
TUGboat, Volume 12 (1991), No. 2

p- - -

Generating \n asterisks

George Russell

At the start of Appendix D of The W b o o k . Donald
Knuth considers the "toy problem'' of defining
a macro \ a s t s which contains just \n asterisks
(where \n denotes one of W ' s count registers).
For simplicity I intend to assume that \n is non-
negative from now on, though ideally we should
check that \n is a count register with non-negative
contents before executing the macros.

The first solution by Knuth uses the following
operations:

(a) we can make \ a s t s null with \xdef\astsCI:
(b) we can add one asterisk to it with

\xdef \asts{\asts*).

Therefore we just make \ a s t s null and then add one
asterisk to it \n times. Unfortunately needs
O(t) time to execute step (b) when \ a s t s contains
t tokens, so the whole method takes ~ ((\ n) ~) time
in total.

However it would be much nicer to have a
solution which took time proportional to \n rather
than its square. Knuth gives one. This works by
building up a definition for \ a s t s on the TEX save
stack using \aftergroup. But the problem with
this solution is that as we rarely require a large save
stack. most implementations only have a small one.
so Knuth's solution probably will not work for large
\n (on the 7&X I usually use, it fails for \n bigger
than 170 or so*).

Therefore I propose two refinements (in the
order they occurred to me) which are both linear
and allow \n to get quite large.

The first refinement can be thought of as
follows. If we look again at the list of operations
which were used for Knuth's first solution. we see
that there is a third useful operation which can be
used to increase the size of \ a s t s ; namely:

(c) we can double \ a s t s using
\xdef \as t sC\as t s \as t s3 .

Thus if we want a 1000-asterisk macro, we can
generate it by generating in turn 0-, I- , 2-. 3-.
6-, 7-, 14-, 15-, 30-, 31-, 62-, 124-, 125-, 250-,
500- and 1000-asterisk macros, obtaining each from
the previous one by adding an asterisk with (b)
or doubling with (c) (this method is analogous
to the algorithm for taking powers by repeated

* The implementation I usually use has a
save stack of 600 words (the distribution default)
and a main memory with 65535 (the default is
about 30000).

squaring). Here therefore is my first solution to
Knuth's problem, which (as the reader can satisfy
himself) is linear in \n.

\def\makeasts#l{{% Function i s t o make
\ a s t s contain \n a s t e r i s k s .

\countO=#l % Put argument i n t o a

r e g i s t e r so we can do a r i thmet ic on i t .

(it is OK t o use \count0 and \count2

as s c r a t ch r e g i s t e r s as no output i s

generated i n t he macro so they w i l l

not be referenced by \ou tput .)

\ifnum\countO=O %

\xdef\asts{)% operation (a)

\ e l s e
\count2=\count0\divide\count2 by 2

Se t \count2 t o ha l f \countO.

\makeasts{\count2)%

\xdef \as tsC\asts \asts3% opera t ion (c)

\ifodd\countO
\xdef \astsC\asts*)\f i% operat ion (b)

\f i33
\makeast sC\n3

This solution is reasonably fast, and works with
\n as large as 39800 on my local implementation
(because it is limited by the size of W ' s main
memory rather than the size of its save stack).
Only a maniac would want more asterisks than
that! Of course it will fall over for smaller values of
\n if we have other stuff occupying the main memory
(the figures given here were obtained on a version
of with only the Plain QX macros loaded). So
I was reasonably satisfied, until Chris Thompson,
the local 7&X wizard. asked me the following
question: is there a set of commands which
expands to \n asterisks without using any primitive
commands? (The tokens understands can be
divided into those which reach its stomach, like the
9ypeset character" commands and \def (described
in chapters 24-26 of The m b o o k) and those which
are expanded and removed in its mouth, like macros,
\ i f and \ the (described in chapter 20). It looked
as if the answer to Chris Thompson's question
was almost certainly 'no', because we are not even
allowed to use the arithmetic operations. But \ t h e

provides a loop-hole. since \ the\n expands to the
digits of \n. and we can then operate on them. It
took me several hours to produce a solution along
these lines, which was ugly and slow (but it wasn't
a waste of time, since I learnt a lot about W ' s
expansion mechanisms in the process). However I
did eventually think of a much neater way. We need
some initial definitions (which don't overwrite any
macros in Plain W):

TUGboat, Volume 12 (1991), No. 2

After these, to set \asts to contain just \n asterisks
you just have to type

I have deliberately left the above uncommented
as I hope some readers will enjoy working out
for themselves how the macros work. Note the
use of \csname.. . \endcsname to provide a look-
up table; a trick that every m h a c k e r should
know, though I used it here because I wanted to
eliminate conditional commands since I regard them
as "almost" primitive commands. The macro works
for bigger \n than the previous one. I have used to
it to produce 54250 asterisks. Furthermore it seems
to be marginally faster on the local implementation.
I shall be interested to see whether anyone can find
a still faster macro!

Exercise for METAFONT hackers: Appendix D

of The METRFONTbook begins with the problem
of defining a macro containing exactly n asterisks.
Rewrite the above bits of lQjX in METAFONT to
solve this as well.

o George Russell
Mathematics
Trinity College
Cambridge, England
GERiiC!uk.ac.cam.phx

and Envelopes

Dimitri Vulis

I have revised and improved the I4m envelope
macros that I posted to TeXHAX some years ago.
Using them may save money.

Why bar codes on envelopes and other

USPS gossip

It is reported that recently the United States Postal
Service board of governors approved the 27-cent
"public automation rate" for first-class mail whose
envelopes are pre-printed with a ZIPS4 code1 and a
Postnet code, the bar code often found in lower right
corner of business reply and courtesy envelopes.
saving 2 cents off the new 29-cent rate for first-class
mail. In the past, organizations simultaneously
mailing 10 pieces in the same ZIP code, or mailing
250 and even 500 pieces pre-sorted by ZIP code
were given discounts; now the discount may extend
to single letters.

The existing Post Office sorting machines read
the bar code placed in the lower right corner
of a letter-sized envelope, but the new wide-area
scanners, to be installed in the spring of 1991,
will read the bar code virtually anywhere on the
envelope, and it will be possible to bar code larger
letters, magazines, and catalogs - so called flats.

USPS optical scanners already generate Postnet
bar codes while processing envelopes with address
legible enough for the optical character reader (i.e.,
not handwritten), but the Post Office would prefer
to deal with letters already with a Postnet bar code.
USPS expects to save $40 to $80 million on every
1% of mail that is sent "pre-bar-coded", and it
passes a part of that saving back to the senders.

When a letter without a Postnet code is pro-
cessed by the Post Office, an attempt is first made
to feed it to an optical character reader (OCR)
machine: if it succeeds in reading the address, it
attempts to look up the ZIP+4 code in a database,
sprays the Postnet code on the envelope, and from
then on the envelope is handled automatically by
bar code sorters (BCSs) at several points, until it
reaches the destination post office; only then does a
letter carrier read the address once again. However
the OCR machines are known to be very finicky
and it's very difficult to print an address that will
be reliably scanned. The OCR machines want the

The system of 9-digit numeric codes developed
by the United States Postal Service that identifies
small groups of delivery addresses.

