,
1991) and by Example (Arvind Borde; Aca-
demic Press, 1992) there is now for the Begin-
ner by Wynter Snow.

In contrast to the Seroul and Levy book, which
is somewhat academic in style, this book has a very
chatty style that is both its strong and its weak
point. The author has a lively style of writing and
uses rather unorthodox metaphors for W ' s be-
haviour (did you know that macros come in meat-
and-potatoes and jelly-doughnut varieties?), which
in general are quite illuminating.

For instance, the fact that lines are spaced at
\baselineskip distance is described "as if TEX has
a ruler exactly \baselineskip long that it uses to
decide where the next shelf should go", which is a
good way of putting it. Sometimes, however, too
much American cultural background is needed. For
instance, I think I understand what is meant by
"back in grade school" (page go), but I'm not sure
what is meant by "a taffy-like substance" (page 97).
Considering how international the community
is, this point is not without significance.

1 Structure of the book

T&$ for the Beginner is divided in five parts. The
first two parts are about the basics of using TEX. In
particular the first part is very practically oriented:
there are tips for people using word processors who
dump their file in ascii mode, and there are instruc-
tions for people using the Macintosh implementation
of QX, Textures.

Part I11 is the longest and probably the most
useful. Its sixteen chapters explain TEX commands
and give macros for the most common things that
you do in m. Part IV is about advanced topics
such as boxes and rules, and it has a short chapter

about more theoretical aspects of T@L Part V is

about 'Bug Diagnosis7 and has two appendices.
The book's index contains both the concepts

and control sequences that were treated in the book
itself, as well as the primitives and plain
control sequences that have to be looked up in The
'IJ~Xbook. The latter kind simply do not have page
references. This makes sense: if you are trying to
decode someone else's macros it tells you that some-
thing is a primitive or part of plain TEX (and you'll
have to consult another book), and it can prevent
you from redefining such commands.

Although the division in parts globally makes
sense, on a detailed level the organization is some-
what messy. For instance, the chapter 'Adjusting
awkward line breaks' is in part I among the basics,
while 'Adjusting awkward page breaks' is in part IV
with advanced topics. Also, the 'actor model', the
author's metaphor for m ' s workings, is introduced
in a chapter called 'Getting a printout'. While its
place is logical in the course of the exposition, it
makes for awkward referencing.

2 Who is this book meant for?

Among the books that aim to be for the begin-
ning m e r , this book presents the most basic in-
formation, including tidbits that are specific to cer-
tain computers. The discussion is clearly for people
wanting to learn plain TE)C, but there are so-called
' U ~ notes', which can function both to point the
plain TJ$X user to corresponding concepts in I P W ,
and to help the I P W user make a transition to plain
m. They are not enough to learn UTJ$ from. Too
often they tell the reader that the whole of a chapter
cannot be used in L P m .

Another concept that will help the beginner is
that the author identifies a few dozen bugs, which
are clearly marked in the text, and referenced in the
index. They have been given names with varying de-
grees of helpfulness, ranging from the 'Disappearing
footnote bug' to the 'Cart before the horse bug'.

3 Level of complexity

Since this is a beginner's book, some topics are only
touched on lightly. The author advises the reader to
write lots of macros (and gives many examples) but
real TE)C programming is never done: the control
sequences \edef and \expandafter don't appear in
the book.

Similarly, there are chapters about headers and
footers and about (stationary and floating) figures,
but \output is not mentioned.

TUGboat, Volume 13 (1992), No. 4

4 Layout

Unfortunately, I cannot say much positive about the
looks of this book. The author uses a liberal amount
of white space around examples and list items, the
text has a ragged right margin, and the output of the
examples is indented to a different margin than the
input code. All together it swims before my eyes.
In addition to changing from roman type to type-
writer for the examples, the author uses Computer
Modern Sans Serif type for the bugs and the IN&$
notes. This only adds to the confusion. The fact
that headings are underlined with a page-wide rule
makes the pages look only slightly more structured.

The back cover of this book appears to use
the Computer Modern type, and it has plain 'T)5i7s
extended spacing after punctuation, but strangely
enough the and logos do not have any of
their characteristic back kerning, and ligatures are
missing. Let's say the front cover makes up for the
back.

5 But are there jokes?

Snow has a lively imagination in coming up with
novel analogies for W ' s workings, and that defi-
nitely makes this book amusing to read. And if the
author has ever been teased about her name, she cer-
tainly hasn't suffered from it: the parts of the book
have ski-oriented titles ('Onto the slopes', 'Down we
go7), and the kont cover shows lion cubs throwing
snowballs and building a snow man in the likeness
of the lion.

6 Evaluation

for the Beginner goes easy on the theory of
TEX, and instead takes the reader by the hand,
showing in a practical way how to get the work done.
The explanations are enough to give a beginning
'IjEX user a basic understanding, but are often not
100% accurate. For instance, the statement 'The
primitives \csname and \endcsname take a string
of characters and convert it into a control sequence7
and its clarification in a footnote '\csname converts
a token list into a control sequence' are both slightly
off: in between \csnane and \endcsname all tokens
are expanded (so unexpandable tokens are not al-
lowed) until only character tokens remain, then a
control sequence is made out of these.

However, I haven't found any real errors in the
book.

If the explanations can best be characterized as
'adequate', similarly the macros in part I1 get the
user under way, but they are not complete. For in-

stance, chapter 16, 'Obeying lines and spaces: verse
and computer code' does not give macros for a true
verbatim mode, so the computer code that can be
handled is rather limited. (The examples are in the
language Logo, and don't use special characters such
as the caret, which appears in Pascal, or braces,
which occur very often in C.)

More surprising, chapter 17 about headings
never mentions \nobreak to prevent a page break
between a heading and subsequent text. A \Ti t le -
Section example in the chapter about headers and
footers does incorporate a \nobreak, however, with-
out drawing attention to it.

In general, though, the examples cover a lot of
territory, and they do so with a good explanation.

Snow introduces some non-standard terminol-
ogy ('giving a reporter an input' instead of 'giving
a parameter a value') which may make the transi-
tion to more advanced TEX literature harder for the
reader. Since the terminology is used consistently
I don't have too much of a problem with it.

In all, this book is a useful addition to the
library. It is well written and contains many practi-
cal examples. Readers who would like to learn lJi$
in a linear, incremental way, should definitely check
out this book.

0 Victor Eijkhout
Department of Computer Science
University of Tennessee at

Knoxville
Knoxville TN 37996-1301
Internet: ei jkhoutQcs .utk. edu

Review of: TEX by Example: A Beginner's
Guide

George D. Greenwade

Arvind Borde, QjY by Example: A Beginner's
Guide. San Diego: Academic Press, 1992. xiv + 169
pp. ISBN 0-12-117650-9. $19.95.

Arvind Borde's QjY by Example: A Beginner's
Guide is very obviously a labor of love in introduc-
ing new users to the world of - or the result of
the frustration associated with having to repeatedly
explain commonly-used formatting commands to
one's colleagues. Since it is noted that the book

TUGboat, Volume 13 (1992), No. 4

represents a significantly expanded version of the
author's widely-distributed An Absolute Beginner's
Guide to Using rn (1987), either of these motiva-
tions is possible as a non-unique factor. The text
utilizes a practical and visually appealing side-by-
side layout, making Borde's book one of the most
useful introductory primers on the market for virtu-
ally any language. Notably, most of this is achieved
without the employment of extensive macros; how-
ever, where non-standard T@ or author-written
macros are employed, it is liberally noted.

Does this place rn by Example in the 5ntro-
ductory" class of rn materials? Very decidedly
so! However, readers should not make the mistake
of placing this innovative text in the "introductory-
only" class of m materials. Indeed, in the case of
!&X by Example it is not wise to limit the reader-
ship even to a " m - o n l y " audience as users of any
derivative of ~ - I P I $ j X , A M S ~ , REVTEX,

eplain, . . . -can benefit from the information and
examples contained in it by reviewing the underlying
command structure used in a "plain" rn environ-
ment to generate various outputs. Since derivatives
may or may not be fully compatible with all aspects
of "plain" T@, the examples may not be directly
applicable, although the concepts certainly provide
an acceptable template for extensions.

The real beauty of !Q@ by Example lies in
its design. From the beginning of the text (p.
vi) to the end (p. 91), each right-hand side (RHS)
page is 'l&X output, covering properly-formatted
topics from poetry, to philosophy, to physics, to
mathematics, to the game of cricket, to just about
anything else - even m .

Each facing left-hand side (LHS) page includes
two very important components. First, the actual
m input code which created the m output
on the RHS facing page is provided verbatim.
Therefore, a very quick reference tool is at the
fingertips of the reader -if you see what you want
the final output to look like on a RHS page,
just look directly to the facing LHS page and
the necessary m code to generate this output is
immediately available. Second, the LHS input pages
are marvelously documented in a series of footnotes
which generally explain some of the differences
available to users, as well as how the structure of
the input can impact the ultimate output. If a topic
has been covered previously, the reader is usually
provided at least a hint where to look earlier in the
text for its previous discussion.

Additionally, by Example includes at least
two other components of interest. First, following
the text of the book (pp. 91-159) is a relatively

comprehensive alphabetical Appendix, which serves
as both an index of topics and a glossary of
commands. It is fashioned very much after The
Permuted Index of Commands. Admittedly,
this is not the best way to learn a language;
however, many basic aspects of are explained
throughout this Appendix. Also, the Appendix
serves as a good quick reference which can be used
in concert with other manuals. The reader can
easily look for a topic, such as "equation numbers"
and be pointed to examples from within the text, as
well as related commands. Alternately, the reader
can just as easily look for a Tj$ command, such
as "\medbreakn, and find an explanation of that
command's use. A very important dimension of
the glossary of commands is the clear identification
of TkX primitives, as compared to m composite
commands or command macros utilized directly in
the production of the book.

Second, Borde has been generous enough to

include virtually all of his macros used in by
Example for use by the reader and public at large.
The major command macros are referenced on page
136 of the Appendix, which points the user to their
use and first appearance in the text. One of the most
intriguing commands defined by Borde is \f ermat.
This command tackles Pierre Fermat's generally
accepted "theorem", making necessary calculations,
then reporting the result. The insights from this
reveal m ' s usually-undiscussed capability as a
programming language.

The book ends with its Epilogue. The Epilogue
includes the major layout commands used by Borde
in his creation. The complete macros used in the
text appear here. Readers can easily copy them
for their own use, selectively use them as templates
for their own macro sets, or merely refer to them
for some of the tricks Borde employs (such as the
side-by-side layout with accompanying notes). If
the reader doesn't wish to type in the text of
these macros, they have been made available from
most major m - r e l a t e d archives for electronic mail
retrieval or access through anonymous ftp, or, in the
absence of an electronic link, the files are available
on diskette.

In summary, users at all levels of =-related
processing languages ought to have this innovative
guide handy. While covering a wide array of top-
ics, the general tone of the text is very reader
friendly, which allows it to serve as a remarkable
beginner's guide, per its title. However, its compre-
hensive overview of usage, meaning, and structure
is invaluable to users at all levels, making it a

TUGboat, Volume 13 (1992), No. 4 489

very powerful reference guide to complement the
standard manuals for your favorite flavor of m.

References

Arvind Borde, An Absolute Beginner's Guide to Us-
ing T$jY, informal report (prepared for the Syracuse
University Relativity Group), 1987.

Bill Cheswick, A Permuted Index for T$jY and
JAW, Providence, TEX Users Group, m n i q u e s .
No. 14, 1991.

o George D. Greenwade
Department of Economics and

Business Analysis
College of Business Administration
P. 0. Box 2118
Sam Houston State University
Huntsville, TX 77341-2118
bed-gdgBSHSU.edu

Review of: Desktop Publishing in Astronomy
& Space Sciences

A. G. W. Cameron

Andr6 Heck, ed., Desktop Publishing in Astronomy
& Space Sciences. Singapore: World Publishing Co.
Pte. Ltd., 1992. ISBN 981-02-0915-0.

These are the proceedings of a conference
held on 1-3 October 1991 at the Astronomical
Observatory, Strasbourg, France. This meeting
was organized by Andre Heck, who edited the
proceedings. The book was produced in record
time: I am writing this review in September 1992.*

The authors of the individual articles prepared
them in camera-ready form, most of them using
7QX or I4W. However, I am afraid that the
resulting product is not a publishing work of beauty.
The instructions to the authors were to prepare a
manuscript at 12 points with a baselineskip of 14
points, and I presume that the hsize was 6.5 inches
and the vsize was 9 inches. But as published the
hsize was 4.6 inches and the vsize was 6.5 inches.
With this reduction I had to use a magnifying glass
to read some of the abstracts, which were prepared
at less than 12 points, and if the original text was

* Editor's note: The review copy was received
at the TUG office in June 1992.

less than 12 points I usually had to use a magnifying
glass for that too. There is a name index but no
subject index. Despite these problems this book is
well worth the attention of TJ$ devotees.

The articles on TJ$ and I P W will contain
no real surprises for readers of TUGboat, as they
could have appeared in the proceedings of the
TUG annual meeting for 1991 which was devoted
to publishing. The leading journals in astronomy
and astrophysics are now encouraging manuscript
submission in m or IPT)jX. For me the fun part of
the book was in reading what those who do not use

had to say. Some of the time it was clearly due
to ignorance. For example, J. 0. Breen gave a talk
which was an undiluted advertisement for the Apple
Macintosh and the wonderful software that can run
on it, including this gem: "equation editors such
as Prescience's Expressionist and Design Science's
MathType, create typeset equations to be pasted
into scientific and technical papers." Mr. Breen is
not an editor, nor is he a publishing astrophysicist
as far as I can discover.

Mr. Breen prefers to create manuscripts using
Wordperfect 5.1, as do a couple of other contrib-
utors, and output examples of this word processor
are on display. TEX users can justifiably feel smug
and optionally can wear a condescending sneer.
WP 5.1 has terrible internal spacing in its equations
and displays extremely loose lines, showing far too
much white space. The other n o n - W contributors
do not identify their output programs, but their
contributions give good illustrations of why desktop
publishing acquired a bad name in its early stages.

There was a significant amount of discussion
about how the software should evolve. There was
clearly a desire on the part of some people that a
wider selection of fonts should be readily available
with m. For example, publishers frequently would
like to use Times Roman; at least one of them
converts to Times after receiving a compuscript in
Computer Modern, but others are clearly prepared
to use Computer Modern. I was surprised to
find essentially no discussion of scalable fonts; for
some time now I have been using such fonts in
conjunction with Vector TEX from Micropress,
and I don't know how I ever got along without
them previously. People would like to have better
graphics facilities to use with m, either as a
language facility incorporated into W, or a more
convenient way to merge Postscript into a 'l&X file.

There is a general expectation in the astronom-
ical community that on-line electronic publishing
will have a rapid growth in the near future. Edi-
tors clearly intend to subject papers for electronic

490 TUGboat, Volume 13 (1992), No. 4

publication to a standard refereeing process. But
what format should such papers have? Since people
will want to be able to print copies of particular
papers, formatting in T)$ becomes a leading pos-
sibility. Such papers could then be passed through
a standard w i n g process and printed, or they
could be read after processing through a l&X screen
previewer. However, there was additional discus-
sion about how one could create electronic archives
consisting of large data bases of electronic papers.
Would 'I)$ help in the archiving and accessing
processes?

It has been very interesting to read a book
about desktop publishing in which W is the
leading contender, rather than being out of sight
among the packages that allow you to produce fancy
newsletters. But the growth of desktop publishing
software packages has been so rapid that it is
clear that must make good use of the new
emerging technologies if it is to maintain its leading
position among astronomers and other scientific
users. Despite its faults of presentation, the book is
recommended.

o A. G. W. Cameron
Harvard-Smithsonian Center for

Astrophysics
60 Garden Street
Cambridge, MA 02138

1 Typesetting on PCs 1
'I'EX-386 implementations for IBM PCs:
Comparative timings

Erich Neuwirth

Timing tests were performed on several implemen-
tations of 'TEX for IBM PCs (and compatibles).
All currently available 386-specific implementations
were tested. Additionally the latest available ver-
sions of e m w for other processor classes were
tested. Since the last published benchmarks used
sb'I)$ in the 8086 version as the standard the latest
version of this implementation was also included for
reference purposes. P C W as the most widely
used commercial implementation of 'I)$ for PCs
was used in its 8086 flavor for the same reason.

These were the tested versions:

S B m 3.8
e m w 3.0 [3a]
e m m 2 8 6 3.0 [3a]
b i g e m w 3.0 [3a]
b igemm286 3.0 [3a]
P C m 3.14
e m W 3 8 6 (beta8)
m a s 1.0
P C m 3 8 6 3.14
BigPCW386 3.14

The files used for testing were the same as in the
previously published series of benchmarks:

0 Text1 is The w b o o k . * It is 494 pages long.
Text2 is a mathematical paper which needs
I4m and qC?jEX, so it really uses lots of
memory. The document is 11 pages long.

0 Text3 is a book of solutions for a college
mathematics textbook. It consists almost
completely of formulas and there is almost
no text. It is among the most complicated
l&X files I have ever seen. It uses I4w and
additionally the msxm and msym fonts from (old)
A M S - W . The document is 40 pages long.
Text4 is the demo file for M u s i c m , which is
a rather large macro package for typesetting
music. The document is 2 pages long.

0 Text5 is Michael Wichura's original paper from
TUGboat 9, no. 2, describing PICI'EX. It
makes extensive use of macros and also
uses rather large data sets for the graphics.
Additionally it uses the TUGboat macro files
(in a stripped down version). The document is
10 (narrower than a page) columns long.

0 Text6 is Barbara Beeton7s review and the
Boston Computer Society mathematical text
processor benchmark from TUGboat 6, no. 3.
It (naturally) contains complicated formulas
and uses the TUGboat style. The document is
4 pages long.

Table 1 shows the times associated with the tests.
The following special events occurred during

the benchmark:

(1) capacity exceeded, program stopped.
(2) Michael Wichura's article could only be

run in one column mode with non-386 versions
of m having standard T)$ memory.

* The file for The w b o o k used with permission
of the American Mathematical Society.

TUGboat, Volume 13 (1992), No. 4

If we take e m m 386 as the base for a

comparison of performance, we get relative indices

of performance as shown in Table 2 (a low value

indicates fast performance).
All these benchmark runs were performed on a

50MHz 486 DX2 machine with MSDOS 5.0 installed.

All programs were run with QEMM-386 installed

giving 600KB free main memory and either 7Mb
of extended memory or 7Mb of simulated expanded

memory.
When using 386 machines most people do not

run just plain MSDOS. Additionally in most cases
multitasking environments are used. Since all 386

Table 1. Test times

Textl Text2

2:39 (1)

2:50 (1)
2:43 (1)
6:20 0:27

6:OO 0:26
3:11 0:15

1:41 0:09
1:49 0:15

1:44 0:lO

1:48 0:lO

Table 2. Relative performance

Textl Text2

1.57

1.68
1.61

3.76 3.00

3.56 2.89
1.89 1.67

1.00 1.00

1.08 1.67

1.03 1.11

1.07 1.11

specific m implementations are using some sort of

DOS extender it is important to know which version

of TEX will be compatible with which multitasking
environment. Experience has taught us that one

must be very careful when using multitasking en-
vironments. Therefore some additional tests were

performed. All tested implementations of TEX were

run under DesqView 386 and under Windows 3.1
in standard and in enhanced mode. To reduce the

number of runs only text3 (being a very complicated
document) was used for this test.

Table 3 gives an overview of timings and of

compatibility problems.

Text4

0:lO

0:lO
0:lO

0:24

0:23
0:12

0:08
0:12

0:08

0:08

Text 4

1.25

1.25

1.25

3.00
2.87

1.50

1.00

1.50

1.00

1.00

0:18 (2)

0:18 (2)

0:18 (2)

0:40

0:39
0:23

0:13

0:20
0:15

0:16

Text 5

1.38

1.38

1.38

3.08

3.00
1.77

1.00

1.54

1.15
1.23

Table 3. Test times and compatibility with Windows and DesqView

DesqView 386

(3)
0:36

0:34

6:37
6:24

0:56

0:23

0:33

0:25
0:26

Windows standard

(3)
0:34

0:34

5:40

5:30
1:22

3:38

(4)

(6)

(6)

Windows enhanced

0:33
0:35

0:33

2:29

2:20

0:54

(5)
0:32
0:24

0:25

492 TUGboat, Volume 13 (1992), No. 4

The following problems occurred during the

tests:

(3) Program started, but not enough memory to

compile document.

(4) Loader failed (DOS4GW)
(5) DPMI not supported

(6) Insufficient physical memory available

This table clearly shows that none of the

available implementations of rn for 386 PCs under

DOS can run in both variants of Windows: e m w

cannot run in enhanced mode, and P C w 3 8 6
and m a s cannot run in standard mode. Since

Windows only functions as a full multitasker for

DOS tasks in enhanced mode, running a 386-7&X

for this configuration can be accomplished only
with P C W and W a s . When using DesqView all

three 3 8 6 - r n implementations will work, but only

standard mode Windows will be available, because

DesqView and Windows enhanced mode cannot be

run concurrently.

Other implementors are invited to provide

copies of their implementations to be run through

the same tests, the results to be reported in a future
issue of TUGboat. I am willing to accept hints

and suggestions from the implementors about how
to make the tests run as efficiently as possible. I

am also willing to send out any files which cause
problems and rerun the tests after the problems

have been solved.
This test would not be what it is without

valuable advice and some test files from Barbara

Beeton.

o Erich Neuwirth
Institute for Statistics and

Computer Science
University of Vienna
UniversitatsstraDe 519
A-1010 Vienna, Austria
Internet: a4422dabQVM. UniVie . AC . AT

/ F O R YOUR 'I)ijX TOOLBOX FOR YOUR BOOKSHELF

C A P T U R E

Capture graphics generated by application programs.

Make LaserJet images compatible with T#. Create
pk files from pc l or pcx files. $135.00

texpic
Use texpic graphics package to integrate simple

graphics-boxes, circles, ellipses, lines, arrows-into

your documents. $79.00
Voyager

Tj$X macros to produce viewgraphs-including bar

charts-quickly and easily. They provide format, in-

dentation, font, and spacing control. $25.00

TjjX B Y EXAMPLE NEW!

Input and output are shown side-by-side. Quicltly

see how to obtain desired output. $19.95
?JE;Y BY T O P I C NEW!

Learn to program complicated macros. . . . $29.25

TjjX F O R T H E IMPATIENT

Includes a complete description of 'QX's control se-

quences. $29.25

F O R T H E BEGINNER NEW!
A carefully paced tutorial introduction. . . $29.25

BEGINNER'S BOOK O F TjjX

A friendly introduction for beginners and aspiring

"wizards." $29.95

[Mtl Micro Programs Inc. 251 Jackson Rve. Syosret, NY 11191 (516) 921-1351

TUGboat, Volume 13 (1992), No. 4

Warnings

Solution to the puzzle from TUGboat 13#2:
Where does this character come from?

Frank Mittelbach

Puzzle:

If some complex macro defined by you
produces funny extra characters like
"R" or "ae" in the output, what kind of
mistake could be the reason?

After the above puzzle was published several people
sent me their solutions and they all thought of prob-
lems that I didn't have in mind when I was writing
this short article.

Indeed, it is possible to sometimes get a weird
character at the end of an input file, namely 'd.
This is a control-Z (-Z), the old end-of-file marker
from the DOS operating system. This character
once marked the end of a file but is obsolete with
newer versions of DOS. Nevertheless, many editors
and other programs still write such a mark at the
end of a file, and when such a file gets transferred
to another operating system the character suddenly
becomes a n ordinary source character, namely the
character in position 26 of the current font. You
can try this, by typing ^ - Z in a document (the dou-
ble hat is W ' s notation for a control character). In
principle, any character may show up in your doc-
ument due to incorrect transfer protocols between
different operating systems, but the 'ae' is probably
the most common one. In an earlier TUGboat Bar-
bara Beeton discussed the sad story of --M behaving
differently on different rn installations due to o p
erating system differences [BB88].

But I wasn't thinking about file transfer prob-
lems. I was talking about macro definitions that
all of the sudden produce additional and undesired
characters. So here follows my original answer:

The above riddle comes from some real life ex-
perience during the implementation of a complex
macro for I 4 W 3 . One evaluation of this macro
under \ t r a c i n g a l l results in more than 700 lines
of trace information which made debugging this
way somewhat unattractive. Eventually I found the
source of these extra characters to be an innocent
\voidbQx which I had forgotten to remove after
changing parts of the code.

For those who never heard of this name, a short
explanation: \voidb@x is a symbolic name for one of
the 256 internal box registers of m. It is declared

in the p l a in . t ex format and, as the name suggests,
should always be void, i.e., it's a constant. These
symbolic names are declared with a function called
\newbox(box) that allocates for (box) a new unique
box register that later on can be referred to via this
name, e.g.,

\setbox(box) = \hboxC . . .)
For other types of registers in there exist simi-
lar functions to create symbolic names; for example,
\newcount(cnt) makes (cnt) a symbolic name re-
ferring to some unique internal integer register. But
the \newbox command is somewhat special. The use
of (box) declared with it does not mean "use the box
register that I represent"; instead it means "typeset
the character whose number corresponds to the box
register I represent". Only when (box) is preceded
by a "box" command (like \setbox, \unhbox, etc.)
is it interpreted as a box register. Therefore, a (box)
out of sequence silently typesets some character in
the current font; in such a case it is equivalent to

\char(no of the register (box) represents)

This is a speciality of \newbox; all other types of
symbolic names are always interpreted as referring
to an internal register. For example, a (dimension)
declared with \newdimen which is used out of se-
quence will be interpreted as an assignment to
the dimension register and the following tokens are
scanned for a dimension. This will usually result
in an error, but if one is unlucky enough (e.g., if
a dimension follows) one will get an equally weird
behavior.

So far, I have explained this problem as a plain
rn problem. but actually the same might happen
to a UTj$ user who declares a "save-box" with
\newsaveboxC(box)) and later on uses (box) but for-
gets to call it via the \usebox command. The second
weird character in the puzzle above was generated
this way by saying

From this we can deduce that \newsavebox allo-
cated box register 27 for \errorbox since this is the
font position for "a? in the Computer Modern fonts.

References

[BB88] Barbara Beeton. Controlling cctrl-M>.
TUGboat 9(2):182-183 (August l988).

Frank Mittelbach
Electronic Data Systems (Deutschland)

GmbH
Eisenstraae 56 (N15)
D-6090 Riisselsheim
Federal Republic of Germany
MittelbachQmzdmza.zdv.Uni-Mainz.de

TUGboat, Volume 13 (1992), No. 4

Macros

The bag of tricks

Victor Eijkhout

G7day, my friends in TEX. Today I want to address

two slightly W n i c a l points. The first is the prac-

tical issue of how to format macros, the second is in

response to comments from readers.

1 How to lay out a macro

If you write macros that will sooner or later be given

to other people, you may want to be particularly
careful about your style of writing. The way you

write a macro should bring out its structure. If

you ever wonder 'now, where is the closing brace

for this box' in your own macro, consider it an in-

dication that other people will have trouble reading

that macro too!
Here are some guidelines, distilled from my ex-

perience, and from looking at the style of format-

ting in TUGboat. The examples are all taken from

TUGboat with spacing and line breaking intact. Al-
though all illustrate the general principle, their style

still differs in detail.

1.1 Align for readability

Recognize when things are 'on the same level' and
align them vertically. For example,

1.2 Indent for readability

Look for 'levels' in your input, and give the next

level more indentation. For instance, indent nested
definitions:

or (a particularly neat effect by using four spaces):

Indent the material in a box:

\def\EnvMakeBox#1#2{

\setbox#l\vboxC

\par indent Opt

Indent statements that have to be broken because

they are too long:

\expandaf t er\expandaf ter

\expand& ter#l%

\expandafter\expandafter

\expandafter#3\expandafter#3#4

Do you wonder about the percent sign after #1 and
the lack of one on the last line? The first one is nec-

essary to prevent an unwanted space in the middle
of a statement. There is no percent sign necessary

at the end of the whole statement because the au-
thor apparently knows that this statement will be
executed in a place where spaces are ignored. See

the next section.

1.3 But what about all those spaces?

I have met people whose experiences with unwanted

spaces were so traumatic that they didn't indent

their macros any more, and didn't put spaces in
them either. This is unnecessary, and sometimes

even dangerous. Here are some rules.'

0 Spaces at the start of a line are irrelevant, and

0 a space or a line end after a control sequence is

irrelevant. This point and the previous are true

unless a macro such as \obeyspaces appeared
earlier. On the other hand,

0 A space or a line end after a control symbol,
that is a backslash followed by anything but a

letter, for instance \I , is relevant; this is not

true for control space: \u.

Multiple spaces are almost always equivalent to

just one space.

0 Spaces are a good idea after a number, but be
careful, not all numbers are numbers. For in-

stance, you want a space (or a line end) after

This is no attempt at explanation, and these

rules are not 100% accurate either.

TUGboat, Volume 13 (1992)' No. 4

\pageno=13, \box37 or \ifodd42, but not af-
ter \multispan5, \magstep2 (\multispan and
\magstep are macros with one parameter), or
I (neither in the definition parameter text or
the body of a macro).

There is more to this number business; for in-
stance, after control sequences that expand to num-
bers you sometimes want to place \ re lax analogous
to the space after a genuine number. But this would
be taking us too far.

1.4 When is a space not a space?

Sometimes a macro can contain spaces in the in-
put that are relevant, but that you don't care about
anyway. This happens if that macro or some part of
it will occur in vertical mode. If is in vertical
mode it ignores spaces. Thus, if you write

\hbox{
\ T i t l e

3

you get an unwanted space after the opening brace,
but not in

\vboxC
\noindent\Tit le

1

because Qi$ starts vertical boxes in vertical mode.
(Makes sense, doesn't it?) Similarly, often you know
that a part of a macro will be in vertical mode:

After the \par is in vertical mode, so the space
after the \hbox is irrelevant.

In general it is advisable to put comment signs
at line ends only if a space there can find its way
into the output. If the space is guaranteed to disap-
pear, as in the above examples, an extra comment
sign would only confuse the readers who understand
this point, whereas the readers who are (blissfully!)
unaware of it will not be bothered by its absence.

(A bonus remark for advanced TEX users: most
spaces in output routines are also irrelevant.)

2 Skip that question!

In a previous issue of TUGboat I wrote about con-
ditionals such as

There is a problem with such home-made condition-
als: rn treats them as ordinary macros, so if you
try to nest them in another conditional as

TJ$ will get confused if the outer conditional is false:
it matches that conditional with the first \e l se or
\f i that it finds.

Here's a way out, proposed by the big K himself,
and used extensively in Stephan von Bechtolsheim's
forthcoming book in Practice. Define

and use it as

Now sees a conditional, and this conditional is
matched up correctly if you nest it.

And that's it for this time. \ relax and hang on to
your towel!

o Victor Eijkhout
Department of Computer Science
University of Tennessee a t

Knoxville
Knoxville T N 37996-1301

Internet: eijkhout@cs .utk.edu

Too Many Errors

Jonathan Fine

One of the attractions of TJ$ the program is that it
is substantially without error. Sadly, the same is not
always true for macros written for w. I would like
to see a regular column in TUGboat where errors
discovered in previous issues are reported. Perhaps
a small prize could be given each year to the person
who finds the most. Here is my contribution for the
June 1991 issue (vol. 12, no. 2).

Some tools etc.: Part I-Lincoln Durst (p.248-
252) Here, the error is slightly complicated to ex-
plain. The macro \Pageno (p.252) is intended to
help write zero-padded page numbers (001, . . . ,
009, 010, . . . , 999) to an index file. Its use is within
a context equivalent to

\edef\next{\write\inx(\PagenoH

496 TUGboat, Volume 13 (1992), No. 4

\next

but the definition supplied by Durst (not reproduced
here) will produce 0010 if called within text that
is considered (i.e. typeset) for page 9 but actually
appears on page 10.

This will not happen if the \noexpands are
taken from \Pageno, and \noexpand\Pageno used
in place of \noexpand\nurnber\pageno in Durst's
\maexref macro.

T h e bag of tricks-Victor Eijkhout (p.260)
Here, two macros \storecat and \restorecat are
defined, to be used as in f ilel. (In the article,
\storecat is mistakenly also called \savecat.)

them, reporting them, or being told about them.
We all wish that they did not exist. I hope that this
letter has not made me any enemies, and has en-
couraged authors to submit more articles with fewer
errors.

o Jonathan Fine
203 Coldhams Lane
Cambridge
CB13HY
England
J.FineQpmms.cam.ac.uk

% file1.tex
\storecat Q

% macros
% Q is a letter

\restorecat Q

The purpose is to allow Q to be a letter within f ilel,
but then to restore it t o what it was before, when
f ilel is finished.

But now suppose we input f ile2 below, using
the definitions supplied by Eijkhout.

\storecat Q
% file2.tex

\input f ilel

% macros
\restorecat Q

When file2 is finished, Q will have \catcode 11,
regardless of what it was before file2 was input.
This is not what is wanted.

Babel, a multilingual etc. - Johannes Brahrns
(p.291-301) This article is inconsistent in its use
of % to eliminate the space tokens that would
otherwise place after (and 3 characters at the end
of a line.

The use of \expandafter in Fig. 1, and its sec-
ond use in Fig. 4, add nothing and are redundant.

These defects are relatively slight, for they do
not prevent the macros from working as advertised.

Letter from Victor Eijkhout (p.303) Here, he
quotes a user as writing

\def \caption#lC\hboxI\hboxC . . .)\vtopC#l))
This line has 4 left braces but only 3 right braces.

Conclusion Errors lie in the dark side of program-
ming. Usually, nobody likes making them, finding

One er ror less

Victor Eijkhout

Jonathan Fine correctly points out that the macros
\storecat and \restorecat cannot be used nested.
This problem cannot be remedied by using grouping,
because these macros may enclose arbitrary pieces of
code, and you may not want a group around them.

Here is a solution: the call \storecat\% defines
the control sequence \restorecat% to restore the
category code and restore the previous definition of
itself.

\def\storecat#lI%

\count255 =\escapechar

\escapechar=-l\relax

\csarg\ifx(restorecat\string#l~\relax

\toksOI\relax3\else

\edef \actC\toksO(%

\CSname~restorecat\string#l~~~\act

\toksO\xp\xp\xpC\the\toksO3%

\f i

\csarg\edef(restorecat\string#l)%

(\catcode1 \string#l=\the\catcode

\expandafterl\string#l%

\def\CSname{restorecat\string#l)%

C\the\toksO33%

\catcode\expandafter'\string#l=l2\relax

\escapechar=\count255 3

where the auxiliary macros

\let\xp\expandaf ter

\def\csarg#l#2{%

\expandafter#l\csname#2\endcsname3

\def \CSname#li%

\xp\noexpand\csname#l\endcsname)

are used. The definition of \restorecat stays the
same.

TUGboat, Volume 13 (1992), No. 4

Here is some test input:

\s torecat\%
\cat code' \%=3

\s torecat\%
\cat codec\%=4

\storecat\%
\catcode1\%=5

\restorecat \%
\showthe\catcode'\%
\restorecat%

\showthe\catcode'\%
\restorecat\%
\showthe\catcode'\%

As a whimsical aside, the double assignment to
\toksO can also be done in one statement:

using 15 consecutive \expandaftem.

o Victor Eijkhout
Department of Computer Science
University of Tennessee
104 Ayres Hall
Knoxville, Tennessee 37996, USA
eijkhoutQcs.utk.edu

Z z w : A Macro Package for Books

Paul C. Anagnostopoulos

Introduction

Z z m is a macro package for producing books, jour-
nals, and technical documentation. The primary
advantage of Z z m is its design flexibility, which
makes it well-suited to typesetting books according
to the specifications of a professional book designer.
During the past three years, I and my associates
have used the package to produce approximately
25 books, ranging from the 100-page journal, Sys-
tem Dynamics Revzew, published by John Wiley &
Sons, to the 1400-page book, VMS Internals and
Data Structures, Version 5.2 , published by Digital
Press. In this article I hope to give you a taste of
some of Z z m ' s more interesting technical aspects.
Future articles will delve deeper into the details of
the macros themselves.

I was initiated into the composition and type-
setting business when I agreed to compose my own
book for Digital Press. I had written the book using
I P m , and continued to use it for the composition.
As a software engineer, I found it impossible not
to fall in love with book production: finally, an
endeavor that produces a concrete work of art as
its end product, rather than some ethereal software.
However, I needed more design and page-makeup
flexibility than I P m had to offer, so I undertook to
write my own macro package, which I subsequently
named Z z m , after a rock group from Texas. De-
sign flexibility is of paramount importance when
producing books according to typographers' de-
signs; neither they nor the publishers like to hear
"I'm sorry, that element is too difficult to typeset."

The first book produced with Z z m was a real
struggle. It took about two weeks to create the
design file and produce sample pages. With time, I
refined the package and added many new features.
Each enhancement was a direct result of a design
requirement in a book I had produced, so I believe
Zzm is a practical, realistic macro package. Fur-
thermore, my knowledge of the publishing business
grew with each book. Now when I receive a design
specification I can produce sample pages in less
than a day. The package includes approximately
7,200 lines of m code and various utilities written
in AWK.

The Z z m macro package and manual are
available from the author for a nominal fee. The

macro package may be freely distributed, but the
manual is copyrighted and must be ordered from
the author. Z z m uses significant amounts of

TUGboat, Volume 13 (1992), No. 4

rn memory, so the author recommends a

implementation that has memory areas at
doubled in size.

The Block

w
least

In general, each of Z z m ' s typographic elements is
assembled from a fundamental construct called the
block. A block "contains" the text of the element,
and separates its text from that of surrounding
blocks. Here is an example of a block that produces
a bulleted list:

\listIbullet)

\item This is the first item of the

bulleted list.

\item This is the second item of

the list. It can contain many

lines of text, and even multiple

paragraphs.

\item This is the last item.

\endlist

The \list command begins a list block. The
argument in braces is called the block t ype , which
allows you to specify arbitrarily many list designs.
The text of the list begins after the \list command
and ends at the \endlist command. Each item in
the list is initiated with the \item command.

The list block implementation in the Z z w
macro package provides a "generic List formatter"
that has the capability to produce almost any
style of list. In order to format a particular type
of list for a particular book design, the block
accepts a set of design parameters that directs
its formatting of that list (e.g., the \leftindent
parameter determines the indentation of the list
items). You are responsible for providing the design
parameters for each type of list, placing them in
your book's design file (see next section). The
design file contains a design macro for each type of
block element in the book; the design macro encloses
the specifications of the block's design parameters.

Z z m provides approximately 35 kinds of
blocks, many of which accept a type argument to
allow an unlimited number of variations.

The power of the block lies in the steps that
Z z w takes when it begins and ends a block. When
a block is started, Z z m performs the following
steps:

1. Automatically closes any blocks that are ter-
minated by the new block. For example, the
section block terminates a preceding section
block.

Opens the block scope by starting a group.
This hides any parameter changes made inside
the block, allowing parameters to revert to their
previous values when the block terminates.
Stores the \baselineskip, \parskip, and
\parindent of the enclosing block in three
special parameters, thus making the surround-
ing values available within the new block (after
all, these parameters may be changed within
the block).
Increments a block-specific depth counter.
Invokes the design macro for the block. Design
macros are contained in the design file loaded
by Z z m at the beginning of the run (see
next section). In the case of lists, there is a
separate design macro for each type of list. The
design macro establishes a set of parameters
that controls further processing of the block.
Increments a block-specific sequence counter.
If appropriate, this counter can be used to
number the instances of the block, as might be
done with sections or footnotes.
Resets the sequence counter of any subordinate
blocks. Z z m assumes the existence of certain
block relationships, such as the standard sec-
tion, subsection, and subsubsection hierarchy,
and resets counters accordingly. Furthermore,
Z z m provides the \resetnumber design pa-
rameter on most blocks, with which you can
explicitly specify other sequence counters to be
reset.
Invokes a command (defined in the design
macro) that formats the composite number for
the block. For example, the composite number
for a subsection might be '3.2.5', for a table
'3-8'.
Performs any formatting required at the be-
ginning of the block, including vertical space
above and perhaps a title.

Once the contents of the block are typeset and . -

Z z m encounters the ending command, it performs
these steps:

1. Checks to make sure that the ending command
had a matching starting command.

2. Recursively closes any subordinate blocks that
are still open (e.g., the \endsection com-
mand automatically closes any subsection in
progress).

3. Performs any formatting required at the end of
the block, including vertical space below.

4. Decrements the depth counter.
5 . Closes the block scope, discarding any param-

eter changes made in the block.

TUGboat, Volume 13 (1992), No. 4

The Design File \def \documentdesign 1%

A book's design specification is embodied in the
Z z m design file, which includes a design macro
for each element in the book. The design macro
for a particular element specifies values for various
design parameters that determine the formatting of
the element and control behind-the-scenes activities
such as the generation of marks. In addition,
the design file contains commands that establish
the font table, a matrix that correlates type sizes
and styles. The design file for a typical book
might comprise 50 design macros and 200 font table
commands, with a total of 800 lines.

Most of the elements in a book are realized
in Z z m with a block. Your design file contains
the design macros for all the blocks used in your
book. There are no block designs embedded in
Z z m , only generalized macros that can format a
block given your design parameters. Therefore, as
far as design is concerned, Z z w is a tabula rasa
waiting for your book's design. You must always
include a design macro for a special block called
the document block. The document block design
includes parameters that specify the overall design
of the book, plus parameters that control the look
of the main text paragraphs (e.g., their paragraph
skip and indentation). Figure 1 illustrates the
document block design macro for a book I recently
completed. In addition, the design file might
contain design macros for bulleted lists, numbered
lists, and plain lists. It might contain a macro
for computer program examples in running text,
and another for program examples in figures. And
it might contain macros for chapters, appendixes,
sections, and subsections.

Figure 2 illustrates the bulleted list design
macros from the same book. The name of the main
list macro is \listbulletidesign: 'list' is the
name of the block, 'bullet' is the block type, and
'i' is the depth. Similarly, the name of the sublist
macro is \listbulletiidesign. This naming
scheme accommodates many types, or flavors, of
the same block, and also different designs for
first-, second-, and third-level nested lists. The
first thing the sublist macro does is invoke the
main list macro; this establishes all of the main
list design parameters. Then the sublist macro
redefines only those parameters that are different
in the sublist design. Design macros can be
arbitrarily interdefined in this manner. Another
common reason for defining one block in terms
of another occurs when you want a design for
numbered lists. The first-level numbered list macro

\setf lag\cropmarks \true

\eveninnermargin = lin

\evenlefttextmargin = 4pc

\evenrighttextmargin = Opt

\footerheight = 26pt

\headerheight = 17.5pt

\headmargin = .5625in

\hoffset = -.25in ,

\maxbottomcolumnfloats = 3

\maxtopcolumnfloats = 3

\oddinnermargin = .646in

\oddlefttextmargin = 4pc

\oddrighttextmargin = Opt

\parindent = 1Opt

\parskip = Opt

\setflag\PostScriptoutput = \true

\textareaheight = 526.5pt

\textareawidth = 28pc

\topskip = 13.5pt

\trimheight = 9.25in

\trimwidth = 7in

\voffset = -.125in)

Figure 1

can invoke the first-level bulleted list macro, thereby
sharing common parameters such as \aboveskip,
\belowskip, and \bodyf ont.

Careful page composition often requires that
individual blocks be adjusted. The \with command
is used as a prefix on a block command to alter
one or more design parameters for that particular
instance of the block. This is how you can change
the space above and below a list:

\with(\aboveskip=18pt plus 1.2pt

\belowskip=\aboveskip)

\listIbullet)

Z z m performs \with assignments after it invokes
the block's design macro.

The Font Table

One of my primary goals in creating ZzT@ was
to allow complete flexibility in selecting fonts. In

fact, I have never typeset a book using Computer
Modern Roman. (I have used Computer Modern
Typewriter, because many book designers realize it
is better than other available monospaced fonts.)
Z z m employs a font table to select fonts. You

can think of the font table as a matrix with rows
corresponding to type sizes and columns to type
styles. Figure 3 illustrates a simple font table.

Three steps are required to set up the font
table:

500 TUGboat, Volume 13 (1992), No. 4

\def \listbulletidesign C%
\aboveskip = 21pt plus 1.6pt

minus 3.1pt

\belowskip = \aboveskip

\bodyfont = 0% Same as surrounding.
\interitemskip = 15pt

\def \labelformat ##i{##l\hfil)%

\labelshift = -\enclosingparindent

\def \labeltext C%

\centeronxheightC\bul .)I%
\labelwidth = \enclosingparindent

\left indent = \labelwidth

\parindent = Opt

\parskip = 6pt

\rightindent = Opt

\width = \naturalwidth)

\def \listbulletiidesign {%
\listbulletidesign

\aboveskip = 18.25pt plus lpt

minus 2.7pt

\belowskip = \aboveskip

\labelshift = -8pt

\def \labeltext <--I%
\labelwidth = 8pt

\leftindent = \labelwidth)

Figure 2

Type Sty le

Type size \rm \it \dbf

\chapsize - - 24' Optima
Bold

\aheadsize - - 12' Optima
Bold

\textsize 10' Nofret 10' Nofret -

Regular Italic

\ftntsize 7' Nofret 7' Nofret -

Regular Italic
Figure 3

1. Define any type styles you need in addition to
the built-in ones (Roman, math italic, math
symbol, math extended symbol, Postscript
symbol, italic, bold, bold italic, and type-
writer). The definition includes a specification
of the character set encoding used by the style
(e.g., Roman vs. italic vs. monospace). Know-
ing the encoding, Zzm can, for example,
automatically insert an italic correction after
italic text.

2. Define all the fonts you need.
3. Define the logical type sizes you need (there are

no built-in ones). The size definition includes

\definefont(\twentyfourdrm)Css at 24pt)

\definefont{\twentyfourdbf){ssb at 24pt)

\definefont{\eighteendrm)(ss at 18pt)

\definefont{\ninetqtt){cmttlO at 9.75pt)

\definefonti\nineqrm)<sr at 9.25pt)

\definefont(\nineqmit){cmmiiO at 9.25pt)

\definefont<\nineqmsy){cmsylO at 9.25pt)

\definefont{\nineqmex){cmexlO at 9.25pt)

\def inef ont{\nineqit)Csri at 9.25pt)

\definefont{\nineqsb)<srsb at 9.25pt)

\definefont{\nineqsbi){srsbi at 9.25pt)

\def inef ontC\sevendsr at 7pt)

\definefont(\sevenmit){cmmilO at 7pt)

\definefont~\sevenmsy)IcmsylO at 7pt)

\definefont{\sevenit){sri at 7pt)

\definetypesize{\textsize)(9.25/13.5)

\setfontrnath{\textsize)~\rm~C\nineq~d

C\sevenrm)C\fiverm)

\setfontmath~\textsize)~\mit)~\nineqmit~

C\sevenmit)(\fivemit3

\setfontmath(\textsize)I\msy)C\nineqmsy~

C\sevenmsy3C\fivemsy)

\setfontmath(\textsize)~\mex)~\nineqmex~

C\nineqmex)C\nineqmex)

\setfontmath{\textsize)(\it)C\nineqit)

C\sevenit)C\f iveit)

\setfontC\textsize)C\tt)C\ninetqtt3

\setfont(\textsize){\sb)C\nineqsb)

\setfont{\textsize)C\sbi)C\nineqsbi)

\setfont{\textsize){\bul)C\eighteendrm)

Figure 4

the baseline-to-baseline distance. After each
size definition, set the fonts for those styles
that appear in that size. Styles that are used
in math require three fonts (text, script, and
scriptscript); other styles require one font.

Figure 4 shows a portion of the font table for a
book.

TUGboat, Volume 13 (1992), No. 4

\document
\copyident{\sevenm Merusi f i r s t pages)
\printar t{\ t rue)

\enddocument

Figure 5

In addition to the main font table, Z z m
provides a second table that specifies style relation-
ships. There is a built-in relationship called \emph
that you use to produce emphasis. The relationship
table specifies that Roman is emphasized with italic,
and vice versa. Furthermore, bold is emphasized
with bold italic, and vice versa. You can add
additional entries for emphasis, and invent your
own relationships such as \smallcaps, \newtem,
or \varname.

The Division

Any book longer than about 20 pages is best broken
into divisions, each of which typically contains the
material in one chapter. The entire book is repre-
sented by a root file, and the root file incorporates
each division with a \d iv is ion command. Figure 5
shows a small root file. You can use the \ se t -
d iv i s ions command to select specific divisions for
processing.

Associated with the root file and each division
file is a division cross-reference file that contains
the following information:

An entry for each title that should appear in a
table of contents, list of figures, list of tables,
or a similar listing of other floating elements.
Z z m allows you to define additional types

of floating elements (e.g . , computer program
code) and produce a listing of those elements.
An entry for each symbolic tag that is referred
to elsewhere in the book.
An entry for each endnote.
A single snapshot at the end. The snap-
shot contains the division's final page number,
chapter number, section number, and so forth.

At the end of a run, Z z m combines all the root
and division cross-reference files into one composite
cross-reference file. The composite file is considered
the master list of cross-reference information.

At the beginning of a run, Z z m :

1. Loads the composite cross-reference file to ob-
tain the symbolic cross-reference tags. (All

tags in a book must be unique, so if you are
producing a book from multiple independent
authors, you may have to alter tags during
conversion to make them unique.)

2. Starts a cross-reference file for the root file.

For each division, Z z m :

1. Adds an entry to the root cross-reference file
that names the division cross-reference file.

2. Creates the division cross-reference file.
3. Writes table of contents entries, cross-reference

tags, and endnotes to the division file.
4. Finishes the division file with the snapshot of

that division.

At the end of a successful run, Z z m :

1. Closes the root cross-reference file.
2. Combines the root and division cross-reference

files into one composite cross-reference file.

Whenever Z z m needs cross-reference infor-
mation, it consults the composite cross-reference
file. Thus, when you send a book to someone else
for processing, you send only the source files

and the single composite file. If encounters
an error processing your book, and you terminate
the run, that division's cross-reference file is invalid,
but the composite file still accurately reflects the
previous run. So when you reprocess the book to
correct the error, the cross-reference information is
still intact. The second reprocessing run behaves
just like the first run.

If the \ se td iv is ions command excludes a
division, Z z w does not process it. Instead, it

searches the composite cross-reference file for the
division's snapshot and updates important counters
such as the page number and chapter number so
they reflect the state of affairs at the end of the
division. In this way, the next division processed
will appear to be in the correct place in the book.

TUGboat, Volume 13 (1992), No. 4

Z z w writes "moving arguments", such as
titles, into the cross-reference files without expan-
sion, so that no "protect" mechanism is needed.
A special command, \ a d j u s t t i t l e , allows you to
customize the format of a title where it appears in
the main text, a table of contents, a running head,
or a textual cross-reference. An adjustment can be
as simple as a line break or as complicated as a
footnote.

Vertical Spacing

One of the most difficult tasks I encountered in
creating Z z W was to ensure consistent vertical
space between elements. If the book designer
requests 24 points base-to-base above an A-head
and 16 points below, then Z z W must produce
that much space, regardless of the element above
the A-head, the size of the A-head, or whether
there is text or a B-head immediately below it.
Allowing some stretch and shrink above a heading
does not diminish the need for consistent nominal
space. I solved the problem with the vertical
spacing env i ronment (not to be confused with a
I P W environment).

Z z w provides six commands to produce ver-
tical space:

\bbskipabove. This command specifies a
certain base-to-base space between the previous
element and the next. If two or more of these
commands appear in a row, the space from the
first one prevails.
\bbskipbelow. This command specifies a
certain base-to-base space between the previous
element and the next. This command is not
used to produce vertical space at the end of a
block (see next item). If two or more of these
commands appear in a row, the space from the
last one prevails.
\bbskipbelowblock. This command is equiv-
alent to \bbskipbelow, but must be used to
produce vertical space at the end of a block. It
compensates for any change in the \baseline-
sk ip and \parskip values that might occur
after the block terminates.
\bbskipbelowblockpar. This command per-
forms the same functions as \bbskipbelow-
block, but also checks whether the next el-
ement begins a new paragraph. If not, it
ensures that the paragraph continuation is not
indented.
\vsink. This command specifies a certain
base-to-base distance between the top of the

type page and the next element. You can use

it more than once on a single page, usually in
front matter to format the half title or full title

page.
\vspace. This command adds additional ver-
tical space between two elements that is inde-
pendent of any other explicit or implicit base-
to-base space between those elements. Thus it
replaces \vskip.

The first four commands also accept an argument
that specifies the page-break penalty inserted above
the vertical space. If a \bbskipabove command
follows one of the \bbskipbelow commands, the
maximum of the two spaces is used. If the reverse
occurs, an error is signaled.

In order for vertical space to be consistent, you
must use these six commands wherever you request
explicit vertical space. However, most vertical space
is produced implicitly at the beginning and end of
a block. Any block that produces vertical space
accepts the \aboveskip and \belowskip design
parameters, which specify the space above and
below the block, respectively. The macros that
implement the block use \bbskipabove to produce
the space above the block, and \bbskipbelowblock
or \bbskipbelowblockpar to produce the space
below. Therefore, you usually only need \vsink
to format pages such as title pages, or \vspace to
force more or less space between certain elements
for aesthetic purposes. You occasionally have to
use \bbskipabove or \bbskipbelow to obtain the
correct base-to-base distance between two elements
that are not blocks (e.g., a title and subtitle).

The vertical spacing environment is maintained
as a stack of structures, for reasons explained below.
The structure at each level of the stack includes the
following data items:

The type of the previous vertical space: none;
inter-paragraph space specified by \parskip;
space above, produced by \bbskipabove; or
space below, produced by \bbskipbelow and
Fiends.
The page-break penalty associated with the
previous vertical space.
The base-to-base space requested for the previ-
ous vertical space.
The actual glue Z z w inserted for the previous
vertical space.

By carefully inspecting and maintaining these items,
the vertical spacing commands consistently produce
the correct amount of space. The environment is on
a stack because vertical spacing within some blocks,
such as floating figures, is independent of the vertical
spacing in progress in the surrounding text. When a

TUGboat, Volume 13 (1992), No. 4 503

floating figure begins, it pushes the current vertical
spacing environment on the stack, and reinitializes
the environment. The vertical spacing within the
figure thus begins afresh, unaffected by the space
above the figure. When the figure block terminates,
it pops the stack. Each level of the stack is simply
implemented as a numbered definition containing
the saved values of the environment items. The
items for the top level are in global variables.

The Index

The only difficulty about typesetting an index from
a prepared file of entries is producing carry-over lines
when a first- or second-level entry continues onto a
new page. However, creating that file of entries from
indexing commands in the book is a challenge. I am
rarely asked to do it, because most authors do not
index their books, and many publishers prefer not
to use authors' indexes. Nevertheless, to support
those publishers and authors who want to generate
an index automatically, I developed facilities to
produce an index entry fiIe from commands in the
text.

To produce an index you must first define the
required index locators. An index locator is a
particular item of information associated with an
entry. The most common index locator is a page
number or page range. Another common locator is
the "see also" locator that refers to another index
entry. When you define a locator, you specify the
following information:

The name of the locator.

A set of attributes. The \page attribute speci-
fies that a page or range of pages is associated
with the locator. The \text attribute specifies
that arbitrary text is associated with it (e.g.,
another index heading).
The sorting precedence of the locator. For
example, "see also" locators have a lower
precedence than page locators, so they appear
after the page numbers in an entry.
The prefix text. The prefix text for a "see also"
entry in English is "See also".
A template that specifies how to format a single
page number or the text of the locator.
A template that specifies how to format a page
range.

Z z W predefines the following locators, in
order of precedence: the null locator (for entries

the "see also" locator, and the "consult" locator
(for referring to other books).

A locator definition creates one or more macros
you can use throughout a book to produce index
entries. If the locator is named command and has the
\page attribute, then \xcornmand produces a locator
with the current page number. The \xcommand-
begin and \xcommandend macros produce locators
that begin and end a page range, respectively.
Each macro accepts one, two, or three arguments
designating up to three levels of index headings.

To prepare an index entry file, you include the
\prepareindex command in the root file. This

command specifies an index type, thereby allowing
you to have more than one index in a book (e.g.,
a main index, an index of commands, and an
index of variables). It also specifies the name of a
index preparation file that receives all of the control
information necessary to prepare an index: root file
name, index type, list of locators included in this
index, and the definitions of those locators. The
\prepare index command also activates indexing
so that Z z m attends to indexing commands and
writes the entries into the raw index files. Without
a \prepareindex command, index entries in source
files are ignored. There is one raw index file for
the root and one file for each division (as with
cross-reference files).

After a Z z m run, three steps are required to
produce the index described by one particular index
preparation file:

1. An AWK program consolidates all the locators
in the raw index files into one composite index
file. Prefixed to each record is a six-part
key that includes the headings (canonicalized
for sorting), precedence, segment number, and
page number. The segment number is used to
separate front matter pages from main body
pages. This step discards any locators that
should not be included in the index.

2. The composite index file is sorted.
3. Another AWK program processes the sorted

index file and creates the source file for

the index. All of the locators for one entry are
merged into a paragraph, using the prefix text,
single-page template, and page-range template
specified with each locator definition. The

resulting file is suitable for inclusion in an
\index block anywhere in the book.

without any locators), the "see" locator, the page
nurnber/range locator, a locator for each type of

Conversion To and From Zz'QiJC
- - -

floating object (for referring to tables, figures, etc.), My colleagues and I have typeset books from authors
who used many different document preparation

504 TUGboat, Volume 13 (1992), No. 4

systems, including Microsoft Word, troff. VAX
DOCUMENT, DECwrite, m. and @?]EX. Not
only are there many document systems, but the
degree to which an author uses the features of any
given system varies greatly, as does the author's
level of consistency. To facilitate the conversion
of these books to Z z m , I developed a table-
driven translator called ZzTran. Because ZzTran is
based on AWK, you can specify regular expression
patterns that match tags in the source language.
For each pattern you specify how to generate the
corresponding tag in the target language (usually

Z z w) , so that a translation file consists of a
table of patterns and their replacements, along with
auxiliary AWK functions you write to help with the
more complicated tag translations.

To translate files, ZzTran runs an AWK pro-
gram that "compiles" the translation table into a
pure AWK program. The compiler incorporates
both driver functions that control the translation
process and a standard library of utility functions
(e.g., replace 0 to replace a tag, keep0 to main-
tain a tag as is). ZzTran then runs the resulting
AWK program, which reads a source file and pro-
duces the corresponding target file. ZzTran can
usually accomplish about 95% of the translation
automatically, so that very little must be done by
hand.

Occasionally, after typesetting, I am asked to
translate the final Z z m files back to the author's
original document preparation system. This is
usually simple because the tags in Z z m files
are more specific and complete than those in files
acceptable t o the author's system. The reverse
translation is a matter of converting some Z z w
tags to the original coding system and discarding
the rest.

Production Methodology

A commercial book is created by a team of people.
When my colleagues and I produce a book with
Z z w we usually break the work down as follows.
I am responsible for converting the author's files
to Z z w , because this often involves some pro-
gramming with ZzTran. I am also responsible for
creating the design file according to the book de-
signer's specifications, and producing sample pages
that illustrate the design. Once the design is ac-
cepted by the publisher and author, I deliver the
design file and the Z z m source files to a person
who will be responsible for the composition of the
book. The compositor enters copyediting changes,
produces a rough set of first pages (galleys), enters

proofreading changes, produces an almost-complete
set of the second pages, and produces the final
pages for reproduction proof or film.

If you are writing and producing your own
book, you may be responsible for all of the steps
outlined above. In either case, care is required
to keep the master files up-to-date, and to ensure
that the notations on paper manuscripts marked
by copyeditors and proofkeaders are incorporated
back into the files completely and accurately. The
biggest dilemma concerns automatic indexing: how
can the compositor work on the files while the
indexer "owns" them to enter index entries? In
a confined computer environment, some type of
source control system can be used. But, in the real
world of far-and-wide subcontractors, I have not
devised an acceptable solution. We usually have
the indexer put the entries in a text file, convert it
to Z z w , and typeset it independently of the rest
of the book.

Future Work

Although I have been developing Z z m for three
years, there is still significant work to be done. My
to-do list includes the following:

The multicolumn support must be redesigned.
At present, Z z m produces multicolumn pages
by treating each column as a separate logical
page. This allows single-column footnotes and
floating figures, but makes it difficult to bal-
ance the columns on the final page, particularly
when switching back to single column format
on the same page. A hybrid scheme is re-
quired, where each column is a separate logical
page, but, when necessary, all columns can be
collected and treated as one page.
While the current scheme for horizontal place-
ment of elements is flexible, its use is not
intuitive. It is particularly difficult to produce
atypical kinds of centering, such as centering
text in an area other than the normal text
measure. I want to implement a new technique
involving four parameters: \hshif t , to control
horizontal shift; \measure, to control the text
measure; \ f lush, to control whether text is
flush left, flush right, or centered; and \width.
to specify the width on which the flushing is
performed.
I want to complete the work necessary to make
Z z m independent of Plain m , yet allow
them to coexist. You will be able to load
Z z m into TJ$ with or without the Plain w
macros.

TUGboat, Volume 13 (1992), No. 4 505

e The Zz'IjEX manual is incomplete. It is cur-
rently about 220 pages, and will expand to
approximately 400 pages.

No software is ever finished, and I will continue
to enhance Z z w . Nonetheless, I know that Donald
Knuth's '.IJEX is capable of producing truly beautiful
books.

o Paul C. Anagnostopoulos
Windfall Software
433 Rutland Street
Carlisle, MA 01741
greek@genome.wi.edu

The \noname macros -a technical report

Jonathan Fine

Abstract

The \noname package provides a powerful envi-
ronment for writing macros. Its use makes
macros easier to read, easier to write, and easier
to document. It allows ready access to powerful
control macros. It allows diagnostic and other code
to be tagged for conditional inclusion. The \noname

package is fully compatible with existing macros.
Here are two major features. It allows easy

access to arbitary character tokens. Lines that
do not begin with a white space character are
comments, and are ignored.

The intention has been to provide the pro-
ductive features that users of other programming
languages take for granted. This article provides an
outline of the history, design and implementation of
the \noname package.

Acknowledgements

I would like to thank Nelson Beebe, and particularly
Michael Downes, for their careful comments on an
earlier version of this article.

1 Introduction

The \noname package grew out of work the author
was doing two years ago. The goal was to write
macros, for setting verbatim code, that would
set source in a \tt font, and comments in a
proportional font. This effect was to be achieved
without additional mark up of the input file. Other

refinements over the usual verbatim listing for
source code were also desired.

In the course of this programming, extensive
access to characters with \catcodes other than
those usually given was desired. This proved to
be a stumbling block for this project, which still
awaits completion. Various programming tricks
were introduced. The result of systematically
developing these devices is the \noname macros.
Although they have now reached the stage of being
useful, there are developments being considered that
will further increase their power and usefulness.

The physical activity of erecting a building
commences with the digging of a hole, that will
become the foundations that support the planned
structure. The larger the building, the deeper the
hole. The \noname package is intended to provide
secure foundations for large scale collections of TEX
macros.

2 Examples

Here is a line of code from p la in . t ex . It supports
the \newif construction. It creates a control
sequence \ i f @ that must be followed by other
characters 'i' and ' f ' with catcode other, i.e. 12.

Such funny letters arise from use of \ s t r ing .

{\uccoder l=' i \uccoder2='f

\uppercase{\gdef\if@12{}}}

(The purpose of \ i f @ is to extract the string
foo from \ i f foo , which is then used to construct
\f oof a l s e and \f ootrue. The macro \ i f @ is also
intended to give an error if the argument to \newif

is not of the form \ i f . . .).
Here is the same macro defined using \noname.

\def \ i f @ ' i ' f (1

The right quote symbol " ' is an escape character
that serves to produce a character with catcode
other, whose character code is given by the following
alphabetic constant.

Here is another example. The \noname macro
definition

\def \spaces{ 1

defines \spaces to be a macro whose replacement
text is five ordinary space tokens. (Ordinarily,
special tricks are required to get a space after a
control word or another space). Finally,

\def !\-^M I \par 1

will in \noname define active carriage return to
expand to \par.

506 TUGboat, Volume 13 (1992), No. 4

3 Influences

This section attempts to list the various sources for
the design of the \noname macros.

3.1 Knuth's WEB system. WEB allows source and
documentation to be mixed in the same file, and
in a disciplined manner. It implements literate
programming. The WEB system allows a module
to be incrementally coded. This means, to use
an example of Knuth, that with a module named
(Global variables in the outer block) one can add
to this module as, where, and when new global
variables are required. Without this feature the
global variables would have to be declared all
together and at once in the PASCAL source file.
Such a feature is not provided, nor planned, for
\noname.

Perhaps the most important idea borrowed
from WEB is the introduction of a preprocessor to
augment the facilities of the language.

Because Pascal is not well adapted to storing
character strings, Knuth implemented a "string
pool" feature. Such a device might be welcome
when writing 'I)$ macros, for storing error and
other messages, which otherwise would consume
large amounts of main memory. These messages
could be stored either in in 'I)$'s string pool, or in
separate files on disc, to be read in as needed.

3.2 The C programming language. This lan-
guage is used widely for both system and applica-
tion programming, and its syntactic style is widely
known and imitated. Source written using \noname
tends to have a C-like appearance.

The C language provides a preprocessor for
source files, just as does WEB. The \noname package
also includes a source file preprocessor. In partic-
ular, the hash command syntax has been copied
from C, although the functioning will be different.
Also copied is the use of the colon ':' as a label,
and names for some of the control macros. (The
MS-DOS batch language also uses ':' as a label). - -

3.3 Mittelbach's doc option for B W . This
work showed to me that documenting source files for
'I)$ macros was a problem. Although his solution
is a significant advance, it has limitations. His open
recognition

[tlhe method of documentation of w
macros which I have introduced here
should . . . only be taken as a first sketch.

TUGboat 10, no. 2 (1989), page 246
of this encouraged me to find my own solution.

The convention- that the initial character de-

code or a hash command-came from a wish to
have a natural input scheme for the typesetting of
source files.

Although the doc option gives a pleasant ap-
pearance to the large comment blocks, it leaves the
macro language of TEX unchanged, and sets small
comments within the code lines in a typewriter font.

WEB consists of TANGLE, which provides a lan-
guage enhancement to PASCAL, and WEAVE, which
typesets source files. The doc system as published
provided no language extension. It leave the w
macro language unchanged. (The later docs t r ip
feature does, however, allow for code to be tagged
to conditional inclusion).

WEAVE recognises the key words and symbols
of PASCAL, and uses this when the source file is
typeset, to improve the typographic quality. When
doc typesets a source file it sets code lines verbatim.
Apart from recognizing and indexing control words,
it has no understanding of the 'I)$ macro language.
(The \noname package, by counting braces, is able
to guess when a \def-inition has come to an end).

As mentioned earlier, much of the motive for
\noname came from a wish to code something
superior to the doc option. This turns out to be
a larger project than I imagined. The \noname
macros provide part of the foundation.

3.4 Smalltalk. Certain concepts in Smalltalk
have had an influence on the internal coding of
\noname. The idea of compiling source into an
intermediate form came from Smalltalk, which uses
bytecode instructions. It also provides an excellent
example of a productive integrated programming
environment.

3.5 Wirth's Modula-2. When the module con-
cept is added to \noname, it is quite possible that
the syntax, and some details of the implementation,
will draw upon Modula-2.

4 Design and Implementation

4.1 The Basic Problem. A 'I)$ macro consists
of a string of tokens. A token is either a character
token - i.e. a character/catcode pair - or a control
sequence. The problem of producing any given
macro therefore reduces to producing any given
control sequence, and any given character token.
The control sequence problem shall be put to one
side, for except when control sequence names are
used to store textual information, it is enough that
the control sequence have a comprehensible name
formed from a fixed collection of characters.

termines whether a source file line is a comment or

TUGboat, Volume 13 (1992), No. 4 507

Arbitary character tokens are produced via
careful use of the \uppercase command. They
are placed into macros by use of the \aftergroup

primitive. The 7&Xbook1s "dirty t r ick construction

of a macro whose replacement text is \n asterisks

(p373-4) illustrates the basic technique.

4.2 \load, \comp, \onl ine and \hsl . The

macro writer will specify, using a syntax to be

described later, a sequence of control sequences

and character tokens, to be formed into a macro.

The \noname macros will read and act upon this
input stream- there are examples above- so as to

construct the desired macro.

The \load command will read these macro-

building instructions from a file, and place the

result into m ' s memory. The \comp command

will write the content of these instructions to a file

on disc, in a form that can then be re-processed at

high speed, by use of the \h s l command. Finally,
the \online command is like \load, except that it

takes its input from the console, rather than a file.

5 Structure of source files

5.1 White space. All white space is ignored

(unless preceded by a \noname escape character). It

is no longer necessary to use '%' symbols to prevent

space tokens creeping into your macros.

5.2 Comment lines. Any line that does not

begin with white space is a comment line, and

will be ignored (unless it begins with a '#' hash
character - see below).

5.3 Escape characters. The \noname package
has a rich range of escape characters.

" produces an ordinary space token.
' produces a character, with catcode other = 12,

whose character code is given by the token

immediately following ' ' '. This token may be

a white space token, or some other character,
or a control symbol.

! is like '", except that it produces an active
character.

I is the bar construction, which allows access to
arbitary character tokens. It should be followed

by the \catcode, as a hexadecimal digit, and

then the character code, as a character or a

control symbol. Thus ID is equivalent to ! and

I C is equivalent to ' .
: is a label which produces an otherwise inacces-

sible macro, whose expansion is empty. This

device is most useful when used in conjuction
with the Basic Control Macros cited elsewhere.

Q* ; will produce unusual character tokens. They

are intended for use with the \CASE and \FIND

macros (TUGboat, to appear), and some other

purposes.

Finally, the characters {I$#^-& and % have

their usual effect.

5.4 Control words. When using \noname, not

only can the letters a . .zA. . Z and the Q character

be used for forming control words, but also the

characters $&*- : and the digits 0 . .9. This does

not interfere with the usual use of the characters,

outside of control words. For example

\def \subscript-character{ -

defines \subscript-character to be a macro whose

replacement text is a subscript character, with '-'
as its character code.

5.5 Numeric constants. Within p l a in and

LKQjX the control sequence \mQne is used to re-

fer to a \count register whose value is fixed to be

-1. This feature is provided because -1 is a ubiq-

uitous constant. Macros run quicker, and occupy

less space, if \m@ne is used in place of -1. The

\noname package provides the same functionality,

but by typing [-I].

With \noname, the tokens [nm] where nnn is a

literal number such as -1 or "57 or 16 will produce

a control sequence which is to store the number

nnn. This allows the popular numeric constants to

be referred to in a literal manner, rather than via
cryptic names.

A similar convention applies to numeric con-

stants specified as character constants. The charac-
ter '" followed by a control symbol such as \x or

\ ^ ^ M will produce a control sequence which stores

a number, namely the ASCII value of x or ^ ^ M

respectively.

If C is followed by a token that cannot begin

a literal number, i.e. other than 0 . .9 or + - " I .

then no special behaviour occurs. Similarly, if ' is

not followed by a control sequence, then no special

behaviour occurs.

5.6 Hash commands. This is a feature bor-

rowed from C. Any source line beginning with a

hash # is a hash command. Hash commands control

the processing of the file. They allow conditional

inclusion of code. For example, if \ifdebug is

\ i f t r u e then the line below

#\ i f debug

\checkingcode

#\f i

508 TUGboat, Volume 13 (1992), No. 4

which contains \checkingcode will be processed,

while if \ i f debug is \ i f f a l s e then this line will be

skipped.

This feature allows the same file to contain

several variants of the same code. Currently,

I P m has three files-artlO.sty, a r t11 . s ty , and

artl2.sty-which are identical in all aspects,

except for the values of some numerical and other

parameters. Use of hash commands allows these

files to be described using a single source file.

This feature can also be used to maintain a

single file for several versions of a macro package.

6 Control macros

The author's Basic Control Macros in TUGboat 12,
no. 2 are easier to use within the \noname environ-

ment, for they depend on a label ' : ' being available.

The author has also written powerful control macros

\CASE and \FIND, which again depend on \noname

features-in this case that * and ; produce not

ordinarily accessible character tokens.

The author is about to release a control macro
\FSA (for Finite State Automaton). Here is an

example of its use. When, on a page, one vertical

item is placed beneath another, vertical space may

be required, or perhaps a penalty, or some other

activity. The \FSA device allows the decision

table for such transitions to be coded in a simple,
elegant, and economical manner. It will use @*; as

delimiters.

7 Structure of . h s l files

The details of the fine structure of the . h s l files

should be of little concern to macro programmers,

so long as it adequate to support their needs.

Here is an extract from a . h s l file.

^ ^ @ \FILE tu to r .h s1 %
^ ^ @ \year 1992 \month 9 . . . 720 %
%{ \ h s ~ ~ ~ { ~ ~ c ~ ~ o ~ ~ n ~ ~ t y 0 0 0 0 0 0 0 0 . . . LLLLLLLL
% \ t rac inglos tchars ... 11 { 1 1 ~ 1 1 ~ 1 1 i%
; / O ~ ~ I I ~ I I ~ I I ~ I I ~ I I > I I)) { . . . e \online%

% \def \online1'{ \e . . . #,Ill 0 0 0 W L %
11 O O O O O % \immediate \wr i teM\ . . . {LLLLL

Normally, during a \hs l , ^ ^ @ is a comment charac-

ter and % is ignored. This is designed to support

macro library files. (In this context, see The

m b o o k , p382-4). By setting % to comment, the

macros can be skipped at high speed.

By setting - ^ @ to ignore, it is possible to read
the \FILE and date information in the header.

The date can be used for version control and

compatibility. For example, by storing multiple

versions of the same macros in a single file, the

most recent first, it is possible to load the macros

that are in force at some given date. Simply load

the first macro package whose date is before the

given date. (The date is precise to time of day, in

minutes, as supplied by Tj3X7s \time primitive).

Currently, the optional code controlled by hash

commands can be used only to generate multiple

. h s l files, each obtained by processing a different
subset of the source file. Essentially, the variant is

determined at the time of the \comp-ile. However,
the basic structure of the . h s l file is sufficiently

rich, as to allow these variants to be combined into
a single . h s l file. The setting of a flag will then

control the choice of variant at the time of the \ h s l

of the file. This feature could be used to produce,

if wished, a single art. s t y file for use with I P W .

8 Modularity and named parameters

Many other languages restrict the scope of an

identifier, so that the same identifier can be used
for different purposes in different contexts. For

example, in C, identifiers declared within a function

are local to that function, while identifiers prefixed

by the keyword s t a t i c are local to the file in which

they appear.
has a single global name space. Conse-

quently. each author of macros has to be sure that

his or her control sequences do not clash with those

of p la in , I P W , or some other package. This is a

burden.
Here is a related matter. In other languages

the parameters to functions (the 'I)$ equivalent
is macros) are identifiers. This improves the code

greatly. For example

is easier to read and maintain.

The addition of these facilities to the \noname

package is being investigated.

9 Performance

The single most important aspect of the perfor-

mance of the \noname package is the degree to

which it allows the macro writer to produce better

code quicker. I will leave the measurement of this

to others, who are able to be more objective. My
experience of using \noname is that the code written
is much easier to read after the event, and that

the various helpful facilities reduce coding time by

TUGboat, Volume 13 (1992), No. 4

between 10 and 30 percent. The saving will depend
on the nature of the macros being written, and the
extent to which they are basic. If two (or more) al-
most identical versions of the same file are required,
then the time saving can be much greater. This is
also true if active and other special characters are
required.

The commands \load or \onl ine are quick
enough, on a slow machine, to process small (say
50 line) files, but become tedious for much larger
files. They also have an overhead of one (1) control
sequence for every new control sequence processed.
This overhead will increase, and the performance
fall, when the various enhancements are added.
However, the \h s l command works at much greater
speed, and with minimal overhead.

The . h s l files are much smaller that the
source files from which they are generated. They
can be combined into a single library . h s l file,
with conditional run-time loading of the constituent
parts. These features can be used to save mass
storage requirement (note that file space is allocated
in fixed size blocks), and reduce traffic on a network
and on email. Note also that it can take the
operating system longer to find a small macro file,
than it takes TEX to process it.

However, most macros are loaded once, and
then \dump-ed as a format file, which can then be
loaded at high speed. The quality of the code will
then determine the size of this file, and thus how
quickly it can be loaded.

10 Future developments

Briefly, here are some projects that are under way.
Much progress has been made on coding a pretty
printer for typesetting source files written in the
\noname dialect. It is intended that it should also
be able t o typeset suitably laid out C and C++
source files.

A proof-of-concept prototype for a single step
debugger, that will execute or expand macros
and commands one at a time, has been coded, and
will also form part of the \noname package. I hope
that it will be useful both for learning and teaching
how works, and also for development.

Finally, an interactive tutorial for \noname-
consisting of 'Q,X macros and so running within

-has been written.

11 Availability

Publishers and other major users of TEX require
custom macro packages. These are either written
in house by expert staff, or commissioned from
outside. These packages are usually proprietary,
although publishers tend to make them available
when appropriate to their authors.

At the other end, there is a large mass of un-
supported macro files, of variable quality, available
for no cost. In addition, there are packages such as
p la in , I4W, w.

Discussion with TEX users will reveal the tech-
nical and other merits of \noname, and help provide
a basis for pricing, licensing, distribution and other
policies.

The current version is already useful. It may
take six months to add modules, named parameters
and other advanced features. Also required, as in
C, are libraries of standard functions.

A demonstration version is available (from the
author only), so long as you agree to respect his
intellectual property rights.

o Jonathan Fine
203 Coldhams Lane
Cambridge
CB1 3HY
England
J.FineQpmms.cam.ac.uk

This package has been developed privately. Future
developme&s will require financial support, most - -

likely from sale of thesoftware.

TUGboat, Volume 13 (1992)) No. 4

Volunteer work for the lXQX3 project

Frank Mittelbach, Chris Rowley and

Michael Downes

1 Introduction

This is a call for volunteers to help in the develop-

ment of I P W 3 . There are many tasks needing to

be done in support of the I P ' 3 project which can
be worked on concurrently with the development of

the I 4 w 3 kernel. Furthermore, some tasks require

special expertise not found among the core program-

ming team. Initial research, analysis, and work on
these tasks by volunteers can greatly speed up the

process of integrating a number of desirable features

into I P w 3 . Many of these features can be exten-

sively developed and tested under I4'2.09 even
before the WQX3 kernel is available.

Therefore we are publishing a list of tasks to the

I P W user community through various channels and

we ask readers to consider contributing some time

and effort (particularly, but not exclusively, readers

with expertise in the various areas touched on). The
task list is distributed in the form of a UTEX article;

it is fairly readable in electronic form, and it can be

printed on paper if desired.

If you are interested in working on a particular

task, see Appendix A for details on how to volunteer.

The task list will be updated at regular inter-
vals. For instructions on obtaining a copy from the

public archives, see Appendix B.l

2 General tasks

2.1 Volunteer list management

Organization, publication and maintenance of the
general volunteer task list.

List manager: George Greenwade.

2.2 Validating IQm2.09

Writing test files for regression testing: checking bug

fixes and improvements to verify that they don't

have undesirable side effects; making sure that bug

fixes really correct the problem they were intended

Editor's note: This summary is based on ver-

sion 5.1 of the task list, dated 15 October 1992. The
archived list contains some information not included

here, such a s time estimates and the names of vol-

unteers other than the task coordinators.

to correct; testing interaction with various docu-

ment styles, style options, and environments.

We would like three kinds of validation files:

1. General documents.

2. Exhaustive tests of special environments/mod-

ules such as tables, displayed equations, theo-

rems, floating figures, pictures, etc.

3. Bug files containing tests of all bugs that are

supposed to be fixed (as well as those that are
not fixed, with comments about their status).

A procedure for processing validation files has

been devised; details will be furnished to anyone in-

terested in this task.

Coordinator: Daniel Flipo
flipo@citil.citilille.fr

3 Syntax questions

3.1 . s t y metacomments for smart editors

Develop conventions for documentation of styles

which could be picked up by editor packages to pro-

vide editing help.

The idea is to place metacomments in . s t y files

which smart text editors (in particular) can use to

get information about the 'exported' (user interface)

macros for that particular style. The information

would be useful for word completion and spelling

checking, at least. (The auc-tex package for GNU

Emacs currently has such information hard-wired

for a number of common styles.) If the editor has

access to the \documentstyle line or suitable alter-

native instructions it can poke about in the appro-

priate style files rather than using its own database.
Such information could be written out by a run

with doc. s t y on the basis of \Describe {Macro,

Env) commands in the .doc file and subsequently

included in the docstrip'ped . s t y file. That's easy
enough, but if it's to be generally useful the result

ought to be somewhat standardized and in a form

suitable for use by as many editors or other tools as

possible.
Would conventions for supplying other infor-

mation this way be useful (along the lines of the

Postscript structuring conventions)?

Coordinator: David Love

JANET: d . 1oveQuk. ac .d l ,

BITIINTERNET: d . love0dl. ac . uk

3.2 Syntax proposal for bibliographical
commands

Extensions of current IPTEX syntax for \ c i t e com-
mands and bibliography commands. A number of

specialties have conventions for citations and bibli-

ographies that U w 2.09 is ill equipped to handle.

TUGboat, Volume 13 (1992), No. 4 511

David Rhead published several papers con-
cerning the handling of bibliographies and cita-
tions [RheSO, Rhegla, Rhe92a, Rhe92bl. Some of
them have been distributed via the la tex-1 mail
list. Counter-proposals or further argumentation for
David Rhead's ideas would be useful.

Coordinator: Open

3.3 Research on syntax for tables

What features are important (and not covered)?
Logical representation of tabular material versus vi-
sual representation. Syntax proposal and report.

About tabular material presentation many in-
teresting papers are published. For example,
general articles [Bea86, Bea85]; I 4 m related
[Cargo, Car91, Rheglb]; logical table representa-
tion [Van92]. Important work was done by Michael
Spivak in [Spit391 and of course in his "Tables to
die for" (T2D4). Standard books on typesetting
([But81, McL80, Chi82, Whi881, to name only a few)
also usually contain important information about
tabular typesetting. What is necessary is a survey
of the requirements for tabular material in printing,
a proposal for an extended standard syntax, and
perhaps a proposal for syntax of extra features that
could be provided through a separate 'super tables'
module that is not loaded until the user requests it.

Coordinator: Ed Sznyter ewsQbabe1 . com

3.4 Research on syntax for chemistry

The typography of chemical texts is rather different
from, say, mathematics. We need a taxonomist to
classify the primary elements of an article or book
on chemistry and suggest syntax for user commands
to handle each element. What proportion of cherni-
cal diagrams can be constructed with primitive line
graphics such as given by the I 4 m picture envi-
ronment (with suitable extensions)? Or should di-
agrams just always be done in some other graphics
language and imported via \special?

Coordinator: Chris Carruthers
cjcQacadvm1.uottawa.ca

3.5 Research on syntax for commutative
diagrams

Commutative diagrams occur often enough in math-
ematical literature that even the first version of

AMSTEX back in 1981 or so included a rudimen-
tary facility for constructing rectangular cornmuta-
tive diagrams. Since then several people have pro-
duced various alternatives, most involving special
fonts with line segments slanted at various angles,
and arrow heads. The commutative diagram macros

of VMS-TEX have arrow directions specified as vec-
tors with the units being rows and columns rather
than distances, e.g., \arrow (1,2) means a diago-
nal arrow from the current element to the element
one row over and two columns down.

There is a catmac.sty by Michael Barr that
uses the line fonts of J.4" for drawing slanted ar-
rows. The XY-pic package by Kristoffer Rose is re-
portedly usable with I4W and comes with its own
line and arrowhead fonts.

For I 4 W 3 we would like to see an analysis of
the logical structure of commutative diagrams and
recommendations on user syntax.

Coordinator: Paul Taylor ptQdoc. i c . ac .uk

4 Research tasks

4.1 Experimenting with \emergencystretch

Testing the new features of m 3 where no experi-
ence is available so far. Writing up a report.

Research on \emergencystretch, in particu-
lar, is an important area where the m community
doesn't have enough experience so far, e.g., what are
good values in what situations, why? What happens
if. . . and so on. This would also make a good article
for TUGboat if the report were given some finishing
touches afterwards.

Coordinator: Open

4.2 Research on indexing commands

What kinds of indexes are needed for various fields?
What kinds of indexes are needed for various special-
ties? What kinds of \index commands/syntax need
to be provided for marking entries? What kinds of
commands need to be provided for printing indexes
after they have been processed by a program like
MakeIndex?

Coordinator: Open

4.3 Research footnote/endnotes
conventions

What conventions are used for various specialties?
What user commands and syntax would be recorn-
mended? Report on the results.

Coordinator: Open

4.4 Syntax diagrams

Designing a command syntax (and implementation
in IPTfjX2.09) for syntax diagrams used to illustrate
programming language syntax.

Reference: Michael F. Plass, Charting your

grammar with TQX. TUGboat, 2(3):39-56,
November 1981.

512 TUGboat, Volume 13 (1992), No. 4

The described syntax is probably not appropriate
for I4W and the implementation needs refinement
since it was done for W 7 8 but it is a good starting
point.

Coordinator: David Morgan
morganQsocs.uts.edu.au

4.5 BNF notation

Designing command syntax and prototype M W -
2.09 implementation for BNF (Backus-Naur) nota-
tion used to describe syntax of programming lan-
guages.

Coordinator: Mike Piff
M.PiffQsheffield.ac.uk

5 Research tasks (cont.)

5.1 Research on use of shorthand forms

In SGML there is a concept called 'short ref' which
means for example that the double quote character "
can be defined to produce directional quotes, blank
line can be interpreted as end of paragraph, and so
forth.

What kind of similar shorthand forms in ASCII
files may be desirable for I P W users, e.g., => to be
converted to =+, /= or <> to be converted to #, ' ? to
be converted to upside-down Spanish question mark,
"u to be converted to umlaut ii, and so forth. What
conventions are currently in use for various kinds of
documents?

Something along these lines is currently done in
A M S W with the Q character: Q- is a shorthand
meaning 'nonbreaking hyphen', 0, is a shorthand
meaning one-tenth of a thinspace, Q> is a shorthand
for an extensible right arrow, and so forth.

It is envisioned that in I P W 3 the user will be
allowed to designate certain characters to be short-
hand initiator characters. For efficiency reasons, the
set of allowed initial characters will probably be re-
stricted to nonalphanumeric only.

Coordinator: Julio Sanchez j sanchezQgmv. es

5.2 Research on figures and captions

What rules are in common use for placement and
formatting of floating figures and their associated
captions? Propose syntax for user commands. Write
report.

Placement rules for floats and their captions are
so far very limited in batch formatters like W. We
are interested in rules for such placement which are
used in practice, algorithms, and possible user syn-
tax. What could be a good user syntax for putting
captions above, below, on the side, centered or top
or bottom o r left or right? Do we need to allow dif-

ferent action for different classes of floats? What do
we need for multi-figure groups and their captions?

Coordinator: Sebastian Rahtz
spqr@minster.york.ac.uk

5.3 Research on the use of ^ - conventions

Check the actual use of the - ^ convention for special
characters in the INEX community by polling as
many users, organizations, mail-lists, usenet groups,
etc., as possible. Write report.

In W the ^ - notation is sometimes used for
access to unusual characters (< 32 or > 126). It
would be useful to separate this function from the
superscript function by assigning it to some charac-
ter other than -, if that would not be too large an
inconvenience for users. One approach, for exam-
ple, would be to change - and - to be active char-
acters so that they can always keep track of current
math style, which would allow a better definition
for \mathchoice and simplify many things having
to do with math fonts. It seems that the -- nota-
tion is indispensable only when the character is used
in a control sequence name or as a macro argument
delimiter (or in hyphenation patterns?). Note: doc-
ument styles are of less concern since they will have
to be mostly rewritten for I 4 W 3 anyway.

Coordinator: Open

5.4 Research on typographic conventions
and requirements in multilingual
environments

Typographic conventions differ from one language/
country to another. Collect information about such
conventions and try to identify the basic data-types
and operations required in M ' 3 , so that most
or, ideally, all features necessary for the support of
many languages can be implemented in the I P ' 3
programming language.

It would be helpful also to include anything
whose provision is already supported by the babel
system and/or other systems: e.g., hyphenation.

Coordinator: Open

6 Miscellaneous items

6.1 Math font handling

Test math font handling in the latest release of NFSS
and write up detailed comments.

Last year there was some discussion among the
M'3 programmers and others on how to handle
math fonts under an enhanced release of NFSS for
M'I3733. The discussion finally drifted off into areas
that are far beyond the scope of the IP73X3 project
but the actual questions that were raised have not

TUGboat, Volume 13 (1992), No. 4 513

yet been answered. The only contribution that came

close was the detailed suggestion and experience re-

port by Sebastian Rahtz about the alpha release

for an extended text font handling which was sent
around via the latex-1 list.

A related, but separate, subtask involves think-
ing about proper math font handling taking into ac-

count the papers already sent around.

Coordinator: Open

6.2 Converting numbers to textual form

Currently counter values can be displayed in cer-

tain styles, e.g., as roman numerals. But it may

be interesting to extend the available commands

by cardinal and ordinal representations, e.g., 5 -
'five' or 'fifth' (for example, if you wanted to re-

fer to 'the fifth item' in a list using something like

W W ' s \ re f) . Spivak's UMS-W has \card ina l
and \ord ina l macros to do this, for handling cross-

references such as 'the fifth item in the list' where

'fifth' is supposed to be generated by a \ ref com-

mand. The main question: How much do we need

this capability? Should it be standard, or merely a

nice option for those who want it? Can it be easily
extended to support various language conventions?

Are there other significant uses besides the cross-

reference idea?

Coordinator: Open

7 Miscellaneous items (cont.)

7.1 Rewrite MakeIndex in WEB

Convertlrewrite the C source code of MakeIndex.

For consistency it would seem desirable to have all
auxiliary programs designed for use with U r n 3 to

be compilable in the same way as QjX. Currently

this means use of the WEB language, with or with-

out the CWEB intermediate step.

Furthermore, the MakeIndex program could use
some work to deal with a few shortcomings that have

become evident with the passing of time and ex-

tended usage.

Coordinator: Open

7.2 Write other auxiliary programs

Create programs for support tasks related to UTEX

documents but not part of the primary typesetting

functions.

Question: what other auxiliary programs do we

need? Conjectures: Compiled version of docstr ip?

Programs to help designers in creating document

styles? Program for dealing with graphics files
in various formats (e.g., read Bounding Box com-

ments from a Postscript file and compute scaling

and translation numbers for passing to a IP-TEX
\ spec ia l command)? Checksum utility by R. Solo-

vay for updating Nelson Beebe's standardized file

headers. Auxiliary program to help in constructing

complicated tables (decimal point alignment, row

spanning, other fancy effects that are hard to do in
TJ$ currently)? Auxiliary program similar to Type

& Set to do interactive page-breaking/float place-

ment?

Coordinator: Open

7.3 Bibliography style programming

Write bibliography styles for BIB^^. The current
version of BIB^ is 0.99. A reimplementation of

 BIB^ for U W 3 is under way, by Oren Patashnik.

When this is finished, or perhaps even before, suit-

able standard bibliography styles for I 4 W 3 need to

be written.
Pending because of status of BIB^^

7.4 Bibliography style requirements

Collect available B1~QjX0.99 styles and, if possible,

further journal and publisher requirements regard-
ing bibliographies and analyze them. Summarize

the functionality of each style, whether or not it is

easily programmable with the current BIB^, what

special functions would be helpful, etc.

Coordinator: Robert Tolksdorf

tolkC2cs. t~-berl in.de

7.5 Survey of existing WTEX style options

Using David Jones' TeX-Index (and any other useful

sources), evaluate the status of the many uT~X2.09

options currently available, e.g., whether they are

up-to-date, whether the authors still support them,

or if unsupported, whether they are interesting

enough to make it worthwhile to seek a new main-

tainer for them.

Write a report indicating the status of each style

option, a short description of its features and, if it

is not maintained, if you think it is worth upgrading

or maintaining it.
TeX-Index is an index of (IP-)W macros.

From its documentation:

The most recent version is always available by anony-
mous FTP from theory. lcs .mit . edu in the directory
pub/tex/TeX-index.

Copies can also be obtained from the following lo-
cations:

TUGboat, Volume 13 (1992), No. 4

Correct ion sheets i n Ikw

Mike Piff

Abst rac t

In this article the author explains how to produce

minor correction sheets to a book. The sort of

corrections handled are those which involve changes

to a few words or possibly rewriting a few lines on a

page, but not the sort that would cause m to re-

format the whole book because a page has stretched
or shrunk too much. The author has used these

macros for corrections to a book in print, but they

could equally well make the last stages of proof read-
ing and correction less irksome.

1 Introduction

Reprinting individual pages of a I4m book for cor-

rection can be quite a tricky task. One can always

process the whole book again, but chances are that

the page breaks will all be different. This can also

cause cross-references and the index to be inaccu-

rate, and so is not really suitable unless the whole

book is being reset.
The following style option corrects. sty makes

the job easier. It was developed in particular for the

author's needs, but should be easy to customize.

2 T h e style i n use

It is assumed that a root file is available to produce

the book. Make a copy of this, and insert the cor-
rection style option, and also the commands

\correctionsonly

\renewcommand(\resetcounters)C2]~%

\setcounterITheoremlC#ll%

\setcounterCExampleH#2)%
\ignorespaces)

in the preamble. The former is to tell IPm to pro-
duce only correction sheets, and the latter is cus-

tomized to the particular counters being used in the

current book-in this case, theorem and example
counters. We must either make a copy of the aux file

from the original book, or carefully replace any \ref

and \pageref commands with their expansions in

the corrections file. The author's own preference

was the latter; he changed his root file so that it ac-

tually contained the pages to be printed, rather than

have to \input or \include copies of each chapter

file and aux file. As a precaution, he also redefined
\ref and \pageref so as to give an error message.

Most of the body of the book may now be dis-

carded. In its place, we put instructions to print
individual pages. At least the text of these pages

must be retained. But this is where the complica-

tions begin, since it is possible to be heavily nested

within several layers of environments at the start of

a page, as well as being mid-paragraph in section 9

of chapter 4, and about to produce Example 4.97

and Theorem 4.25. Moreover, at the end of the page

we may be in a different paragraph and a different

section. The headers on the pages will have to re-

flect the current state, and the page must finish flush

right.
None of these problems is of much significance

in itself, but the combination of all of them means

that we have to be pretty careful in giving the ex-

act state of the book for each page. Some counters
change rapidly from page to page, whereas some

change more slowly. I have divided them accord-

ingly, and provide explicit commands to reset the

slow counters, such as chapter and section, whilst

allowing the individual page instruction to reset the
quicker moving sort, such as Theorem or Example.

The instructions

\currentstate(chapter)i4)%

(The theory of relaxorsl

\currentstateCsection)i9)%

(Covariant relaxorsl

tell I4m that we are firmly in chapter 4, section 9.

I4m now needs to know how many theorems and
examples are behind us. We will tell it at the start

of the next page.

But first we need to inform IPm of the current
state of nesting of environments at the top of the

next page. We can do this either by leaving the

immediately preceding text in, or by just giving it a

clue like this.

\begin(enumerate)

\item \mbox()

\item \mbox()

\item

\beginCitemizel

\it em\mboxCl

%%This is the text that

%%immediately preceded the curr-

The paragraph is clearly in full flow, and so we

tell IPm to start the page flush left, where "left"
means according to the level of indentation of envi-

ronments.

\startpageflushleftilOll~24lC96l%

-ent page.

Now we are producing page-101.

The next theorem will be"25.

The next example will be"97.

There is also a similar \startpage command to pro-

duce a normally indented paragraph at the top of

TUGboat, Volume 13 (1992), No. 4

the page, or to use if the first thing on the page is a

theorem, say.
This page ends in mid-flow, so we let U r n

know about this.

. ..it was clearly not too diff-%
\endpagef lushright.

The \endpage command has a similar meaning, but

allows normal paragraph termination in mid-line.

Both cause the page to end flush bottom. Just use

\clearpage if this page is at the end of a chapter.
It may happen that a run of two or more pages

have mistakes on them. The macros in the style

option are designed to make that easier to handle.

At the start of a second, or subsequent, page in mid-
paragraph, insert the instruction

\anotherpageflushleft

or include the command \anotherpage in its text if

it does not have to start flush left. Terminate any

such pages in the usual way. This saves having to

retype the current state of the fast moving counters.

The author has found that floating figures are

handled correctly, but 'I)$ has to see the whole page

where the figure is defined. Alternatively, the figure

can be moved to an appropriate place on the page

being printed. Clearly a large number of held-over

insertions could present some problems, and the best

course of action might then be to move them to the

exact place where they should appear, with the "in-

sert here" option active.
Footnotes on the current page can be handled

by using the optional parameter to set the correct

mark. Footnotes held over wholly from a previous
page can be inserted with \f ootnotetext. A split
footnote from a previous page is handled by means

of the \moref ootnotetext command, which takes
the text of the footnote as its only parameter.

The final feature of this style option is the fact

that only the pages specified above get through to

the dvi file.

3 The style in detail

We first of all define two boolean variables. The vari-

able \if correct ions is an indicator of whether we
are producing corrections or not. Its default is false,

so the style will have no effect unless it is changed
to true. Variable \ifrealpage is used internally to

tell IPm to actually ship out the current page. Its

default is true.

To switch from this default mode, where the style

has no effect, we provide a command to change the

values of these two variables.

\def\correctionsonly{%

\correctionstrue \realpagefalse>

The sectioning counters can be changed by
means of the \current st ate command. We pro-

vide some dummy text by means of the \mboxC>

command.

\def\currentstate#1#2#3{%

\setcounter{#l){#2)%

\addtocounter{#l>{-13%

\csname #l\endcsname{#3)\mboxo)%

To start a page of output, we specify the page

number and then call a command \reset counters,

whose default meaning is to do nothing but ignore
spaces. This command should be redefined in the

user's preamble to take account of any counters that

might need updating.

\def \startpage#l{\npageC#l)%

\resetcounters)

\def \startpagef lushleft#l{\npagei#l)%

\noindent\resetcounters)

\newcommand{\resetcounters)(\ignorespaces~

Both commands to produce a new page make

use of the \npage command.

\def\npage#lC\clearpage

\global\realpagetrue

\setcounter{page){#i>}

The end of a page, flush right or not, is pro-

duced by the following two commands, or if appro-

priate by a \clearpage.

\def\endpageflushright{%

{\parf illskipOpt\par\pagebreak))

\def \endpage{\pagebreak)

If the page after this one also needs to be printed,

an alternative way of producing it is to use one of

the following two commands.

\def\anotherpageflushleft(%

\global\realpagetrue\noindent>

\def\anotherpage{\global\realpagetrue>

A footnote from the previous page. part of

which appears at the bottom of the current page.

can be handled by inserting a left justified footnote

without a mark in either the text or the footnote

itself. This command should be invisible in the sur-

rounding text, and so we make certain that it does

not alter m' space factor.

\def\morefootnotetext#l~\@bsphack~%

\def\@makefntext##l{\noindent ##I)%

\f ootnotetext{#l)>\@esphack~

The only thing that remains is to make sure

that any extraneous text, such as is created by sec-
tioning commands, is not printed. We first take a

518 TUGboat, Volume 13 (1992), No. 4

copy of the U r n command that actually ships a
page to the dvi file.

The command \@outputpage is then redefined in

terms of its old meaning. First, only "real" pages

are printed, that is, only when \ i f realpage returns

true. Then, if we are only printing correction sheets,
we immediately switch off printing of pages after

this one. Only the \s tar tpage and \anotherpage
commands will switch printing on again.

Note that we need to ensure that any special
page style set by \ thispagestyle on a page that has

not been printed does not carry over to the following

page. For instance, a \chapter command will gen-
erally introduce a p la in page style command into
the document.

The command \@outputpage should otherwise

do everything that its old version did, apart from

shipping the page out to the dvi file.

o Mike Piff
Department of Pure Mathematics
University of Sheffield
Sheffield S10 2TN
England
Janet: M.Piff Bshef . ac .uk

Text merges in T@ and W w

Mike Piff

Abstract

In this article the author explains how to do some

standard and not so standard word processor text

merges in documents, using no other tools than

itself. A common application is to the mail

merge or form letter, where names and addresses are

stored in a file, together with other bits of informa-

tion, and a standard letter with variable fields em-

bedded in it is customized for every name from this

file. Another application is to the pretty-printing of
the contents of a database.

The macros described in textmerg. s t y work
equally in both plain rn and U r n .

1 Introduction

It is often said that although I4m is good at type-
setting mathematics, it is wholly unsuitable for com-

mon word processor functions such as mail merges.

The latter are easy to achieve in most ordinary word

processors, but in its raw state I 4 w is incapable

of doing a mail merge, or, indeed, of generating the

same block of text over and over again but with

different parameters in each block, those parame-
ters having been read from a subsidiary merge file.

The latter file might possibly be the output from a

database or any other program.

This article aims to show the reader that such
a repetitive task need not be as difficult as it at

first appears. In w, it is possible to hide many
details of a facility inside a subsidiary style file, so

that the user is unaware of what fearful processes

are going on in the background. It is then possible

to present the end-user with an extremely simple

interface, perhaps simpler and more powerful than
is available in other systems.

In earlier TUGboat articles [Be187, Gar87,

Lee86, McK871 it was shown how a standard letter

could be customized by adding names and addresses

from a separate file. I aim to show that it is possible

to achieve far more than this with a fairly compact
but general set of macros.

2 A simple example

Suppose that we have a list of student names and

examination grades, one per student, and that we
wish to send a letter to each student giving his/her

exam grade. We must decide first what bits of infor-

mation must be prepared in our subsidiary file, by
looking at an example letter and finding out which

items change from letter to letter.

Suppose that one instance of our letter is the

following, a U r n example.

\begin(letter)(Mr Abraham L Spriggs\\
34 Winchester Road\\
Sheff ield S99 5BX\\

England)
\opening(Dear M r Spriggs,
This l e t t e r i s t o inform you
t h a t you obtained grade C i n
your recent examinations.
\closing(Yours f a i t h f u l l y ,)

\endCletter)

We can see that we need to know the student's title,

forename(s), surname, address and grade to com-

pose such a letter.
One of the simplest ways of achieving this effect

is to prepare a file with lines of the form

TUGboat, Volume 13 (1992), No. 4 519

for each student and then simply \input it into

a IPT@ file in which \MyLetter has been defined
as having five parameters. A problem with this

approach is that we may not be able to coax the
student database into producing such a file. An-

other problem is that we need something more sub-

tle if there are fifty parameters. For example, we

might want to print out the contents of the student

database with one page per student, but it could be

that there are fifty information fields per student.

Even worse, the number of pieces of information per

student might not be a constant number, because,
say, we are printing out fields from a related file in

which marks on individual examination papers are

held.
We shall tackle our simple example in a way

that lends itself to more generality later on, and in

a form that most database programs should be ca-

pable of handling.
We thus prepare a subsidiary file results .dat

with records of five fields in it. Each student is rep-

resented by five lines of this file,

Mr

Abraham L
Spriggs

34 Winchester Road\\ ... \\England
C

and the student records appear one after another in
this file. Thus both the field and record separators

are carriage returns.

7$J itself needs to know three bits of informa-
tion:

1. the name of the subsidiary file,

2. the fields to read, and
3. the template of the letter.

We pass i t this information in the following form

\Fields{\Title\Forenames\Surname

\Address\Grade)

\Mergeiresults.dat)C%

\begin(letter)i\Title\ \Forenames\

\Surname\\\Address)

\opening(Dear \Title\ \Surname,

This letter is to inform you -

that you obtained grade \Grade\ in

your recent examinations.

\closing{Yours faithfully,)

\endCletter))

IP7$J should open the subsidiary file and, for each
set of five parameters. generate a letter in the dvi

file. When it reaches the end of the merge file, IPl&X
should terminate execution of the \Merge command

and presumably finish the document.

3 A few complications

Looking at the above example in a bit more gener-

ality, we see that we are reading records of n fields
&om the merge file and placing them into a TEX doc-

ument in such a way that they replace n preassigned

control sequences. However, it may happen that the

merge file is prepared by humans, who might pos-
sibly have inserted some extra blank lines into the

file. Again, it could be that certain sorts of fields

might be blank, whereas others can never be blank.

Perhaps it would be better to build in some degree

of error recovery.

We shall make the assumption that the first

field in any record is definitely a non-blank one and
that we know beforehand whether each of the others

might conceivably be blank. We make a modifica-
tion to our \Fields statement. It can contain not

only the field name control sequences but also the

tokens + and -, with the following interpretation. A

+ indicates that all following fields should be re-read
until a non-blank result is obtained. A - indicates

that any following fields could conceivably be blank,

subject to the restriction that the very first field is

always non-blank.

Thus the command

\FieldsC\a+\b\c-\d)

would indicate that only \d is allowed to be blank.

because the + token has no effect. In

\Fields{-\a\b+-\c+\d)

the initial - token enables blank reading of data to-

kens, but the very first data token is not permitted

to be blank anyway. Thus \a is read as a non-blank
token and \b as a possibly blank token. The se-

quence +- now switches non-blank reading on and
off again, so \c is read as possibly blank. Finally \d

is non-blank.

Another complication we allow is that the

\Fields command can appear several times in our

file. The interpretation is that the last occurrence of

\Fields before we encounter the \Merge command

will indicate the fields to be read for every record.

Any occurrences of \Fields within the merged text

indicate a new list of fields to be read when that

command is encountered. This lets us do some con-

ditional processing, such as1

\ifx\Title\Mrs

\Fields{\MaidenName)

\f i

and also gives us some flexibility about the field or-

der later on.

It is assumed that \Mrs expands to Mrs.

TUGboat, Volume 13 (1992), No. 4

* .
It should also be stressed that the undefined

control sequences appearing in the template need

not correspond exactly to the fields in the subsidiary

file. An example might be that the subsidiary file
contains the text

Spriggs, Mr Abraham L

and one field read is \FullNme. TFJ would then
have to pre-process this name to generate its several

components as used in the template. The command

\Preprocess could be included at the start of the
template.

\def\parse#l, #2 #3\endparse{%

\def \Surname{#l)\def \TitleC#2)%

\def\ForenamesC#3))

\def \PreProcessC\expandaf ter

\parse\FullName\endparse)

An alternative and simpler looking approach to
reading fields from a file \fil might be to define

each such field as follows.

\def \Field#lC\def #l{\read\f il to#l#l))

\Field\Name \Field\Address \Field\Mark

The first time \Name is encountered, it reads its

own expansion from \fil and then expands itself.

Henceforth, it has acquired its new expansion. The

disadvantage is that \Name must appear in the text
before any subsidiary field such as \Surname can be

used.

Finally we should consider the possibility that
the second parameter of \Merge might be too large

to fit into memory. We can clearly handle this prob-

lem by allowing the second parameter merely to con-

sist of the text \input template, so that the root

file handles two subsidiary files, one containing the
template and the other containing the fields.

4 Implementation of the simple case

For convenience we define a frequently used combi-
nation here.

\def \glet{\global\let)

The subsidiary merge file is defined next. A
macro is then defined that attempts to open it for

reading. If that is unsuccessful, the file is closed and
an error message is issued.

\newread\MergeFile

\def \InputFile#l{%

\openin\MergeFile=#l

\ifeof\MergeFile

\errmessageCFmpty merge file)%

\closein\MergeFile

\long\def\MakeTemplate##l{%

\def \Template{))%

\else\Get Input\f i)

The command \MakeTemplate will be used later to
generate the body of the form into which fields are

inserted. We redefine it if the file is empty so that

it produces no text.

Because the conditional \if eof does not return

true until after an unsuccessful read operation, a

mechanism of looking ahead is used which is similar

to that found in Pascal.

\def\GetInput{{\endlinechar=-1

\global\read\MergeFile to\InputBuffer))

We set up a mechanism for deciding whether

or not we have exhausted the merge file. It forces

\if eof to return true by skipping over blank lines.

\def\SeeIfEof{%

\let\NextLook\relax

\ifeof\MergeFile

\else

\if x\InputBuf f er\empty

\LookAgain

\f i

\f i

\NextLook)

\def\LookAgain{\GetInput

\let\NextLook\SeeIfEof)

We can now prepare to read actual fields from

the merge file. A conditional is used to indicate
whether or not the field we are about to read is

allowed to be blank. We also set up a mechanism
for changing its value.

\newif\ifNonBlank \NonBlankfalse

\def\AllowBlank{\global\NonBlankfalse)

\def\DontAllowBlank{\global\NonBlanktrue)

Fields are actually read by means of the follow-
ing command. Its only parameter is the name of the

control sequence into which the field is read.

\def\ReadIn#lC%

\ifNonBlank\SeeIfEof\fi

\ifeof\MergeFile

\gdef#lC??)\MissingField

\else

\glet#l\InputBuf f er

\Get Input

\f i)

\def \MissingField{%

\messageCMissing field in file))

The \Fields command places its parameter

into a token register called \GlobalFields. This

command will be redefined by the \Merge command.

\newtoks\GlobalFields

\def\Fields#l{\Globa1Fields{#lH

When a field token list is read, each individ-
ual token within it must be either read as a field or

TUGboat, Volume 13 (1992), No. 4

interpreted as a blank/nonblank switch. The next
token is then read by tail recursion. It is assumed
that the final token in the list is \EndParseFields.
This must be defined to expand to something un-
likely to be read as a value of one of the fields. and
so we \let it to \ParseFields.

\def\ParseFields#l{%

\ifx#l\EndParseFields

\let\NextParse\relax

\else

\let\NextParse\ParseFields

\if x#l+\DontAllowBlank

\else

\ifx#l-\AllowBlank

\else\ReadIn#l

\f i

\fi

\fi\NextParse3

\let\EndParseFields\ParseFields

We apply this command to our token register after
expanding it.

\def\ReadFields#li\expandafter\ParseFields

\the#l\EndParseFields

\AllowBlank)

At long last we are ready to define the \Merge
command itself. The first parameter is the filename
of the subsidiary file and the second is the tem-
plate or form into which fields are inserted. Since a
\Fields command within the \Merge text is meant
to act immediately on the token list that follows it,
we redefine it to operate in a different way.

\long\def\Merge#l#2C\begingroup%

\InputFile<#l)%

\def\Fields##l<%

\ParseFields##l\EndParseFields)%

\MakeTemplat ei#2)\It erat e3

\long\def\MakeTemplate#l<\def\Template<#l))

The grouping keeps any changes to the definition of
\MakeTemplate local to this merge. Thus several
consecutive merges can be handled within one doc-
ument. The \endgroup is supplied by the macro
\Iterate when the merge file has been exhausted.

\Iterate must read the fields which were de-
clared before it was entered, substitute them into its
template and repeat itself using tail recursion if the
end of the merge file has not been encountered.

\countdef \Iteratecounter=9

\Iteratecounter=O

\def \Iterate<%

\global\advance\Iteratecounter by1

\ReadFields\GlobalFields

\Template

\SeeIf Eof

\if eof \MergeFile

\def\NextIterationi%

\endgroup\closein\MergeFile)%

\else

\let\NextIteration\Iterate

\f i

\Next Iterat ion)

The point of the use of counter 9 in the above is that
it is accessible to the print driver for page selection.
Anyone who has started printing 150 letters, all with
page number 1, only to run out of paper half way,
will appreciate the use of this artifice!

5 A complicated example

We will next look at an example in which the tem-
plate contains a table of indeterminate length, albeit
fked width. So far our macros work in either plain
' & X or in I P W , but the way in which these two
packages handle tables is slightly different. How-
ever, the only difference that need concern us is that
I4W uses \\ where plain W uses \cr.

The example given here is in I P W , but our
style will work equally well in plain m. In our
student letter we wish to insert a table of course
codes and marks. Since each student did a different
number of courses, we need some way of recognizing
the end of the course list in the merge file. The

default will be to insert a blank line at the end of
such a sub-list. Thus, the following text appears
before the close of the letter template.

Here are your marks on individual papers.

\begin<center)

\begin<tabular){llrJ)\hline

Code&Mark\\\hline

\MultiRead<2)\\\hline

\end<tabular)

\end<centerl

The merge file now has the following structure.

Title

. . .
Grade

Code

Mark

. . .
Code

Mark

(blank)

Title

. . .
In other applications some of the fields in the

table might possibly be blank. We then let the user

TUGboat, Volume 13 (1992), No. 4

change the (blank) line marking the end of a list to
some other string of his own choosing.

\MarkEnd{***)

There might be multiple tables in the same tem-
plate, with their data intermingled in the merge file
with main fields. The generalized \Fields com-
mand allows us to order the merge file however we
want. Thus we could have main fields, then a table,
followed by more main fields, and so on.

A final complication is that the fields appear-
ing in a table are essentially anonymous. By this I
mean that they are transferred into the table as they
are, without any pre-processing possible through ap-
pearing in the template as control sequences. If we
wish what appears in the table to be different from
what appears in the file, a mechanism is needed to
tell QjX that a certain column has to be treated in
a certain way. The command

\ProcessCnH\foo)

will replace every field (f) read into column n by
\foo{(f)). It is even possible to do some numerical
calculations by this method.

6 Implementation of merged tables

We set up two counters, one for the column we
are reading and the other for the total number of
columns in the table. We also need a conditional
to mark the start of the table, so that we terminate
each row correctly with \ \ or \cr, or nothing at all
at the beginning of the first row.

\newcount\MultiCount \newcount\MaxCount

\newif \if StartOfList

The parameter to \MultiRead is the number of
columns to read at a time. This command passes
control to \NextRead after initializing certain pa-
rameters.

\def\MultiRead#l(%

\ifnum#l>O

\SelectCR

\MakeEmptyC#l3%

\global\StartOf Listtrue

\glet\NextRead\MRead

\AllowBlank

\global\MaxCount=#l

\NextRead

\f i)

The command \MakeEmpty is required by the pre-
processing of each field. The idea is that the
command \csname prnn\endcsname, which we will
loosely call \prnn, is executed on each field in col-
umn nn. However, most of these commands will be

undefined, and so we equate each of those that has
not been defined to \empty.

Note that, because of the way we are accessing it
via \csname, the first time \prnn is encountered it
equates to \relax.

The command \Process#l#2 defines \pr#l to
mean #2.

We need to know how the last row is to be rec-
ognized. The default is an empty line in the merge
file.

\def\MarkEnd#l{\gdef\EndMarkerC#I)l

\MarkEnd{)

We collect each row in a token register. The full
row is assembled in \NextLine before being passed
back to m. Each field is read in \TempField and
then placed temporarily into \NextField.

It is not necessary to do things this way; \edef can
be used instead, but that approach might expand
tokens prematurely.

After the next field has been read, it is ap-
pended to \NextLine.

\def\AppendNextField{%

\global\advance\MultiCountl

\NextField=\expandafter{\TempField)%

\edef\Append{\NextLine=

{\the\NextLine&\csname

pr\the\MultiCount\endcsname

{\the\NextField)))%

\Append3

We need to insert the correct end marker af-
ter each row of the table. The token \cr must be
disguised a little before it is acceptable in a LPw
document.

\def\SelectCR{%

\ifx\array\undefined

\gdef\EndLine{\cr)%

TUGboat, Volume 13 (1992), No. 4

\else

\glet\EndLine\\%

\f i3
\def\FinishLineC%

\if StartOfList

\global\StartOfListfalse

\else\EndLine\fi)

This makes the assumption that if \array is defined

then we must be in IPW.
We need a command to finish off a table. This

should reset \NextRead to \AllowBlank to termi-
nate the tail recursion, and also do some error re-

covery in case the file ends prematurely in the middle

of a row.

\def\StopProcessing(%

\global\MultiCount\MaxCount

\glet\NextRead\AllowBlank)

The command \MRead prepares to read a row
of a table. It reads a field from the merge file and
checks to see whether the table has been exhausted.

\def\MReadC%

\global\MultiCount=l

\ReadIn\TempField

\ifx\TempField\EndMarker

\StopProcessing

\else

\FinishLine

\NextField=\expandafter{\TempField}%

\edef\StartLineC\NextLine=C\csname

prl\endcsnameC\the\NextField)))%

\StartLine

\ConstructNextRow

\f i

\NextRead)

Command \ConstructNextRow does most of the
work of assembling a row of the table. It assembles

\MaxCount fields at a time into \NextLine unless an
error is encountered.

\def\ConstructNextRowC%

\loop

\ReadIn\TempField

\ifx\TempField\EndMarker

\glet\TempField\empty

\StopProcessing

\MissingField

\else

\ifeof\MergeFile

\glet\TempField\empty

\StopProcessing

\MissingField

\f i

\fi

\AppendNextField

\ifnum\MultiCount<\MaxCount

\repeat

\the\NextLine}

7 A final example

Here is a IPT@ example to illustra~e the table pro-

cessing features of textmerg. sty.

\documentstyle[l2pt,textmerg]~rticle~

\MarkEnd{***)

\ProcessC2)(\Advance}

\def\Advance#lC#l\addtocounterCpage~C#1}}

\Fields(+\Name\Verb)

\begin(document}

\MergeCsilly.datH%

Dear \Name, \par

Here is a table to \Verb\ at:

\Fields{\Width)%

\beginCtabular)(*{\Width)c)

\MultiRead\Width

\end{tabular).\par

\FieldsC\Adj)%

That was \Adj ! \clearpage)

\end(document}

The effect of this file is not apparent until we see

silly. dat. It is listed here in four columns.

Mike

look

3

1

2

References

Edwin V. Bell, 11. AutoLetter: A

T@ form letter procedure. TUGBoat,

8(1):54, April 1987.

John S. Garavelli. Form letter macros.

TUGBoat, 8(1):53, April 1987.

John Lee. Form letters. TUGBoat,

7(3):187, October 1986.

Graeme McKinstry. Form letters.

TUGBoat, 8(1):60, April 1987.

good

Shelagh

gaze

2

21

o Mike Piff
Department of Pure Mathematics
University of Sheffield
Sheffield S10 2TN
England
Janet: M . P i f f Qshef . ac .uk

22

23

24

horrid

524 TUGboat, Volume 13 (1992), No. 4

A style file for printing sheets of labels

Sebastian Rahtz

Contents

1 Usage 524

2 The utility macros 525

3 User macros 527

4 History and acknowledgements 528

Abstract

A P ' style to print a regular grid of labels on
a page, suitable for sheets of labels which can be

fed through a laser printer. Macros are provided to

allow easy input of names and addresses in a form

free of markup.

1 Usage

This style file was written to print labels from the

shop around the corner from me. These have 8 rows

and 3 columns on a sheet of A4 paper. Your labels
will very likely be different. So first you have to

tailor this file to your particular type of label. Edit

the lines below which look like this:

\numQlabelcols=3

\num@labelrows=8

to reflect your grid (maybe you have only two

columns of ten labels each, for instance). Now make

sure that your printer driver prints the page exactly
as it should in vanilla W, i.e. with the origin of the

page down l in and right lin from the top left hand

corner of the paper. 1f it doesn't, adjust your driver

parameters, or edit the settings below where I take

lin off the margins. The most likely problem with
these macros is that you will have contents which

are quite wide, and which therefore need to use the

very edges of the paper, on which your printer may

not write correctly. Little one can do about this -

use a small point size.

The simplest form of input is very easy, as in

the following example:

\documentstyle(labels)

\begin<document)

\begin<labels)

\input names . dat
\endClabels)

\end{do cument)

where names. dat contains names and address in

plain format with simply a blank line between en-

tries. You can, of course, just have the names and

addresses in the main file, rather than using \input

to include them. If the file ends in blank lines, ex-

pect problems - sorry! Use your editor. . .
But there are also other ways off accessing the

same system:

I . by having entries like this:

\addresslabel{me\\

here and there\\

england\\

1

without the labe ls environment.

2. if you have labels in the simple format in a file,

just write a . t ex file like this:

and all will be done for you.

3. if you want to duplicate the label, there is a

counter called \numberof labe ls which you can

set, so

\numberoflabels=4

\addresslabel{Me \\my street

\ \ mytoun \\ England)

will print the address 4 times in a row

4. For more sophisticated users, there is a macro
\genericlabel which you can call, with an ar-

gumenc of whatever you want to appear on the
label (e.g. for disk labels, etc.). Thus you could

have

\genericlabel{%

\begin{tabular){c)

\hline

My Amazing Program\\

\hline

Disk 1 of 1

\hline

\em We aim to serve\\

\end{tabular)

1

to produce a label like this:

[My Amazing Program1
1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1

/Disk 1 of 1 I
1 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1

IWe aim to serve I

TUGboat, Volume 13 (1992), No. 4 525

In all modes, you can opt for a frame around each label by setting a Boolean variable

called 'framedlabels', e.g.

\f ramedlabelstrue

By default you get no frames - I am not sure when you would want frames, but who

knows.

2 The utility macros

First of all, identify what is happening.

Now take a copy all of 'article' style to start with, just in case any of it is needed

(probably not, but you never know).

\input article. sty

We will be recording the size of a label, and the dimensions of the grid, so set up

variables accordingly.

\newdimen\labelQwidth

\newdimen\labelQheight

\newcount\numQlabelcols

\newcount\numQlabelrows

\newdimen\leftQborder

\newdimen\topQborder

\neudimen\half Qlabel

\newdimen\areaQwidth

\newsavebox~\thisQlabel)

\newcount\labelQnumber

\newcount\numberoflabels

\newcount\lQsoQfar

\newif\ifframedlabels

\newif\iffirstQlabel

\firstQlabeltrue

\f ramedlabelsf alse

The user will probably need to change the following values to reflect the style of labels

in use.

Variables are provided to allow you to force a border on the left edge of labels, in case

you do not want to print right to the edge, and at the top; these values will affect

every label, of course, so you may need to experiment to get pleasing results. 8mm is

the amount my LaserJetIII seems to ignore on the left.

We need to reset all the dimensions appropriately for an A4 page of labels, and the

printer will need to know about A4 as well. Obviously if you use a different page size,

you will need to alter things here. Some of these changes may be printer dependent.

This should all mean we are actually dealing with the whole bit of paper.

TUGboat, Volume 13 (1992), No. 4

\headsep=Oem

\topsklp=Oem

\footskip=Oem

\footheight=Oem

\oddsidemargin=-lin

\evensidemargin=- lin

\pagestyleCempty>

\parindent=Oem

\parskip=Opt

Now calculate the size of labels simply as a proportion of the page size (if you haven't

got that right, this won't work, will it?).

\label@width\textwidth\divide\label~uidth by\num@labelcols

\labelQheight\textheight\divide\labelQheight by\num@labelrows

\typeout{Creating labels sized \the\label@width\space by \the\label@height>

\labelQnumber=l

It is not usually advisable to make the label printing go right to the edge of the
available area, so 'area@widthl gives the area that will actually be used for printing:

the width is cut down by whatever we gave as 'left@border'. It can always be set to

0 if you have a design that uses the whole label.

\area@width=\labelQwidth%

\advance\area@width by -\left@border%

\half@label=\label@height\divide\halfQlabel by 2

\advance\half@label by -\top@border

We might want to print the same label several times, so \ s t i ckyQlabe l will repeat

\makeQlabel a specified number of times (\numberof l abe l s)

\numberoflabels=l%

\def \sticky@label{\l@so@f ar=O%

\loop\ifnum\l@so@f &\numberof labels\advce\l@so@f a by l\make@label%

\repeat}

The real label-making macro, which assumes the actual text is in a box called

\ th i sQlabe l . It is vital to make sure spaces are not included at the end of lines

in these macros, or all hell breaks loose.

\def\make@label{%

\iff ramedlabels%

\let\boxing@type\framebox%

\else%

\let\boxingQtype\makebox%

\f i%

\boxing@type [\labelQvidth] [c] {%
\rule{Opt}{\label@height)%

We set a position to half-way up a strut of the height of the label, so forcing text to

be the right height and vertically centred.

\raisebox{\half @label} [Opt] [Opt] {%
\rule{\lef t@border>~pt)\usebox{\this@label>>>%

We only start a new line if we have printed a row of \numQlabelcols labels

\ifnum\label@number=\num@labelcols%

\endgraf\nointerlineskip%

\label@number=l\else\advance\labelQnumber by l\fi%

1%

Now some macros to allow 'verbatim' names and addresses separated by blank lines.
First we need some hackery from Phil Taylor to redefine end of line; define carriage-

return to check what the next token is; if its another -M then we have a blank line.

\catcode '\--M = \active

TUGboat, Volume 13 (1992), No. 4

If we have met a blank line, finish current label and start a new one. swallow pending

^M, or we will have a blank line at the start of each label

Otherwise just start a new line

Re-instate the original catcode for carriage-return

Define macros to call at beginning and end of labels, to set things up properly.

\def \st art @@label{%

\savebox{\this@label)\bgroup\raggedright%

\begin{minipage){\area@width)%

\catcode '\--M =\active)%

\def\end@@label{%

\end{minipage)\egroup\sticky@label)%

3 User macros

The basic case is a generic macro which takes its argument and puts it out on a label.

For compatibility with an old label style, lines ending in // and marked with

\addresslabel{. . . .)

Now easier environments for verbatim labels. If we want framed labels, we need to

adjust the width available to use to allow for the ru l i width and the gap between box

and rule, in both axes. This is doubled up, as it happens on both sides / bottoms.

We have to check in case the first \begin{labels) has a ^^M after it or (preferably)

is terminated by a %

TUGboat, Volume 13 (1992), No. 4

Even more foolproof: simply take a parameter of file name

\def\labelfile#l{\begin{labels)\input#l\end~abels))

or prompt for it:

\def\promptlabels{\typein[\labelfilename]{What is the name of the

label file?)

\labelfile{\labelfilename})

4 History and acknowledgements

v.1 May 9th 1989 simply allowed for \addresslabel(. . . \ \ . . . \ \ . . .)
v.2 July 15th permitted verbatim style with no explicit end of lines

0 v.3 March 1991 made more generic

v.4 January 1992 checked and made to work with emtex drivers to my satisfaction.
and documented to bare-bones level with 'doc' system.

The crucial macros which make the system bearable for mailing lists by redefining end
of line came from Phil Taylor; apologies to him for using them in a I4m style file!

o Sebastian Rahtz
ArchaeoInformatica
12 Cygnet Street
York YO2 1AG
spqrBuk.ac.york.minster

Abstracts

Les Cahiers G UTenberg
Contents of Recent Issues

Numhro 13 - juin 1992

Bernard GAULLE, ~di tor ia l : morositk francophone
ou recession Bconomique ? [French moodiness or
economic recession?] ; pp. 1-4

GUTenberg's president provides ample evi-
dence of a strong and dynamic (U) W com-
munity, in spite of the low interest shown for the
1991 GUTenberg meeting and other reasons which
caused the board to decide to skip GUTenberg'92.
While the two meetings seemed to have all the best
possible organisation and components, participation
didn't seem to match the efforts made. And yet
the intensity of work being done on various fronts

(e.g., U W 3) , the increasing number of articles on
(U) W in various national magazines and journals,
the increase in requests to GUTenberg for informa-
tion, courses and subscriptions to the Cahiers, all
show that things are humming. It would therefore
seem that the economy, not a downturn in interest
(along with perhaps too many TEX meetings), is
the most likely cause for reduced participation at
recent meetings.

Hans Ed. MEIER, Rhgles fondamentales de mise en
page [Basic rules for page layout]; pp. 5-38

Originally published in 1991 in German, this
article as translated has been augmented with
comments on French typographic style. Meier,
described in the editorial as a retired typographer,
discusses in his article design elements not only of

TUGboat, Volume 13 (1992), No. 4 529

books but all manner of documents, from in-house references. But this should not deter those who

reports to business cards. The article comprises can read French from approaching the article and

two parts: a section (pp. 6-14) on various elements reading an account which resides more at the meta

of a document (e.g., spacing, margins, justification, level than at the mere production level.

use of small caps, centering, the general look of a

page, etc.), followed by beforelafter examples taken

from documents Meier had worked on while at

the Swiss Federal Institute of Technology in Zurich

(pp. 14-38). The first section provides very useful
basic notions (as promised in the title) on style

and layout, and with the additional comments from

the GUTenberg editorial staff, this portion is very

interesting and informative for those interested in

variations across linguistic and cultural groups. The
second section, while its rather dogmatic rejection

and improvements may not sit well with everyone,

is nevertheless a good baseline which users new to

the notions of page layout and document design

could either choose to adhere to, or deviate from.
The article has a short bibliography of 6 titles in

German, with 2 references in French, added by the

GUTenberg editorial staff.

Emmanuel SAINT-JAMES, Une police pour la
science. De l'impact du traitement de texte sur

l'activit6 scientifique [Guidelines for science: the

impact of word processing on scientific activity];

pp. 39-54
The editorial for this issue introduces the Saint-

James article as one which is more philosophical-

even epistemological-and as with the previous

article, one not specifically aimed at w at all.

"Difficult to read, sometimes obscure and often

provocative, each paragraph prompts one to stop

and think" is how the editorial describes the paper,

and the argumentation is indeed difficult to follow
at times. The paper is a result of the author's
efforts in producing a 400-page publication (Trait6

de programmation), and discusses the choices at

various levels: characters (font selection), lexicon
(at issue, the infusion/intrusion of English computer

terminology), the document structure, and a mini-
diatribe about bibliographies citing "old news", for

which he has little use. Unfortunately, this disdain

is also apparent in the references which accompany
the article (in fact, the author explicitly refers

to this "concession"!), so the reader is unable to

readily pursue the casual asides which pass for

Bobby BODENHEIMER, w, I P w , etc :

questions et rhponses [French adaptation and

translation of an issue of the "FAQ" -Frequently

Asked Questions - posted 2 March 1992 to

comp. t e x t . tex, v.1.221; pp. 55-77

An excellent idea [one which T T N might con-

sider!] of presenting some of the main items in a

recent issue of the Frequently Asked Questions file

which is posted monthly to the c . t . t newsgroup,

the GUTenberg editors have produced a handy ref-
erence article for the many users of (I4)W not

able to access the Internet. The main areas treated

include: archives (where to find what); drivers

(queries for specific printers); graphics programs

(where to get them, how to use them); fonts (work-
ing with METAFONT, using PS fonts, converting

font formats, locating different fonts); "How do you

do x in m ? " (music, an index); conversions (e.g.,

x to IPW, I P m to x); hyphenation problems;
error messages; "How do you do y in I P m ? " (style

files, various specific questions); and finally, user

groups and documentation. The FAQ closes with

a pertinent reminder that electronic accessing via

ftp is a privilege, not to be abused. A welcome

addition is the Index to the FAQ which the editors

of GUTenberg have provided, making this a doubly

useful article.

Annonces et publicitks [Announcements and

advertisements]; pp. 78-90
The final portion of the issue carries a number

of items, including a listing of TEX versions avail-

able from GUTenberg for various systems (Mac,

PCs, VAXIVMS, and UNIX variations); the detailed
announcement of the Prague E u r o m ' 9 2 meeting

(including registration form); and the announce-

ment for TUG'92 in Portland. As well, there

are advertisements from Y&Y (fonts), Cambridge

University Press (their Cambridge Electronic Pub-

lishing service), and ET, a TEX text editor for

the PC. A loose flyer contains advertisements for

Textures on one side, and MacFEM (a program "for

solving partial derivative equations") on the other.

530 TUGboat, Volume 13 (1992), No. 4

Calendar

1993

Jan 7

Jan 21

Jan 21

Jan 27

Feb 1-2

Feb 4

Feb 16

Feb 18

Feb 18

Feb 22

T@GStammtisch at the Universitat

Bremen, Germany. For information,

contact Martin Schroder

(115dC3alf.zfn.mi-bremen.de;

telephone 0421/6289813).

M I T W meeting, Massachusetts

Institute of Technology,

Cambridge, Massachusetts.
Room 1-134, 12:OO-13:OO. For

information, contact Robert

Becker (robertb@math.mit.edu;

617-253-1797).

w-Stammtisch in Duisburg. For

information, contact Friedhelm Sowa
(texC3ze8. r z .mi-duesseldorf . de,

telephone 0211/311 3913).

w-Stammtisch, Hamburg,

Germany. For information.

contact Reinhard Zierke
(zierke@inf ormatik .mi-hamburg . de;

telephone (040) 54715-295).

Symposium: The Ethics of Scholarly

Publishing, Toronto Hilton Hotel,

Toronto, Ontario. For information,
contact L. Forget, Conference

Services Office, National Research

Council, Ottawa, Ontario KIA OR6

(613-993-9009; Fax: 613-957-9828).

T@-Stammtisch at the Universitat
Bremen, Germany. (For contact

information, see Jan 7.)

TUGboat Volume 14,
2nd regular issue:
Deadline for receipt of technical

manuscripts (tentative).

M I T W meeting, Massachusetts

Institute of Technology, Cambridge,

Massachusetts. Room 37-252,

12:OO-13:OO. (For contact
information, see Jan 21 .)

w-Stammtisch in Duisburg. (For

contact information, see Jan 21.)

Papers for TUG Annual
Meeting, deadline for submission of

proposals (see TUGboat 13, no. 3,

p. 398).

Feb 24 T)$GStammtisch, Hamburg,
Germany. (For contact information,

see Jan 27.)

Feb 24 - 27 CONCEPPTS 93, The Prepublishing
Conference, Orange County

Convention Center, Orlando, Florida.
"International Conference on

Computers and Electronic Publishing
and Printing Technologies".

For information, phone:

703-264-7200, Fax: 703-620-9187.

Mar 1 Donald E. Knuth Scholarship,
deadline for submission of

projects. (See TUGboat 13, no. 3,

pp. 395-396.)

Mar 4 T&GStammtisch at the Universitat
Bremen, Germany. (For contact

information, see Jan 7.)

TUG Courses, San Francisco, California

Mar 1-5 Intensive I4m

Mar 8 7QX for Publishers

Mar 9 - 10 Practical SGML and

Mar 9 TUGboat Volume 14,
lSt regular issue:
Mailing date (tentative).

Mar 9 - 12 DANTE'93 and General Meeting,
Chemnitz, Germany. For information.
contact Dr. Wolfgang Riedel

(wolf gang. r iede lahrz . tu-chemnitz . de)

Mar 16 TUGboat Volume 14,
Znd regular issue:
Deadline for receipt of news items.

reports (tentative).

Mar 18 MITTuG meeting, Massachusetts
Institute of Technology, Cambridge,

Massachusetts. Room 37-252,

12:OO-13:OO. (For contact

information, see Jan 21.)

Mar 18 w-Stammtisch in Duisburg. (For

contact information, see Jan 21.)

Mar 22 TUG Course: for Publishers,
Boston, Massachusetts.

Status as of 10 November 1992

TUGboat, Volume 13 (1992), No. 4

Mar 30 - 31 UK w Users' Group, Glasgow,

Scotland. (Note: this is just before

the BCS EPSG meeting.) Topics:
METAFONT, theoretical and

practical; and font selection schemes,

virtual fonts, multiple languages and

hyphenation, etc. -everything

you need to know to use w to

typeset non-American languages.

For information, contact Phil Taylor

(chaaOO6Qvax. rhbnc . ac . uk).

Mar 31 m-Stammtisch, Hamburg,

Germany. (For contact information,

see Jan 27.)

Apr 1 m-Stammtisch at the Universitat

Bremen, Germany. (For contact

information, see Jan 7.)

Apr 15 w-S tammt i sch in Duisburg. (For

contact information, see Jan 21.)

TUG Courses, Boston, Massachusetts

Apr 19 - 23 BeginningIIntermediate TEX

Apr 26 - 30 Intensive Is\?&$

Apr 28

May

May 6

May 20

May 25

May 26

Jun 3

m-Stammtisch, Hamburg,

Germany. (For contact information,

see Jan 27.)

UK TJ$ Users' Group,
Chichester, England. Visit to

John Wiley & Sons Ltd. Host:

Geeti Granger. For information,

contact David Murphy

(D . V . MurphyQcomputer-science .
birmingham . ac . uk).

m-Stammtisch at the Universitat

Bremen, Germany. (For contact

information, see Jan 7.)

m-Stammtisch in Duisburg. (For

contact information, see Jan 21.)

TUGboat Volume 14,
2nd regular issue:
Mailing date (tentative).

T&GStammtisch, Hamburg,

Germany. (For contact information,

see Jan 27.)

m-Stammtisch at the Universitat

Bremen, Germany. (For contact

information, see Jan 7.)

Jun 6-10 Society for Technical Communication.
4oth Annual Conference.

Dallas. Texas. For information,

contact the Society headquarters,

901 N. Stuart St., Suite 904.

Arlington, VA 22203-1854.
(703-522-4114; Fax: 703-522-2075),

or the Conference Manager, Binion

Amerson (abaQoc . com).

Jun 9 TUG Course: lJjX for Publishers,

New York City.

Jun 10 llth NTG Meeting,

"From Font to Book", Royal Dutch

Meteorological Institute, De Bilt,

Netherlands. For information.

contact Theo Jurriens

(t a j @ a s t r o . rug .n l) .

TUG Courses, San Diego, California

Jun 7 - 11 Modifying I 4 w Style Files

Jun 14 - 18 BeginningIIntermediate TEX

Jun 21 - 25 Advanced ?&$ and Macro Writing

Jun 17 ?&$-Stammtisch in Duisburg. (For

contact information, see Jan 21.)

Jun 30 m-Stammtisch, Hamburg,
Germany. (For contact information.

see Jan 27.)

Jul 26 - 29 TUG Annual Meeting: "World
Wide Window on TjjX",
Aston University, Birmingham,

U.K. For information, contact the

organizing committee: Chris Rowley

(C . A . RowleyQopen. ac . uk)

or Malcolm Clark
(malcolmc@wrnin . ac . uk), or the

TUG office.

Aug 9- 13 TUG Course:
BeginningIIntermediate l&X,
Boston, Massachusetts

Aug 17 TUGboat Volume 14,
3rd regular issue:
Deadline for receipt of technical
manuscripts (tentative).

Aug 23-27 TUG Course: Intensive I P m .
Ottawa, Canada

Sep 14 TUGboat Volume 14,
Pd regular issue:
Deadline for receipt of news items,

reports (tentative).

TUGboat. Volume 13 (1992), No. 4 532

Sep 23-24

Oct 18 - 22

TUG Course: Book and

Document Design with TEX,
Boston, Massachusetts

TUG Course:
BeginningIIntermediate TJ$,
Chicago, Illinois

TUG Courses, Boston, Massachusetts

Oct 25 - 29 Intensive I P m

Nov 1 - 5 Advanced TEX and Macro Writing

Nov 8-9 Practical SGML and TJ$

Nov 10 TUG Course: SGML and TEX for
Publishers, New York City

Nov 12 TUG Course: m for Publishers.
Washington, DC

Nov 18 NTG Meeting,
" (I P) m user environment",

Oce, Den Bosch, Netherlands.

For information, contact

Gerard van Nes (vannesQecn .nl).

Nov 23 TUGboat Volume 14,
3rd regular issue:
Mailing date (tentative).

For additional information on the events listed

above, contact the TUG office (805-899-4673, email:
tugQmath . ams . corn) unless otherwise noted.

Call for Papers:
Special Issue of Electronic Publishing:

Origination, Dissemination and Design

on Active Documents

Electronic Publishing: Origination, Dissemination
and Design (EP-odd) is pleased to announce a

special issue on the topic of Active Documents,

planned to appear in 1993.

The presentation and contents of an active
document a re dependent on computation. An

active document can be intended for interactive

presentation or for paper presentation. A paper-

based active document's content might be generated

by execution of an algorithm when the document

is assembled. The organization of an interactive

active document might depend on characteristics of

the computer environment in which it is displayed.

In either case, the key characteristics are that the

document has been designed by an author with a

particular purpose in mind and that the document's

content and/or structure responds to aspects of the

surrounding world's state.
We are interested in papers on all aspects of

active documents. As a very general starting point,

some possible topics include system design, under-

lying support issues, evaluation, language issues
(especially the representation of the activity within

the system), and cognitive issues.
As a rough guideline, papers should be in the

range of 10 to 20 pages in length, although longer
and shorter papers are appropriate if dictated by

the subject matter. All papers will be refereed using

the normal EP-odd refereeing process. Manuscripts

must be submitted in final form as the limited

time available for reviewing the contributions to

the special issue will not permit very many passes
through the editing cycle. Authors will be asked to

follow the EP-odd author guidelines, (four copies of

the manuscript are requested), and they are asked

to include a copy of the EP-odd copyright release
form with their submission. Copies of the guidelines

and copyright release form may be found in each

issue of EP-odd or may be obtained by mail from
the guest editor (address below).

Because space is limited in the special issue,

it may not be possible to publish all deserving

papers. Unless authors request otherwise, such

deserving papers will be referred to the normal

EP-odd editorial process and will be considered for
publication in a subsequent issue.

This issue will be coordinated by Vincent

Quint, member of the editorial board of EP-odd.
He may be contacted at:

Vincent Quint

INRIAIIMAG

2, rue de Vignate

F-38610 Gieres

France

e-mail: quint Qimag . f r
Telephone: $33 76 63 48 31

Fax: $33 76 54 76 15

In order to receive maximum consideration,

papers should be received by

April 1, 1993
Papers received after this date will be accepted, but

because of schedule constraints may not be able to

appear in the special issue.

TUGboat, Volume 13 (1992), No. 4

Late-Breaking News

Production Notes

Barbara Beeton

Input and input processing

Electronic input for articles in this issue was received
by e-mail, on diskette, and was also retrieved from

remote sites by anonymous ftp. In addition to

text, the input to this issue includes METAFONT

source code and several encapsulated PostScript

files. More than 75 files were used directly to
generate the final copy: over 100 more contain

earlier versions of articles, auxiliary information,

and records of correspondence with authors and

referees. These numbers represent input files only;

. dvi files, device-specific translations, and fonts

(. tfm files and rasters) are excluded from the total.

Most articles as received were fully tagged for

TUGboat, using either the plain-based or I4W
conventions described in the Authors' Guide (see

TUGboat 10, no. 3, pages 378-385). Several

authors requested copies of the macros (which we
were happy to provide); however, the macros have

also been installed at labrea . s tanf ord. edu and

other good archives, and an author retrieving them

from an archive will most likely get faster service.

Of course, the TUG office will provide copies of
the macros on diskette to authors who have no

electronic access.

Both the number of articles and the number

of pages in this issue are just over half in I4m.
In organizing the issue, attention was given to

grouping bunches of p l a in or I4m articles, to

yield the smallest number of separate typesetter
runs, and the least amount of handwork pasting

together partial pages. This also affected the articles

written o r tagged by the staff, as the conventions

of tugboat . s t y or ltugboat . s t y would be chosen

depending on what conventions were used in the

preceding and following articles; no article was

changed from one to the other, however, regardless
of convenience.

Font work was required for several articles:

~ubrinic on the Glagolitic alphabet (p. 470), Sauter

on postal barcodes (p. 472), and two by Haralam-

bous - the mactt font (p. 476) and Greek hyphen-

ation (p. 457); this last article also required the new
font selection scheme (NFSS).

The article by Kelly and Bischof (p. 443) incor-
porates several (encapsulated) PostScript images;

although it was the only article expressly requir-

ing PostScript processing, several others were also

output to Postscript devices for convenience.
The following articles were prepared using the

plain-based tugboat. s ty:

- all articles in General Delivery.

- Richard Palais. Moving a fixed point.

page 425.

- Nigel Chapman, Searching in a DVI file,

page 447.
- the Hyphenation exception log, page 452.

- Darko ~ubrinic, The exotic Croatian

Glagolitic alphabet, page 470.

- John Sauter, Postnet codes using METAFONT,

page 472.

- two book reviews:
Arvind Borde, TJJY by Example, page 487,

Andr6 Heck, ed., Desktop Publishzng zn

Astronomy &' Space Sczences, page 489.

- Erich Neuwirth, implementations for

IBM PCs: comparative timings, page 490.

- Paul Anagnostopoulos, Z z w : A macro

package for books, page 497.

- Jonathan Fine, The \noname macros -A
technical report, page 505.

- abstracts of the Cahiers GUTenberg,

page 528.

- the TUG calendar. page 530.
- announcement of the EP-odd special issue,

page 532.

- these Production notes

- "Coming next issue"

Output

The bulk of this issue was prepared at the American

Mathematical Society from files installed on a

VAX 6320 (VMS) and W ' e d on a server running
under Unix on a Solbourne workstation. Most

output was typeset on an APS-p5 at the AMS using

resident CM fonts and additional downloadable
fonts for special purposes. Three articles were

output on the Math Society's Compugraphic 9600

Imagesetter: Taylor (p. 433), Kelly and Bischof

(p. 443, which contained encapsulated PostScript
images), and Haralambous on Greek hyphenation

(p 457).
One photograph, photographically screened in

the traditional manner, accompanies the interview
with Donald Knuth (p. 419).

The output devices used to prepare the ad-

vertisements were not usually identified; anyone

interested in determining how a particular ad was

prepared should inquire of the advertiser.

TUGboat, Volume 13 (1992), No. 4

Coming Next Issue

Anchored Figures at Either Margin

A figure in a box can be placed in text at one margin

or the other, by measuring the box and adjusting

the paragraph shape parameters so as to allow

room for it. Macros that try to accomplish this

automatically must be resourceful enough to decide

what to do in a variety of special circumstances;
the correctness or appropriateness of each decision

depends on the requirements of the user. Daniel

Comenetz presents his solution to the problems that

arise in mathematics texts. [Delayed by technical

difficulties.]

FIFO and LIFO sing the BLUes

Kees van der Laan presents an exposition on FIFO.

First-In-First-Out, and LIFO, Last-In-First-Out,

well-known techniques for handling sequences. In

macro writing these techniques are used abun-

dantly but are often not easily recognized as such.

TEX templates for FIFO and LIFO are given and
their use illustrated. Their relation to several

techniques presented by Knuth in The !&%book is

described.

A Multimedia Document System Based on
l&X and DVI Documents

R. A. Vesilo and A. Dunn examine the develop-

ment of a multimedia document system based on

w. Multimedia document systems involve many
complex components including editors, formatters,

display systems and components to support the dif-

ferent media. By using 'QX to do the formatting,

using a standard text editor to enter the document

text contents and define the document structure,

and modifying a DVI previewer to include support
for non-text contents, the amount of effort required

to develop a multimedia document system is greatly
reduced. [Delayed by technical difficulties.]

Using l&X to make Agendas and Calendars
with Astronomical Events

Inspired by the agenda distributed at the Cork
meeting, Jordi Saludes has created macros

that will produce calendars and agendas in several
formats, allowing the user to include both 'fixed'

and 'movable' events. Events of the latter type

depend on astronomical phenomena related to the

sun and moon, and include religious feast days and

phases of the moon; all the necessary calculations

are done by based on traditional algorithms.

I institutional
ASCII Corporation,

Tokyo, Japan

The Aerospace Cor~oration, Belgrade University,

Members

El ~egundo, ~al ifori ia Faculty of Mathematics,
Belgrade, Yugoslavia

Air Force Institute of Technology,
Wright-Patterson AFB. Ohio Brookhaven National Laboratory,

Beckman Instruments,
Diagnostic Systems Group.

Upton, New York
American Mathematical Society,
Providence. Rhode Island Brown University,

Brea, California

Providence, Rhode Island

California Institute of Technology,
Pasadena, California

Calvin College,
Grand Rapids. Michigan

Carleton University,
Ottawa, Ontario, Canada

Centre Inter-RCgional de
Calcul ~lectroni~ue, CNRS,
Orsay. France

CERN, Geneva, Switzerland

College Militare Royal de Saint
Jean, St. Jean, Quebec, Canada ArborText, Inc.,

Ann Arbor, Michigan

TUGboat , Volume 13 (1992), No.

College of William & Mary,
Department of Computer Science,
Williamsburg, Virginia

Communications
Security Establishment,
Department of National Defence.
Ottawa, Ontario, Canada

Construcciones Aeronauticas, S.A.,
CAE-Division de Proyectos,
Madrid, Spain

Cornell University,
Mathematics Department,
Ithaca, New York

DECUS, Electronic Publishing
Special Interest Group,
Marlboro, Massachusetts

Department of National Defence,
Ottawa, Ontario, Canada

Digital Equipment Corporation,
Nashua, New Hampshire

E. S. Ingenieres Industriales,
Sevilla, Spain

Edinboro University
of Pennsylvania,
Edinboro, Pennsyhania

Elsevier Science Publishers B.V.,
Amsterdam, The Netherlands

European Southern Observatory,
Garching bei Munchen,
Federal Republic of Germany

Fermi National Accelerator
Laboratory, Batavia, Illinois

Florida State University,
Supercomputer Computations
Research, Tallahassee, Florida

Fordham University,
Bronx, New York

General Motors
Research Laboratories,
Warren, Michigan

GKSS, Forschungszentrum

Geesthacht GmbH,
Geesthacht, Federal Republic of
Germany

Grinnell College,
Computer Services,
Grznnell, Iowa

Grumman Aerospace,
Melbourne Systems Division,
Melbourne, Florida

GTE Laboratories,
Waltham, Massachusetts

Hughes Aircraft Company,
Space Communications Division,
Los Angeles, Calzfornia

Hungarian Academy of Sciences,
Computer and Automation
Institute, Budapest, Hungary

IBM Corporation,
Scientific Center,
Palo Alto, California

Institute for Advanced Study,
Princeton, New Jersey

Institute for Defense Analyses,
Communications Research
Division, Princeton, New Jersey

Intevep S. A., Caracas, Venezuela

Iowa State University,
Ames, Iowa

The Library of Congress,
Washington D. C.

Los Alamos National Laboratory,
University of California,
Los Alamos, New Mexico

Louisiana State University,
Baton Rouge, Louisiana

Macrosoft, Warsaw, Poland

Marquette University,
Department of Mathematics,
Statistics and Computer Science,
Milwaukee, Wisconsin

Masaryk University,
Bmo, Czechoslovakia

Mathematical Reviews,
American Mathematical Society,
Ann Arbor, Michigan

Max Planck Institut
fiir Mathematik,
Bonn, Federal Republzc of Germany

NASA Goddard
Space Flight Center,
Greenbelt, Maryland

National Institutes of Health,
Bethesda, Maryland

National Research Council
Canada, Computation Centre,
Ottawa, Ontario, Canada

Naval Postgraduate School,
Monterey, California

New York University,
Academic Computing Facility,

New York, New York

Nippon Telegraph &
Telephone Corporation,
Software Laboratories,

Tokyo, Japan

Northrop Corporation,

Palos Verdes, California

Observatoire de Genkve,
Universit6 de Genkve,

Sauverny, Switzerland

The Open University,
Academic Computing Services,
Milton Keynes, England

Pennsylvania State University,
Computation Center,
University Park, Pennsylvania

Personal 'l&X, Incorporated,
Mill Valley, California

Politecnico di Torino,
Torino, Italy

Princeton University,
Princeton, New Jersey

Purdue University,
West Lafayette, Indiana

Queens College,
Flushing, New York

Rice University,
Department of Computer Science,
Houston, Texas

Roanoke College,
Salem, VA

Rogaland University,
Stavanger, Norway

Ruhr Universitat Bochum,
Rechenzentrum,
Bochum, Federal Republic of
Germany

Rutgers University, Hill Center,
Piscataway, New Jersey

St. Albans School,
Mount St. Alban, Washington,
D. C.

Smithsonian Astrophysical
Observatory, Computation Facility.

Cambridge, Massachusetts

Software Research Associates,

Tokyo, Japan

TUGboat , Volume 13 (1992), No. 4

Space Telescope Science Institute,
Baltimore, Maryland

Springer-Verlag,
Heidelberg, Federal Republic of
Germany

Springer-Verlag New York, Inc.,
New York, New York

Stanford Linear
Accelerator Center (SLAC),
Stanford, California

Stanford University,
Computer Science Department,
Stanford, California

Talaris Systems, Inc.,
San Diego, California

Texas A & M University,
Department of Computer Science,
College Station, Texas

UNI-C, Aarhus, Denmark

United States Military Academy,
West Point, New York

University of Alabama,
Tuscaloosa, Alabama

University of British Columbia,
Computing Centre,
Vancouver, British Columbia,
Canada

University of British Columbia,
Mathematics Department,
Vancouver, British Columbia,
Canada

University of Calgary,
Calgary, Alberta, Canada

University of California, Berkeley,
Space Astrophysics Group,
Berkeley, California

University of California, Irvine,
Information & Computer Science,
Irvine, California

University of California,
Los Angeles, Computer
Science Department Archives,
Los Angeles, Calzfornia

University of California, Santa
Barbara, Santa Barbara, California

University of Canterbury,
Christchurch, New Zealand

University College,
Cork, Ireland

University of Crete,
Institute of Computer Science,
Heraklio, Crete, Greece

University of Delaware,
Newark, Delaware

University of Exeter,
Computer Unit,
Exeter, Devon, England

University of Glasgow,
Department of Computing Science,
Glasgow, Scotland

University of Groningen,
Groningen, The Netherlands

University of Heidelberg,
Computing Center,
Heidelberg, Germany

University of Illinois at Chicago,
Computer Center,
Chicago, Illinois

University of Kansas,
Academic Computing Services,
Lawrence, Kansas

Universitat Koblenz-Landau,
Koblenz, Federal Republic of
Germany

University of Maryland,
Department of Computer Science,

College Park, Maryland

University of Massachusetts,
Amherst, Massachusetts

Universitk degli Studi di Trento,
Trento, Italy

University of Oslo,
Institute of Informatics,
Blindern, Oslo, Norway

University of Oslo,
Institute of Mathematics,
Blindern, Oslo, Norway

University of Salford,
Salford, England

University of Southern California,
Information Sciences Institute,
Marina del Rey, California

University of Stockholm,
Department of Mathematics,
Stockholm, Sweden

University of Texas at Austin,
Austin, Texas

University of Washington,
Department of Computer Science,
Seattle, Washzngton

University of Waterloo,
Library-Serials Department,
Waterloo, Ontarzo, Canada

University of Western Australia,
Regional Computing Centre,
Nedlands, Australza

Uppsala University,
Uppsala, Sweden

Villanova University,
Vzllanova, Pennsylvanza

Virginia Polytechnic Institute,
Interdisciplinary Center
for Applied Mathematics,
Blacksburg, Vzrgznza

Vrije Universiteit ,
Amsterdam, The Netherlands

Washington State University,
Pullman, Washzngton

Widener University,
Computing Services,
Chester, Pennsylvanza

Worcester Polytechnic Institute,
Worcester, Massachusetts

Yale University,
Department of Computer Science,
New Haven, Connectzcut

Index of Advertisers

543 American Mathematical

Society

543 ArborText

Cover 3 Blue Sky Research

542 ETP (Electronic Technical

Publishing)

540,541 Kinch Computer

Company

492 Micro Programs, Inc.

539 Y&Y

Complete and return this form with
payment to:

Q X Users Group
Membership Department

0. Box 21041
Santa Barbara, CA 93121-1041
USA

Membership is effective from Jan-
uary 1 to December 31 and includes
subscriptions to TUGboat, The Com-
munications of the EX Users Group
and the TUG newsletter, 'QZ and
TUG News. Members who join after
January 1 will receive all issues
published that calendar year.

For more information . . .

Whether or not you join TUG now,
feel free to return this form to
request more information. Be sure
to include your name and address
in the spaces provided to the right.

Check all items you wish to receive
below:

Institutional membership
information

Course and meeting information

Advertising rates

More information on Q X

Correspondence unaccompanied
by a payment should be directed to

QX Users Group
I?. 0. Box 869
Santa Barbara, CA 93102 USA

Telephone: (805) 899-4673
Email: tug0Math. AMS . org

Individual Membership Application

Name

Institutional affiliation, if any

Position

Address (business or home (circle one))

City

State or Country Zip

Daytime telephone FAX

Email addresses (please specify networks, as well)

I am also a member of the following other Q X organizations:

Specific applications or reasons for interest in TEX:

Hardware on which TEX is used:

Computer and operating system Output devicelprinter

There are two types of TUG members: regular members, who pay annual
dues of $60; and full-time student members, whose annual dues are $30.
Students must include verification of student status with their
applications.

Please indicate the type of membership for which you are applying:

Regular @ $60 Full-time student @ $30

Amount enclosed for 1993 membership: $

(Prepayment in US dollars drawn on a US bank is required)

ChecWmoney order payable to TEX Users Group enclosed

Charge to MasterCard/VISA

Card # Exp. date -

Signature

I USERS I
I GROUP

Complete and return this form
with payment to:

Q X Users Group
Membership Department
F! 0. Box 21041
Santa Barbara, CA 93121-1041
USA

Membership is effective from
January 1 to December 31. Members
who join after January 1 will receive
all issues of TUGboat published that
calendar year.

For more information . . .

Correspondence
QX Users Group
P. 0. Box 869
Santa Barbara, CA 93102 USA

Telephone: (805) 899-4673
Email: tugbath . ams . org

Whether or not you join TUG now,
feel free to return this form to
request more information.

Check all items you wish to
receive below:

Course and meeting information

Advertising rates

More information on Q X

Institutional Membership Application

Institution or Organization

Principal contact

Address

City

State or Country Zip

Daytime telephone FAX

Email addresses (please specify networks, as well)

Each Institutional Membership entitles the institution to:

designate a number of individuals to have full status as TUG

individual members;

take advantage of reduced rates for TUG meetings and courses for

all staff members;

be acknowledged in every issue of TUGboat published during the

membership year.

Educational institutions receive a $100 discount in the membership fee.
The three basic categories of Institutional Membership each include
a certain number of individual memberships. Additional individual
memberships may be obtained at the rates indicated. Fees are as follows:

Category Rate (educ. / non-educ.) Add'l mem.
A (includes 7 memberships) $ 540 / $ 640 $50 ea.
B (includes 12 memberships) $ 815 / $ 915 $50 ea.

C (includes 30 memberships) $1710 / $1810 $40 ea.

Please indicate the type of membership for which you are applying:

Category - + - additional individual memberships

Amount enclosed for 1993 membership: $

0 Checkimoney order payable to QX Users Group enclosed

(payment is required in US dollars drawn on a US bank)

Charge to MasterCardNISA

Card # Exp. date -

Signature

Please attach a corresponding list of individuals whom you wish to

designate as TUG individual members. Minimally, we require names

and addresses so that TUG publications may be sent directly to these

individuals, but we would also appreciate receiving the supplemental

information regarding phone numbers, email addresses, QX interests,

and hardware configurations as requested on the TUG Individual

Membership Application form. For this purpose, the latter application

form may be photocopied and mailed with this form.

Wouldn't it be nice to be able to preview DVI files at any magnification, not just those for
which bitmap fonts have been pre-built? Or to produce truly resolution-independent output
that will run on any Postscript device, whether image setter or laser printer?

Perhaps you are looking for an alternative to Computer Modern? There now exist complete

outline font sets which include math fonts that are direct replacements for those in CM.

Even if you do want to remain faithful to CM, there are distinct
ion of the fonts. We s

hdo - preview DVI files calli

Preview at arbitrary magnificatio

* Preview in MS windowsTM -

how EPSF files with preview on screen -

downloading for speed an

memory on the printer

olution-independent and pa

1 TM form (ATM compati

+ SLITEX font set -
* AMS font set - Euler,

* Lucidao Bright + Lucida New

Resolution-independent Postscript files using outline fonts can be printed by any se

reau, not just those with Tgpertise - and that translates into considerable savings

erhaps time to get rid o f those huge, complex directories full of bihnap fonts?

86 - Fax: (508) 37 1 -2004

AP-TJ~X Fonts Avant Garde BoM

Avant Garde :"hue
=-compatible Bit-Mapped Fonts

Identical to

Adobe Postscript Typefaces

Avant Garde Demibold

Avant Gar& k$:d

Bookman Light
If you are hungry for new TEX fonts, here is a feast guar-
anteed to satisfy the biggest appetite! The AP-TEX fonts

serve you a banquet of gourmet delights: 438 fonts cov-
ering 18 sizes of 35 styles, at a total price of $200. The
AP-TEX fonts consist of PK and TFM files which are ex-
act w - c o m p a t i b l e equivalents (including "hinted7' pix-
els) to the popular Postscript name-brand fonts shown
at the right. Since they are directly compatible with any
standard TEX implementation (including kerning and liga-
tures), you don't have to be a expert to install or use

Bookman 1:;
Bookman Demibold

Demlbdd Boo kman l t a l ~

C o u r i e r

CO uri er Obliaue

Courier ~ d d

C o u r i e r %&
them. Helvetica

Helvetica Oblique When ordering, specify resolution of 300 dpi (for laser
printers), 180 dpi (for 24-pin dot matrix printers), or 118
dpi (for previewers). Each set is on ten 360 KB 5-114"
PC floppy disks. The $200 price applies to the first set
you order; order additional sets a t other resolutions for
$60 each. A 30-page user's guide fully explains how to
install and use the fonts. Sizes included are 5, 6, 7, 8, 9,
10, 11, 12, 14.4, 17.3, 20.7, and 24.9 points; headline styles
(equivalent to Times Roman, Helvetica , and Palatino, all

in bold) also include sizes 29.9, 35.8, 43.0, 51.6, 61.9, and
74.3 points.

Heivetica Bold

Helve fica Eque

Helvetica Narrow

Helvetica Narrow Obl~que

Helvetica Narrow Bold

Helvefica Narrow Eque

Schoolbook FE"maCnentury
Schoolbook /ZCentury

Schoolbook :E'?e"'u'

Schoolbook
New Century
Bold Italic

Palatino Roman

Palatino ltali,

The Kinch Computer Company

501 South Meadow Street
Ithaca, New York 14850

Telephone (607) 273-0222
FAX (607) 273-0484 Palatino BOM

Helvetica, Palatino, Times, and New Century Schoolbook are t,rademarks of
Allied Linotype Co. ITC Avant Garde, ITC Bookman, ITC Zapf Chancery,
and ITC Zapf Dingbats are registered trademarks of International Typeface
Corporation. Postscript is a registered trademark of Adobe Systems Incorpe
rated. The owners of these trademarks and Adobe Systems, Inc. are not the
authors, publishers, or licensors of the AP-TF$ fonts. Kinch Computer Com-
pany is the sole author of the AP-T)$ fonts, and has operated independently
of the trademark owners and Adobe Systems, Inc. in publishing this soft-
ware. Any reference in the AP-l$$ font software or in this advertisement to
these trademarks is solely for software compatibility or product comparison.

EaserJet a n d DeskJet are trademarks of Hewlett-Packard Corporation. 'IkX
is a trademark of the American Math Society. T u r b o m and AP-l$$ are
trademarks of Kinch Computer Company. Prices and specifications subject to
change without notice. Revised October 9, 1990.

Times Roman

Times l tdk

Times Bdd

Times kid,
Medium

Zapf Chnce y Itaiic

Symbol AQTfiAIIO

2apf Dingbats K-O

Executables $150
With Source $300

T
HE MOST VERSATILE TEX ever
published is breaking new
ground in the powerful and
convenient graphical envi-

ronment of Microsoft Windows: Tur-
~oTEX Release 3.1E. TurboT~X runs
on all the most popular operating
systems (Windows, MS-DOS, OS/2,
and UNLX) and provides the latest
TEX 3.14 and M E T A FONT 2.7 stan-
dards and certifications: preloaded
plain TEX, 14TEX, &-TEX and &&-
14TEX, ~reviewers for PC's and X-
servers, M ETA FONT, Computer
Modem and BTEX fonts, and printer
drivers for HP LaserJet and DeskJet,
PostScript, and Epson LQ and FX
dot-matrix printers.

6 Best-selling Value: TurboT~X
sets the world standard for power
and value among TEX implementa-
tions: one price buys a complete,
commercially-hardened typesetting
system. Computer magazine recom-
mended it as "the version of TEX to
have," IEEE Software called it "indus-
trial strength," and thousands of sat-
isfied users around the globe agree.

TurboT~X gets you started quickly,
installing itself automatically under
MS-DOS or Microsoft Windows, and
compiling itself automatically under
UNIx. The 90-page User's Guide in-
cludes generous examples and a full
index, and leads you step-by-step
through installing and using TEX and
METR FONT.

6 Classic TEX for Windows. Even if
you have never used Windows on
your PC, the speed and power of
TurboT~X will convince you of the
benefits. While the TEX command-
line options and T~Xbook interaction
work the same, you also can control
TEX using friendly icons, menus, and

dialog boxes. Windows protected
mode frees you from MS-DOS lim-
itations like DOS extenders, over-
lay swapping, and scarce memory:
You can run long TEX formatting
or printing jobs in the background
while using other programs in the
foreground.

6 MS-DOS Power, Too: TurboT~X
still includes the plain MS-DOS pro-
grams. Virtual memory simulation
provides the same sized TEX that
runs on multi-megabyte mainframes,
with capacity for large documents,
complicated formats, and demanding
macro packages.

6 Source Code: The portable C
source to TurboT~X consists of over
100,000 lines of generously com-
mented TEX, TurboT~X, M ETA FONT,

previewer, and printer driver source
code, including: our WEB system in
C; 'IASCHAL, our proprietary Pascal-
to-C translator; Windows interface;
and preloading, virtual memory, and
gafhics code,-all meeting C portabil-
ity standards like ANSI and K&R.

6 Availability & Requirements:
TurboT~X executables for IBM PC's
include the User's Guide and require
640K, hard disk, and MS-DOS 3.0
or later. Windows versions run on
Microsoft Windows 3.0 or 3.1. Order
source code (includes Programmer's
Guide) for other machines. On the
PC, source compiles with Microsoft
C, Watcom C 8.0, or Borland C++ 2.0;
other operating systems need a 32-
bit C compiler supporting UNIX stan-
dard I/O. Specify 5-1/4" or 3-1/2"
PC-format floppy disks.

6 Upgrade at Low Cost. If you
have TurboT~X Release 3.0, upgrade
to the latest version for just $40 (ex-

ecutable~) or $80 (including source).
Or, get either applicable upgrade free
when you buy the AP-TEX fonts (see
facing page) for $200!

No-risk trial offer: Examine the
documentation and run the PC Tur-
~oTEX for 10 days. If you are not sat-
isfied, return it for a 100% refund or
credit. (Offer applies to PC executa-
b l e ~ only.)

6 Free Buyer's Guide: Ask for the

free, 70-page Buyer's Guide for de-
tails on TurboT~X and dozens of TEX-
related products: previewers, TEX-to-
FAX and TEX-to-Ventura/Pagemaker
translators, optional fonts, graphics
editors, public domain TEX accessory
software, books and reports.

Ordering TurboT~X

Ordering TurboT~X is easy and deliv-
ery is fast, by phone, FAX, or mail.
Terms: Check with order (free media
and ground shipping in US), VISA,
Mastercard (free media, shipping ex-
tra); Net 30 to well-rated firms and
public agencies (shipping and media
extra). Discounts available for quan-
tities or resale. International orders
gladly expedited via Air or Express
Mail.

The Kinch Computer Company

PUBLISHERS OF TURBOTEX

501 South Meadow Street
Ithaca, New York 14850 USA

Telephone (607) 273-0222

FAX (607) 273-0484

Electronic Technical Publishing Services Company
2906 N.E. Glisan Street
Portland, Oregon 97232

503-234-5522 FAX: 503-234-5604
mimi@etp.com

TEX Publishing Services
From the Basic:

The American Mathemdtl~al Society offers you two basic, loa cost TEX publishing services

You provide a DVI file and we will produce typeset pages using an Autologic APS Micro-5
phototypesetter. $5 per page for the first 100 pages; 52.50 per page for additional pages.

You provide a Postscript output file and we will provide typeset pages using an Agfa/
Compugraphic 9600 imagesetter. $7 per page for the first 100 pages; $3.50 per page for
additional pages.

There is a $30 minimum charge for either service. Quick turnaround is also provided ... a manuscript

up to 500 pages can be back in your hands in one week or less.

To the Complex:

As a full-service TEX publisher, you can look to the American Mathematical Society as a single source

for any or all your publishing needs.

I 1 Macro-Writing , T&X Problem Solving Non-CM Fonts Keyboarding 1

1 Art and Pasreup Camera Work 1 Printing and Binding Distribution I
For more information or to schedule a job, please contact Regina Girouard, American Mathematical

Society, PP. 0. Box 6248, Providence, RI 02940, or call 401-455-4060

A Complete TEX Solution From ArborText!

A R B O R T E X T I N C

We did the work so you don't have to!

Ready to use, fully documented and supported TEX package

ArborText's TEX Full System Includes:

T@, p T S and Macro Packages Built-In Support for Virtual Fonts

Screen Previewer Complete Comprehensive Installation Manuals

DVILASERPS or DVILASER/HP 90 days of Free Quality Technical Support

TEX User Manual of your choice 10 Years of T@ Product Development

Available For: Sun-4 (SPARC), IBM RS/6000, DECRISC-Ultrix, HP 9000, and IBM PC's

1000 Victors Way A Suite 400 A Ann Arbor, MI 48 I08 A (313) 996-3566 A FAX (3 13) 996-3573

North America

Abraharns, Paul
214 River Road, Deerfield, MA 01342;
(413) 774-5500

Development of TEX macros and macro
packages. Short courses in QX. Editing
assistance for authors of technical articles,
particularly those whose native language is
not English My background includes
programming, computer science,
mathematics, and authorship of rn for the
Impatient.

American Mathematical Society
F! 0 . Box 6248, Providence, RI 02940;
(401) 455-4060

Typesetting from DVI files on an Autologic
APS Micro-5 or an Agfa Compugraphic
9600 (PostScript). Times Roman and
Computer Modern fonts. Composition
,services for mathematical and technical
books and journal production.

Anagnostopoulos, Paul C.
433 Rutland Street, Cadisle, MA 01741;
(508) 371-2316

Composition and typesetting of high-quality
books and technical documents.
Production using Computer Modern or any
available PostScript fonts. Assistance with
book design. I am a computer consultant
with a Computer Science education.

ArborText, Inc.
1000 Victors Way, Suite 400, Ann Arbor,
MI 48108; (313) 996-3566

Q X installation and applications support.
QX-related software products.

Archetype Publishing, Inc.,
Lori McWilliam Pickert
P. 0. Box 6567, Champaign, IL 61821;
(217) 359-8178

Experienced in producing and editing
technical journals with QX; complete book
production from manuscript to
camera-ready copy; TEX macro writing
including complete macro packages;
consulting.

The Bartlett Press, Inc.,
Frederick H. Bartlett
Harrison Towers, 6E 575 Easton Avenue,
Somerset, NJ 08873; (201) 745-9412

Vast experience: loo+ macro packages,
over 30,000 pages published with our
macros; over a decade's experience in all
facets of publishing, both Q X and
non-QX; all services from copyediting and
design to final mechanicals.

Cowan, Dr. Ray E
141 Del Medio Ave. #134, Mountain
View, CA 94040; (415) 949-4911

Ten Years of QZ and Related Software
Consulting, Books, Documentation,
Journals, and Newsletters. n X & I~TEX
macropackages, graphics; PostScript
language applications; device drivers; fonts;
systems.

Electronic Technical Publishing
Services Co.
2906 Northeast Glisan Street, Portland,
Oregon 97232-3295;

(503) 234-5522; FAX: (503) 234-5604

Total concept services include editorial,
design, illustration, project management,
composition and prepress. Our years of
experience with Q X and other electronic
tools have brought us the expertise to work
effectively with publishers, editors, and
authors. ETP supports the efforts of the
Q X Users Group and the world-wide TEX
community in the advancement of superior
technical communications.

NAR Associates
817 Holly Drive E. Rt. 10, Annapolis, MD
21401; (410) 757-5724

Extensive long term experience in Q X
book publishing with major publishers,
working with authors or publishers to turn
electronic copy into attractive books. We
offer complete free lance production
services, including design, copy editing, art
sizing and layout, typesetting and repro
production. We specialize in engineering,
science, computers, computer graphics,
aviation and medicine.

Ogawa, Arthur
1101 San Antonio Road, Suite 413,
Mountain View, CA 94043-1002;
(415) 691-1126;
ogawa(0applelink.apple.com.

Specialist in h e typography, WQX book
production systems, database publishing,
and SGML. Programming services in Q X ,
W X , PostScript, SGML, DTDs, and
general applications. Instruction in Q X ,
WQX, and SGML. Custom fonts.

Pronk&Associates Inc.
1129 Leslie Street, Don Mills, Ontario,
Canada M3C 2K5;

(416) 441-3760; F&: (416) 441-9991

Complete design and production service.
One, two and four-color books. Combine
text, art and photography, then output
directly to imposed film. Servicing the
publishing community for ten years.

Quixote Digital Typography, Don
Hosek
349 Springfield, #24, Claremont, CA
91711; (714) 621-1291

Complete line of QX, W X , and
METAFONT services including custom
WQX style files, complete book production
from manuscript to camera-ready copy;
custom font and logo design; installation of
customized n X environments; phone
consulting service; database applications
and more. Call for a free estimate.

Richert, Norman
1614 Loch Lake Drive, El Lago, TX 77586;
(713) 326-2583

Q X macro consulting.

mnology, Inc., Amy Hendrickson
57 Longwood Ave., Brookline, MA 02146;
(617) 738-8029

Q X macro writing (author of MacronX);
custom macros to meet publisher's or
designer's specifications; instruction.

Type 2000
16 Madrona Avenue, Mill Valley, CA
94941;
(415) 388-8873; FAX (415) 388-8865

$2.50 per page for 2000 DPI Q X camera
ready output! We have a three year history
of providing high quality and fast
turnaround to dozens of publishers,
journals, authors and consultants who use
Q X . Computer Modern, Bitstream and
METAFONT fonts available. We accept DVI
files only and output on RC paper. $2.25
per page for 100+ pages, $2.00 per page for
500+ pages.

Outside North America

Typom Ltd.
Electronical Publishing, Battyhy u. 14.
Budapest, Hungary H-1015;
(036) 11152 337

Editing and typesetting technical journals
and books with TEX from manuscript to
camera ready copy. Macro writing, font
designing, Q X consulting and teaching.

Information about these services
can be obtained from:

TEX Users Group

P. 0. Box 869

Santa Barbara, CA 93102

(805) 899-4673

Volume 13, Number 4 / December 1992

General Delivery

Dreamboat

Software

Literate programming

Philology

Fonts

Graphics

Book Reviews

Typesetting on PCs

Warnings

Macros

Abstracts

News &
Announcements

Late-Breaking News

TUG Business

Forms

Advertisements

Addresses

Changing 'l$jX? / Malcolm Clark

Editorial comments / Barbara Beeton

An interview with Donald Knuth, November 1991

Moving a fixed point / Richard Palais

The future of m / Philip Taylor

X B i b m and friends / Nickolas J . Kelly and Christian H. Bisohof

Searching in a DVI file / Nigel Chapman

Hyphenation exception log

Errata: Literate Programming, A Practitioner's View, TUGboat 13, no. 3, pp. 261-268
/ Bart Childs

Hyphenation patterns for ancient Greek and Latin / Yannis Haralambous

The exotic Croatian Glagolitic alphabet / Darko ~ u b r i n i ~

Postnet codes using METAFONT 1 John Sauter

A typewriter font for the Macintosh 8-bit font table / Yannis Haralambous

Addendum: A style option for rotated objects in 'l$jX (TUGboat 13, no. 2,
pp. 156-180) / Sebastian Rahtz and Leonor Barroca

Diag: a drawing preprocessor for I A m / Ray Seyfarth

Wynter Snow, for the Begznner / Victor Eijkhout

Arvind Borde, by Example / George Greenwade

Andre Heck, ed., Desktop Publzshzng an Astronomy & Space sczences /
A. G. W. Cameron

implementations for IBM PCs: comparative timings / Erich Neuwirth

Where does this character come from? Solution to the puzzle,
TUGboat 13, no. 2, p.190 / Frank Mittelbach

The bag of tricks / Victor Eijkhout

Too many errors / Jonathan Fine

One error less 1 Victor Eijkhout

Z z m : A macro package for books / Paul Anagnostopoulos

The \noname macros-A technical report / Jonathan Fine

Volunteer work for the U r n 3 project / Frank Mittelbach,
Chris Rowley and Michael Downes

Correction sheets in I A W 1 Mike Piff

Text merges in 'JJ$X and / Mike PX

A style file for printing sheets of labels 1 Sebastian Rahtz

Cahiers GUTenberg #13

Calendar

Call for Papers: Special Issue of Electronzc Publzshzng: Orzgznatzon, Dzssemznatzon
and Deszgn on Active Documents

Production notes / Barbara Beeton

Coming next issue

Institutional members

TUG membership application

Index of advertisers

rn consulting and production services

