
TUGboat, Volume 13 (1992), No. 2

Fonts

Arrows for Technical Drawings

David Salomon

Introduction

A general note: Square brackets are used through-
out this article to refer to The m b o o k . Thus [437]

refers to page 437.

Arrows, both vertical and horizontal, are com-

mon in technical diagrams. Unfortunately, the ar-
rows available in (\rightarrow, \Rightarrow,

\longrightarrow 14371, & \rightarrowf ill [226])

are of limited use. The arrowheads are available in

only one size and style, they already have short rules

attached and, as the diagrams below show, they are

inconveniently positioned in their bounding boxes.

m m
The left and right arrows are shorter than their

bounding boxes, and are not vertically centered in

the boxes. The up and down arrows are narrower
than their boxes, and have depths (of approximately
1.944pt). As a result, the simple construct

\def\vrulefill{\leaders\vrule\vfill)

\vbox to25pt(\offinterlineskip

\hboxC\uparrow)\vrulef ill

\hboxi\downarrow))

creates *

'1
and something more complicated is needed to align

the rule with the arrows. Also the vertical size
of the construction above is 26.944pt, not 25pt,

because of the depth of the downarrow. Similarly,
the result of

\hbox to25pt{\leftarrow%
\hrulefill\rightarrow)

is

+----+

Also, since each arrow is about 8pt long,
very short double arrows are impossible to create.
Something such as

\hbox tolOpt{\leftarrow%

\hrulefill\rightarrow)

causes an 'overfull box'.

offers more arrows in its l i n e font. They
can point in quite a few directions, but there is only
one style.

Description of the arrowheads

To satisfy my personal needs. I decided to develop

a font for arrowheads that will be well documented

and easy to use, yet general enough to produce

arrowheads of many shapes. An important require-

ment was that the arrowheads be easy to place at

the tips of rules. Since !I$X does not have diagonal

rules, only horizontal and vertical arrowheads were

developed. The methods used here, however, can

easily be extended for diagonal arrowheads.

The discussion below assumes a right-pointing
arrowhead, but the results can easily be applied to

the three other directions. A general arrowhead

(see Figure 1) is defined by five points, zl . . . z5,
of which z4 is the origin, and zs is a reflection of

z2 (about the horizontal line at height .5ruledim).

The two front edges are curved, the two back ones
are straight, and there is a flat area at the base, to

attach a rule. The exact shape of the arrowhead

depends on the following parameters:

wd is the distance from the tip to the base of

the arrowhead. The bounding box has width wd.

t a i l is the distance from the base to the ends

of the wings. The total width of the arrowhead is,
therefore, wd-ftail , but only wd units are included

in the bounding box; the rest sticks out of it.

Negative values of t a i l produce arrowheads shaped

like +, and large positive values (>wd) create
arrowheads shaped like>. t a i l , therefore, should

normally vary in the narrow range 0 . . . wd.

h t is the (approximate) total height of the

arrowhead. The bounding box has height .5ht
(and zero depth). Very tall arrowheads, such as

), are rarely used, so h t should normally be less

than the total width of the arrowhead. Because of
the special way arrows are used (see below), the

bounding box has no depth. As a result, the left-

and right-pointing arrowheads (and, normally, the

upward one as well) stick below their boxes.

The height of a standard \hrule is 0.4pt, so

it makes sense to center the arrowhead 0.2pt above

the baseline. However, to allow for any size rule,

there is a parameter, ruledim, whose value should

be the height of the rule to which the arrowhead
is going to be attached. The arrowhead is centered

.5ruledim above the baseline.

Points zg, zq guarantee that, regardless of the

shape of the arrowhead, there will be a flat area of

size ruledim at the base of the arrowhead, so it can
be smoothly connected to the rule. A close look

at the code shows that the height of the arrowhead

(z2 - z5) is ht-ruledim so, in order to end up with
something that looks like an arrowhead, h t should

TUGboat, Volume 13 (1992), No. 2

be greater than ruledim. (In rare cases, such as the

'pacman' arrowhead below, a large negative value

of curv can increase the height of the arrowhead

above this value.)

The curv parameter can be used to curve the

front edge of the arrowhead. Its value (in degrees)

is added to the direction of the top front edge,
and subtracted from that of the bottom front edge.

Thus positive values of curv result in arrcwheads

looking like ,, and negative values, in arrowheads

like ,. As a result, negative values of curv would

rarely be used. The maximum value of curv (see

discussion below) depends on the size and shape of

the arrowhead, and is typically between 20" and

30".
outlin is a boolean parameter. If it is true,

the arrowhead is drawn as an outline>, using the

procedure suggested in [Ex. 13.231; otherwise, the
arrowhead is solid. For high resolution output

devices, Doug Henderson's methods (ref. 1) create

better results.

The source code

In a complete arrowhead font, all the characters

are arrowheads, differing only in orientation and

parameters. It is therefore natural to define the

arrowheads in terms of procedures. I have found it

convenient to use two procedures, one for leftlright
arrowheads and the other for up/down ones. The

METAFONT code of the procedures is as follows.

path outerr;

def outlne = % Outlining, see Ex. 13.23
cull currentpicture keeping (1,infinity);

picture v; v:=currentpicture;

cull currentpicture keeping (1,l)

withweight 3;

addto currentpicture also v

- v shifted right
- v shifted left
- v shifted up
- v shifted down;
cull currentpicture keeping (1,4)

enddef ;

% procedure for right left arrowheads
def lr-head(text lr) =

R:=floor ruledim; if not odd R: R:=R+1; fi;

zl=(w, .5R) ; z2=(-tai1,h) ;

z3= (0,2yl) ; z4=origin; z5=(x2 ,R-y2) ;

sAngle:=angle(z2-zl)+curv;

e~ngle:=angle(zl-25)-curv;

outerr:=zl(dir sAngle)..z2--23--

24--z5..{dir eAng1e)cycle;
if lr="r":

fill outerr; if outlin: outlne; fi

elseif lr="l" :

fill outerr

reflectedabout ((0,0), (0,l))

shif ted(w ,0) ;

if outlin: outlne; fi

Figure 1. Right arrowhead

148 TUGboat, Volume 13 (1992), No. 2

else: errmessage("wrong parameter,

should be '1' or 'r'I1);

f i

enddef ;

% procedure for up down arrowheads
def ud-head(text ud) =

R:=floor ruledim; if not odd R: R:=R+I; fi;

zl=(.5R,h) ; z2=(w,-tail) ;

z3=(2x1,0); z4=(0,0); z5=(R-x2,y2);

sAngle:=angle(z2-21)-curv;

eAngle:=angle(zl-z5)+curv;

outerr:=zl{dir sAngle)..z2--23--

24--z5..{dir eAng1e)cycle;
if ud="u" :

fill outerr; if outlin: outlne; fi

elseif ud="dtl :

fill out err

reflectedabout ((O,O), (1,O))

shifted(0 ,h) ;

if outlin: outlne; fi

else: errmessage("! Wrong parameter,

should be 'u' or 'd"');
1 1
I I

%

Following this, arrowheads can be created and

placed in the font by, e.g.:

ruledim#:=.4pt#; outlin:=false;

ht#:=8pt#; wd#:=7pt#; tail#:=-2pt#; curv:=O;

def ine-pixels (ht , wd , tail, ruledim) ;

beginchar ("R" ,wd#, .5ht#, 0) ; "right" ;

lr-head("rU) ;

endchar ;

beginchar ("L" , wd#, .5ht#, 0) ; "left " ;
lr-head("ln) ;

endchar ;

beginchar ("U" , .5ht# ,wd#, 0) ; "up" ;
ud-head("ul') ;

endchar ;

beginchar (I'D", .5ht#, wd#, 0) ; "down" ;

ud-head("dn) ;

endchar ;

Note that it is also possible to create a hollow

arrowhead by:

1. Drawing it with a 2-pixel wide pen. This may

give better results in low resolution output devices.

if outlin: pickup pensquare scaled 2;

draw outerr; f i

2. After creating the arrowhead, a smaller arrow-

head is erased inside. By changing the scale and

shift amounts, special shapes can be created.

path iner

fill outerr

iner:=outerr;

if outlin: erase fill iner scaled .8

shifted(.lxi,.2yl); fi

An an example, the values

ht#:=8pt#; wd#:=5pt#; tail#:=2pt#;

curv:=9; ruledim#:=.4pt#;

produce, when outlin: =f alse ; and> when

outlin:=true;.

Improving the digitization

The only subtle point about the procedures above
is the equation for z l . Originally this equation

was 'zi= (w , .5ruledim) ; ' but this resulted in ar-
rowheads with flat tips, two pixels tall. To get

a sharp, one-pixel tip, the yl coordinate should
be an integer plus 112 (see Ex. 24.7 in The
METRFONT~OO~). This was obtained by comput-

ingLR:=floor ruledim; if not odd R: R:=R+i;

f i ; ' and setting 'zl=(w, .5R) ; '. (R is the odd

integer closest to ruledim, so .5R is an integer

plus 112.) To end up with a symmetric arrow-

head, the equation for zs was also changed from
'z5= (x2 ,ruledim-y2) ; ' to 'z5= (x2 ,R-y2) ; '. NO-

tice that the base of the arrowhead (the distance

between points 23, z4) is now R and not ruledim,

but the difference is at most one pixel, and is not
noticeable. Notice also that the whole thing may

not be necessary in a high-resolution output device,
but in a 300dpi laser printer it significantly improves

the appearance of the arrowhead (see Fig. 2).

Special cases

The top front edge of the arrowhead should go
in the general direction of the top left point. If

that direction is changed too much (by a large
value of curv), funny results-and, sometimes,

error messages-are obtained. As an example, the

following set of parameters

produc3 -.
Some combinations of the parameters create

interesting (and, possibly, even useful) shapes; even

though they don't look like arrows. A pacman c i s
a left arrowhead created by:

TUGboat, Volume 13 (1992), No. 2

ruledim#:=Opt#; outlin:=false; ht#:=2pt#;

wd#:=4pt#; tail#:=4pt#; curv:=-85;

A square diamond +, is created by: ht#:=lOpt#;

wd#:=IOpt#; tail#:=-5pt#; curv:=O;

A circular wedge 4, is the result of: ht# : =lOpt# ;
wd#:=IOpt#; tail#:=-7pt#; curv:=-30;

The examples shown here make it clear that

the arrowheads are not meant to be used with

text. Specifically, they don't have any depth, which

interferes with the normal interline spacing, and

they stick out of their boxes, which messes up the

interword spacing.

Using the arrowheads

The arrowheads are meant to be used in diagrams,

stuck at the ends of rules. A horizontal double

arrow of size .5in 4-+ is obtained by \hbox

to. 5in(\ar l\hrulef ill r). A vertical arrow is

also easy to create by means of vertical leaders. The

ones shown here:

have been produced by

\def\vrulefillC\leaders\vrule\vfill)

\vbox to30pt(\offinterlineskip

\hbox(\ar u~\vrulefill\hbox~\ar dl)

where positions 'u', 'd' of font \ar are occupied by

up and down arrowheads with a base 0.4pt wide,
and positions 'U', 'Dl have similar arrowheads with

lpt wide bases.
As an example, the well known diagram [63] is

duplicated here, using our arrowheads.

depth

I+
J width -)

Bibliography

1. Henderson, D. Outline fonts with METRFONT,

TUGboat 10, no. 1, 36-38, April 1989.

o David Salomon
California State University,

Northridge
Computer Science Department
Northridge, CA 91330
dxsBms.secs.csun.edu

Figure 2. Lowres simulation

