
SGML versus/and

Robert W. MCGaffey
Oak Ridge National Laboratory, Building 2506 MS 6302. P.O. Box 2008, Oak Ridge, T N 37831-6302 USA

615-574-0618; FAX: 615-574-1001

Internet: mcgaf f eyrwOorn1. gov

Abstract

Everyone who handles computer documentation faces the

problem of proliferating application-specific versions of a source

file and the added difficulty of merging changes back into the

source. SGML is a resource for building a generalized solution.

TEX and SGML offer a particularly harmonious synergism for

documentation applications.

Consider This Problem:

You have a database with important information.

You need to publish some of the information and

wrap it inside appropriate text. Furthermore, you

need to create an abstract for printing inside a pro-

fessional journal in preparation for a presentation of

your paper at an international meeting. Meanwhile,

a colleague calls and requests a copy of some of

the database for his/her research if you furnish it.

Finally, your latest experiment dictates that you

must change some of the data you have already

placed in half a dozen places. Wouldn't it be grand

if you could just keep all of that information in one

place and only have to modify one copy and be sure

that all of your data was up to date? Of course it

would. But you can't. Well, suppose you could keep

one "official" copy and automatically generate all

of the others whenever the "official" copy changed?

Would you be interested? If so, welcome to the

world of SGML.

What Is SGML?

SGML (Standard Generalized Markup Language)

is an international standard which purports to

standardize the way information is marked up in

a storage medium. But in practical terms, SGML

implies a system of programs which helps us to

create both the "official" computer file and the

automatic copies we have to generate. Here's how

it works:

First we create a file, called a Document Type

Definition (DTD), which describes completely how

the information is organized in the "official" file.

The DTD is intended to support hundreds or even

thousands of documents organized in the same way.

For example, consider a "theme" which will contain

one title followed by one or more paragraphs.

Next, we can build what is called an "instance"

file, which is the official name for our "official" file.

A simple DTD file could lead us to the following

instance file:

<document >

<t i t le>The t i t l e < / t i t l e >

<p>The f i r s t paragraph.</p>

<p>The second paragraph.</p>

</document>

Note that a SGML "element" is most often repre-

sented by something like <tag>(the SGML element

named "tag" goes here)</tag>.
But our sample is not what I call real SGML

because it is so attached to the formatting of the
theme. We should be happier to see something like:

<theme>
<title>The title</title>
<idea>The first paragraph.</idea>
<idea>The second paragraph.</idea>
</theme>

Note that we are now tagging information rather

than the formatting of the information.

Smart editors already exist which will help us

with the two steps above. They will help us create a

legal DTD file and then make sure that the instance

file we create matches the DTD we created.

Now, we have our "official" file. How do we get

the automatic copies?
Other programs exist which parse the instance

file and translate it into another format. That
means that I can translate my "official" file into
my favorite typesetting language (m) by writing
a program for my parser-translator and when I do
so I will get something like:

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

SGML versusland 7$X

\starttheme

\starttitle The title\finishtitle

\start idea The first paragraph. \f inishidea

\startidea The second paragraph.\finishidea

\finishtheme

which, with a suitable set of w macros, will

generate my paper copy.

Why Is SGML Better Than T@C?

Because it is more than a typesetter. Consider

the way in which TEX typesets a superscript.

How does w indicate a footnote marker?, an

atomic weight?, the degree symbol?. and sometimes

trademarks etc.? Answer: often all by the same

mechanism; i.e., $*(whatever)$. Real SGML forces

you to treat these differently because they have

different meanings. Thus, an SGML document has

more inherent intelligence than a rn document.

Since SGML is independent of the programs

used to typeset, store in a database, extract an
abstract, etc., your documents become "official",

i.e., the one and only storage medium needed

to hold all of the information. Therefore, any

typesetter, database, etc., may be accommodated

by changing only the program which drives your

parser-translator. Thus a change in one file makes

the new output automatic. So if I decide to switch

typesetters from 'QX to NIT without modifying my

instance files at all.

The first time I heard that, my objection was

that instead of having QX files you then have

SGML files and, "What happens if SGML changes

and I want t o convert my files to NISGML?" what

is the difference? The answer is. if SGML is

ever modified (and I sincerely hope it is!), all of

your SGML files could be run through the parser

mentioned earlier and converted in one huge batch

file. Try doing that with any other system and you

will get an appreciation for SGML and the available

parsers.

Why Is Better Than SGML?

When you consider the example of a mathemat-

ical expression, taking full advantage of all the

capabilities that SGML offers, you cannot read

the equation. The corresponding equation is

rather easy t o read. The SGML document may

also contain cumbersome structures necessary to

distinguish between the various uses of say, periods.

In such cases, the (f i l e n a m e) . t e x document is much

easier to type and to read than is the instance file.

But these a re excuses -if the information needs to

be available, then the tagging needs to be done no

matter what the result is in the instance file.

Naturally, is better at typesetting because

SGML is not a typesetting system. There are

those who try to make it so by misusing SGML's

attributes and forcing SGML files to contain for-

matting information. But it is not. It should be

used to mark the information without regard to its

format. There are even those who would sacrifice

printing quality for the sake of the instance file.
But when you can have your SGML file and it

too, why not?

Then We Say, "SGML and T@C for

Publishing"

There are at least four main reasons for inserting

SGML in front of m:
1. Due to the writing of smart editors, it is

much easier to create a properly structured

document with SGML. But what we did not

mention before is that the smart editors force
typists to enter all of the data and in the

correct order. (It is true that you can still

make a mistake but you have to make it on

purpose.)

2. SGML allows us to have the luxury of the

"official" document. I don't think that I will

appreciate all of the problems that this solves

until we have had a working system in use for

some period of time.

3. SGML can be used (with the proper parser-

translator) to generate input to a database

system as well as other typesetting systems

or anything else where information is stored.

Thus, the input information can be confined to

one file (the instance file) and yet many output

mediums are possible.

4. Because of extra intelligence available from

SGML, the rn macros needed to typeset

the document are easier to write. Consider,

for example. that we do not need to concern

ourselves with whether or not our document

has (or does not have) a title because we will

know that it does. Thus, our 7QX macros need

not check for this.

There are at least four reasons why Q X should

follow SGML:

1. There are SGML aficionados who feel that

typesetters like QX should be executed quietly

behind the translator and that users need never

know that it is being used at all. QX is one

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting 407

Robert W. MCGaffey

of the most programmable typesetters around

and thus more capable of this than other

typesetters. For example, consider typesetting

a table from an instance file. SGML is aware

of the structure of the information but has no

idea of the lengths of the various elements.

So, typesetting a table from an instance file

means adopting some standard format which

will hopefully satisfy some high percentage of

tables. Some of the table information will

be wide and some narrow. And it is not

likely that the lengths of the table headings

will correspond to the lengths of the data they

head. As a result, the simple table of Figure

1. becomes "strung out" and ugly because its

headings are so long.

No. of samples Exposure rate Standard Error

Max Min Ave

Input Summary 80 110 6.6 18 3.5
Output Summary 254 11 5.8 7.1 0.043

Figure 1: Table generated with eyes closed.

No. of
Exposure rate

Standard
samples Error

Max Min Ave

Output

Summary
254 11 5.8 7.1 0.043

Figure 2: Table generated after seeing disaster above.

Most of us would probably agree that the

rendering shown in Figure 2 is better. QX
is one of few typesetters capable of making

the decision to change the pattern of the table

on the fly. That is, T@ is smart enough to

decide that the second alternative is better, all

by itself. The number of places where such

decisions could be made is probably only a limit

of our own imaginations. Thus, QX can hide

behind SGML better than most typesetters.

But there are cases that cannot be handled by

automatically.

2. There are things that you can do with QiX that

make the published-on-paper copy so clean.

For example, QX can assure us that all of

the columns of any output page will never

end in a hyphenated word and yet will be

the same length. The author thinks the

best way to do this is to look at the final

document and then use \hboxC(hyphenated

word)) whenever it is needed. Sometimes the

use of \looseness=(number) is also required to

prevent widows and orphans in such columns.

3. Editors will want to make formatting changes.

Editors always want to make changes.

4. Yet the main reason to use QiX as a backend

to SGML is the reason we all started using it in

the first place. It is still true that nothing else

sets math like QX (or paragraphs either) so

we should continue to use QX simply because

it does such a beautiful job.

TUGboat, Volume 12 (1991), No. 3-Proceedings of the 1991 Annual Meeting

